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What Accuracy Could Not Be

Abstract

Two different programs are in the business of explicating accuracy—the truthlikeness program 
and the epistemic utility program.  Both assume that truth is the goal of inquiry, and that among 
inquiries that fall short of realizing the goal some get closer to it than others. TL theorists have 
been searching for an account of the accuracy of propositions.   Epistemic utility theorists have 
been searching for an account of the accuracy of credal states.  Both assume we can make 
cognitive progress in an inquiry even while falling short of the target.  I show that the prospects 
for combining these two programs are bleak.  A core accuracy principle, Proximity, that is 
universally embraced within the Truthlikeness program turns out to be incompatible with a 
central principle within the Epistemic Utility program, namely Propriety. 
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1 Truthlikeness and Epistemic Utility

Accuracy is not a only pervasive notion but a central one.  In our epistemic adventures we aspire 
to the whole truth of some matter, but we often fail to reach it.  Not all need be in vain, however, 
if some attempts to capture the truth, while not completely accurate, are more accurate than 
others.  Two different programs are in the business of trying to pin accuracy down— the 
truthlikeness (TL) program and the epistemic utility (EU) program.  The former was inspired by 
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Karl Popper, the latter by Carl Hempel.   While these initial protagonists were pursuing slightly 1

different epistemologies (probabilism and falsificationism respectively) they weren’t so far apart.  
Both assumed that truth is the goal of inquiry, but that among inquiries that fall short of realizing 
the goal some get closer to it than others.  TL theorists are after an account of the accuracy of 
propositions—of closeness of propositions to the fully accurate target proposition.  EU theorists 
are after an account of the accuracy of probabilistic credal states—of the closeness of credal 
states to the fully accurate credal state.  Both assume we can make cognitive progress in an 
inquiry even while falling short of the target. Both ground the possibility of such progress in the 
value of accuracy.  Several protagonists have suggested that, since both programs are zeroing in 
on accuracy, consilience might be in the offing.   But it turns out that the prospects for 2

consilience are bleak.  A compelling principle governing truthlikeness—Proximity—is 
incompatible with a central principle of epistemic utility theory—Propriety.  And the 
incompatibility runs deep.

2 Inquiries

The goal of an inquiry is to arrive at the truth.  Not the whole truth about the universe, of course, 
but the truth of some particular matter—such as the number of the planets, the state of the 
weather in Boulder tomorrow, the laws of motion, or the causes of the fire.  In pursuing an 
inquiry we are not trying to identify which world is actual—that would be hubristic—but to 
locate actuality in some more coarse-grained partition of the logical space.  

Consider the inquiry (IN) that seeks an answer to the question: What is number of the 
planets? Let Nj be the set of worlds in which the value of the magnitude at issue, N, is j. The 
question effects a partition IN = {N0, N1, N2,…} of the logical space.  Each cell of IN gives a 
complete answer to the question IN.  The cell that contains the actual world is the truth 
concerning IN.   Assume that N9 is the truth about IN.3

Another question: What will the weather in Boulder be tomorrow? This involves a vague 
notion (the weather).  We can sharpen the question by identifying factors that constitute the state 
of the weather (say, temperature and precipitation) and specifying values for each factor (say, 
hot/not-hot, and rainy/not-rainy for simplicity).   The cells of the weather question, IW = {A1, A2, 
A3, A4}, can be represented by couples of 1s and 0s. 

Hempel [1960], Popper [1963]. 1

 Oddie [1997], Joyce [1998] and [2009], and Greaves and Wallace [2006]. Leitgeb and Pettigrew [2010] 2

cite this as one of five open problems within the EU program. Its still open.
3With the discovery of Pluto N9 seemed to be the truth, but with Pluto’s demotion N8 returned. 
However, with intimations of a distant dark planet N9 is on the cards again.
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Not every answer to a question need be complete.  That N is between seven and ten is an 
answer to IN, albeit an incomplete one.  That it is hot is also an incomplete answer to IW, the 
weather question.  Each incomplete answer is compatible with a range of complete answers—
and will be represented as a class or disjunction of such.   

The simplest kind of credal state—simple belief in, or acceptance of, proposition A—can 
be represented by the object of that belief.  At each stage of an inquiry some proposition A is the 
strongest answer to the question that is accepted.  The course of an inquiry is a path through the 
space of possible answers.  The task of the TL program is to specify when a step in an inquiry 
constitutes progress towards the truth.

3 Accuracy For Propositions

Let I = {C1, C2, …} be some question.  We are after an accuracy ordering ≿ on the set of answers
over I.  A≿iB just in case A is at least as accurate as B when Ci is the truth about I.  (As usual
A≈iB if A≳iB and B≳iA, and A≻iB if A≳iB and not A≈iB.)   Some answers may turn out to be
incomparable, but for an account to be materially adequate it must at least deliver the intuitively 
compelling comparisons.  

Popper was the first to attempt a general definition of ≿.  Where Ci is true, let Tri(A) be
the true answers entailed by A and Fai(A) the set of false answers entailed by A.  Popper’s 
proposal is this: A≿iB =df Tri(B)⊆Tri(A) and Fai(A)⊆Fai(B).  It follows that A≻iB if A≿iB and one

of these inclusions is strict.  Unfortunately, for false A and B, if Tri(B)⊆Tri(A) then not

Fai(A)⊂Fai(B), and if Fai(A)⊆Fai(B) then not Tri(B)⊂Tri(A). So Popper’s account deems no
falsehood more accurate than any other.   This trivialization of the concept of truthlikeness is not 4

only counterintuitive (some falsehoods seem more accurate than others), but it undermines 
Popper’s explicit aim of vindicating the possibility of progress through a series of falsehoods.

In contrast to Popper’s very gappy proposal there are rival proposals that yield complete 
orderings.  Suppose we have a natural candidate for a measure of distance, δ, between cells of 
I={C1, C2, …}:  δij is the distance between Ci and Cj.  Such a measure gives us an accuracy 
ordering for the complete answers at least:  Cj≿iCk  just in case δji ≤δki.    For some inquiries a
plausible δ is rather obvious.  The distance between cells Ni and Nj of the partition IN is naturally 
taken to be the distance between the values they assign to magnitude N: δij=∣i−j∣.  In other
cases distances between cells can be naturally constructed.  The weather question involves two 
0-1 factors.  The cells of IW are couples of 0s and 1s.  Assuming the two weather factors are 

 If A and B are false neither condition holds.  One cannot add truths to a false theory without adding 4

falsehoods, or remove falsehoods without removing truths (Tichý [1974] and Miller [1974]).
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equally weighty, one measure of distance—the city block measure—is given by the number of 
disagreements between them. 

Table 1:   Distance between cells in the weather framework on the city block measure

Some atomic states may more weight than others.  Such asymmetries are quite possible but there 
is nothing to prevent incorporating different weightings.  Perhaps the temperature factor counts 
twice as much as the precipitation factor in accuracy assessments.  In that case, the distance of 
¬h∧r from h∧r would be twice that of the distance of h∧¬r from h∧r.  

Figure 1:  The weather space 

Suppose, then, that we have an accuracy ordering ≳ of the complete answers, whether or 
not it derives from a distance measure δ.  What we want is an accuracy ordering of the 
incomplete answers as well.  We need to extend ≳ to the incomplete answers.

 IW has four complete answers and eleven incomplete answers, each of which equivalent 
to a disjunction of complete answers.  5

Table 2:  Complete and incomplete answers to the weather question

There are various proposals for extending a measure of distance δ or an ordering ≳ from the cells 
to the incomplete answers.  The simplest deem the inaccuracy of proposition A to be determined 
in the obvious way by some representative A-cell: such as the A-cell closest to Ci (min) or the A-
cell furthest from Ci (max).   min  and max rank some false propositions, and they both rank 6

some correctly, but they are crude.  min deems all truths to be equidistant from the truth (the 
tautology is no less accurate than the whole truth).  max corrects this, but at the cost of deeming 
no false theory less accurate than the tautology.  Clearly a single representative A-cell won’t do.  
Averaging min and max (min-max) might suggest itself.   But why privilege just two A-cells? 7

Why not take the distances of all A-cells into account?  We could do that by averaging (ave).   8

This gets a lot but it doesn’t deliver a principle highly favored by Popper—the value of content 
for truths—that the logically stronger of two truths is closer to the truth.   One extension that 9

strongly penalizes weakening is the sum of distances of A-cells from the true cell (sum).  sum 

 The contradiction, which rules out all cells, is on this characterization, no answer at all.5

 min is proposed by Weston [1992] and Teller [2001].6

 Hilpinen [1976] proposed a qualitative version and Niiniluoto [1987] proposed the numerical version.7

 Tichý [1974] and Oddie [2013].8

 This has been considered sufficient grounds by some to reject ave.  For a defense, see Oddie [2013].9
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yields the value of content for truths but also delivers the value of content for falsehoods—that 
the stronger of two falsehoods is closer to the truth. That is as counterintuitive as it gets.  We can 
mitigate this by incorporating a factor sensitive to proximity to the true cell (min, say).  Taking a 
suitably weighted average of min and sum (call it min-sum) yields the value of content for truths 
without entailing the value of content for falsehoods.   While strengthening a falsehood 10

decreases sum it can also increase min, by eliminating closest cells. A different measure is based 
on the symmetric difference operation Δ on classes of cells.   Let sym be P(AΔCi) where P is a 11

normalized measure of the size of A. For propositions with the same truth value sym, like sum, 
diminishes with increasing logical content, delivering the value of content for falsehoods as well 
as truths.  Like sum, sym can also be ameliorated by averaging with min (min-sym).   12

This overview is not exhaustive—we could consider other mixtures, like min-sum-max—
but already this may give the impression that accuracy principles are all just too contested for 
there to be any coherent notion of propositional accuracy.  This would be a mistake.  Not all 
principles of propositional accuracy are contested.  Below I give a couple of compelling 
desiderata which together I call Strict Proximity.

One last caveat.  The desiderata proposed apply with equal force to any qualitative 
accuracy ordering, partial or complete,  whether or not it is derived from a distance measure.  All 
we really need in what follows it that there is at least one question with four complete answers 
that bear the accuracy relations to one another exhibited in Figure 1. 

4 Proximity

The accuracy of A depends on the accuracy of the A-cells. Other things being equal, the more 
accurate the A-cells are, the more accurate A is.  This underwrites two principles, one governing 
propositions of different logical strength and the other governing propositions of the same logical 
strength.  Let Closesti(A) be the set of most accurate A-cells.  Table 3 lists some examples:

Table 3   Closest A-cells

The first principle is this: if C is a closest A-cells then C is no less accurate than A itself:

Weak Proximity 
If C∈Closesti(A) then C≿iA.

 min-sum is Niiniluoto’s preferred measure.  See his [1987].10

 Miller [1977].11

 See Kuipers [1992] p.  332 for a proposal like min-sum on a structuralist account of theories12
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If A is true then the sole member of Closesti(A) is Ci which is of course no less accurate than A.  
If A is false, Weak Proximity requires only that the move from A to a member of Closesti(A) 
doesn’t involve a decrease in accuracy. Weak Proximity is satisfied by all accounts of 
truthlikeness considered above, which lends it strong independent support. 

A striking example of Weak Proximity is worth noting.  Where T is the truth, ¬T is the 
weakest falsehood on offer (Figure 2).  If there is anything to the idea of propositional accuracy 
it is that that the cells in ¬T closest to the truth are not further from the truth than ¬T.

Figure 2  The relative accuracy of ¬T and Closesti(¬T)

Now consider answers with the same number of cells.  Suppose A contains Cj and 
excludes Ck.  Let Ak/j be the result of substituting Ck for Cj in A.  A and Ak/j possess the same 
number of cells and so by one measure of the same logical strength.  For example:

(i) (A1∨A3) is the result of substituting A3 for A2 in (A1∨A2); 

(ii) (A1∨A2) is the result of substituting A1 for A4  in (A2∨A4).

Let Cj and Ck be equally accurate.  Then the substitution of Ck for Cj neither decreases nor 
increases accuracy:  Ak/j and A are equally accurate.  Suppose that Ck is more accurate than Cj.  
Then the substitution of Ck for Cj  clearly improves accuracy. 

(iii) Since A3≈1A2,  (A1∨A3)≈1(A1∨A2); 

(iv) Since A2≻1A4, (A1 ∨A2)≻1(A1∨A4).

We thus have:

Substitution 
If Ck≈iCj then Ak/j≈iA, and if Ck≻iCj then Ak/j≻iA.

The first component of Substitution is satisfied by every account mentioned above.  The second 
is a little more demanding.  It is violated by those accounts—like min, max, and min-max—that 
are insensitive to substitutions of cells between the extreme cells.  On the other hand ave and 
min-sum, amongst others, are appropriately sensitive to such substitutions.  

The combination of Weak Proximity and Substitution I will call Strict Proximity.  The 
reason is that Weak Proximity cannot deliver anything other than a weak inequality when 
sometimes a strict inequality in order.   For example, by Weak Proximity: 

(v) A1≳1(A1∨A4). 
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Intuitively, however, A1 is more accurate than (A1∨A4).  But by Weak Proximity:

(vi) A1≳1(A1∨A2).

Since by Substitution A2≻1A4 yields (A1 ∨A2)≻1(A1∨A4), Strict Proximity yields A1≻1(A1∨A4).

5 Accuracy For Credal States

Not all credal states consist in the acceptance of propositions and not all developments in an 
inquiry are best represented by changes in propositions accepted.  Suppose one begins an inquiry 
ignorant as to which cell of a partition contains the actual world.  After gathering evidence (by 
tapping the barometer say) it may be that no particular cell is definitively ruled out, but that 
uncertainty is reduced.  Some cells now seem more likely than others.  Even though no new 
proposition has been accepted, one’s credal state has changed, and such a change may constitute 
progress towards the truth.

Credal states can be represented as probability distributions over the cells of the inquiry.  
The aim of the inquiry is to end up embracing the perfectly accurate probability distribution over 
I.  Where Ci is the true cell, the target credal state is the opinionated state, Pi, that assigns 
maximal probability to Ci and zero to the rest.  If we had a good measure of the distance of credal 
states from each of the opinionated states, inaccuracy could be captured as distance from the 
target credal state.  Ascribing accuracy value directly to credal states, rather than to propositions, 
or to actions such as accepting propositions, marked a crucial development in the EU program.13

There are well-known pragmatic justifications for probabilism (e.g.  the Dutch Book), for 
conditionalization (e.g.  the diachronic Dutch Book), and for the value of experimenting (e.g.  the 
Ramsey-Good theorem), but are there comparable purely cognitive justifications.  In a recent 
survey Pettigrew writes:

In his 1998 paper, Joyce introduced an entirely novel style of argument for epistemic 
norms: characterize the legitimate measures of the epistemic utility of an epistemic state 
at a world; then apply decision principles to this function to derive epistemic norms that 
govern these states.  The strategy is to prove that, given undeniable features of accuracy, 
credal states that do not satisfy probabilism are dominated by credal states that do.  14

The EU vindication of probabilism relies on the following claims:

 Pettigrew [2015] p. 2 dates this development to Oddie [1997] and Joyce [1998].13

 Pettigrew [2013], p. 907.  In Oddie [1997] the strategy was employed to vindicate the norms of seeking 14

out new information and updating by conditionalization.
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(1a) If all legitimate measures of accuracy of credal states satisfy conditions S then 
probabilism is true.

(1b) All legitimate measures of accuracy of credal states (and there are some) satisfy S. 

I argue for the the following conditional: 

(2) If probabilism is true no legitimate measure of the accuracy of credal states satisfies S.  

It follows from (1a) and (2) that no measure satisfying S is a legitimate measure of accuracy, 
depriving the vindication of probabilism of premise (1b).  I assume the antecedent of (2) and 
demonstrate the consequent.  

Like EU theorists, I am interested in the accuracy value simpliciter of credal states.  
There may be evaluable aspects of an inquiry that are not built into an inquirer’s credal state at a 
time.  Her current state might have been arrived at through wishful thinking, logical errors, dumb 
luck, or by judicious modification in the light of new evidence.  These different epistemic 
procedures may differ in their cognitive value, as may the various epistemic trajectories they 
engender.  As elsewhere, the value of a journey may diverge from the value of its destination.

I begin with plausible conditions on accuracy that EU theorists have found compelling.  
The conjunction of these principles I dub the Core of the EU program.  15

Suppose Ci is true.  Then Pi’s assignments of probabilities match the truth values of all 
answers: Pi(A)=1 if A is true, Pi(A)=0 if A is false.  Any other credal state P, whether opinionated 
or not, assigns different values to some of the answers.  P(A) can be thought of as a more or less 
accurate estimate of the truth value of A, or of Pi(A).  The closer an estimate of a magnitude is to 
the actual value of the magnitude, the more accurate the estimate.  So P is more accurate than Q 
with respect to A if P(A) is closer to Pi(A) than is Q(A).  A local inaccuracy measure d(p,t) is thus 
a function of p (the probability P assigns to A) and t (the truth value of A), satisfying:

Truth Directedness 
For all p∈[0,1], d(p,1) is a strictly decreasing function of p and d(p,0) is a strictly 
increasing function of p.

Any increasing function of the absolute difference ∣t−p∣ satisfies Truth Directedness, and the 
simplest is ∣t−p∣itself (α1).  α1 seems natural enough, but any exponential function of ∣t−p∣is 
also truth directed: αz(p,t) = ∣t−p∣z for z>0.   Of course, many other functions satisfy the 16

constraint—like this logarithmic measure:

The Core is not inviolable.  If it leads to counterintuitive results then there will be reason to tweak it.15

Absolute difference, α1, has been proposed by Horwich [1982], Goldman [1999] and Maher [2002].16
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d(p,1) = −ln(p), and d(p,0) = −ln(1−p).

These functions all have a property that arguably every inaccuracy measure should have.  If local 
accuracy depends only on truth value and probability then since, in a coherent believer, believing 
A to degree p just is believing ¬A to degree (1−p), the inaccuracy of believing A to degree p 
should be the same as the inaccuracy of believing ¬A to degree (1−p).  

Symmetry
For all p and t: d(p,1) = d(1−p,0).  17

Symmetry is not always assumed at the outset in EU vindications of probabilism, for the reason 
that credal states are not assumed at the outset to be probabilistic.  (This is what they want to 
prove.)  For non-probabilistic states the justification for Symmetry above would break down.  But 
given that we are assuming probabilism for the purposes of establishing (2) above, Symmetry 
seems irresistible. 

By Truth Directedness, P is minimally inaccurate with respect to A if and only if 
P(A)=Pi(A).  Minimal inaccuracy is naturally taken to be zero inaccuracy—a harmless scaling 
convention—so d(0,0)=d(1,1)=0.  Another feature of the exponential functions, though not the 
logarithmic function, is that inaccuracy possesses a finite upper bound for 0≤p≤1.  Again, setting 
the upper bound at 1 is a scaling convention, but it is by no means a mere convention to set an 
upper bound on inaccuracy.  Some have endorsed unbounded measures, like the logarithmic 
function.  For ease of exposition I collapse the two assumptions here but we will revisit that:

Boundedness
0 is the greatest lower bound on inaccuracy and � if and only if ∣t−p∣= 0.  
1 is the least upper bound on inaccuracy and � if and only if∣t−p∣= 1.

Let Di(P) be the global inaccuracy of P given Ci.  A plausible assumption is that Di(P) is an 
increasing function of local inaccuracies.  If Di(P) were the simple sum of local inaccuracies this 
would clearly be satisfied.  But perhaps summing is too simplistic.  It treats all answers as 
equally important, and some answers might be more important to overall accuracy than others.  
Let λj be a weight assigned to answer Aj  (in some enumeration of all answers) in the evaluation 
of the inaccuracy of P.  The more important it is to get Aj right, the more P’s error with respect to 
Aj counts in overall global inaccuracy.  Not every assignment of weights is admissible—about 
which a lot more will be said—but the basic proposal is that the global inaccuracy of a credal 
state is the weighted sum of local inaccuracies, using some admissible λ-assignment: 

Additivity
Global inaccuracy is the λ-weighted sum of local inaccuracies:

d(p,t) = 0
d(p,t) = 1

 This condition is called “0/1 Symmetry” in Joyce [2009].  17
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�
where λ is an admissible assignment of weights.

I will interpret Additivity as a constraint on accuracy that works in both directions.   Any 18

legitimate measure of local inaccuracy d together with an admissible λ-assignment generates a 
legitimate measure of global inaccuracy Dλ.  Further, any legitimate global inaccuracy measure is 
generated by a legitimate local accuracy measure d and an admissible λ by weighted summing.  

When is λ admissible? Getting a particular answer wrong cannot uniformly enhance global 
accuracy.  So all admissible λ-assignments have to be non-negative.  Further, if all answers were 
assigned zero weight, no credal state would be more accurate than any other—total trivialization.  
So some λ-assignments have to be positive.  Requiring that the λ-assignments sum to one entails 
this, and is otherwise a scaling convention.  Finally, some positive weight has to be assigned to 
answers other than the the tautology.  Every coherent credal state assigns the tautology its true 
value, so accuracy with respect to the tautology never sets credal states apart.  If the tautology 
hogged all the weight then again total trivialization would ensue.  Summing this up:

Admissibility 
λ is admissible only if: (i) for all j, λj≥0; (ii) ; and (iii) λTaut<1.

This is a necessary condition on admissible λs.  Further constraints will be in order depending on 
the nature of the λ-weighting at issue.

This initially plausible looking Core (Truth Directedness, Symmetry, Boundedness, 
Additivity, and Admissibility) leaves open a large pool of local and global inaccuracy functions.

Satisfying the Core core isn’t a sufficient condition for D to count as a legitimate measure 
of accuracy.  Neither does it constitute a set of conditions sufficient to underwrite an accuracy 
argument for probabilism.  As noted, absolute difference, α1 satisfies the Core, but it doesn’t 
underwrite a dominance argument for probabilism.  Further desiderata are needed, and several 
have been proposed, including Extensionality, Convexity and Propriety.  One prominent 
accuracy measure that satisfies the Core, along with these other features, is the quadratic 
measure: α2.  Plugging α2 into Additivity we get the Brier measures.  Let Brier be the thesis that 
some member of this class is an adequate measure of accuracy.

Brier
There is an admissible λ such that� is a legitimate 
measure of inaccuracy.  .

Simple Brier is the special case in which the λ-coefficients are equal (λequal).  

Di
λ (P) = λ jd(P(Aj ),P

i (A))
j∑

λii∑ = 1

Bri
λ (P) = λ jα

2 (P(Aj ),P
i (A))

j∑

 See Pettigrew [2015], pp. 39-40 and 52-4 for this kind of interpretation and defense of additivity.18
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The Brier measures, particularly Simple Brier, have played a special role in the EU program 
and are widely regarded as obviously legitimate accuracy measures, or even as the only 
legitimate measures.   However, it would be advantageous not to have to rely on the legitimacy 19

of these measures, with weaker conditions on legitimacy that can do the work.  The central 
condition currently favored for this role is Propriety.20

6 Propriety 

is a measure of the global inaccuracy of P given that Ci is true.  If one is not in possession 
of the truth, then typically one is also ignorant of the actual global accuracy of one’s credal state.  
Nevertheless one can still estimate the inaccuracy of a credal state.  The expected inaccuracy of 
Q, from the perspective of P, is P’s best estimate of the inaccuracy of Q:

P’s estimate of Q’s inaccuracy =�

P is self-recommending if P’s estimate of its own inaccuracy is less than its estimate of the 
inaccuracy of  any other state Q.   If P is self-recommending then staying in P would minimize 21

expected inaccuracy.  Suppose P is not self-recommending.  Perhaps this is because P estimates 
the inaccuracy of some rival state Q to be less than that of P.  If one were in state P then P 
recommends that to minimize inaccuracy one switch to Q straight away without benefit of 
additional evidence.  Call such a P self-undermining.  At first blush there is something very odd 
about a self-undermining credal state.  This suggests the following constraint on accuracy:

Weak Propriety
For every P and Q,� . 

Suppose P is neither self-recommending nor self-undermining.  P estimates its own inaccuracy 
to be no greater than that of any rival, but it does put some rivals on an equal footing.   Call such 
states self-deprecating.  Self-deprecating states are not as bad as self-undermining states, but they 
still seem odd.  This suggests:

Strict  Propriety
For every P and Q≠P,� . 

Di
λ (P)

EDP
λ (Q) = P(Cj )Dj

λ (Q).
j∑

EDP
λ (P) ≤ EDP

λ (Q)

EDP
λ (P) < EDP

λ (Q)

 di Finetti [1974] and Savage [1971], Joyce [1998] and [2009], Oddie [1997], Greaves and Wallace 19

2007, Leitgeb and Pettigrew [2010] and Pettigrew [2015].
 In his [1998] Joyce uses convexity as a central condition on legitimacy but in light of criticisms in 20

Maher [2002] and Pettigrew [2015], convexity has been largely abandoned in favor of conditions like 
Propriety.

 Oddie [1997].21
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Given Additivity, a global function Dλ satisfies these conditions if and only if the local accuracy 
function d that generates Dλ satisfies the following:

Weakly proper d: for all q≠p: pd(p,1) + (1−p)d(p,0) ≤ pd(q,1) + (1−p)d(q,0).
Strictly proper d: for all q≠p: pd(p,1) + (1−p)d(p,0) < pd(q,1) + (1−p)d(q,0).

There are a wide range of proper measures, including the exponential functions and the 
logarithmic function, amongst many others.  22

7 Proximity For Credal States

Proximity is a constraint on propositional accuracy, but there is an obvious analogue for credal 
state accuracy.  Call P an A-state if it assigns non-zero credences to all and only A-cells.   Let C 
be a most accurate A-cell.  PC is the opinionated C-state.  In moving from P to PC one transfers 
credences from less accurate A-cells and concentrates them all on the optimally accurate A-cell, 
C.  The credal correlate of Weak Proximity is this:

Weak Proximity for Credal States 
If P is any A-state and C∈Closesti (A) then .

Call P flat if it distributes probabilities evenly over some cells, and let PA be the flat A-state.  P¬T, 
the flat ¬T-state, is not a terribly accurate credal state.  Let C∈Closesti (¬T). All that Weak 
Proximity requires is that the step from  P¬T to PC does not increase inaccuracy. 

The generalization of Substitution for credal states is also compelling.  Suppose P(Cj)>0 
and P(Ck)=0.  Let Pk/j be just like P except that Pk/j(Cj)=0 and Pk/j(Ck)=P(Cj).

Substitution for Credal States
Ck≈iCj then , and if Ck≻iCj then .  

Strict Proximity for credal states is the combination of Substitution and Weak Proximity.
In IW, let Pi be the flat state that assigns an equal non-zero credence to each cell compatible 

with Ai and 0 to the rest.  A2≈1A3 and A1≻1A4. By Substitution it follows that P5≈1P6 and P5≻1P10.
A special case of Substitution involves opinionated states.  Let Pj assign 1 to Cj.  If Cj and Ck 

are equally accurate then, by Substitution, so too are the opinionated states, Pj and Pk (=(Pj)k/j).  If 
Ck is more accurate than Cj then Pk is more accurate than Pj. 

Opinionation 
If Ck≈iCj then  and if Ck≻iCj then .

Di
λ (PC ) ≤ Di

λ (P)

Di
λ (Pk / j ) = Di

λ (P) Di
λ (Pk / j ) < Di

λ (P)

Di
λ (Pk ) = Di

λ (P j ) Di
λ (Pk ) < Di

λ (P j )

Joyce [2009], pp. 276-8, gives a recipe for generating proper measures but they do not all satisfy the 22

core.
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Since A2≈1A3 and A1≻1A4, Opinionation yields P2≈1P3 and P1≻1P4. 

8 Extensionality

In his [1998] Joyce introduces Extensionality as a possible condition on an accuracy measure. 

The "facts" which a person's partial beliefs must "fit" are exhausted by the truth-values of 
the propositions believed, and the only aspect of her opinions that matter is their 
strengths.  23

Joyce sees that propositional accuracy might well conflict with Extensionality: 

A[n] objection to Extensionality is that it does not take verisimilitude into account.  Here 
is how the complaint might go: 

Copernicus (let us suppose) was exactly as confident that the earth's orbit is circular as 
Kepler was that it is elliptical.  However, both were wrong since the gravitational 
attraction of the moon and the other planets causes the earth to deviate slightly from its 
largely elliptical path.  Extensionality rates the two thinkers as equally inaccurate since 
both believed a falsehood to the same high degree.  Still Kepler was obviously nearer the 
mark, which suggests that evaluations of accuracy must be sensitive not only to the truth-
values of the propositions involved, but also to how close false propositions come to 
being true.24

Joyce’s reply:

An agent who strongly believes that the earth's orbit is elliptical will also strongly believe 
many more truths than a person who believes that it is circular (e.g., that the average 
distance from the earth to the sun is different in different seasons).  This means that the 
overall effect of Kepler's inaccurate belief was to improve the extensional accuracy of his 
system of beliefs as a whole.  …I suspect that most intuitions about falsehoods being 
"close to the truth" can be explained in this way, and that they therefore pose no real 
threat to Extensionality.  

If Joyce were right then an equal distribution of λ-weights would capture the desired ranking and 
Extensionality would be preserved.  We can test this with opinionated states in the weather 
framework.  In Table 4, λequal assigns equal weights to all fifteen answers.  Any two false 
complete answers Cj and Ck entail the same number of true answers (8) and the same number of 
false answers (7), and as a result the associated opinionated states end up with the same score.  
This is a quantitative version of the problem which crippled Popper’s qualitative account, and it 

 Joyce [1998], p. 591.23

 Joyce [1998], p. 592.24
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generates a similar trivialization result here: namely, that no false opinionated state is more 
accurate than any other false opinionated state.  25

Table 4   � violates Opinionation 

Since λequal assigns equal weights, and P4 and P2 both deliver 8 answers with maximal inaccuracy 

and 7 answers with minimal inaccuracy, we have � .  This suggest 
the EU theorist needs to abandon equal weights. Some answers must count more than others in 
overall accuracy.  If so the distances between complete answers might be packed into a suitable 
selection of λ.  This idea is floated in Joyce [2009], and by Greaves and Wallace 2007.  The latter 
explicitly advocate distributing λ-weights unequally in order to capture truthlikeness:

….often, we will want to judge one credence distribution as epistemically better than another 
even when both assign the same degree of belief to the true state, on the grounds that the first 
concentrates its remaining credence among (false) states that are closer to the truth than does 
the second.  Our sample schema [viz Brier] takes account of the value of verisimilitude, by a 
judicious choice of the coefficients λ: we simply assign high λ when A is a set of ‘close’ 
states.  26

Note that the judgement endorsed in the first sentence of the paragraph hints strongly at Strict 
Proximity.  Greaves and Wallace intimate that such considerations can be captured by assigning a 
high λ-value to “a set of ‘close’ states”.  They don’t  spell what they mean by “a set of ‘close’ 
states”, and there are two possible interpretations

On the first interpretation a set of ‘close’ states is a set of cells close to the true cell.  That 
is, —the weight assigned to Aj when Ci is true—depends on how close Aj is to Ci.  could be 

simply identified with the truthlikeness of Aj given Ci.  More liberally, could be any strictly 

increasing function of truthlikeness.  It would be surprising if there were no such likeness-
sensitive world-dependent λ-weightings compatible with Proximity.

There are, however, a couple of problems with this world-dependent interpretation.  The 
authors call the λs “constant coefficients”.  A natural interpretation of this is that λj does not vary 
with the location of the true cell.  Rather, it is a world-independent affair.  This reading is 
bolstered by a sketch of a proof of the Propriety of the Brier measures (in their footnote 9).  The 
proof is valid only if the λ-coefficients are world-independent.  If the the λ-weights are world 
independent and the local inaccuracy function d is weakly/strictly proper, then the so too is the 

Dλequal

DT
λequal (P4 ) = DT

λequal (P2 ) = 8 /15

λ j
i λ j

i

λ j
i

A more general trivialization result: if A and B are false answers with the same number of cells then the number of 25

truths (falsehoods) that A entails is the same as the number that B entails.

 Greaves and Wallace [2006], p. 628.26
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global inaccuracy function obtained by summing weighted local inaccuracies.  There is no such 
guarantee if the weights are world-dependent. 

The main problem with the world-independent interpretation is that it is not immediately 
obvious what is supposed to count as a set of 'close' states.  There is, however, one rather 
plausible construal.  Suppose we assign high λ-coefficients to those answers in which the cells 
are close, not to the true cell, but to one another.  We can flesh out this idea using the notion of a 
convex region.  Suppose we have a notion of betweenness on cells.  A convex set of cells is one 27

that contains all the cells located between any two cells in the set.  For example: A5 = h = {A1, 
A2} and A6 = r = {A1, A3} are both convex since A1 is close to A2, and A1 is close to A3 (they are 
both adjacent pairs); whereas and A7 = h≡r = {A1, A4} and A8 = ¬h≡r = {A2, A3} are not, since 
A1 is maximally distant from A4, as A2  is from A3.  One λ-weighting compatible with this 
interpretation of 'close' states (λconvex) assigns equal weights to all the convex regions of the 
weather space and zero weight to the non-convex regions.  Another (λatomic) assigns equal 
weights to certain special convex regions—namely, the atomic propositions and their negations, 
and zero to the non-atomic states.  Table 5 gives the local and global inaccuracies using λconvex 

and λatomic for weights, and a d satisfying the Core.

Table 5:   λconvex and λatomic yield Opinionation

As is easily checked summing local errors weighted by λconvex and λatomic delivers the right global 
ordering of opinionated states:

� ,  � .
Thus with appropriate world-independent λ-weightings, the Core yields Opinioniation.  The 
question now is whether, with admissible λ-weightings, we can recover the intuitively correct 
accuracy ordering on credal states generally, not just the opinionated states.  To settle that we 
first have to specify which λ-weightings are admissible on each of the two interpretations.28

DT
λconvex (P4 ) = 6 / 9 > DT

λconvex (P2 ) = 4 / 9 DT
λatomic (P4 ) = 1> DT

λatomic (P2 ) = 1/ 2

The notion of convexity has proved very rich in recent work in property theory (Gärdenfors [2000]).  See Oddie 27

[1987] for an earlier application of convexity in the TL program that shows the connection between convex states 
and atomic states.  Interestingly Popper also intimated that convexity might provide an escape hatch for his 
beleaguered qualitative account of truthlikeness.

In an early draft I ignored world-dependent weightings, in part because one of the co-authors told me that this is 28

what they had had in mind.  An anonymous referee persuaded me that whatever the authors' intention world-
dependent assignments are a more promising way to go to accommodate Proximity.
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9 Admissible Weightings

On the world-dependent interpretation, an admissible λ-assignment is an increasing function of 
accuracy.  A local error—like underestimating the probability of a true proposition—is thus more 
egregious the closer A is to the true cell Ci.29

WD-Admissibility (for world-dependent λ) 
λ is WD-admissible if and only if it is admissible, and for all A, B, i:

 if Aj≈iAj then , and if Aj≻iAk then .

On the world-independent construal, a λ-assignment can assign different weights, subject to 
the constraint that the assignment not assign different weights to propositions with the same 
world-independent distance structure.  Distance structure (like convexity) is an internal feature 
of a proposition which depends only the relationships among the cells of the proposition and 
their relationships to cells outside the proposition.  Looking at figure 1, for example, it is clear 
that the edges of the square all share the same distance structure, as do the cells and the negations 
of the cells.To be maximally charitable to the EU program, we will allow as WI-admissible all 
assignments that supervene on distance structure.  First, we define having the same distance 
structure:  A and B over I with distance function δ have the same distance structure (A≈δB) if and 
only there is an automorphism f on <I, δ> such that f(A)=B.30

WI-Admissibility 
λ is WI-admissible if and only if it is admissible, and

 for all Aj and Ak, if Aj ≈δ Ak then λj = λk.

The ≈δ-equivalence classes in IW under the city block measure are:

G1 Complete answers: A1, A2, A3, A4;
G2 Atomic propositions and their negations: A5, A6, A9, A10;
G3 Biconditionals of atomic propositions and their negations: A7, A8;
G4 Negations of complete answers: A11, A12, A13, A14.
G5 The tautology: A15.  

Propositions in G1, G2, G5 are all convex, those in G3 and G4 are not.  Propositions in G2 are 
atomic, those in the other classes are not.  Hence both convexity and atomicity supervene on 
distance structure, as do the associated equal weightings of the convex and the atomic 
propositions— λconvex and λatomic.  Different metrics typically produce different equivalence 
classes.  For example, suppose all cells are equidistant from one another (viz.  a miss is as good 

λ j
i = λk

i λ j
i > λk

i

 I owe this suggestion to an anonymous referee.29

 An analogous definition works for inquiries which have an accuracy ordering on the cells but no metric.30
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as a mile).  Then answers belong to the same equivalence class just in case they have the same 
number of cells (i.e.  G2 and G3 combine into a single equivalence class).  

Is WI-admissibility too restrictive? For example, it has been suggested that answers might 
count more toward accuracy the more informative they are.  Or there may be a reason to assign 31

different weights to, say, different atomic propositions. 
A proposition is stronger the more cells it rules out.  If A ≈δ B then A and B rule out the 

same number of cells.  Thus strength, like atomicity and convexity, supervenes on distance 
structure, so there are WI-admissible λs that favor strength, as well as those that favor weakness, 
or any combination of factors that supervene on distance structure. 

Differences in the weights of atomic propositions are also possible but go hand in hand with 
asymmetries in distance structure.  Suppose temperature is twice as important as precipitation in 
accuracy assessments. It should receive double the λ-weighting.  In that case the distance of 
¬h∧r from h∧r should be double the distance of h∧¬r from h∧r.  h and r would thus have 
different distance structures in such a space.

10 Propriety Violates Proximity

We will use the example in Table 6.  A1 is true.  Pi is the flat Ai-state.  P1, P2, and P4 are 
opinionated states, and P1 is the target. P8 assigns 1/2 to each of A2 and A3.  P9 assigns 1/2 to each 
of A2 and A4. P14 assigns 1/3 to each of A2, A3 and A4.  d is any local inaccuracy function 
satisfying the Core. Rows 1-5 specify the probabilities assigned by the five credal states, and 6-9 
specify the local inaccuracies of the false credal states.  Symmetry entails d(1/2,0)=d(1/2,1)= i, 
d(1/3,0)=d(2/3,1)=j, and d(2/3,0)=d(1/3,1)=k, for some i, j, k.  The global inaccuracy of each 
credal state is obtained by the weighted summing of local inaccuracies, where the weight 
assigned to Ai is of course λi.  The global inaccuracy  of each of the credal states under 
consideration can be read easily off the table:

(i) � .

(ii) � .

(iii) � .

(iv) � .

Table 6  Example

DT
λ (P)

DT
λ (P2 ) = λ1 + λ2 + λ6 + λ7 + λ8 + λ9 + λ13 + λ14

DT
λ (P8 ) = λ1 + iλ2 + iλ3 + iλ5 + iλ6 + λ7 + λ8 + iλ9 + iλ10 + iλ12 + iλ13 + λ14

DT
λ (P9 ) = λ1 + iλ2 + iλ4 + iλ5 + λ6 + iλ7 + iλ8 + λ9 + iλ10 + iλ11 + iλ13 + λ14
DT

λ (P14 ) = λ1 + jλ2 + jλ3 + jλ4 + kλ5 + kλ6 + kλ7 + kλ8 + kλ9 + kλ10 + iλ11 + iλ12 + iλ13 + λ14

 For example, Joyce [2009], p.  293.  "Some legitimate modes of epistemic evaluation will surely focus on things 31

other than pure accuracy, e.g., some will require us to weight propositions by their informativeness”.  By “pure 
accuracy” Joyce means the closeness of a probability assignment to the actual truth value.  It would of course beg 
the question to assume that that is all there is to genuine accuracy.
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We show first that simple Brier comes into direct and immediate conflict with Weak Proximity 
which  entails . On the quadratic measure α2: i=1/4, j=1/9 and k=4/9.  From 
this, (i) and (iv), the inaccuracies assigned by simple Brier are: 

� .  

This is a striking example of the failure of simple Brier to capture the most elementary feature of 
accuracy—that the closest ¬T-cells are no less accurate than ¬T.  By itself, however, this does not 
impugn the EU approach.  There are many other measures of local inaccuracy that satisfy the 
Core and Propriety, and there many admissible non-equal weightings, both world-dependent and 
world-dependent.  What we need to show is that for any legitimate measure of local accuracy 
combined with any admissible weighting, if Propriety holds Proximity fails.  And if we can show 
this even for Weak Propriety and Weak Proximity so much the better.32

The following lemma will prove useful.

Lemma For any weakly proper local accuracy function d that satisfies the core, i<1/2.
If d is weakly proper: for all p,q: pd(p,1) + (1−p)d(p,0) ≤ pd(q,1) + (1−p)d(q,0).  (a)
Let q=0 in (a): for all p: pd(p,1) + (1−p)d(p,0) ≤ pd(0,1) + (1−p)d(0,0).
Boundedness: d(0,1)=1 and d(0,0)=0.
So:  for all p, pd(p,1) + (1−p)d(p,0) ≤ p.   (b)
Let p=1/2 in (b): d(1/2,1) + d(1/2,0) ≤ 1.    
By Symmetry: d(1/2,1) = d(1/2,0).  
So:  i = d(1/2,1) ≤ 1/2.  
Suppose for a reductio that: i = 1/2.
Let p=1/2 in (a): for all q, 1/2d(1/2,1) + 1/2d(1/2,0) ≤ 1/2d(q,1) + 1/2d(q,0).
That is: for all p, 1≤d(p,1) + d(p,0).    (c)

From (b), (c): for all p, �

Which entails: for all p, �   (d)

By Truth Directedness and Boundedness:  if 0<p<1/2 then d(p,0)>0 and � .     (e)

(e) contradicts (d), so: i<1/2.

Now for the main result.  

DT
λ (P2 ) ≤ DT

λ (P14 )

BrT
λequal (P2 ) = 0.53> BrT

λequal (P14 ) = 0.35

d(p,1)+ (1− p)
p

d(p,0) ≤ 1≤ d(p,1) + d(p,0).

(1− p)
p

d(p,0) ≤ d(p,0).

(1− p)
p

>1

Fallis and Lewis [2015] voice a rare criticism of simple Brier, citing a Brier ranking of two credal states 32

they deem counterintuitive.  Their argument, which is different from and independent of of mine here, is 
based on a monotonicity principle, M4. I will argue elsewhere that M4 leads to counterintuitive results 
once not every false cell is deemed equally inaccurate. 
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Theorem Weak Propriety violates Proximity.  

There are two cases:

(I) λ is WI-Admissible:  Weak Propriety violates Weak Proximity.
Where A1=T we have: A2∈ClosestT(A8), A2∈ClosestT(A9). (a)
(a), Weak Proximity: � and � .  (b)
By WI-Admissibility: λ1=λ2=λ3=λ4; λ5=λ6=λ9=λ10; λ7=λ8; λ11=λ12=λ13=λ14. (c)
From (i) and (c): � .         (d)
From (ii) and (c): � .  (e)
From (iii) and (c): � . (f)
From (b), (d), (e): � . (g)
Lemma, Weak Propriety: i<1/2. (h) 
Admissibility:  λi≥0 (for all i).  (i)
From (g), (h), (i): � . (j)

From (d), (f), (j): � . (k)

By Admissibility and λ15< 1. (l) 

From (c), (j), (l): � . (m)
From (h), (k), (m): � . (n)
(b) contradicts (n).

(II) λ is WD Admissible: Weak Propriety violates Strict Proximity
(Recall that Strict Proximity is Weak Proximity plus Substitution. Abbreviate  to  λj.)

From the IW model we have: A2≈1A3 and A1≻1A4.
By Substitution & A2≈1A3: A2≈1A3, A5 ≈1A6, A9≈1A10, A12 ≈1A13. (a)
By WD-Admissibility, (a): λ2=λ3; λ5=λ6; λ9=λ10; λ12=λ13. (b)
Weak Proximity: � . (c)
By (i), (ii), (c):     (1−i)λ2 −iλ3 −iλ5+(1−i)λ6 +(1−i)λ9−iλ10−iλ12+(1−i)λ13 ≤ 0. (d)
From (b), (d): (1−2i)λ2 +(1−2i)λ5 +(1−2i)λ9+(1−2i)λ12 ≤ 0. (e)
Weak Propriety, Lemma: i<1/2, i.e.  (1−2i)>0. (f)
Admissibility: For all j: λj ≥0. (g)
(b), (e), (f), (g): λ2=λ3=λ5=λ6=λ9=λ10=λ12=λ13=0. (h)
By Substitution, A1≻1A4: (A1 ∨ A2)≻1(A2 ∨ A4) (i)
That is: A5≻1A10. (j)
(j), WD-Admissibility: λ5>λ10. (k)
(k) contradicts (h).

DT
λ (P2 ) ≤ DT

λ (P8 ) DT
λ (P2 ) ≤ DT

λ (P9 )

DT
λ (P2 ) = 2(λ1 + λ5 + λ7 + λ11)

DT
λ (P8 ) = (1+ 2i)λ1 + 4iλ5 + 2λ7 + (1+ 2i)λ11

DT
λ (P9 ) = (1+ 2i)λ1 + (2 + 2i)λ5 + 2iλ7 + (1+ 2i)λ11

λ1 + 2λ5 + λ11 ≤ 2iλ1 + 4iλ5 + 2iλ11

λ1 = λ5 = λ11 = 0

DT
λ (P2 ) = 2λ7,  DT

λ (P9 ) = 2iλ7
λ j = 1i∑

λ7 > 0
DT

λ (P9 ) < DT
λ (P2 )

λ j
1

DT
λ1 (P2 )− DT

λ1 (P8 ) ≤ 0
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Thus all WI-admissible core measures of inaccuracy that satisfy Weak Propriety violate Weak 
Proximity, and all WD-admissible core measures of inaccuracy that satisfy Weak Propriety 
violate Strict Proximity. 

11 Possible Responses

11.1 Retreat to convexity
In his [1998] Joyce used the convexity of the inaccuracy measure, rather than Propriety, as a 
constraint on inaccuracy functions and he gave an interesting argument that any inaccuracy 
function should indeed be convex.   Any strictly convex d that satisfies Core also satisfies 33

d(1/2,1)<1/2, and the above incompatibility result follows.  If, however, d is merely weakly 
convex then we only have d(1/2,1)≤1/2, and that is insufficient to generate the incompatibility 
result.  However the weak convexity of d is also too weak for the vindication of probabilism.  
The absolute difference measure α1 is weakly convex and does not underwrite the required 
dominance argument.  So strict convexity is too strong for a legitimate inaccuracy measure (it is 
incompatible with Weak Proximity), while weak convexity is too weak (it cannot underwrite the 
vindication of probabilism).  Of course, even though the weak convexity of inaccuracy will not 
serve this purpose, it may nevertheless be a feature that a genuine measure of accuracy should 
possess.  The weak convexity of Dλ, even in conjunction with the Core, poses no threat to Weak 
Proximity or Substitution.  It is thus compatible with Strict Proximity.

11.2 Reject boundedness
Perhaps we can have both Proximity and Propriety by revising the Core.  Truth Directedness is 
indispensable to the EU approach.  Symmetry is unimpeachable for probabilistic credal states. 
That leaves Boundedness and Additivity.34

  Let d be unbounded: d(1,0)=d(0,1)=∞.  Suppose P1 is the target state let P be any other 
opinionated state (P(A1)=0).  

Let λ be WD-admissible.  Then λ1>λj for all j≠1, so λ1>0.  P(A1)=0, P1(A1)=1, and so 
� .  All false opinionated states are thus equally inaccurate (violating Opinionation and 
hence Substitution which entails it) and no more accurate than any non-opinionated state 
(violating Strong Proximity).  

Let λ be WI-admissible.  There are four possibilities which are exhaustive, but not 
necessarily exclusive:

DT
λ (P) = ∞

Joyce calls this Weak Convexity in his [1998] and Convexity in his [2009].  But the condition he used is 33

strict convexity of d.
 Note that the assumption that the  upper bound, if there is one, is 1 is merely a scaling convention.  34

Suppose the upper bound is some u>1.  Then we can revise the Lemma: for any weakly proper local 
accuracy function d that satisfies the core, i<1/2u.  With systematic adjustments throughout the main 
result follows.
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(i) Cells have positive λ-weight.  So λ1>0.  P(A1)=0, P1(A1)=1, so .

(ii) Negations of cells have positive λ-weight.  P1(¬A1)=0 while P(¬A1)=1, so .
(iii) Atomic propositions and their negations have positive λ-weight.  For at least one such 

state A, P(A)=1 and P1(A)=0.  So again .

In (i)-(iii) Substitution and Strong Proximity are violated  Suppose none of (i)-(iii) holds.  Then:

(iv)  A7 (=A1∨A4) and A8 (=A2∨A3) alone have positive and equal λ-weight (=1/2). A7 and A8

alone contribute to inaccuracy.  Note: P1(A7)=1 and P1(A8)=0.

(a) P4(A7)=1; P4(A8)=0.  So .
(b) P2(A7)=0, P2(A8)=1.  So .
(c) P9(A7)=1/2, P9(A8)=1/2.  So  = d(1/2,1) < ∞.

By Substitution, �  contradicting (a) and (b).
By Weak Proximity, � , contradicting (b) and (c).

11.3 Reject additivity
The last element one might consider jettisoning is Additivity.  If P and Q assign the same 
probability to A then both make the same local error with respect to A and, given Additivity, that 
common local error makes the same contribution to their global scores.  But perhaps other 
features of P and Q should affect the contribution of that local error—such as what P and Q 
assign to T.  If P(T)>0 and Q(T)=0, then maybe the error over A should against Q more than it 
does against P.  For all I have shown, there may be some non-additive, strictly proper, global 
inaccuracy measure for credal states that also coheres with Proximity.  This possibility has never 
been suggested, perhaps because EU theorists have not paid any attention to propositional 
accuracy and in part because the incompatibility of Propriety and Proximity has hitherto gone 
unnoticed. This avenue may be worth exploring although prospects look far from promising.

12 The Upshot

The accuracy of a credal state clearly depends not only on probabilities it assigns to various 
answers and the actual truth values of those.  It also depends on the closeness of cells to the 
actual cell. Measures that ignore this dimension (like simple Brier and any other measure that 
obeys Extensionality) cannot deliver fundamental principles of accuracy.  This deficit can be 
mitigated by allowing propositional accuracy a role in determining the accuracy of credal states
—either directly (via world-dependent weights that give a greater weight to accurate 
propositions), or indirectly (via world-independent weights that reflect proximities).  But, as the 
main result shows, no measure satisfying the Core can accommodate both Propriety and 
Proximity.  The search for an adequate measure of the accuracy of credal states is by no means 

DT
λ (P) = ∞

DT
λ (P) = ∞

DT
λ (P) = ∞

DT
λ (P4 ) = 0 = DT

λ (P1)
DT

λ (P2 ) = ∞
DT

λ (P9 ) = λ7d(1 / 2,1)+ λ8d(1 / 2,0)

DT
λ (P4 ) > DT

λ (P2 ) > DT
λ (P1)

DT
λ (P2 ) ≤ DT

λ (P9 )
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over, and a serious question mark now hovers over the standard non-pragmatic vindications of 
probabilism, conditionalization, the Principal Principle and the value of experimenting.
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IW hot rainy δij A1 A2 A3 A4

A1   (h∧r) 1 1 A1 0 1 1 2

A2   (h∧¬r) 1 0 A2 1 0 2 1

A3   (¬h∧r) 0 1 A3 1 2 0 1

A1 (¬h∧¬r) 0 0 A4 2 1 1 0

Table 1 Distance between cells in the weather framework on the city block measure
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A2 (h∧¬r)
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Figure 1 The weather space

A3 (¬h∧r)

A1 (¬h∧¬r)



Table 2 Complete and incomplete answers to the weather question

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15

h∧r h∧¬r ¬h∧r ¬h∧¬r h r h≡r ¬(h≡r) ¬r ¬h h∨r h∨¬r ¬h∨r ¬h∨¬r h∨¬h

A1 A2 A3 A4 A1∨A2 A1∨A3 A1∨A4 A2∨A3 A2∨A4 A3∨A4 A1∨A2

∨A3

A1∨A2

∨A4

A1∨A3

∨A4

A2∨A3

∨A4

A1∨A2

∨A3∨A4



T (=Ci)

¬T

Closesti(¬T)

Figure 2 The relative accuracy of ¬T and Closesti(¬T)



Table 3   Closest A-cells

A Ci A-cells Closesti(A)

1 N<9 N9 N0, N1,…, N8 N8

2 N≤9 N9 N0, N1, …, N9  N9

3 N>9 N9 N10, N11,…, N1000, … N10

4 N≠9 N9 N0,…, N8, N10, …, N1000, …  N8 , N10

6 h A1 A1, A2 A1

7 ¬h A1 A3, A4 A3

8 h≣r A1 A1, A4 A1

9 h≣¬r A1 A2, A3 A2, A3

10 ¬(h∧r) A1 A2, A3, A4 A2, A3



Table 4   � violates Opinionation

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 Global 
inaccuracy

Dλ

λequal 1/15 1/15 1/15 1/15 1/15 1/15 1/15 1/15 1/15 1/15 1/15 1/15 1/15 1/15 1/15

P1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1

P2 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1

P4 0 0 0 1 0 0 1 0 1 1 1 0 1 1 1

local inacc
d(P2,P1)

1 1 0 0 0 1 1 1 1 0 0 0 1 1 0

local inacc 
d(P4,P1)

1 0 0 1 1 1 0 0 1 1 0 1 0 1 0

λequal ×
d(P2,P1)

1/15 1/15 0 0 0 1/15 1/15 1/15 1/15 0 0 0 1/15 1/15 0 8/15

λequal ×
d(P4,P1)

1/15 0 0 1/15 1/15 1/15 0 0 1/15 1/15 0 1/15 0 1/15 0 8/15

Dλequal



Table 5   λconvex and λatomic yield Opinionation

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 Global 
inaccuracy
D=∑λ×d

P1 

(Truth 
values)

1 0 0 0 1 1 1 0 0 0 1 1 1 0 1

local inacc
d(P2,P1)

1 1 0 0 0 1 1 1 1 0 0 0 1 1

local inacc 
d(P4,P1)

1 0 0 1 1 1 0 0 1 1 0 1 0 1 0

λconvex 1/9 1/9 1/9 1/9 1/9 1/9 0 0 1/9 1/9 0 0 0 0 1/9

λconvex×
d(P2,P1)

1/9 1/9 0 0 0 1/9 0 0 1/9 0 0 0 0 0 0 4/9

λconvex ×
d(P4,P1)

1/9 0 0 1/9 1/9 1/9 0 0 1/9 1/9 0 0 0 0 0 6/9

λatomic 0 0 0 0 1/4 1/4 0 0 1/4 1/4 0 0 0 0 0

λatomic×
d(P2,P1)

0 0 0 0 0 1/4 0 0 1/4 0 0 0 0 0 0 2/4

λatomic×
d(P4,P1)

0 0 0 0 1/4 1/4 0 0 1/4 1/4 0 0 0 0 0 4/4



Table 6  Example

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15

1 P1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1

2 P2 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1

3 P8 0 1/2 1/2 0 1/2 1/2 0 1 1/2 1/2 1 1/2 1/2 1 1

4 P9 0 1/2 0 1/2 1/2 0 1/2 1/2 1 1/2 1/2 1 1/2 1 1

5 P14 0 1/3 1/3 1/3 1/3 1/3 1/3 2/3 2/3 2/3 2/3 2/3 2/3 1 1

6 local inacc
d(P2, P1)

1 1 0 0 0 1 1 1 1 0 0 0 1 1 0

7 local inacc
d(P8, P1) 1 i i 0 i i 1 1 i i 0 i i 1 0

8 local inacc
d(P9, P1) 1 i 0 i i 1 i i 1 i i 0 i 1 0

9 local inacc
d(P14, P1)

1 j j j k k k k k k j j j 1 0
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