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Psychology and the A Priori Sciences 
 

 

 

 The ‘a priori sciences’1 to be considered here are logic and  

arithmetic;2 the ‘psychology’ includes experimental, especially 

developmental psychology, neurophysiology, and vision science.  My 

goal is to examine the role these empirical theories can play in the 

philosophies of those sciences, or more precisely, the role I think 

they should play.  Most of the psychological studies referred to here 

will be familiar to readers of this volume, though perhaps not the use 

to which I hope to put them. 

 

I.  Logic 

Common sense tells us that much of the world comes packaged into 

middle-sized objects -- stones, coins, snails, apples, trees, the 

bodies of cats, apes, human beings -- and not without reason; these 

items are what we see and touch, encounter and engage with, in 

everyday life.  Of course common sense doesn't always hold up under 

scrutiny, but meticulous science confirms that each of these is a 

                       
1  I use the term ‘a priori science’ as the customary label, not to endorse 
the view that these disciplines are in fact a priori in some sense or other. 
 
2  With a nod toward set theory in footnote 47. 
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rough collection of molecules, held together by various forces, 

resisting penetration due to other forces, moving as a bounded unit on 

a continuous spatiotemporal path.3  Scientifically refined common sense 

also reveals that these objects have properties and stand in 

relations:  stones come in a variety of sizes and shapes, apples in a 

various colors, domestic cats are generally smaller than adult humans.4  

This simple structuring validates a certain amount of rudimentary 

logic:  if the apple is either red or green, and it’s not red, then it 

must be green.  This might all seem so obvious, so unavoidable, as to 

be true no matter what, true in ‘all possible worlds’, but in fact it 

breaks down at the quantum level:  the particles don’t behave as 

bounded units on continuous paths; the sense in which they enjoy 

properties (like position and momentum) is problematic; and some 

simple logical laws (e.g., the distributive law) appear to fail.5  The 

inferences of this rudimentary logic are reliable as long as the 

requisite structure is in place, but not otherwise. 
                       
3  Some philosophers question this simple view on the grounds that the  
commonsense table is intuitively ‘solid’, while the scientific object is 
largely empty space, so the two cannot be the same.  Even assuming that 
common sense does picture things as continuous matter (over and above being 
impenetrable), it seems more natural to say science has taught us that the 
objects of common sense are different than we first imagined, not that they 
don’t exist.  (For a bit on more such thinking from Eddington, Sellers, and 
Ladyman and Ross, see [2014], pp. 95-97, p. 99, footnote 9.)  Other 
philosophers go farther, rejecting everything in science and common sense on 
radical skeptical grounds, but this challenge, too, I set aside for present 
purposes (for more, see [201?]). 
    
4  Dependencies between one situation and other are also important -- the coin 
is on the floor because the cat shoved it off the table -- as are universal 
properties, but I leave these aside for simplicity in this quick sketch of 
[2007], III.4 (also [2014]).   
 
5  In another skeptical move, it’s sometimes suggested that science can’t 
serve to ratify the objects of common sense, because any science that begins 
with those objects will inevitably end up ratifying them.  In fact, a science 
(ours) that begins with them has ended up without them in the quantum world. 
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Psychology comes into this story as an investigation of how we 

come to those early commonsense beliefs about objects and their 

features.  The ground-breaking developmental work of the 1980s and 90s6 

showed that young infants track cohesive, bounded, solid7 individuals, 

despite occlusions, using spatiotemporal criteria like contiguity, 

common fate, and continuous motion; though they’re aware of object’s 

other properties, they typically don’t use regularities of shape, 

color, texture or motion, or features or kinds to determine object 

boundaries or identity.8  Studies of neonates and non-human animals 

suggest a distant evolutionary origin. 

There’s some disagreement over the precise interpretation of 

these experimental results.  The contents of ‘the object concept’ vary 

slightly from writer to writer;9 disagreements arise over whether the 

abilities catalogued are purely perceptual or somehow conceptual;10 and 

                       
6  For a summary with references, see [2007], pp. 245-258.  Carey [2009] 
(chapters 2 and 3) is a much-discussed survey and philosophical elaboration 
by one of the leading researchers in the area.  This work swept away the 
earlier seminal theories of Piaget (featured in [1990], pp. 54-5), according 
to which the ability to represent objects comes later in development.  Carey 
[2009], pp. 46-55, gives a fascinating re-analysis of Piaget’s evidence. 
  
7  That is, impenetrable (a feature of both Eddington’s tables in footnote 3). 
 
8  Animate/inanimate, human/non-human appear to be exceptions.  See Carey 
[2009], pp. 263-284, especially pp. 276-277, for more on this point. 
 
9  In one of the more dramatic examples, Burge departs from many psychologists 
(from Piaget on) in holding that the ‘constitutive conditions’ for 
representing bodies as such don’t include tracking through occlusion:  ‘a 
capacity to perceptually track a body as a three-dimensionally bounded and 
cohesive volume shape while it remains in view … suffices’ (Burge [2010], p. 
460).  In contrast, Hatfield [2009] requires tracking through occlusion, but 
holds that the developmental evidence doesn’t conclusively show infants are 
representing objects as ‘individual material objects (not as mere local 
collections of properties) … that … occupy … distinct … space-time worms … 
throughout their existence’ (Hatfield [2009], p. 241). 
  
10  E.g., Burge [2010], pp. 438-450, in disagreement with Spelke [1998].   
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so on.11  Fortunately, these niceties needn’t trouble us here because 

any of these options will be enough to serve as the building blocks, 

the ‘objects with properties’, in the rudimentary logical structure 

described above. 

But ‘object with properties’ aren’t all there is to that 

rudimentary structure:  a stone has a size and a shape, an apple can 

be red or green, a coin can fail to be a quarter.  More developmental 

work of the 80s and 90s shows that young infants classify cats and 

dogs so as to exclude birds, and even cats so as to exclude 

superficially similar dogs.  They’re also sensitive to correlations of 

features:  infants12 aware of three possibilities for each of the 

features A, B, C, D, and E (that is, A1, A2, and A3, and so on), 

habituated to items with correlations between these features -- for 

example, items with (A1˄B1˄C1)˄(D1˅D2)˄E1˅E2) and items with 

(A2˄B2˄C2)˄(D1˅D2)˄(E1˅E2) --  find a new correlated combination (like 

A2-B2-C2-D1-E2) familiar but an uncorrelated combination (like A1-B2-

C1-D1-E2) just as novel as one that’s entirely new (like A3-B3-C3-D3-

                       
11  It could be that some of these disagreements run deeper than the sort of 
thing scouted in footnote 9.  Sticking with Burge and Hatfield as our 
examples, notice that Burge takes the goal of the project to be determining 
what’s ‘constitutive’ of objecthood -- ‘Our question concerns necessary 
minimal constitutive conditions for having the capacity to attribute the kind 
body in perception’ (Burge [2010], p. 465) -- where this presupposes a fact 
of the matter to be discovered (perhaps by rational intuition, perhaps with a 
hint of essentialism in the appeal to ‘natural kinds’).  In contrast, 
Hatfield [2009], p. 241) only claims that ‘we as adult perceivers typically 
see [things] as individual objects’ with the features listed in footnote 9, 
and that the developmental evidence doesn’t establish that infants do this, 
too.  He describes this situation by referring to ‘the adult concept’, but 
there’s no indication of an underlying Burge-like metaphysics; he could just 
be using the phrase to highlight the possibility of a significant cognitive 
shift.   
 
12  This pattern and the next emerge in 10-month-olds, still pre-linguistic. 
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E3)!  In addition to these conjunctions, infants also appear sensitive 

to disjunctions -- habituated to cats or horses, they find a dog novel 

-- and to relations -- for example, ‘above’, ‘below’, ‘between’.  

Results like these strongly suggest that we humans are sensitive to 

rudimentary logical structures from an early age.13 

Still, as is well-known, it’s entirely possible to respond to a 

feature of the world without representing it:  the frog’s visual 

system might allow it to detect (then catch and eat) flies without 

representing them as flies.  On this point, I’m less confident than 

Tyler Burge that ‘representation’ is a psychological natural kind,14 

and even more doubtful that its contours can be discovered, as he 

suggests, by uniquely philosophical means.15  In contrast, Gary 

Hatfield [1988] undertakes a more modest task, firmly grounded in 

contemporary vision science.16  An ongoing debate pits those who 

believe that the visual system employs symbolic representations in an 

internal symbolic ‘language’ -- that rules are encoded and applied, 

hypotheses formed and tested (in the tradition of Helmholtz) -- and 

those who insist that the visual system is not representational, that 

it’s simply tuned to directly register the rich and complex 

                       
13  For a summary, with references, see [2007], pp. 258-262. 
 
14  See Burge [2010], p.291: ‘Psychological explanations have a distinct 
explanatory paradigm.  Psychology … discovers its own kinds.  One of them is 
the kind representation’.   
 
15  See Burge [2010], p. xviii:  ‘philosophy has … a set of methodological and 
conceptual tools that position it uniquely to make important contributions to 
understanding the world. … Many of its topics remain of broadest human 
concern.  Where, constitutively, representational mind begins is such a 
topic’.   
 
16  Obviously this contrast (elaborated in footnotes 14 and 15) is reminiscent 
of the one in footnotes 9 and 11.   
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information available in the ever-changing array of ambient light 

(Gibson and his followers).  Both sides acknowledge that processing 

takes place between the retina and the visual experience.  The debate 

between them hinges on the question:  is this processing purely 

physiological or does it break down into psychologically significant 

components, and in particular, into components with a 

characteristically representational role?17  Hatfield threads the 

needle between the two schools of thought, arguing that there are 

representational components, but that they needn’t involve a symbolic 

system. 

To see how this goes, consider using a slide rule to multiply n 

times m:  locate n on the A scale; slide 1 on the B scale beneath n on 

the A scale; find the number on the A scale that’s above m on the B 

scale.  The procedure works because the scales are laid out 

logarithmically and n x m = ln-1(ln(n) + ln(m)).  That same equation 

could be programmed into a digital computer and multiplication carried 

out in that way, in which case the logarithmic algorithm itself would 

be encoded, represented, in the computer’s program, but this isn’t 

true for the slide rule:  there, the algorithm is effectively 

followed, but it isn’t literally represented.18  The lengths on the 

slide rule represent numbers because of what the device is designed to 

                       
17  See Ullman [1980], p. 374, Hatfield [1988], §1. 
 
18  As Burge ([2010], p. 504) points out, an odometer’s computation of the 
distance travelled depends on the circumference of the tires (it records a 
tick for each rotation), but the circumference is nowhere represented.  
Hatfield ([1988], p. 75) makes a similar point about a ‘tension adder’:  n 
and m are represented by small weights placed on a pan and their sum 
registered by a pointer on the front of the device, but no algorithm is 
encoded.   
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do (multiply, among other things) and how it was designed to do it 

(relying on, but not representing, the properties of logarithms).  The 

computer is also designed to multiply (among other things), but it’s 

designed to do so quite differently, by applying explicit rules in an 

internal symbolic system.  So, what a device does or doesn’t represent 

depends on how it does what it’s designed to do.   

If we now replace the slide rule designer or the computer 

programmer with the evolutionary pressures on our species,19 the 

representational status of some element of the visual system can be 

assessed in the same way:  it depends on the function of the visual 

system in the evolved human organism, the function of that element 

within the visual system, and the method it uses to perform that 

function.20  Hatfield ([1988], pp. 63-65) gives the example of seeing a 

circle at a slant rather than an ellipse.  This function could be 

achieved by registering the retinal ellipse, registering slant 

information from shading, and computationally combining these two; or 

it might be achieved by a single registration of shading across the 

retinal ellipse.  Obviously it’s an empirical matter which of these 

algorithms is actually implemented; it can be investigated by 

psychological experiments with carefully timed disruptions or by 

physiological investigation of the neuroanatomy.  In these ways, we 

could determine whether or not, say, the projective retinal shape by 

                       
19  In practice, determining what aspects of the visual system are adaptations 
and which are spandrels is a very difficult undertaking.  See, e.g., Warren 
[2012], Anderson [2015]. 
 
20  Burge [2010], chapter 8, soundly rejects accounts of representation based 
in biological function, for reasons I don’t fully understand and won’t 
attempt to explicate. 
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itself is represented.  But either way, it’s not at all obvious that 

this sort of representation would involve a symbolic system.21 

So, to return to our theme, we know that infants respond to 

conjunctions, disjunctions, negations, and so on, but do they actually 

represent them as such?  As Burge notes ([2010], p. 406), the fact 

that we infer in accord with a logical rule doesn’t imply that the 

rule is somehow encoded in our psychology, presumably in some language 

of thought.  Our concern here, though, isn’t with inference, but with 

simple logical structuring, and (following Hatfield) the 

representation needn’t be symbolic.  The question is whether the 

infant represents the stone as small and round, the apple as red or 

green, the coin as not-a-quarter.  Assuming that sensory sensitivity 

to these worldly features is adaptive,22 a Hatfield-style answer to 

this question hinges on how that sensory sensitivity is achieved:  

does the scientific story of that ability break down into 

psychologically significant parts, into representational components, 

like the separate representations of projective shape and of shading 

                       
21  Does this mean that the frog is representing flies?  Opponents of 
biological function views suggest that evolutionary considerations aren’t 
enough to show that the frog is representing flies as opposed to moving black 
dots, or even flies as opposed to nothing at all, given that a frog’s 
detector will occasionally go off on its own.  Regarding the first point as 
subject to further investigation, granting it now only for the sake of 
argument, Hatfield contends that nevertheless biological function ‘can serve 
as the basis for ascribing to states of the frog’s visual system the content 
target fly/moving dot, or some such coarse-grained content’, that ‘[a]mong 
the functions of the frog’s visual system is to represent small moving things 
as being there when they are, and not to represent them as being there when 
they aren’t (Hatfield [1991], pp. 122-123).  In other words, the biological 
function account has room to regard the frog’s detector as having misfired 
when it goes off on its own. 
 
22  See footnote 19. 
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information in the multi-stage algorithm for seeing the circle at a 

slant?  For our case:  given that the infant can represent stones, 

smallness and roundness, is her representation of a small, round stone 

related to other representations in a way that merits describing it as 

a conjunctive representation?  This needn’t involve encoding in some 

language of thought any more that the circle-at-a-slant case does, but 

it is a straightforward empirical question for experimental psychology 

and neuroscience.   

If a definitive answer to this question is known, it isn’t known 

to me, but the study of visual working memory offers a hint of how a 

small part of it might go.  Evidence suggests that we’re able to store 

information about a limited number of objects (around four) and their 

features over short periods of time.  This raises the question how 

several features of one object are bound together:  what distinguishes 

a scene with a vertical red bar and a horizontal green bar from one 

with a vertical green bar and a horizontal red one?  One proposal is 

synchronized neural firing:  a particular neuron fires repeatedly to 

encode a single feature; when the repeated firings of the neurons for 

two separate features are synchronized, they form a unit, ‘cell 

assembly’.23  In Hatfield’s terms, the initial firings represent red, 

green, horizontal and vertical bars; when the ‘vertical’ and ‘red’ 

neurons fire in unison, the resulting assembly represents a vertical 

red bar.  The position I’m proposing, on pure speculation, requires 

                       
23  See Vogel, Woodman, and Luck [2001] for discussion and references.  Also 
Olson and Jiang [2002]. 
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that this isn’t exceptional, that rudimentary logical structuring is 

widely represented, one way or another. 

If all this is granted, what role is psychology playing in this 

philosophy of logic?  The ground of logical truth, what makes it true 

(where it is true), is the objective logical structuring in the world, 

so there’s no trace of psychologism.  Psychology’s role, then, might 

be thought to be epistemological.  For example, a sufficiently 

externalist epistemologist, one who thinks the evolutionary pressures 

responsible for our logical cognition produce a reliable process,24 

might conclude that we know (at least some of) the world’s logical 

structure a priori.  I prefer to leave the policing of ‘know’ and ‘a 

priori’ to the specialists and to say only this much:  we come to 

believe what we do about the logical structures in the world on the 

basis of primitive cognitive mechanisms, many of which we share with 

other animals, but our evidence for the correctness of those beliefs 

comes from common sense and its subsequent (partial) ratification by 

scientific means.   

So far, this is a fairly slight philosophical impact for 

psychology, but I think there’s an important moral concerning our 

philosophical preconceptions about logical truth.  Because our logical 

beliefs rest on such primitive cognitive mechanisms, it’s hard for us 

to see how things could be otherwise, how a world failing to 

instantiate those rudimentary logical forms is even possible.  When 

                       
24  This needn’t be a fallacious argument of the form:  ‘this evolved, 
therefore it’s reliable’.  Instead, it might run roughly along the lines 
traced here:  first science establishes that much of the world is logically 
structured; then psychology defends an evolutionary story of how we come to 
detect and represent that structure.   
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quantum mechanics shows us not only that a world can fail do this, but 

that our very own micro-world so fails, often the result is that we 

find quantum mechanics deeply problematic, not that we take logic 

itself to be contingent.25  It seems to me that the psychology here is 

showing us why we’re so easily inclined to believe that logical truth 

is necessary, a priori, certain -- a stubborn preconception that 

vastly distorts our theorizing about it.26  It’s hard to imagine a more 

valuable lesson for the philosophy of logic! 

 

II.  Arithmetic 

 Obviously any patch of the world with logical structuring into 

objects with properties, standing in relations, will also have number 

properties:  so many objects, so many with this particular feature, so 

many standing in this relation to this particular individual, and so 

on.  When it comes to our cognitive access to those number properties, 

though, it’s well known that the first four or so have special status:  

infants’ expectations about how many objects will appear behind a 

screen after individual objects have been added or removed are 

accurate up to 3; adults can hold 3-4 objects in working memory27 and 

                       
25  I suspect many of us have heard our fellow philosophers assert with great 
confidence that quantum mechanics must be false, on a priori grounds. 
 
26  See [2014a], chapter 6, for a comparison of this conclusion with the late 
Wittgenstein’s take on logic. 
 
27  Feigenson [2011] describes how visual working memory can encode more than 
four slots worth of information by ‘chunking’, as when we remember a phone 
number by dividing it into three blocks of digits, or one of her infant 
subjects remembers two cats and two cars, but not four individual cats. (See 
also Carey [2009], pp. 149-150.)  The ‘chunk’ is often referred to as a 
‘set’, as exhibiting the higher ranks that differentiate sets from mere 
aggregates.  I once appealed to analogous considerations (e.g., in [1990], p. 
165), but for what it’s worth, I’m no longer convinced anything essentially 
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track 3-4 objects through complex motions, but these abilities break 

down quickly for higher quantities.  Non-human animals share these 

abilities and limitations, indicating another primitive cognitive 

system.28 

 The mechanism underlying these abilities -- the object-tracking 

or parallel individuation system -- apparently includes so-called 

‘object files’ of mid-level vision,29 which follow objects 

spatiotemporally and encode features as they go (‘it’s a bird, it’s a 

plane, it’s Superman’), and visual working memory, which keeps visual 

information accessible over short periods.30  The two are closely 

intertwined, with some evidence of complementary emphases, on tracking 

over motion and retention of object properties, respectively.31  Though 

the infant expectation experiments are often described in arithmetic 

terms -- 1+1=2, 3-2=1 -- it’s widely agreed that these representations 

are not truly numerical:  not ‘3’, but the simply logical ‘a thing, 

another thing, and yet another thing’, most likely the opening of 

three successive object files.32  In cases of ‘subitizing’ -- immediate 

                                                                        
‘higher-order’ is involved in such cases.  Seeing two cats and two cars could 
just be a particular way of seeing the cats and the cars, not a way of seeing 
something else (a set of cats, a set of cars). 
  
28  See [2007], pp. 319-326, for more on the story in this and the following 
three paragraphs, with references.  See Carey [2009], chapter 8, for her 
elaboration. 
 
29  Kahnemann et al [1992].  See [2007], pp. 255-257, 319-320, for a brief 
discussion with references.   
 
30  See, e.g., the references in footnote 23.   
 
31  See Hollingworth and Rasmussen [2010].  The two are often lumped together 
without comment, or even identified.   
 
32  Burge points out that ‘[t]here need be no use of conjunction or negation 
in the perceptual representation (as in:  this is a body and this is a body 
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recognition (without counting) of up to 3 or 4 objects -- perhaps 

visual working memory is engaged, but again, mostly likely through the 

opening of three distinct information slots,33 rather than an explicit 

numerical representation.   

 Yet another primitive system we share with other animals is 

sensitive to approximate quantities:  it can distinguish 1 dot from 3 

more easily than 2 dots from 3 (the ‘distance effect’); it can 

distinguish 2 dots from 3, but not 8 dots from 9 (the ‘magnitude 

effect’).34  The mechanism for this is so far unknown (at least to me), 

but neurological studies on monkeys suggest a two-step process that 

begins with a group of neurons that encode locations of objects, 

ignoring other features, then feeds into an array of neurons whose 

responses are bell-shaped curves each peaking at a certain number.35  

This model would explain the distance effect -- the ranges of firing 

for ‘1-neurons’ and ‘3-neurons’ overlap less than those for ‘2-

neurons’ and ‘3-neurons’ -- and the magnitude effect -- the bell 

curves for large numbers are broader.  In any case, this is clearly a 

more quantitative system than the object tracker, but it can’t truly 

be said to represent cardinality.  Burge ([2010], p. 482) suggests a 

return to the ancient notion of ‘pure magnitude’, neither continuous 

                                                                        
and this is not that)’ (Burge [2010], p. 486).  He’s right:  it’s unlikely 
that anything like this is encoded in a language of thought.  But in 
Hatfield’s terms, the opening of three successive object files could 
represent the corresponding logical feature of the scene. 
 
33  See Chesney and Haladjian [2011] for evidence that subitizing and object 
tracking rely on a shared visual mechanism. 
 
34  See, e.g., Carey [2009], pp. 118-137, Dehaene [2011]. 
 
35  See Dehaene [2011], pp. 247-254, Neider [2011]. 
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nor discrete, but nevertheless stands in ratios.  However that may be, 

what matters for our purposes is that features of the world’s logical 

structure are being represented, albeit only approximately.36   

 So far, we’re in step with the non-human animals, still far short 

of human arithmetic.  The leading theory is that what sets us apart is 

the child’s ability to combine the proto-numerical fruits of the 

object-tracking system and the approximate system via her command of 

the counting sequence.37  ‘One, two, three …’ is first learned as a 

verbal nonsense scheme -- like ‘eeny, meeny, miney, moe …’ -- and the 

act of reciting it while pointing to each of a group of objects in 

turn is just play, of no numerical significance.  Young children do 

realize that use of the word ‘one’ correlates with the presence of a 

single object, with a single opened object file or a single item in 

visual working memory, but the sense of larger number words comes only 

gradually, between 2½ and 3½:  first ‘two’ is associated with the 

presence of an object and another; a few months later ‘three’, and 

maybe even ‘four’, gains meaning from the object-tracking system.38  

This far the non-human animals can follow, but what happens next is 

                       
36  Oddly enough, on small numbers, where the two systems overlap, the 
infant’s object tracking system appears to override the approximate system.  
E.g., they prefer a box where 3 treats have been placed to a box where 1 or 2 
treats have been placed, but when the numbers are 2 and 5, beyond the object 
tracker’s capacity, they perform at chance -- despite the fact that the ratio 
is big enough for the approximate system to detect easily.  See Carey [2009], 
pp. 84-85, 139-141, 153-155. 
  
37  Here again, Piaget was in disagreement.  See Dehaene [2011], pp. 30-36, 
for an amusing account of how the empirical results were misinterpreted.   
 
38  Some hold that the object-tracking system isn’t involved, that the 
underlying mechanism here is the approximate number system (see, e.g., Piazza 
[2011]), which is most precise for small numbers.  Dehaene ([2011], pp. 256-
259), who once entrusted small numbers to the approximate number system (what 
he calls ‘the number sense’), explains what changed his mind.   
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uniquely human:  apparently the child notices that an extra object in 

the scene corresponds to the next number in the counting sequence, and 

suddenly the true meaning of counting becomes clear:  the last number 

recited in the procedure is the number of objects in the scene.  

 It’s sometimes assumed that this is the end of the story of how 

humans come to a full understanding of arithmetic, but it isn’t, for 

at least two reasons.  First, consider a child who knows how to count, 

and knows there are ‘just as many’ of these as those when the same 

number word results from counting these as those.  That is, she knows 

that if she counts n children and n cookies, she’ll be able to give 

each child exactly one cookie with no cookies left over.  Richard Heck 

makes the case that a child can know all this without having the 

notion of a one-to-one correspondence, which is, after all, ‘very 

sophisticated’ (Heck ([2000], p. 170).  Of course when she counts, she 

forms what we understand to be a one-to-one correspondence, but she 

needn’t understand it as such; she’s just implementing the counting 

procedure.39  So this is one respect in which the child still hasn’t 

grasped a notion some consider essential to the concept of ‘cardinal 

number’.   

 Another tempting assumption is that a child who understands that 

one more object corresponds to the next number word must also 

                       
39  Heck also notes that the child can understand ‘just as many’ without 
understanding counting:  there are just as many cookies as children if she 
can make sure everyone has exactly one cookie with none left over.  He then 
shows how the Peano Axioms can be derived with ‘just as many’ in place of 
Frege’s ‘one-to-one correspondence’.   
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understand that there’s no largest number.40  The only empirical study 

touching on this question that I know of, Harnett and Gelman [1998], 

actually aims to show that it’s relatively easy for children to learn 

that the number sequence has no end -- easy compared to learning 

fractions! -- so its design includes more coaching than would be ideal 

for present purposes.  Still, children in kindergarten and first 

grade41 did quite poorly on questions like ‘is there a biggest number 

of all numbers?’ and ‘is there a last number?’.  They did somewhat 

better but still far from perfectly on leading questions like ‘if we 

count and count and count, will we ever get to the end of the 

numbers?’ and ‘can we always add one more, or is there a number so big 

we’d have to stop?’, despite having been primed with exercises in 

counting larger and larger numbers.42 

Explaining their answers, the six-year-olds might suggest that we 

have to stop counting ‘cause you need to eat breakfast and dinner’ or 

‘because we need sleep’, or that we couldn’t then start up again where 

we left off because ‘you forget where you stopped’.  There’s even a 

hint at mortality:  if we try to add one more after counting to a very 

big number, ‘I guess you’ll be old, very old’.  Though answers like 

these were classified as ‘unacceptable’, there is an straightforward 

sense in which the children have it right:  there are practical 

                       
40  For a bit more on the line of thought in the remainder of this section, 
see [2014b]. 
 
41  Averaging just under 6 and 7 years old, respectively. 
 
42  One group of subjects in one of the studies was questioned about the 
largest number, etc., before the counting exercises.  Their performance was 
even worse than the group who did the counting exercises first.   
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limitations on how far we’re inclined to count, and even physical 

limits on how far we could count.43  The young children aren’t wrong 

exactly, they’re just failing to grasp the spirit of the question.  

What’s being asked is whether there’s any limit to how far we could 

count, in principle. 

 In contrast to the kindergarteners and first graders, the second 

graders44 in this study generally answered the questions as they were 

intended:  there is no largest number, period.  Closer analysis of the 

experimental results led Harnett and Gelman to the observation that 

the children in a position ‘to benefit from a conversation that offers 

cues’ (p. 361) were those who could count beyond 100: 

Once children master the sequence from 1 to 20 and the list of 
decade words, they have most but not all of the vocabulary they 
need to apply the recursive procedures by which larger and larger 
numbers are generated.  As they count beyond 100, they come to 
learn that not only the digits, but also the decade terms, are 
recycled over and over.  [Younger] [c]hildren are still at work 
memorizing the teens and decade terms and are less able to 
appreciate that the count sequences is systematic.  (Harnett and 
Gelman [1998], p. 361)45 
 

This suggests, as the psychologist Paul Bloom proposes, that  

[T]he generative nature of human numerical cognition develops 
only as a result of children acquiring the linguistic counting 
system of their culture.  Many, but not all, human groups have 
invented a way of using language to talk about number, through 
use of a recursive symbolic grammar.  (Bloom [2000], p. 236) 
 

                       
43  Russell once remarked that running through an infinite decimal expansion 
is ‘medically impossible’ (Russell [1935/6], p. 143). 
   
44  Averaging just under 8 years old. 
 
45  Though Harnett and Gelman speak of ‘recursive procedures by which larger 
and larger numbers are generated’, obviously they’re talking about linguistic 
procedures that generate numerical expressions.  (Understanding that adding 
one results in a larger number was another predictor for successful response 
to the cues.)   
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This would mean that children’s belief in the infinity of the numbers 

derives from their belief in the infinity of numerical expressions, 

not vice versa: 

[I]t is not that somehow children know that there is an infinity 
of numbers and infer that you can always produce a larger number 
word.  Instead, they learn that one can always produce a larger 
number word and infer that there must therefore be an infinity of 
numbers.  (Ibid., p. 238) 
 

In this way, our question -- how do we come to believe there’s no 

largest number? -- is pushed back one step to:  how do we come to 

believe that there’s no largest numerical expression? 

 Harnett and Gelman’s studies show that it’s quite easy for 

children to come to this view once they’ve appreciated the intricacies 

of the systematic generation of numerical expressions.  What’s 

striking is that they don’t seem bothered by concerns about the 

practical or physical limitations on, for example, the length of those 

numerical expressions or the breathe needed to utter them or the need 

to stop for lunch -- all that apparently matters is coming to grasp 

the recursive character of the rules of formation.  Why is the 

intended ‘in principle’ reading of the question more natural here, 

when it’s posed for numerical expressions, than it was when posed for 

the numbers themselves?  To engage once again in rank speculation, I 

suggest that this traces to the recursive element of the innate 

linguistic faculty, whatever it is in our genetically endowed 

cognitive machinery that underlies our ability to understand and 

produce indefinitely varied and complex linguistic items: 

All approaches agree that a core property of [the linguistic 
faculty] is recursion … [The linguistic faculty] takes a finite 
set of elements and yields a potentially infinite array of 
discreet expressions.  This capacity … yields a discrete infinity 
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(a property that also characterizes the natural numbers).  
(Hauser, Chomsky and Fitch [2002], p. 1571) 
 

The suggestion is that this linguistic capacity is what produces our 

intuitive grasp of the ‘in principle’ question. 

 Assuming this sketch of the psychology is roughly right -- a big 

assumption, subject to empirical test -- the consequences for the 

philosophy of arithmetic are fundamental.  Simple arithmetical claims 

like 2+2=4 and 12<191 are ordinary facts about worldly logical 

structures (where they’re present), but the subject matter of 

mathematical arithmetic -- the standard model, what we now think of as 

an omega-sequence -- doesn’t depend on any contingent features of the 

actual world, which may or may not be finite.  Insofar as arithmetic 

is  ‘about’ anything, it’s about an intuitive picture of a recursive 

sequence of potentially infinite extent, an intuitive picture we 

humans share thanks to the evolved linguistic faculty common to our 

species.   

 Now we all tend to believe that the structure of the standard 

model of arithmetic, that simple omega-sequence, is coherent, unique 

and determinate.  But if it’s really just a matter of an intuitive 

picture, what reason do we have to believe these things?  As 

Wittgenstein once asked, ‘what if the picture began to flicker in the 

far distance?’ (RFM, V.10).  Our innate cognitive structuring may well 

give rise to these firm convictions, but if the story told here is 

correct, our capacity for mathematical arithmetic could be a mere 

spandrel, generated just by the way as we evolved toward language, and 

even if it is an adaption in itself, that’s no guarantee of 
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reliability.46  Under the circumstances, we reflective beings should 

want more support for our faith in the cogency of an omega-sequence 

than just our brute inclination to believe it.  I think there are 

facts we can appeal to, but they’re hardly conclusive:  our biological 

similarity as humans is reason to think your intuitive picture is 

more-or-less the same as mine; the apparent coherence of the picture, 

plus long experience of the species with mathematical arithmetic, 

provides some evidence for its consistency; the lack of any important 

independent statement comparable to the Continuum Hypothesis suggests 

it may be fully determinate.47  But our sense that arithmetic is more 

secure than that may be an illusion -- another valuable lesson from 

psychology! 

 

III.  Conclusions 

 Though psychologists sometimes take their work to support a brand 

of anti-realism about mathematics -- Stanislas Dehaene’s influential 

                       
46  See the fallacy described in footnote 24. 
 
47  There’s an analogous question for set theory, where the relevant intuitive 
picture -- the iterative hierarchy -- seems to rest on three elements:  
recursion (presumably based in the same cognitive faculty as the standard 
model of arithmetic); the combinatorial notion of an arbitrary subset, not 
beholden to any rule, definition, or construction (perhaps related to Heck’s 
‘very sophisticated’ one-to-one correspondence?); and Cantor’s gusty bet on 
the completed infinite (see [1988], I.5).  This picture isn’t definitive of 
the field in the way the standard model is for arithmetic:  it wasn’t present 
when set theory was founded by Cantor and others, and it could be altered or 
replaced in the future (e.g., by the multiverse conception, though for now 
I’m skeptical about that (see [201?a], III)).  In any case, given the added 
vagaries of the two additional elements, any case for cogency is 
correspondingly weaker:  determinacy is undercut by independent statements 
like the CH, and our biological similarity gives less support for uniqueness.  
Perhaps the apparent coherence of the conception delivers some evidence of 
consistency, but considerably less than in the case of arithmetic.  Still, 
this would be a form of so-called ‘intrinsic’ support distinct from the 
merely instrumental role described in [2011]. 
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Number Sense, for example, bears the subtitle How the Mind Creates 

Mathematics -- in fact their skepticism doesn’t extend to the 

contingent logical/numerical structure I’ve been attributing to the 

world or our cognitive access to it:  

[A]rithmetic … draw[s] upon a store of fundamental knowledge 
accumulated over millions of years of evolution in a physical 
world which, at the scale we live it, is … numerically 
structured.  (Dehaene in Dehaene and Brannon [2011], p. 187, 
emphasis added) 
 

This type of straightforward realism breaks down, I’ve suggested, with 

the potential infinite, the standard model of arithmetic, where 

attention to the psychological facts reveals that our cognitive 

architecture does, in a sense, ‘create’ the subject matter under 

investigation.  In addition to this positive semantic or metaphysical 

conclusion, empirical work in psychology also uncovers the less-than-

firm underpinings of some of our firmest philosophical preconceptions:  

that logic is necessary, that arithmetic is obviously cogent 

(coherent, unique, determinate).  This valuable therapeutic helps free 

the philosophies of these subjects from traditional baggage and set 

them on a more vital course.  In these ways, psychological inquiry 

stands to play a central, highly beneficial role in our philosophizing 

about the a priori disciplines.48  

 

 

 

Penelope Maddy 

                       
48  Thanks to Gary Hatfield, Ethan Galebach, Reto Gubelmann, and Sorin Bangu 
for helpful comments on earlier drafts. 
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