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Bayesian cognitive science, predictive brains, and the nativism debate 

Abstract The rise of Bayesianism in cognitive science promises to shape the debate between 

nativists and empiricists into more productive forms—or so have claimed several philosophers and 

cognitive scientists. The present paper explicates this claim, distinguishing different ways of 

understanding it. After clarifying what is at stake in the controversy between nativists and 

empiricists, and what is involved in current Bayesian cognitive science, the paper argues that 

Bayesianism offers not a vindication of either nativism or empiricism, but one way to talk precisely 

and transparently about the kinds of mechanisms and representations underlying the acquisition of 

psychological traits without a commitment to an innate language of thought. 

 

1 Introduction 

Several philosophers and cognitive scientists believe that Bayesianism in cognitive science has 

novel, important consequences for the controversy between nativists and empiricists. For instance, 

Tenenbaum and colleagues (2011) claim that “the Bayesian approach lets us move beyond classic 

either-or dichotomies that have long shaped and limited debates in cognitive science.” One such 

dichotomies is either empiricism or nativism (p. 1285). Clark (2013a, 2013b; 2016) agrees that 

Bayesianism “should fundamentally reconfigure our thinking about the debate between nativism 

and empiricism” (2013a, p. 482). Also Samet & Zaitchik (2014) seem to agree, and they single out 

Bayesianism as an especially relevant approach to the contemporary controversy surrounding 

innateness in cognitive science. 

 While there is agreement that Bayesianism bears on the debate between nativists and 

empiricists, it remains unclear just how. Existing literature in Bayesian cognitive science does not 

elucidate what’s exactly at stake in that debate, and philosophers who have suggested that the brain 

might approximately implement Bayesian inference (Hohwy 2013; Clark 2016) have not rigorously 

explained relevant similarities and differences between distinct approximations for Bayesian 

inference. 

 Two distinct types of ideas are conflated in the literature. The first idea is that Bayesianism 

matters to the debate because it bears out aspects of both nativist and empiricist views.
1
 

Specifically, Bayesianism would vindicate empiricists’ emphasis on learning from experience as the 

central process in the acquisition of new psychological traits; but Bayesianism would also vindicate 

nativists’ emphasis on the role of prior knowledge in acquiring new psychological traits. 

 Tenenbaum and colleagues (2011), Clark (2013a, 2013b; 2016), and Samet & Zaitchik 

(2014) can be read as having this idea in mind when they claim that Bayesianism matters to the 

controversy between nativists and empiricists. On the one hand, they all point out that Bayesianism 

offers previously unappreciated resources to empiricists, who can rely on hierarchical Bayesian 

modelling to show that the information required for the acquisition of high-level psychological 

traits need not be hardwired in a system, but can be picked up in the environmental input. On the 

other hand, as explained by Samet & Zaitchik (2014), Bayesianism vindicates aspects of nativism 

too, “because it focuses attention on the role of background knowledge in learning.” In these 

                                                           
1
 Not all Bayesian models are meant to make substantial claims about the mechanisms and representations 

underlying cognition and behaviour. Some Bayesian models are meant to offer only an encompassing 

mathematical template that can be applied to a wide range of phenomena in order to provide computational-

level analyses (Anderson 1990; Marr 1982) and/or in order to unify these phenomena without making 

commitments to underlying mechanisms and representations (Colombo & Hartmann 2015; Danks 2014, Ch. 

8). Following Clark (2013a; 2013b) and Samet & Zaitchik (2014, note 28), here I set aside questions about 

the psychological reality of Bayesian models (Colombo & Seriès 2012). Rather, I assume that Bayesianism 

offers not only a mathematical template or computational-level analyses. Bayesianism can also make 

substantial empirical claims about the nature of learning mechanisms and representations (cf., Hohwy 2013; 

Clark 2013b, 2016). 
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respects, however, Bayesianism recapitulates previous approaches like Connectionism; and so, it 

does not provide us with a fundamentally novel way to think about the debate between nativists and 

empiricists. 

 A distinct idea is that Bayesianism matters because it makes the debate more empirically 

tractable than previous approaches. Bayesianism would provide us with a distinctively precise and 

semantically transparent way to talk about and test how psychological traits might be acquired. 

Samet & Zaitchik (2014) recognize this point when they highlight that Bayesianism “provides a 

systematic and quantifiable approach to development.” Perfors, Tenenbaum and colleagues (2011, 

p. 317) also emphasise this virtue of Bayesianism: “its representational flexibility makes it 

applicable to a wide variety of learning problems, and its transparency makes it easy to be clear 

about what assumptions are being made, what is being learned, and why learning works.” However, 

while Bayesianism is more semantically transparent than an approach like Connectionism, it 

recapitulates Classicism in this respect; and so, it does not provide us with a fundamentally novel 

way to think about the debate between nativists and empiricists. 

 Presenting aspects of both Classicism and Connectionism, what Bayesianism brings to the 

table—I suggest—is a transparent way of evaluating the character of the innate structure in the 

human cognitive architecture without the need for a commitment to an innate language of thought. 

In arguing for this claim, my goal is not to defend a particular nativist or empiricist position. My 

goal is instead to clarify how Bayesianism can frame the debate in a more productive form. 

 In order to achieve my goal, I start, in Section 2, to clarify how the dialectical situation 

between nativists and empiricists should be understood. In Sections 3 and 4, I examine the nature 

and role of Bayesian priors in visual perception, and show that the fact that Bayesianism posits 

priors does not have implications for the controversy. In Sections 5 and 6, I focus on Bayesian 

learning mechanisms in categorization tasks, and show that the fact that Bayesianism posits a 

general-purpose learning mechanism like Bayesian conditionalization does not have implications 

for the controversy. In Section 7, I compare Bayesianism with Connectionism and Classicism, 

which are two prominent alternative approaches to cognitive change, and argue that Bayesianism 

recapitulates aspects of both Connectionism and Classicism. A short conclusion follows. 
 

2 Nativism vs. Empiricism. What’s at stake? 

‘Nativism’ and ‘Empiricism’ pick out broad families of views concerning the origin of 

psychological traits and the shape of the underlying cognitive architecture, where ‘psychological 

traits’ may refer to abilities, capacities, ideas, or concepts. Contemporary nativists and empiricists 

agree that both nature and nurture matter to questions about the origin of psychological traits. They 

agree that there are genetic and environmental contributions to the acquisition of psychological 

traits. Both sides also agree that the acquisition of psychological traits depends on a certain amount 

of innate structure. The disagreement concerns the character of this innate structure. It concerns the 

question: What kinds of mechanisms and representations in humans’ innate cognitive architecture 

are causally responsible for the acquisition of psychological traits? (cf., Cowie 1999, p. 26; 

Margolis & Laurence 2013, p. 695). 

 Empiricists posit as little innate endowment as possible. According to them, the innate 

architecture of the mind includes few general-purpose (or domain-general) mechanisms for 

acquiring psychological traits. Because these mechanisms are general-purpose, they operate in a 

wide range of different psychological domains. For example, general-purpose learning mechanisms 

like statistical learning and pattern recognition would operate in a wide variety of different 

psychological domains, and would suffice to acquiring such psychological traits as a language, 

knowledge of causal relations in the world, the ability to ascribe mental states to other agents, and 

so on (cf., Prinz 2012; on language learning and empiricism see Elman 1991, and Chater, Clark, 

Goldsmith, & Perfors 2015). As these learning mechanisms are responsible for the acquisition of 

psychological traits by extracting statistical regularities in the environment, “whatever 

differentiation into domain-specific cognitive systems there might be will reflect differentiation in 
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the [statistical structure in the] environment and not our innate endowments” (Samuels 1998, p. 

576). 

 Nativists posit a richer innate endowment. According to them, the innate architecture of the 

mind includes many domain-specific mechanisms and/or bodies of knowledge for acquiring new 

psychological traits (Simpson et al. 2005; for a comprehensive discussion of different nativisms see 

Carruthers, Laurence, & Stich 2005, 2006, 2007). Domain-specific mechanisms operate in a 

restricted class of problems in a narrow range of psychological domains. For example, according to 

some evolutionary approaches to psychology, psychological traits such as the abilities to recognize 

faces, ascribe mental states to others, and identify cheaters in social exchanges could be acquired 

only through Darwinian modules, each one of which is dedicated to operate in one psychological 

domain (Carruthers 2006; Pinker 2002; Sperber 1994). A domain-specific body of knowledge is a 

system of mental representations about a specific subject matter such as physics and psychology, 

which apply to a distinct domain of entities and phenomena (Carey & Spelke 1994). For example, 

according to some generativist approaches to linguistics, language can be acquired only because our 

cognitive architecture contains an innate Universal Grammar, which consists of a body of domain-

specific knowledge about the grammatical principles of human natural languages and applies to 

sentences and their constituents (Chomsky 1980, 1988). 

 In summary, the disagreement between contemporary nativists and empiricists is about the 

kinds of learning mechanisms and representations in humans’ innate cognitive architecture. 

Empiricists are committed to a kind of cognitive architecture that includes few general-purpose 

mechanisms that are ultimately responsible for the acquisition of all psychological traits. Nativists 

are committed to a kind of cognitive architecture that is rich in domain-specific mechanisms and/or 

representations that are ultimately responsible for the acquisition of all psychological traits. 

 Three points of elaboration are in order. First, nativism and empiricism admit of degrees. 

One may be nativist (or empiricist) about a greater or smaller portion of the psychological traits in 

the human cognitive architecture. Second, while domain-specific bodies of knowledge may be 

processed by domain-specific mechanisms, this need not be so. As Samuels (1998, p. 583) explains, 

humans may possess a single general-purpose mechanism like a single universal Turing machine 

that deploys internally represented, domain-specific bodies of knowledge. Thus, one may posit 

innate bodies of knowledge about the principles of language, while allowing that the mechanism 

that recruits such representations be general-purpose (cf., Fodor 2001, pp. 106-9). Third and finally, 

the controversy between nativists and empiricists presupposes the legitimacy of some notion of 

innateness in cognitive science. Although innateness is multiply ambiguous (Mameli & Bateson 

2006), may not correspond to any natural kind (Mameli & Bateson 2011), and may obscure the 

complexities of ontogenesis (Scholz 2002), this notion often features in discussions of the relation 

between Bayesian cognitive science and the nativism debate without a clear explication (cf., Samet 

& Zaitchik 2014, Sec 3.2). As I shall point out below in Section 4, sometimes these discussions 

seem to assume an explication of innateness in terms of psychological primitiveness, where 

psychologically primitive traits are the ones whose acquisition cannot be explained by any adequate 

theory in cognitive science (Cowie 1999; Samuels 2002). Sometimes they assume an explication in 

terms of developmental canalization, which roughly corresponds to the degree of developmental 

rigidity of a trait in the face of variation across a range of environments (Ariew 1999; see also 

Mallon & Weinberg 2006). Some other time, they assume an explication of innateness in terms of 

adaptation, according to which a psychological trait is innate if its acquisition can only be explained by 

natural selection (cf., Lorenz 1965). Evaluating how Bayesianism matters for the debate between 

nativists and empiricists requires clarity about the explication of innateness one presupposes. 

 

3 Bayesian priors between nativism and empiricism 

A characterisation of Bayesianism in cognitive science goes as follows. Take some problem that 

cognitive agents face—for example, disambiguating convex from concave shapes from shading 

information, or grouping objects into categories. Formulate the problem in probabilistic terms by 
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defining a model of the process that generates some data, d—for example, two-dimensional retinal 

images, or exemplars of some underlying category. Let H be a set of (exhaustive and mutually 

exclusive) hypotheses about the process (known as hypothesis space). For each hypothesis h  H, 

P(h) is the probability that the agent assigns to h being the true generating process, prior to 

observing the data d. P(h) is known as the prior probability. The Bayesian rule of conditionalization 

prescribes that, after observing data d, the agent should update P(h) by replacing it with P(h | d) 

(known as the posterior probability). To execute the rule of conditionalization, the agent multiplies 

the prior P(h) by the likelihood P(d | h) as stated by Bayes’ theorem:
2
 

 [1]   𝑃(ℎ|𝑑) =  
𝑃(𝑑|ℎ)𝑃(ℎ)

∑ 𝑃(𝑑|ℎ)𝑃(ℎ)ℎ∈𝐻
 

where P(d | h) is the probability of observing d if h were true (known as likelihood), and the sum in 

the denominator ensures that the resulting probabilities sum to one. According to [1], the posterior 

probability of h is directly proportional to the product of its prior probability and likelihood, relative 

to the sum of the products and likelihoods for all alternative hypotheses in the hypothesis space H. 

The rule of conditionalization prescribes that the agent should adopt the posterior P(h | d) as a 

revised probability assignment for h: the new probability of h should be proportional to its prior 

probability multiplied by its likelihood. 

 Bayesian conditionalization alone does not specify how an agent’s beliefs should be used to 

generate a decision or an action. How to use the posterior distribution to generate a decision is 

described by Bayesian decision theory, and requires the definition of a loss (or utility) function L(A, 

H). For each action a  A—where A is the space of possible actions or decisions available to the 

agent—the loss function specifies the relative cost of taking action a for each possible h  H. To 

choose the best action, the agent calculates the expected loss for each a, which is the loss averaged 

across the possible h, weighted by the degree of belief in h. The action with the minimum expected 

loss is the best action that the agent can take given her beliefs. 

 Given this characterisation of the Bayesian approach,
3
 one common suggestion is that “the 

key issue in considering the bearing of Bayesianism on the Nativist-Empiricist controversy is the 

priors” (Samet & Zaitchik 2014). The basic idea is that “[i]nnate assumptions and principles […] 

are realized as priors” with certain default values that get updated  via interaction with the 

environment (Scholl 2005, pp. 48-9). 

 However, because empiricists and nativists do agree that the human cognitive architecture is 

comprised of some innate structure, and they can also agree that this innate structure might be 

realized as Bayesian priors, this basic idea leaves many key issues in the debate surrounding 

nativism open, such as: Are all Bayesian priors evolved psychological traits, or are they 

psychological traits culturally acquired in cognitive development? Are all Bayesian priors 

psychologically primitive? Are they robust to environmental variation? Are all (or most) Bayesian 

priors domain-specific representations? While different answers to these more specific questions 

underwrite different positions in the nativism-empiricism spectrum, Bayesianism is not committed 

to positing a cognitive architecture that is rich in domain-specific representations realized as priors, 

which are ultimately responsible for the acquisition of all other psychological traits. To establish 

this claim, I now concentrate on the light-from-above prior, which is often cited as a 

characteristically nativist psychological trait. 

 

                                                           
2
 Bayes’ theorem is a provable mathematical statement that expresses the relationship between conditional 

probabilities and their inverses. Bayes’ theorem expressed in odds form is known as Bayes’ rule. The rule of 

conditionalization is a prescriptive norm that dictates how to reallocate probabilities in light of new evidence 

or data. 
3
 It is worth pointing out that Bayesianism is by no means the only theory of learning and decision-making 

under uncertainty (see Colombo, Elkin, Hartmann 2016 for a critical treatment of Bayesianism in cognitive 

science and its possible alternatives). 
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4 Light-from above through Bayesian lenses 

The light-from-above prior is the prior “belief” that light shines from overhead (precisely, from 

above-left). It is often cited as an example of a characteristically nativist trait because it would be a 

paradigmatic example of an internally represented body of innate knowledge specific to lighting 

source (Hershberger 1970; Ramachandran 1988; Kersten, Mamassian & Yuille 2004, p. 285; 

Mamassian & Goutcher 2001; Scholl 2005; Samet & Zaitchik 2014; for a general account of priors 

in visual perception see Sotiropoulos & Seriès 2015). 

 In describing the light-from-above prior as a paradigmatic example of an innate, domain-

specific representation, the literature confuses two questions.
4
 First question: Is the light-from-

above prior malleable, or is it rigid? Second question: Is the light-from-above prior a 

psychologically primitive domain-specific representation, or can this trait be acquired courtesy of 

some general-purpose mechanism that does not tap internally represented domain-specific 

knowledge? 

 The first question assumes an explication of innateness in terms of developmental 

canalization that roughly corresponds to the degree of developmental rigidity of a trait in the face of 

variation across a range of environments (Ariew 1999; see also Mallon & Weinberg 2006). The 

second question assumes an explication of innateness in terms of psychological primitiveness 

(Cowie 1999; Samuels 2002), and asks whether the light-from-above prior is a domain-specific 

representation, whose acquisition cognitive science cannot explain. 

 Let’s consider the first question. Is the light-from-above prior developmentally rigid? 

Hershberger (1970) offered preliminary evidence that it is rigid. He showed that chickens reared in 

cages illuminated from below still behaved as though light was coming from above. From this 

result, Hershberger concluded that the light-from-above prior is developmentally rigid, and 

therefore is probably innate. 

 However, more recent psychophysical studies with human adults and children do not bear 

out this conclusion. These studies show that human observers’ light-from-above prior is not rigid to 

subtle variation in environmental and developmental circumstances. If ‘innate’ is understood as a 

kind of developmental robustness or rigidity, then these studies show that the light-from-above 

prior is not an innate psychological trait. 

 Adams, Graf, & Ernst (2004) found that the light-from-above prior can be modified by 

repeated haptic feedback about the shape of an object. In their experiment, human adults made 

convex-concave judgements of bump-dent stimuli illuminated by a single light source. In making 

these judgements, they initially assumed the light source be roughly overhead, which enabled them 

to extract information about the shape of the stimuli from their shading. During a training phase, the 

same experimental participants made convex-concave judgements, while they were exposed to 

stimuli that appeared to be lit from the side. After each judgement, they received haptic feedback 

regarding shape, which reinforced the visual appearance that lighting came from the side. In a post 

training phase, when participants judged a set of visual stimuli identical to those in the initial 

condition, their “light prior” had shifted significantly from overhead towards the side, causing 

altered shape judgements. Furthermore, this acquired light-from-the-side prior was found to transfer 

                                                           
4
 Some treatments in Bayesian cognitive science (e.g., Seydell, Knill, & Trommershauser 2011) assume an 

explication of innateness in terms of adaptation, according to which innate traits are those whose acquisition 

can only be explained by natural selection. Assuming this explication, these treatments associate the question 

of whether Bayesian priors are innate with the question of whether Bayesian priors match the statistics of 

natural environments. The idea is that if a prior like the light-from-above prior matches the relative 

frequency of light sources coming from overhead, then the prior can be explained by natural selection, and so 

is probably innate. However, the fact that the light-from-above prior, and other well-studied Bayesian priors 

like the slow-speed prior (Stocker & Simoncelli 2006), might reflect natural frequencies in the environment 

(Simoncelli & Olshausen 2001) does not warrant the inference that they are explained by natural selection, 

nor does it warrant the inference that Bayesian priors should be tuned to natural frequencies (Feldman 2013; 

for a compact discussion of this point see Sotiropoulos & Seriès 2015, Sec 3.4). 
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to a different task, where observers judged which one of two sides of an oriented object was lighter 

in the absence of any evidence about the light-source. 

 In another experiment with human adults, Morgenstern et al. (2011) found that the light-

from-above prior is also easily overridden by other sensory cues. In this study, experimental 

participants estimated the shape of an object from shading information. Morgenstern and colleagues 

inferred the ratio between the weight participants gave to their light-from-above prior and the 

weight they gave to lighting cues of different strength. It turned out that the prior accounted for very 

weak lighting information, as its impact could be quashed by barely perceptible lighting cues like 

low-contrast shadows. 

 Other studies in developmental psychology support the idea that Bayesian priors need not 

correspond to psychological traits that develop rigidly despite variability in environmental statistics. 

For example, Thomas et al. (2010) had 4- to 12-year-old children make convex/concave judgements 

for a shaded “polo mint” stimulus. They found an interaction between a light-from-above prior and 

a convexity prior that changed over the course of development: a convexity prior would have more 

weight early in childhood, while a light-from-above prior would have more weight only later on 

during puberty. Coherent with this conclusion is Stone’s (2011) result that the light-from-above 

prior is malleable throughout childhood. These results would be explained by the fact that “light 

does not come from a consistent direction relative to one’s own body (which is the frame of 

reference used in judging shape from shading until around 7 years of age) until children are able to 

walk” (Thomas et al. 2010, p. 6). So, the light-from-above prior is neither rigid nor is it invariant to 

variation in the statistical structure of the developmental environment. If we assume an analysis of 

innateness as a kind of developmental canalization, it is therefore unjustified to believe that the 

light-from-above prior must be an innate trait. 

 Let’s now consider the second question. Is the light-from-above prior a psychologically 

primitive domain-specific representation? There are three sets of considerations supporting a 

negative answer. First, domain-specific representations apply to a restricted class of entities and 

phenomena (Carey & Spelke 1994). However, Adams (2007) showed that the light-from-above 

prior applies to a relatively wide range of different entities and phenomena, as it would be engaged 

in visual search, shape perception, and reflectance judgement. This finding coheres with the idea 

that the light-from-above prior is not a psychologically primitive domain-specific representation, 

but is acquired through some general-purpose learning mechanism that is sensitive to the general 

predominance of overhead lighting. 

 Second, most Bayesian work in the psychophysics of perception assumes that priors such as 

the light-from-above prior have a particular univariate parametric form (e.g., a Gaussian distribution 

of one random variable associated with a specific environmental property), which might be taken to 

suggest that Bayesian priors must be bodies of domain-specific knowledge. However, in estimating 

shape from shading, at least two parameters are involved: one over lighting direction, another over 

shapes. Generally, these two parameters are assumed to be independent, which can make the 

learning tractable, ensuring that the estimated univariate prior distribution over lighting direction is 

the same as a joint distribution over lighting direction and shape.
5
 Independence properties ensure 

that the priors employed in much Bayesian cognitive science, particularly in psychophysics, are 

specific to a single parameter (or environmental property). But the independence assumption 

between parameters is generally unjustified, because several parameters are correlated with one 

another in the environment. Hence, many of the priors employed in Bayesian cognitive science 

should be understood as high-dimensional priors that may not be specific to any individual 

parameter. A high-dimensional prior spans many different environmental parameters at the same 

time; and so, the class of situations is large, in which this very same prior can be recruited for 

acquiring novel psychological traits. 

                                                           
5
 More precisely, the assumption of parameter independence implies that the marginal distribution is the 

same as the conditional distribution. 
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 Third and finally, Bayesian priors like the light-from-above prior may themselves be 

acquired courtesy of some general-purpose mechanism that does not tap internally represented 

domain-specific knowledge. This means that Bayesian priors need not be psychologically primitive 

bodies of domain-specific knowledge. Clark (2013a, 2016 Sec 6.3) makes this point by drawing on 

work by Kemp et al. (2007) and Tenenbaum et al. (2011). He writes: “multilayer Bayesian systems 

have proven capable of acquiring abstract, domain-specific principles without building in the kinds 

of knowledge […] that subsequently account for the ease and efficacy of learning in different 

domains” (2013a, p. 488). 

 In hierarchical Bayesian systems, the hypothesis space has a hierarchical structure, and the 

only psychologically primitive, built-in knowledge is at the highest level of the hierarchy. This 

built-in knowledge is generic, as it corresponds to a hyper-prior on a hyper-parameter, which is a 

parameter of a prior distribution at the level below. While hyper-priors impose constraints on the 

kinds and range of representations the system can acquire, these constraints are increasingly weak 

as the number of levels in the system increases. “By adding further levels of abstraction to an HBM 

[hierarchical Bayesian model] while keeping pre-specified parameters to a minimum, at the highest 

levels of the model, we can come increasingly close to the classical empiricist proposal for the 

bottom-up, data-driven origins of abstract knowledge” (Perfors et al 2011, p. 308; Perfors 2012). 

This means that hierarchical Bayesian systems that initially encode hyper-priors “concerning very 

abstract (at times almost Kantian) features of the world” (Clark 2013a, p. 487) can acquire domain-

specific bodies of knowledge like the light-from-above prior by extracting structure from the 

environmental input (see Lee & Mumford 2003 for relevant neurophysiological evidence; for early 

neural networks that extract shape from shading see Lehky & Sejnowski 1988, 1990). 

 In summary, the initially given hyper-priors in a hierarchically organized Bayesian system 

are typically not domain-specific. If these hyper-priors are not domain-specific, and can explain 

how domain-specific representations like the light-from-above prior are acquired, then these 

representations are not psychologically primitive. If we assume an analysis of innateness as a kind 

of psychological primitiveness, it is therefore unjustified to believe that the light-from-above prior 

must be an innate trait. 

 Before moving on, there is something important to flag. Clark (2013a, 2013b, 2016) and 

Tenenbaum et al (2011) have Hierarchical Bayesian modelling in mind, when they claim that 

Bayesianism has fundamental consequences for the nativism vs. empiricism debate. In Clark’s 

(2013a) words: 
 

“Hierarchical Bayesian modelling shows that acquisition of psychological trait can proceed just as if it had 

been constrained by apt bodies of innate knowledge […] it demonstrates that the potent, accelerated, domain-

specific learning profiles often associated with such knowledge may also be displayed by systems that begin 

from much more minimal bases […] The HBM accounts on offer share the singular virtue of accommodating 

many empiricist intuitions (for example, those concerning flexibility in the face of new environmental 

inputs) while leaving room for as much innate knowledge as well-controlled experimental studies may (or 

may not) eventually mandate” (p. 495). 
 

 The basic ideas are twofold: that Hierarchical Bayesian models equip the empiricist with 

previously unappreciated resources, and that Hierarchical Bayesian models have the singular virtue 

to provide both nativists and empiricists with a way of precisely assessing the relative contributions 

of both “innate, domain-specific knowledge” and “domain-general learning mechanisms” (Griffiths, 

Kemp, & Tenenbaum 2008, p. 62). 

 I shall return to these ideas in Section 7. For now, suffices it to anticipate that the same 

enthusiasm was shown over 25 years ago, during the resurgence of Connectionism. Because 

connectionist models showed that data-driven induction and minimal initial biases could suffice to 

acquire novel, domain-specific bodies of knowledge (Clark 1993a; Elman et al. 1998), 

Connectionism was said to fundamentally reconfigure the debate between nativists and empiricists, 
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which was shaped by Fodor’s (1975, 1981) and Chomsky’s (1980) Classical computationalism back 

then. 
 

5 Bayesian mechanisms between Nativism and Empiricism 

Another common belief is that Bayesianism in cognitive science is committed to positing general-

purpose learning mechanisms. In an influential review of Bayesian approaches in developmental 

psychology, Xu (2007, p. 214) asks: “Is the Bayesian inference mechanism domain-general, and if 

yes, in what sense?” She answers: “I have suggested… that this is not a mechanism specific to word 

learning, or language, or causal reasoning. However—she continues—I am not claiming that the 

same token of the Bayesian inference mechanism is used again and again in various domains. 

Rather Bayesian inference is a type of learning mechanism that can be instantiated many times over 

in the human brain/mind” (cf., Perfors et al. 2011, p. 316; Xu & Griffiths 2011). 

 When Xu (2007) describes Bayesian inference as “a type of learning mechanism,” she has in 

mind the Bayesian rule of conditionalization for computing posterior distributions. But this is not 

the mechanism that is actually involved in the accounts of word learning and causal reasoning she 

reviews. The types of mechanisms that are used to account for word learning and causal reasoning, 

and that might be tokened in the human “brain/mind,” cannot amount to simple conditionalization, 

because simple Bayesian conditionalization makes these learning tasks intractable. For tasks that 

involve high dimensionality, or complicated and unusual statistical structures, different types of 

mechanisms are required for updating “beliefs” and acquiring new psychological traits. So, 

Bayesian conditionalization and more specific types of Bayesian mechanisms should be kept 

distinct when we ask questions about the nature of Bayesian learning mechanisms. 

 Almost all accounts of the acquisition of high-level psychological traits, and of several low-

level perceptual traits too, do not involve simple Bayesian conditionalization. They involve 

approximations like Monte Carlo and variational learning mechanisms, which can be tokened in a 

number of different ways depending on the problem in hand. We should examine the nature of these 

mechanisms, if we want to understand the possible implications of Bayesianism for the controversy 

between nativism and empiricism. 

 Some of the approximately Bayesian learning mechanisms that can tractably underlie the 

acquisition of psychological traits like the abilities to learn words or to acquire causal knowledge 

are more domain-specific than others. These mechanisms all employ precise probabilities to 

represent uncertainty, update probabilities in accord with the axioms of probability, and provide an 

approximation of the target posterior distribution. This is the only sense in which they are all 

Bayesian. There is no simply a Bayesian mechanism; but different species Bayesian mechanisms 

with a number of specific properties. 

 Bayesian decision theory offers a unifying mathematical language (Colombo & Hartmann 

2015) along with a package of different methods for learning and inference. Depending on the 

details of the problem associated with the acquisition of a certain psychological trait—e.g., the size 

of the hypothesis space, the shape of the joint distribution over data and parameters, the time 

available to find a solution, and computational constraints on memory and search—Bayesianism 

can posit, equally plausibly, acquisition mechanisms that are domain-specific, or that are general-

purpose. So, Bayesianism is not committed to positing a cognitive architecture that includes few 

general-purpose learning mechanisms that are ultimately responsible for the acquisition of 

psychological traits. I now sharpen and establish this conclusion by examining two types of Monte 

Carlo algorithms as mechanisms for category learning.
6
 

 

6 Bayesian mechanisms for acquiring categories 

                                                           
6
 This point could only be strengthened if alternative types of mechanisms are also examined that involve, for 

example, the Laplace approximation or variational algorithms. 
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From a probabilistic perspective, the computational problem of category learning is to identify a 

probability distribution associated with each one of the available category labels. Category learning 

would consist of a problem of probability density
7
 estimation (Ashby & Alfonso-Reese 1995). 

Given the features (denoted by d) of an item, one should infer the category label c for that item from 

the set of available category labels C. For instance, given the features “has feathers,” “has wings,” 

“has a beak” for an item, one should infer the category label “Bird” from the set of available 

categories. Using Bayesian conditionalization, the posterior over category labels is: 
 

 [2]  𝑃(𝑐|𝑑) =  
𝑃(𝑑|𝑐)𝑃(𝑐)

∑ 𝑃(𝑑|𝑐′)𝑃(𝑐′)𝑐′∈𝐶
=  

𝑃(𝑑,𝑐)

∑ 𝑃(𝑑,𝑐′)𝑐′∈𝐶
 

 For categorization problems where the likelihoods can have any interesting structure, or 

where the space C of category labels is too large and complex, the posterior P (c | d) cannot be 

computed tractably. For these problems, only approximations for the target posterior can be 

tractably computed. One class of mechanisms for computing such approximations consist of 

algorithms based on the Monte Carlo principle, which says that anything we want to know about a 

random variable  can be learned by sampling many times from the distribution P( ). This 

principle grounds a family of algorithms, which become increasingly accurate in approximating a 

target posterior distribution as the number of samples they use increase. 

 Two Monte Carlo algorithms that have been used to solve category learning problems are 

Gibbs sampling and particle filtering. The basic idea behind the Gibbs sampling algorithm is that 

joint probability densities can be characterised as component conditional densities. For all variables 

of a target joint distribution, the Gibbs sampler algorithm begins by selecting one variable—the 

order in which the Gibbs sampler selects variables does not affect its computations—then samples 

one value of that variable, and finally conditions the sampled value on the values of all other 

random variables and all data. Once all random variables are sampled, the Gibbs sampler has 

finished one iteration, which yields a distribution that approximates the target posterior. The 

accuracy of this approximation improves as a function of the number of iterations of the algorithm. 

 The basic idea behind the particle filter algorithm is that any joint probability density can be 

characterised as sets of samples (or particles) drawn from probability densities ‘related’ to the target 

joint probability density. For a target posterior distribution P (ct | d1, …, dt), the particle filter 

algorithm begins by generating a known ‘proposal distribution,’ which is related to the target one. 

For instance, the proposal distribution may be the prior probability P (ct | d1, …, dt-1). The algorithm 

first draws samples from the proposal distribution, then assigns each resulting sample a weight 

proportional to the probability that the sample comes from the target distribution. The same 

operation is repeated for all time steps t. Thus, the particle filter algorithm can get to approximate P 

(ct | d1, …, dt) by sampling and re-sampling from a sequence of related distributions P (ct-1 | d1, …, 

dt-1), appropriately weighing each sample. 

 Both the Gibbs sampler and the particle filter algorithms are flexible, since they can be 

applied across different problem domains and can approximate complex, non-linear, non-Gaussian 

joint distributions. However, they differ in important ways. For example, the Gibbs sampler 

assumes that all data are available at the time of learning and inference: if new data arrive over the 

course of processing of the Gibbs sampler, then the Gibbs sampler must start its processing anew, 

which makes it unsuitable for online, sequential learning. Instead, the particle filter algorithm 

assumes that data are collected progressively over time: posterior distributions are approximated by 

propagating samples, whose weights are updated as a function of incoming observations, which 

makes particle filtering adapted to sequential environments. So, the proper domain of application of 

the Gibbs sampler corresponds to tasks where all data bearing on a certain hypothesis arrive 

                                                           
7
 For ease of presentation, I use the terms ‘probability density’ and ‘probability distribution’ interchangeably, 

although the two concepts are distinct. Roughly, a probability density function is a function that describes the 

relative likelihood for a continuous random variable to take on a given value. 
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simultaneously, while the particle filter algorithm is tailored to learning in dynamic tasks, where 

data arrive sequentially. 

 The Gibbs sampler, the particle filter, and other Bayesian algorithms were examined by 

Sanborn et al. (2010) as possible mechanisms for learning new categories. Firstly, Sanborn and 

colleagues characterised category learning in general, as a density estimation problem, where 

learners observe the features of a new item dN, and determine whether the label cN = j applies to that 

item on the basis of all previous items, dN-1 = (d1, d2, …, dN-1) and their labels cN-1 = (c1, c2, …, cN-1). 

 Three general types of mechanisms for category learning were then distinguished. The first 

type corresponds to parametric learning algorithms, where the joint distribution P (c, d) has some 

fixed parametric form. The second type corresponds to non-parametric learning algorithms, where 

the form of P (c, d) is allowed to change as the amount of data is increased. Importantly, parametric 

algorithms make stronger assumptions about the shape of P (c, d). Non-parametric algorithms do 

not assume any specific family of distributions for the category structure P (c, d). 

 As Ashby and Alfonso-Reese (1995) point out, parametric learning mechanisms are 

naturally associated with prototype-based category learning, while non-parametric mechanisms are 

associated with exemplar-based category learning. So, insofar as we learn categories on the basis of 

both exemplars and prototypes, our cognitive architecture may well include both parametric and 

non-parametric Bayesian learning mechanisms. 

 A third, intermediate, type of learning mechanism discussed by Sanborn and colleagues 

assumes that categories are broken down into several clusters z = (z1, z2, …, zN); each cluster z is 

assigned a parametric distribution and the category distribution becomes a mixture model associated 

with the joint distribution P (c, d, z), where each cluster is represented by a parametric distribution, 

and the full joint distribution is represented by a mixture of those distributions. 

 Sanborn and colleagues focused on a mixture model for the task of category learning: the 

Dirichlet process mixture model (DPMM), where Dirichlet distributions are used as prior 

distributions in the model, which allows capturing a broad range of densities. Sanborn et al (2010) 

compared the degree of fit of different learning mechanisms, including a Gibbs sampler and a 

particle filter, with human performance in several category learning tasks understood as DPMM. 

While they found that a particle filter algorithm had an especially good fit to humans’ learning of 

categories, their study bears out three conclusions: That different Bayesian learning mechanisms 

have different degrees of domain-specificity, where the notion of a domain should not be 

understood in terms of a subject matter; that the degree of domain-specificity of different Bayesian 

mechanisms depends on the types of assumptions they make about the statistical or temporal 

properties of a target problem, and that the Bayesian approach can posit, equally plausibly, learning 

mechanisms that are domain-specific, or else more general-purpose, for the acquisition of the same 

types of psychological traits. 

 Different Bayesian learning algorithms make different assumptions about the type of 

process that generates the data in a task of interest. Such assumptions are captured by different 

generative models, which specify a joint probability distribution over data and hypotheses—for 

instance, a joint probability P (c, d) over features of an item to categorise and sequences of category 

labels. The degree of domain-specificity of a Bayesian learning algorithm depends on the extent to 

which the algorithm is constrained to process data assumed to be produced by a generative process 

with a fixed, specific statistical form. 

 Parametric learning algorithms make stronger assumptions than non-parametric algorithms 

about the family of the probability distribution from which data are generated, though they are 

generally less memory and time consuming than non-parametric learning algorithms. Given these 

stronger assumptions, the algorithm is bound to yield a posterior with a specific form, regardless of 

the amount of data observed. So, parametric Bayesian learning algorithms are more domain-specific 

than non-parametric ones: they are constrained to process inputs of a specific sort, inputs assumed 

to be produced by a generative process associated with a fixed statistical form. 
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 Furthermore, distinct Bayesian algorithms for estimating posterior distributions, like the 

Gibbs sampling and the particle filter algorithms, are tailored to input data with different statistical 

and temporal properties. The Gibbs sampling algorithm can run to approximate a target posterior 

distribution only if all relevant data are available at a time. Thus, while a Gibbs sampler might 

underlie our ability to learning categories when all relevant exemplars are stored in memory or 

available at a time, it is fit to capture category effects on reconstruction from memory (Shi et al. 

2010). The particle filter algorithm is specifically fit to process sequential data, and to update 

probability distributions over time. Thus, a particle filter algorithm may underlie our ability to 

learning categories when exemplars are revealed sequentially; and because it is tailored to 

sequential data, a particle filter algorithm can easily capture order effects when new pieces 

information are encountered over time (Sanborn et al. 2010). 

 

7 What’s Next. Back to the future? 

There is a déjà-vu, when we read the claims made by Clark (2013 a, b; 2016), by Tenenbaum et al. 

(2011) and by other enthusiasts of the Bayesian approach in cognitive science, about how this 

approach fundamentally reconfigures the dialectic between nativists and empiricists. The same 

types of claims were made over 25 years ago, when Connectionism re-emerged as a serious 

alternative to Classical computationalism. While Connectionism and Classicism are not the only 

alternatives to Bayesianism as approaches to explaining the acquisition of psychological traits, the 

Classicism vs Connectionism debate is a useful baseline for assessing the novelty and significance 

of the contribution that Bayesian cognitive science can make to the nativism/empiricism debate. 

 Now, just like Bayesianism, Connectionism was said to have fundamental implications for 

our understanding of the debate between nativists and empiricists, which back then was shaped by 

Fodor’s (1975, 1981, 1983) and Chomsky’s (1980, 1988) Classical ideas about the architecture of 

cognition (cf., Ramsey & Stich 1991; Karmiloff-Smith 1992; Clark 1993a; Quartz 1993; Elman et 

al 1998). By the late 1970s, the Connectionist approach began to show how psychological traits can 

be acquired gradually and gracefully, courtesy of associative learning algorithms applied to a rich 

body of data, without the need to posit explicit rules and a system of atomic, domain-specific, 

representational states with combinatorial syntactic and semantic structure (aka an innate language 

of thought). Connectionism demonstrated how novel psychological traits could emerge from error-

driven changes in patterns of activation within artificial neural networks, whose architectures need 

not include a pre-wired language of thought. 

 Connectionist models demonstrated that language, face-recognition abilities, categorization, 

and many other psychological traits that were previously thought to be un-learnable, could be 

acquired courtesy of the interplay between the statistics of the environment, the knowledge 

embodied in the initial state of a neural network, and error-driven learning algorithms applicable to 

several different psychological domains (Elman et al. 1998; but see Fodor & Pylyshyn 1988 for an 

influential criticism). While the connectionist approach is not intrinsically anti-nativist, it offered 

one way to think about how the developmental trajectory of psychological traits depends “on the 

nature of the statistical structure present in everyday experience, and how this structure is exploited 

by learning” (Rogers & McClelland 2014, p. 1041). 

 Connectionism opened up a space of possible nativisms associated with different pre-setting 

of connection weights and pre-structuring of different architectures (Ramsey & Stich 1991; Clark 

1993a; Quartz 1993). In particular, Connectionism uncovered a minimal form of rationalism, which 

Clark (1993b) characterised as follows: 
 

“Instead of building in large amounts of innate knowledge and structure, build in whatever minimal set of 

biases and structure will ensure the emergence, under realistic environmental conditions, of the basic 

knowledge necessary for early success and subsequent learning.” (p. 598) 
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Minimal rationalism straddled accepted categories in the debate. It posited weak, initial biases and 

algorithmic transformation factors, which could filter incoming data with different statistical and 

temporal properties for processing in specific circuits in a network. This complex interaction 

between weak architectural biases, transformation factors, and external statistical structure could 

tug learning towards novel psychological traits, including novel, domain-specific bodies of 

knowledge. 

 Cowie (1999) makes a similar point about Connectionism, after she distinguishes 

Chomskyan Nativism from Weak Nativism and Enlightened Empiricism as logically possible 

positions about language learning. Chomskyan Nativism is committed to three ideas: (DS) that 

learning a language requires bodies of knowledge specific to the linguistic domain; (I) that the 

bodies of knowledge constraining learners’ thoughts during language learning are innate, in the 

sense that they are psychologically primitive; and (UG) that the bodies of knowledge specified in 

(DS) as being required for language learning are the principles of the Universal Grammar (Cowie 

1999, p. 176). Weak Nativism accepts (DS) and (I), but rejects (UG); Enlightened Empiricism 

accepts (DS), but rejects (I) and (UG). At various points in her treatment, Cowie suggests that at 

least some early connectionist learning algorithms underwrite Enlightened Empiricism, since they 

would display a mechanism that is both general-purpose and able to learn a language by making use 

of domain-specific knowledge acquired along the way (Cowie 1999, pp. 234ff; pp. 281ff). 

 Although Bayesianism and Connectionism differ in aspirations as well as in the kinds of 

acquisition mechanisms and representational structures they can posit (Griffiths et al. 2010; 

McClelland et al. 2010), both approaches show how data-driven inductive algorithms and weak 

initial biases can lead to the acquisition of a wide variety of psychological traits. Like 

Connectionism, Bayesianism holds that cognitive development is driven by patterns of prediction 

errors about the statistical structure of the environment, which constrains the space of possible 

trajectories of cognitive development (Téglás et al. 2011). Like Connectionism, Bayesianism can 

posit a wide variety of initial biases and algorithms that can tug learning in appropriate directions 

avoiding being held hostage of the statistics of the environmental input (Austerweil et al. 2015). 

 Most importantly, like Connectionism, Bayesianism coheres with, but does not entail, a 

form of minimal rationalism (or enlightened empiricism), exactly of the type Clark (1993a) and 

Cowie (1999) singled out as serious alternatives to Fodorian and Chomskyian nativism. For 

example, Goodman, Ullman, & Tenenbaum (2011) use the label ‘minimal nativism’ to describe 

how causal understanding can be acquired courtesy of a hierarchical Bayesian learning mechanism 

paired with innate bodies of abstract, generic knowledge, and with a collection of domain-specific 

mechanisms for analysing perceptual input. 

 Despite these analogies, Clark (2013a) identifies two problems with the Connectionist 

approach that would highlight one way of understanding how the relevance of Bayesianism for the 

nativism debate is novel and distinct. First, early connectionist models required fully supervised 

learning algorithms. Second, early connectionist models handled multilayer forms of learning with 

difficulty. 

 According to Clark (2013a), the Bayesian approach—Hierarchical Bayesian Modelling 

(HBM) in particular—avoids both problems. Unlike Connectionism, the Bayesian approach would 

show how unsupervised and self-supervised forms of hierarchical learning can be responsible for 

the quick, robust, and smooth acquisition of novel psychological traits. Stacking prior probabilities 

over prior probabilities in a hierarchically organized Bayesian model would be the key to this form 

of learning. Tenenbaum et al. (2011) explain that “each degree of freedom at a higher level of a 

HBM influences and pools evidence from many variables at levels below” (p. 1284). Hyper-priors 

in a HBM—that is, prior distributions on the parameters of a prior distribution at the lower level in 

the hierarchy—allow for potentially more complex hypotheses spaces be searched; HBM would 

also disclose a fast, robust, data-driven route to the acquisition of novel high-level psychological 

traits and abstract, domain-specific principles. 
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 However, the concern is somewhat misplaced that early connectionist models required a 

teaching signal and could handle multi-layer (or hierarchical) learning only with difficulty. On the 

one hand, it was clear already in the 1980s that both auto-encoders (aka auto-associators) and 

recurrent networks that relied on back propagation need not require labelled training data. These 

networks could successfully carry out their processing in a self-supervised fashion by learning a 

compact, invertible code that allowed them to reconstruct their own input on their output (i.e., the 

target output of an auto-encoder is the input itself) (Hinton 1989, p. 208). 

 On the other hand, multi-layer forms of learning in early connectionist models were not 

precluded, although they were indeed harder to obtain in comparison to recent advances in deep 

learning (Hinton 2014). For instance, Boltzmann machines (Hinton & Sejnowski, 1986) and 

restricted Boltzmann machines (Smolensky 1986) were early neural networks that could learn 

hierarchies of progressively more abstract and complex domain-specific representations without the 

need of any labelled data. As Clark (1993b) himself noted, pattern associators can acquire highly 

theoretical knowledge. Specifically, “multilayer nonlinear networks may develop highly abstract 

feature spaces in which continued processing is oblivious to many features of the concrete input. 

Such feature spaces may be the homes of a variety of different orders of prototype-based 

representation” (p. 103). 

 While the bearing of Bayesianism on the controversy between nativists and empiricists 

largely recapitulates that of Connectionism in these respects, Bayesianism might be thought to 

contribute a more transparent account of cognitive change in comparison to Connectionism. This 

transparency has two aspects. First, the representational and algorithmic assumptions made by 

Bayesian models are explicit: the space of the hypotheses under considerations, the prior probability 

of each hypothesis, and the relation between hypotheses and data are transparent. This transparency 

makes it relatively easy to understand what shapes a model’s behaviour, and why it fails or 

succeeds in accounting for the acquisition of a psychological trait (Griffiths et al. 2010, p. 358). 

Connectionist networks are generally more opaque, since it can be difficult to understand what 

exactly drives cognitive change, and which conditions are necessary for a certain psychological trait 

to emerge (Rogers & McClelland 2014, pp. 1056-7). 

 So, in comparison to connectionist networks, Bayesian models make it easier for cognitive 

scientists to formulate and evaluate explicit hypotheses concerning the kind of innate structure 

required for acquiring new psychological traits. For they make it more transparent and precise what 

problem a learner is supposed to solve, what kinds of primitive representational resources are 

available to the learner (Are these primitive representations domain-specific or not? What are the 

hypotheses actively represented and manipulated by the learner?), and what kinds of learning 

mechanisms the learner can use in order to acquire new psychological traits in environments with 

different statistical structures (Are the learning mechanisms general-purpose? Can they flexibly 

learn structures with different shapes? What features of the data can influence their processes?). At 

the very least, then, Bayesianism helps steer clear of pointless controversies that merely stem from 

the opacity of the causes of a model’s behaviour. 

 The transparency of Bayesianism has a second aspect too. Bayesian systems are more 

semantically transparent than Connectionist ones, where a system is “semantically transparent just 

in case it is possible to describe a neat mapping between a symbolic (conceptual level) semantic 

description of the system’s behavior and some projectible semantic interpretation of the internally 

represented objects of its formal computational activity” (Clark 1989, p. 18). According to this idea, 

the representational posits of Bayesianism, but not of Connectionism, can be related in a systematic 

way to features of the world that can be picked out propositionally, with the expressive resources of 

public language. 

 The higher degree of semantic transparency of Bayesian models should not surprise us, 

since Bayesianism is perhaps the best developed account of rational degrees of belief. Although 

hypotheses in Bayesian models can take any form, in practice they often correspond to causal 

graphs, sometimes they correspond to distributed patterns of activation in a neural network, and, 
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most interestingly here, they can also consist of structured symbols in a probabilistic language of 

thought (Ullman et al. 2012; Goodman et al. 2015). When a Bayesian system embodies structured, 

symbolic representations, it becomes transparent how to evaluate the rationality of its cognitive 

change and development. For it allows us pick out the probabilistic and logical relationships 

between its representations, and to evaluate their probabilistic and deductive coherence, both 

synchronically and diachronically. 

 Rational constructivism is in fact another label that has been used to characterise 

Bayesianism (Xu 2007; Xu & Griffiths 2011; Xu & Kushnir 2013). Rational constructivism is 

committed to three ideas: (a) that the learning mechanisms that best explain cognitive change and 

developmental are domain-general Bayesian mechanisms, which may give rise to domain-specific 

knowledge; (b) that innate (i.e. psychologically primitive) representations need not include just non-

conceptual bodies of knowledge, but may include representations of logical operators such as 

and/or/all/some, representations of variables, and logically richer representations too; and (c) that 

“the construction of new concepts and new learning biases is driven by rational inferential learning 

processes” (Xu & Griffiths 2011, p. 299). These rational inferential learning processes would 

display learning as a kind of theory construction realized as Bayesian hypothesis testing, and would 

contrast with the associative learning processes of connectionist networks, which classicists like 

Fodor conceive of as non-rational, brute-causal processes. 

 With this higher degree of semantic transparency, Bayesianism allows for a sharp distinction 

between implementation, algorithm and representation, and computational function, a distinction 

that resonates with Classical treatments of the nativism debate, but was eroded within 

Connectionism. Unlike connectionist models, where the distinction between implementation and 

function is effectively eroded, both Classicist and Bayesian models do not obviously allow for 

understanding how structural alterations in the architecture of a system may have functional 

consequences for the representational power of the system (Quartz 1993, p. 234). If this is correct, 

then Bayesianism not only recapitulates some of the implications that Connectionism had for the 

nativism vs. empiricism debate over 25 years ago, but, ironically, Bayesianism can also salvage 

some Classical ideas concerning the relations between distinct levels of cognitive analysis (Marr 

1982), and about the rational, productive, and systematic nature of thinking and learning (Fodor & 

Pylyshyn 1988). 
 

Conclusion 

Bayesianism offers a fertile source of ideas rather than a well-understood and empirically supported 

theory of the innate architecture of the human mind. To turn these ideas into substantial hypotheses 

concerning how a given psychological trait is acquired, several questions should be answered. For 

example, are we talking of an evolved trait, or of a trait culturally acquired during development, or 

of a trait acquired through a developmental process triggered by a narrow range of variation in 

environmental conditions? And what kinds of learning mechanisms and representations are 

necessary for the acquisition of the trait? While Bayesianism alone cannot answer these questions, it 

can frame them in a precise and transparent way, combining aspects of both Connectionism and 

Classicism. Like Connectionism, Bayesianism shows that an innate language of thought is not 

required to account for the acquisition of high-level psychological traits. Like Classicism, 

Bayesianism offers a transparent way of evaluating the character of the innate structure in the 

human cognitive architecture. Combining these aspects, what Bayesianism brings to the table is not 

a vindication of either nativism or empiricism, but one flexible and precise way to transparently 

evaluate the character of the innate structure in the human cognitive architecture without a 

necessary commitment to an innate language of thought. 
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