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Abstract

I propose a new definition of identification in the limit (also called convergence to

the truth), as a new success criterion that is meant to complement, rather than

replacing, the classic definition due to Gold (1967). The new definition is designed

to explain how it is possible to have successful learning in a kind of scenario that

Gold’s classic account ignores—the kind of scenario in which the entire infinite data

stream to be presented incrementally to the learner is not presupposed to completely

determine the correct learning target. From a purely mathematical point of view,

the new definition employs a convergence concept that generalizes net convergence

and sits in between pointwise convergence and uniform convergence. Two results

are proved to suggest that the new definition provides a success criterion that is by

no means weak: (i) Between the new identification in the limit and Gold’s classic

one, neither implies the other. (ii) If a learning method identifies the correct target

in the limit in the new sense, any U-shaped learning involved therein has to be re-

dundant and can be removed while maintaining the new kind of identification in the

limit. I conclude that we should have (at least) two success criteria that correspond

to two senses of identification in the limit: the classic one and the one proposed

here. They are complementary: meeting any one of the two is good; meeting both

at the same time, if possible, is even better.

Keywords: Identification in the Limit, Convergence to the Truth, Language Learn-

ing, Enumerative Induction, Uniform Convergence, Net Convergence
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1 Introduction

The goal of this paper is to find a new definition of identification in the limit—a new

success criterion that is meant to complement, rather than replacing, the classic definition

due to Gold (1967). Let me begin with some motivation. Theoretical computer science

has a tradition:

(1) An important part of theoretical computer science is basically the science of problem

solving; in this science, we define a number of success criteria for problem solving.

(2) If a difficult problem cannot be solved by meeting a high success criterion, we try

to find out whether it can be solved by meeting a success criterion that is lower—or

at least not as high if success criteria are partially ordered.

(3) If there is an interesting, tough problem that cannot be solved by meeting some

success criterion we have defined, we try to find out whether it is possible to define

a new criterion that is low enough to be met for solving the tough problem but,

simultaneously, still high enough to deserve to be called a success criterion

The kind of situation described by (3) has happened a number of times in the history of

theoretical computer science. Classic examples in learning theory include the following:

When encountering an interesting problem that cannot be solved by a decision procedure,

i.e. by an exact learning method, Valiant (1984) defined a new success criterion called

probable approximate correctness. In a similar situation, Gold (1967) defined a new success

criterion called identification in the limit. I suspect that we are now in a similar situation,

too. Let me illustrate with an example.

For a simplest example I have in mind, consider the following two languages to be

learned. The simpler language contains only one string, 0; and the slightly more complex

language contains two strings, 0 and 1. The learner is wondering which language of the

two is correct. Whichever is correct, she is to be presented with a sequence of strings

that is “sound” and “complete” with respect the correct language—“sound” in the sense

of containing only the strings in the correct language, and “complete” in the sense of

containing all of them. The presentation of such a sequence of strings will be incremental,

one string at a time. We know that there is no decision procedure for identifying the

correct target. But, given that identification with decision is unachievable, Gold tells us

not to worry and proposes a lower—but still very desirable—success criterion: identifica-

tion in the limit, which requires that, whichever language in the set under consideration

is correct, and whichever sound and complete sequence of strings in the correct language
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is to be presented incrementally to the learner, the learner’s conjecture will eventually

converge to the correct language (if, of course, the learner lives long enough).

Call the above problem the easy language learning problem, because it is easy to

find a learning method that solves this problem by meeting Gold’s success criterion. Here

is an example: “Conjecture the simpler language when you haven’t observed 1; otherwise,

conjecture the more complex language.” So far so good. But what if the learning problem

is made harder?

To be more specific, what if the sequence to be presented to the learner is only required

to be sound and allowed to be complete or incomplete—what if the teacher is allowed to

be somewhat malicious (although not required to be so)? Call this the hard language

learning problem because, in this case, no learning method succeeds by Gold’s criterion

of identification in the limit. Then what to do? I tend to think that this hard problem

is very interesting. (How interesting is it? More on this below.) If so, by tradition (1)-

(3), we should try to look for an alternative to Gold’s success criterion. Furthermore,

the task of at least trying to do so is not daunting at all. Indeed, Gold only employs

the most familiar concept of limit and convergence: convergence of a sequence. But in

analysis and topology mathematicians have already worked out more elaborated concepts

of convergence (and put them to good work):

• convergence of a sequence can be generalized to convergence of a so-called net;

• convergence of a sequence of functions comes in two flavors: pointwise convergence

and uniform convergence.

As we will see in this paper, Gold’s success criterion basically requires that the learner’s

convergence to the correct target be “pointwise” and “sequence-like”. And, if I am right,

it has a very natural variant, which requires that the learner’s convergence be “semi-

uniform” and “generalized-net-like”. Once this idea is developed in rigorous mathematical

terms (definition 18), I will be able to show that this new criterion of identification in the

limit is achievable for the hard language learning problem (proposition 19). Two further

results are proved to suggest that this new criterion is still high and demanding enough

to deserve to be called a success criterion: First, the new criterion is neither stronger nor

weaker than Gold’s classic criterion (theorem 21); second, if the learner can ever solve the

problem in the limit in the new sense, then in principle she can does it in pretty much the

same way without U-shaped learning (theorem 24). The conclusion to be drawn is that

the new success criterion and Gold’s classic one are complementary: meeting any one of
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them is good; meeting both at the same time is even better. In the unfortunate event

that only one can be met, let us meet at least that one.

But why is the hard language learning problem is interesting? Let me provide two

reasons. The first reason is short: problems with possibly adversarial and malicious

elements have been the focus in the online model of machine learning. Any reason provided

therein can, and should, be carried over to the the language-learning model.

The second reason is longer and more important. The defining feature of the hard

learning problem does not have to be interpreted as something adversarial or malicious.

To illustrate, replace 0 by a black raven, 1 by a nonblack raven, the simpler language by

the general hypothesis “all ravens are black”, and the more complex language by “not all

ravens are black”. Then the language learning problem becomes a scientific problem: a

scientist is wondering whether all ravens are black, and a salient learning method for her

to adopt, or at least for her to consider, is one that corresponds to enumerative induction:

“Say ‘yes, all ravens are black’ when you have seen a sufficiently large amount of ravens

and all of them are black; say ‘no’ when you have seen at least one counterexample.”

Now, note that it is possible for a (mortal or immortal) scientist to observe only black

ravens (i.e. 0s) throughout her lifetime while there actually exist some nonblack ravens

(i.e. 1s). Nature need not be malicious to make this happen; all it takes is just bad luck,

and the bad luck could be generated, for example, by an unknown deterministic process,

or by an unknown probabilistic process that involves a sequence of random variables that

might or might not be i.i.d. (i.e. independent and identically distributed). But scientists

are nonetheless interested in whether all ravens are black. This raises a question:

(Question) Scientists seem generally interested in whether all F s are Gs, not just

whether all F s to be actually observed in the future are Gs. So, they seem inter-

ested in some aspects of the world that might be underdetermined by the entire data

stream to be presented incrementally to them (whether or not they have knowledge

of the underlying mechanism that is responsible for such potential underdetermina-

tion). If so, how is the success of science possible at all?

This question has to be addressed by learning theory, if scientific inquires are learning

processes and if learning theory aspires to be a general theory of successful learning.

I submit that learning theory can address this question, and the first step to take is

to examine a variety of convergence concepts and look for a new success criterion of

identification in the limit. This is exactly what I want to do in this paper.

The question formulated above might invite a very simple answer, possibly from a

Kantian philosopher of science:
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(A Simple Kantian Answer) In order for us to think that the success of science

is possible, we have to presuppose that the kind of underdetermination mentioned

above does not hold in the possible world we actually live in. And, if we presuppose

so, we will fall back to the easy language learning problem, making the hard problem

irrelevant. Granted, this sounds like wishful thinking. But the point is that we have

no alternative but to presuppose so—if we really want to think that the success of

science is possible.

I used to be sympathetic to this Kantian answer until I recognized that it presupposes a

lot: as a statement about the possibility of success, it tacitly presupposes that there is

no more success criterion than those we have already formulated and put on the table.

I propose that we challenge this tacit presupposition, look for a new success criterion,

and hold on to the great tradition (1)-(3) in theoretical computer science. This is exactly

what I want to do in this paper.

Here is the plan: I will first present Gold’s classic definition of identification in the

limit—in a way that appears complicated but is meant to reveal all the moving parts of the

classic definition (section 2). Then, to find inspiration for modifying those moving parts,

I will review certain concepts of limits and convergence in analysis and topology, with a

focus on two very important ideas: first, the generalization from sequence convergence

to net convergence; and second, the distinction between pointwise and uniform conver-

gence (section 3). These two ideas provide a great resource of inspiration for modifying

the moving parts found in Gold’s classic definition, leading ultimately to my proposed

definition of identification in the limit (section 4). Then I will be able to formulate the

two promised theorems (section 5) and prove them (appendix A).

2 Classic Convergence to the Truth

This section presents the Gold-style learning model. The presentation might appear more

complicated than necessary (just look at how long the first definition right below is).

But we will gradually see its value: it reveals the moving parts of Gold’s definition of

identification in the limit and, thereby, suggests new definitions.

Definition 1 (Problem). A (learning) problem is a 5-tuple P =
(
H, I,≤,W , |·|) that

satisfies the following conditions (accompanied by interpretations):

• H is a nonempty set of hypotheses, understood as the theories, languages, concepts,

or whatever targets to learn or choose from.
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• I is a nonempty set of information states, which are possible inputs into a learning

method.

• ≤ is a partial order over I. Understand i ≤ i′ to say that a learner might go from

information state i to i′ and, when she does, there is no loss of information.

• W is a nonempty set of possible states of the world, or possible worlds for short.

Each possible world w ∈ W determines at least the correct target to learn in this

world, and possibly also determines some other aspects of the world such as how

information or data are presented or generated, probabilistically or deterministically

or adversarially. W need not contain all logically possible worlds, but contains

exactly those that are logically compatible with the presupposition of the problem—

that is, W represents the content of the presupposition.

• |·| is an (interpretation) function defined on I ∪H, mapping all i ∈ I and all h ∈ H
to subsets of W . |i| is understood to contain exactly the possible worlds in W that

i does not rule out, or equivalently, those worlds in which the informational content

of i is true. Similarly, |h| is understood to contain exactly the possible worlds in

W that makes h the correct target to learn, or equivalently, those worlds in which

hypothesis h is true.

• The following four axioms hold:

• (Nonemptiness) |h| and |i| are nonempty.

• (Disjointness) h 6= h′ implies |h| ∩ |h′| = ∅, for all h, h′ ∈ H. (That is,

distinct hypotheses are mutually incompatible, competing with each other.)

• (Monotonicity) i ≤ i′ implies |i| ⊇ |i′|, for all i, i′ ∈ I. (That is, there is no

loss of information in the state transition from any i to any i′ ≥ i.)

• (Linearity) Let I(w) denote {i ∈ I : w ∈ |i|}, the set of information states

that are true at possible world w. Then each partially ordered set (I(w),≤) is

linear and not longer than the sequence ω = {0, 1, 2, . . .} of natural numbers.

(This linear order is basically the data stream to be presented in possible world

w.)

Remark. All results in this paper are actually proved in a more general setting, which

weakens the axiom of linearity to an axiom called directedness.1 But the above definition

1(Directedness) Each partially ordered set (I(w),≤) is directed, namely i, j ∈ Iw implies i, j ≤ k
for some k ∈ Iw.
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is already general enough to capture all Gold-style language learning problems; for your

reference, I present in appendix B how this can be done for all problems of passive language

learning from positive examples. For the present purposes we need to focus on the easy

and hard language learning problems that we informally discussed in the introduction—or

their isomorphic counterparts for a raven scientist.

Definition 2 (Learning Method). A (learning) method for a problem P =
(
H, I,≤,W , |·|)

is a function M : I → H ∪ {?}, which is interpreted as follows:2

M(i) = h means that M chooses hypothesis h given information/input i;

M(i) = ? means that M suspends judgment given information/input i.

Definition 3 (Classic Identification in the Limit). A method M for a problem

P =
(
H, I,≤,W , |·|) is said to classically converge to the truth—or classically identify the

correct target in the limit—just in case:

(1) for each hypothesis h ∈ H,

(2) – for each possible world w ∈ |h|,
(3) —- there exists an information state i ∈ I(w) such that

(4) —— M(i′) = h for all i′ ≥ i in I(w).

If a problem admits of such a learning method, it is said to be classically solvable—or

learnable—in the limit.3

Remark. I state this classic definition in a way meant to reveal its moving parts: the

ordering of (1)-(4), and the respective roles played by the five components in a learning

problem
(
H, I,≤,W , |·|). In section 4, I will exchange the order of (2) and (3) to generate

a kind of “semi-uniform” convergence, and then modify here and there to result in the

new success criterion promised above. For now, let us have a look at a toy example: leave

the ordering intact and slightly modify (4) as follows, which results in a higher success

criterion:

2For the problems and learning methods defined here to be interesting in computer science, we need to
require that the hypotheses in H and the information states in I can in principle be encoded by natural
numbers. But the results in this paper hold generally whether or not we add this requirement. Further-
more, this definition can be generalized by allowing a learning method to output not just hypotheses in
H but also their Boolean combinations.

3Definitions 1-3 are essentially the order-theoretic counterparts of the topologically formulated defini-
tions proposed in Kelly et al. (2016), provided that we include the possible generalizations mentioned so
far (i.e. allowing (I(w),≤) to be directed and allowing a learning method to output Boolean combinations
of hypotheses)
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Definition 4 (Identification with Decision). A method M for a problem P =(
H, I,≤,W , |·|) is said to identify the correct target with decision just in case:

for each hypothesis h ∈ H,

– for each possible world w ∈ |h|,
—- there exists an information state i ∈ I(w) such that

—— M(i′) = h for all i′ ≥ i in I.

(Note that M in effect halts at information state i, because no further information would

change its mind.) If a problem admits of such a learning method, it is called decidable.

Remark. Many interesting problems cannot be solved by meeting the higher success

criterion, identification with decision, but can only be solved by meeting the lower one,

identification in the limit. The easy language learning problem is one such, as mentioned

above and to be define below. Well, I will actually define an isomorphic version of it—for

a raven scientist.

Imagine a scientist who wonders whether all ravens are black, and is going to observe

a raven at a time. 0 represents an event of observing a black one; 1, a nonblack raven. An

information state is a binary sequence of finite length. For example, (0, 0, 1) denotes the

information state at which the scientist has observed 2 black ravens followed by a nonblack

one. Let s = (s1, s2, . . .) be a binary sequence of infinite length. In a possible world

denoted by (yes, s), all ravens are black and the scientist receives data in the ordering of

s1, s2, . . ., one at a time—so s only contains 0. Similarly, in a possible world denoted by

(no, s), not all ravens are black and the scientist receives data in the ordering of s1, s2, . . .,

but this time s can be any infinite binary sequence. For example, let (0, 0, . . . , 0, . . .)

denote the infinite sequence of 0s. Then (no, (0,0,...,0,...)) is the unfortunate world in which

not all ravens are black but the scientist will never observe a counterexample. Let Wall

denote the set of all possible worlds just defined, or formally:

Wall =
{

(yes, (0,0,...,0,...))
}
∪
{

(no, s) : s ∈ {0, 1}ω
}
.

Example 5 (Easy Raven Problem). The easy raven problem P =
(
H, I,≤,W , |·|) is

defined by:

• H = {yes, no}.

• I = the set of all binary sequences of finite length.

• i ≤ i′ iff i is extended by i′, for all sequences i, i′ ∈ I.
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• W =Wallr{(no, (0,0,...,0,...))}, which excludes the unfortunate possible world (no, (0,0,...,0,...))

So this problem presupposes that we do not live in the unhappy world, and hence

that each infinite binary sequence that might be presented to the scientist uniquely

determines the true hypothesis, i.e. the correct target.

If this problem is interpreted as the easy language learning problem, in which yes

denotes the simple language that contains exactly one string 0 and no denotes the

more complex language that contains exactly two strings 0 and 1, thenW represents

the presupposition that the learner is to be presented with a sound and complete

sequence of strings in the correct language.

• |i| = the set of possible worlds (h, s) in W such that s extends i.

|yes| = the set of possible worlds (h, s) in W such that h = yes.

|no| = the set of possible worlds (h, s) in W such that h = no.

Example 6 (Hard Raven Problem). Isomorphic to the hard language learning prob-

lem (as discussed in the introduction) is the hard raven problem, which is the same as

the easy problem except that:

• W =Wall, which does contain the unfortunate possible world (no, (0,0,...,0,...)).

Then we have the following result:

Proposition 7. The easy raven problem is classically learnable in the limit, but the hard

one is not.

So, given this result and the discussion in the introduction, we should look for a new

success criterion that complements Gold’s classic one.

3 Convergence Concepts in Analysis and Topology

As mentioned in the introduction, the classic definition of identification in the limit only

employs the most familiar concept of convergence—pointwise convergence of sequences—

while in analysis and topology mathematicians have already worked out more elaborated

concepts of convergence. This section provides a quick review of those concepts, which

will become a great resource of inspiration for modifying the moving parts of the classic

definition.
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Definition 8 (Sequence Convergence). Let f : ω → Y be a sequence of points in a

topological space Y . Say that f(n) converges to y as n travels upward in (ω,≤) just in

case:

for any open neighborhood U of y in Y ,

there exists n ∈ ω such that

f(m) ∈ U for every m ≥ n in ω.

In the special case that Y is equipped with the discrete topology (which contains all

subsets of Y as open sets), the above definition reduces to the following condition:

there exists n ∈ ω such that

f(m) = y for every m ≥ n in ω.

Remark. This special case, in which Y is equipped with the discrete topology, is all we

(and Gold) really care about here. All definitions below are formulated for this special

case unless stated otherwise.

The next step is to go from convergence of a sequence to convergence of a “generalized”

sequence”, a.k.a. “net”. A sequence is defined on a very special set of indices, namely ω,

linearly ordered by ≤. Let us have a more general set I of indices with a weaker ordering

structure ≤:

Definition 9 (Directed Poset). A poset (I,≤) consists of a set I partially ordered by

≤. It is directed just in case i, j ∈ I implies i, j ≤ k for some k ∈ I.

Definition 10 (Generalized Sequence, or Net). A generalized sequence, or net f :

(I,≤) → Y , is a function from a nonempty directed poset (I,≤) to a topological space

Y .

Definition 11 (Net Convergence). Let f : (I,≤) → Y be a net. Say that f(i)

converges to y as i travels in (I,≤) just in case:

there exists i in I such that

f(i′) = y for every i′ ≥ i in I.

Remark. Note that the definition of net convergence is formally identical to that of

sequence convergence, except that the underlying spaces of indices are generalized. Net

convergence has a number of equivalent formulations, some of which are very sophisticated

(and stated in terms of, for example, filters).4 Let me introduce two very simple but

illuminating ones.
4See Kelley (1991) for a review.
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Definition 12 (Upper & Principal Subset). A subset S of a poset (I,≤) is upper

just in case S is upward closed in the sense that, if i ∈ S and i ≤ i′ ∈ I, then i′ ∈ S. It

is called a principal upper subset if, furthermore, it takes the following “principal” form:

S = {i′ ∈ I : i ≤ i′} for some i ∈ I.

Proposition 13 (Net Convergence Redefined by “Principal Upper”). Let f :

(I,≤)→ Y be a net. Then net convergence of f can be equivalently redefined in terms of

principal upper subsets as follows. f(i) converges to y as i travels in (I,≤) if and only if:

there exists a principal upper subset S of (I,≤) (as a concept of “sufficiently high”)

such that f(i) = y for every i ∈ S (i.e. for every i that counts as “sufficiently high”

in the ordering).

Remark. The above result follows immediately from definitions. But it illustrates the

idea of limits and convergence very intuitively: what we converge to is what we get when

we climb up in the index set to any sufficiently high extent. The above result says that a

convergence zone—or a region of sufficient height—must have a certain “shape”, namely

the “shape” of principal upper subsets, like the shape of ice cream cones. So we can try

out different “shapes” of convergence zones. We might as well require that a convergence

zone should be “dense” in the following sense:

Definition 14 (Dense Subset). A subset S of a poset (I,≤) is dense just in case, for

each i ∈ I, there exists i′ ∈ S with i ≤ i′.

Remark. It turns out that, if we put the concept of net convergence on an operating

table and change convergence zones from principal upper subsets to dense upper subsets,

then it remains to be the same convergence concept, as reported below.

Proposition 15 (Net Convergence Redefined by “Dense Upper”). Let f : (I,≤
)→ Y be a net. Then net convergence of f can be equivalently redefined in terms of dense

upper subsets as follows. f(i) converges to y as i travels in (I,≤) if and only if:

there exists a dense upper subset S of (I,≤) such that

f(i) = y for every i ∈ S.

Remark. The proof is routine and elementary (but it makes essential use of the assump-

tion that (I,≤) is directed).

We have talked about distinct zones of convergence. Now turn to two flavors of

convergence, pointwise and uniform:
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Definition 16 (Pointwise vs. Uniform Convergence). Let fi and g be functions

from X to Y , where i is in a directed poset (I,≤) and, hence, the mapping from i to fi

is a net. Say that (fi)i∈I converges to g pointwisely if it satisfies the first condition below;

say that it does so uniformly if it satisfies the second condition below:

A. (Pointwise Convergence)

For all x ∈ X,

– there exists i ∈ I such that

—- fi′(x) = g(x) for every i′ ≥ i in I.

B. (Uniform Convergence)

There exists i ∈ I such that,

– for all x ∈ X,

—- fi′(x) = g(x) for every i′ ≥ i in I.

Remark. Note that the formal difference between pointwise convergence and uniform

convergence lies in the order of quantifiers ‘for all’ and ‘there exists’. Pointwise conver-

gence requires that for each x ∈ X there be some convergence zone—some concept of

“sufficiently high”—that takes care of x itself, while uniform convergence requires that

there be a single one that takes care of all x ∈ X.

4 Toward a New Convergence Concept in Learning

Theory

I have presented the ideas behind the formal definitions of limits and convergence in

mathematics. So we are ready to get back to learning theory. With those ideas, it is not

hard to see that Gold’s classic definition of identification in the limit is only a particular

implementation of the following, informal template:

A. (Pointwise Convergence to the Truth)

No matter which hypothesis h ∈ H is true,

– no matter which world w ∈ |h| is actual,

—- there exists a concept SI of “sufficient information” associated with w such that,

—— M outputs the truth h

—— as long as the input i is “sufficiently informative” and true at w.
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In this template, each world—or point—is associated with a sufficiency concept. So this

deserves to be called “pointwise”. Once this is seen, it is only natural to seek a “more

uniform” version of it, exchanging the second line (which is a universal quantification over

w) and the third line (which is an existential quantification over SI). Then we have:

B. (Semi-Uniform Convergence to the Truth)

No matter which hypothesis h ∈ H is true,

– there exists a concept SI of “sufficient information” associated with h such that,

—- no matter which world w ∈ |h| is actual,

—— M outputs the truth h

—— as long as the input i is “sufficiently informative” and true at w.

The goal of this section is to implement these two templates in a way that “works” as

promised in the introductory section.

Remark. With these two informal templates, the next obvious move is to look for a

workable definition of concepts of “sufficient information” or “convergence zone”. But

we need some preliminaries. The third line of template A involves a concept of sufficient

information associated with a world w, so this concept is a subset of I(w) = {i ∈ I : w ∈
|i|}, the set of information states that are true at possible world w. Now, the second line

of template B involves a concept of sufficient information associated with, not a world,

but a hypothesis h, so this concept should be a subset of I(h), which is defined as the set

of information states that might be true given hypothesis h, namely:

I(h) =
⋃

w∈|h|

I(w) .

Note that, although (I(w),≤) is assumed to be linear, (I(h),≤) could be a mere poset,

neither linear nor directed. Then the above two informal templates A and B can be made

“almost formal” as follows, pending the two blanks to be filled in.

Definition Template 17. The following conditions are two templates for defining con-

vergence to the truth or identification in the limit:

A. (Pointwise Convergence to the Truth)

For each hypothesis h ∈ H,

– for each possible world w ∈ |h|,
—- there exists a upper subset SI of linear poset (I(w),≤) such that

—— M(i) = h for each information state i ∈ SI (that is true at w).
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B. (Semi-Uniform Convergence to the Truth)

For each hypothesis h ∈ H,

– there exists a upper subset SI of poset (I(h),≤) such that,

—- (for each possible world w ∈ |h|,)
—— M(i) = h for each information state i ∈ SI (that is true at w).

Remark. The parts enclosed in parentheses are redundant, which can be easily proved

from the definitions of problems and I(·). But it is important to keep them here—to

emphasize the parallel to the informal templates. Note that the term ‘upper’ has been

built into the templates, and rightly so. For if a state i is more informative than some state

with “sufficient information” then i itself should also be taken as a state with “sufficient

information”.

The question is how to fill in the blanks.

Template A seems to me useless. If we fill in its blank with ‘principal’ or ‘dense’,

then there will be nothing new—we will obtain something equivalent to Gold’s classic

definition because (I(w),≤) is assumed to be linear.5 Might template A be made useful

by some order-theoretic concept other than ‘principal’ and ‘dense’? I do not see any.

For template B, we do not want to fill in the blank with ‘principal’. Here is why: If

a convergence zone in a partially ordered set (I(w),≤) is allowed to be a principal upper

subset, then in effect a convergence zone is allowed to be a narrow ice cream cone in an

ambient, possibly wide poset (I(w),≤). This would make the convergence criterion very

weak, too weak to result in what deserves to be called a success criterion.

So I propose that, for template B, we fill in the blank with ‘dense’, whose definition

(as presented above) requires that a convergence zone be wide, almost as wide as the

ambient poset. In fact, the concept of ‘dense’ also serves to capture another intuitive

idea about sufficient information that complements the intuitive idea captured by ‘upper’.

The idea is that, whatever information we have, in principle it should be always possible

for us to obtain more information and have sufficient information. Or more formally,

whenever we are at some information state i in I(h), it should be always possible for us

to obtain more information and go into some information state i′ ≥ i in I(h) such that

i′ contains sufficient information. Namely, a concept of sufficient information, as a subset

SI of (I(h),≤), should be dense. So I propose the following definition:

Definition 18 (Semi-Uniform Convergence to the Truth). A method M for a

problem P =
(
H, I,≤,W , |·|) is said to semi-uniformly converge to the truth—or semi-

5This claim still holds even if (I(w),≤) is only assumed to be directed, thanks to proposition 15.
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uniformly identify the correct target in the limit—just in case it satisfies the following

implementation of template B:

For each hypothesis h ∈ H,

– there exists a dense upper subset SI of (I(h),≤) such that,

—- (for each possible world w ∈ H,)

—— M(i) = h for each information state i ∈ SI (that is true at w).

If a problem admits of such a learning method, it is called solvable—or learnable—in the

limit semi-uniformly.

Then we have:

Proposition 19 (Hard Raven Problem Solved Semi-Uniformly). The hard raven

problem is solvable in the limit semi-uniformly.

This result is witness by any learning method of the following form: “Say yes when

you have seen n ravens and all of them are black; say no when you have seen at least one

nonblack raven”, where n is a natural number.

5 Toward a New Success Criterion

So the hard raven problem can be solved by meeting the new convergence criterion defined

above. It remains to deliver the last part of the promise: to provide reasons for thinking

that the new convergence criterion is high enough—demanding enough—to deserve to be

called a success criterion. This section presents the reasons I have so far, culminating in

the two theorems of this paper.

The first result says that between the two criteria of identification in the limit (the

semi-uniform and the classic), neither is strictly more demanding than the other. The

following example will be used to prove this claim.

Example 20 (Even-vs-Odd Raven Problem). Now the scientist wonders whether

the number of nonblack ravens in the world is even or odd, while presupposing that this

number is finite (and thus either even or odd), and presupposing that data presentations

are complete (as in the easy raven problem). The even-vs-odd raven problem is defined

as follows:

• H = {even, odd}.
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• I = the set of all binary sequences of finite length (as usual).

• i ≤ i′ iff i is extended by i′, for all sequences i, i′ ∈ I (as usual).

• W = {s ∈ {0, 1}ω : the occurrences of 1 in s are finite in number}

• |i| = the set of possible worlds s in W such that s extends i.

|even| = the set of s in W such that the occurrences of 1 in s are even in number.

|odd| = the set of s in W such that the occurrences of 1 in s are odd in number.

Theorem 21 (Independence Result). Semi-uniform learnability in the limit and its

classical counterpart are independent of each other; that is, neither implies the other. In

particular, consider the three raven problems defined above: the hard, the easy, and the

even-vs-odd. Their respective learnability in the limit is summarized by the following table:

Raven Problems: Hard Easy Even-vs-Odd

Classically Learnable in the limit? No Yes Yes

Semi-Uniformly Learnable in the limit? Yes Yes No

Remark. As the proof of this proposition suggests (see appendix A), to solve a problem in

the limit semi-uniformly, a learning method is required to work with “somewhat uniform”

concepts of sufficient information, or zones of convergence, or bounds on convergence. This

turns out to be a very demanding requirement when the scientist is tackling the even-vs-

odd raven problem: there has to be a single “bound” that works for all information states

compatible with even; and similarly, there has to be another “bound” that works for all

information states compatible with odd.

The second result concerns a kind of learning process that cognitive scientists and

learning theorists call U-shaped learning (Carlucci et al. 2005, Carlucci et al. 2013). It

consists of conjecturing a hypothesis, then retracting it, and then conjecturing it again.

It can be defined formally as follows.

Definition 22 (U-Shaped Learning). Let M be a learning method for a problem

P =
(
H, I,≤,W , |·|). An instance of U-shaped learning of M is a sequence (i1, i2, i3) of

three information states in I such that:

1. i1 ≤ i2 ≤ i3,

2. M(i1) 6= M(i2) 6= M(i3),

3. M(i1) = M(i3) ∈ H.
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Remark. Following Kelly et al. (2016), I submit that such a learning process is unde-

sirable and, other things being equal, it had better be avoided or removed if possible.

Removal of U-shaped learning is defined as follows.

Definition 23 (Removal of U-shaped Learning). For any learning methods M and

M∗, say that M∗ can be constructed from M by removing U-shaped learning just in case:

1. M(i) = ? implies M∗(i) = ?,

2. M(i) = h implies M∗(i) = h or ?,

3. M∗ has no instance of U-shaped learning.

Then we have:

Theorem 24 (Persistence under Removal of U-Shaped Learning). A method M

solves a problem P in the limit semi-uniformly only if we can construct a method M∗ from

M by removing U-shaped learning such that M∗ also solves P in the limit semi-uniformly.

Remark. So semi-uniform identification in the limit seems to set a standard for problem

solving that is by no means low: if a learning method achieves this standard, it has to

do so without involving U-shaped learning in any essential, unremovable way. We may

say that semi-uniform identification in the limit has the property called persistence under

removal of U-shaped learning. By way of contrast, this property is not shared by classic

identification in the limit. Here is a proof sketch: U-shaped learning is involved in all

learning methods that solve the even-vs-odd raven problem in the limit classically. So,

when tackling this problem, removal of U-shaped learning implies no longer having a

method that solves it in the limit classically.

So, thanks to the above two theorems, semi-uniform identification in the limit is by

no means a low criterion. I submit that it is high enough to deserve to be called a

success criterion for problem solving. To clarify: I am not saying that we should always

be satisfied with a solution to a problem that meets only the new success criterion. If a

problem can be solved by meeting semi-uniform identification in the limit because it can

be solved by meeting a strictly higher criterion, such as identification with decision, then

we ought to strive for meeting the higher one. A success criterion marks an achievement,

but does not necessarily mark an achievement that we should be satisfied with. We ought

to strive for meeting the highest achievable success criterion—or a highest one, if success

criteria are partially ordered.
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I also submit that the two kinds of identification in the limit, the classic and the

semi-uniform, are complementary criteria of success. They set very similar standards of

success, but nonetheless each describes a unique way of success—so unique that meeting

one does not entail meeting the other. Meeting any one of these two is good; meeting both

at the same time, if possible, is even better. This is the sense in which these two success

criteria are complementary.

That said, it might be possible for their relationship to turn competitive occasionally.

Imagine that we have a problem and there are learning methods that solve it in the

limit—some do it classically, some do it semi-uniformly, but no single one can do it both

classically and semi-uniformly. This raises two questions. Does there exist such a problem?

If yes, which of the two success criteria should be met at the cost of the other? I do not

have an answer at the moment.

6 Guideline for Exploration

At this point you might be wondering whether there is any other success criterion that

corresponds to yet another sense of identification in the limit. There might be. But what

is important is that now we have a guideline for exploration:

1. Try an ordering of the four quantifiers involved in the classic definition. Use the

ordering to create a definition template like those in definition 25, with a blank to

be filled in.

2. Fill in the blank with an order-theoretic term (such as ‘principal’, ‘dense’, and the

like) and obtain a new definition.

3. With the new definition, try to answer the following questions:

• Does the new definition correspond to a genuinely new concept of identification

in the limit, inequivalent to any old one we have already had?

• Does the new definition sets a standard that is high enough to deserve to be

called a success criterion for problem solving?

• Does there exist an interesting problem that can be solved by meeting the

new criterion but cannot be solved by meeting at least one of the old success

criteria?

4. If the answers are all positive, we have obtained a new success criterion that ought

to be included in learning theory.
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For example, step 1 can result in not just the pointwise template A and the semi-

uniform template B, but also the following, uniform template:

Definition Template 25. The following condition is a(nother) template for defining

convergence to the truth or identification in the limit:

C. (Uniform Convergence to the Truth)

There exists a upper subset SI of poset (I,≤) such that,

– for each hypothesis h ∈ H,

—- for each possible world w ∈ |h|,
—— M(i) = h for each information state i ∈ SI that is true at w.

I have not been able to turn this template into a definition that yields positive answers

to all the three questions at step 3. It might be because I have not tried hard enough, or

it might not.

7 Closing: One Dense Upper Ring to Rule Them

All?

The title of this paper, together with the parentheses therein, suggests that I will provide

a very general definition of limits and convergence per se. That is right. I propose the

following definition and, from now on, relax the restriction to discrete topology.

Definition 26 (Generalized Convergence and Limit). Let f be a function from a

nonempty poset (I,≤) to an arbitrary topological space Y . Say that f(i) converges to y

as i travels in (I,≤) (in the sense of generalized convergence) just in case:

for any open neighborhood U of y,

there exists a dense upper subset S of (I,≤) such that

f(i) ∈ U for all i ∈ S.

If such a y exists uniquely, also say that y is the generalized limit of f(i) as i travels in

(I,≤).

The above is the concept of convergence that underlines the definition of semi-uniform

identification in the limit: the index i travels in a partially ordered set I in general, a

convergence zone is required to be dense and upper, and the underlying topology of the

codomain is discrete.
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When the domain (I,≤) of f is not just partially ordered but directed, generalized

convergence reduces to net convergence. To be more specific, let me state the full definition

of net convergence without the restriction to discrete topology:

Definition 27 (Net Convergence). Let f : (I,≤) → Y be a net, where Y is an

arbitrary topological space. Say that f(i) converges to y as i travels in (I,≤) (in the

sense of net convergence) just in case:

for any open neighborhood U of y in Y ,

there exists i in I such that

f(i′) ∈ U for every i′ ≥ i in I.

Then we have the reduction result I promised above:

Proposition 28 (Net Convergence Reduced by Generalized Convergence). Let

f be a function from a nonempty poset (I,≤) to an arbitrary topological space Y . Suppose

that f is a net, i.e. its domain (I,≤) is directed. Then f(i) converges to y as i travels in

(I,≤) in the sense of net convergence if, and only if, it does so in the sense of generalized

convergence.

This result generalizes proposition 15 precisely by relaxing the restriction to discrete

topology.

It follows that in principle we can use generalized convergence to do whatever we can

do with net convergence, which is by far the most general concept of convergence used in

analysis and topology.6 For example, net convergence can be used to define continuous

functions between arbitrary topological spaces, and it provides the standard definition of

the Riemann integral. When the domain (I,≤) of f is not just directed but an ω-sequence,

net convergence reduces to sequence convergence. See appendix C for the details of the

examples just mentioned.

So the concept of generalized convergence is very general, subsuming concepts of con-

vergence in analysis and topology and, I hope, in learning theory.
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A Proofs of Results

Proof of Proposition 7. The claim about the easy raven problem is well known. The non-

learnability result of the hard raven problem follows from the fact that any method M is

doomed to have this property: M(i) converges to the truth as i travels in the data stream

in possible world (yes, (0,0,...,0,...)) iff it fails to do so in possible world (no, (0,0,...,0,...)).

Proof of Proposition 15. This proposition is a special case of proposition 28—the special

case in which codomain Y is a topological space equipped with the discrete topology.

See below for the proof of proposition 28, which is fully general and applicable to all

topological spaces.

Proof of Proposition 19. Consider this learning method: “Say yes when you have not

seen any nonblack raven; otherwise say no.” This method converges to the truth semi-

uniformly for the following two reasons. First, concerning output yes, this method has a

“convergence zone” SI = I(yes), which is (trivially) a dense upper subset of (I(yes),≤).

Second, concerning output no, this method has a “convergence zone” SI ′ = {i ∈ I :

i extends 0n1 for some n ∈ ω}, which is a dense upper subset of (I(no),≤). (This is

because I(no) = I, the set of all finite binary sequences.)

Proof of Theorem 21. Thanks to proposition 19, it suffices to prove the part for the even-

vs-odd raven problem. Suppose, for reductio, that some learning method M for the

even-vs-odd raven problem solves it in the limit semi-uniformly. So there exists a dense

upper subset SI of (I(even),≤) such that M(i) = even for all i ∈ SI. Similarly, there

exists a dense upper subset SI of (I(odd),≤) such that M(i) = odd for all i ∈ SI. But
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here is the key: I(even) = I(odd) = I. So, by the order-theoretic result that two dense

upper subsets SI, SI ′ of a nonempty poset (I,≤) share at least one common element i, we

have that M(i) = even = odd, contradiction. The classical learnability of the even-vs-odd

problem is witnessed by this learning method: “Say even when you have seen an even

number of nonblack ravens; otherwise say odd.”

Proof of Theorem 24. Suppose that method M identifies the correct target for problem

P =
(
H, I,≤,W , |·|) in the limit semi-uniformly. Then, for each hypothesis h ∈ H,

(I(h),≤) has a dense upper subset SIh such that, for all i ∈ SIh, M(i) = h. Construct a

learning method M∗ from M as follows:

M∗(i) =

h if i ∈ SIh
? otherwise.

By construction, M∗ solves the same problem in the limit semi-uniformly. And, by con-

struction again, it satisfies the first two of the three conditions that jointly define “con-

structability by removing U-shaped learning”. So it suffices to show that M∗ satisfies the

last of the three conditions, namely that M∗ has no instance of U-shaped learning.

Suppose, for reductio, that M∗ has an instance (i1, i2, i3) of U-shaped learning. Then

there exists h∗ ∈ H such that M∗(i1) = M∗(i3) = h∗. So, by construction, both i1

and i3 are in SIh∗ . It follows that i3 ∈ I(h∗). So, by the definition of I(·), there exists

w∗ ∈ W such that w∗ ∈ |i3|∩|h∗|. Furthermore, since (i1, i2, i3) is an instance of U-shaped

learning of M∗, we have i1 ≤ i2 ≤ i3. So, by Monotonicity, we have |i1| ⊇ |i2| ⊇ |i3|.
It follows that |i1| ⊇ |i2| ⊇ |i3| 3 w∗ ∈ |h∗|. So w∗ ∈ |i2| ∩ |h∗|, and hence i2 ∈ I(h∗).

To summarize what we have obtained so far: SIh∗ contains i1 and is an upper subset of

(I(h∗),≤), and i1 ≤ i2 ∈ I(h∗). It follows from upward closure that SIh∗ contains i2, too.

So, by construction, M∗(i1) = M∗(i2) = M∗(i3) = h∗. But this contradicts the reductio

hypothesis that (i1, i2, i3) is an instance of U-shaped learning of M∗.

Proof of Proposition 28. The (⇒) side follows immediately from the order-theoretic result

that every principal upper subset of a nonempty directed poset is dense. The (⇐) side

follows immediately from the order-theoretic result that every dense upper subset of a

nonempty directed poset is nonempty (because of denseness) and thus (by upward closure)

includes a principal upper subset.
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B Problems of Passive Language Learning from Pos-

itive Examples

Suppose that we are given a fixed, finite set of alphabets. Strings are finite sequences of

alphabets. A language is a set of strings. A problem of passive language learning from

positive examples is a problem P =
(
H, I,≤,W , |·|) that takes the following form:

• H = {L0, L1, . . .}, a set of languages.

• I = the set of all finite sequences of strings. An element i = (s1, . . . , sn) of I
represents the information state at which the strings in i have been presented to the

learner in this order: s1, . . . , and then sn.

• i ≤ i′ iff i is extended by i′.

• W is the set of all possible worlds of this form: (Ln, s), where Ln is a language

and s = (s1, s2, . . .) is an infinite sequence of strings such that {s1, s2, . . .} = Ln.

In a possible world (Ln, s), the correct language to learn is Ln and the learner is

presented with the strings in Ln, one at a time, according to the ordering in s.

The learner does not know which possible world is the actual one. The identity

requirement that {s1, s2, . . .} = Ln amounts to the assumption of soundness and

completeness discussed in the introductory section.

• |i| is the set of all possible worlds (Lk, s) such that s extends i.

|Ln| is the set of all possible worlds (Lk, s) such that Lk = Ln.

C Examples of What Can be Defined by Generalized

Limits

• A method M identifies the correct target in the limit semi-uniformly if, and only

if, every hypothesis h ∈ H is the generalized limit of M(i) as i travels in poset

(I(h),≤).

• A method M identifies the correct target in the limit classically if, and only if, for

any hypothesis h ∈ H and any possible world w ∈ |h|, h is the generalized limit of

M(i) as i travels in directed poset (I(w),≤).
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• limx→∞ f(x) is the generalized limit of f(x) as x travels in linear poset (R,≤), where

≤ is the natural ordering on R.

• limx→a f(x) is the generalized limit of f(x) as x travels in directed poset (R\{a}, ≤a

), where the ordering ≤a is defined as follows: x > x′ iff |x− a| < |x′ − a|.

• Riemann integral
∫ b

a
f(x) dx is the generalized limit of the Riemann sum of f over

tagged partition π, as π travels in directed poset
(
Π[a, b],v

)
, where Π[a, b] is the

set of tagged partitions over closed interval [a, b], which is partially and directedly

ordered by the refinement relation v between tagged partitions.
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