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Abstract

This paper is a further consideration of Hemmo and Shenker’s (2012) ideas about
the proper conceptual characterization of macrostates in statistical mechanics. We
provide two formulations of how macrostates come about as elements of certain
partitions of the system’s phase space imposed on by the interaction between the
system and an observer, and we show that these two formulations are mathemati-
cally equivalent. We also reflect on conceptual issues regarding the relationship of
macrostates to distinguishability, thermodynamic regularity, observer dependence,
and the general phenomenon of measurement.
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1 Introduction

Macrostates are distinguished subsets of a system’s phase space. They play an essen-
tial role in statistical mechanics since they are identified—at least in the Boltzmann
program—with thermodynamic states and thus provide the basis for the statistical me-
chanical explanation for thermodynamic phenomena. It is a crucial task for statistical
mechanics to give a physical explanation for why certain sets of microstates become dis-
tinguished, or in short, how macrostates come about.

As an answer to this question, in their illuminating book The Road to Maxwell’s

Demon, Conceptual Foundations of Statistical Mechanics Meir Hemmo and Orly Shenker
discern two characteristic features of macrostates:

1. Microstates in a macrostate are indistinguishable, while macrostates are distinguishable
to a human observer.

“One kind of physical property according to which sets of microstates can be de-
fined is distinguishability by a given observer: in general, observers are unable to
distinguish between individual microstates, but can distinguish between certain sets
of microstates; and each distinguishable set of indistinguishable microstates forms
a macrostate.” (Hemmo and Shenker, 2012, p. 95)
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2. Macrostates feature in thermodynamic regularities (such as the ideal gas law).

“Another kind of physical property of interest, shared by microstates, is the one that
gives rise to the thermodynamic regularities. Certain sets of microstates exhibit this
particular kind of regularity: all the microstates in these sets appear to satisfy the
same laws, described by the theory of thermodynamics.” (Hemmo and Shenker,
2012, p. 95)

These two characterizations of the macrostates are conceptually distinct: the first char-
acterization refers to the system’s relation to an external observer while the second one
refers only to features inherent to the system. Still, there is a significant coincidence
between these two features of the macrostates:

“It is a contingent fact about the structure of human beings as observers, that there
is a useful degree of overlap between the sets that satisfy the regularities and the
sets that correspond to our observation capabilities.” (Hemmo and Shenker, 2012,
p. 96)

Hemmo and Shenker keep emphasizing that despite being observer-relative macrostates
are objective. Their book provides an insightful analysis of what distinguishability means
in terms of the physical interaction of the observer and the target system. The key idea
of their analysis is that the interaction of the system and the observer brings about a
one-to-one correlation between certain sets of microstates in the system’s phase space and
the observer’s phase space. It is these sets of the system’s phase space that they call the
macrostates of the system relative to the observer.

The main aim of the present paper is to provide a precise mathematical description
of how macrostates come about via the correlation of states of an observer and a system.
We hope that this analysis will contribute to making Hemmo and Shenker’s illuminating
ideas a bit sharper.

The paper is structured as follows. In Section 2 we give an intuitive introduction to the
idea behind the mechanism of the coming about of macrostates. In Section 3 we provide a
mathematically rigorous analysis of the same mechanism together with a mathematically
equivalent characterization of macrostates. In Section 4 we provide a formal description
of the observer-relativeness of macrostates. Readers not interested in technicalities can
go directly to Section 5 where the results of the previous two sections will be summarized
in an informal way. In Section 5 we reflect on conceptual issues regarding the relation-
ship of macrostates characterized in the above way to distinguishability, thermodynamic
regularity and the general phenomenon of measurement. We conclude in Section 6.

2 Macrostates – triggering intuition

Let O be an observer and S a physical system. LetXO andXS denote the phase space of O
and S, respectively. Generally we will not assume that XO and XS have any mathematical
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structure. They will simply be sets if not explicitly stated otherwise. Let O + S denote
the joint system of the observer and the system, and let XO+S denote the phase space of
the joint system. We stipulate that a microstate x ∈ XO+S of the joint system is given
by a pair (xO, xS) where xO ∈ XO is a microstate of the observer and xS ∈ XS is a
microstate of the system; that is XO+S = XO × XS is a Cartesian product. Sometimes
we will refer to xO and xS as the projection of x onto XO and XS, respectively. Similarly,
for any microregion B ⊆ XO+S let BO and BS denote the projection of B onto XO and
XS, respectively.

The possible microstates of the joint system O+S are often confined to a subregion of
XO+S due to various physical conditions. Denote this accessible region of microstates of
the joint system by A and its projections ontoXO andXS by AO and AS, respectively. The
exact “shape” of the accessible region A depends on the nature of the physical interaction
between the observer and the system and, as we will shortly see, it is playing a crucial
role in the coming about of macrostates.

How do macrostates come about?
The central idea, due to Hemmo and Shenker (2012, Ch. 5), is that (i) macrostates

of a system S are relative to an observer O; (ii) they emerge from the many-to-many
type correlation between the microstates of O and S; and, most importantly, (iii) this
correlation is established by the accessible region A of the joint system. In the next two
sections we will give a mathematically precise formulation of these ideas; here we just
trigger intuition.

Consider Fig. 1, borrowed from the book of Hemmo and Shenker.
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Figure 1: One-to-one correlation between the microstates of O and S in a connected
accessible region A.

Here the microstates of O are depicted along the vertical axis of the diagram and the
microstates of S along the horizontal axis. The accessible region A of the joint system
is a slant line. Note that the axes and the straight line are just for illustration since the
phase spaces have no linear, metric or topological structure.

Now, the accessible region A of the joint system is such that it establishes a one-to-one
correlation between the microstates of O. In other words, the outer physical conditions
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and the nature of the interaction between the observer and the system are such that if
the observer O is in a certain microstate, the system S is forced to be in one particular
microstate.
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Figure 2: Many-to-many correlation between the microstates of O and S in a disconnected
accessible region A.

Consider now another situation where the accessible region A of the joint system
consists of two disconnected regions, B1 and B2. (See Fig. 2.) What kind of constraints
arise due to A between the microstates of O and S? Obviously, if the microstate of
O is in B1O, then the microstate of S cannot be in B2S . Thus, the microstates of the
two subsystems cluster into two groups: microstates of the system in B1S correlate with
microstates of the observer in B1O, and microstates in B2S correlate with microstates in
B2O.

Observe that the difference between the two cases lies completely in the difference
between the two accessible regions. In the first case the accessible region maps the mi-
crostates of the observer to the microstates of system in a one-to-one way, whereas in the
second case the accessible region maps only one particular partition of the phase space
of the observer, namely {B1O, B2O} to one particular partition of the phase space of the
system, namely {B1S, B2S}. Stating it differently, in the first case the accessible region
maps any partition of the phase space of the observer to the corresponding partition of
the phase space of the system; whereas in the second case the accessible region maps only
specific partitions of the phase space of the observer to specific partitions of the phase
space of the system in a one-to-one manner.

And this is the point where macrostates enter the scene. Macrostates are elements of
specific partitions of XS, namely of those partitions which are mapped by the accessible
region of the joint system O + S into partitions of XO in a one-to-one way.

What is the idea behind this definition of macrostates?
Suppose you measure the temperature of a container of gas. Measuring temperature

means that one introduces an interaction between a measuring device, the thermometer,
and the system. The nature of this interaction fixes which joint microstates the joint sys-
tem can have. The different mercury levels partition the phase space of the thermometer
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regarded as a system of particles. But in order for a thermometer to count as a measuring

device and for the mercury levels to count as measurement outcomes it is also needed that
the different levels of mercury tell something about the state of the measured system. A
given mercury level is compatible with many microstates of the thermometer; and it will
not specify the microstate of the system either. However, what is required in the above
definition is that the level of mercury should indicate at least in which set of microstates
the system is. To do this, the sets pertaining to different mercury levels cannot over-
lap—otherwise the thermometer would not serve as a good measuring device; and they
together should cover the phase space of the system—otherwise some microstates of the
system could not be indicated.
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Figure 3: Many-to-many correlation with disjoint sets on the phase space of O.

One could, however, also take a more liberal stance towards macrostates. Suppose
that the phase space of the observer cannot be partitioned entirely but there is a set of

disjoint subsets such that their image via the the accessible region in the above sense
forms a partition of the phase space of the system. (See Fig. 3.) The difference between
this case and the previous one is that here the sets of those microstates of the observer
which stand in a one-to-one relation with a certain partition of the system’s phase space
do not form a partition. Some microstates of the observer do not indicate any macrostate
of the system.

An even more liberal definition of the macrostates would be to relax the demand of
being a partition both for the phase space of the observer and also for the system and
only to demand that disjoint subsets of O be mapped into disjoint subsets of S via the
accessible region. (See Fig. 4.)

Finally, one could demand even less. For simplicity let f and g be real-valued functions
on XO and XS, respectively, and map out the graph composed of the pair of values (o, s)
where o = f(xO), s = g(xS), and x runs through all points in the accessible region A.
Suppose that the resulting graph has a shape which allows for statistical inference from
(sets of) o-values to (sets of) s-values. To the extent this statistical inference is reliable
it is possible to associate (sets of) microstates of the observer with (sets of) microstates
of the system, and thus in this weak sense we could speak of the observer being able to
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Figure 4: Many-to-many correlation with disjoint sets on the phase spaces of O and S.

discern different macrostates. In case the graph is a graph of a one-to-one function we get
back our first, strict definition of a macrostate, but it is easy to see that there could be
other physical situations (such as the one depicted on Fig. 5) which could still warrant
relying on this weaker concept.
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Figure 5: Inverse functions f−1 and g−1 “almost” partition the phase spaces XO and XS.

In general, if one follows the path charted out by Hemmo and Shenker, the macrostate
concept needs to be tailored to physical characteristics of the measurement procedure. In
cases when the joint system needs to be in an equilibrium microstate in order for the
measurement to count as such—in fact this is the case in the temperature measure-
ment example above—, one would either need to apply one of the weaker notions of
a macrostate, or apply the partition-to-partition macrostate notion but impose further
restrictions on the accessible region A in order to exclude non-equilibrium microstates.
The weakest macrostate notion may be warranted when, with an even more emphasized
epistemic bent, one takes into account measurement errors, noises, environmental effects,
fuzziness of macroscopic concepts, and so on.

In what follows we focus on the notion of macrostate only in the first, strongest sense,
namely when partitions are transformed into one another in a one-to-one way. In the
following two sections we will make the notion of macrostate mathematically precise and
return to their physical interpretation in Section 5.
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3 Macrostates – the formal definition

Consider a joint system O + S with accessible region A. Denote by 2A, 2AO and 2AS the
power set of the accessible region A, and the power set of its projections AO and AS,
respectively. The accessible region A will uniquely define the following maps:

Ao : AO → 2A; Ao(xO) := {x′ ∈ A | x′

O = xO} (1)

As : AS → 2A; As(xS) := {x′ ∈ A | x′

S = xS} (2)

Aos : AO → 2AS ; Aos(xO) :=
(

Ao(xO)
)

S
(3)

Aso : AS → 2AO ; Aso(xS) :=
(

As(xS)
)

O
(4)

Intuitively, Ao(xO) is picking out those microstates of the joint system which are in A
and the projection of which onto XO is xO. A

os is simply the composition of Ao and the
projection onto XS; it maps elements of AO onto subsets of AS. The functions As and
Aso are defined similarly.

One can also “lift up” the above maps to the level of power sets:

Ao[ ] : 2AO → 2A; Ao[BO] := {x′ ∈ A | x′

O ∈ BO} (5)

As[ ] : 2AS → 2A; As[BS] := {x′ ∈ A | x′

S ∈ BS} (6)

Aos[ ] : 2AO → 2AS ; Aos[BO] :=
(

Ao[BO]
)

S
(7)

Aso[ ] : 2AS → 2AO ; Aso[BS] :=
(

As[BS]
)

O
(8)

Let PA, PAO and PAS denote the set of partitions of A, AO and AS, respectively.
Let PAO ∈ PAO and PAS ∈ PAS be two partitions. Note that PAO 6= PA

O, that is the
partitions of AO are not the projections of the partitions of A. We will apply the maps
(5)-(8) also to the partitions:

Aos[PAO ] := {Aos[BO] |BO ∈ PAO}

Note that Aos[PAO ] is not necessarily a partition of AS.
With these notations in hand we can now define the notion of macrostates introduced

in the previous section:

Definition 1. Let {PAO , PAS} be a pair of partitions such that Aos[PAO ] = PAS and
Aso[PAS ] = PAO . Then we call an element of PAS a macrostate of the system S relative
to O with accessible region A.

Next we provide a characterizations of macrostates which is equivalent to the above defi-
nition. To this aim we introduce the notion of projective connectedness.

Definition 2. Let x and x′ be microstates in A. We call x and x′ projectively connectible

in A, x ∼ x′, if there exists a finite sequence {xn}
N
n=1 with all xn ∈ A such that x1 = x,

xN = x′ and for any xn either (xn)O = (xn+1)O or (xn)S = (xn+1)S. In other words, x ∼ x′
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iff x and x′ can be connected by moving within A only along projections onto XO and XS,
respectively. A region B in A is called projectively connectible if x ∼ x′ for any x, x′ ∈ B.
(See Fig. 6.) A set {Bi} of regions in A is called mutually projectively unconnectible if
xi 6∼ xj for any xi ∈ Bi and xj ∈ Bj with i 6= j.1

x

x’

X

X

O

S

x A
x 2

1

Figure 6: A projectively connectible region.

Denote a partition of A by PA∼ if its elements are mutually projectively unconnectible.
Denote the set of such partitions of A by PA∼. Note that PA∼

max, the partition generated
by the equivalence classes of the equivalence relation ∼ is only one (the finest) partition
of all partitions PA∼. A partition P is called finer than a partition P ′ if for any B′ ∈ P ′

there exists a set {Bi} of elements in P such that B′ = ∪iBi. P is strictly finer than P ′

if at least one set {Bi} contains at least two elements.
Let PA∼

O and PA∼

S denote the projections of PA∼ onto XO and XS, respectively. Now,
we formulate a new definition of macrostates.

Definition 3. Let PA∼ be a mutually projectively unconnectible partition. Then we call
an element of PA∼

S an unconnectibility macrostate of the system S relative to O with
accessible region A.

However, as the following Proposition shows, Definitions 1 and 3 of macrostates are
equivalent. Therefore we omit the adjective “unconnectibility.”

Proposition 1. A subset of AS is a macrostate iff it is an unconnectibility macrostate.

Proof. For the proof of Proposition 1 see the Appendix.

1Our definition of projectively connectible points allow only finite number of steps of moving along
projections. In case the phase space has a topological structure the definition could be straightforwardly
extended to allow for the points to be projectively connected in the infinite limit. Such extension of the
definition would not alter the result of Proposition 1 and Proposition 2.
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4 Macrostates are observer-relative

Macrostates are observer-relative. If instead of O another observer, O′, interacts with the
system then the partition of the system’s phase space induced by the interaction can be
different. Measuring a container of gas by a thermometer and by a manometer do not
partition the phase space of the gas in a same way.

Observer-dependence can be understood in two different ways. Let O and O′ be two
different observers who separately perform measurements on the same system S. LetXO+S

and XO′+S denote the phase space of the joint system O + S and O′ + S, respectively.
Now, due to the different nature of interactions between the system and the different
observers the accessible region AO+S of the joint system O + S can be different from the
accessible region AO′+S of the joint system O′+S. Since macrostates of the system S are
generated by the accessible region of the joint system, there is no a priori guarantee that
the macrostates of S relative to O + S and O′ + S will be the same.

Observer-dependence can also be understood, however, in a different way. Let O +
O′ + S be the joint system of the two observers who perform a joint measurement on
the system S. This is the case when we perform the temperature measurement and the
pressure measurement simultaneously. Let XO+O′+S denote the phase space and let A
denote the accessible region of the joint system. Let the phase spaces and the microstates
of the subsystems be denoted just as above.

What are the macrostates of the triply joint system O + O′ + S? One can proceed
here either in a permissive or in a restrictive way. The permissive characterization of the
macrostates is to say that there is a partition PAO of AO, a second partition PA

O′ of AO′

and two more partitions PAS and P ′AS of AS such that the (common) accessible region A
of the joint system O+O′ + S sends the partition PAO into PAS , and the partition PA

O′

into P ′AS in a one-to-one way. Hence we obtain the following definition:

Definition 4. Let {PAO , PAS} and {PA
O′ , P ′AS} be two pairs of partitions of AO, AO′

and AS, respectively, such that

Aos[PAO ] = PAS Aso[PAS ] = PAO (9)

Ao′s[PA
O′ ] = P ′AS Aso′[P ′AS ] = PA

O′ (10)

Then we call an element of PAS and P ′AS a macrostate of the system S relative to O and
O′, respectively, within the joint system O +O′ + S with accessible region A.

The restrictive characterization would be, however, to demand that both observers
generate the same partition of AS, that is to demand that there is only one common set

of macrostates of S associated to both observers:

Definition 5. Let {PAO , PA
O′ , PAS} be a triple of partitions of AO, AO′ and AS, respec-

tively, such that

Aos[PAO ] = PAS Aso[PAS ] = PAO (11)

Ao′s[PA
O′ ] = PAS Aso′[PAS ] = PA

O′ (12)
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Then we call an element of PAS a common macrostate of the system S relative to both
O and O′ within the joint system O +O′ + S with accessible region A.

Obviously, whether two observers generate one common partition, two different par-
titions, or no partition at all essentially depends on the accessible region A of the joint
system O +O′ + S. In what follows we give examples for all three cases:

Example 1. A joint system O +O′ + S with no (non-trivial) macrostates.
Let A be such that for any x, y ∈ A

(i) Aso[XS] = XO;

(ii) Aso(xS) 6= Aso(yS) if xS 6= yS;

(iii) Aso′[{xS}] = XO′.

(See Fig. 7.)
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Figure 7: An accessible region with no (non-trivial) partitions {PA
O′ , PAS}.

In this case there are no (non-trivial) partitions {PA
O′ , PAS} which would satisfy (10).

Example 2. A joint system O + O′ + S with separate partitions {PAO , PAS} and
{PA

O′ , P ′AS}, but without common partition {PAO , PA
O′ , PAS}.

Suppose that the accessible region A of the joint system is discrete and consists of
only three points:

a = (x1, y1, z1)

b = (x1, y2, z2)

c = (x2, y2, z3)
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where the coordinates x, y and z refer to the microstates in XO, XO′ and XS, respectively.
Then the separate partitions are the following:

PAO = {{x1}, {x2}} PAS = {{z1, z2}, {z3}}

PA
O′ = {{y1}, {y2}} P ′AS = {{z1}, {z2, z3}}

but it is easy to see that there is no (non-trivial) common partition.

Example 3. A joint system O +O′ + S with a common partition {PAO , PA
O′ , PAS}.

Modify the above example as follows. Let the three microstate be the following:

a = (x1, y1, z1)

b = (x2, y2, z1)

c = (x3, y3, z2)

Then the common partition is the following:

PAO = {{x1, x2}, {x3}} PAS = {{z1}, {z2}}

PA
O′ = {{y1, y2}, {y3}} P ′AS = {{z1}, {z2}}

To characterize the different possibilities we analyse Definitions 4 and 5 in terms of pro-
jective connectibility.

Consider the projection AOS of the accessible region A of the joint system O+O′ +S
onto XOS. Define the equivalence relation ∼ on AOS in the spirit of Definition 2. Let
PAOS∼ denote a partition of AOS if its elements are mutually projectively unconnectible
in the sense defined in Section 2: for any x ∈ B and x′ ∈ B′ where B and B′ are different
elements of PAOS∼, x 6∼ x′. Denote the set of such partitions of AOS by PAOS∼. Finally,
denote by PAOS∼

O and PAOS∼

S the projections of PAOS∼ onto AO and AS, respectively. Let

PA
O′S

∼, P
A

O′S
∼

O′ and P
A

O′S
∼

S be defined similarly.
This leads to the following two definitions of macrostates which, however, are equiva-

lent to the previous ones.

Definition 6. Let PAOS∼ and PA
O′S

∼ be partitions of AOS and AO′S, respectively. Then
we call an element of PAOS∼

S and P
A

O′S
∼

S an unconnectibility macrostate of the system
S relative to O and O′, respectively, within the joint system O + O′ + S with accessible
region A.

Definition 7. Let PAOS∼ and PA
O′S

∼ be partitions of AOS and AO′S, respectively, such
that PAOS∼

S = P
A

O′S
∼

S . Then we call an element of PAOS∼

S an unconnectibility common

macrostate of the system S relative to both O and O′ within the joint system O+O′ +S
with accessible region A.

11



Proposition 2. Definition 4 of macrostates and Definition 6 of unconnectibility macrostates
are equivalent. Definition 5 of common macrostates and Definition 7 of unconnectibility
common macrostates are equivalent.

The proof is a straightforward consequence of the proof of Proposition 1, therefore we
omit it. We simply illustrate it on Example 2 and 3 above.
In Example 2:

PAOS∼ =
{

{(x1, z1), (x1, z2)}, {(x2, z3)}
}

PA
O′S

∼ =
{

{(y1, z1)}, {(y2, z2), (y2, z3)}
}

In Example 3:

PAOS∼ =
{

{(x1, z1), (x2, z1)}, {(x3, z2)}
}

PA
O′S

∼ =
{

{(y1, z1), (y2, z1)}, {(y3, z2)}
}

How do two observers take notice that their joint measurement generates a common
macrostate on the system S? Since in case of a common partition Aos[PAO ] = PAS =
Ao′s[PA

O′ ], therefore whenever the microstate of O is in BO ∈ PAO , the microstate of O′

will be in (Aso′ ◦ Aos)(BO) ∈ PA
O′ . That is elements of PAO and PA

O′ will be perfectly

correlated. Thus, a system of common macrostates establishes a correlation between the
measurement outcomes of the different observers.

Can the situation be reversed? Suppose the measurement outcomes of two observers
O and O′ of a system S are perfectly correlated in the sense that whenever the microstate
of O is in BO ∈ PAO , the microstate of O′ will be in a particular BO′ ∈ PA

O′ . Does this
perfect correlation guarantee that there is a common macrostate of the system S relative
to O and O′, respectively? The next example shows that even less is false.

Example 4. Perfect correlation between the observers does not even guarantee that there
are separate macrostates of the joint system.

Suppose again that the accessible region A of the joint system is discrete and consists
of the following four points:

a = (x1, y1, z1)

b = (x1, y1, z2)

c = (x2, y2, z1)

d = (x2, y2, z2)

where again the coordinates x, y and z refer to the microstates of O,O′ and S, respectively.
Here the partitions

PAO = {{x1}, {x2}}

PA
O′ = {{y1}, {y2}}
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will perfectly correlate, but there is neither a {PAO , PAS} nor a {PA
O′ , PAS} (non-trivial)

partition satisfying (9)-(10). Thus, perfect correlation between the measurements of the
two observers does not guarantee a perfect correlation between any of the observers and
the system.

Due to the absence of any correlation between the observers and the system in the
above example one is not even justified to call O and O′ observers of the system. It
is straightforward to see however that if O is indeed on observer, that is O is perfectly
correlated with S and also with O′, then O′ will also do so with S: if {PAO , PAS} is a pair
of partitions satisfying (9) and PAO and PA

O′ are perfectly correlated, then {PA
O′ , PAS}

is a pair of partitions satisfying (10). In short, {PAO , PA
O′ , PAS} is a common partition

of the joint system.

5 Distinguishability, regularity and measurement

Consider again the example of the temperature measurement. Suppose you measure the
temperature of a container of gas with a thermometer. Denote the thermometer by O
and the gas by S. By inserting the thermometer into the gas the experimenter introduces
an interaction between the measuring device and the system. This interaction fixes which
microstates are possible for the joint system O + S, that is it fixes the accessible region
A. The crucial point in the coming about of macrostates is the “shape” of the accessible
region. We have seen that A can theoretically be of such shape that for any microstate
of O there is only one possible microstate of S. Typically, however, the accessible region
is such that only sets of microstates of the phase spaces XO and XS transform mutually
into one another. That is certain sets of microstates of the thermometer will correlate
with certain sets of microstates of the gas in a one-to-one manner.

But how does this abstract schema relate to the real-world temperature measurement?
Measuring the temperature colloquially means the reading off of the mercury level of the
thermometer inserted into the gas. The different mercury levels will again generate a
partition of XO since each microstate of the thermometer uniquely determines a mercury
level. But how is this partition of XO generated by the mercury levels is related to the
above partition of XO standing in a one-to-one correlation with a partition of XS? This
question leads us to the notion of distinguishability.

So far we have been somewhat vague about what we take to be an observer. By the
same symbol O we referred to a human observer as well as to a measuring device. The
reason for this ambiguity is that a direct observation of the thermometer by the sense-
organs of a human observer and the measurement of the gas with a thermometer can be
described in similar terms; namely, in terms of a correlation between an “observer” and
a system. And this is the point where distinguishability appears. Distinguishability is
nothing but an observer-system correlation such that the observer is a human observer.

Suppose an experimenter is reading off the temperature from a thermometer. The
mercury levels in the glass tube are distinguishable to the naked eye while the positions of
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mercury molecules are not. What does it mean that the experimenter is able to distinguish
between the different mercury levels of the thermometer? Physically speaking looking
at the thermometer is an interaction between the thermometer and the observer’s sense-
organs and brain. Although the details of this interaction are highly complex, one can still
think of this interaction as a constraint on the “phase space” of the joint system composed
of the observer’s sense-organs and brain and the thermometer. One can then speculate
that the clustering of the microstates of the thermometer into distinguishable macrostates
is nothing but a one-to-one correlation between certain sets of microstates of the observer’s
sense-organs and brain and certain other sets of microstates of the thermometer. Being
able to distinguish then physically means that certain clusterings of the state space of a
physical object strongly correlate with certain clusterings of our sense organ and brain
states. If this speculation is correct, then it may well be the case that the accessible region
of the joint system is responsible for certain stable clusterings of our brain states and for
the bringing about of the associated mental state. The short cognitive story would then be
this: mental states arise where the brain can make distinctions; and making distinctions
is a one-to-one correlation between coarse-grained brain states and coarse-grained states
of the outer world.

According to the above description both the temperature of a gas and the lengths of
the mercury column, as macrostates of the corresponding systems, are observer-relative
notions. The former is defined in terms of the interaction with the thermometer, the
latter is defined in terms of the interaction with the human observer. Notice that since
these two kinds of macrostates refer to different interactions with different “observers”,
there is no a priori guarantee that the two partitions of the thermometer, namely the
one generated by the distinguishable mercury levels and the one standing in a one-to-one
correlation with the temperature partition of the gas, coincide. It is a contingent fact of
the world that the “mercury level” reflects the temperature of the gas and at the same is
time accessible for human observation.

Despite the essential observer-relativity of macrostates, there is a sense in which they
are inherent to the target system in question. This sense is provided by the fact that
macrostates, as subsets and partitions of the system’s phase space, satisfy regularities.
Consider the example of the ideal gas law. The temperature T , the pressure P and
the volume V are functions on phase space. Their inverse images carve out three dis-
tinct partitions of the system’s phase space corresponding to the level surfaces of these
phase functions. The elements of these partitions are macrostates since they correlate
with elements of the phase space partition of the appropriate measuring devices via the
measurement interaction. Nevertheless, there is something inherent in the partitions gen-
erated by phase function T , P and V : they stand in a well-defined functional relationship
to one another independently of whether they are measured or not. Namely, if the ideal
gas is in a microstate in which the temperature is T and the pressure is P then its volume
V is proportional to 1/PT . Again, these kinds of regularities are present regardless of
being observed or not. They can be discovered, however, by an observer if she has em-
pirical access to these partitions by various measurements. Empirical access means that
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the sets of partitions featuring in thermodynamic regularities and the sets of partitions
brought about by the measurements coincide or are close enough to one another. But the
coincidence of the two partitions, the ones brought about by measurement and the ones
featuring in thermodynamic regularities, is a contingent fact of nature, as Hemmo and
Shenker rightly stress. It is contingent in the sense that the two types of partitions are
determined by different physical conditions: the characteristics of the interaction between
the measurement device and the system on the one hand and the characteristics of the
interactions within the system on the other. There is no a priori connection between
these two types of conditions. One is left with this kind of contingency even if one defines
“measurement” as a physical process revealing the system’s inherent properties featuring
in thermodynamic regularities. For even if the temperature measurement is defined as
a process carving out the very partitions generated by the phase function T , it still re-
mains a contingent fact of our world whether such physical processes do exist, and if so,
what they are. One can well imagine a possible world where the functional relationship
of phase functions T , P and V , as inherent properties of a system, are the same as in
the actual one but the physical principles on which experiencing and measuring tempera-
ture are based (thermal expansion, heat transfer, equalization of temperature, blackbody
radiation, temperature dependence of electrical resistance, etc.) are different or do not
exist at all. In a possible world where these principles do not exist, temperature—despite
featuring in thermodynamic regularities—wouldn’t qualify as a macrostate in the sense
discussed in this paper.

It is worth noting that, despite their conceptual difference, the emergence of partitions
brought about by interaction with an observer and by thermodynamic regularities can be
accounted for in the same mathematical framework. At the end of Section 2 (see Figure 5)
we defined macrostates via functions on the phase space of the system and the observer:
we considered two functions, an f on XO and a g on XS, such that the value of the
one function allowed for statistical inference for the value of the other. Then we defined
macrostates by the total inverse of the function f . This procedure, however, can also
be applied when (i) we have more than two functions and (ii) these functions are all
defined on XS. Again, if there is a statistical relationship among the values of these phase
space functions, then each function will define a macrostate via the total inverse. But
this is exactly how the phase space functions carve up the phase space in thermodynamic
regularities. Thus, the core idea behind bringing about partitions via interaction with an
observer and by thermodynamic regularities is the same: it is a correlation, either in the
joint phase space of the system and the observer or within the system’s own phase space.

Finally, let us make a general observation on the observer-relativeness of macrostates
investigated formally in the previous section. Suppose that we measure the temperature
of a container of gas with a mercury thermometer O and by an alcohol thermometer O′.
Measuring the temperature with a mercury thermometer generates a partition of XS and
thus brings about macrostates relative to O, as explicated earlier. Measuring the temper-
ature with an alcohol thermometer brings about macrostates relative to O′. There is no a
priori guarantee that these two partitions have anything in common. However, in practice
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we observe a one-to-one correlation between the readings of the mercury thermometer and
the alcohol thermometer. As we saw in the end of the previous section, whenever O and
O′ are perfectly correlated, and O and O′ are observers of a system S in the sense of
there being correlation between O and S and between O′ and S, then there always exits
a system of common macrostates relative to O and O′. This common macrostate system
can be regarded as a common causal explanation of the perfect correlation of measure-
ments O and O′. It is the temperature of the gas, an inherent property of the system
pertaining to a partition of its phase space, that explains the correlation of the two kinds
of “temperature” measurement.

6 Conclusions

In this paper we defined macrostates, following Hemmo and Shenker, as elements of certain
partitions of the system’s phase space generated by the interaction between the system
and an observer. We investigated several formal and conceptual features of this notion
and proved the equivalence of two different characterizations of macrostates. Finally, we
intended to accommodate the other two features of macrostates, namely thermodynamic
regularity and distinguishability within this framework.

Appendix

Proof of Proposition 1.

We prove Proposition 1 via proving four lemmas.

Lemma 1. PA∼

O and PA∼

S are partitions of AO and AS, respectively, that is P
A∼

O ∈ PAO

and PA∼

S ∈ PAS .

Proof. We show that the sets of PA∼

O are disjoint and add up to AO. (For PA∼

S the
proof is similar.)
Suppose that sets of PA∼

O are not disjoint, that is there exists a b ∈ (BO ∩ B′

O) with B
and B′ being different elements in PA∼. Then there exist an x ∈ B and an x′ ∈ B′ such
that xO = x′

O = b. But then x ∼ x′. Contradiction.
Suppose that sets of PA∼

O are not adding up to AO, that is there exists a b ∈ AO such
that b /∈ BO for any BO ∈ PA∼

O . Then Ao(b) ∩ B = ∅ for any B ∈ PA∼, that is PA∼ is
not a partition of A. Contradiction.

Lemma 2. The partition PA∼ can be “reconstructed” from its projections in the sense
that Ao[PA∼

O ] = As[PA∼

S ] = PA∼.

Proof. We show that Ao[PA∼

O ] = PA∼. (For As[PA∼

S ] = PA∼ the proof is similar.)
Suppose to the contrary that Ao[PA∼

O ] 6= PA∼. This means that there exist an x ∈ A and
a B ∈ PA∼ such that either (i) x ∈ Ao[BO] and x /∈ B, or (ii) x /∈ Ao[BO] and x ∈ B.
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As for case (i), since x ∈ Ao[BO] \ B and therefore xO ∈ BO, there exists an x′ ∈ B
such that x′

O = xO. But then x ∼ x′ and hence x ∈ B. Contradiction.
Case (ii) can be excluded since for any region B in A, B ⊆ Ao[BO].

The following Lemma is a straightforward corollary of Lemma 2.

Lemma 3. Aos[PA∼

O ] = PA∼

S and Aso[PA∼

S ] = PA∼

O .

Proof. Aos[PA∼

O ] =
(

Ao[PA∼

O ]
)

S
=

(

PA∼
)

S
= PA∼

S and similarly for Aso[PA∼

S ].

Obviously, Lemma 3 shows that macrostates according to Definition 3 are macrostates
also according to Definition 1 (and hence also according to Definitions ??-??). Our next
Lemma demonstrates that the converse is also true.

Lemma 4. Suppose that {PAO , PAS} are partitions of AO and AS, respectively, such
that Aos[PAO ] = PAS and Aso[PAS ] = PAO . Then there exists a PA∼ ∈ PA∼ such that
PAO = PA∼

O and PAS = PA∼

S .

Proof. (i) First we show that Ao[PAO ] is a partition of A, that is Ao[PAO ] ∈ PA.
Suppose that sets of Ao[PAO ] are not disjoint, that is for a given BO, B

′

O ∈ PAO there
exists an x such that x ∈ (Ao[BO] ∩ Ao[B′

O]). But then xO ∈
(

BO ∩ B′

O

)

, that is PAO is
not a partition of AO. Contradiction.

Suppose that sets of Ao[PAO ] are not adding up to A, that is there exists an x in A
such that x /∈ B for any B ∈ Ao[PAO ]. Then xO /∈ BO for any BO ∈ PAO , that is PAO is
again not a partition of AO. Contradiction.

Hence, Ao[PAO ] is a partition of A. Similarly, As[PAS ] is a partition of A.
(ii) Next we show that Ao[PAO ] = As[PAS ].
Let BO ∈ PAO and let BS be its corresponding element BS = Aos[BO]. Suppose

that ∃x ∈ As[BS] such that x 6∈ Ao[BO]. Then xO 6∈ BO and hence xO ∈ B′

O for some
B′

O 6= BO, B
′

O ∈ PAO . But since Aos[B′

O] = B′

S for some B′

S 6= BS, B
′

S ∈ PAS , we
would have xS ∈ B′

S and thus x ∈ As[B′

S] where As[B′

S] 6= As[BS], a contradiction. The
argument is similar for the case when ∃x ∈ Ao[BO] such that x 6∈ As[BS]. Hence for all
BO ∈ PAO and for their corresponding BS ∈ Aos[BO] we have A

o[BO] = As[BS], and thus
Ao[PAO ] = As[PAS ].

(iii) Finally, we show that Ao[PAO ] = As[PAS ] ∈ PA∼.
Suppose that Ao[PAO ] 6∈ PA∼, that is there exists an x ∈ B and an x′ ∈ B′ such that

x ∼ x′ and B and B′ are distinct elements of Ao[PAO ]. Let {xn}
N
n=1 be the sequence

connecting x and x′ and suppose that (x2)S = xS (the argument is similar when (x2)O =
xO). Now, x2 cannot be in a B2 ∈ Ao[PAO ] such that B2 6= B, otherwise (x2)S were in
BS∩(B2)S and consequently BS and (B2)S were not disjoint. So x2 ∈ B. By induction, we
obtain that x3, . . . xN = x′ are all in B. Hence B and B′ are not distinct. Contradiction.

By this we also complete the proof of Proposition 1.
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