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Abstract

I discuss a game-theoretic model in which scientists compete to fin-
ish the intermediate stages of some research project. Banerjee et al.
(2014) have previously shown that if the credit awarded for inter-
mediate results is proportional to their difficulty, then the strategy
profile in which scientists share each intermediate stage as soon as
they complete it is a Nash equilibrium. I show that the equilibrium
is both unique and strict. Thus rational credit-maximizing scientists
have an incentive to share their intermediate results, as long as this is
sufficiently rewarded.

1 Introduction

Does the reward structure of science provide scientists with sufficient incen-
tive to share partial or intermediate discoveries? There is some reason to
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believe that it does not: sharing may help one’s competitors complete, and
get credit for, a larger discovery. This claim has been upheld by a number
of authors writing about rewards in science.

[T]he reward system sets up an immediate tension between coop-
erative compliance with the norm of full disclosure (to assist one-
self and colleagues in the communal search for knowledge), and
the individualistic competitive urge to win priority races. This
can engender neurotic anxieties on the part of researchers and
‘deviant’ patterns of secretive behavior. (Dasgupta and David
1994, p. 500)

[T]here are many good reasons for maintaining secrecy in scientific
research, [including] the desire to protect priority, credit, and
intellectual property. (Resnik 2006, p. 135)

Similar claims are also made by Arzberger et al. (2004, p. 146), Borgman
(2012, p. 1072), Soranno et al. (2015, p. 70), and (Strevens forthcoming,
pp. 2–3), among others.

In contrast, two recent papers have used game-theoretic models to suggest
that sharing may be incentivized despite the potential for future discoveries,
as long as partial or intermediate discoveries are rewarded with credit roughly
proportional to their difficulty (Boyer 2014, Banerjee et al. 2014). This is
directly contrary to the view argued in the quotes above if one thinks that
the real reward structure of science awards credit proportional to difficulty; if
one thinks that this is not the case these papers may be viewed as providing
a policy recommendation for how to incentivize sharing.

Boyer (2014) studies a model which is, by his own admission, highly
idealized. Hence it cannot by itself support general claims about the in-
centives faced by scientists regarding intermediate results sharing. Banerjee
et al. (2014) address this worry by providing a model that relaxes Boyer’s
assumptions that there are only two scientists, that the scientists are equally
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productive, that different intermediate results are equally hard to achieve,
that intermediate results can only be achieved in one order, and that scien-
tists share either all or no intermediate results (note that while I cast them
as addressing a worry about Boyer, to my knowledge Banerjee et al. were
not aware of Boyer’s work, and vice versa).

Banerjee et al. (2014) show that sharing is a Nash equilibrium in their
model if sufficient credit is given for intermediate results. They do not show
that the equilibrium is unique, except in a special case with Stackelberg
agents, where a significant proportion of the scientists commits to sharing in
advance.

This leaves us with a potential equilibrium selection problem. Since there
may be other Nash equilibria, it is unclear whether or under what circum-
stances rational credit-maximizing scientists can be expected to share.

This paper addresses this issue by showing that in many cases no equi-
librium selection problem exists: under slightly strengthened assumptions
the equilibrium identified by Banerjee et al. is unique. I also show that the
equilibrium is strict, and that the game is a weakly better reply game in
the sense of Huttegger (2013). The significance of the latter result is that
boundedly rational scientists are likely to find the equilibrium.

Section 2 describes Banerjee et al.’s model, which I call the Intermediate
Results Game. In section 3 I suggest a distinction between a version of the
Intermediate Results Game with perfect information (scientists know when
other scientists have completed but not published intermediate results) and
one with imperfect information. I show that the sharing equilibrium is the
backwards induction solution of the Intermediate Results Game with perfect
information and that other equilibria of the Game differ from the backwards
induction solution only off the equilibrium path.

Section 4 shows that sharing is the unique and strict equilibrium of the
Intermediate Results Game with imperfect information. Section 5 extends
the results of sections 3 and 4 to the case of a directed acyclic network
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determining the order in which intermediate results can be completed (as
opposed to a single sequence), again under slightly strengthened assumptions
compared to those for which Banerjee et al. show the existence of the sharing
equilibrium.

Section 6 shows that the Intermediate Results Game with imperfect in-
formation of sections 4 and 5 is a weakly better reply game. Section 7 shows
that the results of the preceding sections also hold in a version of the Game in
which credit is measured per unit time. Two appendices provide the proofs.

2 The Intermediate Results Game

Consider a research project that can be divided into k ≥ 1 intermediate
stages. The stages can only be completed sequentially: stages 1 through j−1
must be completed before work on stage j can be started (this assumption
will be relaxed in section 5).

There are n ≥ 2 scientists (or research groups) working on the research
project. Their productivity is modeled by (nonstationary) Poisson processes.
Poisson processes are used to model the occurrence of events at random
intervals. Here, the occurrence of an event is interpreted as some scientist
successfully completing an intermediate stage. John C. Huber has shown in
a series of papers that scientists’ productivity is accurately modeled by a
Poisson process (Huber 1998a,b, Huber and Wagner-Döbler 2001a,b, Huber
2001).

Each scientist i has a productivity rate λij > 0 while working on stage j.
This captures the speed at which she works: working at rate λij, she would
expect to complete λij stages per unit time. The expected time to complete
stage j is 1/λij.

Since productivity may vary by scientist and by stage, the Intermedi-
ate Results Game allows for differences in inherent difficulty between stages,
differences in inherent aptitude between scientists, as well as differences in
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specialization among scientists (making some stages easier and some harder
for different scientists, although the extent to which scientists may have dif-
ferent specializations is restricted by the assumption of Proportional Credit
to be introduced below).

Define σj1···jn to be the total productivity of the scientists when scientist i
is working on stage ji. I use σj as shorthand for the total productivity in the
important special case in which all scientists are working on stage j, i.e.,

σj1···jn =
n∑

i=1
λiji

and σj =
n∑

i=1
λij.

In a Poisson process the waiting time between two events follows an ex-
ponential distribution. What this means here is that, if Tij denotes the time
it takes scientist i to complete stage j: Pr(Tij > t) = exp{−tλij}. This dis-
tribution has some formal features that I will use (Norris 1998, section 2.3).

First, it is memoryless. This means that if at a given time the waiting
time has not ended yet, the distribution of the remaining waiting time is
equal to the original distribution of the waiting time:

Pr(Tij > s+ t | Tij > s) = Pr(Tij > t).

Second, the minimum of n independent exponential random variables with
parameters λiji

(i = 1, . . . , n) is itself exponentially distributed with param-
eter σj1···jn . In other words, we can equivalently view the scientists’ produc-
tivity as one Poisson process with parameter σj1···jn or n independent Poisson
processes with parameters λiji

. Third, the probability that scientist i is the
first one to finish the stage she is working on is λiji

/σj1···jn .
Whenever some intermediate stage j is completed, the scientist who com-

pleted it chooses whether to share the result or not. If the scientist chooses
not to share (strategy H) she starts working on stage j+ 1. Other than that
nothing happens until the next time some scientist completes a stage.

If the scientist chooses to share (strategy E) she gets cj > 0 units of credit
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(or utility) for the stage she just completed as well as cj′ units of credit for
each stage j′ she has previously completed that had not yet been shared. All
scientists who had not yet solved stage j learn its solution. These scientists
all start working on stage j + 1.

When the final stage is completed by some scientist she automatically
shares it, gets ck units of credit for the last stage, plus cj for any stage j for
which credit has not been claimed yet, and the Game ends. The Intermediate
Results Game is zero-sum: at the end the total amount of credit divided
among the scientists is C = ∑k

j=1 cj.
As in any game-theoretic model, it is assumed that scientists have an

interest in maximizing their utility payoff (here, credit). What strategy or
strategies maximize utility may in general depend on the strategies chosen by
other scientists, so it may not be obvious what a rational (credit-maximizing)
scientist would do. This has resulted in a proliferation of solution concepts for
games, a number of which will figure in subsequent sections (e.g., backwards
induction, bounded rationality).

The most prominent solution concept is the (Nash) equilibrium. An equi-
librium is a strategy profile (i.e., an assignment of a strategy to each scientist)
such that no scientist can increase her expected credit by changing her strat-
egy unilaterally (i.e., assuming the other scientists’ strategies are unchanged).
When an equilibrium is played, each scientist is arguably acting rationally, as
she cannot improve her expected credit through her own action. Equilibrium
analysis will play a central role in subsequent sections.

3 A Backwards Induction Analysis

The previous section described a game-theoretic model of scientists working
on a project that requires some number of intermediate stages to be com-
pleted. In the simplest version of the Intermediate Results Game there are
two scientists (n = 2) and the research project has two stages (k = 2). The
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extensive form of this Game is given in figure 3.1.
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Figure 3.1: Extensive form of the Intermediate Results Game with n = 2
and k = 2.

At the root node (marked “N”) Nature decides which of the two scientists
is the first one to complete the first stage of the project. As indicated, Na-
ture picks scientist 1 with probability λ11/σ1 and scientist 2 with probability
λ21/σ1 (recall that λ11 is scientist 1’s productivity on stage 1, λ21 scientist 2’s
productivity on stage 1, and σ1 the sum of these numbers).

Suppose Nature picks scientist 1. This leads to a decision node marked
“1”, indicating that scientist 1 is the one to make a decision at this node.
If scientist 1 shares the result (strategy E), she collects c1 units of credit.
Both scientists now know the solution to stage 1 of the project, so they start
working on stage 2.

Nature again decides which of the two scientists completes the second
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stage first (with scientist 1’s productivity now λ12, scientist 2’s λ22 and σ2

the sum). In either case the Game ends. If Nature picks scientist 1, she
gets credit for completing both stages of the project and scientist 2 gets
nothing (as indicated by the payoff pair (C, 0) in the figure). If Nature picks
scientist 2, she gets c2 units of credit, and since scientist 1 had already claimed
credit for the first stage, she ends up with c1.

What if scientist 1 chooses not to publish her solution to the first stage of
the project (strategy H at the node marked “1”)? Then scientist 1 does not
collect c1 units of credit, and scientist 2 does not learn the solution to stage 1.
So now scientist 1 starts working on stage 2, while scientist 2 continues to
work on stage 1.

Once again Nature decides which of the two scientists finishes the stage
she is working on first (due to the memorylessness of the exponential dis-
tribution, scientist 2 is not more likely to finish fast despite having already
spent some time working on stage 1; cf. section 2), with scientist 1 working
at rate λ12, scientist 2 working at rate λ21, and σ21 denoting the sum of these
rates. If Nature picks scientist 1, she completes the project. The Game ends
and scientist 1 gets C units of credit.

If Nature picks scientist 2, she now has a decision to make (at the node
marked “2”). She can claim c1 units of credit by playing strategy E, or defer
by playing H. In either case, both scientists can now work on stage 2.

Nature makes its final decision by picking a scientist who completes the
second stage first. That scientist gets C units of credit if scientist 2 chose
strategy H, whereas if scientist 2 chose E she gets c1 for sure and the scientist
picked by Nature gets c2.

The right-hand side of the figure (associated with Nature picking scien-
tist 2 at the root node) works similarly.

It is implicitly assumed in figure 3.1 that scientist 1 knows when scientist 2
completes a stage, even when she keeps the result secret. If this were not
assumed, the two decision nodes for scientist 1 would be indistinguishable
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to her. This is different from Banerjee et al.’s assumption that “agents only
know their own progress, and what is shared with them by others” (Banerjee
et al. 2014, p. 156).

This suggests subtly different versions of the Game: an Intermediate Re-
sults Game with perfect information, in which scientists know when other
scientists have completed but not shared intermediate results, and an Inter-
mediate Results Game with imperfect information, in which scientists only
know their own progress and what has been publicly shared. In this section I
consider the former version of the Game, referred to as Gp

n,k (with n the num-
ber of scientists and k the number of stages, so figure 3.1 shows Gp

2,2), which
more realistically models scientific fields where pre-registration of studies is
common or small communities where everyone knows what everyone is work-
ing on. The next section discusses the latter version of the Game, referred
to as Gm

n,k, which more realistically models cases where it is relatively easy
to keep intermediate results secret.

If the first scientist to complete stage 1 in figure 3.1 plays H, and the
other scientist completes stage 1 before the first scientist finishes stage 2, it
is rational for the other scientist to play E: this makes it certain that she will
get c1 units of credit, without reducing either her probability of completing
the second stage or her payoff if she does so.

This is a backwards induction argument: if a certain node is reached, then
it is rational for the scientist who has to make a decision at that node to
choose x; therefore, other scientists may assume that if that node is reached,
x will be played. Applying this argument to the terminal decision nodes in
figure 3.1 leads to a truncated game tree, as shown in figure 3.2.

Here it is assumed that the second scientist to complete stage 1 always
plays strategy E. The expected payoff of that strategy for the scientist who
just completed stage 1 is a certain c1 units of credit, plus a further c2 units
of credit if she is first to complete stage 2. The payoff for the other scientist
is c2 times the probability that she is first to complete stage 2.
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Figure 3.2: Truncated game tree for Gp
2,2.

Now consider the decision scientist 1 has to make if she completes stage 1
first. If she plays strategy E, her payoff is c1 for sure plus an additional c2

with probability λ12/σ2, so her expected payoff is

c1 + c2
λ12

σ2
= c1

λ12

σ21
+ c1

λ21

σ21
+ c2

λ12

σ2
.

If she plays strategy H instead, her payoff is C with probability λ12/σ21

and c2λ12/σ2 with probability λ21/σ21. So in this case her expected payoff is

c1
λ12

σ21
+ c2

λ12

σ21
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λ12

σ2

λ21

σ21
= c1

λ12

σ21
+ c2

λ12

σ2
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λ12

σ21
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.

It follows that the expected payoff of E is at least as high as the expected
payoff of H for scientist 1 if and only if

c1
λ21

σ21
≥ c2

λ12

σ21

λ22

σ2
or equivalently c1λ21

c2λ22
≥ λ12

σ2
.

Similarly, if scientist 2 completes stage 1 first, it is rational for her to play
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strategy E if and only if

c1λ11

c2λ12
≥ λ22

σ2
.

In general, these inequalities need not be satisfied. For example, if the
credit reward for the two stages is equal (c1 = c2) but the second stage can
be completed twice as quickly (λ12 = 2λ11 and λ22 = 2λ21) then it is only
rational to play strategy E if the other scientist is faster at solving stage 2—
the more productive scientist has an incentive not to share.

If the credit rewards are equal but the second stage can be completed 50 %
quicker than the first (λ12 = 3

2λ11 and λ22 = 3
2λ21) then the more productive

scientist has an incentive not to share if she is at least twice as productive as
the other scientist. But sharing is rational for both scientists whenever the
scientists’ productivity rates are less than a factor two different.

So whether it is rational to share may depend on the productivity rates
of the scientists. In particular, the more productive scientist has the most
incentive to keep results secret, as these examples illustrate (cf. Banerjee
et al. 2014, corrolary 2.2). However, this is only worth doing if the potential
gains (the chance of getting credit for later stages) are big enough.

Note that if c1λ11 ≥ c2λ12 and c1λ21 ≥ c2λ22 the inequalities given above
are always satisfied. That is, if the credit awarded for the first stage is at least
as high as the credit given for the second stage (relative to the difficulty of the
two stages), then both scientists have an incentive to share their intermediate
results, regardless of their productivity rates.

I call this reward structure Proportional Credit, and I will show that it
incentivizes sharing in a wide range of cases.

Assumption 3.1 (Proportional Credit). The productivity parameters and
the credit rewards stand in the following relation: for every scientist i and
for any pair of stages j < j′,

cjλij ≥ cj′λij′ .
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The name of this assumption refers to the special case where the two sides
of the above expression are equal: in this case credit is given for each stage
exactly in proportion to its difficulty. This is arguably the most interesting
case, but as I will show the incentive to share exists not only in this special
case, but also whenever earlier stages are worth relatively more credit.

If Proportional Credit is satisfied, the backwards induction solution of
Gp

2,2 is for both scientists to play E at both of their decision nodes. Like any
backwards induction solution, this is an equilibrium.

This Game has other equilibria. If both scientists play strategy E if they
are the first to solve stage 1 then the bottom decision nodes in figure 3.1 are
never reached. If one or both scientists play strategyH or a mixed strategy at
their bottom decision node the resulting assignment of strategies may still be
an equilibrium. But these equilibria are behaviorally indistinguishable from
the one identified by backwards induction: they differ only in that some
scientists make different choices at decision nodes that will not actually be
reached in the Game.

It can be shown that a similar analysis goes through when the number
of scientists or the number of stages is changed, as stated in the following
theorem.

Theorem 3.2. Let n ≥ 2, k ≥ 1 and assume Proportional Credit.

(a) Gp
n,k has a (unique) backwards induction solution in which all scientists

play strategy E at every decision node.

(b) Gp
n,k has no equilibria (in pure or mixed strategies) that are behaviorally

distinct from the backwards induction solution.

Part (b) of this theorem is a consequence of theorem A.4, which is proved
in appendix A. Part (a) requires a separate proof, which is given in ap-
pendix B.
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4 The Intermediate Results Game with Im-
perfect Information

In this section I analyze a version of the Game in which scientists do not
know if other scientists have any unpublished results. Figure 4.1 shows the
extensive form of the Intermediate Results Game with imperfect information
in its simplest form (Gm

2,2). The only difference compared to figure 3.1 is
the appearance of the dashed lines between decision nodes. These indicate
so-called information sets: sets of decision nodes that the scientist who has
to make a decision cannot distinguish between (i.e., she must play the same
strategy at each node in the set).
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Figure 4.1: Extensive form of Gm
2,2.

As a result the number of (pure) strategies is reduced. Previously, a
scientist had four possible strategies: she could play either E or H at either
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of her decision nodes. Now each scientist has just one information set, and
two possible strategies: E or H.

E H

E
(
c1λ11
σ1

+ c2λ12
σ2

, c1λ21
σ1

+ c2λ22
σ2

) (
c1σ2+c2λ12
σ1σ2/λ11

σ12+λ21
σ12

, Cλ21λ22
σ1σ12

+ c2λ11λ22
σ1σ2

σ12+λ21
σ12

)
H

(
Cλ11λ12
σ1σ21

+ c2λ21λ12
σ1σ2

σ21+λ11
σ21

, c1σ2+c2λ22
σ1σ2/λ21

σ21+λ11
σ21

) (
Cλ11λ12
σ1σ21σ2

(σ2 + σ1+σ2
σ12/λ21

), Cλ21λ22
σ1σ12σ2

(σ2 + σ1+σ2
σ21/λ11

)
)

Table 4.1: Expected credit in Gm
2,2 for each scientist as a function of scien-

tist 1’s strategy (row) and scientist 2’s strategy (column).

Table 4.1 gives the expected credit for each scientist as a function of the
scientists’ choice of strategy. With some algebra it can be shown that the
strategy profile (E,E) on which both scientists share is an equilibrium if and
only if

c1λ11

c2λ12
≥ λ22

σ2
and c1λ21

c2λ22
≥ λ12

σ2
.

These inequalities are identical to those found in section 3 and are those
established by Banerjee et al. (2014, theorem 2.1) as sufficient conditions
for a sharing equilibrium. Moreover, if the above inequalities are strict then
the equilibrium is both unique and strict (an equilibrium is strict if unilat-
erally deviating from the equilibrium strictly decreases a scientist’s expected
credit). Note that the strict version of both inequalities is satisfied under
Proportional Credit.

In the general version of the Game (with n and k possibly greater than 2)
each scientist has to formulate a strategy (E or H) for each information set.
At an information set, the scientist knows which stage was the last one to
be completed and shared by some scientist, and how many stages she has
since completed herself. However, she does not know how many stages have
been completed but not shared by other scientists. As a result, the number
of possible strategies is smaller than in the game of perfect information of
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section 3. It turns out that under Proportional Credit the general version of
the Game also has only one equilibrium.

Theorem 4.1. Let n ≥ 2, k ≥ 1 and assume Proportional Credit.

(a) Gm
n,k has an equilibrium in which all scientists play strategy E at every

information set (this follows from Banerjee et al. 2014, theorem 2.1).

(b) Gm
n,k has no other equilibria (in pure or mixed strategies).

(c) The equilibrium is strict.

This theorem is a consequence of theorem A.4, which is proved in ap-
pendix A.

5 A Network of Stages

This section relaxes the assumption that the stages can be completed in only
one order. Here I assume instead that the k stages are arranged in a directed
acyclic network with the stages represented as edges. Work on a given stage j
can only be started if all stages (edges) ending at the node at which j begins
have been completed. (Equivalently, stages can be represented as nodes, with
each edge indicating that its beginning node is a prerequisite for starting its
ending note.) If g is any such network describing the order in which k ≥ 1
stages can be completed by n ≥ 2 scientists, then Gp

n,g denotes this more
general version of the Intermediate Results Game with perfect information,
and Gm

n,g denotes the more general version of the Intermediate Results Game
with imperfect information.

Define rij = cjλij to be the reward rate for scientist i while working
on stage j. The following assumption is a variation of the monotonicity
assumption made by Banerjee et al. (2014, p. 158).

15



Assumption 5.1 (Monotonicity). There is a strict ordering of the stages
by their reward rate, this ordering is the same for all scientists, and a given
stage’s reward rate is always lower than any of its prerequisites. Formally,

(a) For any pair of stages j and j′, either rij < rij′ for all scientists i, or
rij′ < rij for all scientists i.

(b) If completing stage j is required for starting stage j′, then rij′ < rij for
all scientists i.

Monotonicity imposes a natural ordering on the stages. Making use of
this fact, from here on I assume without loss of generality that the stages are
relabeled such that j < j′ if and only if rij′ < rij for all scientists i. Note
that, since a stage’s reward rate is lower than its prerequisites, completing
the stages in the order 1, 2, . . . , k is consistent with the restrictions imposed
by the network g.

At any given time in the Game, let Ji denote the stages available for
scientist i to work on (i.e., stages that are unsolved but all prerequisites have
been solved by i or solved and shared by another scientist). Let j∗i denote
the available stage that has the highest reward rate for scientist i. Given
Monotonicity and the relabeling specified above, it follows that j∗i = min Ji.

In general, it need not be the case that the expected duration of the Game
is minimized if all scientists immediately share any intermediate stages they
complete (unlike before). For example, suppose there are two scientists and
two stages that can be completed independently. Suppose that scientist 1
works faster on stage 1 and scientist 2 works faster on stage 2; e.g., λ11 =
λ22 = 2 and λ12 = λ21 = 1. Then expected duration is minimized (at 7/12) if
scientist 1 begins by working on stage 1 and scientist 2 begins by working on
stage 2 (and both share if they complete it). But if the reward for completing
stage 1 is more than twice the reward for completing stage 2, the unique
equilibrium is for both scientists to begin working on stage 1 (and share if
they complete it), which yields an expected duration of 2/3 > 7/12.
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However, Banerjee et al. (2014) show that there is a special case of the
Game in which sharing does minimize expected duration. Say that the sepa-
rable aptitudes assumption is satisfied if there are parameters ai (“aptitude”,
depending only on the scientist) and sj (“simplicity”, depending only on the
stage) such that for all i and j, λij = aisj. If separable aptitudes holds,
and there exists an equilibrium in which all scientists immediately share any
intermediate stages they complete, then expected duration is minimized in
this equilibrium (Banerjee et al. 2014, theorem 4.3).

My argument for a unique equilibrium in this section requires expected
duration to be minimized. But it does not otherwise depend on Banerjee
et al.’s separable aptitudes assumption. So I simply assume that the profile
of interest minimizes expected duration (with Banerjee et al.’s result guaran-
teeing that there are at least some cases where this assumption is satisfied).

Stating the formal version of this assumption requires some notation. Let
sE

i denote the strategy in which scientist i works on stage min Ji (i.e., the
unshared stage with the lowest label) at any given time and plays strategy E
whenever she completes a stage. Let SE denote the strategy profile in which
every scientist i plays strategy sE

i .
LetWj(S) denote the waiting time until some scientist shares the solution

to stage j, assuming strategy profile S is being played. Wj(S) is a random
variable because the time it takes individual scientists to solve stages is ran-
dom, and it depends on the strategy profile being played because even if a
scientist solves a stage at time t she may not share it at that time depending
on her strategy. It follows that maxj Wj(S) is the duration of the Game
(note that, in general, stages may be shared out of order).

Assumption 5.2 (Minimal Time). The expected completion time is mini-
mized under SE. That is, for all strategy profiles S,

E
(

max
j
Wj(S)

)
≥ E

(
max

j
Wj(SE)

)
.

Under these assumptions, theorems 3.2 and 4.1 can be generalized to the
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context of a directed acyclic network describing the order of the stages.

Theorem 5.3. Let n ≥ 2 and let g be a network for k ≥ 1 stages. Assume
Monotonicity and Minimal Time.

(a) The strategy profile SE is an equilibrium for Gp
n,g and Gm

n,g.

(b) In Gp
n,g, the equilibrium SE is unique up to deviations off the equilibrium

path.

(c) In Gm
n,g, the equilibrium SE is unique and strict.

Part (a) of theorem 5.3 is not a completely novel result, as Banerjee et al.
(2014, theorem 3.2) prove this for Gm

n,g under slightly different conditions.
They do not require Minimal Time and their statement of the Monotonicity
assumption is subtly different. Roughly speaking though, my result shows
that the sharing equilibrium found by Banerjee et al. is unique whenever the
equilibrium minimizes the expected completion time of the research project.

6 A Boundedly Rational Perspective

In this section I show that the versions of the Intermediate Results Game
with imperfect information (Gm

n,k and Gm
n,g) are weakly better reply games.

This means that boundedly rational scientists are likely to learn to play the
equilibrium strategy, i.e., will learn to share their intermediate results. I
show this in detail for the learning rule probe and adjust.

Huttegger (2013) defines the following concepts. Let G be a game. A
weakly better reply path is a sequence of strategy profiles (S1, . . . , S`) for
G such that for any j < `, profile Sj differs from profile Sj+1 only in one
scientist’s strategy, say scientist i, and ui(Sj+1) ≥ ui(Sj), i.e., scientist i
changes to a strategy that is a (weakly) better reply to the other scientists’
strategies. G is a weakly better reply game if there exists a weakly better
reply path from any strategy profile S to a strict equilibrium.
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Theorem 6.1. Let n ≥ 2 and let k ≥ 1.

(a) Assuming Proportional Credit, Gm
n,k is a weakly better reply game.

(b) Let g be a network for k stages and assume Monotonicity and Minimal
Time. Then Gm

n,g is a weakly better reply game.

Proof. The result is a corollary of theorem A.4. The unique and strict equi-
librium in both games is SE. Let S 6= SE be any strategy profile. By
theorem A.4 there exists a scientist i who is not playing the equilibrium
strategy in S but for whom switching to the equilibrium strategy is a better
reply. Let S ′ be the strategy profile that differs from S only in that scientist i
has switched to the equilibrium strategy. If S ′ 6= SE the same reasoning can
be applied again. This generates a weakly better reply path of maximum
length n from S to SE.

Now suppose a group of n scientists are repeatedly playing some game G
and adjusting their strategy in light of previous payoffs. A scientist using
probe and adjust follows a simple procedure: on each round, play the same
strategy as the round before with probability 1− ε, or probe a new strategy
with some “small” probability ε > 0. In case of a probe, pick a new strategy
uniformly at random from all possible strategies. After playing this strategy
for one round, evaluate the probe: if the payoff for the probing round is
higher than the payoff in the previous round, keep the probed strategy (at
least until the next probe); if the payoff is lower, return to the old strategy;
if payoffs are equal, return to the old strategy with probability q ∈ (0, 1)
and retain the probe with probability 1 − q (note that this is not quite the
same as asking whether the probed strategy is a better reply to the other
scientists’ strategies, due to the possibility of simultaneous probes).

Suppose all scientists use probe and adjust to determine their strategy
in repeated plays of a weakly better reply game G. Assume moreover that
all scientists use the same values of ε and q (this assumption can be relaxed,

19



see Huttegger et al. 2014, pp. 837–838). Let St be the profile of strategies
played on round t. Then the following result holds.

Theorem 6.2 (Huttegger (2013)). For any probability p < 1, if the probe
probability ε > 0 is sufficiently small, then the profile St is a strict equilibrium
of G for all sufficiently large t with probability at least p.

Since Gm
n,k and Gm

n,g are weakly better reply games by theorem 6.1, theo-
rem 6.2 applies to them. The (unique) strict equilibria of these games have
all scientists share their intermediate results as soon as they complete them.
So if, on a given round, the scientists are playing the equilibrium profile,
they may be said to have learned to share their intermediate results. Theo-
rem 6.2 says that the probability of this happening can be made arbitrarily
high by choosing a small enough probe probability and a long enough waiting
time. Moreover, the theorem says that once the scientists learn to share their
intermediate results they continue to do so on most subsequent rounds.

Because the equilibrium is both strict and unique, various other learning
rules and evolutionary dynamics will display similar behavior: scientists will
learn to share their intermediate results and continue to do so with high
probability. Examples include fictitious play, the best-response dynamics,
and the replicator dynamics.

7 Measuring Credit Per Unit Time

As Boyer-Kassem and Imbert (2015, section 4) have argued, in order to
determine what rational credit-maximizing scientists would do it may be
better to assume that scientists are maximizing expected credit per unit time
(rather than total expected credit from the project). This is because after
scientists finish the present research project, they presumably start working
on a new one with its own expected credit reward, and hence spending more
time on the present project carries an opportunity cost. This section shows
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that the results presented so far hold also in a version of the Intermediate
Results Game in which payoff is measured in expected credit per unit time.

Let Gpt
n,k denote the adapted version of the Game with perfect informa-

tion and let Gmt
n,k denote the adapted version of the Game with imperfect

information. These games have the same strategy spaces as Gp
n,k and Gm

n,k

respectively, differing only in that the payoff functions measure credit per
unit time. (In this section I restrict attention to the case where stages can
only be completed sequentially.)

Theorem 7.1. Let n ≥ 2, k ≥ 1 and assume Proportional Credit.

(a) Gpt
n,k has a (unique) backwards induction solution in which all scientists

play strategy E at every decision node.

(b) Gpt
n,k has no equilibria (in pure or mixed strategies) that are behaviorally

distinct from the backwards induction solution.

Theorem 7.2. Let n ≥ 2, k ≥ 1 and assume Proportional Credit.

(a) Gmt
n,k has an equilibrium in which all scientists play strategy E at every

information set.

(b) Gmt
n,k has no other equilibria (in pure or mixed strategies).

(c) The equilibrium is strict.

Theorems 7.1.b and 7.2 are consequences of theorem A.5, which is proved
in appendix A. Theorem 7.1.a is proved in appendix B.

The same short proof given in section 6 can be used to conclude from
theorem A.5 that Gmt

n,k is a weakly better reply game. Hence scientists using
probe and adjust will find the sharing equilibrium with high probability by
theorem 6.2.

This shows that, when credit is measured per unit time, there is an incen-
tive to share in the Intermediate Results Game under the same conditions
for which I showed it to exist in the case where total credit at the end of the
Game is the key quantity.
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8 Conclusion

Despite the claims of Dasgupta and David (1994), Resnik (2006), and others,
it turns out that there is a range of circumstances under which the sharing
of intermediate results is incentivized for credit-maximizing scientists. In
particular, a sufficient condition appears to be that intermediate results are
rewarded with at least as much credit as the results that depend on them,
relative to their difficulty.

Banerjee et al. (2014) had already shown the existence of a sharing equi-
librium in these circumstances. I have shown that this equilibrium is unique,
a strong result for a game-theoretic model. Moreover, I have shown that a
similar equilibrium exists (and is unique up to deviations off the equilibrium
path) for a version of the Game with perfect information and for a version of
the Game in which credit is measured per unit time. Finally, I have shown
that boundedly rational scientists will also learn to share their intermediate
results in these games, because they are weakly better reply games.

A A Unique Nash Equilibrium

This appendix proves theorem A.4, which shows that in any strategy profile
in which not all scientists immediately share any intermediate results they
complete, some scientist can improve her expected payoff by switching to
a sharing strategy. This result holds for each version of the Game under
slightly different conditions, but as I will show these conditions make it such
that the same proof works in all cases.

For the duration of this section, let n ≥ 2 be the number of scientists, let
k ≥ 1 be the number of stages, and let g be a directed acyclic network with
k stages. Consider the games Gp

n,k, G
pt
n,k, Gm

n,k and Gmt
n,k in which the k stages

have to be completed sequentially and the games Gp
n,g and Gp

n,g in which g
describes the order in which the k stages can be completed.

As is commonly done in game theory, I use ui(si, s−i) to denote the payoff
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(expected units of credit at the end of the game) to scientist i if si gives her
strategy and s−i gives the strategies of all scientists other than i (call this
an “incomplete strategy profile”). I use this notation interchangeably with
ui(S), the payoff to scientist i given a complete strategy profile S.

I will abuse notation somewhat to make the proof work for the different
versions of the Game. For any scientist i, let sE

i denote the equilibrium
strategy (or rather the putative equilibrium strategy—part of what I will
show is that it is indeed an equilibrium strategy). So in Gp

n,k and Gpt
n,k, sE

i is
the strategy that plays strategy E at every decision node; in Gm

n,k and Gmt
n,k

this strategy plays E at every information set; in Gp
n,g this strategy always

works on stage min Ji and plays E at every decision node; and in Gm
n,g this

strategy always works on stage min Ji and plays E at every information set.
Let sE

−i denote the incomplete strategy profile in which every scientist i′ 6=
i plays strategy sE

i′ , and let SE = (sE
i , s

E
−i) be the (putative) equilibrium. The

first lemma gives an explicit formula for scientist i’s payoff in the profile SE.
It does not depend on any specific assumptions.

Lemma A.1. In the games Gp
n,k, Gm

n,k, Gp
n,g, and Gm

n,g the payoff to scientist i
under the strategy profile SE is

ui(SE) =
k∑

j=1

rij

σj

.

Proof. Under strategy profile SE, the scientists work on the stages in the
order they are labeled (starting with stage 1, ending with stage k), sharing
each result as soon as they complete it. Under these circumstances, a scien-
tist i can be viewed as a nonstationary reward process producing payoff at a
rate of rij units of payoff per unit time if j is the current stage.

Under SE, the time it takes the scientists to solve and share stage j is
exponentially distributed with parameter σj (cf. section 2). So the expected
time spent on stage j is 1/σj.

The second lemma shows that, if SE minimizes the expected completion
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time of the overall research project, it also minimizes the waiting time until
the first j stages have been shared.

Lemma A.2. Let S 6= SE be some arbitrary strategy profile in Gp
n,k, G

pt
n,k,

Gm
n,k, Gmt

n,k, Gp
n,g, or Gm

n,g. Depending on the version of the Game, add the
following additional assumptions:

• For Gp
n,g and Gm

n,g, assume Minimal Time.

• For Gp
n,k, G

pt
n,k, and Gp

n,g, assume that S involves a deviation on the
equilibrium path relative to SE.

Then for any j,

E
(

max
j′≤j

Wj′(S)
)
≥ E

(
max
j′≤j

Wj′(SE)
)

=
j∑

j′=1

1
σj′
.

Moreover, there exists a value of j for which the above inequality is strict. In
particular, for Gp

n,k, G
pt
n,k, Gm

n,k, and Gmt
n,k, strict inequality holds for j = k.

Proof. As noted above, under SE the scientists complete and share the stages
in the order they are labeled, and each stage j is expected to take 1/σj, so

E
(
Wj(SE)

)
− E

(
Wj−1(SE)

)
= 1
σj

,

and

E
(

max
j′≤j

Wj′(SE)
)

= E
(
Wj(SE)

)
=

j∑
j′=1

1
σj′
.

This establishes the equality.
To prove the inequality, suppose for reductio that there exists a stage j

such that

E
(

max
j′≤j

Wj′(S)
)
< E

(
max
j′≤j

Wj′(SE)
)
.
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Now define the strategy profile S ′ as follows. Under S ′, each scientist i
plays strategy s′i, which is a combination of si (the strategy scientist i plays
under S) and sE

i , as follows:

s′i =

si at any time until maxj′≤j Wj′(S ′),

sE
i at any time after maxj′≤j Wj′(S ′).

Then

E
(

max
j′

Wj′(S ′)
)

= E
(

max
j′≤j

Wj′(S ′)
)

+ E
(

max
j′

Wj′(S ′)−max
j′≤j

Wj′(S ′)
)

= E
(

max
j′≤j

Wj′(S)
)

+
k∑

j′=j+1

1
σj′

<
k∑

j′=1

1
σj′

= E
(

max
j′

Wj′(SE)
)

This contradicts the fact that SE minimizes the expected completion time of
the research project, which is known to be true in the case in which stages
are completed sequentially (cf. Banerjee et al. 2014, p. 159) and which I have
assumed to be true through Minimal Time in the case of a network of stages.
So the inequality holds.

It remains to show that the inequality is strict for some value of j. Here
I distinguish two cases.

1. Under S, all scientists complete the stages in the order they are labeled.

Since S differs from SE (on the equilibrium path), it follows that there is a
positive probability under S that a situation arises in which a scientist i plays
strategy H. If this happens, there is a positive probability that some other
scientist finishes and shares the stage that i failed to share before scientist i
completes another stage. This increases the expected completion time of the
overall project (cf. Banerjee et al. 2014, p. 159), i.e.,
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E
(

max
j′≤k

Wj′(S)
)
> E

(
max
j′≤k

Wj′(SE)
)
.

In the games Gp
n,k, G

pt
n,k, Gm

n,k, and Gmt
n,k, the stages can only be completed

in one order. So for these games strict inequality holds in particular for the
expected completion time of the overall project.

2. Under S, at least one scientist does not complete the stages in the order
they are labeled.

Let j be the lowest stage number such that at least one scientist does not start
working on stage j as soon as she knows the solution to stages 1, . . . , j − 1.
From the inequality established above,

E
(

max
j′≤j−1

Wj′(S)
)
≥ E

(
max

j′≤j−1
Wj′(SE)

)
=

j−1∑
j′=1

1
σj′
.

Since not every scientist immediately starts working on stage j, the expected
time until stage j is shared must be strictly greater than 1/σj. So

E
(

max
j′≤j

Wj′(S)
)
>

j−1∑
j′=1

1
σj′

+ 1
σj

= E
(

max
j′≤j

Wj′(SE)
)
.

Note that the preceding lemmas do not require Proportional Credit or
Monotonicity; they are true for all (positive) productivity rates and for all
(positive) credit rewards. The next lemma shows that when these assump-
tions are introduced, if not every scientist plays the (putative) equilibrium
strategy, scientists who do get a higher payoff than they do in lemma A.1.

Lemma A.3. Let i be a scientist in Gp
n,k, Gm

n,k, Gp
n,g, or Gm

n,g, and assume
scientist i plays strategy sE

i . Let s−i denote an incomplete strategy profile
such that S = (sE

i , s−i) 6= SE. Depending on the version of the Game, add
the following additional assumptions:

• For Gp
n,g and Gm

n,g, assume Monotonicity and Minimal Time.
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• For Gp
n,k and Gm

n,k, assume Proportional Credit.

• For Gp
n,k and Gp

n,g, assume that S involves a deviation on the equilib-
rium path relative to SE.

Then ui(S) > ui(SE).

Proof. Just like in the proof of lemma A.1, it is useful to view scientist i as a
nonstationary reward process. When she is working on stage j, she produces
payoff at a rate of rij units of payoff per unit time. By Proportional Credit or
Monotonicity, this rate is non-increasing throughout the Game for scientist i.

So scientist i expects to get a payoff of rik > 0 per unit time throughout
the Game, which has an expected duration of E(maxj′Wj′(S)). Moreover,
she expects to get an additional rik−1 − rik per unit time as long as stage
k− 1 remains unshared, which is expected to take E(maxj′≤k−1 Wj′(S)) time
units. And so on. Hence (setting rik+1 = 0 for notational convenience)

ui(S) =
k∑

j=1
(rij − rij+1)E

(
max
j′≤j

Wj′(S)
)
.

Lemma A.2 says that E(maxj′≤j Wj′(S)) ≥ ∑j
j′=1 1/σj′ , with strict in-

equality for some value of j. In the case of Gp
n,g and Gm

n,g, since rij−rij+1 > 0
for all j by Monotonicity, plugging this in yields

ui(S) >
k∑

j=1
(rij − rij+1)

j∑
j′=1

1
σj′
.

In the case of Gp
n,k and Gm

n,k, the above inequality also holds due to the
following facts: rij − rij+1 ≥ 0 by Proportional Credit, E(maxj′≤k Wj′(S)) >∑k

j′=1 1/σj′ by lemma A.2, and rik > 0.
Interchanging the sums then gives the desired result:

ui (S) >
k∑

j′=1

k∑
j=j′

(rij − rij+1) 1
σj′

=
k∑

j′=1

rij′

σj′
= ui(SE).

27



The main result follows from lemma A.3. It shows that any strategy
profile that differs from SE (on the equilibrium path) is not an equilibrium.

Theorem A.4. Let S 6= SE be some arbitrary strategy profile in Gp
n,k, Gm

n,k,
Gp

n,g, or Gm
n,g. Depending on the version of the Game, add the following

additional assumptions:

• For Gp
n,g and Gm

n,g, assume Monotonicity and Minimal Time.

• For Gp
n,k and Gm

n,k, assume Proportional Credit.

• For Gp
n,k and Gp

n,g, assume that S involves a deviation on the equilib-
rium path relative to SE.

Then there exists at least one scientist i playing strategy si 6= sE
i such that

she would be strictly better off playing strategy sE
i :

ui

(
sE

i , s−i

)
> ui (si, s−i) .

Proof. Recall that the Intermediate Results Game is zero-sum (if payoff is
measured in total credit): regardless of strategies, there are C units of credit
to be divided, and so if one scientist’s payoff increases, another’s decreases.
Combined with lemmas A.1 and A.3 this yields the theorem. Distinguish
three cases:

1. There is only one scientist i playing a (pure or mixed) strategy si 6= sE
i .

In this case every scientist i′ other than scientist i is playing strategy sE
i′

and so by by lemma A.3 is getting a payoff greater than ui′(SE). Because
the Game is zero-sum, it follows that ui(si, s−i) < ui(SE). By lemma A.1,
ui(sE

i , s−i) = ui(SE), and the result follows.

2. There is at least one scientist i′ playing strategy sE
i′ and at least two

scientists playing some other strategy.
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In this case any scientist i′ who is playing strategy sE
i′ is getting a payoff

greater than ui′(SE) by lemma A.3. Because the Game is zero-sum, at least
one of the remaining scientists, say scientist i, must be getting a payoff less
than ui(SE). But if scientist i changed her strategy to sE

i , by lemma A.3 she
would get a payoff ui(sE

i , s−i) > ui(SE), establishing the result.

3. Every scientist i′ is playing some strategy si′ 6= sE
i′ .

Because the Game is zero-sum, it is impossible for every scientist i′ to be
getting a greater payoff than ui′(SE). So there is at least one scientist, say
scientist i, such that ui(si, s−i) ≤ ui(SE). By lemma A.3, ui(sE

i , s−i) >

ui(SE), and the result follows.

Theorem A.4 may be used to prove theorems 3.2.b, 4.1, and 5.3.

Proof of theorem 3.2.b. Let S be any strategy profile for the game Gp
n,k. If S

differs from SE on the equilibrium path (with positive probability, in the case
of mixed strategies), then at least one scientist has an incentive to change
her strategy by theorem A.4, and so S is not an equilibrium.

Proof of theorem 4.1. Let S be any strategy profile (of pure or mixed strate-
gies) for the game Gm

n,k. If S 6= SE, then at least one scientist has an incentive
to change her strategy by theorem A.4, and so S is not an equilibrium.

That SE is a strict equilibrium also follows from theorem A.4 by consid-
ering the special case where s−i = sE

−i. This shows that a scientist i who
deviates unilaterally makes herself strictly worse off.

Proof of theorem 5.3. Consider first the case of imperfect information. Let
S be any profile for the game Gm

n,g. If S 6= SE, then at least one scientist
has an incentive to change her strategy by theorem A.4, and so S is not an
equilibrium. That SE is a strict equilibrium also follows from theorem A.4
by considering the special case where s−i = sE

−i.
In the case of perfect information, any profile which contains deviations

from the equilibrium path is not an equilibrium by theorem A.4, as at least
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one scientist has an incentive to change her strategy. On any profile that
differs from SE only off the equilibrium path all scientists get the same payoff
as on SE. It follows that SE is an equilibrium of Gp

n,g and any other equilibria
differ from SE only off the equilibrium path.

To conclude this appendix, I show that theorem A.4 extends to the case
in which credit is measured per unit time. This yields proofs of theorems
7.1.b and 7.2 analogous to the proofs of theorems 3.2.b and 4.1 given above.

Theorem A.5. Let S 6= SE be some arbitrary strategy profile in Gpt
n,k or Gmt

n,k,
and assume Proportional Credit. In the case of Gpt

n,k, add the further assump-
tion that S involves deviations on the equilibrium path. Then there exists at
least one scientist i playing strategy si 6= sE

i such that she would be strictly
better off playing strategy sE

i :

ui

(
sE

i , s−i

)
> ui (si, s−i) .

Proof. As before, view the scientists as nonstationary reward processes with
a reward rate (expected credit per unit time) depending on the stage they
are working on and their choice of strategy. As a result, their expected credit
per unit time from the Game is a weighted average of their reward rate at
any given time with the weights being the expected time spent working at
that reward rate. Hence the sum of the weights (the denominator of the
weighted average) is the expected duration of the Game. It follows that
the scientists’ expected payoff (average credit per unit time throughout the
Game) is equal to their expected total credit divided by the expected duration
of the Game (this is a consequence of the Poisson model of productivity; in
general expectation does not distribute over quotients).

By theorem A.4 there exists a scientist i whose total expected credit from
the Game is higher under strategy profile (sE

i , s−i) than under (si, s−i). But
(by reasoning similar to that given in the proof of lemma A.2) it is also
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clear that the expected duration of the Game can only decrease if scientist i
switches to strategy sE

i , i.e.,

E
(

max
j
Wj(sE

i , s−i)
)
≤ E

(
max

j
Wj(si, s−i)

)
.

But then it follows immediately that scientist i’s expected credit per unit
time must also be higher under (sE

i , s−i):

ui

(
sE

i , s−i

)
> ui (si, s−i) .

B The Backwards Induction Solution

Let Gp
n,k be the Intermediate Results Game with perfect information, as de-

scribed in section 3. This appendix proves theorem 3.2.a, which says that
under Proportional Credit, the Game has a unique backwards induction so-
lution in which all scientists play strategy E at every decision node. At the
end of the appendix I indicate briefly how the proof given here can be used to
show that the same backwards induction solution holds for Gpt

n,k (the version
of the Game in which the scientists aim to maximize credit per unit time).

Begin by fixing a decision node. Let i∗ be the scientist making a decision
at this decision node, having just completed stage j∗ < k. Let j′ < j∗ denote
the highest stage number whose solution has been shared (j′ = 0 if no stages
have been shared yet). For i 6= i∗, let ji denote the stage that scientist i is
working on at the time scientist i∗ completes stage j∗ (so j′ < ji ≤ k).

To prove the theorem, it suffices to show that it is rational for scientist i∗

to play strategy E at this decision node, assuming that every scientist (in-
cluding herself) plays strategy E at all remaining decision nodes. I write
E(ui∗(E)) for the expected payoff to scientist i∗ if she plays strategy E at
the present decision node, and E(ui∗(H)) if she plays H.

Let ai∗ denote the credit scientist i∗ has accumulated before the present
decision node. Let PrE(Rj) denote the probability that scientist i∗ eventually

31



claims credit for stage j > j′, assuming she plays strategy E at the present
decision node. For convenience write λi∗ for λi∗j∗+1, the productivity rate of
scientist i∗ working on stage j∗ + 1. Let

σE = λi∗ +
∑

i:ji≤j∗
λij∗+1 +

∑
i:ji≥j∗+1

λiji

denote the total productivity of the scientists immediately after the present
decision node, if scientist i∗ chooses to play strategy E. Note that PrE(Rj) =
1 if j < j∗ + 1 and PrE(Rj∗+1) = λi∗/σE. So

E (ui∗(E)) = ai∗ +
k∑

j=j′+1
cj PrE(Rj)

= ai∗ +
j∗∑

j=j′+1
cj + cj∗+1

λi∗

σE

+
k∑

j=j∗+2
cj PrE(Rj).

Similarly, let PrH(Rj) denote the probability that scientist i∗ eventually
claims credit for stage j > j′, assuming she plays strategy H at the present
decision node. So

E (ui∗(H)) = ai∗ +
k∑

j=j′+1
cj PrH(Rj).

Two lemmas provide the crucial inequalities to complete the proof.

Lemma B.1. PrH(Rj) ≤ PrE(Rj) for any j > j∗ + 1.

Proof. Divide the scientists into two groups: let S+ = {i | ji ≥ j} be those
scientists already working on stage j or higher at the time of the present
decision node and let S− = {i | ji < j} be those working on stage j − 1 or
lower, including i∗. Let A be the event that a scientist in S+ claims credit
for stage j and let Ā be the event that a scientist in S− claims credit for
stage j. I make two claims.

First,
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PrH(Rj | Ā) = PrE(Rj | Ā) = λi∗j/
∑

i∈S−

λij.

This is because, due to the backwards induction assumption, if a scientist in
S− completes stage j − 1 she shares the solution, and so all scientists in S−

start working on stage j at the same time.
Second, PrH(A) ≥ PrE(A). This is because choosing strategy H at the

present decision node can only increase the expected time it takes the scien-
tists in S− to get to start working on stage j, thus improving the probability
that one of the scientists in S+ completes whatever stage she is working on
before that happens.

From these two claims it follows that

PrH(Rj) = PrH(Rj | Ā) PrH(Ā) ≤ PrE(Rj | Ā) PrE(Ā) = PrE(Rj).

Lemma B.2.

j∗+1∑
j=j′+1

cj PrH(Rj) <
j∗∑

j=j′+1
cj + cj∗+1

λi∗

σE

.

Proof. The left-hand side indicates the share of the credit from stages j′ + 1
through j∗ + 1 that scientist i∗ expects to receive if she plays strategy H at
the present decision node. Since there is a total of ∑j∗+1

j=j′+1 cj units of credit
to be divided, scientist i∗’s share can be no higher than that total, minus any
portions the other scientists expect to receive.

Let i be a scientist working on stage ji ≤ j∗ at the time of the present
decision node. From that time until the time stage j∗+1 is shared, she can be
viewed as a nonstationary reward process (cf. lemma A.1) producing payoff
at a rate of cjλij units of payoff per unit time, where j ∈ {ji, ji+1, . . . , j∗+1}.
It follows from Proportional Credit that her expected credit per unit time is
at least cj∗+1λij∗+1 during this time.
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If scientist i∗ had chosen strategy E at the present decision node, the
expected time until stage j∗+1 is shared would be 1/σE. But since scientist i∗

has chosen strategy H, scientist i and other scientists like her have to finish
stages ji through j∗ first. So the expected time until stage j∗ + 1 is shared
is greater than 1/σE. Hence scientist i’s expected credit until stage j∗ + 1 is
shared is strictly greater than cj∗+1λij∗+1/σE.

Now let i be a scientist working on stage ji ≥ j∗ + 1 at the time of
the present decision node. If scientist i∗ chooses strategy H this means
that credit for (at minimum) stage j∗ and j∗ + 1 remains unclaimed. The
probability that scientist i claims credit for stage j∗+1 is at least λiji

/σE (this
is the probability that she completes a stage before anyone else assuming all
scientists immediately learn the solution to stage j∗; in reality her chance of
claiming stage j∗ + 1 may be higher because some scientists need to finish
stage j∗ first). Moreover she has some positive probability of claiming credit
for stage j∗. So scientist i’s expected credit from stages j′+ 1 through j∗+ 1
is strictly greater than cj∗+1λiji

/σE.
Putting this all together yields

j∗+1∑
j=j′+1

cj PrH(Rj) <
j∗+1∑

j=j′+1
cj −

∑
i:ji≤j∗

cj∗+1
λij∗+1

σE

−
∑

i:ji≥j∗+1
cj∗+1

λiji

σE

=
j∗∑

j=j′+1
cj + cj∗+1

1−
∑

i:ji≤j∗

λij∗+1

σE

−
∑

i:ji≥j∗+1

λiji

σE


=

j∗∑
j=j′+1

cj + cj∗+1
λi∗

σE

,

where the inequality is strict because at least one of the sets {i : ji ≤ j∗}
and {i : ji ≥ j∗ + 1} is nonempty.

Now the overall proof can be completed.

Proof of theorem 3.2.a. As noted above,
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E (ui∗(H)) = ai∗ +
k∑

j=j′+1
cj PrH(Rj).

From lemma B.1 it follows that

E (ui∗(H)) ≤ ai∗ +
j∗+1∑

j=j′+1
cj PrH(Rj) +

k∑
j=j∗+2

cj PrE(Rj).

Combining this with lemma B.2 yields

E (ui∗(H)) < ai∗ +
j∗∑

j=j′+1
cj + cj∗+1

λi∗

σE

+
k∑

j=j∗+2
cj PrE(Rj)

= E (ui∗(E)) .

This shows that scientist i∗ prefers to play strategy E at the present decision
node, and hence the induction goes through. Because the preference for E
over H is strict, the solution is unique.

Proof of theorem 7.1.a. The average credit per unit time to scientist i∗ under
either strategy is equal to the total credit scientist i∗ expects to get from the
Game divided by the expected duration of the Game (this holds because
scientists are modeled as Poisson processes, cf. the proof of theorem A.5).
By the proof just given scientist i∗’s expected total credit is higher if she
plays strategy E at the present decision node than if she plays strategy H.
The expected duration of the Game is at least as high when she chooses
strategy H as when she chooses strategy E. So scientist i∗’s average credit
per unit time must also be higher when she chooses strategy E at the present
decision node than when she chooses strategy H.
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