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INDISTINGUISHABILITY

SIMON SAUNDERS

By the end of the 19th century the concept of particle indistinguishability had
entered physics in two apparently quite independent ways: in statistical me-
chanics, where, according to Gibbs, it was needed in order to define an extensive
entropy function; and in the theory of black-body radiation, where, according
to Planck, it was needed to interpolate between the high frequency (Wien law)
limit of thermal radiative equilibrium, and the low frequency (Rayleigh-Jeans)
limit. The latter, of course, also required the quantization of energy, and the
introduction of Planck’s constant: the birth of quantum mechanics.

It was not only quantum mechanics. Planck’s work, and later that of Einstein
and Debye, foreshadowed the first quantum field theory as written down by
Dirac in 1927. Indistinguishability is essential to the interpretation of quantum
fields in terms of particles (Fock space representations), and thereby to the
entire framework of high-energy particle physics as a theory of local interacting
fields.

In this essay, however, we confine ourselves to particle indistinguishability in
low energy theories, in quantum and classical statistical mechanics describing
ordinary matter. We are also interested in indistinguishability as a symmetry,
to be treated in a uniform way with other symmetries of physical theories, espe-
cially with space-time symmetries. That adds to the need to study permutation
symmetry in classical theory – and returns us to Gibbs and the derivation of
the entropy function.

The concept of particle indistinguishability thus construed faces some obvi-
ous challenges. It remains controversial, now for more than a century, whether
classical particles can be treated as indistinguishable; or if they can, whether
the puzzles raised by Gibbs are thereby solved or alleviated; and if so, how the
differences between quantum and classical statistics are to be explained. The
bulk of this essay is on these questions. In part they are philosophical. As Quine
remarked:

Those results [in quantum statistics] seem to show that there is no
difference even in principle between saying of two elementary parti-
cles of a given kind that they are in the respective places a and b and
that they are oppositely placed, in b and a. It would seem then not
merely that elementary particles are unlike bodies; it would seem
that there are no such denizens of space-time at all, and that we
should speak of places a and b merely as being in certain states,
indeed the same state, rather than as being occupied by two things.
(Quine 1990, 35).
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He was speaking of indistinguishable particles in quantum mechanics, but if
particles in classical theory are treated the same way, the same questions arise.

This essay is organized in three sections. The first is on the Gibbs paradox
and is largely expository. The second is on particle indistinguishability, and
the explanation of quantum statistics granted that classical particles just like
quantum particles can be treated as permutable. The third is on the more
philosophical questions raised by sections 1 and 2, and on the question posed by
Quine. There is a special difficulty in matters of ontology in quantum mechanics,
if only because of the measurement problem.1 I shall, so far as is possible, be
neutral on this this. My conclusions apply to most realist solutions of the
measurement problem, and even some non-realist ones.

1. THE GIBBS PARADOX

1.1 Indistinguishability and the quantum

Quantum theory began with a puzzle over the statistical equilibrium of radiation
with matter. Specifically, Planck was led to a certain combinatorial problem:
for each frequency υs, what is the number of ways of distributing an integral
number Ns of ‘energy elements’ over a system of Cs states (or ‘resonators’)?

The distribution of energy over each type of resonator must now be
considered, first, the distribution of the energy Es over the Cs res-
onators with frequency υs. If Es is regarded as infinitely divisible,
an infinite number of different distributions is possible. We, how-
ever, consider - and this is the essential point - Es to be composed
of a determinate number of equal finite parts and employ in their
determination the natural constant h= 6.55×10−27 erg sec. This
constant, multiplied by the frequency, υs, of the resonator yields
the energy element ∆εs in ergs, and dividing Es by hυs, we obtain
the number Ns, of energy elements to be distributed over the Cs
resonators. (Planck 1900, 239).2

Thus was made what is quite possibly the most successful single conjecture in
the entire history of physics: the existence of Planck’s constant h, postulated in
1900 in the role of energy quantization.

The number of distributions Zs, or microstates as we shall call them, as a
function of frequency, was sought by Planck in an effort to apply Boltzmann’s
statistical method to calculate the energy-density Es of radiative equilibrium as

1See Wallace (2013), Bacciagaluppi (2013).
2I have used a different notation from Planck’s for consistency with the notation in the

sequel.
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a function of temperature T and of Zs. To obtain agreement with experiment
he found

Zs =
(Ns + Cs − 1)!

Ns!(Cs − 1)!
. (1)

The expression has a ready interpretation: it is the number of ways of distribut-
ing Ns indistinguishable elements over Cs distinguishable cells – of noting only
how many elements are in which cell, not which element is in which cell.3 Equiv-
alently, the microstates are distributions invariant under permutations. When
this condition is met, we call the elements permutable.4 Following standard
physics terminology, they are identical if these elements, independent of their
microstates, have exactly the same properties (like charge, mass, and spin).

Planck’s ‘energy elements’ at a given frequency were certainly identical; but
whether or not it followed that they should be considered permutable was hotly
disputed. Once interpreted as particles (‘light quanta’), as Einstein proposed,
there was a natural alternative: why not count microstates as distinct if they
differ in which particle is located in which cell, as had Boltzmann in the case
of material particles? On that count the number of distinct microstates should
be:

Zs = CNss . (2)

Considered in probabilistic terms, again as Einstein proposed, if each of the Ns
elements is assigned one of the Cs cells at random, independent of each other,
the number of such assignments will be given by (2), each of them equiprobable.

But whilst (2) gave the correct behaviour for Es in the high-frequency limit
(Wien’s law), it departed sharply from the Planck distribution at low frequen-
cies. Eq.(1) was empirically correct, not (2). The implication was that if light
was made of particles labelled by frequency, they were particles that could not
be considered as independent of each other at low frequencies.5

Eq.(1) is true of bosons; bosons are represented by totally symmetrized states
in quantum mechanics and quantum field theory; totally symmetrized states are
entangled states. There is no doubt that Einstein, and later Schrödinger, were
puzzled by the lack of independence of light-quanta at low frequencies. They
were also puzzled by quantum non-locality and entanglement. It is tempting to
view all these puzzles as related.6 Others concluded that light could not after
all be made of particles, or that it is made up of both particles and waves, or it

3A microstate as just defined can be specified as a string of Ns symbols ‘p’ and Cs − 1
symbols ‘|’ (thus, for e.g. Ns = 3, Cs = 4, the string p||pp| corresponds to one particle in the
first cell, none in the second, two in the third, and none in the fourth). The number of distinct
strings is (Ns+Cs−1)! divided by (Cs−1)!Ns!, because permutations of the symbol ‘|’ among
themselves or the symbol ‘p’ among themselves give the same string. (This derivation of (1)
was given by Ehrenfest in 1912.)

4I take ‘indistinguishable’ and ‘permutable’ to mean the same. But others take ‘indis-
tinguishable’ to have a broader meaning, so I will give up that word and use ‘permutable’
instead.

5The locus classicus for this story is Jammer [1966], but see also Darrigol [1991].
6Or as at bottome the same, as argued most prominently by Howard [1990].
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is made up of a special category of entities that are not really objects at all.7

We shall come back to these questions separately.
For Planck’s own views on the matter, they were perhaps closest to Gibbs’.8

Gibbs had arrived at the concept of particle indistinguishability quite indepen-
dent of quantum theory. To understand this development, however, considerably
more stage-setting is needed, in both classical statistical mechanics and ther-
modynamics, the business of sections 1.2-1.4. (Those familiar with the Gibbs
paradox may skip directly to 1.5.)

1.2 The Gibbs paradox in thermodynamics

Consider the entropy of a volume V of gas composed of NA molecules of kind A
and NB molecules of kind B9. It differs from the entropy of a gas at the same
temperature and pressure when A and B are identical. The difference is:

−kNA logNA − kNB logNB + k(NA +NB) log(NA +NB) (3)

where k is Boltzmann’s constant, k = 1.38 ×10−16 erg K−1. The expression (3)
is unchanged no matter how similar A and B are, even when in practise the two
gases cannot be distinguished; but it must vanish when A and B are the same.
This is the Gibbs paradox in thermodynamics.

It is not clear that the puzzle as stated is really paradoxical, but it certainly
bears on the notion of identity – and on whether identity admits of degrees.
Thus Denbigh and Redhead argue:

The entropy of mixing has the same value...however alike are the two
substances, but suddenly collapses to zero when they are the same.
It is the absence of any ‘warning’ of the impending catastrophe, as
the substances are made more and more similar, which is the truly
paradoxical feature (Denbigh and Redhead [1989, 284].)

The difficulty is more severe for those who see thermodynamics as founded on
operational concepts. Identity, as distinct from similarity under all practical
measurements, seems to outstrip any possible experimental determination.

To see how experiment does bear on the matter, recall that the classical
thermodynamic entropy is an extensive function of the mass (or particle number)
and volume. That is to say, for real numbers λ, the thermodynamic entropy S
as a function of N and V scales linearly:

S(λN, λV, T ) = λS(N,V, T ), λ ∈ R.
7As suggested by Quine. See French and Kraus [2006] for a comprehensive survey of

debates of this kind.
8See Planck [1912], [1921] and, for commentary, Rosenfeld [1959].
9This section largely follows van Kampen [1984].
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By contrast the pressure and temperature are intensive variables that do not
scale with mass and volume. The thermodynamic entropy function for an ideal
gas is:

S(P, T,N) =
5

2
Nk log T −Nk logP + cN (4)

where c is an arbitrary constant. It is extensive by inspection.
The extensivity of the entropy allows one to define the analogue of a den-

sity – entropy per unit mass or unit volume – important to non-equilibrium
thermodynamics, but the concept clearly has its limits: for example, it is hardly
expected to apply to gravitating systems, and more generally ignores surface ef-
fects and other sources of inhomogeneity. It is to be sharply distinguished from
additivity of the entropy, needed to define a total entropy for a collection of
equilibrium systems each separately described – typically, as (at least initially)
physically isolated systems. The assumption of additivity is that a total entropy
can be defined as their sum:

SA+B = SA(NA, VA, TA) + SB(NB , VB , TB).

It is doubtful that any general statement of the second law would be possible
without additivity. Thus, collect together a dozen equilibrium systems, some
samples of gas, others homogeneous fluids or material bodies, initially isolated,
and determine the entropy of each as a function of its temperature, volume,
and mass. Energetically isolate them from external influences, but allow them
to interact with each other in any way you like (mechanical, thermal, chemical,
nuclear), so long as the result is a new collection of equilibrium systems. Then
the second law can be expressed as: the sum of the entropies of the latter systems
is equal to or greater than the sum of the entropies of the former systems.10

Now for the connection with the Gibbs paradox. The thermodynamic en-
tropy difference between states 1 and 2 is defined as the integral, over any
reversible process11 that links the two states, of dQ/T , that is as the quantity:

∆S = S2 − S1 =

∫ 2

1

dQ

T

where dQ is the heat transfer. If the insertion or removal of a partition between
A and B is to count as a reversible process, then from additivity and given
that negligible work is done on the partition it follows there will be no change
in entropy, so no entropy of mixing. This implies the entropy must be exten-
sive. Conversely extensivity, under the same presupposition, and again given
additivity, implies there is no entropy of mixing.

Whether or not the removal of a partition between A and B should count
as a reversible process is another matter: surely not if means are available to
tell the two gases apart. Thus if a membrane is opaque to A, transparent to B,

10See Lieb and Yngvason [1999] for a statement of the second law at this level of generality.
11Meaning a process which at any point in its progress can be reversed, to as good an

approximation as is required. Necessary conditions are that temperature gradiants are small
and effects due to friction and turbulence are small (but it is doubtful these are sufficient).
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under compression work PAdV must be done against the partial pressure PA in
voiding one part of the cylinder of gas A (and similarly for B), where:

PA =
NA

NA +NB
P, PB =

NB
NA +NB

P.

The work dW required to separate the two gases isothermally at temperature
T is related to the entropy change and the heat transfer by:

dQ = dW + TdS.

Using the equation of state for the ideal gas to determine dW = PdV

PV = kNT

where N = NA+NB , the result is the entropy of mixing, Eq.(3). However, there
can be no such semi-permeable membrane when the two gases are identical,12

Would it matter to the latter conclusion if the differences between the two
gases were sufficiently small (were ignored or remained undiscovered)? But as
van Kampen argues, it is hard to see how the chemist will be led into any
practical error in ignoring an entropy of mixing, if he cannot take mechanical
advantage of it. Most thermodynamic substances, in practise, are composites
of two or more substances (typically, different isotopes), but such mixtures are
usually treated as homogeneous. In thermodynamics, as a science based on op-
erational concepts, the meaning of the entropy function does not extend beyond
the competencies of the experimenter:

Thus, whether such a process is reversible or not depends on how
discriminating the observer is. The expression for the entropy de-
pends on whether or not he is able and willing to distinguish between
the molecules A and B. This is a paradox only for those who attach
more physical reality to the entropy than is implied by its definition.
(Van Kampen [1984, 307].)

A similar resolution of the Gibbs paradox was given by Jaynes [1992]. It ap-
pears, on this reading, that the entropy is not a real physical property of a
thermodynamic system, independent of our knowledge of it. According to Van
Kampen, it is attributed to a system on the basis of a system of conventions – on
whether the removal of a partition is to be counted as a reversible process, and
on whether or not the entropy function for the two samples of gas is counted as
extensive. That explains why the entropy of mixing is an all-or-nothing affair.

12At least in the absence of Maxwell demons: see section 3.1.
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1.3 The Gibbs paradox in statistical mechanics

Thermodynamics is the one fundamental theory of physics that might lay claim
to being based on operational concepts and definitions. The situation is dif-
ferent in statistical mechanics, where the concept of entropy is not limited to
equilibrium states, nor bound to the concept of reversibility.

There is an immediate difficulty, however; for the classical derivations of the
entropy in statistical mechanics yield a function that is not extensive, even as
an idealization. That is, classically, there is always an entropy of mixing, even
for samples of the same gas. If the original Gibbs paradox was that there was
no entropy of mixing in the limit of identity, the new paradox is that there is.13

To see the nature of the problem, it will suffice to consider the ideal gas,
using the Boltzmann definition of entropy, so-called14. The state of a system
of N particles is represented by a set of N points in the 6−dimensional 1-
particle phase space (or µ−space), or equivalently, by a single point in the total
6N−dimensional phase space ΓN . A fine-graining of ΓN is a division of this
space into cells of equal volume τN (corresponding to a division of µ−space
into cells of volume τ , where τ has dimensions of [momentum]3[length]3). A
coarse-graining is a division of ΓN into regions with a given range of energy.
For weakly interacting particles these regions can be parametrized by the one-
particle energies εs, with Ns the number of particles with energy in the range
[εs, εs + ∆εs], and the coarse-graining extended to µ−space as well. These
numbers must satisfy: ∑

s

Ns = N ;
∑
s

Nsεs = E (5)

where E is the total energy. Thus, for any fine-grained description (microstate)
of the gas, which specifies how, for each s, Ns particles are distributed over the
fine-graining, there is a definite coarse-grained description (macrostate) which
only specifies the number in each energy range. Each macrostate corresponds
to a definite volume of phase space.

We can now define the Boltzmann entropy of a gas of N particles in a
given microstate: it is proportional to the logarithm of the volume, in ΓN , of
the corresponding macrostate. In this the choice of τ only effects an additive
constant, irrelevant to entropy differences.

This entropy is computed as follows. For each s, let there be Cs cells in
µ−space of volume τ bounded by the energies εs, εs+∆ε, containingNs particles.
Counting microstates as distinct if they differ in which particles are in which
cells, we use (2) for the number of microstates, each with the same phase space
volume τNs , yielding the volume:

Zsτ
Ns = CNss τNs . (6)

13I owe this turn of phrase to Jos Uffink.
14Boltzmann defined the entropy in several different ways; see Bach [1990].
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The product of these quantities (over s) is the N−particle phase-space volume of
the macrostate N1, N2, ..., Ns, .. for just one way of partitioning the N particles
among the various 1−particle energies. There are

N !

N1!..Ns!....
(7)

partitionings in all. The total phase space volume WB (‘B’ is for Boltzmann)
of the macrostate N1, N2, ..., Ns, .. is the product of terms (6) (over s) and (7):

WB =
N !

N1!..Ns!....

∏
s

CNss τNs (8)

and the entropy is:

SB = k logWB = k log

[
N !

N1!..Ns!....

∏
s

CNss τNs

]
.

From the Stirling approximation for x large, log x! ≈ x log x− x:

SB ≈ kN logN + k
∑
s

Ns log
Cs
Ns

+ kN log τ. (9)

By inspection, this entropy function is not extensive. When the spatial volume
and particle number are doubled, the second and third expressions on the RHS
scale properly, but not the first. This picks up a term kN log 2, corresponding
to the 2N choices as to which of the two sub-volumes contains which particle.

One way to obtain an extensive entropy function is to simply subtract the
term kN logN . In the Stirling approximation (up to a constant scaling with
N and V ) that is equivalent to dividing the volume (8) by N !. But with what
justification? If, after all, permutations of particles did not yield distinct fine-
grained distributions, the factor (7) would not be divided by N !; it would be
set equal to unity. Call this the N ! problem. This is itself sometimes called
the Gibbs paradox, but is clearly only a fragment of it. It is the main topic of
sections 1.5 and 2.1.

1.4 The equilibrium entropy

Although not needed in the sequel, for completeness we obtain the equilibrium
entropy, thus making the connection with observable quantities.15

A system is in equilibrium when the entropy of its coarse-grained distribution
is a maximum; that is, when the entropy is stationary under variation of the
numbers Ns → Ns + δNs, consistent with (5), i.e. from (9):

0 = δS
B

=
∑
s

[δNs logCs − δNs logNs − δNs] (10)

15For a text-book derivation using our notation, see e.g. Hercus [1950].
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where ∑
s

δNs = 0;
∑
s

δNsεs = 0. (11)

If the variations δNs were entirely independent, each term in the summand
(10) would have to vanish. Instead introduce Lagrange multipliers a, β for the
respective constraint equations (11). Conclude for each s:

logCs − logNs − α− βεs = 0.

Rearranging:
Ns = Cs(e

−α−βεs). (12)

Substituting in (9) and using (5) gives the equilibrium entropy S
B

:

S
B

= kN logN + k
∑
s

Ns(α+ βεs) + kN log τ

= kN logN + kNα+ kβE + kN log τ. (13)

The values of α and β are fixed by (5) and (12). Replacing the schematic label
s by coordinates on phase space for a monatomic gas −→x ,−→p , with εs the kinetic
energy 1

2m
−→p 2, the sum over Ns in the first equation of (5) becomes:

e−α
∫
V

∫
e−

β
2m
−→p 2

d3xd3p = N.

The spatial integral gives the volume V ; the momentum integral gives (2πm/β)3/2,
so

e−α =
N

V
(2πm/β)−3/2.

From the analogous normalization condition on the total energy (the second
constraint (5)), substituting (12) and given that for an ideal monatomic gas
E = 3

2NkT , deduce that β = 1
kT . Substituting in (13), the equilibrium entropy

is:

S
B

(N,V, T ) = Nk log V +
3

2
kN log 2πmkT +

3

2
Nk +Nk log τ.

It is clearly not extensive. Compare Eq.(4), which using the equation of state
for the ideal gas takes the form (the Sackur-Tetrode equation):

S(N,V, T ) = Nk log
V

N
+

3

2
kN log 2πmkT + cN

where c is an arbitrary constant. They differ by the term Nk logN , as already
noted.

1.5 The N ! puzzle

The N ! puzzle is this: what justifies the subtraction of the term Nk logN from
the entropy? Or equivalently, what justifies the division of the phase space
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volume Eq.(8) by N !? In fact it has a fairly obvious answer (see section 2.1):
classical particles, if identical, should be treated as permutable, just like identical
quantum particles. But this suggestion has rarely been taken seriously.

Much more widely favoured is the view that quantum theory is needed. Clas-
sical statistical mechanics is not after all a correct theory; quantum statistical
mechanics (Eq.(1)), in the dilute limit Cs � Ns, gives:

Zs =
(Ns + Cs − 1)!

Ns!(Cs − 1)!
≈ CNs
Ns!

yielding the required correction to (6) (setting (7) to unity). Call this the
orthodox solution to the N ! puzzle.

This reasoning, so far as it goes, is perfectly sound, but it does not go very
far. It says nothing about why particles in quantum theory but not classical
theory are permutable. If rationale is offered, it is that classical particles are
localized in space and hence are distinguishable (we shall consider this in more
detail in the next section); and along with that, that the quantum state for
identical particles is unchanged.16 But how the two are connected is rarely
explained.

Erwin Schrödinger, in his book Statistical Thermodynamics, did give an
analysis:

It was a famous paradox pointed out for the first time by W. Gibbs,
that the same increase of entropy must not be taken into account,
when the two molecules are of the same gas, although (according
to naive gas-theoretical views) diffusion takes place then too, but
unnoticeably to us, because all the particles are alike. The modern
view [of quantum mechanics] solves this paradox by declaring that in
the second case there is no real diffusion, because exchange between
like particles is not a real event - if it were, we should have to take
account of it statistically. It has always been believed that Gibbs’s
paradox embodied profound thought. That it was intimately linked
up with something so important and entirely new [as quantum me-
chanics] could hardly be foreseen. ((Schrödinger [1946, 61].)

Evidently, by ‘exchange between like particles’ Schrödinger meant the sort of
thing that happens when gases of classical molecules diffuse – the trajectories
of individual molecules are twisted around one another – in contrast to the
behaviour of quantum particles, which do not have trajectories, and so do not
diffuse in this way. But as for why the exchange of quantum particles ‘is not a
real event’ (whereas it is classically) is lost in the even more obscure question
of what quantum particles really are. Schrödinger elsewhere said something
more, He wrote of indistinguishable particles as ‘losing their identity’, as ‘non-
individuals’, in the way of units of money in the bank (they are ‘fungible’).
That fitted with Planck’s original idea of indistinguishable quanta as elements
of energy, rather than material things – so, again, quite unlike classical particles.

16Statements like this can be found in almost any textbook on statistical mechanics.
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On this point there seems to have been wide agreement. Schrödinger’s claims
about the Gibbs paradox came under plenty of criticism, for example, by Otto
Stern, but Stern remarked at the end:

In conclusion, it should be emphasized that in the foregoing remarks
classical statistics is considered in principle as a part of classical me-
chanics which deals with individuals (Boltzmann). The conception
of atoms as particles losing their identity cannot be introduced into
the classical theory without contradiction. (Stern [1949, 534].)

This comment or similar can be found scattered throughout the literature on
the foundations of quantum statistics.

There is a second solution to the N ! puzzle that goes in the diametrically-
opposite direction: it appeals only to classical theory, precisely assuming particle
distinguishability. Call this the ‘classical’ solution to the puzzle.

Its origins lie in a treatment by Ehrenfest and Trkal [1920] of the equilibrium
conditions for molecules subject to disassociation into a total of N∗ atoms.
This number is conserved, but the number of molecules NA, NB , ... formed
of these atoms, of various types A, B,... may vary. The dependence of the
entropy function on N∗ is not needed since this number never changes: it is the
dependence on NA , NB , ... that is relevant to the extensivity of the entropy for
molecules of type A, B, ..., which can be measured. By similar considerations as
in section 1.3, the number of ways the N∗ atoms can be partitioned among NA
molecules of type A, NB molecules of type B, ... is the factor N∗!/NA!NB !....
This multiplies the product of all the phase space volumes for each type of
molecule, delivering the required division by NA! for molecules of type A, by
NB ! for molecules of type B, and so on (with the dependence on N∗ absorbed
into an overall constant).

A similar argument was given by van Kampen [1984], but using Gibbs’ meth-
ods. The canonical ensemble for a gas of N∗ particles has the probability dis-
tribution:

W (N∗, q, p) = f(N∗)e−βH(q,p).

Here (q, p) are coordinates on the 6N∗ dimensional phase space for the N∗ par-
ticles, which we suppose are confined to a volume V ∗, H is the Hamiltonian,
and f is a normalization constant. Let us determine the probability of find-
ing N particles with total energy E in the sub-volume V (so N ′ = N∗ − N
are in volume V ′ = V ∗ − V ). If the interaction energy between particles in
V ′ and V is small, the Hamiltonian HN∗ of the total system can be approx-
imately written as the sum HN + HN ′ of the Hamiltonians for the two sub-
systems. The probability density W (N, q, p) for N particles as a function of
〈N, q, p〉 = 〈−→q 1

−→, p1;−→q 2
−→, p2; ....;−→q N ,−→p N 〉 where −→q i ⊂ V is then the marginal

on integrating out the remaining N ′ particles in V ′, multiplied by the number
of ways of selecting N particles from N∗ particles. The latter is given by the
binomial function: (

N∗

N

)
=

N∗!

(N∗ −N)!N !
.
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The result is:

W (N, q, p) = f(N∗)

(
N∗

N

)
e−βHN (N,q,p)

∫
V ′
e−βHN′ (N

′,q′,p′)dq′dp′.

In the limit N∗ � N,the binomial is to a good approximation:

N∗!

(N∗ −N)!N !
≈ N∗N

N !
.

The volume integral yields V ′N
∗−N . For non-interacting particles, for constant

density ρ = V ′/N ′ in the large volume limit V ′ � V we obtain:

W (N, q, p) ≈ f(N∗, V ∗)
zN

N !
e−βHN (q,p)

where z is a function of ρ and β. It has the required division by N !.
Evidently this solution to the N ! puzzle is the same as in Ehrenfest and

Trkal’s derivation: extensivity of the entropy can only be obtained for an open
system, that is, for a proper subsystem of a closed system, never for a closed one
– and it follows precisely because the particles are non-permutable. The tables
are thus neatly turned.17.

Which of the two, the orthodox or the classical, is the ‘correct’ solution to
the N ! puzzle? It is tempting to say that both are correct, but as answers to
different questions: the orthodox solution is about the thermodynamics of real
gases, governed by quantum mechanics, and the classical solution is about the
consistency of a hypothetical classical system of thermodynamics that in reality
does not exist. But on either line of reasoning, identical quantum particles
are treated as radically unlike identical classical particles (only the former are
permutable).18 This fits with the standard account of the departures of quantum
from classical statistics: they are explained by permutability. But it is a false
dichotomy.

2. INDISTINGUISHABILITY AS A
UNIFORM SYMMETRY

2.1 Gibbs’ solution

There is another answer as to which of the two solutions to the N ! puzzle is
correct: neither. The N ! puzzle arises in both classical and quantum theories

17For another variant of the Ehrenfest-Trkall approach, see Swendsen [2002, 2006, Nagle
[2004].)

18Note added Sep 2016. An exception is Shigeji Fujita, who in a much-neglected article
(neglected by me) argued that indistinguishability is inherited from quantum statistical me-
chanics in the classical limit and therefore that classical particles are permutable just as are
quantum particles. See Fujita [1990].
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and is solved in exactly the same way: by passing to the quotient space (of phase
space and Hilbert space respectively). This is not to deny that atoms really are
quantum mechanical, or that measurements of the dependence of the entropy
on particle number are made in the way that Ehrenfest et al envisaged; it is to
deny that the combinatorics factors thus introduced are, except in special cases,
either justified or needed.

Gibbs, in his Elementary Principles in Statistical Mechanics, put the matter
as follows:

If two phases differ only in that certain entirely similar particles have
changed places with one another, are they to be regarded as identical
or different phases? If the particles are regarded as indistinguishable,
it seems in accordance with the spirit of the statistical method to
regard the phases as identical. (Gibbs [1902,187].)

He proposed that the phase of an N−particle system be unaltered ‘by the ex-
change of places between similar particles’. Phases (points in phase space) like
this he called ‘generic’ (and those that are altered, ‘specific’). The state space
of generic phases is the reduced phase space ΓN/ΠN , the quotient space under
the permutation group ΠN of N elements. In this space points of ΓN related
by permutations are identified.

The suggestion is that even classically, the expressions (6) and (7) are wrong.
(7) is replaced by unity (as already noted): there is just one way of partitioning
N permutable particles among the various states so as to give Ns particles to
each state. But (6) is wrong too: it should be replaced by the volume of reduced
phase space corresponding to the macrostate (for s), the volume

(Csτ)Ns

Ns!
.

For the macrostate N1, N2, ..., Ns, .. the total reduced volume, denote W red is:

W red =
∏
s

CNss τNs

Ns!
=
WB

N !
. (14)

The derivation does not depend on the limiting behaviour of Eq.(1), or on
the assumption of equiprobability or equality of volume of each fine-grained
distribution (and is in fact in contradiction with that assumption, as we shall
see).

Given (14), there is no entropy of mixing. Consider a system of particles all
with the same energy εs. The total entropy before mixing is, from additivity:

SA + SB = k log

(
CNAA τNA

NA!

CNBB τNA

NB !

)
. (15)

After mixing, if A and B are identical:

SA+B = k log
(CA + CB)NA+NBτNA+NB

(NA +NB)!
. (16)
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If the pressure of the two samples is initially the same (so CA/NA = CB/NB),
the quantities (15), (16) should be approximately equal19 – as can easily be
verified in the Stirling approximation. But if A and B are not identical, and
permutations of A particles with B particles isn’t a symmetry, we pass to the
quotient spaces under ΠNA and ΠNB separately and take their product, and the
denominator in (16) should be NA!NB !. With that SA +SB and SA+B are no
longer even approximately the same.

Gibbs concluded his discussion of whether to use generic or specific phases
with the words, ”The question is one to be decided in accordance with the re-
quirements of practical convenience in the discussion of the problems with which
we are engaged” (Gibbs [1902, 188].) Practically speaking, if we are interested
in defining an extensive classical entropy function (even for closed systems), use
of the generic phase (permutability) is clearly desirable. On the other hand,
integral and differential calculus is simple on manifolds homeomorphic to R6N ,
like ΓN ; the reduced phase space ΓN/ΠN has by contrast a much more complex
topology (a point made by Gibbs). If the needed correction, division by N !, can
be simply made at the end of a calculation, the second consideration will surely
trump the first.

2.2. Arguments against classical indistinguishability

Are there principled arguments against permutability thus treated uniformly,
the same in the classical as in the quantum case? The concept of permutability
can certainly be misrepresented. Thus, classically, of course it makes sense to
move atoms about so as to interchange one with another, for particles have
definite trajectories; in that sense an ‘exchange of places’ must make for a
real physical difference, and in that sense ‘indistinguishability’ cannot apply to
classical particles.

But that is not what is meant by ‘interchange’ – Schrödinger was just mis-
leading on this point. It is interchange of points in phase space whose signifi-
cance is denied, not in configuration space over time. Points in phase-space are
in 1 : 1 correspondence with the dynamically allowed trajectories. A system of
N particles whose trajectories in µ−space swirl about one another, leading to
an exchange of two or more of them in their places in space at two different
times, is described by each of N ! points in the 6N−dimensional phase space
ΓN , each faithfully representing the same swirl of trajectories in µ−space (but
assigning different labels to each trajectory). In passing to points of the quotient
space ΓN/ΠN there is therefore no risk of descriptive inadequacy in representing
particle interchange in Schrödinger’s sense.

Another and more obscure muddle is to suppose that points of phase space
can only be identified insofar as they are all traversed by one and the same tra-
jectory. That appears to be the principle underlying van Kampen’s argument:

19Should they be exactly equal? No, because it is an additional constraint to insist, given
that NA + NB particles are in volume V A + VB , that exactly NA are in VA and NB in VB .
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One could add, as an aside, that the energy surface can be parti-
tioned in N ! equivalent parts, which differ from one another only by
a permutation of the molecules. The trajectory, however, does not
recognize this equivalence because it cannot jump from one point to
an equivalent one. There can be no good reason for identifying the
Z−star [the region of phase space picked out by given macroscopic
conditions] with only one of these equivalent parts. (Van Kampen
1984, 307).

But if the whole reason to consider the phase-space volumes of macrostates in
deriving thermodynamic behaviour is because (say by ergodicity) they are pro-
portional to the amount of time the system spends in the associated macrostates,
then, just because the trajectory cannot jump from one point to an equivalent
one, it should enough to consider only one of the equivalent parts of the Z−star.
We should draw precisely the opposite conclusion to van Kampen.

However van Kampen put the matter somewhat differently – in terms, only,
of probability:

Gibbs argued that, since the observer cannot distinguish between
different molecules, ”it seems in accordance with the spirit of the
statistical method” to count all microscopic states that differ only
by a permutation as a single one. Actually it is exactly opposite to
the basic idea of statistical mechanics, namely that the probability
of a macrostate is given by the measure of the Z-star, i.e. the number
of corresponding, macroscopically indistinguishable microstates. As
mentioned...it is impossible to justify the N! as long as one restricts
oneself to a single closed system. (van Kampen 1984, 309, emphasis
added).

Moreover, he speaks of probabilities of macroscopically indistinguishable mi-
crostates, whereas the contentious question concerns microscopically indistin-
guishable microstates. The contentious question is whether microstates that
differ only by particle permutations, with all physical properties unchanged –
which are in this sense indistinguishable – should be identified.

Alexander Bach in his book Classical Particle Indistinguishability defended
the concept of permutability of states in classical statistical mechanics, un-
derstood as the requirement that probability distributions over microstates be
invariant under permutations. But what he meant by this is the invariance of
functions on ΓN . As such, as probability measures, they could never provide
complete descriptions of the particles (unless all their coordinates coincide) –
they could not be concentrated on individual trajectories. He called this the
‘deterministic setting’. In his own words:

Indistinguishable Classical Particles Have No Trajectories.
The unconventional role of indistinguishable classical particles is best
expressed by the fact that in a deterministic setting no indistinguish-
able particles exist, or - equivalently - that indistinguishable classical

15



particles have no trajectories. Before I give a formal proof I argue
as follows. Suppose they have trajectories, then the particles can be
identified by them and are, therefore, not indistinguishable. (Bach
1997, 7).

His formal argument was as follows. Consider the coordinates of two particles at
a given time. in 1-dimension, as an extremal of the set of probability measures
M1

+(R2) on R2 (a 2−dimensional configuration space), from which, assuming
the two particles are impenetrable, the diagonal D = {< x, x >∈ R2, x ∈ R} has
been removed. Since indistinguishable, the state of the two particles must be
unchanged under permutations (permutability), so it must be in M1

+,sym(R2),
the space of symmetrized measures. It consists of sums of delta functions of the
form:

µx,y =
1

2
(δ<x,y> + δ<y,x>) , < x, y >∈ R2\D

But no such state is an extremal of M1
+(R2).

As already remarked, the argument presupposes that the coordinates of the
two particles defines a point in M1

+(R2), the unreduced space, rather than in
M1

+(R2/Π2), the space of probability measures over the reduced space R2/Π2.
In the latter case, since M1

+(R2/Π2) is isomorphic to M1
+,sym(R2)), there is no

difficulty.20

Bach’s informal argument above is more instructive. Why not use the tra-
jectory of a particle to identify it, by the way it twists and turns in space? Why
not indeed: it that is all there is to being a particle, you have already passed
to a trajectory in the quotient space ΓN/ΠN , for those related by permutations
twist and turn in exactly the same way. The concept of particle distinguisha-
bility is not about the trajectory or the one-particle state: it is about the label
of the trajectory or the one-particle state, or equivalently, the question of which
particle has that trajectory, that state.

2.3 Haecceitism

Gibbs’ suggestion was called ‘fundamentally idealistic’ by Rosenfeld, ‘mystical’
by van Kampen, ‘inconsistent’ by Bach; they were none of them prepared to
see in indistinguishability the rejection of what is on first sight a purely meta-
physical doctrine – that after every describable characteristic of a thing has
been accounted for, there still remains the question of which thing has those
characteristics.

The key word is ‘every’; describe a thing only partly, and the question of
which it is of several more precisely described things is obviously physically
meaningful. But microstates, we take it, are maximal, complete descriptions.
If there is a more complete level of description it is the microstate as given by

20Bach’s proof, if sound, would imply that corpuscles in the de Broglie-Bohm pilot-wave
theory are distinguishable (for discussion of particle indistinguishability in pilot-wave theory,
see e.g. Brown et al (1999)).
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another theory, or at a deeper level of description by the same theory, and to
the latter our considerations apply.

The doctrine, now that we have understood it correctly, has a suitably tech-
nical name in philosophy. It is called haecceitism. Its origins are medieval if not
ancient, and it was in play, one way or another, in a connected line of argu-
ment from Newton and Clarke to Leibniz and Kant. That centered on the need,
given symmetries, including permutations, not just for symmetry-breaking in
the choice of initial conditions,21 but for a choice among haecceistic differences
– in the case of continuous symmetries, among values of absolute positions,
absolute directions, and absolute velocities. All parties to this debate agreed
on haecceitism. These choices were acts of God, with their consequences vis-
ible only to God (Newton, Clarke); or they were humanly visible too, but in
ways that couldn’t be put into words – that could only be grasped by ‘intuition’
(Kant); or they involved choices not even available to God, who can only choose
on the basis of reason; so there could be no created things such as indistinguish-
able atoms or points of a featureless space (Leibniz).22

So much philosophical baggage raises a worry in its own right. If it is the
truth or falsity of haecceitism that is at issue, it seems unlikely that it can be
settled by any empirical finding. If that is what the extensivity of the entropy is
about, perhaps extensivity has no real physical meaning after all. It is, perhaps,
itself metaphysical – or conventional. This was the view advocated by Nick
Huggett when he first drew the comparison between Boltzmann’s combinatorics
and haecceitism.23

But this point of view is only remotely tenable if haecceitism is similarly
irrelevant to empirical questions in quantum statistics. And on the face of it
that cannot be correct. Planck was, after all, led by experiment to Eq.(1). Use
of the unreduced state space in quantum mechanics rather than the reduced
(symmetrized) space surely has direct empirical consequences.

Against this two objections can be made. The first, following Reichenbach,
is that the important difference between quantum and classical systems is the
absence in quantum theory of a criterion for the re-identification of identical
particles over time. They are, for this reason, ‘non-individuals’ (this links with
Schrödinger’s writings24). This, rather than any failure of haecceitism, is what is
responsible for the departures from classical statistics.25 The second, following
Post [1970] and French and Redhead [1989] is that haecceitism must be con-
sistent with quantum statistics (including Planck’s formula) because particles,

21As in e.g. a cigar-shaped mass distribution, rather than a sphere. Of course, this is not
really a breaking of rotational symmetry, in that each is described by relative angles and
distances between masses, invariant under rotations.

22For more on Leibniz see Saunders [2003]. For a compilation of original sources and com-
mentary, see Huggett [1999b].

23Huggett [1999a], also endorsed in Albert [2000, 47-8].).
24See Schrödinger [1984, 207-210]. The word ‘individual’ has also been used to mean an

object answering to a unique description at a single time (as ‘absolutely discernible’ in the
terminology of Saunders [2003], [2006b]). Note added Sep 2016: and as re-identifiable over
time (see my [2016] for further discussion

25As recently endorsed by Pooley [2006 section 8].
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even given the symmetrization of the state, may nevertheless possess ‘transcen-
dental’ individuality, and symmetrization of the state can itself be understood
as a dynamical constraint on the state, rather than in terms of permutability.

Of these the second need not detain us. Perhaps metaphysical claims can
be isolated from any possible impact on physics, but better, surely, is to link
them with physics where such links are possible. Or perhaps we were just
wrong to think that haecceitism is a metaphysical doctrine: it just means non-
permutability, it is the rejection of a symmetry.

As for the first, it is simply not true that indistinguishable quantum particles
can never be re-identified over time. Such identifications are only exact in the
kinematic limit, to be sure, and even then only for a certain class of states; but
the ideal gas is commonly treated in just such a kinematic limit, and the restric-
tion in states applies just as much to the reidentification of identical quantum
particles that are not indistinguishable – that are not permutable – but which
are otherwise entangled.

This point needs some defence. Consider first the case of non-permutable
identical particles. The N particle state space is then HN = H⊗H⊗..⊗H, the
N−fold tensor product of the 1−particle state space H. Consider states of the
form:

|Φ〉 =

k-factors︷ ︸︸ ︷
|φ〉a ⊗ |φb〉 ⊗ ...⊗ |φc〉⊗...⊗ |φd〉︸ ︷︷ ︸

N-factors

(17)

where the one-particle states are members of some orthonormal basis (we allow
for repetitions). The kth- particle is then in the one-particle state |φc〉. If the
particles are only weakly interacting, and the state remains a product state, the
kth− particle can also be assigned a one-particle state at later times, namely
the unitary evolute of |φc〉. Even if more than one particle has the initial state
|φc〉, still it will be the case that each particle in that state has a definite orbit
under the unitary evolution. It is true that in those circumstances it would
seem impossible to to tell the two orbits apart, but the same will be true of two
classical particles with exactly the same representative points in µ−space.26

Now notice the limitation of this way of speaking of particles as one-particles
states that are (at least conceptually) identifiable over time: it does not in
general apply to superpositions of states of the form (17) – as will naturally
arise if the particles are interacting, even starting from (17). In general, given
superpositions of product states, there is no single collection of N one-particle
states, or orbits of one-particle states, sufficient for the description of the N
particles over time. In these circumstances no definite histories, no orbits of
one-particle states, can be attributed to identical but distinguishable particles
either.

Now consider identical permutable quantum particles (indistinguishable quan-
tum particles). The state must now be invariant under permutations, so (for

26One might in classical mechanics add the condition that the particles are impenetrable;
but one can also, in quantum mechanics, require that no two particles occupy the same one-
particle state (the Pauli exclusion principle). See sections 2.5, 3.3.
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vector states):
Uπ|Φ〉 = |Φ〉 (18)

for every π ∈ ΠN , where U : π → Uπ is a unitary representation of the permu-
tation group ΠN . Given (18), |Φ〉 must be of the form:

|Φ〉 = c
∑
π∈ΠN

|φπ(a)〉 ⊗ |φπ(b)〉 ⊗ ...⊗ |φπ(c)〉 ⊗ ...⊗ |φπ(d)〉 (19)

and superpositions thereof. Here c is a normalization constant, π ∈ ΠN is a per-
mutation of the N symbols {a, b, ..., c, ..d} (which again, may have repetitions),
and as before, the one-particle states are drawn from some orthonormal set in
H. If non-interacting, and initially in the state (19), the particle in the state
|φc〉 can still be reidentified over time – as the particle in the state which is the
unitary evolute of |φc〉.27 That is to say, for entanglements like this, one-particle
states can still be tracked over time. It is true that we can no longer refer to the
state as that of the kth particle, in contrast to states of the form (17), but that
labelling – unless shorthand for something else, say a lattice position – never
had any physical meaning. As for more entangled states – for superpositions
of states of the form (19) – there is of course a difficulty; but it is the same
difficulty as we encountered for identical but distinguishable particles.

Reichenbach was therefore right to say that quantum theory poses special
problems for the reidentification of identical particles over time, and that these
problems derive from entanglement; but not from the ‘mild’28 form of entangle-
ment required by symmetrization itself (as involved in states of the form (19)),
of the sort that explains quantum statistics. On the other hand, this much is
also true: permutability does rule out appeal to the reduced density matrix to
distinguish each particle in time (defined, for the kth particle, by taking the
partial trace of the state over the Hilbert space of all the particles save the kth).
Given (anti)symmetrization, the reduced density matrices will all be the same.
But it is hard to see how the reduced density matrix can provide an operational
as opposed to a conceptual criterion for the reidentification of an individual
system over time.

What would an operational criterion look like? here is a simple example:
a helium atom in the canister of gas by the laboratory door is thereby distin-
guished from one in the high-vacuum chamber in the corner, a criterion that is
preserved over time. This means: the one-particle state localized in the canister
is distinguished from the one in the vacuum chamber.

We shall encounter this idea of reference and reidentification by location (or
more generally by properties) again, so let us give them a name: call it ‘in-
dividuating reference’, and the properties concerned ‘individuating properties’.
In quantum mechanics the latter can be represented in the usual way by pro-
jection operators. Thus if Pcan is the projector onto the region of space ∆can

27As we shall see, there is a complication in the case of fermions (section 3.3), although it
does not effect the point about identity over time.

28The terminology is due to Penrose [2004, 598]. See Ghirardi et al [2002], 2004] for the
claim that entanglement due to (anti)-symmetrization isn’t really entanglement at all

19



occupied by the canister, and Pcham onto the region ∆cham occupied by the
vacuum chamber, and if |χ1〉, |χ2〉 are localized in ∆can (and similarly |ψ1〉, |ψ2〉
in ∆cham ), then even in the superposition (where |c1|2 + |c2|2 = 1)

|Φ〉 = c1
1√
2

(|χ1〉 ⊗ |ψ1〉+ |ψ1〉 ⊗ |χ1〉)

+c2
1√
2

(|χ2〉 ⊗ |ψ2〉+ |ψ2〉 ⊗ |χ2〉)

one can still say there is a a state in which one particle is in region ∆can and
one in ∆cham (but we cannot say which); still we have:

(Pcan ⊗ Pcham + Pcham⊗Pcan)|Φ〉 = |Φ〉. (20)

If the canister and vacuum chamber are well-sealed, this condition will be pre-
served over time. Individuating properties can be defined in this way just as
well for permutable as for non-permutable identical particles.

It is time to take stock. We asked whether the notion of permutability can
be applied to classical statistical mechanics. We found that it can, in a way
that yields the desired properties of the statistical mechanical entropy function,
bringing it in line with the classical thermodynamic entropy. We saw that ar-
guments for the unintelligibility of classical permutability in the literature are
invalid or unsound, amounting, at best, to appeal to the philosophical doc-
trine of haecceitism. We knew from the beginning that state-descriptions in
the quantum case should be invariant under permutations, and that this has
empirical consequences, so on the most straight-forward reading of haecceitism
the doctrine is false in that context. Unless it is emasculated from all relevance
to physics, haecceitism cannot be true a priori. We wondered if it was required
or implied if particles are to be reidentified over time, and found the answer was
no to both, in the quantum as in the classical case. We conclude: permutation
symmetry holds of identical classical particles just as it does of identical quan-
tum particles, and may be treated in the same way, by passing to the quotient
space.

Yet an important lacuna remains, for among the desirable consequences of
permutation symmetry in the case of quantum particles are the departures from
classical statistics – statistics that are unchanged in the case of classical particles.
Why is there this difference?

2.4 The explanation of quantum statistics

Consider again the classical reduced phase-space volume for the macrostate
N1, N2, ..., Ns, .., as given by Eq.(14):

W red =
∏
s

CNss τNs

Ns!
. (21)
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In effect, Planck replaced the one-particle phase-space volume element τ , hith-
erto arbitrary, by h3, and changed the the factor Zs by which it was multiplied
to obtain:

WBE =
∏
s

(Ns + Cs − 1)!h3Ns

Ns!(Cs − 1)!
. (22)

Continuing from this point, using the method of sections 1.3 and 1.4 one is led
to the equilibrium entropy function and equation of state for the ideal Bose-
Einstein gas. The entire difference between this and the classical ideal gas is
that for each s, the integer CNs is replaced by (Ns + Cs − 1)!/(Cs − 1)!. What
is the rational for this? It does not come from particle indistinguishability
(permutability); that has already been taken into account in (21).

Let us focus on just one value of s, that is, on Ns particles distributed over
Cs cells, all of the same energy (and hereafter drop the subscript s). At the level
of the fine-grained description, in term of how many (indistinguishable) particles
are in each (distinguishable) cell, a microstate is specified by a sequence of fine-

grained occupation numbers < n1, n2, ... , nC >, where
∑C
j=1 nj = N ; there

are many such corresponding to the coarse-grained description (N , C) (for a
single value of s). Their sum is∑

all sequences <n1,..,nC>

s.t.
∑C
k=1 nk=N

1 =
(N + C − 1)!

N !(C − 1)!
(23)

as before. But here is another mathematical identity:29

∑
all sequences <n1,..,nC>

s.t.
∑C
k=1 nk=N

1

n1!...nC !
=

CN

N !
. (24)

In other words, the difference between the two expressions (21) and (22), apart
from the replacement of the unit τ by h3, is that in quantum mechanics every
microstate < n1, n2, ... , nC > has equal weight, whereas in classical mechanics
each is weighted by the factor (n1!...nC !)−1.

Because of this weighting, a classical fine-grained distribution where the N
particles are evenly distributed over the C cells has a much greater weight than
one where most of the particles are concentrated in a small handful. In contrast,
in quantum mechanics, the weights are always the same. Given that ‘weight’,
one way or another, translates into statistics, particles weighted classically thus
tend to repel, in comparison to their quantum mechanical counterparts; or put
the other way, quantum particles tend to bunch together, in comparison to their
classical counterparts.

That is what the weighting does, but why is it there? Consider fig.1a, a
representation of phase space for N = 2, C = 4. Suppose, for concreteness, we
are modelling two classical, non-permutable identical coins, such that the first

29A special case of the multinomial theorem (see e.g. Rapp [1972, 49-50]).
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two cells correspond to one of the coins landing heads (H), and the remainder to
that coin landing tails (T ) (and similarly for the other coin).30 The cells along
the diagonal correspond not just to both coins landing heads or both landing
tails – they are cells in which the two coins have all their fine-grained properties
the same. For any cell away from the diagonal, there is a corresponding cell that

30Of course for macroscopic coins, the assumption of degeneracy of the energy is wildly
unrealistic, but let that pass.
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differs only in which coin has which fine-grained property (its reflection in the
diagonal). Their combined volume in phase space is therefore twice that of any
cell on the diagonal.

The same is true in the reduced phase space, fig.1b. For N = 3 there are
three such diagonals; cells along these have one half the volume of the others.
And there is an additional boundary, where all three particles have the same
fine-grained properties, each with one sixth their volume. The weights in Eq.(24)
follow from the structure of reduced phase space, as faithfully preserving ratios
of volumes of microstates in the unreduced space. As explained by Huggett
[1999], two classical identical coins, if permutable, still yield a weight for {H,T}
twice that of the weight for {H,H} or {T, T}, just as for non-permutable coins,
that is with probabilities one-half, one-quarter, and one-quarter respectively.

Contrast quantum mechanics, where subspaces of Hilbert space replace re-
gions of phase space, and subspace dimension replaces volume measure. Phase
space structure, insofar as it can be defined in quantum theory, is derivative
and emergent. Since the only measure available is subspace dimension, each of
a set of orthogonal directions in each subspace is weighted precisely the same –
yielding, for the symmetrized Hilbert space, Eq.(23) instead.31

But there are two cases when subspace dimension and volume measure are
proportional to one another – or rather, for we take quantum theory as funda-
mental, for when phase-space structure,complete with volume measure, emerges
from quantum theory32. One is in the limit C � N , when the contribution from
the states along the diagonals is negligible in comparison to the total (fig. 2b),
and the other is when the full Hilbert space for non-permutable particles is
used. That is why permutability makes a difference to statistics in the quantum
case but not the classical: for N ≈ C, as in fig 2a, the dimensionality measure
departs significantly from the volume measure (in fig 2a, as five-eighths to one-
half). For N = 2, C = 2 there are just three orthogonal microstates, each of
equal weight. Take two two-state quantum particles (qubits) as quantum coins,
and the probabilities {H,H}, {T, T}, {H,T} are all one-third.

Is there a remaining puzzle about quantum statistics – say, the non-independence
of permutable quantum particles, as noted by Einstein? Statistical independence
fails, in that the state cannot be specified for N − 1 particles, independent of
the state of the N th, but that is true of classical states on reduced phase space
too (or, indeed, for permutation-invariant states on the unreduced phase space
– see Bach [1997]). Find a way to impose a discrete measure on a classical
permutable system, and one can hope to reproduce quantum statistics as well
(Gottesmann [2005]). Quantum holism has some role to play in the explanation
of quantum statistics, but like entanglement and identity over time, less than
meets the eye.

31One way of putting this is that in the quantum case, the measure on phase space must be
discrete, concentrated on points representing each unit cell of ‘volume’ h3. For early arguments
to this effect see Planck [1912), Poincaré [1911, 1912].

32See Wallace (2013)
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2.5 Fermions

We have made almost no mention so far of fermions. In fact most of our
discussion applies to fermions too, but there are some differences.

Why are there fermions at all? The reason is that microstates in quantum
theory are actually rays, not vector states |φc〉, that is, they are 1−dimensional
subspaces of Hilbert space. As such they are invariant under multiplication
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by complex numbers of unit norm. If only the ray need be invariant under
permutations, there is an alternative to Eq.(18), namely:

Uπ|ΨFD〉 = eiθ|ΨFD〉 (25)

where θ ∈ [0, 2π]. Since any permutation can be decomposed as a product of
permutations πij (that interchange i and j), even or odd in number, and since
πijπij = I, it follows that (18) need not be obeyed after all: there is the new
possibility that θ = 0 or π for even and odd permutations respectively. Such
states are antisymmetrized, i.e. of the form:

|ΨFD〉 =
1√
N !

∑
π∈ΠN

sgn(π)|φπ(a)〉 ⊗ |φπ(b)〉 ⊗ ...⊗ |φπ(c)〉 ⊗ ...⊗ |φπ(d)〉 (26)

where sgn(π)= 1 (−1) for even (odd) permutations, and superpositions thereof.
An immediate consequence is that, unlike in (19), every one-particle state

in (26) must now be orthogonal to every other: repetitions would automati-
cally cancel, leaving no contribution to |ΨFD〉. Since superpositions of states
(19) with (26) satisfy neither (18) or (25), permutable particles in quantum
mechanics must be of one kind or the other.33

The connection between phase space structure and antisymmetrization of
the state is made by the Pauli exclusion principle – the principle that no two
fermions can share the same complete set of quantum numbers, or equivalently,
have the same one-particle state. In view of the effective identification of ele-
mentary phase space cells of volume h3 with rays in Hilbert space, fermions will
be constrained so that no two occupy the same elementary volume. In other
words, in terms of microstates in phase space, the nk’s are all zeros or ones. In
place of Eq.(23), we obtain for the number of microstates for the coarse-grained
distribution 〈C,N〉 (as before, for a single energy level s):∑

fine grainings nk∈[0,1]

s.t.
∑C
k=1 nk=N

1 =
C!

(C −N)!N !
. (27)

Use of (27) in place of (1) yields the entropy and equation of state for the Fermi-
Dirac ideal gas. It is, of course, extensive. A classical phase space structure
emerges from this theory in the same limit C � N (for each s) as for the Bose-
Einstein gas, when the classical weights for cells along the diagonals are small in
comparison to the total. Away from this limit, whereas for bosons their weight
is too small (as suppressed by the factor (n1!...nC , )

−1), for fermions their weight
is too large (as not suppressed enough; they should be set equal to zero). Thus
fermions tend to repel, in comparison to non-permutable particles.34

33This is to rule out parastatistics – representations of the permutation group which are
not one-dimensional (see e.g. Greiner and Müller [1994]). This would be desirable (since
parastatistics have not been observed, except in 2-dimensions, where special considerations
apply), but I doubt that it has really been explained.

34The situation is a little more complicated, as antisymmetry in the spin part of the overall
state forces symmetry in the spatial part - which can lead to spatial bunching (this is the
origin of the homopolar bond in quantum chemistry).
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3 ONTOLOGY

The explanation of quantum statistics completes the main argument of this es-
say: permutation symmetry falls in place as with any other exact symmetry in
physics, and applies just as much to classical systems of equations that display
it as to quantum systems.35 In both cases only quantities invariant under per-
mutations are physically real. This is the sense in which ‘exchange between like
particles is not a real event’; it has nothing to do with the swirling of particles
around each other, it has only to do with haecceistic redundancies in the math-
ematical description of such particles, swirling or otherwise. Similar comments
apply to other symmetries in physics, where instead of haecceistic differences
one usually speaks of coordinate-dependent distinctions.

In both classical and quantum theory state-spaces can be defined in terms
only of invariant quantities. In quantum mechanics particle labels need never
be introduced at all (the so-called ‘occupation number formalism’) – a formula-
tion recommended by Teller [1995]. Why introduce quantities (particle labels)
only to deprive them of physical significance? What is their point if they are
permutable? We come back to Quine’s question and to eliminativism.

There are two sides to this question. One is whether, or how, permutable
particles can be adequate as ontology (section 3.1), and link in a reasonable
way with philosophical theories of ontology (sections 3.2 and 3.3). The other
question is whether some other way of talking might not be preferable, in which
permutability as a symmetry does not even arise (section 3.4).

3.1 The Gibbs paradox, again

A first pass at the question of whether permutable entities are really objects is
to ask how they may give rise to non-permutable objects. That returns us to
the Gibbs paradox in the sense of section 1.2: How similar do objects have to
be to count as identical?

On this problem (as opposed to the N ! problem) section 2 may seem a disap-
pointment. It focused on indistinguishability as a symmetry, but the existence
of a symmetry (or otherwise) seems just as much an all-or-nothing affair as
identity. But section 2 did more than that: it offered a microscopic dynamical
analysis of the process of mixing of two gasses.

In fact, not even the N ! problem is entirely solved, for we would still like
to have an extensive entropy function even where particles are obviously non-
identical, say in the statistical behaviour of large objects (like stars), and of
small but complex objects like fatty molecules in colloids.36 In these cases we
can appeal to the Ehrenfest-Trkaal-van Kampen approach, but only given that

35But see Belot (2013) for pitfalls in defining such symmetries.
36This problem afflicts the orthodox solution to the Gibbs paradox, too (and was raised as

such by Swendsen [2006]).
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we can arrive at a description of such objects as distinguishable: how do we do
that, exactly?

The two problems are related, and an answer to both lies in the idea of indi-
viduating properties, already introduced, and the idea of phase-space structure
as emergent, already mentioned. For if particles (or bound states of particles)
acquire some dynamically stable properties, there is no reason that they should
not play much the same role, in the definition of effective phase-space struc-
ture, as do intrinsic ones. Thus two or more non-identical gases may arise,
even though their elementary constituents are identical and permutable, if all
the molecules of one gas have some characteristic arrangement, different from
those of the other. The two gases will be non-identical only at an effective,
emergent level of description to be sure, and permutation symmetries will still
apply at the level of the full phase-space. The effective theory will have only
approximate validity, in regimes where those individuating properties are stable
in time. Similar comments apply to Hilbert-space structures.37 In illustration,

consider again figure1b for two classical permutable coins. Suppose that the
dynamics is such that one of the coins always lands on top of the other. Their
gravitational potential energy is therefore different.38 This fact is recorded in
the microstate: each coin not only lands either heads (H) or tails (T ), but lands
either above (A) or below (B). It follows that certain regions of the reduced

37That is, the familiar intrinsic properties of particles (like charge, spin and mass) may be
state-dependent: String theory and supersymmetric theories provide obvious examples. See
Goldstein et al [2005a,b] for the argument that all particles may be treated as permutable,
identical or otherwise.

38That makes it harder to maintain the fiction of degeneracy of the energy, but let that pass
too.

27



phase space are no longer accessible, among them the cells on the diagonal for
which all the properties of the two coins are the same (shaded, figure 3a). By
inspection, the available phase space has the effective structure of an unreduced
phase space for distinguishable coins, the A coin and the B coin (figure 3b). It
is tempting to add ‘even if there is no fact of the matter as to which of the coins
is the A coin, and which is the B coin’, but there is another way of putting it:
the coin which is the A coin is the one rotating one way, the B coin is the one
rotating the other way.39

The elimination of the diagonals makes no difference to particle statistics
(since this is classical theory), but analogous reasoning applies to the quantum
case, where it does. Two quantum coins (qubits), thus dynamically distin-
guished, will land one head and one tail with probability one half, not one
third.

The argument carries over unchanged in the language of Feynman diagrams.

39For further discussion, see section 3.3. Whether the A coin after one toss is the same as
the A coin on another toss (and likewise the B coin) will make a difference to the effective
dynamics.
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Thus the two scattering processes depicted in figure 4 cannot (normally) be dy-
namically distinguished if the particles are permutable Correspondingly, there is
an interference effect that leads to a difference in the probability distributions for
scattering processes involving permutable particles from those for distinguish-
able particles. But if dynamical distinctions A and B can be made between
the two particles, stable over time (in our terms, if A and B are individuating
properties), the interference terms vanish, and the scattering amplitudes will be
the same as for distinguishable particles.

The same procedure can be applied to N = NA + NB coins, NA of which
land above and NB land below. The result for large NA, NB is an effective
phase space representation for two non-identical gases A and B, each separately
permutable, each with an extensive entropy function, with an entropy of mixing
as given by (3). And it is clear this representation admits of degrees: it is an
effective representation, more or less accurate, more or less adequate to practical
purposes.

But by these means we are a long way from arriving at an effective phase
space theory of N distinguishable particles. That would require, at a minimum,
N distinct individuating properties of the kind we have described – at which
point, if used in an effective phase space representation, the original permutation
symmetry will have completely disappeared. But it is hardly plausible (for
microscopic systems), when N is large, that a representation like this can be
dynamically defined. Even where there are such individuating properties, as
with stars and (perhaps) with colloids, it is hard to see what purposes their
introduction would serve – their dynamical definition – unless it is to model
explicitly a Maxwell demon.40 On this point we are in agreement with van
Kampen. But it must be added: we do better to recognize that the use of
unreduced phase space, and the structure R6N underlying it, is in general, and
at best, a mathematical simplification, introducing distinctions in thought that
are not instantiated in the dynamics.

That seems to be exactly what Gibbs thought on the matter. He had, recall,
an epistemological argument for passing to reduced phase space – that nothing
but similarity in qualities could be used to identify particles across members of
an ensemble of gasses – but he immediately went on to say:

And this would be true, if the ensemble of systems had a simultane-
ous objective existence. But it hardly applies to the creations of the
imagination. In the cases which we have been considering. . . .it is
not only possible to conceive of the motion of an ensemble of similar
systems simply as possible cases of the motion of a single system,
but it is actually in large measure for the sake of representing more
clearly the possible cases of the motion of a single system that we
use the conception of an ensemble of systems. The perfect similarity
of several particles of a system will not in the least interfere with the

40The memory records of such a demon in effect provide a system of individuating properties
for the N particles.
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identification of a particular particle in one case with a particular
particle in another. (Gibbs [1902, 188], emphasis added.)

If pressed, it may be added that a mathematician can always construct a domain
of objects in set theory, or in one-one correspondence with the real numbers, each
number uniquely represented.41 Likewise for reference to elements of non-rigid
structures, which admit non-trivial symmetries – for example, to a particular one
of the two roots of −1 in the complex number field, or to a particular orientation
on 3−dimensional Euclidean space, the left-handed orientation rather than the
right-handed one.42 But it is another matter entirely as to whether reference
like this, in the absence of individuating properties, can carry over to physical
objects. The whole of this essay can be seen as an investigation of whether it
can in the case of the concept of particle; our conclusion is negative.

The lesson may well be more general. It may be objects in mathematics are
always objects of singular thought, involving, perhaps, an irreducible indexical
element. If, as structuralists like Russell and Ramsey argued, the most one
can hope for in representation of physical objects is structural isomorphisms
with objects of direct acquaintance, these indexical elements can be of no use
to physics. It is the opposite conclusion to Kant’s.

3.2 Philosophical logic

A second pass at our question of whether permutable entities can be considered
as objects is to ask whether they can be quantified over in standard logical
terms. Posed in this way, the question takes us to language and objects as
values of bound variables. Arguably, the notion of object has no other home;
physical theories are not directly about objects, properties, and identity in the
logical sense (namely equality).

But if are to introduce a formal language, we should be clear on its limits.
We are not trying to reproduce the mathematical workings of a physical theory
in its terms. That would hardly be an ambitious, but hardly novel undertaking;
it is the one proposed by Hilbert and Russell, that so inspired Carnap and
others in the early days of logical empiricism. Our proposal is more modest.
The suggestion is that by formalization we gain clarity on the ontology of a
physical theory, not rigour or clarity of deduction – or even of explanation. But
it is ontology subject to symmetries: in our case, permutability. We earlier saw
how invariant descriptions and invariant states (under the permutation group)
suffice for statistical mechanics, suffice even for the description of individual
trajectories; we should now see how this invariance is to be cashed out in formal,
logical terms.

41For further discussion, see Muller and Saunders [2008]. (Set-theory of course yields rigid
structures par excellence.)

42This was also, of course, a key problem for Kant. For further discussion, and an analysis of
the status of mirror symmetry given parity violation in weak-interaction physics, see Saunders
[2007].
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Permutability of objects, as a symmetry, has a simple formal expression:
predicates should be invariant (have the same truth value) under permutations
of values of variables. Call such a predicate ‘totally symmetric’.

Restriction to predicates like these certainly seems onerous. Thus take the
simple case where there are only two things, whereupon it is enough for a
predicate to be totally symmetric that it be symmetric in the usual sense. When
we say:

(i) Buckbeak the hippogriff can fly higher than Pegasus the winged horse

the sentence is clearly informative, at least for readers of literature on mythical
beasts; but ‘flies higher’ is not a symmetric predicate. How can we convey (i)
without this asymmetry?

Like this: by omitting use of proper names. Let us suppose our language has
the resources to replace them with Russellean descriptions, say with ‘Buckbeak-
shaped’ and ‘Pegasus-shaped’ as predicates (‘individuating predicates’). We can
then say in place of (i)

(ii) x is Buckbeak-shaped and y is Pegasus-shaped and x can fly higher than y

But now (ii) gives over to the equally informative totally symmetric predicate:

(iii) x is Buckbeak-shaped and y is Pegasus shaped and x can fly higher than
y, or y is Buckbeak-shaped and x is Pegasus-shaped and y can fly higher
than x.

The latter is invariant under permutation of x and y. Prefacing by existential
quantifiers, it says what (i) says (modulo uniqueness), leaving open only the
question of which of the two objects is the one that is Buckbeak-shaped, rather
than Pegasus-shaped, and vice versa. But continuing in this way – adding
further definition to the individuating predicate – the question that is left open
is increasingly empty. If no further specification is available, one loses nothing
in referring to that which is Buckbeak-shaped, that which is Pegasus-shaped
(given that there are just the two); or to using ‘Buckbeak’ and ‘Pegasus’ as
mass terms, like ‘butter’ or ‘soil’. We then have from (iii):

(iv) There is Buckbeak and there is Pegasus and Buckbeak can fly higher than
Pegasus, or there is Buckbeak and there is Pegasus and Buckbeak can fly
higher than Pegasus

With ‘Pegasus’ and ‘Buckbeak’ in object position, (iv) is not permutable. We
have recovered (i).

How does this work when there are several other objects? Consider the
treatment of properties as projectors in quantum mechanics. For a one-particle
projector P there corresponds the N−fold symmetrized projector:

P⊗(I−P )⊗...⊗(I−P )+(I−P )⊗P⊗(I−P )...⊗(I−P )+....+(I−P )⊗...⊗(I−P )⊗P
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where there are N factors in each term of the summation, of which there are(
N
1

)
= N . For a two-particle projector of the form P ⊗ Q, the symmetrized

operator is likewise a sum over products of projections and their complements
(N factors in each), but now there will be

(
N
2

)
= N(N − 1) summands. And so

on. The obvious way to mimic these constructions in the predicate calculus, for
the case of N objects, is to define, for each one-place predicate A, the totally
symmetric N -ary predicate:

(v) (Ax1 ∧ ¬Ax2 ∧ ... ∧ ¬AxN ) ∨ (¬Ax1 ∧ Ax2 ∧ ¬Ax3 ∧ ... ∧ ¬AxN ) ∨ .... ∨
(¬Ax1 ∧ ... ∧ ¬AxN−1 ∧AxN ).

The truth of (v) (if it is true) will not be affected by permutations of values of
the N variables. It says only that exactly one particle, or object, satisfies A,
not which particle or object does so. The construction starting with a two-place
predicate follows similar lines; and so on for any n-ary predicate for n ≤ N.
Disjuncts of these can be formed as well.

Do these constructions tell us all that we need to know? Indeed they must,
given our assumption that the N objects are adequately described in the pred-
icate calculus without use of proper names, for we have:

Theorem 1 Let L be a first-order language with equality, without any proper
names. Let S be any L−sentence true only in models of cardinality
N . Then there is a totally symmetric N -ary predicate G ∈ L such that
∃x1...∃xNGx1...xN is logically equivalent to S.

(For the proof see Saunders [2006a].) Given that there is some finite number
of objects N , anything that can be said of them without using proper names
(with no restriction on predicates) can be said of them using a totally symmetric
N -ary predicate.43

On the strength of this, it follows we can handle uniqueness of reference as
well, in the sense of the ‘that which’ construction, ‘the unique x which is Ax’.
In Peano’s notation it is he object ιxAx. Following Russell, it is contextually
defined by sentences of the form

(vi) the x that is an A is a B

or B(ıx)Ax, which is cashed out as:

(vii) ∃x(Ax ∧ ∀y(Ay → y = x) ∧Bx).

From Theorem 1 it follows that (vii), supplemented by information on just how
many objects there are, is logically equivalent to a sentence that existentially
quantifies over a totally symmetric predicate (like (v)). It says that a thing

43This construction was overlooked by Dieks and Lubberdink [2010] in their criticisms of the
concept of classical indistinguishable particles. They go further, rejecting indistinguishability
even in the quantum case (they consider that particles only emerge in quantum mechanics in
the limit where Maxwell-Boltzmann statistics hold sway – where individuating properties in
our sense can be defined).
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which is A is a B, that something is an A, and that there are no two distinct
things that are both A, without ever saying which of N things is the thing which
is A.

How much of this will apply to quantum particles? All of it. Of course
definite descriptions of objects of definite number is rarely needed in talk of
atoms, and rarely available. Individuating properties at the macroscopic level
normally provide indefinite descriptions of an indeterminate number of particles.
So it was earlier; I was talking of any old helium atom in the canister by the
door, any old helium atom in the vacuum chamber, out of an indeterminate
number in each case. But sometimes numbers matter: a handful of atoms of
plutonium in the wrong part of the human body might be very bad news indeed.
Even one might be too many.

Nor need we stop with Russellean descriptions, definite or otherwise. There
are plenty of other referential devices in ordinary language that may be signifi-
cant. It is a virtue of passing from the object level, from objects themselves (the
‘material mode’, to use Carnap’s term), to talk of objects (the ‘formal mode’),
that the door is open to linguistic investigations of quite broad scope. Still, in
agreement with Carnap and with Quine, our litmus test is compatibility with
elementary logic and quantification theory.

To conclude: in the light of Theorem 1, and the use of individuating properties
to replace proper names, nothing is lost in passing from non-permutable objects
to permutable ones. There is no loss of expressive content in talking of N
permutable things, over and above what is lost in restricting oneself to the
predicate calculus and abjuring the use of names. That should dissipate most
philosophical worries about permutability.

There remains one possible bugbear, however, namely identity in the logical
sense (what we are calling equality). Quantum objects have long been thought
problematic on the grounds that they pose insuperable difficulties to any rea-
sonable account of logical equality – for example, in terms of the principle of
identity of indiscernibles (see below). To this one can reply, too bad for an
account of equality; the equality sign can be taken as primitive, as is usual in
formal logic.44 (That is to say, in any model of L , if a language with equality,
the equals sign goes over to equality in the set-theoretic sense.) But here too
one might do better.

3.3 Identity conditions

If physical theories were (among other things) directly about identity in the
logical sense, an account of it would be available from them. It is just because
physical theories are not like this (although that could change) that I am sug-
gesting the notion of object should be formalized in linguistic terms. It is not
spelt out for us directly in any physical theory.

44See Pniower [2004] for arguments to this effect.
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But by an ‘account of equality’ I do not mean a theory of logical equality
in full generality. I mean a theory of equality only of physical objects, and
specific to a scientific language. It may better be called an account of identity
conditions, contextualized to a physical theory.

Given our linguistic methods, there is an obvious candidate: exhaustion of
predicates. That is, if F...s..if and only if F...t..., for every predicate in L and
for every predicate position of F , then s and t are equal. Call this L -equality,
denote ‘s =L t’. It is clearly a version of Leibniz’s famous ‘principle of identity
of indiscernibles’. This is often paraphrased as the principle that objects which
share the same properties, or even the same relational properties, are the same,
but this parsing is unsatisfactory in an important respect. It suggests that
conditions of the form

∀y(Fsy)↔ ∀y(Fty) ∧ ∀y(Fys)↔ ∀y(Fyt) (28)

are sufficient to imply that s and t are equal, but more than this is required for
exhaustion of predicates. The latter also requires the truth of sentences of the
form:

∀y(Fsy ↔ Fty) ∧ ∀y(Fys↔ Fyt)). (29)

These are the key to demonstrating the non-identity of many supposed coun-
terexamples to Leibniz’s principle (of distinct objects that appear qualitatively
the same; see Saunders [2003]).

L -equality is the only defined notion of equality (in first-order languages)
that has been taken seriously by logicians.45 It satisfies Gödel’s axioms for the
sign ‘=’, used in his celebrated completeness proof for the predicate calculus
with equality, namely the axiom scheme:

Leibniz’s law s = t →
∧
F∈L (F..s..↔ F..t...)

together with the scheme s = s. Since one has completeness, anything true in L
equipped with the sign ‘=’ remains true in L equipped with the sign ‘s =L t’.
The difference between L -equality and primitive equality cannot be stated in
L .46

But the notion that we are interested in is not L -equality, sameness with
respect to every predicate in L , but sameness with respect to invariant predi-
cates constructible in L , denote L ∗. Call equality defined in this way ‘physical
equality’, denote ‘=L ∗ ’. With that completeness is no longer guaranteed, but
our concern is with ontology, not with deduction.

In summary, we have:L

physical equality s =L ∗ t =
def

∧
F∈L ∗ (Fs↔ Ft)

45It was first proposed by Hilbert and Bernays [1932]; it was subsequently championed by
Quine [1960], [1970].

46For further discussion, see Quine [1970, 61-64], and, for criticism, Wiggins [2004, 184-88].
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and, as a necessary condition for physical objects (‘the identity of physical
indiscernibles’):47

IPI s =L ∗ t→ s = t.

If s 6=L ∗ t, we shall say s and t are ‘(physically) discernible’; otherwise ‘indis-
cernible’.

There are certain logical distinctions (first pointed out by Quine) for equality
in our defined sense that will prove useful. Call s and t ‘absolutely discernible’ if
for an open sentence F in one free variable, Fs and not Ft; call s and t ‘weakly
discernible’ (respectively ‘relatively discernible’) if for an open sentence F in
two free variables Fst but not Fss (respectively, but not Fts). Objects that
are only weakly or relatively discernible are discerned by failure of conditions of
the form (29), not (28).

Of these, as already mentioned, weak discernibility is of greater interest
from both a logical and physical point of view. Satisfaction of any symmetric
but irreflexive relation is enough for weak discernibility: 6= and 6=L are prime
examples. And many simple invariant physical relations are symmetric and
irreflexive: for example, having non-zero relative distance in a Euclidean space
(a relation invariant under translations and rotations). Thus take Max Black’s
famous example of identical iron spheres s, t, one mile apart, in an otherwise
empty Euclidean space. The spheres are weakly discerned by the relation D of
being one mile apart , for if Dst is true, it is not the case that Dxs↔ Dxt for
any x, since Dst but not Dss (or Dtt), so s 6=L ∗ t. And, fairly obviously, if
L ∗ contains only totally symmetric predicates, physical objects will be at most
weakly discernible.

Here as before ‘s’ and ‘t’ are terms, that is variables, functions of variables,
or proper names. What difference do the latter make? Names are important
to discernibility under L -equality. Thus if it is established that s and t are
weakly L−discernible, then, if ’s’ or ’t’ are proper names, they are absolutely
L−discernible. In the example just given, if Dst and ‘s’ is a proper name, then
Dsx is true of t but not s. But the presence of names in L makes no difference
to L ∗−discernibility (discernibility by totally symmetric predicates). Thus,
even if Dxy ∈ L ∗, on entering a proper name in variable position one does
not obtain a one-place predicate in L ∗. Permutable objects are only weakly
discernible, if discernible at all.

It remains to determine whether permutable particles are discernible at all.
In the classical case, assuming particles are impenetrable, they are always some
non-zero distance apart, so the answer is positive. Impenetrability also ensures
that giving up permutability, and passing to things which are particle states
or trajectories, they will be at least weakly discernible. Typically they will be
strongly discernible, but as Black’s two spheres illustrate (supposing they just
sit there), not always.

47For further discussion of this form of the principle of identity of indiscernibles, see Muller
and Saunders [2008, 522-23].
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It is the quantum case that presents the greater challenge; indistinguishable
quantum particles have long been thought to violate any interesting formulation
of Leibniz’s principle of indiscernibles.48 But in fact the same options as in the
classical case are there available. One can speak of that which has such-and-
such a state, or orbit, and pass to states and orbits of states as things, giving
up permutability. One-particle states or their orbits, like classical trajectories,
will in general be absolutely discernible, but sometimes only weakly discernible
– or (failing impenetrability) not even that. Or retaining permutability, one can
speak of particles as being in one or other states, and of N particles as being in
an N−particle state, using only totally symmetric predicates. One then looks
for a symmetric and irreflexive relation that they satisfy.

On both strategies there is a real difficulty in the case of bosons, at least for
elementary bosons. On the first approach, there may be two bosonic one-particle
states, each exactly the same; on the second, there seems to be no general
symmetric and irreflexive relation that is always satisfied. But the situation
is different when it comes to fermions. On the first approach, given only the
mild entanglement required by antisymmetrization, one is guaranteed that of
the N one-particle states, each is orthogonal to every other, so objects as one-
particle states are always absolutely discernible; and on the second approach,
again following from antisymmetrization, an irreflexive symmetric relation can
always be defined (whatever the degree of entanglement). I shall consider them
in turn.

The first strategy is not without its difficulties. To begin with, even restrict-
ing to mildly-entangled states, which one-particle states are to be the objects
replacing particles is ambiguous. The problem is familiar from the case of the
singlet state of spin: neglecting spatial degrees of freedom the antisymmetrized
state is

|Ψ0〉 =
1√
2

(
|ψz+〉 ⊗ |ψz−〉 − |ψz−〉 ⊗ |ψz+〉

)
(30)

where |ψz±〉 are eigenstates of spin in the z direction. But this state can equally
be expanded in terms of eigenstates of spin in the y direction, or of the z
direction: which pair of absolutely discernible one-particle states are present,
exactly?

The problem generalizes. Thus, for arbitrary orthogonal one-particle states
|φa〉, |φb〉, and a two-fermion state of the form:

|Φ〉 =
1√
2

(|φa〉 ⊗ |φb〉 − |φb〉 ⊗ |φa〉) (31)

define the states (the first is just a change of notation):

|φ1
+〉 = |φa〉, |φ1

−〉− = |φb〉) (32)

|φ2
+〉 =

1√
2

(|φa〉+ |φb〉), |φ2
−〉− =

1√
2

(|φa〉 − |φb〉)

|φ3
+〉 =

1√
2

(|φa〉+ i|φb)〉, |φ3
−〉− =

1√
2

(i|φa〉+ |φb〉).

48See French and Kraus [2006] for this history.
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They yield a representation of the rotation group. One then has, just as for
components of spin:

|Φ〉 =
1√
2

(|φ1
+〉| ⊗ |φ1

−〉 − |φ1
−〉| ⊗ |φ1

+〉

=
1√
2

(|φ2
+〉| ⊗ |φ2

−〉 − |φ2
−〉| ⊗ |φ2

+〉 =
1√
2

(|φ3
+〉| ⊗ |φ3

−〉 − |φ3
−〉| ⊗ |φ3

+〉

and an ambiguity in attributing one-particle states to the two particles arises
with (31) as with (30). I shall come back to this in section 3.4.

This difficulty can be sidestepped at the level of permutable particles, how-
ever. In the case of (30), we may weakly discern the particles by the relation
‘opposite spin’, with respect to any direction in space (Saunders [2003], [2006b],
Muller and Saunders [2008]). Thus if σx, σy, σz are the Pauli spin matrices,
the self-adjoint operator

σx ⊗ σx = σy ⊗ σy = σz ⊗ σz (33)

has eigenvalue −1 in the singlet state |Ψ0〉 , with the clear interpretation that
the spins are anticorrelated (with respect to any direction in space). Asserting
this relation does not pick out any direction in space, no more than saying
Black’s spheres are one-mile apart picks out any position in space.

For the construction in the generalized sense (32), define projection operators
onto the states |φk±〉

P k± = P|φk±〉, k = 1, 2, 3

and define the self-adjoint operators:

(P k+ − P k−)⊗ (P k+ − P k−), k = 1, 2, 3.

Each has eigenvalue −1 for |Φ〉, and likewise picks out no ‘direction’ in space
(i.e the analogue of (33) is satisfied). Moreover, one can define sums of such in
the case of finite superpositions of states of the form (31), by means of which
fermions can be weakly discerned.

On the strength of this, one can hope to weakly discern bosons that are
composites of fermions, like helium atoms. And even in the case of elementary
bosons, self-adjoint operators representing irreflexive, symmetric relations re-
quired of any pair of bosons have been proposed.49. The difficulty of reconciling
particle indistinguishability in quantum mechanics with the IPI looks well on
its way to being solved.

3.4 Eliminativism.

We are finally in a position to assemble the arguments for and against elim-
inativism – that is, for and against renouncing talk of permutable objects in

49See Muller and Seevink [2009]. Their idea was to use certain commutator relations that
could not be satisfied were there only a single particle.
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favour of non-permutable objects defined in terms of individuating properties,
whether points in µ−space, trajectories, one-particle states, or orbits of one-
particle states. The gain, usually, is absolute discernibility. On the other hand
we have found that quantification over permutable objects satisfies every con-
servative guideline we have been able to extract from elementary logic (with
the possible exception of identity conditions for elementary bosons). And there
remains another conservative guideline: we should maintain standard linguistic
usage where possible.

That stacks the odds against eliminativism, for talk of particles, and not
just of one-particle states, is everywhere in physics. But even putting this to
one side eliminativism would seem to fare poorly, for (anti)symmetrized states
are generically entangled, whereupon no set of N one-particle states will suffice
for the description of N particles. And where such a set is available, given
sufficiently mild entanglements, it may be non-unique.

Against this there are two objections. The first is that we anyway know the
particle concept is stretched to breaking point in strongly-interacting regimes.
There the best we can say is that there are quantum fields, and, perhaps, super-
positions of states of different particle number. Where the latter can be defined,
one can talk of modes of quantum fields instead. In the free-field limit, or as
defined by a second-quantization of a particle theory,50 such modes are in one-
one correspondence with one-particle states (or, in terms of Fourier expansions
of the fields, in correspondence with ‘generalized’ momentum eigenstates). The
elimination of particles in favour of fields and modes of fields is thus indepen-
dently motivated.

The second objection is that we cannot lightly accept indeterminateness in
attributing a definite set of N one-particle states to an N−particle system, for
it applies equally to particles identified by individuating properties. That is, not
even the property of being a bound electron in a helium atom in the canister by
the corner, and being one in the vacuum chamber by the door, hold unambigu-
ously. The construction (32) applies just as much to (the antisymmetric version
of) (20).51

But this difficulty we recognize as a fragment of the measurement problem.
Specifically, it is the ‘preferred basis problem’: into what states does a macro-
scopic superposition collapse (if there is any collapse)? – or, if macroscopic su-
perpositions exist: what singles out the basis in which they are written? What-
ever settles this question (decoherence, say) will dictate the choice of basis used
to express the state in terms of macroscopic individuating properties.footnote

Whether such a choice of basis – or such a solution to the preferred basis
problem – can extend to a preferred basis at the microscopic level is moot. It
depends, to some extent, on the nature of the solution (decoherence only goes
down so far). Of course it is standard practise in quantum theory to express

50For a discussion of the relation between second quantized and free-field theories (fermionic
and bosonic respectively), see Saunders [1991], [1992]

51Note added Sep 2016. This difficulty was pointed out in Ghirardi et al [2002, 84-86], but
it was dismissed on the grounds that measurements involving the ‘wrong’ choice of states ‘are
extremely difficult to perform and of no practical interest’ (p.86).
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microscopic states in terms of a basis associated with physically-interpreted
operators (typically generators of one-parameter spacetime symmetry groups,
or in terms of the dynamical quantities that are measured). The use of quantum
numbers for bound states of electrons in the atom, for energy, orbital angular
momentum, and components of angular momentum and spin – in conventional
notation, quadruples of numbers 〈n, l,ml,ms〉 – is a case in point. When energy
degeneracies are completely removed (introducing an orientation in space) one
can assign these numbers uniquely. The Pauli exclusion principle then dictates
that every electron has a unique set of quantum numbers. Use such quadruples
as names and talk of permutable particles can be eliminated.

It is now clearer that the first objection adds support to the second. Quadru-
ples of quantum numbers provide a natural replacement for particles in atoms;
modes of quantum fields (and their excitation numbers) provide a natural re-
placement for particles involved in scattering. And in strongly-interacting regimes,
even modes of quantum fields give out (or they have only a shadow existence,
as with virtual particles). All this is as it should be. Our inquiry was never
about fundamental ontology (a question we can leave to a final theory, if there
ever is one), but with good-enough ontology, in a definite regime.

In the regime we are concerned with, stable particles of ordinary matter
whose number is conserved in time, there is the equivalence between one-particle
states and modes of quantum field already mentioned. Let us settle on a pre-
ferred decomposition of the field (or preferred basis) in a given context. But
suppose that context involves non-trivial entanglement: can entanglements of
particles be understood as entanglements of modes of fields?

Surely they can – but on pain of introducing many more modes of the field
then there were particles, and a variable number to boot. As with one-particle
states so modes of the field: in a general entanglement, arbitrarily many such
modes are involved, even given a preferred decomposition of the field, whereas
the number of particles is determinate. Just where the particle concept is the
most stable, in the regime in which particle number is conserved, eliminativism
in favour of fields and modes of fields introduces those very features of the
particle concept that we found unsatisfactory in strongly-interacting regimes.
That speaks against eliminativism.

This does not, of course, militate against the reality of quantum fields. We
recognize that permutable particles are emergent from quantum fields, just as
non-permutable particles are emergent from permutable ones. Understood in
this way, we can explain a remaining fragment of the Gibbs paradox – the fact
that particle identity, and with it permutation symmetry, can ever be exact.
How is it that intrinsic quantities, like charge and mass, are identically the same?
(their values are real numbers, note). The answer is that for a given particles
species, the particles are one and all excitations of a single quantum field –
whereupon these numerical identities are forced, and permutation symmetry
has to obtain. The existence of exact permutation symmetry, in regimes in
which particle equations are approximately valid, is therefore explained, and
with it particle indistinguishability.
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