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Abstract

The Bayes Blind Spot of a Bayesian Agent is the set of probability measures on a Boolean

algebra that are absolutely continuous with respect to the background probability measure (prior) of

a Bayesian Agent on the algebra and which the Bayesian Agent cannot learn by conditionalizing no

matter what (possibly uncertain) evidence he has about the elements in the Boolean algebra. It is

shown that if the Boolean algebra is finite, then the Bayes Blind Spot is a very large set: it has the

same cardinality as the set of all probability measures (continuum); it has the same measure as the

measure of the set of all probability measures (in the natural measure on the set of measures); and

is a “fat” (second Baire category) set in topological sense in the set of all probability measures taken

with its natural topology.

1 Learning by conditionalizing

A Bayesian Agent is an abstract, ideal person having degrees of belief p(C) about (the truths of)

propositions C in a set S forming a Boolean algebra. The degrees of belief p(C) behave like proba-

bilities: p is an additive map on S formed by (some) subsets of the set X of elementary propositions.

The triplet (X,S, p) is a probability measure space [1], [11]. Throughout this paper it is assumed

that the Boolean algebra S has a finite number of elements. (In section 4 we will comment on the

situation when S is infinite.)

A Bayesian Agent is able to learn: Suppose the Agent is told that proposition A ∈ S is true (but

nothing else about other propositions in S). Using his background probability p, if p(A) 6= 0, the

Agent can infer from this information probabilities q(B) of events B other than A by conditionalizing

p via A using Bayes’ rule:

q(B) =
p(B ∩A)
p(A)

for all B ∈ S (1)

q is a new probability measure on S; it can be viewed as the probability measure that the Agent

has inferred, on the basis of his prior p, from the probability measure qA that is defined on the
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four element Boolean subalgebra {∅, A,A⊥, X} of S that is generated by A and A⊥ and which has

the feature that it takes values qA(A) = 1 and qA(A⊥) = 0 on the non-trivial elements of A. The

probability measure qA represents certain evidence [7][p. 452]. Note that q has value 0 on every

element B which has p-probability zero. The technical expression of this feature of q is that q is

absolutely continuous with respect to p [1][p. 422].

Suppose that the Agent receives information about A and A⊥ that is given by a probability

measure qA which does not have the extreme values 1 and 0 but the values qA(A) = r 6= 1 and

qA(A
⊥) = 1− r 6= 0. What probability measure can the Agent infer from this evidence on the basis

of the background measure p? The standard answer to this question is: If neither p(A) nor p(A⊥) is

equal to zero, then the Agent can use the Jeffrey conditionalization rule [8] to obtain the measure q:

q(B)
.
=
p(B ∩A)
p(A)

qA(A) +
p(B ∩A⊥)
p(A⊥)

qA(A
⊥) for all B ∈ S (2)

More generally, if the evidence the Agent has are the probabilities qA(Ai) of mutually disjoint events

Ai (i = 1, 2 . . . N) forming a non-trivial partition in S, which generates the proper Boolean subalgebra

A of S, and if these events have non-zero prior probability p(Ai) 6= 0 (for all i), then the Agent can

infer from this so-called uncertain evidence [2], [15] a probability measure q using the general Jeffrey

conditionalizing rule:

q(B)
.
=
∑
i

p(B ∩Ai)
p(Ai)

qA(Ai) for all B ∈ S (3)

Just like in the case of conditionalization via Bayes’ rule, q obtained this way is absolutely continuous

with respect to the prior probability p. To simplify matters, from now on we assume that the prior

probability of the Agent is non-zero on every element {x} for x ∈ X. In this case, obviously, every

probability measure on S is absolutely continuous with respect to p (see Remark 3.5 for general

prior probability). Note that the requirement that the uncertain evidence is given by a probability

measure on a non-trivial partition (equivalently: on a proper Boolean subalgebra S) is important: if

the evidence were taken to be a probability measure q′ on the whole S, then for every element x in

X the Jeffrey rule (3) would entail

q({x}) =
∑
i

p({x} ∩Ai)
p(Ai)

q′(Ai) =
p({x})
p({x})q

′({x}) = q′({x}) (4)

This equation says that every probability measure can be obtained from itself as evidence via the

Jeffrey rule – a triviality.

As an elementary example for the Jeffrey conditionalization consider die throwing: Let X6 =

{x1, x2, . . . , x6} represent the possible outcomes of throwing a die, and let S6 be the Boolean algebra

of subsets of X6. Assume that the Agent’s background probability p is given on elements x ∈ X6

according to Figure 1 below.
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x2
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1
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x4
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x5

1
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x6

p :

X6

Figure 1: Example of probabilities in die throwing

Consider the partition

A1 = {x1, x2} A2 = {x3, x4, x5} A3 = {x6} (5)
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indicated in Figure 2. Suppose the Agent receives the information qA, where the probability measure

qA is given on the elements of the partition A1, A2, A3 by

qA(A1) =
2

6
qA(A2) =

3

6
qA(A3) =

1

6
(6)

Using the Jeffrey conditionalization rule (3), the Agent can infer from evidence qA the probability

measure q indicated in Figure 2:
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q :

X

Figure 2: Example of inferring probabilities using Jeffrey conditionalization

2 The Bayes Blind Spot

Consider now the question: Suppose the true probability distribution describing the results of throws

with a die is q given by the Figure 3 below. Can the Bayesian Agent (having p as his background

measure) infer this probability q from some probability measure as evidence by conditionalizing using

the Jeffrey rule (3)? If so, we call q Bayes accessible or Bayes learnable.
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Figure 3: Is q Bayes accessible?

The question whether q is Bayes accessible is asking whether there exists a non-trivial partition

of the 6 element set X6 and a probability measure qA defined on elements of this partition such that

q can be obtained from qA in the manner (3). The question is not trivial: there exist 203 different

partitions in S (203 is the 6th Bell number [4][p. 91-93). Thus, if one would try to answer the question

by “brute force”, one would have to consider all the 203 partitions and, for each partition, write out

eq. (3) for every B to obtain a large number of equations to solve with qA(Ai) as unknowns to see

if the system of equations admit a solution. While doable, this procedure becomes intractable in the

general situation when the number of the elements in the Boolean algebra is very large. One can

however find a simple, compact condition that can be used to decide whether a probability measure

can be obtained as a conditional probability via the Jeffrey conditionalization:

Suppose we have found a partition {Ai} and a qA for which q can be written in the form (3).

If the partition {Ai} is non-trivial, then at least one of Ai has more than one elements from X6.

Suppose Ai has two elements x1 and x2. Then (3) entails

q({x1}) =
∑
i

p({x1} ∩Ai)
p(Ai)

qA(Ai) =
p({x1})
p(Ai)

qA(Ai) (7)

q({x2}) =
∑
i

p({x2} ∩Ai)
p(Ai)

qA(Ai) =
p({x2})
p(Ai)

qA(Ai) (8)
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Equations (7)-(8) entail that a necessary condition for q to be Bayes accessible is that the following

condition holds:
q({x1})
p({x1})

=
q({x2})
p({x2})

(9)

One can verify easily that the probability measure q describing the distribution of throws with a die

with values indicated in Figure 3 violates condition (9). Consequently, this probability measure is not

Bayes accessible: A Bayesian Agent having his background knowledge represented by the probability

measure p given in Figure 1 is not able to learn this q distribution via conditionalizing no matter

what (possibly uncertain) evidence he is presented with.

The reasoning leading to the necessary condition (9) for Bayes accessibility generalizes easily from

S6 to an arbitrary finite Boolean algebra. This, in turn leads to a sufficient condition entailing that

a probability measure is not Bayes accessible: If for a probability measure q on S we have

q({xi})
p({xi})

6= q({xj})
p({xj})

i 6= j; 1 ≤ i, j ≤ n (10)

then q is not Bayes accessible for the Bayesian Agent having p as his background degree of belief.

The function dq
dp

defined by

X 3 xi 7→
dq

dp
(xi)

.
=
q({xi})
p({xi})

(11)

is known as the Radon-Nikodym derivative (also called the density) of q with respect to p [1][p. 423].

Thus, the content of the necessary condition (10) can be expressed compactly by saying that q is

not Bayes accessible for the Bayesian Agent having background probability p if the Radon-Nikodym

derivative dq
dp

of q with respect to p is an injective function. We show now that this condition also is

necessary, i.e. we will prove

Proposition 2.1 (cf. [6]). Let (X,S, p) be a probability space with a finite set X having n elements

and S the Boolean algebra of subsets of X. A probability measure q on S is not Bayes accessible if

and only if its Radon-Nikodym derivative dq
dp

is an injective function.

Proof. Since we have seen that injectivity of the Radon-Nikodym derivative is sufficient for Bayes

inaccessibility, we only have to show that injectivity is also necessary, i.e. that non-injectivity entails

Bayes accessibility. Let the range of dq
dp

be {y1, . . . , yk}. If dqdp is not injective, then the partition

Ai =
{
x ∈ X :

dq

dp
(x) = yi

}
for i = 1 . . . k

is a non-trivial partition of X i.e. there is at least one Ai containing at least two elements. Note that
dq
dp

is constant on every Ai. We define the probability measure r on the Boolean subalgebra generated

by the partition Ai by defining the values of r on the blocks of the partition and requiring r to be

additive:

r(Ai) =
q({x})
p({x})p(Ai) for any x ∈ Ai

Then, for all x ∈ X there is a unique j such that x ∈ Aj and thus we have

∑
i

p
(
{x} ∩Ai

)
p(Ai)

r(Ai) =
p({x})
p(Aj)

r(Aj) = q({x})

As the example of die throwing shows, Bayes inaccessible states can exist. More generally, one

can show that given any background probability p on a finite Boolean algebra, there exists a q on
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that Boolean algebra that is Bayes inaccessible [6]. Following the terminology introduced in [6] we

will call the set of probability measures on S that are not Bayes accessible for the Bayesian Agent

(with respect to the fixed background probability p) the “Bayes Blind Spot” of the Agent. If the

p-dependence of the Bayes Blind Spot needs to be made explicit, we say “Bayes p-Blind Spot”.

3 Size of the Bayes Blind Spot

How large is the Bayes Blind Spot? There is no unique answer to this question: The size of a set can

be gauged using conceptually different “yardsticks”. Given a yardstick, one can compare the size of

a set to the sizes of other sets, measured by the same yardstick. There are three standard ways to

measure the size of a set [12][p. 170] and thus also the size of the Bayes Blind Spot:

Cardinality One can ask what the cardinality of the Bayes Blind Spot is and how its cardinality is

related to the cardinality of the set of all probability measures.

Topological size One can ask whether the Bayes Blind Spot is a meager (Baire first category) or

nonmeager (Baire second category) set in the set of all probability measures with respect to a

natural topology.

Measure theoretical size One can ask what the size of the Bayes Blind Spot is with respect to a

measure on the set of all probability measures.

We show now that the Bayes Blind Spot is a very large set in the sense of all the three measures –

cardinality, topological and measure theoretical size.

3.1 Cardinality

The sufficient condition (10) for Bayes inaccessibility makes it clear that if q′ is Bayes inaccessible,

then for all small enough positive real numbers ε the probability measures qε such that

|qε({x})− q′({x})| ≤ ε for all x ∈ X (12)

also satisfy (10) and thus are not Bayes accessible. It follows from this that the Bayes Blind Spot

has at least continuum cardinality [6]. On the other hand, the cardinality of the set of all probability

measures on a finite Boolean algebra is at most the continuum: a probability measure is a function

from the finite set X having n elements into the unit interval [0, 1]; so the set of all probability

measures on X is a subset of the cartesian product ×n1 [0, 1], cardinality of which is the same as the

cardinality of [0, 1]. It follows that we have the following

Proposition 3.1. The Bayes Blind Spot of a Bayesian Agent has the cardinality of the continuum,

and, consequently, for a Bayesian Agent there exist exactly as many Bayes inaccessible probability

measures as the number of all probability measures (in the sense of cardinality), namely a continuum

number.

3.2 Topological size – Baire category

Recall that, given a subset E of a topological space T , point x in T is an interior point of E if there

is an open set O such that x is belongs to O and O is contained in E. The set of all interior points

of E is called the interior of E. A subset E of T is said to be nowhere dense if its closure has empty

interior. The sets of the first Baire category in T are those that are countable unions of nowhere
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dense sets [13][p. 42]. Any subset of T that is not of the Baire first category is said to be of the

second Baire category. A set E is nowhere dense if and only if its complement T \E contains an open

set that is dense in T . Thus a subset of T which is open and dense is of the second Baire category.

Sets of first category are “meager”, whereas sets of second category are regarded as nonmeager

(“fat”) in a topological sense. To see why, it is useful to have examples.

Consider the real line R with its usual topology. Any finite set of points on the line is a nowhere

dense set. The set Q of rational numbers is a meager set because Q is a countable union of single

rational numbers.

Non-countable meager sets also exists: the Cantor set is uncountable, closed, compact and nowhere

dense in R (see [14]). The Cantor set is large in cardinality (within the set of real numbers), small

in the sense of topology and also small measure theoretically: it is a null-set with respect to the

Lebesque measure. But a meager set can have large measure: the real line can be decomposed into

two disjoint sets, one being of first Baire category, the other having measure zero with respect to the

Lebesgue measure (Theorem 1.6 in [9]). Such a set is the fat Cantor set, [14], which is meager but

can have arbitrary large measure.

Open dense sets are easy to come up with: obviously R is open and dense in itself. Removing a

finite number of points from R one obtains an open dense set. Less obvious example is the complement

of the Cantor set: since the Cantor set is closed and nowhere dense, its complement is open and dense.

To assess the topological size of the Bayes Blind Spot in the setM(S) of all probability measures on

S, we need to specify a topology onM(S). Topologies can be defined by metrics (distance functions),

and this is how one can specify a topology in the set of probability measures. There exist several

types of metrics among probability measures that one can consider. The Appendix lists five typical

ones that occur in different contexts. It turns out (and this is proved in the Appendix) that they all

are equivalent in the sense that they determine the same topology, which we will call the standard

uniform topology. The content of this topology can be expressed in different ways, one of which is the

formulation in terms of the distance d3 of the Appendix: if the probability measure q is d3-close to

the probability measure q′ then the supremum of the difference of the expectation values of random

variables with respect to q and q′ is small among all the random variables whose expectation values

with respect to the background probability p are close.

Given the standard uniform topology, the topological size of the Bayes Blind Spot is the charac-

terized by the following proposition (proof of which we give in the Appendix):

Proposition 3.2. The Bayes Blind Spot is an open and dense set in the set M(S) of all probability
measures equipped with the standard uniform topology on the probability measures.

Corollary 3.3. The complement of the Bayes Blind Spot, the set of Bayes accessible probability

measures is a closed, nowhere dense set in the standard uniform topology on the probability measures.

Proposition 3.2 says that the Bayes Blind Spot is a very large, a “fat” set in topological sense,

much larger than the set of Bayes accessible states. Viewed from the perspective of topology, there

exist much more Bayes inaccessible states than Bayes accessible ones.

Corollary 3.3 entails that the limit of Bayes accessible probability measures is again Bayes acces-

sible. Consequently, a Bayes inaccessible probability measure cannot be approximated with arbitrary

precision by Bayes accessible probability measures. Thus one cannot “neutralize” the presence of

Bayes inaccessible states by taking the position that the Bayesian Agent can in principle be pre-

sented with a series of evidences that can get him arbitrarily close to a Bayes inaccessible probability

measure.
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Furthermore, the set of Bayes accessible probability measures, being the complement of a dense

open set, is not only a closed set but a meager set: a closed set with empty interior. Thus, while

there exist an uncountable infinite number of Bayes inaccessible probability measures arbitrary close

to every Bayes accessible one, every Bayes inaccessible probability measure has a neighborhood in

which there are only Bayes inaccessible probability measures.

The Bayes inaccessible probability measures “dominate” the set of all probability measures com-

pletely in a topological sense.

3.3 Measure theoretical size

To assess the measure theoretical size of the Bayes Blind Spot in the set M(S), one has to specify

a σ-algebra in M(S) and a measure over this algebra. The natural algebra and measure is the one

arising from the Lebesgue measure in the following way:

We can identify measures inM(S) with functions f : X → [0, 1] such that
∑
x∈X f(x) = 1. Under

this identification each probability measure is identified with a point in [0, 1]n (recall: n is the number

of elements in X). Thus M(S) ⊆ [0, 1]n.

The equation

X1 +X2 + . . .+Xn = 1 (Xi ∈ R a variable) (13)

defines an n− 1-dimensional hyperplane H in Rn; thus M(S) is the simplex which is the intersection

of this hyperplane with the unit cube [0, 1]n (see the picture below).

Z

X

Y

For any finite dimension d the d-dimensional Lebesgue measure λd is defined on the Borel sets

of the d-cube [0, 1]d. Since M(S) ⊆ H is a subset of an n − 1 dimensional hyperplane in Rn, we

have λn(M(S)) = 0. On the other hand with λn−1 being the Lebesgue measure on the Borel sets of

H ∩ [0, 1]n we have

λn−1(M(S)
)
= λn−1(H ∩ [0, 1]n

)
> 0 (14)

The measure

µ ≡ λn−1

λn−1(M(S)) (15)

is the normalized area (Lebesgue) measure onM(S); in this measure the whole setM(S) of probability
measures has measure equal to 1. The next proposition (proved in the Appendix) states the size of

the Bayes Blind Spot in this measure.

Proposition 3.4. The Bayes Blind Spot has µ measure equal to 1. The set of Bayes accessible states

is a µ measure zero set.
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Proposition 3.4 says that the Bayes Blind Spot is a very large set in the set of all probability

measures, with respect to the natural (Lebesgue) measure in which the set of all probability measures

has non-zero measure. “Very large” means here: as large as possible: having the same size as the size

of the set of all probability measures. This entails that the Bayes accessible states form a measure

zero set in this measure.

Remark 3.5. Propositions 3.2, 3.1 and 3.4 are proved under the assumption that the background

probability measure p is faithful. These propositions remain true however if the faithfulness assump-

tion is dropped: If p is not a faithful probability measure, then it has zero probability on some

elements in X. In terms of the geometrical picture of Figure 3.3 this means that the point in the

simplex representing p is on an “edge” E of the simplex. All the probability measures that are abso-

lutely continuous with respect to p, hence all the potentially Bayes p-accessible probability measures,

are also on E. This edge can be regarded as the set of all probability measures on the Boolean

algebra that is obtained from S by removing from S the one-element sets on which p is zero, and

the restriction p′ of p to this Boolean algebra is faithful. Proposition 3.2 entails then, that the set of

Bayes p′-accessible probability measures is a nowhere dense set in E in the relative topology on E

inherited from M(S). But then this set also is a nowhere dense set in M(S), and its complement,

the Bayes p′-Blind Spot, contains an open dense set, and is thus a set of Baire second category.

It follows that the Bayes p-Blind Spot is a set of second Baire category, irrespective of wether p is

faithful or not. Since an open and dense set in a complete metric space has to have uncountable

cardinality, the Bayes p-Blind Spot has uncountable cardinality irrespective of wether p is faithful or

not. Furthermore, since the edge E lies in a proper linear subspace of the linear space in which M(S)
has non-zero λn−1 (Lebesgue) measure, the measure of the set of Bayes p′-accessible measures in E

also has λn−1 measure zero. It follows that the Bayes p-Blind spot has measure 1 in the measure µ

in which M(S) has measure 1 too – irrespective of whether p is faithful.

4 Concluding remarks

The notion of Bayes Blind Spot can also be defined for probability measure spaces (X,S, p) with

an infinite Boolean algebra S. In this more general situation the general conditioning rule yielding

conditional probabilities with respect to arbitrary Boolean σ algebras of S is given by the concept of

conditional expectation, of which the Jeffrey rule is just a particular case [6]. Determining the size

of the Bayes p-Blind Spot of a general probability measure space (X,S, p) is a non-trivial problem,

with a number of questions still open. The following partial results are known in the general case:

One can give an abstract, general characterization of probability spaces with non-empty Bayes

Blind Spot [6]. On the basis of that characterization one can show the following:

• There exist probability spaces with an empty Bayes Blind Spot. The only example of such a

probability space known to us is the one constructed in [6]. The set of elementary events X of

this probability space is very large: its cardinality |X| has to satisfy |X| > 22
ℵ0 (with ℵ0 being

the countable cardinality).

• The “usual” (technically speaking: the “standard”, see Definition 4.5 in [10]) infinite probability

spaces that occur in applications can be shown to have a Bayes Blind Spot that has the car-

dinality of the continuum [6]. Such probability spaces include the probability measures on IRn

given by a density function with respect to the Lebesgue measure in IRn. Work is in progress to

determine the topological and measure theoretical size of the Bayes Blind Spot of these standard
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probability spaces [5].

The presence of large Bayes Blind Spots indicates the crucial importance of the prior probability

in Bayesian learning based on a single act of conditionalization. The limits of what can be learned in

a single probabilistic inference on the basis of a prior are extremely restrictive in case of a probability

theory with a finite set of random events. This leads naturally to the question of whether repeated

learning can make a probability measure in the Bayes Blind Spot Bayes learnable in more than one

step. To investigate this question requires defining Bayesian learning dynamics precisely. It turns out

that Bayes dynamics can be specified in a number of non-equivalent ways. A preliminary exploration

of the behavior of Bayes dynamical systems indicate that the features of different Bayes dynamics

from the perspective of their Bayes Blind Spots differ significantly. A paper is in preparation that

investigates the Bayes Blind Spots of general Bayesian dynamical systems [5].

Appendix

4.1 Metrics and topology in the set of probability measures on a
finite Boolean algebra

Definition 4.1. For q, r ∈M(S) we define the following metrics.

Chebysev distance:
d0(q, r) = max

x∈X
|q({x})− r({x})| (16)

Total variation distance I:
d1(q, r) =

1

2

∑
x∈X

|q({x})− r({x})| (17)

Total variation distance II:

d2(q, r) = sup

{∣∣∣∣∣∑
x∈X

f(x)q({x})−
∑
x∈X

f(x)r({x})

∣∣∣∣∣ : f = χE , E ∈ S

}
= max

E∈S
|q(E)− r(E)|

‖ · ‖1-distance:

d3(q, r) = sup

{∣∣∣∣∣∑
x∈X

f(x)q({x})−
∑
x∈X

f(x)r({x})

∣∣∣∣∣ : f ∈ L1(X,S, p), ‖f‖1 ≤ 1

}
(18)

‖ · ‖∞-distance of density functions:

d4(q, r) = sup
x∈X

∣∣∣∣dqdp (x)− dr

dp
(x)

∣∣∣∣ (19)

Hellinger distance:

d5(q, r) =
∑
x∈X

(√dq

dp
(x)−

√
dr

dp
(x)

)2

· p(x)

 (20)

Euclidean distance:

d6(q, r) =

(∑
x∈X

(q({x})− r({x}))2
) 1

2

(21)

9



Two metrics d and d′ on a set M are said to be equivalent if there are constants A and B such

that

A · d(x, y) ≤ d′(x, y) ≤ B · d(x, y) for all x, y ∈M

Equivalent metrics generate the same topology on M (see [3][p. 121]).

Proposition 4.2. di generate the same topology on M(S) for all i = 0 . . . 6.

Proof. It is straightforward to check d0 ≤ 2d1 ≤ |X|d0. That d0 and d6 are equivalent follows from

d0 ≤ d6 ≤ 2d1. Next, we show d1 = d2. Let A = {x ∈ X : q({x}) ≥ r({x})}. Then

d1(q, r) =
1

2

∑
x∈X

|q({x})− r({x})|

=
1

2

∑
x∈A

q({x})− r({x}) +
∑

x∈X\A

r({x})− q({x})


=

1

2
(q(A)− r(A) + r(X \A)− q(X \A)) = q(A)− r(A)

= max
E⊆X

|q(E)− r(E)| = d2(q, r).

That d1 and d5 are equivalent follows from the Cauchy–Schwartz inequality:

d1(q, r) ≤ 2d5(q, r) ≤ 2d1(q, r)
1/2

Next, we claim d3 = d4. Any probability measure q on S defines a linear functional φq on L1(X,S, p)
by assigning to any f ∈ L1(X,S, p) its expectation value with respect to q:

φq(f) =

∫
X

fdq =
∑
x∈X

f(x)q({x})

The space L1(X,S, p)∗ of all linear functionals on L1(X,S, p) is a normed space with the norm ‖φ‖
defined by

‖φ‖ = sup
‖f‖1≤1

|φ(f)|

Recall (see e.g. Chapter 3 in [12]) that the space L1(X,S, p)∗ is isomorphic to L∞(X,S, p) (with the

‖ ·‖∞-norm); that is, there is an isometric isomorphism h : L1(X,S, p)∗ → L∞(X,S, p). The h-image

of φq is the Radon–Nikodym derivative dq
dp

of q. Now, we have

d3(q, r) = sup
‖f‖1≤1

∣∣∣∣∫ fdq −
∫
fdr

∣∣∣∣ = sup
‖f‖1≤1

|φq(f)− φr(f)|

= ‖φq − φr‖ = ‖h(φq)− h(φr)‖∞ = sup
x∈X

∣∣∣∣dqdp (x)− dr

dp
(x)

∣∣∣∣ = d4(q, r)

To complete the proof it is enough to show that d1 and d3 are equivalent.

d1(q, r) = d2(q, r) = sup
E⊆X

∣∣∣∣∫ χEdq −
∫
χEdr

∣∣∣∣ ‖χE‖1≤1

≤ sup
‖f‖1≤1

∣∣∣∣∫ fdq −
∫
fdr

∣∣∣∣
= sup

‖f‖1≤1

∣∣∣∣∣∑
x∈X

f(x)(q({x})− r({x}))

∣∣∣∣∣ ≤ sup
‖f‖1≤1

∑
x∈X

|f(x)||(q({x})− r({x}))|

= sup
‖f‖1≤1

(∑
x∈X

|f(x)| ·
∑
x∈X

|q({x})− r({x})|

)
≤ 2d1(q, r) · sup

‖f‖1≤1

∑
x∈X

|f(x)|

Now ‖f‖1 ≤ 1 means
∑
x∈X |f(x)|p(x) ≤ 1 and thus there is a constant (depending only on p) such

that
∑
x∈X |f(x)| ≤ K holds for all ‖f‖1 ≤ 1. Therefore we obtained

d1(q, r) ≤ d3(q, r) ≤ 2Kd1(q, r)
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which completes the proof.

Recall that for finite X, a sequence (qn) ⊆M(S) of measures is said to weak∗-converge (cf. [1][p.

335]) to q ∈M(S) if for all f : X → R we have∣∣∣∣∣∑
x∈X

f(x)
(
qn({x})− q({x})

)∣∣∣∣∣ −→ 0 as n→∞

The topology of weak∗-convergence is the same as the topology generated by d1 (and hence by any

of the di’s). Indeed, suppose qn weak∗-converges to q. Choose f = 1. Then∣∣∣∣∣∑
x∈X

(
qn({x})− q({x})

)∣∣∣∣∣ = 2d1(qn, q) −→ 0 as n→∞

Thus we see that it does not matter which of the metrics di we use when studying topological

properties of M(S). For convenience we let (M(S), d) to be a metric space with

d(q, r) = max
x∈X
|q({x})− r({x})|

Later we will need the following Lemma, proof of which is left to the reader.

Lemma 4.3. For all ε > 0 there is δ > 0 such that

max
x∈X
|q({x})− r({x})| < δ =⇒ max

x∈X

∣∣∣∣ q(x)p(x)
− q′(x)

p(x)

∣∣∣∣ < ε.

4.2 Proof of Proposition 3.2

Proof.
Recall that q is not Bayes learnable if and only if dq

dp
is injective (Proposition 2.1). Also recall

that the Radon–Nikodym derivative dq
dp

is the function x 7→ q({x})
p({x}) . Let BBS(p) denote the Bayes

p-Blind Spot

BBS(p) is open: Take any q ∈ BBS(p). We shall prove that there is δ > 0 such that for any

q′ ∈ M(S) with d(q, q′) < δ we have q′ ∈ BBS(p). Since q ∈ BBS(p) the density function dq
dp

is not

injective. It is enough to prove that for small enough δ, if d(q, q′) < δ, then dq′

dp
is not injective. Let

ε =
1

2
min
x 6=y

∣∣∣∣ q({x})p({x}) −
q({y})
p({y})

∣∣∣∣
be the half of the minimal difference of different values of dq

dp
. Injectivity of dq

dp
implies ε > 0. Using

Lemma 4.3 there is δ > 0 such that

d(q, q′) < δ implies max
x∈X

∣∣∣∣ q(x)p(x)
− q′(x)

p(x)

∣∣∣∣ < ε

And this latter inequality ensure that dq′

dp
must be injective and thus q′ ∈ BBS(p).

BBS(p) is dense: We need to verify that for all q ∈ M(S) and δ > 0 there is q′ ∈ BBS(p) such

that d(q, q′) < δ. Let us fix q and δ and chose a function ε : X → (−δ, δ) such that
∑
x∈X ε(x) = 0

and if q({x}) = 0, then ε(x) > 0. Define the measure q′ on the singletons x ∈ X by

q′({x}) = q({x}) + ε(x) for all x ∈ X

11



Then q′ is a probability measure as
∑
x∈X ε(x) = 0, and we obtain d(q, q′) < δ. It is straightforward

to see that ε can be chosen in such a manner that

q({x}) + ε(x)

p({x}) 6= q({y}) + ε(y)

p({y}) for all x 6= y ∈ X

whence injectivity of dq
′

dp
follows. Therefore q′ ∈ BBS(p) and the proof is complete.

4.3 Proof of Proposition 3.4

Proof. Let L ⊆ M be the set of Bayes learnable measures. We claim λn−1(L) = 0. q ∈ M is Bayes

learnable if and only if its Radon–Nikodym derivative dq
dp

is not injective, i.e.

L =

{
q ∈M :

q

p
(x) is not injective

}
Let A ⊆ P(X) be a partition of X and call A a non-trivial partition if A 6=

{
{x} : x ∈ X}, i.e. there

is at least one block A ∈ A that contains at least two elements. Write

LA =

{
q ∈M :

q(x)

p(x)
is constant on every A ∈ A

}
⊆ M

Then we have

L =
⋃
{LA : A is a non-trivial partition of X}

The proof proceeds as follows: we show that for each non-trivial partition A the dimension dimLA

is at most n− 2. Consequently λn−1(LA) = 0 and since there are only finitely many partitions of X,

we obtain

λn−1 (L) = λn−1
(⋃

LA
)
≤
∑

λn−1 (LA) = 0

Take a non-trivial partition A and pick a block A ∈ A in this partition that contains at least two

elements, say xi and xj . For any q ∈ LA the function dq
dp

should be constant on A. The equation

Xi
p(xi)

=
Xj
p(xj)

(Xi, Xj ∈ R variables) (22)

defines a hyperplane H ′ and LA ⊆ H ′. Clearly none of H ′ or H contains the other, therefore the

intersection H∩H ′ has dimension at most n−2. Since LA ⊆ H∩H ′, we obtain the desired inequality

dimLA ≤ n− 2 and the proof is complete.
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