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Abstract

The relationship that is widely presumed to hold between physical theories and
their successors, in which the successors somehow explain the success of the theories
they replace, is known popularly as ‘reduction.’ I argue that the traditional limit-based
approach to theory reduction in physics, founded on the notion that a superseded
theory should be a limiting case of the theory that supersedes it, is misleading as a
general picture of inter-theory relations in physics. I defend an alternative account
of theory reduction in physics that is built around an existing insight concerning the
reduction of dynamical systems, that in my opinion has received far too little attention
in either the philosophy of the physics literatures on reduction. I demonstrate how
this particular insight can be elaborated into a general account of reduction in physics,
largely along the lines of Ernest Nagel’s more general approach to reduction across the
sciences. I develop the account in the context of the semantic view of theories, which
identifies a theory with the collection of its models, rather than the syntactic view
that Nagel himself espoused. However, I demonstrate that most of Nagel’s insights
concerning reduction do not depend on, and therefore extend beyond, the syntactic
view theories. In the final chapter, I explain how DS reduction addresses a number
of common criticisms of Nagelian reduction within the specific context of inter-theory
relations in physics.

In addition, I consider the problem, also not often explicitly confronted in the
literature on reduction, of the degree of generality that can be achieved in explanations
of the success of a superseded theory on the basis of its successor - that is, the degree
to which one must account for successful applications of the superseded theory on a
system-by-system basis versus the extent to which a range of such applications can be
explained at once by general mathematical results connecting the formalisms of the
two theories. I argue that while many approaches to reduction tend to one or the
other extreme, a comprehensive account of reduction is most perspicuously given in
the form of what I call ‘templates,’ which are incomplete proofs, or outlines of proofs,
of reduction that may vary in their level of detail and completeness. I further argue
that the degree of detail and completeness of a template will typically vary inversely
with its generality - that is, with the number of systems to which it applies - since more
detailed accounts of the success of the higher-level theory may require system-specific
details, while more general accounts necessarily are insensitive to these details. A
sense of both the general mechanisms that apply across a wide range of systems, and
the fine-grained details required to make the explanation complete, involves multiple
templates, each combing over the same deductive path in successively finer detail.

After clarifying these points of general methodology, I go on to apply this approach
to a number of particular inter-theory reductions in physics involving quantum theory.
I consider three reductions: first, connecting classical mechanics and nonrelativistic
quantum mechanics; second, connecting classical electrodynamics and quantum elec-
trodynamics; and third, connecting nonrelativistic quantum mechanics and quantum
electrodynamics. I approach these reductions from a realist perspective, and for this
reason consider two realist interpretations of quantum theory - the Everett and Bohm
theories - as potential bases for these reductions. Nevertheless, many of the technical
results concerning these reductions pertain also more generally to the bare, uninter-
preted formalism of quantum theory, and for this reason I hope that at least portions
of my analysis will be of interest to readers skeptical of realist approaches to quantum
theory. Throughout my analysis, I make the application of the dynamical systems,
template-based methodology explicit, so as to provide concrete illustration of this
approach.
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Chapter 1

The Methodology of Theory

Reduction in Physics

The progress of physics since the era of Kepler and Newton suggests that new

fundamental theories should be required to bear a special relationship to their

predecessors called ‘reduction,’ which is supposed to ensure that newer theories

encompass all of the genuine successes of their predecessors. The relationships

between special relativity and Newtonian mechanics and between statistical me-

chanics and thermodynamics are often taken as paradigmatic examples of theory

reduction in physics. However, this relationship is also usually taken to hold be-

tween general relativity and special relativity, between general relativity and the

theory of Newtonian gravitation, between quantum theories and classical the-

ories, between relativistic and non-relativistic quantum theories, and between

quantum field theories and quantum mechanics. However, the possibility of re-

ductions involving quantum theory continue to be somewhat more controversial

because of the measurement problem and widespread disagreement about the

possible nature of wave function collapse.

Broadly, the goal of this thesis is to elaborate a philosophical picture of re-

duction that I develop in general terms in this chapter, and then to use this
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picture to clarify how certain instances of reduction involving quantum theory

come about. The approach of this thesis will be to take as potential bases for

these reductions two competing versions of quantum theory which offer unam-

biguous, realist accounts of measurement processes and which explain, rather

than merely postulating (as positivist and empiricist versions of the theory do),

the appearance of wave function collapse: namely, Everett’s ‘Many Worlds’

theory and Bohm’s ‘hidden variables’ theory. Because these theories share an

essential piece of mathematical structure - a wave function that always evolves

according to the Schrodinger equation - it is natural to consider these theories

in parallel. I emphasize that my primary goal is not to weigh the relative merits

of these two interpretations of quantum theory, but to consider how various re-

ductions would work differently between them. However, if one theory succeeds

with a particular reduction where the other does not, we should take this as a

basis for preferring one to the other; on the other hand, it may turn out that

both succeed in underpinning these reductions on their own terms, in which

case the position of this thesis will remain neutral with respect to the two.

My analysis of reduction throughout this thesis rests upon a broadly realist

(rather than a positivist or empiricist) view of scientific theories, as well as on

the view that physical theories and science more generally should be expected to

progress toward a state of greater unification over time, and that this progress

reflects an underlying unity in nature itself. I do not attempt to defend realism

or the unity of science as a whole, except insofar as my analyses potentially

lend greater credibility to the realist interpretations of quantum theory that I

consider by demonstrating their success at underpinning certain reductions, and

except insofar as the specific reductions that I examine serve to illustrate the

possibility of subsuming (and thereby unifying) the successes of different theories

under a single framework. Rather, I take these philosophical doctrines as the

starting point and general setting for my analysis of reduction. In my treatment

of the particular reductions that I consider, I proceed on the expectation that

such reductions can be performed (thus assuming the possibility of unification
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from the outset), addressing the question of how, exactly, to perform them by

considering what particular results must hold in order for these reductions to

go through.

1.1 Introduction: Outline and Structure of the

Thesis

First, a very brief summary of the thesis: Chapter 1 spells out the methodol-

ogy of reduction in physics - or ‘physical reduction,’ as I call it - that I employ

throughout the thesis. Chapters 2, 4 and 5 elaborate a number of particular

reductions according to this methodology, while Chapter 3 provides an intro-

duction to prerequisites of quantum field theory needed for Chapters 4 and 5.

Chapter 6 considers how the account of physical reduction developed in the

present chapter serves to resolve certain difficulties with another closely related

account of reduction.

To be more specific, the present chapter, Chapter 1, is devoted to setting

out the methodology for physical reduction that I apply to particular reduc-

tions in later chapters, and to placing this methodology within the context of

existing accounts of reduction in science. In it, I make three central arguments

concerning the methodology of physical reduction (which I label in boldface for

the sake of emphasis).

1. Limits and Their Limitations: First, the conventional notion that

superseded theories in physics are, generally speaking, limiting cases of

the theories that supersede them, is simplistic. In fact, this notion of

reduction fails to characterise many of the inter-theory relations that it is

most often purported to characterise.

2. Dynamical Systems Reduction: Within a realist, semantic view of

physical theories (where the semantic view identifies a theory with the

collection of its models), a more appropriate characterisation of the re-
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duction relation in physics can be given in cases where the models of the

theories concerned can be given in terms of some dynamical map on some

state space. This approach to reduction, which I call the dynamical sys-

tems approach, is built around an insight extracted from reductions in

statistical mechanics but that I argue can be extended more generally to

reduction in physics as a whole; in the philosophical literature, it has been

discussed independently in publications by Marco Giunti, Jeremy But-

terfield and Jeffrey Yoshimi and was introduced to me in different forms

by David Wallace and David Albert, who as far as I know also came to

it independently in the context of research into the foundations of sta-

tistical mechanics. By comparison with the more popular Nagelian and

limit-based approaches, this way of approaching reduction in physics has

received relatively little attention in the literature on reduction; however,

I argue here that it is central to an accurate, general account of theory

reduction in physics. Moreover, I argue that dynamical systems reduc-

tion exhibits a number of important parallels with Ernest Nagel’s classic

account of theory reduction - or rather, with a particular refinement of

Nagel’s account - but also exhibits a number of disanalogies with Nagel’s

approach as well.

3. Template-Based Reduction: I argue that the project of effecting a

reduction between two theories within the dynamical systems framework

is most perspicuously approached through the use of what I call ‘reduction

templates,’ which, briefly, are incomplete proofs of reduction. In reducing

the theoretical description of a particular system provided by a high level

theory to the theoretical description of that same system provided by a

lower level theory, the generality of the reduction - that is, the range of

systems within the domain of the higher level theory to which the reduc-

tion applies - runs inversely to the degree of completeness of the proof.

Complete proofs of reduction often require reference to the specific details

governing the system in question, while an understanding of the general
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mechanisms that apply across a wide range of systems may require abstrac-

tion away from system-specific details. Through the use of templates, the

process of reduction can be compartmentalised into those components of

the reduction which apply across of wide range of instances of the super-

seded theory’s success, and those which are more specialised to particular

systems or sets of systems. For a clear sense both of the general mech-

anisms that underpin the reduction, as well as the more system-specific

details that are required to make the reduction complete, I claim that one

should provide multiple templates: first, at a high level of generality and

possibly a low level of completeness, and then successively customising

the template to progressively narrower specifications and smaller sets of

systems, thereby filling the gaps in the more general templates.

In addition to the general claims about reduction that I make in Chapter 1,

in Chapters 2,4, and 5 I apply a dynamical sytems, template-based approach

to a number of particular reductions: 1) in Chapter 2, the reduction between

classical Newtonian mechanics (NM) and quantum mechanics (QM) 1, 2) in

Chapter 4, the reduction between quantum mechanics (QM) and relativistic

quantum electrodynamics (QED) 3) in Chapter 5, the reduction between clas-

sical electrodynamics (CED) and relativistic quantum electrodynamics (QED).

In providing the templates for these reductions, I endeavour to make clear

which results remain in need of proof, either because of the need to consider

systems at a level of detail that goes beneath the level of generality that I seek

to achieve in my analysis, or because of a technical conjecture which, though

plausible, I have left unproven. In developing these templates, my approach is,

in some respects, to work backward from the result to be proven, assuming that

the reduction can be performed, and to consider what results need to hold for

the reduction to be effected in the manner I have suggested.

Given the realist background of this project, the quantum theories involved

1Note that I use ‘classical’ here to describe theories which are non-quantum, and ‘Newto-
nian’ to describe theories which are non-quantum and nonrelativistic.
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in the reductions I consider - QM and QED - must be given realist interpreta-

tions, which, in contrast to operationalist or positivist interpretations, associate

a relatively concrete metaphysical picture to the theory. I adopt as bases for my

analysis the Everett and Bohm versions of these theories, which both possess

the property, essential to my analysis, that they are non-collapse interpreta-

tions of quantum theory. For reasons that I elaborate in Chapter 2, this fact

makes it especially natural and convenient to consider the Everett and Bohm

interpretations in parallel.

Where the Bohm theory is concerned, I employ Bohm’s original formulation

of the nonrelativistic quantum mechanics of a spinless particle, and Bell’s for-

mulation of the nonrelativistic quantum mechanics of a spin-1/2 particle [13],

[9]. In the case of QED, I consider Struyve and Westman’s minimalist model

[99]. Where the Everett theory is concerned, I hope that the discussion will be

of interest even to readers skeptical of Everett’s theory, or of realist interpre-

tations of quantum theory more generally; the technical discussions pertaining

to Everett’s theory apply equally well to the bare, uninterpreted formalism of

quantum mechanics without collapse (for a defense of the view that Everett’s

theory simply is a reification of the bare QM formalism without collapse, see

Wallace’s [110]). Insofar as any interpretation of quantum theory is likely to

‘piggyback’ on the empirical success of the bare formalism - as all the leading re-

alist interpretations do - results pertaining to the bare formalism, whether with

regard to reduction or other considerations, are likely to have strong relevance

to any realist interpretation of quantum theory. For this reason, the results

concerning particular reductions that I present in chapters 2, 4 and 5 carry a

significance that is interpretation-neutral.

In non-collapse interpretations of quantum theory, the phenomenon of deco-

herence is responsible for effective wave function collapse. However, as I explain

in chapter 2, the particular decoherence condition that ensures effective col-

lapse in Everettian theories does not suffice to ensure effective collapse in their

Bohmian counterparts. In Bohmian theories, the requirement for effective col-
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lapse, namely that branches of the quantum state be disjoint with respect to

the configuration space of the additional variables, or ‘beables,’ as John Bell

called them (to contrast them with ‘observables’), amounts to a special kind of

decoherence condition whose mathematical specification depends on the choice

of beable. With regard to the reduction of classical theories to Bohmian quan-

tum theories, I argue that the vanishing of the ‘quantum potential,’ which is

often cited as a sufficient condition for classical behaviour, is in some important

respects a red herring with regard to the explanation of classical behavior within

any Bohmian theory. I demonstrate that an approach which first considers the

detailed structure of the wave function resulting from decoherence, and only

then the determines effect of the wave function on the Bohmian configuration,

is more transparent and better reflects the nature of realistic classical systems.

In the reductions relating to quantum field theory that I consider in Chap-

ters 4 and 5, the Schrodinger picture of quantum field theory proves to be an

extremely useful tool for analysing the nonrelativistic and classical domains of

QED. I provide a detailed review of the Schrodinger picture of quantum field

theory, as well as of Bohmian QFT, before presenting a template-based dynam-

ical systems analysis of the classical and nonrelativistic domains of QED.

In chapter 6, I consider how a dynamical systems approach to reduction,

despite its deep parallels with Nagelian reduction, addresses some of the ma-

jor concerns about Nagelian reduction, at least within the context of physical

reductions.

1.2 Two Views of Physical Reduction

In [76], Nickles observes that the term ‘reduction’ is typically used in opposite

senses in the philosophy and physics literatures. Given a high-level (i.e. less

encompassing, less fundamental) theory Th and a low-level (i.e., more encom-

passing, more fundamental) theory Tl , the physics literature typically speaks

of Tl reducing to Th, while the philosophical literature speaks of Th reducing
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to Tl. This is, to some extent, a matter of convention. The physicist’s sense

of reduction calls to mind uses of ‘reduction’ that designate simplification, as

when a complex fraction is reduced to a simpler one in arithmetic, while the

philosopher’s sense calls to mind uses of ‘reduction’ that signify some sort of

subsumption or inclusion into a broader framework, as in ‘the reduction of

chemistry to physics,’ or the ‘reduction of mathematics to logic.’ Both senses

are true to different uses of the word. In this thesis, I have chosen to employ

the philosopher’s sense of the term.

Thomas Nickles is often credited with being the first to underscore the dis-

tinction between reduction in the philosopher’s sense and reduction in the physi-

cist’s sense [76]. Yet the distinction, as Nickles draws it, is not solely a matter

of convention as to whether the high level theory is said to reduce to the low

level theory or the low level theory to reduce to the high level theory. Once

the conventions are made to agree, there remains a substantive difference be-

tween the meaning of the term ‘reduction’ as it is most often employed in the

physics literature and the meaning of the term as it is most often employed in

the philosophy literature. The philosopher’s notion is based on an account of

reduction given by Ernest Nagel while the physicist’s views reduction essentially

as a matter of taking mathematical limits [75] 2.

Having reversed the physicist’s convention to agree with the philosopher’s,

these two notions of reduction as Nickles defines them, and which he designates

reduction1 for the philosopher’s sense and reduction2 for the physicist’s sense,

can be defined as follows:

Reduction1: (Nagelian Reduction) Th reduces1 to Tl if the laws of Th

can be derived from those of Tl, possibly along with some auxiliary

assumptions, either exactly or (more often) as approximations, in

2Of course, one may question whether it is entirely appropriate or fair to identify one
sense of reduction as the physicist’s and the other as the philosopher’s. There are, after
all, instances of physicists employing what is effectively reduction in the philosopher’s sense
(arguably, textbook proofs of the Ideal Gas Law on the basis of statistical mechanics are
examples of this [62]) and of philosophers employing reduction in the physicist’s sense (see,
for instance, [6]).
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all cases in which Th is approximately accurate.

Reduction2: (Limit-Based Reduction) Th reduces2 to Tl if there ex-

ists some set of parameters {εi} defined within Tl such that lim{εi→0} Tl =

Th. [76],[7] 3 4

Both of these definitions of reduction as they stand are still quite vague. In

Nagelian reduction, what does it mean to ‘derive’ the laws of one theory from

those of another, given that many of the theories listed above have radically

different ontologies, and are often formulated in drastically different mathemat-

ical and conceptual frameworks? Concerning limit-based reduction, what does

it mean to take the limit of a theory, given that the notion of a mathematical

limit is usually defined for functions?

Moreover, one may doubt that these two concepts of reduction are wholly

mutually exclusive: for example, perhaps the limit-based notion of reduction

can be subsumed into the Nagelian one, since taking limits might be construed

as a form of deduction. However, as we will see when we discuss reduction in

the Nagelian sense in more detail, in cases where Th employs terms not used in

Tl, Nagelian reduction requires the use of additional assumptions often referred

to as ‘bridge laws’ to translate these terms into the terms of Tl. Limit-based

reduction, insofar as it constitutes a well-defined framework for reduction at all,

typically makes no mention or use of such assumptions. Thus, in such cases of

‘heterogeneous reduction,’ as Nagel calls it, there is indeed a clear distinction

to be made between the two approaches, on the basis of whether or not bridge

rules are employed.

3Note that if one has lim{εi→∞} Tl = Th, or lim{εi→a} Tl = Th where 0 < a < ∞, one
can always redefine the parameters {εi} so that the limit approaches 0.

4In Nickles’ original definition of reduction2, the sense of reduction is the inverse of the one
I give here, in that on Nickle’s definition the superseding theory T1 reduces2 to the superseded
theory T2, rather than vice versa as in the definition that I provide. This inversion merely
reflects an arbitrary choice of convention, and I choose the opposite convention to the one
that Nickles chooses. The reason for this is so that reduction2 and reduction1 are defined
according to the same choice of convention (that is, with the superseded theory reducing to
the superseding theory), thereby facilitating an analysis of the truly substantive differences
between these concepts of reduction.
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Finally, apart from these two notions of reduction, there are several other

approaches to reduction that have been proposed in the philosophy literature:

notably, Kim’s functional model of reduction and Hooker’s ‘New Wave’ model

[60], [52]. Both of these have been presented as alternatives to Nagelian re-

duction, primarily in the context of discussions of reduction and emergence in

philosophy of mind. Marras, however, has argued that Kim’s account is only

superficially distinct from Nagel’s [69]. Likewise, Fazekas has argued that the

main purported difference between New Wave and Nagelian reduction, that

New Wave reduction succeeds without employing bridge laws, is obviated by

the tacit, surreptitious invocation of assumptions that are effectively equivalent

to bridge laws. Given that discussions of Kim’s account are largely specialised

to philosophy of mind, it would take the analysis too far afield to see how, if at

all, his account can be translated to the context of physical reductions. Insofar

as Hooker’s account does hold some natural application to physical reduction,

Fazekas has argued, convincingly in my view, that it, too, collapses into a par-

ticular refinement of Nagelian reduction [34].

For these reasons - the fact that these other approaches to reduction have

been formulated primarily in the context of philosophy of mind, and the pos-

sibility that, when applied to physical reduction, they collapse into Nagelian

reduction - I will retain a focus on the two approaches to physical reduction

that Nickles discusses: limit-based and Nagelian. In sections 1.2.1 and 1.2.2,

I suggest how these accounts can be made more precise. In section 1.2.1, I

argue that even on the most plausible clarification of the limit-based view of

reduction, this account fails to accurately characterise the general nature of the

relation between high- and low- level physical theories. In section 1.2.2, I discuss

a particular refinement of Nagelian reduction and list some of the most common

concerns with it. In section 1.3, I describe an alternative account of physical re-

duction, which I designate dynamical systems (or DS) reduction, and highlight

its similarities to Nagelian reduction; crucially, though, this approach concerns

the reduction of individual models of the high-level theory to individual models
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of the low-level theory, rather than the wholesale reduction of entire theories.

1.2.1 Limits and Their Limitations

The literature on limit-based approaches to reduction is extensive. Batterman,

Butterfield, Rohrlich, Schiebe, Redhead and Post, among others, all have ex-

plored different applications and implications of this approach [19], [6], [85], [91],

[92], [93], [83], [80] . A detailed review of the literature on this topic is beyond

the scope of this thesis, and I limit myself to considering its two most commonly

cited applications: the NM/SR reduction and the CM/QM reduction.

The physics and philosophy of physics literatures are replete with claims

that Newtonian mechanics is a ‘limiting case’ of special relativity as c → ∞,

or as 1
c → 0 (abbreviated here as NM = limc→∞ SR) and that classical me-

chanics is a limiting case of quantum mechanics as ~ → 0 (abbreviated here

as CM = lim~→0QM) (see, e.g., [53], [87]). These claims entail that, as some

parameter or set of parameters {εi} approach zero, the theory Tl somehow ‘goes

into’ Th. However, in the case of Newtonian mechanics and special relativity,

1
c never approaches zero for any system, nor does it approach anything since c

is always a constant. In the case of classical and quantum mechanics, analo-

gous considerations apply: ~ never approaches zero for any system since it is a

constant with a definite value. Nevertheless, from a purely mathematical per-

spective it is often the case that if one does allow the values of these parameters

to vary, then one often does retrieve equations that are approximately Newto-

nian or classical in form. However, it would be obviously incorrect to say that

physical systems which behave in Newtonian fashion are those with very large

values of c and that those which behave classically are those with small values

of ~, since all systems have the same values for these quantities. For this reason,

the physical significance of results concerning the ~ → 0 and 1
c → 0 limits is

obscure.

A more sophisticated formulation of reduction2, then, should explain why

results derived by taking 1
c and ~ to zero should be physically significant given
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that in reality the values of these quantities are fixed. A natural answer to

this concern would be to consider the possibility that what is really meant by 1
c

approaching zero or c approaching infinity is that c is very large in comparison to

a certain relevant, variable set of velocities characterizing the system in question,

and that what is really meant by ~ approaching zero is that ~ is very small in

comparison to some relevant measure of action (the units of ~) Scl characterizing

the system. On this formulation of reduction2, the appropriate limit to take in

the NM-SR case is the limit as some dimensionless parameter ε ≡ v
c approaches

zero, while the appropriate limit to take in the CM-QM case is the limit as the

(again) dimensionless parameter ε ≡ ~
Scl

approaches zero.

A question that immediately presents itself about this refinement of reduction2,

in which the parameters εi are required to be dimensionless, is how to identify

appropriate definitions for the quantities v and Scl: for a given system, which

velocities, exactly, are relevant to the limit, and how precisely does one compute

the ‘typical action’? If one were able to identify such a set of velocities or such

a definition of the typical action of a system, it might then be possible to formu-

late derivations that extract Newtonian or classical equations from relativistic

or quantum theories, respectively, without taking 1
c and ~ to zero, but rather

by taking the value of some corresponding dimensionless quantity such as ε ≡ v
c

or ε ≡ ~
Scl

, to zero - specifically, by varying v or Scl, each of which may assume

distinct values from system to system. In this more sophisticated formulation,

Newtonian systems could conceivably be characterised as those with velocities

much smaller than c, and classical systems as those with typical actions large

in comparison with ~.

Once we have specified that the relevant parameters characterising the limit

in reduction2 should be dimensionless, we are still left with another worry,

relevant specifically to the NM/SR case. Strictly speaking, the limit of SR as

all velocities go to zero is a theory in which nothing moves, and in which there

is only one reference frame. What is really meant, then, when NM is identified

as a limiting case of SR is not that models of NM are strictly speaking the
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limits of some models of SR as the relevant velocities go to zero, but rather that

they provide some first- (or potentially higher-but-finite-) order approximation

to these models of SR. More generally, what must be meant by reduction2, if

it is to include the NM/SR case as an example, is that for systems in which

the relevant εi are sufficiently small, Th provides a good approximation to Tl

(whether zeroth, first, second, or higher order in the εi) - not necessarily, as

Nickles has suggested, that Th is a limit of Tl as εi → 0.

On this further refinement of reduction2, though, there remain yet other

questions about the limit-based concept of reduction. The εi being small are sup-

posed to be a sufficient condition for a given model of Tl’s being approximated

by some model of Th; is this also a necessary condition? Purported instances of

reduction2, particularly the NM/SR and CM/QM cases, seem to suggest that it

may also be necessary; however, to lend the definition of reduction2 the great-

est potential viability, I will refrain from encumbering it with this additional

constraint, and assume that reduction2 takes it only as a sufficient condition

that the εi be small.

A final worry about reduction2, as specified thus far, pertains to cases where

Th and Tl are formulated within radically different mathematical and conceptual

frameworks, such as the CM/QM reduction. In these cases, taking the relevant

εi to be small may not be sufficient to establish any uniquely obvious corre-

spondence between models of the two theories, as the mathematical concepts

involved in the two models still will be radically different even after taking the

limit. That is, beyond taking εi to be small, some clear correspondence between

the frameworks of the two theories is typically still needed for the reduction

to be effected, as will become apparent when we further consider the CM/QM

case.

Putting this last worry aside, a less ambiguous and more refined version of

reduction2 might be formulated as follows:

Reduction2(refined): Th reduces2 to Tl if there exists some set of

dimensionless parameters {εi} defined within Tl such that when {εi}
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are sufficiently small, Th approximates Tl.

Without some clear correspondence between the concepts populating the math-

ematical frameworks of the two theories, it may not be possible to decide in

general whether a given model of Tl is approximated by some model of Th. As

we will see, in the case of NM/SR, the correspondence between the variables in

the two theories presents itself fairly immediately: position in SR corresponds to

position in NM, time in SR (within a narrow range of inertial reference frames)

corresponds to time in NM, etc.. In the case of CM/QM, this is less the case.

Nevertheless, when I refer to reduction2 below, the reader should understand it

in terms of the refined version I have elaborated here.

What theories might satisfy this updated construal of reduction2? I ar-

gue below that neither the NM-SR reduction nor the CM-QM reduction does.

(Throughout, I employ the term classical to mean non-quantum, and Newtonian

to mean non-quantum and non-relativistic; so, relativistic systems may be clas-

sical, but not Newtonian.) As I argue shortly, in the relativistic case there does

not appear to be any set of velocities such that whenever c is large in comparison

to these, Newtonian behavior is always approximately retrieved. Similarly, in

the quantum mechanical case there does not appear to be any precise definition

of the typical action of a system such that whenever ~ is small in comparison to

it, this suffices to ensure classical behavior of the system in question (a claim I

defend below as well as in Chapter 2 when I consider the emergence of classical

behavior within the Everettian and Bohmian formulations of quantum theory).

Moreover, in the CM-QM case, there are quantum systems such as spin-1/2

particles or (near-) plane waves, which simply do not yield any counterpart in

the classical theory in this limit (since taking ~
Scl

to be small does not destroy

interference or superposition effects). The notion that every model of a quan-

tum system has a ‘classical limit,’ in the sense that it approximates some model

of classical mechanics, is incorrect.

To take an example other than the NM/SR and CM/QM cases, classical

optics is often said to be the limit of wave optics as λ
d → 0, where λ is the
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wavelength of light and d the typical dimensions of the object on which it is

impinging. Yet, applying the refined version of reduction2 described above,

one can identify systems in wave optics which, as one takes λ
d progressively

smaller, do not return any system in the less encompassing theory of geometric

optics. For example, a system of standing waves in a metallic cavity does not

produce the ray-like behavior of waves in geometric optics, since standing waves,

which are essentially wave-like and do not propagate in any single direction,

will continue to occupy the cavity even as one shortens their wavelength (while

maintaining the relationship between the wavelength and the relevant cavity

dimension necessary to sustain a standing wave). From this example and the

two discussed below, it follows that one cannot generally expect a given system

in a low level theory to give rise to a system contained within the high level

theory in the manner prescribed by reduction2.

Problems with Reduction2 in the NM/SR Case

I’ll begin by considering the possibility of a type-2 reduction in the case of

the reduction of Newtonian mechanics to special relativity. With regard to the

choice of dimensionless parameters characterising the reduction, it is possible to

interpret v in at least two different ways: we may interpret v as the velocity of

a body as measured from a given frame, or we may interpret it as the relative

speed of two frames of reference used to describe the motion of the same system.

One account of the connection between relativistic and Newtonian mechanics

that adopts the latter interpretation is [53], in which Wigner and Inonu demon-

strate that the group of transformations relating inertial reference frames in

Newton’s theory, the Galilean group, is a ‘contraction’ of the group of transfor-

mations relating inertial frames in special relativity, the Lorentz group - where

a group is a contraction of another group, roughly, if it is a limit of the other

group as some parameter ε is taken to zero. They do so by taking ε = 1
c and

c→∞.

While from a mathematical point of view Wigner and Inonu’s results are
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unassailable, as an account of reduction between Newtonian and special rela-

tivistic theories they certainly do not suffice.The variable c is constant, so the

“counterfactual” limit c→∞ is not physically realistic. Strictly speaking, it is

the variable c
v where v is the relative speed of the two frames, and not c itself,

which must be taken to ∞ (or, rather, very large). Such a limit amounts to

the physical requirement the relative velocities of the two frames be small in

comparison to c.

However, reinterpreted as the claim that the Galilean group approximates

the Lorentz group for small vc , Wigner and Inonu’s result still does not suffice to

demonstrate the claim stated in the refined definition of reduction2, namely that

the NM and SR agree to arbitrary precision when v/c is sufficiently small. When

v
c is small, the Lorentz transformation equations do not converge uniformly to

the Galilean transformation equations: the Lorentz transformation equation for

the time coordinate contains a residual dependence on the x coordinate, even

when v
c is taken to be small: t′ ≈ t− v

c2x, so that for arbtirarily small vc , there will

be an x such that the difference between the time coordinates of the two frames

at x - a relativistic effect - can be made arbitrarily large. This x-dependence of

the time coordinate can only be eliminated if one additionally insists that x is

such that
v
c2
x

t << 1. If one does not impose this additional constraint, then for

small but non-zero v, say 5 miles per hour, there will continue to be significant

difference in standards of simultaneity between the two frames for sufficiently

large x.

But even if one imposes this additional restriction on x, while the Galiliean

transformations are guaranteed to agree with Lorentz transformations to arbi-

trary precision, the pair of restrictions v
c << 1,

v
c2
x

t << 1 places no limit on

the speeds of bodies measured from these two frames (as distinguished from the

relative speed of the two frames). The fact that these bodies cannot travel faster

than light with respect to either frame, or the that internal energy contributes

to inertia, for example, is a non-Newtonian effect, one that may obtain even in

the presence of the condition v/c << 1, since this is a condition on the relative
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velocities of the frames and not on the motions of bodies measured from these

frames. In order to surmount this difficulty one must impose the additional

restriction that v′

c << 1, where v′ is the upper bound on the speeds of bodies

in the system, measured from either frame.

Yet even if one imposes this third condition, one is still confronted with cases

in which relativistic, non-Newtonian effects arise. For example, in a conducting

wire, electrons move relatively slowly, at a drift velocity of fractions of a meter

per second. If one has two wires, then from the drift frame of the electrons in one

of the wires, there is a disparity between positive and negative charge densities

in the other wire caused by relativistic length contraction, since the positive

and negative charges in the other wire are moving at different speeds. Thus,

from the point of view of this test charge, there is an electrostatic force from

the other wire that either attracts or repels it depending on the direction of the

current. While for any single electron this relativistic effect is miniscule since its

velocity is so small, for 1023 electrons, it is perfectly detectable [81]. Thus, even

given the above constraints, miniscule relativistic effects can become detectable

if they are compounded over many degrees of freedom. What constraint ought

one to impose in order to preclude non-Newtonian effects like these? One could

try to limit the number of particles in the system, but the advisability of doing

so seems doubtful, especially since most of the reliably non-relativistic classical

systems we know of contain large numbers of particles.

To be sure, the attraction of the wires can be modelled nonrelativistically as

a magnetostatic effect from the original reference frame in which the wires are

stationary. However, given that the Principle of Relativity applies in Newtonian

mechanics as in Special Relativity, it is equally legitimate to describe the system

from the frame of the moving electrons, and to regard the force as electrostatic.

The presence of an electrostatic force in the electron frame as compared with the

absence of any such force in the rest frame of the wires is undeniably a relativistic

effect, since the use of Galiliean as opposed to Lorentz transformations between

the frames would require the electrostatic force to be zero in the electron frame
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if it is zero in the wire frame, which is not the case.

Problems with Reduction2 in the CM/QM Case

Like the NM/SR reduction, the CM/QM reduction is frequently cited as a case

of reduction2 - that is, CM is frequently characterised as a ‘limiting case’ of

QM. I have already argued that naive formulations of reduction2, which do

not require that relevant parameters be dimensionless, fail to characterise any

inter-theory relations for the simple reason that constants of nature don’t vary.

Might the more refined formulation of reduction2 that I have proposed succeed

in characterising the CM/QM case? I have offered evidence to the effect that

this refinement does not characterise the NM/SR case, and will likewise argue

now that it fails to characterise the CM/QM case.

In the CM/QM case, reduction2, on my refinement, amounts to the claim

that models of QM for which the characteristic classical action is large in com-

parison with ~ - that is, for which ~
Sc
<< 1 - each approximate some model of

classical mechanics. In attempting to assess the validity of this claim, a difficulty

immediately arises: without some way of knowing which elements of a classical

model are supposed to correspond to a given element of the quantum model

under consideration, how are we to determine whether the quantum model ap-

proximates some classical model? This was not a problem in the NM/SR case,

as a correspondence between the models of the two theories naturally presented

itself there: spatial positions as measured from a particular reference frame in

SR corresponded to spatial positions as measured from the some reference frame

in NM, the coordinate time and standard of simultaneity in a particular SR ref-

erence frame correspond to the measure of time and standard of simultaneity

in some model of NM. But the case of CM/QM is different. Models of CM

describe point particles moving in space under the influence of some force laws

(though these models may be given various formulations, such as those associ-

ated with the Lagrangian and Hamiltonian formalisms). Models of QM describe

the time evolution of some matrix elements either of state vectors or operators
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on a Hilbert space; position and momentum in these models are typically as-

sociated with non-commuting operators rather than c-numbers as in CM, and

even in the limit where the typical classical action of a quantum system is large,

the position and momentum operators do not become c-numbers; whatever the

value of the typical classical action, operators on Hilbert space and c-numbers

defined, say, on some phase space, are different sorts of mathematical objects,

so the behavior of one could never mimic or approximate that of the other -

it’s not clear what it would even mean for an infinite-dimensional matrix of a

position operator, consisting of a continuous infinity of numerical entries, to

approximate a classical position, which consists of only three numbers.

Given the drastically different mathematical frameworks employed in models

of CM and of QM, some correspondence must be established between the two

before the CM model can be regarded as an approximation to the QM model.

Indeed, this assertion simply reflects the need for the ‘bridging principles’ that

play such a central role in Nagelian accounts of reduction, which I describe in the

next section. One natural correspondence between the frameworks of quantum

and classical mechanics, however, does seem fairly obvious: classical position

and momentum correspond to the expectation values of the quantum mechanical

position and momentum operators, rather than to the operators themselves.

Let us take for granted this correspondence, even though reduction2 makes no

reference to the need for such bridging assumptions between the two theories.

Does reduction2 successfully account for the relationship between CM and QM

if we allow that expectation values of quantum operators correspond the values

of corresponding classical quantities? It does not, because a quantum system’s

typical classical action being large in comparison to ~ does not ensure that

expectation values, say, of position and momentum, follow the same dynamics

as their classical counterparts. Indeed, the dynamics of these expectation values

depends essentially on the choice of quantum state, and an arbitrary choice of

quantum state certainly will not yield classical evolutions for these expectation

values, even in cases where the typical classical action is large relative to ~ (say,
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as a result of the system’s mass being large). Any state that is not a narrow

wave packet state in nearly any system other than a simple harmonic oscillar,

will yield non-classical evolutions for these expectation values.

In the preceding examination of the reduction2 approach to physical reduc-

tion, I have attempted to make every reasonable allowance for this account (and

some allowances one might fairly consider unreasonable) in an effort to clarify

its methodology and to seek out instances in which it succeeds. I have shown

that in the two cases that are most often cited cited as examples of this kind of

reduction, it in fact does not apply. This, I claim, is strong enough reason for

abandoning reduction2 as a general characterisation of inter-theory relations in

physics.

Before moving on from reduction2 for good, though, it is worth noting in

connection with limit-based reduction the work of Robert Batterman on this

subject. Batterman has argued in [6] that the singular nature of the limits that

are purported to characterise certain inter-theory relations - such as the relation

between quantum and classical mechanics - precludes the reduction of the high-

level theory to the low-level theory and signals the existence of a new, emergent

(in the sense of being irreducible to the lower-level model) theory characterising

what Batterman calls the ‘asymptotic borderland’ between the theories. While

I do not attempt to address Batterman’s claims in this thesis, the view taken

here is that the asymptotic nature of the limits in question does not signal the

failure of reduction between the theories, because limit-based reduction is not

the proper way to characterise reduction in physics to begin with. Batterman’s

analysis of asymptotic relations between theories simply shows that if reduction

between physical theories is defined along the lines of reduction2, then some of

the cases that we thought were instances of reduction aren’t.

Jeremy Butterfield has also written extensively on the role of limits in theory

reduction in physics. In particular, he has argued that limits offer a way of

reconciling the categories of reduction and emergence, widely regarded in the
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philosophical literature as mutually exclusive [19]. Again, though, because I

claim that a limit-based approach does properly characterise the general nature

is not the right way of construing reduction between physical theories, these

results will not enter the rest of my analysis.

I’ve argued that the concept of inter-theory reduction in physics that takes

a high-level theory be a limiting case of a low-level theory is either too vague

to be useful or, upon further elaboration, wrong. But there is no denying that

the limit-based results that appear throughout physics are strongly suggestive

of some deep connection between the theories in question. Whatever the nature

of this connection, their physical significance lies not in providing an overar-

ching explanation of the success of the high-level theory. What the physical

significance of these limit-based results is, precisely, I leave as an open question.

1.2.2 Nagelian Reduction and its Critics

According to the account of reduction set out in Ernest Nagel’s The Structure of

Science, reductions can be broadly classified into two categories: homogeneous

and inhomogeneous. In the former, the theory to be reduced contains no terms

which are not contained in the reducing theory, while in the latter it does.

An example of a homogeneous reduction is the reduction of Kepler’s theory

of planetary motion to Newton’s Theory of Gravitation [30]. An example of a

heterogeneous reduction is the reduction of thermodynamics, which employs the

concept of temperature, to the Newtonian mechanics of microscopic particles,

which contains no reference to temperature.

Nagel’s Formal Criteria for Reduction: ‘Connectability’ and ‘Deriv-

ability’

Recognizing that ‘no term can appear in the conclusion of a formal demon-

stration unless the term also appears in the premises,’ Nagel asserts that in

the case of an inhomogeneous reduction, something beyond the low-level theory

(which Nagel calls the ‘primary science’) is necessary to perform a derivation
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of the laws of the higher-level theory (which Nagel refers to as the ‘secondary

science’). He claims that there are two formal conditions that must be satisfied

in order to effect an inhomogeneous reduction of the higher- to the lower- level

theory, criteria which Nagel designates the condition of ‘connectability’ and the

condition of ‘derivability’:

(1) Assumptions of some kind must be introduced which postulate
suitable relations between whatever is signified by ‘A’ [a term in
the secondary science] and traits represented by theoretical terms
already present in the primary science. The nature of such assump-
tions remains to be examined; but without prejudging the outcome
of further discussion, it will be convenient to refer to this condition
as the ‘condition of connectability.’ (2) With the help of these addi-
tional assumptions, all the laws of the secondary science, including
those containing the term ‘A,’ must be logically derivable from the
theoretical premises and their associated coordinating definitions in
the primary discipline. Let us call this the ‘condition of derivability.’

While Nagel takes reduction essentially to be deduction, and thus to center on

criterion (2), the condition of connectability provides the additional element

required to effect a deduction of a higher-level theory containing terms that do

not appear in the lower-level theory, in that it provides for a lexicon of sorts to

translate the terminology of the higher-level theory into that of the lower-level

theory.

The central example that Nagel employs to illustrate his model of reduction

is the reduction of the Ideal Gas Law (pV = nRT ), as understood in the con-

text of classical thermodynamics, to the laws of Newtonian mechanics, which

were assumed during the period when statistical mechanics was formulated to

govern the fundamental microscopic constituents of gases. He notes that while

the term ‘temperature’ had an accepted meaning in the context of thermo-

dynamics, given in terms of experimental measurements using thermometers

and other devices, as well as in terms of the theoretical role that it played in

thermodynamical laws, the term made no appearance in the low-level theory,

Newtonian mechanics. Pointing to the usual derivation of the Ideal Gas Law

from classical statistical mechanics that one finds in most introductory text-
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books on statistical mechanics, Nagel takes note of the strategy used to resolve

this difficulty: namely, to associate the thermodynamical term temperature with

a quantity understandable within the framework Newtonian mechanics, namely

average molecular kinetic energy. More precisely, the derivation of the Ideal

Gas Law from the assumptions of Newtonian physics postulates the relation

〈K.E.〉 = 3
2kT , thereby satisfying Nagel’s connectability condition and permit-

ting the derivation of the Ideal Gas Law from Newtonian physics (combined

with some assumptions about Newtonian initial conditions). The connection

between temperature and molecular kinetic energy has come to serve as the

paradigmatic example of what is sometimes referred to as a ‘bridge principle,’

‘bridge law’ or ‘bridge rule’ or ‘reduction function’ - that is, one of Nagel’s

connecting assumptions.

Nagel’s Model, Refined

Since Nagel put forward his original model of reduction, a number of modifica-

tions and refinements of this model have been proposed. There isn’t space here

to review all of them, so I will only discuss the particular modifications which

are employed in the refinement of Nagel’s views that I consider in my analysis.

Schaffner, one of the early commentators on and developers of Nagel’s work

on reduction, observed that Nagel’s account of reduction is, strictly speaking,

too stringent, since reductions in practice rarely if ever yield derivations of the

higher level theory T2 from the lower level theory Tl, but rather yield derivations

of some modified or corrected version T
′

h of Th that employs the same vocabulary

as Th; T
′

h is sometimes referred to as the ‘analogue theory’ of Th. According to

Schaffner, bridge laws can then be understood as those relations that link all

terms in T
′

h that do not appear in Tl with terms in Tl. One then derives T
′

h

from a combination of Tl and the set of bridge laws [89].

Like Schaffner, Hooker proposed a revision of Nagel’s model that accommo-

dates the fact that in practice it is often not, strictly speaking, Th that gets

derived from Tl. However, unlike Schaffner, Hooker claims that the theory that
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one does derive from Tl, which Hooker calls the ‘image theory,’ T ∗h , of Th, should

be formulated in the vocabulary of Tl rather than that of Th. Thus, no bridge

laws are required to derive T ∗h from Tl. Once an image theory has been derived,

says Hooker, one can regard Th as having been reduced by virtue of an ‘ana-

logue relation’ that Th bears to T ∗h [52]. While it is not clear precisely what

Hooker’s analogue relation consists in, Hooker claims that because what one

really derives in a reduction is an image theory and not the theory Th itself,

even inhomogeneous reductions do not require the use of bridge laws.

The refinement of Nagel’s account that I consider here, dubbed the General-

ized Nagel-Schaffner (GNS) model by Dizadji-Bahmani, Frigg and Hartmann in

[30], consolidates both Schaffner’s and Hooker’s 5 insights, and is based largely

on Schaffner’s Generalized-Replacement-Reduction (GRR) model 6. Specifi-

cally, the GNS model incorporates both Hooker’s image and Schaffner’s ana-

logue theories. On this model, reduction can be understood as a three-step

process, starting with the basic ingredients of a low-level theory Tl, a high-level

theory Th, and a set of bridge laws:

1. Derive the image theory T ∗h for some restricted boundary or initial condi-

tions within the low level theory Tl. This step refines Nagel’s derivability

condition; it is the image theory T ∗h , not the high-level theory Th, that is

derived from Tl on this account of reduction.

2. Use bridge laws to replace terms in T ∗h , which belong to the vocabulary of

the low level theory, with corresponding terms belonging to the high level

theory. This yields the analogue theory T ′h (as is made clear in step 3, the

sense of ‘analogue’ here is different from the sense in which Hooker uses

it, in that it refers to the relation between T ′h and Th, not between T ∗h

and Th as in Hooker’s account). This, along with step 3, refines Nagel’s

connectability condition.

5The GNS model does not explicitly draw on Hooker’s work, although it does independently
of this work, recognise the need for what Hooker calls an image theory in the process of
reduction.

6the distinction largely being that the former does not adopt Schaffner’s view of bridge
laws (see [90])
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3. If the modified theory T ′h is ‘strongly analogous’ to the high level theory Th,

the high level theory has been reduced to Tl. The ‘strong analogy’ relation

is sometimes also characterised as approximate equality, close agreement,

or good approximation and can be understood in any of these senses.

This step contributes an additional component to Nagel’s connectability

condition.

Henceforth, when I speak of Nagelian reduction, I will construe it according to

the GNS model, unless explicitly stated otherwise. Moreover, note that Nagel’s

connectability condition on this refinement consists of two ‘connections’: first,

the bridge laws that link the image theory T ∗h and the analogue theory T
′

h, and

second, the rather vaguely defined ‘analogue relation’ that connects the analogue

theory T
′

h to the high level theory Th.

Problems for Nagelian Reduction

In [30], the authors provide a comprehensive survey of common criticisms of

Nagelian approaches to reduction. Here, I restrict my focus to a few of these,

quoting the authors directly:

• The syntactic view of theories. Nagel formulated his theory in the frame-
work of the so-called syntactic view of theories, which regards the- ories
as axiomatic systems formulated in first-order logic whose non-logical vo-
cabulary is bifurcated into observational and theoretical terms. This view
is deemed untenable for many reasons, one of them being that first-order
logic is too weak to adequately formalise theories and that the distinction
between observational and theoretical terms is unsustainable. This, so one
often hears, renders Nagelian reduction untenable.

• The content of bridge laws. There is a question about what kind of state-
ments bridge laws are. Nagel considers three options: they can be claims of
meaning equivalence, conventional stipulations, or assertions about mat-
ters of fact. The third option can be broken down further, since a state-
ment connecting two quantities could assert the identity of two properties,
the presence of a (merely) de facto correlation between them, or the exis-
tence of a nomic connection. Although the issue of the content bridge laws
is not per se an objection, it is a question that has often been discussed in
ways that gave rise to various objections, in particular in connection with
multiple realisability, to which we turn now.
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• Bridge laws and multiple realisability. The issue of multiple realisability
(MR) is omnipresent in discussions of reduction. A TP -property [in my
notation, Th-property ] is multiply realisable if it corresponds to more
than one different TF -properties [in my notation, Tl-properties ]. The
standard example of a multiply realisable property is that of pain: Pain
can be realised by different physical states, for instance in a humans and in
a dogs brain. The issue also seems to arise in SM because, as Sklar points
out (Sklar 1993, 352), temperature is multiply realisable. MR is commonly
considered to undermine reduction. ... [One] argument from MR is that,
in order to reduce TP -phenomena to TF -phenomena, TP -properties
must be shown to be nothing over and above TF -properties. That is,
it must be shown that TP -properties do not exist as something extra or
in addition to TF -properties: There is only one group of entities, TF -
properties. Showing this requires the identification of TP - properties with
TF -properties. But a multiply realisable TP -property is not identifiable
with a TF -property. This undercuts reduction.

• Strong analogy. Strong analogy is essential to GNS. This raises three
issues. The first is that the notion of strong analogy is too vague and hard
to pin down to do serious work in a reduction. It is a commonplace that
everything is similar to everything else, and hence saying that one theory
is analogous to another one is a vacuous claim.

• The Epistemology of Bridge Laws. How are bridge laws established? Nagel
points out that this is a difficult issue since we cannot test bridge laws
independently. The kinetic theory of gases can be put to test only after
we have adopted Equation 5 as a bridge law, but then we can only test
the entire package of the kinetic theory and the bridge law, while it is
impossible to subject the bridge law to independent tests. While this is
not a problem if one sees bridge laws as analytical statements or mere
conventions, it is an issue for those who see bridge laws as making factual
claims. [30]

As we will see, the alternative account of reduction that I propose, dynamical

systems, or DS, reduction, adopts certain elements of the GNS account, but

considers the reduction of individual models of a high-level theory to models of a

low-level theory, rather than the reduction of whole theories. In the concluding

chapter, I explain how DS reduction eliminates much of the vagueness and

ambiguity that lies at the root of most of these criticisms of Nagelian reduction,

and thereby addresses these concerns in the cases where it applies.
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1.3 Dynamical Systems (DS) Reduction

While Nagel and Schaffner were proponents of the (now widely repudiated) syn-

tactic view of theories, the approach adopted in this dissertation is the semantic

view. Van Fraassen, famously, has characterised the distinction between the

semantic and the syntactic views of scientific theories as follows:

The syntactic picture of a theory identifies it with a body of
theorems, stated in one particular language chosen for the expression
of that theory. This should be contrasted with the alternative of
presenting a theory in the first instance by identifying a class of
structures as its models. In this second, semantic, approach the
language used to express the theory is neither basic nor unique; the
same class of structures could well be described in radically different
ways, each with its own limitations. The models occupy centre stage.
[105]

Although there is, of course, more to the difference between the syntactic and

semantic views than this now-popular slogan communicates, the subtleties of

the distinction will not concern us as the remainder of the analysis will take

place within the semantic view, in which, as Van Fraassen puts it ‘the models

occupy centre stage.’ In section 1.4, I argue that, despite Nagel’s own disposition

toward the syntactic view, Nagelian (read: GNS) reduction applies equally well

within the semantic view, since nothing about the central requirements of GNS

reduction, apart from the reference to the reduction of theories rather than to the

reduction of models of those theories, uniquely requires a syntactic intepretation

of the theories concerned: as we will see, the concepts of image theory, bridge

rule, analogue theory and strong analogy all can be carried over into the semantic

framework, with the only major difference being that in this context the three

steps of GNS reduction involve an image model, bridge rules, an analogue model

and strong analogy. In this dissertation, the particular models that I consider

are all of a particular sort: namely, they can be formulated as dynamical systems,

a notion I define shortly. The basic elements of Nagelian reduction, as applied

to the reduction of dynamical systems models, constitute what I refer to as

‘dynamical systems reduction,’ or DS reduction, and furnish the methodological
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groundwork for the particular reductions considered in Chapters 2, 4 and 5.

The methodology elaborated here seeks both to generalise and develop an

approach that has been applied to certain reductions in statistical mechan-

ics, demonstrating how it may also be used more widely to describe relations

between theories outside of this context. In section 1.3.7, I discuss work by a

number of authors that either anticipates or paves the way for the DS approach.

1.3.1 Models of Dynamical Systems

A dynamical systems model M of a theory T consists of a state space S and

a dynamical map D on S; formally, we can write M = (S,D). In all models

that I consider, the state space S is endowed with the minimum structure of

a differentiable manifold with a norm. The dynamical map is a differentiable

function of time and of the state x in S such that for fixed t, D specifies a

bijection of S onto itself, and such that D is the identity map on S when t = 0:

D : R× S −→ S, (1.1)

D : (t, x0) 7−→ x(t), (1.2)

Dt : S −→ S, (1.3)

D : (0;x0) 7−→ x0. (1.4)

The dynamical map specifies the time evolution of points in S, so that x(t) =

D(t;x0), where x0 is the state of the system at time t = 0. The requirement

that the dynamical map at fixed time be one-to-one ensures that the dynamics

are deterministic.

For example, the model of a single massive, spinless particle in CM is given

by M = (Γ, DCM ), where Γ is the corresponding classical phase space and
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DCM

[
t; (x0, p0)

]
=

(
e{◦,H}tx

∣∣
x0,p0

, e{◦,H}tp
∣∣
x0,p0

)
, (1.5)

where e{◦,H}tf(x, p) ≡ f(x, p)+{f(x, p), H}t+ 1
2!
{{f(x, p), H}, H}t2+ 1

3!
{{{f(x, p), H}, H}, H}t3+

... , and {, } denotes the Poisson bracket, defined by {f, g} ≡ ∂xf∂pg − ∂xg∂pf ,

with f and g some arbitrary differentiable functions on phase space.

The model of a single massive, spinless particle in QM is given by MQM =

(H, DQM ), where H is the Hilbert space of a single massive spinless particle and

DQM

[
t; |ψ0〉

]
= e−iĤt|ψ0〉. (1.6)

where e−iĤt|ψ0〉 ≡
(
Î + (−iĤt) + 1

2! (−iĤt)
2 + 1

3! (−iĤt)
3 + ...

)
|ψ0〉 .

All models of the theories considered in this dissertation, including the quan-

tum theories, employ dynamical maps that are deterministic. I leave the ques-

tion as to how to extend the dynamical systems approach to indeterministic

systems for future work. The interpretations of quantum theory that I exam-

ine - the Everett and Bohm theories - both treat wave function collapse as an

effective process induced by decoherence, and the stochastic aspects of quan-

tum theory as merely apparent. The underlying dynamics in both cases is fully

deterministic.

1.3.2 Laws of Motion in DS Models

GNS reduction requires that the laws of Th be derivable, in an approximate

sense, from the laws of Tl, along with some auxiliary assumptions that include

bridge rules. In a semantic, dynamical systems context, the laws of a theory

often correspond to the dynamical maps of its models; typically, the dynamical

maps associated with the different models of a theory will all have some common

form.

Conventionally, though, the dynamical laws of a theory are not specified in

the form of dynamical maps, but equivalently in terms of differential equations.

In the case of theories whose maps are deterministic, it will be possible to model
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the system’s dynamics in terms of a first order differential equation, or some set

of first order differential equations. Starting from the solution x(t) = D(t;x0)

and differentiating both sides with respect to time, we have the first order

differential equation of motion

dx

dt
= f(x, t) (1.7)

where f(x, t) = ∂
∂tD(t;x).

For example, in the case of CM, the first order differential equations corre-

sponding to the dynamical map provided in eq. (1.5) are

dx

dt
= {x,H}

dp

dt
= {p,H},

(1.8)

which are simply Hamilton’s equations.

In the case of QM, the first order differential equation corresponding to the

dynamical map provided in eq. (1.6) is

i
∂

∂t
|ψ〉 = Ĥ|ψ〉, (1.9)

the standard form of Schrodinger’s equation.

1.3.3 Symmetries of Dynamical Systems

A function T : S → S is a dynamical symmetry of the dynamical systems model

(S,D) if it is an automorphism of S satisfying the condition

D(t;T (x0)) = T (D(t;x0)) for all x0 ∈ S for all t ∈ R. (1.10)

That is, T carries solutions of the equations of motion into other solutions of

the equations of motion. Or, equivalently, if one takes the trajectory/solution

associated with the function x(t), with x(0) = x0, then the function T (x(t)) also
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consitutes a solution to the equation of motion with initial condition T (x0).

For example, in classical Hamiltonian mechanics, consider the model of a

single particle in 3 dimensions moving in a spherically symmetric potential, so

that the Hamiltonian takes the form

H =
p2

2m
+ V (r) (1.11)

where r is the distance of the particle from some fixed origin. Then the map T

given by

T (~x, ~p) =
(
e{◦,

~L·n̂θ}~x, e{◦,
~L·n̂θ}~p

)
(1.12)

where ~L = ~x × ~p is the angular momentum, and which constitutes a rotation

of the position and momentum about the axis n̂ and the angle θ, is a dynam-

ical symmetry (as well as what is known in classical Hamiltonian dynamics

as a canonical transformation generated by the function ~L · n̂). This follows

straightforwardly from the fact that for the above Hamiltonian

{Li, H} = 0 for all i, where i = x, y, z (1.13)

(see for instance, [41] Ch. 9). Other dynamical symmetries for the above Hamil-

tonian include spatial translations (which are generated by the momentum func-

tion p on phase space) and and time translations (which are generated by the

Hamiltonian H itself).

1.3.4 Reduction of Dynamical Systems

In this subsection, I set out formal criteria for DS reduction, first offering some

remarks to motivate these criteria. I also provide a somewhat simplified example

to illustrate this approach. More complicated examples are discussed in later

chapters of the thesis.
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Bridge Maps and Bridge Rules

As we will see, the appropriate DS counterpart to Nagelian bridge laws is a

differentiable, time-independent function B from the low level state space Sl

into the high level state space Sh:

B : Sl −→ Sh (1.14)

B : xl 7−→ B(xl), (1.15)

where xl ∈ Sl. The function B will typically be many-one, and satisfies certain

added conditions to be discussed below. Its mathematical domain may be the

whole of Sl or a subset of Sl, and its image the whole of Sh or a subset of Sh.

As we will see, the bridge map will serve to identify those structures in the low-

level model that approximately emulate the behavior of states in the high-level

model.

If xh ∈ Sh and xh = B(xl), denote its inverse image under the bridge map

Exh , so that

Exh ≡
{
xl ∈ Sl

∣∣B(xl) = xh
}
. (1.16)

Thus, the set Exh is the set of states that correspond to xh under the bridge

map. As we will see, though, there is a dynamical constraint which further

restricts which xl physically instantiate a given xh under the bridge map.

For example, let us consider the CM and QM models of a single spinless

particle of mass m in an external potential. One possible bridge map between

SQM = H1p, the Hilbert space of a single spinless particle, and SCM = Γ1p,

the phase space of a single massive particle with no internal degrees of freedom,

is given by taking expectation values of the quantum mechanical position and

momentum operators:
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BCMQM : H1p −→ Γ1p (1.17)

BCMQM : |ψ〉 7−→
(
〈ψ|x̂|ψ〉, 〈ψ|p̂|ψ〉

)
(1.18)

The bridge map thus associates with each element |ψ〉 of H1p an element (x′, p′)

of Γ1p, such that (x′, p′) =
(
〈ψ|x̂|ψ〉, 〈ψ|p̂|ψ〉

)
. Note that this map is many-one,

since there will be many |ψ〉 which map to the same (x′, p′). Its domain is the

whole of SQM = H1p and its image the whole of SCM = Γ1p. Furthermore, note

that

E(x′,p′) ≡
{
|ψ〉 ∈ H1p

∣∣ (〈ψ|x̂|ψ〉, 〈ψ|p̂|ψ〉) = (x′, p′)

}
. (1.19)

In other words, E(x,p) is the set of quantum states whose expectation values for

position and momentum are, respectively, (x, p).

In highlighting the parallels between the DS account and the GNS account

of reduction later on, it will be important to distinguish between the function

that carries elements of the low-level space Sl to elements of the high level space

Sh, which I call the bridge map, and the assignment of variable names to the

images under the bridge map of elements in Sl, which I call a bridge rule. For

example, the bridge map BCMQM carries |ψ〉 into (〈ψ|x̂|ψ〉, 〈ψ|p̂|ψ〉); the bridge

rule simply makes the assignment of the variables (x′, p′) to (〈ψ|x̂|ψ〉, 〈ψ|p̂|ψ〉).

At this stage, such a distinction may seem trivial, and the GNS account does

not bother to distinguish between these two steps. However, as we will see, the

distinction turns out to play an important role in distinguishing between image

and analogue models in the DS account.

Note how the bridge map and bridge rule have gone some of the way toward

satisfying Nagel’s connectability criterion (as interpreted within a semantic, dy-

namical systems approach): they associate with each xh a set of xl, thereby

providing a clear correspondence between a certain portion of the mathematical
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formalism of Th, namely Sh, and a certain portion of the mathematical formal-

ism of Tl, namely Sl. However, the full analogy between bridge maps as I have

defined them here and bridge laws as they are envisaged in the GNS account

will become apparent only once the DS account of reduction has been fully laid

out.

Induced Dynamics

Given a model Ml = (Sl, Dl) of Tl, a model Mh = (Sh, Dh) of Th, and a

bridge map B : Sl −→ Sh, the dynamical map Dl : Sl → Sl induces, through

the bridge map, a dynamics D
xl0
h (t;xh0 ) on Sh. Specfically, every dynamical

trajectory xl(t) = Dl(t;x
l
0) on Sl that remains in the domain of B has an image

x′h(t) = B
(
Dl(t;x

l
0)
)

in Sh. Generally, the trajectory x′h(t) may depend on the

particular choice of initial condition xl0, not just on the image xh0 ≡ B(xl0) to

which xl0 maps under B.

For example, in the CM/QM case we have been considering, the dynamics

on Hilbert space induces through the bridge map/rule a dynamics on phase

space:

BCMQM

(
DQM

(
t; |ψ0〉

))
=
(
x′(t), p′(t)

)
=
(
〈ψ0|eiĤtx̂ e−iĤt|ψ0〉, 〈ψ0|eiĤtp̂ e−iĤt|ψ0〉

)
(1.20)

However, it is important to note that the induced trajectory on Sh is sensitive

to the choice of initial condition |ψ0〉 in the Hilbert space Sl. In this sense, the

dynamical map induced by the low-level dynamics via the bridge map does not

in general prescribe an autonomous (in sense of being determined only by high-

level states and not depending on the specific low-level states that instantiate

them) dynamics on Sh.
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Reducing Dynamics

In order for a DS reduction to take place between a model Mh = (Sh, Dh) of

Th and a model Ml = (Sl, Dl) of Tl, it is necessary that the induced dynamics

B ◦Dl on Sh approximate, in the sense of Sh’s norm, the dynamics Dh. This re-

quirement, which I denote the DSR (Dynamical Systems Reduction) condition,

can we written

B(Dl(t;x
l
0)) ≈ Dh(t;B(xl0)) (1.21)

or, more precisely,

∣∣∣∣B(Dl(t;x
l
0)
)
−Dh

(
t;B(xl0)

)∣∣∣∣
h

< δ, (1.22)

for some domain d of states in Sl,where | |h designates the norm on Sh and δ is

a prescribed margin of error characterising the accuracy of the approximation.

Note that the left hand side of (1.21) corresponds to the dynamics induced on Sh

by Dl through B, with initial condition xl0, while the right hand side corresponds

to the dynamics of Th applied to xh0 ≡ B(xl0), the image of xl0 under B.

The DSR condition guarantees that some element of the low level-model, pre-

scribed by some function of the low-level state determined by the bridge map

B(xl), behaves approximately in the same manner as a state in the high-level

model. As we will see shortly, the requirement for DS reduction will be formu-

lated in terms of the existence of a bridge map satisfying the DSR condition;

however, in order to avoid trivialising counterexamples, the DSR condition must

be supplemented with certain additional constraints on the bridge map B(xl).

The first of these constraints is that the bridge map not depend explicitly on

the time t. Without this constraint, the DSR condition would be trivial insofar

as it would be satisfied between any two models for which the cardinality of the

low-level model was greater than or the same as that of the high-level theory; it

is straightforward to see that one could simply absorb any differences of dynam-

ical structure into the bridge map itself. As I explain now, a further constraint,
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pertaining to the symmetries of the two models, also must be imposed on the

bridge map.

Reducing Symmetries

Beyond time-independence of the bridge map, it is also necessary that the bridge

map be compatible with the dynamical symmetries of the high-level model in a

sense that I now elaborate. For any dynamical symmetry Th of the high-level

model and any xl0 ∈ d ⊂ Sl such that Th(B(xl0)) ∈ B(d) (where recall that d is

the domain for which the DSR condition holds approximately, and B(d) is its

image under B), there should exist some symmetry Tl of the low-level model

such that

Th(B(xl0)) ≈ B(Tl(x
l
0)). (1.23)

The rationale for imposing this condition is that it serves to ensure that not

only the trajectory Dh(t;xh0 ), but also its image Th(Dh(t;xh0 )) under the sym-

metry Th, is reduced by some solution to the low-level model - which is to

say, there exists some solution of the low-level model whose image under B ap-

proximates the transformed high-level trajectory - so long as the transformed

high-level trajectory remains in the image domain B(d). Note that if the

DSR condition is satisfied for some high-level solution, so that B(Dl(t;x
l
0)) ≈

Dh(t;B(xl0)), and the condition (1.23) holds, then the solution Th(Dh(t;x
′h
0 )) =

Dh(t;Th(x
′h
0 )) of the high-level dynamics also satisfies the DSR condition in the

form B(Dl(t;Tl(x
l
0))) ≈ Dh(t;B(Tl(x

l
0))). This can be seen as follows:
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Dh(t;B(xl0)) ≈ B(Dl(t;x
l
0)) (1.24)

Th(Dh(t;B(xl0)) ≈ Th(B(Dl(t;x
l
0))) [Apply Th to both sides] (1.25)

Dh(t;Th(B(xl0)) ≈ B(Tl(Dl(t;x
l
0))) [Use Th(Dh(t;xh0 ) = Dh(Th(xh0 )) and (1.23)]

(1.26)

Dh(t;B(Tl(x
l
0)) ≈ B(Dl(t;Tl(x

l
0))) [Use (1.23) and Th(Dh(t;xh0 ) = Dh(Th(xh0 ))].

(1.27)

Thus, if condition (1.23) is satisfied, then if a high-level trajectory is approxi-

mated by the image under B of some trajectory in the low-level model, it follows

the transformation of that high-level trajectory under a symmetry of the high-

level model will be approximated by the image under B of some other trajectory

in the low-level model.

However, we should only demand that the transformed trajectory Th(Dh(t;x
′h
0 ))

be approximated by the image of some trajectory in the low-level model if the

symmetry tranformation Th does not carry the trajectory - or some chosen seg-

ment of it - outside of the image domain B(d), or outside the domain of applica-

bility of the high-level model. For instance, Galilean symmetries of Newtonian

models include boosts by velocities with magnitude greater than the speed of

light; we should not insist that the high-level trajectories obtained under this

symmetry transformation be approximated by the image of some trajectory in

a given low-level model (e.g. a model of SR) for the simple reason that these

transformed trajectories are unphysical - that is, they do not describe real physi-

cal systems since they are outside the high-level model’s domain of applicability.

In our reductions, we should only insist that those parts of a high-level model

that serve to describe real physical systems be approximated by some low-level

model (though it may sometimes be the case that a low-level model does never-

theless reduce even the unphysical parts of the high-level model, as is the case

between nonrelativistic CM and nonrelativistic QM, which both incorporate
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Galilean boosts of arbitrarily high velocity).

I assume here that, for some sufficiently constrained class C of physical

systems, the domain of applicability of Mh to C is circumscribed by the image

B(d) of Mh’s domain d in Ml, where Ml is a low-level model that also serves to

describe C. As discussed in the Introduction, I presume throughout this thesis

a convergence of successive models to the truth, proceeding on the expectation

that lower-level models will indeed turn out to represent a strictly more accurate

approximation to reality - i.e. to the class C of physical systems in question -

than do their high-level counterparts and that, as a consequence, the domain

of applicability of some Mh to some C is circumscribed by any Ml that also

describes C.

In addition to criterion (1.23), we should require that the group structure

characterising the action of the symmetries of the high-level model be approxi-

mated, within B(d), by the group structure induced through the bridge map by

the group structure characterising the symmetries of the low-level model. That

is, we should require that if

T 1
h (B(xl)) ≈ B(T 1

l (xl)) for all xl ∈ d such that T 1
l (xl) ∈ d (1.28)

and

T 2
h (B(xl)) ≈ B(T 2

l (xl)) for all xl ∈ d such that T 2
l (xl) ∈ d, (1.29)

and T 1
l ◦ T 2

l (xl) ∈ d, and T 1
h ◦ T 2

h (B(xl)) ∈ B(d) , then

T 1
h ◦ T 2

h (B(xl)) ≈ B(T 1
l ◦ T 2

l (xl)). (1.30)

Thus, the bridge map can be regarded as an approximately structure-preserving

function between the state spaces of the two models, where the preserved struc-
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ture is associated not only with the dynamics of the models but also with their

dynamical symmetries.

Formal Criteria for DS Reduction

Having made these motivating remarks, we are now in a position to state formal

conditions for dynamical systems reduction:

DS Reduction:

A model Mh=(Sh, Dh) of Th describing some class C of physical

systems reduces over time scale τ and to within margin of error δ

to a model Ml =(Sl, Dl) of Tl also describing C only if there exists

differentiable function B : Sl → Sh that does not depend explicitly

on time, and a nonempty subset d ⊂ Sl, such that

1. for any xl0 ∈ d

∣∣∣∣B(Dl(t;x
l
0)
)
−Dh

(
t;B(xl0)

)∣∣∣∣
h

< δ, (1.31)

for all 0 ≤ t ≤ τ ;

2. (a) for every dynamical symmetry Th of Mh and for every xh ∈

B(d) such that Th(xh) ∈ B(d), there exists a dynamical

symmetry Tl of Ml and an xl ∈ d, such that xh = B(xl)

and

Th(B(xl)) ≈ B(Tl(x
l)); (1.32)

(b) if

T 1
h (B(xl)) ≈ B(T 1

l (xl)) for all xl ∈ d such that T 1
l (xl) ∈ d,

(1.33)
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and

T 2
h (B(xl)) ≈ B(T 2

l (xl)) for all xl ∈ d such that T 2
l (xl) ∈ d,

(1.34)

and T 1
l ◦ T 2

l (xl) ∈ d, and T 1
h ◦ T 2

h (B(xl)) ∈ B(d), then

T 1
h ◦ T 2

h (B(xl)) ≈ B(T 1
l ◦ T 2

l (xl)). (1.35)

These conditions should be understood as necessary conditions for one dynam-

ical system to reduce to another. Whether they are sufficient depends on the

possibility of finding trivialising counterexamples - i.e., examples such that for

any two DS models for which the cardinality of Sl is higher than that of Sh, one

can find a bridge map B satisfying the specified conditions. If such examples

can be found, then further conditions must be imposed on the bridge map B.

What the above conditions are meant to capture are two of the most salient

requirements that must be satisfied for a mathematical structure defined in a

low-level model - specified by the bridge map - to emulate, or approximately

instantiate, the dynamical behavior and other physically salient aspects of the

state in the high-level model. I leave it to future work to ascertain whether

any further conditions need be placed on the bridge map, and if so, what these

conditions are.

In the simple example that I consider later in this chapter, I demonstrate

that condition 1) is satisfied and show that 2) is satisfied for two particular

symmetries of the high-level model, leaving it to the reader to extrapolate how

the other symmetries of the high-level model are to be reduced. In the more

involved reductions considered in the body chapters of this thesis, I focus on

demonstrating condition 1), leaving it to future work to demonstrate the validity

of condition 2); nevertheless, it is not difficult to surmise in many of these cases

how the demonstration of condition 2) for the various symmetries of the high-

level model should go.
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Reduction v. Mathematical Analogy

The requirement of DS reduction that both models describe the same physical

system - or, more generally, class C of physical systems - is included in the

formal requirements for DS reduction so as to rule out pairs of models that are

mathematically similar in structure but in which the success of one at describing

some physical system cannot be reasonably regarded as accounting for the suc-

cess of the other, since the two models are used to describe completely different

physical systems. For example, the Schrodinger equation for a free massive par-

ticle takes the form of a diffusion equation with imaginary coefficient; as a result

there exists a direct mapping between between models of, say, heat diffusion in

three dimensions and the quantum mechanical model of a single free particle.

Yet it is clear that we would not want to say that the theory of heat diffusion in

three dimensions serves in any respect to explain the success of the Schrodinger

equation in modelling the behavior of free (low-energy) particles; the parallels

between the models simply provide a case in which similar mathematical struc-

tures happen to be applicable in distinct physical contexts. Thus, one must

distinguish between mere mathematical analogy, which occurs when the same

or related mathematical structures happen to be applicable in different physical

contexts, and reduction, in which similarities of mathematical structure serve

to account for the fact that two distinct models can be successfully employed in

describing the same physical system.

A Note on the Question of Relativistic Covariance

Note that the DSR Condition assumes a common time parameter for the high-

and low- level models. Moreover, in making this choice of time parameter, the

DS account of reduction requires that the manifest covariance of any relativistic

models involved in the reduction be sacrificed. Note, however, that the reference

to a common time parameter in the DSR condition is incompatible only with

models formulated in a manifestly relativistically covariant fashion, but not with

models that are covariant. Thus, the reference to a particular time parameter in
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the DSR condition does not preclude the inclusion of Lorentz-invariant models

within this frameowork. When I turn to relativistic theories in Chapters 4 and

5, my focus will be on Hamiltonian and Schrodinger picture formulations of the

models that I consider, which, although not manifestly covariant, are covariant.

DS Reduction and Laws of Motion

It is often more convenient to specify the dynamics of a DS model in the form

of first-order differential equations, rather than in the form of a dynamical map.

Let us examine how the DSR condition should be formulated when the dynamics

of the high- and low- level models are prescribed in this way. As discussed in

section 1.3.2, the dynamical map of Mh specifies the solutions xh(t) = Dh(t;xh0 )

to the differential equation

dxh

dt
= fh(xh, t) (1.36)

where fh(xh, t) = ∂
∂tDh(t;xh0 )

∣∣
t=0,xh0 =xh

, and likewise the dynamical map of Ml

specifies the solutions xl(t) = Dl(t;x
l
0) to the differential equation

dxl

dt
= fl(x

l, t), (1.37)

where fl(x
l, t) = ∂

∂tDl(t;x
l
0)
∣∣
t=0,xl0=xl

.

At the level of differential equations, DSR condition will be satisfied if the

induced trajectory x′h(t) ≡ Bhl (xl(t)) approximately satisfies the differential

equations of Th:

dx′h

dt
≈ fh(x′h, t) (1.38)

or, more explicitly, if

d

dt
Bhl
(
xl(t)

)
≈ fh

(
Bhl
(
xl(t)

)
, t

)
. (1.39)

Note that while this relation is a sufficient condition for the DSR condition to
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hold, it is not a necessary condition. We can see that it is a sufficient condition

by integrating both sides of (1.39) with respect to time:

∫ t

0

dt′
d

dt′
Bhl (xl(t′)) ≈

∫ t

0

dt′ fh

(
Bhl
(
xl(t

′)
)
, t′
)

Bhl (xl(t))−Bhl (xl0) ≈ Dh(t;Bhl (xl0))−Dh(0;Bhl (xl0))

Bhl (Dl(t;x
l
0)) ≈ Dh(t;Bhl (xl0))

(1.40)

where in going from the first line to the second line I have used that fh(xh, t) =

∂
∂tDh(t;xh0 )

∣∣
t=0,xh0 =xh

, and in going from the second to the third I have used

that Bhl (xl0) = Dh(0;Bhl (xl0)). Note that for the condition (1.39) to be sustained

over some time period τ , the domain d should be such that the image dynamics

roughly preserve the set d; that is, that they map states in d to other states in

d, at least on the timescale τ .

While (1.39) is sufficient for the DSR condition to hold, it is not necessary

insofar as there may exist induced trajectories on the high-level state space

that remain close (in the sense of the Sh’s norm) to the trajectory prescribed

by the high-level model but such that the time derivative of these trajectories

does not remain close in value to the derivatives prescribed by (1.36). For

example, consider a trajectory rapidly oscillating with small amplitude around

the trajectory prescribed by the high-level dynamics; the values of the states

will be close, so that the DSR condition is satisfied, but the time derivatives will

differ drastically so that (1.39), or alternatively, (1.38), is not. In all reductions

considered in later chapters, the stronger condition (1.39) will be proven, rather

than the condition (1.21).

A Simple Example of DS Reduction: Classical Mechanics and Quan-

tum Mechanics (w/o Environmental Decoherence)
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Condition 1: Dynamics

To continue with the models of a single spinless particle in the CM/QM

reduction, note that the DSR condition in differential form requires, in the case

H = p2

2m + V (x), Ĥ = p̂2

2m + V (x̂), that

d

dt
〈x̂〉 ≈

{
〈x〉, H

(
〈x̂〉, 〈p̂〉

)}
〈x̂〉,〈p̂〉 =

1

m
〈p̂〉

d

dt
〈p̂〉 ≈

{
〈p〉, H

(
〈x̂〉, 〈p̂〉

)}
〈x̂〉,〈p̂〉 = −∂V (〈x̂)〉

∂〈x̂〉
,

(1.41)

where the subscript 〈x̂〉, 〈p̂〉 on the Poisson brackets indicates differentiation

with respect to 〈x̂〉 and 〈p̂〉, rather than with respect to x and p. Employing

the bridge rule substitutions x′ ≡ 〈x̂〉, p′ ≡ 〈p̂〉, these can be written in a form

more reminiscent of the original classical equations that they serve to reduce:

dx′

dt
≈
{
x′, H

(
x′, p′)

}
x′,p′

=
1

m
p′

dp′

dt
≈
{
p′, H

(
x′, p′

)}
x′,p′

= −∂V (x′)

∂x′
,

(1.42)

It can be shown using Ehrenfest’s Theorem that these approximate equations,

representing the differential DSR condition as applied this pair of models, hold

within the domain dCM of states consisting of wave packets that are simulta-

neously narrow in both position and momentum (to within the constraints of

the Uncertainty Principle). Ehrenfest’s Theorem states that, for any state of

a quantum system with the above-specified Hamiltonian, the following relation

holds:

d〈p̂〉
dt

= −

〈
∂̂V

∂x

〉
(1.43)

(see, for instance, [73], p. 41, or almost any other graduate level quantum

mechanics text, for a proof of this theorem). Note that this does not suffice to
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ensure that expectation values of position and momentum evolve approximately

according to Newtonian equations. For this, it is necessary that the stronger

condition,

d〈p̂〉
dt
≈ −∂V (〈x̂〉)

∂〈x̂〉
(1.44)

hold. It is well-known that, as a result of Ehrenfest’s Theorem, this condition

holds approximately for states that are narrowly peaked in position and mo-

mentum. Thus, for the domain of states consisting of narrow wave packets, the

DSR condition between the high- and low-level models is approximately satis-

fied. However, the timescale on which this is so will typically be restricted by

the timescale on which wave packets tend to spread under the dynamics, as they

tend to do in generic situations.

The relation (1.44) suffices to ensure the validity of condition 1) for DSR

reduction, which in this particular case takes the form,

∣∣∣∣〈ψ0|eiĤtx̂ e−iĤt|ψ0〉 − e{◦,H}tx
∣∣
〈x̂〉0,〈p̂〉0

∣∣∣∣ < δx,

and

∣∣∣∣〈ψ0|eiĤtp̂ e−iĤt|ψ0〉 − e{◦,H}tp
∣∣
〈x̂〉0,〈p̂〉0

∣∣∣∣ < δp,

(1.45)

where 〈x̂〉0 ≡ 〈ψ0|x̂|ψ0〉 and 〈p̂〉0 ≡ 〈ψ0|p̂|ψ0〉, for 0 ≤ t ≤ τ , where τ is timescale

on which wave packets become widely spread out on spatial dimensions charac-

teristic of the variation of the potential V (x) (for a more precise characterisation

of this length scale, see for instance [1]). The norm employed on phase space

is simply the difference of the positions and of the momenta. Less formally, we

can write this condition as
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〈ψ0|eiĤtx̂ e−iĤt|ψ0〉 ≈ e{◦,H}tx
∣∣
〈x̂〉0,〈p̂〉0

and

〈ψ0|eiĤtp̂ e−iĤt|ψ0〉 ≈ e{◦,H}tp
∣∣
〈x̂〉0,〈p̂〉0

,

(1.46)

where, again, the approximation should be understood as being relative to some

specified margins of error δx and δp.

Condition 2: Symmetries

I demonstrate the validity of condition 2), concerning the relation between

the symmetries of the models, with regard to rotations and Galilean boosts in

classical mechanics. In principle, these conditions should be shown to hold for

all symmetries and states of the high-level model such that both the states and

their mappings under the symmetry are in the image domain B(d), which here

consists of the entire classical phase space Γ. While I limit myself here to con-

sidering these two symmetries, following these examples it should be straight-

forward for the reader to demonstrate these conditions for other symmetries of

the given classical model.

Symmetry 1: Rotation

In the case of a Hamiltonian system with spherically symmetric potential

V (r), the rotations about the origin constitute a group of dynamical symmetries.

Condition 2a) for rotations is ensured by the fact that
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(
〈ψ|ei

~̂
L·n̂θ x̂ e−i

~̂
L·n̂θ|ψ〉, 〈ψ|ei

~̂
L·n̂θ p̂ e−i

~̂
L·n̂θ|ψ〉

)
≈ e{◦,~L·n̂θ} (〈ψ|x̂|ψ〉, 〈ψ|p̂|ψ〉)

(1.47)

for |ψ〉 ∈ d. This condition is satisfied as a consequence both of the Baker-

Hausdorff Lemma, which states that

eiλB̂Âe−iλB̂ = Â+ iλ
[
B̂, Â

]
+

(iλ)2

2!

[
B̂,
[
B̂, Â

]]
+

(iλ)3

3!

[
B̂,
[
B̂,
[
B̂, Â

]]]
+ ...

(1.48)

≡ e[iλB̂,◦]Â (1.49)

(see, for instance [87], p.96) and of the result that for narrow wave packet states

|ψq′,p′〉

〈ψq′,p′ | [f(x̂, p̂), g(x̂, p̂)] |ψq′,p′〉 ≈ i {f(x, p), g(x, p)}
∣∣
q′,p′

(1.50)

where f(x, p) and g(x, p) are the unique classical functions associated with the

quantum operators f(x̂, p̂) and g(x̂, p̂) and do not vary significantly on scales of

action equal to ~; this can be derived through fairly extensive manipulation of

the canonical commutation relation [x̂, p̂] = i. Note that this relation makes ex-

plicit the physical correspondence between Poisson brackets and commutators.

Whereas Dirac originally postulated the correspondence on the basis of the al-

gebraic similarities between the two brackets, rather than on the asummption

that one structure physically underwrites the other, the DSR condition serves

to illustrate the physical basis for this formal correspondence.

Condition 2 b) for rotations takes the form
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(
〈ψ|ei

~̂
L·m̂φei

~̂
L·n̂θ x̂ e−i

~̂
L·n̂θe−i

~̂
L·m̂φ|ψ〉, 〈ψ|ei

~̂
L·m̂φei

~̂
L·n̂θ p̂ e−i

~̂
L·n̂θe−i

~̂
L·m̂φ|ψ〉

)
≈ e{◦,~L·n̂θ}e{◦,~L·m̂φ}(〈ψ|x̂|ψ〉, 〈ψ|p̂|ψ〉)

(1.51)

and is likewise satisfied for |ψ〉 a narrow wave packet state. Again, this result

follows as a consequence of (1.48) and (1.50)

Symmetry 2: Galilean Boosts

The dynamical map associated with a one-particle classical HamiltonianH =

p2

2m + V (x) above will not generally commute with a boost by some velocity v,

which therefore will not serve as a dynamical symmetry of the model. However,

if we consider the two-particle case in which the potential depends only on the

spatial distance between the particles, so that H =
p21

2m1
+

p21
2m1

+ V (|x1 − x2|),

then a boost of both particles by the same velocity v will commute with the

dynamical map associated with this Hamiltonian. Thus, a Galilean boost in

this case will count as a symmetry of the model. A Galilean boost by velocity

v takes the form

x′1 = x1 − vt (1.52)

x′2 = x2 − vt (1.53)

p′1 = p1 −m1v (1.54)

p′2 = p2 −m2v. (1.55)

In the quantum mechanical model, there is likewise a symmetry of the dynamics

that typically also goes under the name of a Galilean boost. As in the classical

model, these transformations are parametrised by a velocity v; under such a

transformation, the wave function ψ(x1, x2, t) transforms to ψ′(x′1, x
′
2, t
′), given
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by

ψ′(x′1, x
′
2, t
′) = e−i(m1v·x1+m2v·x2− 1

2m1v
2t− 1

2m2v
2t)ψ(x1, x2, t) (1.56)

with x′1 = x1 − vt, x′2 = x2 − vt and t′ = t (see, for instance [73], p.75). It is

straightforward to see that under the bridge map given by the expectation value,

the quantum mechanical Galiliean boost induces a classical Galilean boost:

(〈ψ′|x̂1|ψ′〉, 〈ψ′|x̂2|ψ′〉; 〈ψ′|p̂1|ψ′〉, 〈ψ′|p̂2|ψ′〉) (1.57)

= (〈ψ|x̂1|ψ〉 − vt, 〈ψ|x̂2|ψ〉 − vt; 〈ψ|p̂1|ψ〉 −m1v, 〈ψ|p̂2|ψ〉 −m2v) , (1.58)

thereby satisfying condition 2a). Thus, for any Galilean boost on phase space,

there exists a corresponding transformation on Hilbert space that induces it via

the expectation value. To satisfy condition 2b), though, it is necessary that the

composition of two Galilean boosts on phase space , by v and then by v′, agree

approximately with the transformation induced under the bridge map by the

composition of the corresponding boosts on Hilbert space. The composition of

two boosts on Hilbert space gives

ψ′′(x′′1 , x
′′
2 , t
′′) = e−i[m1(v+v′)·x1+m2(v+v′)·x2− 1

2m1(v2+v′2)t− 1
2m2(v2+v′2)t]ψ(x1, x2, t)

(1.59)

with x′′i = xi − (v + v′)t for i = 1, 2 and t′′ = t. Note that this is equal to

a single boost by v + v′ up to a global time-dependent phase factor (m1 +

m2)(v · v′)t, which does not make a difference to any of the amplitudes of the

theory, or to rays in projective Hilbert space. Under the composed boosts, it is

straightforward to see that
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(〈ψ′′|x̂1|ψ′′〉, 〈ψ′′|x̂1|ψ′′〉; 〈ψ′′|p̂1|ψ′′〉, 〈ψ′′|p̂2|ψ′′〉) (1.60)

= (〈ψ|x̂1|ψ〉 − (v + v′) t, 〈ψ|x̂2|ψ〉 − (v + v′) t; 〈ψ|p̂1|ψ〉 −m1 (v + v′) , 〈ψ|p̂2|ψ〉 −m2 (v + v′))

(1.61)

thereby ensuring the validity of condition 2b) with respect to classical Galilean

symmetry.

Limitations of the Simple Quantum Model

Note that the quantum models to which the classical models considered so

far have been reduced make no mention of environmental decoherence, and thus

allow for arbitrary coherent superpositions of the degrees of freedom in question.

Moreover, in chaotic systems, the quantum models predict that initially narrow

wave packets will spread on fairly short time scales beyond the coherence lengths

that typically characterise the macroscopic or mesoscopic systems that exhibit

approximately Newtonian behavior (see [110] Ch.3 for detailed discussion of this

point). Thus, although the classical model considered here may serve as an effec-

tive (if only approximate) description of such systems, the quantum model does

not insofar as it will, on relatively short timescales, predict coherence lengths

that disagree dramatically with those observed in these systems. Thus, it is

necessary to replace the quantum model considered here with a more sophisti-

cated one that takes account of environmental degrees of freedom and thereby

continually suppresses the coherence length of the system in question; this is

the goal of the next chapter. Nevertheless, the reduction involving the quantum

model without environment helps to provide a simplified illustration the basic

components of DS reduction, if we momentarily allow ourselves to overlook its

shortcomings as a description of real, approximately Newtonian systems.
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1.3.5 Transitivity of DS reduction

Under certain conditions, if a model M1 reduces to another model M2 and M2

reduces to M3, then it will be true that M1 reduces to M3. Specifically, the

domain d1 ⊂ S2 associated with the bridge map B1
2 : S2 → S1 must be in

the image of the domain d2 ⊂ S3 under the bridge map B2
3 : S3 → S2. If

this is the case, then M1 and M3 satisfy the DSR conditions with bridge map

B1
3 : S3 → S1 equal to the composition of the bridge maps B1

2 and B2
3 , so that

B1
3 ≡ B1

2 ◦ B2
3 . The domain in S3 associated with the bridge map B1

3 is equal

to d2 ∩ (B2
3)−1(d1), the intersection of d2 and the inverse image under B2

3 of d1.

The timescale associated with the reduction will be the smaller of the timescales

associated with the two component reductions.

I will prove transitivity for DSR condition 1), in differential form. The proof

of transitivty of condition 2) can be carried out in similar fashion and so is

omitted. Given that the two component reductions hold, we have

d

dt
B1

2

(
x2(t)

)
≈ f1

(
B1

2

(
x2(t)

)
, t
)
, (1.62)

for some timescale τ1 and

d

dt
B2

3

(
x3(t)

)
≈ f2

(
B2

3

(
x3(t)

)
, t
)

(1.63)

for some timescale τ2. Also, x1(t) = B1
2(x2(t)), and x2(t) = B2

3(x3(t)). We

want to show that

d

dt
B1

3

(
x3(t)

)
≈ f1

(
B1

3

(
x3(t)

)
, t
)
, (1.64)

for x3(t) ∈ d with d ≡ d2 ∩ (B2
3)−1(d1), and 0 ≤ t ≤ τ with τ = min{τ1, τ2},

where τ1 is the timescale for the 1-to-2 reduction and τ2 the timescale for the

2-to-3 reduction. By the Chain Rule, we can expand the left-hand side of (1.70)

as follows
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d

dt
x1
(
x2
(
x3(t)

))
=
dx1

dx2

dx2

dx3

dx3

dt
=
dx1

dx2

dx2

dx3
f3
(
x3(t), t

)
(1.65)

where I have employed the dynamical equation for M3, dx3

dt = f3(x3, t). Sepa-

rately, and also by the Chain Rule, the reduction of M1 to M2 entails

dx1

dx2

dx2

dt
≈ f1

(
x1
(
x2(t)

)
, t
)
, (1.66)

which in turn entails

dx1

dx2
f2(x2, t) ≈ f1

(
x1
(
x2(t)

)
, t
)
. (1.67)

Likewise, the reduction of M1 to M2 entails

dx2

dx3
f3(x2, t) ≈ f2

(
x1
(
x2(t)

)
, t
)
. (1.68)

Putting these results together, eqn ( 1.65) becomes

d

dt
x1
(
x2
(
x3(t)

))
=
dx1

dx2

dx2

dx3
f3
(
x3(t), t

)
≈ dx1

dx2
f2
(
x2(t), t

)
≈ f1

(
x1
(
x2(x3(t)

))
, t).

(1.69)

Alternatively, we can write this as

d

dt
B1

3

(
x3(t)

)
≈ f1

(
B1

3

(
x3(t)

)
, t
)
, (1.70)

which is the result we wanted. Again, this result will only hold if both of the

component reductions hold, so the reduction timescale here is the minimum of

τ1 and τ2. Moreover, it will also only hold if the point x3(t) remains in the

domain d2, so that the 2 − 3 reduction holds and its image under B2
3 is in the

domain d1, so that the 1− 2 reduction holds; thus, the 1− 3 reduction is only

guaranteed to hold for x3(t) ∈ d2 ∩ (B2
3)−1(d1).
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1.3.6 Generalising DS Reduction

Dynamical systems reduction only applies in cases where Tl and Th can be

modelled as dynamical systems with a common time parameter. However, for

theories that probe successively more fundamental levels of physical reality,

it is likely this will not continue to be the case. A more general framework

for reduction that encompasses DS reduction as a special case will need to be

developed to accommodate these reductions.

Wallace has suggested a concept of reduction in which theories are modelled

in terms of whole histories rather than in terms of state space evolutions in

dynamical systems. The latter sort of model can be easily subsumed into the

former by treating the trajectories of the dynamical system as the histories,

and the dynamics of the theory as a constraint on allowable histories. However,

not all conceivable models which are formulated in terms of histories need be

formulable as a dynamical system. For example, solutions to the Einstein field

equations which are not globally hyperbolic may not possess a global description

in terms of the time evolution of some state on some state space, but rather

only in terms of histories with no globally definable time parameter. Wallace

defines his concept of reduction as follows:

Given two theories A and B, and some subset D of the histories
of A, we say the A instantiates B over domain D iff there is some
(relatively simple) map ρ from the possible histories of A to those of
B such that if some history h in D satisfies the constraints of A, the
ρ(h) (approximately speaking) satisfies the constraints of B. (It will
often be convenient to speak of the history h as instantiating ρ(h),
but this should be understood as shorthand for the more detailed
definition here.) ...

This instantiation relation (I claim) is the right way of understanding
the relation between different scientific theories - the sense in which
one theory may be said to “reduce” to another [110].

While such a histories-based approach seems a promising generalisation of DS

reduction, Wallace’s definition does not specify any precise constraints on the

map ρ(h) (other than perhaps the implicit constraint that ρ be sufficiently

‘simple’). Future elaborations of Wallace’s notion of reduction should specify
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the necessary constraints on ρ.

1.3.7 Precursors of the DS Approach

The central idea of DS reduction, that the high-level dynamics composed with

some bridge map should yield approximately the same state as does the bridge

map composed with the low-level dynamics over the same time-period - in short,

that the dynamics should commute with the bridge map - is an old one. While its

applications to physics have thus far been restricted primarily to the context of

reductions in statistical mechanics - where the bridge map consists of some sort

of coarse-graining function - I have argued above, and will continue to argue

throughout the remainder of the thesis, that this insight applies much more

broadly to reductions between any two theories whose models can be formulated

as dynamical systems, as is the case with most current physical theories. As

we have seen above, the DS approach develops this basic insight into a more

formal and more general approach to reduction, supplementing it with further

constraints on the bridge map, including time-independence and compatibility

with the symmetries of the models in question. Thus, it represents a full-fledged

alternative to the limit-based and Nagelian approaches that have dominated

the literature on reduction in physics. In the present sub-section, I discuss the

work of a number of authors that also addresses, with some variations, the core

insight on which the DS approach is based, highlighting differences from the DS

approach where they occur; it is worth noting here that none of these approaches

imposes the additional condition requiring compatibility of the bridge map with

the symmetries of the models, nor do any explicitly require the bridge map -

or rather their counterpart to the bridge map - to be time-independent. To

distinguish the general idea that dynamics should commute with some function

between state spaces of the high- and low- level models from its formulation

specifically within the context of DS reduction, I will refer to the general idea as

the ‘dynamical commutation’ condition, and to my own formulation of it as DSR

condition 1) (I may occasionally refer to it also simply as the DSR condition).
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I was led to the basic idea of DS reduction in the context of my own research

through discussions with with my doctoral thesis supervisor, David Wallace,

who has for some time been advocating the dynamical commutation approach

informally in discussion, in particular as regards the derivation in quantum me-

chanics of effective subsystem dynamics for density matrices from the dynamics

a larger system; moreover, Wallace’s [110], Ch. 3 briefly proposes a generalisa-

tion, which I discuss in a later section, of the dynamical commutation condition

to reductions of models formulated in the mathematical language of histories

rather than of states evolving in time; this approach thus involves a map not be-

tween state spaces but rather between the history spaces of the models; however,

Wallace does not impose any precise constraints on this map, as is necessary to

avoid the condition being satisfied trivially. Finally, I also encountered a variant

of the dynamical commutation condition in David Albert’s Columbia University

course on the foundations of statistical mechanics.

Both Giunti and Yoshimi have suggested their own variants of the dynami-

cal commutation condition with regard to the reduction of dynamical systems

generally, though the potential applications that concern them lie within philos-

ophy of mind and in discussions of reduction in philosophy of science generally;

they do not specifically discuss applications of this approach to reductions in

physics, where (I claim) it is especially salient [39], [115]. Moreover, Giunti

requires that his bridge map counterpart, which he calls an ‘emulation,’ be an

injective, or one-to one, function. As we have seen, the bridge map of my DS

approach impose no such requirement, and may be many-one. Yoshimi, on the

other hand, requires that his counterpart to the bridge map, which he calls a

‘supervenience function,’ be an onto function between state space. Again, the

bridge map of DS reduciton imposes no such requirement. Moreover, neither

Giunti nor Yoshimi demand compatibility of their bridge map counterparts with

the symmetries of the models, nor do they explicitly insist that it not be explic-

itly dependent on time (though perhaps this may be regarded as an assumption
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implicit in their analyses).

While much of his work on reduction and emergence focuses on limit-based

and Nagelian approaches, Butterfield also discusses inter-level relations in physics

in terms of dynamical systems. Like DSR condition 1), the core condition for re-

duction that Butterfield’s analysis draws on, which he calls ‘meshing’ of ‘macro-’

and ‘micro-’ level dynamics, involves the commutation of some ‘coarse-graining’

function between micro- and macro-level state spaces with the time-evolution

prescribed on those spaces. The macro-level state space is identified with a

partition of the micro-level state space, and the coarse-graining function simply

maps an element of the micro-level space into the cell of the partition to which it

belongs. On Butterfield’s account, the closest analogue to what I call the high-

level model is the macro-level model; to what I call call the low-level model,

the micro-level model; and to what I call the bridge map, the coarse-graining

function [20]. Note that Butterfield’s terminology draws heavily on examples of

reduction in statistical mechanics.

Butterfield characterises the dynamics of a macro- and micro- models as

‘meshing’ relative to a particular partitioning P = {Ci} of the micro-level state

space S when the set obtained by applying the micro-evolution law T : S→ S to

an element of P is itelf an element of P, so that for any i, T (Ci) = Cj for some j.

Thus, the micro-level dynamics T : S→ S induces, via the coarse-graining, some

macro-level dynamics T̄ : P → P. This will not be the case for an arbitrary

partition of S since two microstates in the same partition may evolve under

the microdynamics into separate elements of the partition, so that micro-level

determinism gives rise to macro-level indeterminism (where the macro state

space corresponds to the partitioning of the micro state space).

However, Butterfield acknowledges that this concept of meshing may not

apply to many realistic cases in which one dynamical system purportedly reduces

to another - such as the reduction of models involving the Boltzmann, Navier-

Stokes and diffusion equations to some micro-physical mechanical model - and so
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suggests that the following modifications and allowances to his notion of meshing

may be required before these realistic examples can be counted as instances of

it(I quote directly from Butterfield here):

• ‘the meshing may not last for all times;

• the meshing may apply, not for all micro-states s, but only for all except

a “small” class;

• the coarse-graining may not be so simple as paritioning S; and indeed

• the definition of the micro-state space S may require approximation and-or

idealisation, especially by taking a limit of a parameter: in particular, by

letting the number of microscopic contitutents tend to infinity, while de-

manding of course that other quantities, such as mass and density, remain

constant or scale appropriately.’ [20]

Indeed, all of the first three of these considerations are already built into the

definition of DS reduction. DS reduction is defined only relative to a particular

timescale and margin of error and for a particular, potentially limited, domain

d of states in the low-level state space; moreover, the bridge-map of DS reduc-

tion need not yield a partitioning of the low-level space (that is, the inverse

images under B of points in Sh need not form a partition of Sl; indeed, it will

not necessarily be the case that every point in Sh even has an inverse image).

Butterfield’s fourth concern only comes into play in certain special cases, for

example in reductions where quantum field theory or statistical mechanics fur-

nishes the reducing model, since both of these theories typically involve taking

limits as the number of degrees of freedom in the theory goes to infinity. In

the case of quantum field theory, which I do consider in this thesis, this fourth

concern of Butterfield’s is averted by taking a ‘cut-off’ approach to quantum

field theory and thereby treating the QFT model in question as a model of a

large-but-finite, rather than an infinite, number of degrees of freedom.

While the modifications to his meshing condition that Butterfield suggests
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anticipate a number of differences between meshing and DS reduction, it will

be worthwhile to explore these differences in a bit more detail. One essential

difference, just noted, is that while Butterfield’s meshing condition requires that

the coarse-graining function (his counterpart of the bridge map) be associated

with some partition of the low-level state space, the bridge map need not take

as its domain the whole of Sl, and therefore need not prescribe a partitioning

of Sl; moreover, the bridge map need not take the whole of Sh as its image,

providing still another reason why the high-level state space cannot in general

be regarded on DS reduction as a partition of the low-level space.

Furthermore, if a micro-level system obeys Butterfield’s meshing condition

with respect to some partition, then for any macro-level initial condition - i.e.,

some partition cell - it must be the case that the deterministic dynamics induced

on the partition by the micro-level dynamics yield the same result irrespective

of the microcondition that instantiates that initial macrocondition. Since any

element of the partition can serve as the macro- initial condition, and since every

element of the micro-level state space belongs to some element of the partition,

Butterfield’s meshing condition requires that the whole micro-level state space

(or at least all but a very small subset of this space) serve as the domain that

approximates the macro-level dynamics under coarse-graining; by contrast, in

DS reduction, the domain of Sl whose induced dynamics under the bridge map

approximates the high-level dynamics is not required to be the entirety of the

low-level space.

Finally, on Butterfield’s approach, the coarse-graining function associated

with a partition that respects the meshing condition is not required to respect

the symmetries of the low-level model insofar as it does not require that for any

symmetry of the deterministic macrodynamics, there will be some symmetry of

the micro-level dynamics that induces it under coarse-graining - nor does not

entail that the group structure of the micro-level symmetries induce the group

structure of the macro-level symmetries on the partition.

A final, though potentially less substantive, difference between Butterfield’s

58



account of dynamical commutation and the DS approach is that while the in-

spiration for the DS approach comes from examples of reduction in statistical

mechanics, on the DS approach the reduced and reducing models need not cor-

respond, respectively, to models of macroscopic and microscopic phenomena,

nor does the bridge map need to correspond to a ‘coarse-graining’ in any sense

other than its often being a many-one function (certainly, it is not required to

furnish a partition of Sl, nor is it required to map onto the whole of Sh). Of

course, if Butterfield is using the terms ‘macro-’ and ‘micro-’ merely to sug-

gest some analogy with statistical mechanical reductions, and not by way of

restricting this approach to reductions in which high- and low- level descrip-

tions correspond respectively to ‘macro-’ and ‘micro-’ level phenomena, then

this distinction collapses to some extent into one of terminology.

Within statistical mechanics, Lanford’s Theorem provides an explicit in-

stance of the dynamical commutation 7 (see, for instance, [65], [66], [67], [102]).

Lanford’s Theorem shows that the Boltzmann equation, which describes the

behavior of the distribution ft(~x, ~p) in 6-dimensional µ-space of particles in a

dilute gas (and assumes the molecules in the gas are modelled as solid spheres),

can be derived from the formalism of classical Hamiltonian mechanics, which

prescribes via the Liouville equation the time evolution of a probability dis-

tribution ρt(~x1, ~p1, ..., ~xN , ~pN ). The theorem establishes a particular bridge or

correspondence between probability distributions ρ on phase space and distribu-

tions f on µ-space, such that to any probability distribution ρ there corresponds

a unique f , but such that there are in general many ρ that may yield the same

f under this correspondence. The theorem then shows that provided certain

constraints are imposed on the initial phase space probability distribution ρ0 at

some time t = 0, the evolution of f induced by the evolution of ρ via this corre-

spondence approximately satisfies Boltzmann’s equation for some time scale τ

(what this time scale turns out to be depends on the strength of the assumptions

7Thanks to Jeremy Butterfield for pointing me to this example.
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made about the evolution of ρ). Thus, Lanford’s Theorem shows that, applied

to some domain of possible initial probability distributions ρ0, the low-level dy-

namics (The Liouville Equation) for some time t followed by an application of

the bridge map or coarse-graining yields approximately the same final distri-

bution ft as does the bridge map followed by an application of the high-level

dynamics (The Boltzmann equation) for the same time t, thus satisying the

dynamical commutation condition.

Werndl has shown that for every deterministic dynamical system, there is an

indeterministic model that reproduces the same empirical predictions to within

some given margin of error, and also that for every indeterministic dynami-

cal model, there is a deterministic one that is observationally indistinguishable

from it, again to within some margin of error [111], [112], [113], [114]. All of

the models considered in this thesis are deterministic, although it is possible

(particularly in the case of the quantum theories I consider) that observation-

ally equivalent stochastic models can be chosen in place of these; in such a case,

it would be necessary to extend the account of reduction among determinis-

tic models that I provide to reductions among indeterministic models, as well

as to reductions of deterministic to indeterministic models, and reductions of

indeterministic to deterministic models.

Finally, Peter Smith offers an account of approximate truth of models of dy-

namical systems that closely resembles in certain respects the account of strong

analogy between analogue and high-level models that I discuss here (see [96]

and [97], Ch.5). To be sure, the notion of strong analogy that I consider here

concerns a notion of closeness between distinct dynamical systems models, while

Smith is concerned with the notion of closeness between these models and the

behavior of the physical systems that the models describe. While from a concep-

tual point of view the question of what it means for one model to approximate

another and the question of what it means for a model to approximate the be-

60



havior some actual physical system are clearly distinct, according to Smith the

latter sense of approximation can be understood as a similarity of geometri-

cal structures associated respectively with the model and the physical system;

likewise, in the account of strong analogy between dynamical systems models

that I give here, what it means for one model to approximate another can also

be understood as similarity of geometrical structure. For example, a classical

phase space model of a simple pendulum can provide an approximately true

description of a real physical pendulum insofar as it is possible to plot, on the

same phase space, both the trajectory predicted by the model and the trajec-

tory of the real pendulum and to show that these trajectories are ‘close’ within

some margin of error ε for some time period; crucially, this sense of closeness is

specified by the geometrical structure - usually some norm - of the state space

in question. In the sense of strong analogy that I discuss here, a (say) quantum

model of the simple pendulum will approximate a classical phase space model

if the phase space trajectory induced by the quantum model through the rel-

evant bridge map approximates, in the geometrical sense furnished by a norm

on phase space, the trajectory prescribed by the classical model.

My primary goal in this thesis is to demonstrate that the way of thinking

about reduction in terms of dynamical commutation can be applied widely be-

yond the realm of statistical mechanics, and beyond the realm of macro- to

micro- reductions, and that it can be extended and refined into a general ac-

count of intertheory relations in physics that is distinct from the limit-based

and Nagelian approaches. Nevertheless, it may incorporate elements of both of

these approaches; in particular, in the next section I will be discussing some of

the parallels between DS and Nagelian reduction.
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1.4 DS Reduction and Nagelian Reduction: Par-

allels

Perhaps the most salient parallel between DS and Nagelian reduction is that

both make use of special correspondences between the elements of the high- and

low- level descriptions of a particular system. More specifically, the bridge maps

and bridge rules of DS reduction serve much the same purpose as the bridge

laws of GNS reduction, insofar as they identify those elements of the low-level

description that approximately mimic the behavior of particular elements in the

high-level description.

However, the analogy between the two approaches extends further than this.

Recall that the GNS account of theory reduction distinguishes four ‘theories’:

the low level theory Tl, the high level theory Th, the image theory T ∗h , and the

analogue theory T ′h. Recall that on the GNS approach, T ∗h is formulated in the

language of Tl and deduced from Tl without the use of bridge laws; T ′h is then

obtained from T ∗h by straightforward bridge law substitution, and is formulated

in the language of Th; if the reduction is successful T ′h will be ‘strongly analogous’

to Th. It is in this sense that a high level theory Th may be reduced to a low

level theory Tl on the GNS account. On the semantic, DS approach to physical

reduction, I claim, the portion of the reduction that involves demonstrating

that DSR condition 1) is satisfied proceeds much according to this same basic

outline, with a major revision being that it is models rather than whole theories

that are reduced. Let us make the parallels between GNS and the dynamical

component of DS reduction more explicit.

Nagel’s Homogeneous/Inhomogeneous Distinction

Nagel introduces the distinction between homogeneous and inhomogeneous re-

ductions as the motivation for introducing bridge laws into his account of re-

duction. Yet it is worth noting here that this distinction can be quite vague

once we begin to probe it further.
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For example, Nagel uses the reduction of the Galilean theory of terrestrial

gravitation to Newton’s Universal Theory of Gravitation as an example of a

homogeneous reduction, explaining that all of the terms employed in the former

- position, time, mass, force - are all also contained in the latter. However,

there is room to doubt this classification when one considers the nature of the

constant g = 9.8m/s2. In Galileo’s theory, g appears as a primitive constant

whose value is unexplained, whereas in Newton’s it is equated to GME

R2
E

(where

ME is the mass of the earth and RE is the radius of the earth). Likewise,

in the reduction of the thermodynamic Ideal Gas Law to statistical mechanics,

temperature T is a basic quantity in the context of thermodynamics, while in the

context of statistical mechanics it is equated to 2
3kB
〈K.E.〉. Given this parallel,

it seems rather arbitrary of Nagel to claim the term T occurs only in the reduced

but not the reducing theory, making the relation T = 2
3kB
〈K.E.〉 a bridge law,

while claiming that g occurs in both reduced and reducing theories, making the

relation g = GME

R2
E

something other than a bridge law (say, a definition of a

non-basic quantity - namely, g - in Newton’s theory).

Yet we can still see the motivation for Nagel’s homogeneous/inhomegneous

distinction: in the Galileo/Newton reduction, the theoretical frameworks of the

two theories arguably share a lot more in common than do the frameworks of

the two theories involved in the thermo./stat.-mech. reduction. Yet, as we have

seen in the former example, even in cases where the theoretical frameworks are

quite similar, some links between them - albeit ones that may seem quite obvious

and natural, sometimes so much so that they are left implicit - will be required

to effect a reduction of one theory to the other (in the Galileo/Newton case, the

definition g = GME

R2
E

is indeed required before one can derive Galileo’s F = mg

as an approximation). Whether one regards the theoretical frameworks of the

reduced and reducing theories as sufficiently different to characterise the links

as bridge laws (rather than, say, as definitions of non-fundamental quantities in

the reducing theory) is to a significant extent arbitrary.

Many of these considerations carry over to reduction in the DS approach,
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where the high- and low- level models may involve very similar, or very clearly

distinct, mathematical structures, but in which there is no clear division between

models whose mathematical structures are ‘the same’ - there will always be some

differences, assuming the models are not identical - and those in which they are

clearly distinct. One might be inclined to call reductions between models whose

state spaces take the same general form homogeneous and those in which their

forms are different inhomogeneous. Yet, in the end it is a matter of arbitrary

choice what particular kinds of similary of mathematical structure one relies on

in the classification of reductions as homogeneous or inhomogeneous.

As an example, one might be inclined to regard as homogeneous the DS

reduction of a Newtonian phase space model of the motion of some centers-

of-mass to the Newtonian phase space model of the motion of the system’s

smaller constituents. The classification as homogeneous would be motivated

by the fact that both state spaces are symplectic manifolds (albeit of differ-

ent dimension), and in addition may have Hamiltonians of the same general

H =
∑
i
p2i

2mi
+
∑
i 6=j V (|xi−xj |) form. However, even if one classifies such a re-

duction as homogeneous, a bridge map, given by the center of mass function and

the corresponding formula for momentum, is still required. As an example of

an inhomogeneous reduction, one might take the example considered repeatedly

in this chapter, in which some classical phase space model is reduced to some

quantum model; in this case, one state space is a symplectic manifold and the

other a Hilbert space; the bridge map is given by the expectation values of the

position and momentum operators. Again, though, the question of which par-

ticular differences of mathematical structure are to determine the classification

as homogeneous or inhomogenous is a matter of arbitrary choice.

Moreover, whether the state spaces are more or less similar in their math-

ematical form, all DS reductions require bridge maps that are constrained to

fulfill the same set of requirements. Unlike in Nagel’s approach, where some

reductions are said to require bridge laws and some are not, the counterparts

of bridge laws in the DS approach, bridge maps, are required of all reducitons
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(though, again, in some cases these bridge maps may be particularly natural or

obvious). Consequently, it does not appear that in the context of DS reduction

very much hangs on the homogeneous/inhomogeneous distinction, insofar as it

can be drawn.

Image Models, Bridge Rules, Analogue Models and ‘Strong Analogy’

On the DS account of the reduction of a high-level model Mh to a low level model

Ml, one can, by analogy with the GNS approach, identify an image model M∗h

and an analogue model M ′h. It is the analogue model that approximates the

high-level model Mh.

The image model M∗h is formulated using elements of the model Ml - that is,

in terms of the mathematical structures defined on Ml’s state space - and can

be deduced from Ml solely on the basis of a restriction to a particular domain

of states in Sl. Its dynamics consist of the composition of the bridge map B

and Dl:

Image Model Dynamics:

d

dt
B
(
xl(t)

)
≈ fh

(
B
(
xl(t)

)
, t
)

(1.71)

for xl ∈ d, where d is some domain of states in Sl roughly preserved under the

dynamics for some limited timescale τ . Recall that satisfaction of image model

dynamics for some such domain d suffices to ensure satisfaction of the DSR

condition.

By further analogy with the GNS account, the analogue model is obtained

from the image model through bridge rule substitutions,

Bridge Rules:
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x′h ≡ B(xl) (1.72)

and its dynamics are specified by the equation of motion:

Analogue Model Dynamics:

dx′h

dt
≈ fh(x′h, t). (1.73)

Note that the expression B(xl), which occurs in the image model, is an expres-

sion built from structures within the low level model Ml - in this sense it is

formulated in the mathematical ‘language’ of the low level model. On the other

hand, the bridge rule equivalent of this expression, x′h, is to be understood as

an object of the sort defined within the high level model Mh: specifically, an

element of the high level state space Sh. In this sense the analogue model M ′h

is formulated in the mathematical ‘language’ of the high level model.

From this we can see that the image model is typically formulated in no-

tation which lays bare the detailed construction of the Ml structures that ap-

proximately instantiate the dynamics of Mh, while the analogue model neatly

packages and conceals the internal makeup of these structures by assigning to

them simpler variable expressions which are a mathematical form familiar to

Mh. Figuratively speaking, the image model enables us to ‘look under the hood’

of the analogue model M ′h to see in detail how its structures are assembled from

the mathematical components of Ml.

For a reduction to take place in the GNS account, the analogue model M ′h

must be ‘strongly analogous’ to the high level model Mh. Within the context

of the GNS model the condition of strong analogy is highly ambiguous, though

is intended to include some requirement of approximate agreement between M ′h

and Mh. On the DS approach, the relation of strong analogy is unambiguous,
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and requires that

‘Strong Analogy’

∣∣x′h(t)− xh(t)
∣∣ < δ ∀ 0 ≤ t ≤ τ, (1.74)

where τ again is the reduction timescale. Note that this ‘strong analogy’ claim

is just the DSR condition rewritten using bridge rule substitution x′h(t) ≡

B
(
Dl(t;x

l
0)
)

and the definition xh(t) ≡ Dh

(
t;B(xl0)

)
. 8

The basic elements of DS reduction can be consolidated in a manner that

directly parallels the three steps of GNS reduction, with an additional step to

show that the dynamical symmetries of the high-level model are approximately

replicated via the bridge map by those of the low-level model :

DS Reduction in Four Steps:

1. Derive the image model M∗h as an approximation to the dynamics of

Ml within some restricted domain of states within the low level state

space Sl. This amounts to deducing a relation of the form d
dtB

(
xl(t)

)
≈

fh
(
B
(
xl(t)

)
, t
)

from the dynamics of Ml and a restriction to a particular

domain of states in Sl. Note the derivation of an image model amounts

to a proof of the DSR condition. This step refines Nagel’s derivability

condition; note that it is the image model M∗h , not the high-level model

Mh, that is derived from Ml on this account of reduction.

2. Use bridge rules x′h ≡ B(xl) to replace the terms B(xl) occurring in

M∗h , and which are constructed using the mathematical structures of Ml,

8One could object that there is still an ambiguity as to what the appropriate norm to take
on the high level space Sh is. In all the examples I consider, however, the appropriate choice
of norm is always obvious.
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with corresponding terms belonging to the high level model. This yields

the analogue model M ′h, whose dynamics are specified by the dynami-

cal equation dx′h

dt ≈ fh(x′h, t). This, along with step 3, refines Nagel’s

connectability condition.

3. On the reduction timescale τ on which the image model holds, M ′h is

‘strongly analogous’ to the high level model Mh, in the precisely defined

sense that
∣∣x′h(t) − xh(t)

∣∣ < δ ∀ 0 ≤ t ≤ τ . This step contributes an

additional component to Nagel’s connectability condition.

4. (no analogue in GNS) Prove that the bridge map respects the symmetries

of the high-level model by demonstrating that conditions 2 a) and b) for

DS reduction are satisfied.

The parallels with the GNS approach, and the manner in which the essential

elements of this account are all paralleled within a semantic, dynamical systems

approach should at this point be clear. Note also that there is no reason that

dynamical systems reduction, as spelled out here, need be restricted to dynami-

cal systems in physics, though all of the examples I consider here are reductions

of this sort. On a final note, it is in the sense specified by DS reduction that

I will refer to a model Ml of Tl instantiating some model Mh of Th - that is,

Ml instantiates Ml if the DSR condition between the two is satisfied. I also

may refer more specifically to B(d) as approximately instantiating some sub-

set of the high-level state space Sh, and to the image model as approximately

instantiating the dynamics Dh of the high-level model.

1.5 DS Reduction and Nagelian Reduction: Dis-

analogies

The first and most general distinction between DS and Nagelian reduction is

that the former concerns the reduction of individual models while the latter

concerns the reduction of theories. Nagelian reduction, moreover, specifically
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requires the derivation of the laws of the high-level theory from those of the low-

level theory. In the case of DS reduction, to be sure, it is also necessary that the

laws of the high-level model - which I take it are most naturally associated in the

DS picture with the equations of motion of the model - be derivable from those

of the low-level model in the sense that it is possible to derive some image laws

from the low-level model, which serve to approximate the laws of the high-level

theory via bridge rules and the strong analogy relation.

Yet models of physical theories involve much more mathematical structure

than simply their dynamics - for example, the structures associated with their

state spaces and the dynamical symmetries on those state spaces. In models

of classical Hamiltonian mechanics, for example, the dynamical equations, as

expressed in terms of Poisson brackets with the Hamiltonian, are but a portion

of the larger symplectic structure of the phase space manifold, which serves as

a unified geometrical framework in which to understand not only the dynamics

but the symmetries of the theory as well as the whole fomalism of canonical

transformations. In models of non-relativistic quantum mechanics, likewise, the

dynamical law specified by the Schrodinger equation is but a portion of the

larger mathematical apparatus associated with Hermitian operators, unitary

transformations, and the like. Unlike Nagelian reduction, which focuses on the

derivation of the high-level theory’s laws, DS reduction more generally seeks

to identify substructures of the low-level model that approximately instantiate

the structures of the high-level model in some domain. While the dynamical

laws of the high-level model certainly represent one crucial piece of the high-

level model’s structure that must be instantiated by the low-level model (and

the fact of this instantiation is one that must be derived from the low-level

model), they do not exhaust it. As we have seen, the image domain B(d)

instantiates that part of the high-level theory’s state space Sh that can be used

to accurately model the physical system in question, while B(Tl) approximately

instantiates some high-level dynamical symmetry Th of the theory for some Tl;

likewise, the group composition structure of the high-level symmetries T 1
h ◦ T 2

h
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is approximately instantiated by the group composition structure B(T 1
l ◦T 2

l ) of

the low-level symmetries induced via the bridge map.

One final difference between DS and Nagelian reduction that bears discussion

is that, while the bridge maps of DS reduction and the bridge laws of Nagelian

reduction do fulfill similar roles, DS reduction is framed in terms of the existence

of a mathematical function (the bridge map) satisfying certain criteria, while

the bridge laws of Nagelian reduction are understood as separate assumptions

made independently of the high-and low- level theories, which are necessary to

derive the appropriate analogue to the high-level laws. That is, the DS approach

takes the high- and low- level models of a system as given, and a reduction is

said to occur only if a certain mathematical relationship obtains between these

models - namely, the existence of a function between the state space satisfying

the necessary mathematical conditions given above. The Nagelian approach, on

the other hand, treats bridge laws as independent auxiliary assumptions that

supplement the low-level theory to facilitate the derivation of an analogue to

the laws of the high-level theory.

1.6 Generality in Reduction

Authors on the subject of theory reduction, particularly in physics, have tended

toward one of two approaches to this subject, which I call the ‘systematic’ and

‘piecemeal’ approaches to reduction. There is no clear-cut division between

these two categories, but rather a spectrum of possible approaches between

these extremes which aspire to varying degrees of generality.

Advocates of more systematic approaches to reduction tend to assume that

among systems which exhibit Th regularities, the explanation in terms of Tl as

to why they do so can be given on the basis of general results that connect

the formalisms of the two theories and which are presumed to apply to all such

systems. That is, they tend to view the problem of reduction exclusively in

terms of generalities which can then be applied to particular systems, much in

70



the way an algebraic identity applies generally for all numbers in a particular set.

The details that are most salient to the explanation of the reduction, however,

are always the same, independently of the system being investigated.

Advocates of more piecemeal approaches implicitly deny the possibility of

such generality in explaining why certain Tl systems exhibit Th regularities. Ul-

timately, they deny that it is possible to abstract away so completely from the

details of the system in question in explaining why it obeys regularities charac-

teristic of Th. The most extreme version of this view insists that reductions must

be accounted for on a case-by-case basis - that is, for each system that exhibits

Th regularities, one must provide a separate and distinct Tl-based explanation

of why it does so that is tailored specifically to that system.

The systematic and piecemeal approaches are illustrated, respectively, by

work that tries to explain reduction entirely on the basis of formal mathemat-

ical results, on the one hand, and by work which tries to explain, for a system

defined to within narrow parameters, how behavior characteristic of Th can be

accounted for by Tl, on the other. Landsman’s well-known treatment of the

quantum-classical correspondence (detailed in [63]), for instance, falls more to-

ward the systematic end of the spectrum in that it rests primarily on formal

mathematical correspondences between quantum and classical mechanics with-

out considering the details of particular systems, while Joos and Zeh’s calcula-

tions of decoherence rates for different environments consisting of air molecules,

dust particles, and photons (see [21] and [58]) fall closer to the piecemeal end

of the spectrum.

Let us take a moment to consider how the distinction between systematic and

piecemeal approaches to reduction relates to the distinction between reduction1

and reduction2. The type-1 approach to reduction, to which, I have argued, the

dynamical systems approach belongs, can be systematic since there is nothing

inherent in the definition of DS reduction, or more broadly of Nagelian reduction,

that automatically precludes the existence of some general result that accounts
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for all successful applications of the theory Th. On the other hand, a type-

1 reduction also can be piecemeal, since it is also possible that the set of Tl

systems that instantiate the models of Th are highly distinct in the sense that

their underlying Tl descriptions differ widely.

A type-2 reduction, if any such reductions exist, is necessarily systematic

since it requires that the behavior of any approximately Th system be retrieved

from some Tl system as some set of parameters {εi} in Tl approach zero. (Note

that my analysis in section 1.2.1 does not preclude the occurence of instances of

reduction2; it only precludes regarding reduction2 as a general characterisation

of inter-theory relations in physics). Thus, if any system exhibits Th regularities,

one need look no further than the values of {εi} and the associated limits for

an explanation of this fact; all other particularities of the system are irrelevant

to the reduction.

It is worth clarifying here the difference between a systematic type-1 reduc-

tion and a type-2 reduction (which is necessarily systematic) since it is reason-

able to ask whether there are any strongly systematic reductions which are of

type-1 but not of type-2. To take one example, circuit theory is instantiated by

Maxwell’s equations and its success can be explained quite systematically, and

with a great deal of generality, on the basis of Maxwell’s theory: at a certain

intermediate level detail, Ohm’s law, and rules governing governing capacitors,

inductors and various other circuit elements all can be derived in similar fash-

ion from Maxwell’s equations (see, for example, [81]) although at the most

fine-grained level of explanation, results from solid state physics pertaining the

specific materials used to make these devices must be invoked. Yet, despite

the generality of these derivations at an intermediate level of detail, it does

not seem that there is any simple limit of the form given in the definition of

reduction2 that neatly encapsulates all such derivations. Therefore, this serves

as an example of systematic-ness within reduction that is not associated with

type-2 reduction.

Moreover, while formal limits tend to feature most centrally in type-2 reduc-
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tions, this does not mean that they may not also play some partial role in either

systematic or piecemeal type-1 reductions. The essential difference between the

manner in which limits are employed in type-2 reductions and the manner in

which they may be employed in type-1 reductions is this: in type-2 reductions,

for any model of any Tl system at all, we expect to retrieve some model Mh of

Th describing the same system when we dial the values of the parameters {εi} in

that model sufficiently close to zero. In type-1 reductions, this is not necessarily

the case since there is no requirement in type-1 reductions that every Tl system

correspond to some Th system, but only that every model of Th that successfully

(if approximately) describes a real physical system be instantiated by some do-

main of some Tl model; the explanation as to how this instantiation occurs may

rely partially upon some particular limit-based result, combined with a number

of other non-limit-based results and assumptions.

1.6.1 Reduction and Explanation

The task of any type of reduction considered here, whether type-1 or type-2,

systematic or piecemeal, can be regarded as a task of explanation - specifically,

of explaining why some model of Th succeeds at describing some system or set of

systems on the basis of some model of Tl. The criteria for scientific explanation

are notoriously controversial and seemingly variable across different parts of

science, so it is worthwhile taking a moment to place my analysis within this

broader discussion.

It is straightforward to see that both reduction1 and reduction2 fit squarely

into the traditional deductive-nomological model of explanation, which takes

explanation to be deduction of the explanandum from premises that include at

least one universal law and typically also some auxiliary premises [50]. In the

context specifically of DS reduction, the explanandum is the dynamics of the

image model M∗h , while the universal law is the dynamics of the low-level Ml,

and the auxiliary assumptions are given by a domain restriction within the state

space Sl. The bridge rules, analogue model and strong analogy relationship
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all complement the derivation of the image model dynamics for purposes of

clarifying the connection between the image model M∗h and the high-level model

Mh.

While reduction1 and reduction2 are well-accomodated by the DN model of

explanation, this model faces a number of well-known difficulties [88]. Neverthe-

less, the particular nuances which make trouble for the DN model, such as the

need to account for assymmetries of explanation and to ensure that premises are

relevant to the conclusion, need not concern us here since they do not arise in

the cases I consider. Moreover, while the DN model was formulated by Hempel

within the framework of logical empiricism, nothing in the DN model’s cen-

tral elements suggests that it cannot also be applied within a semantic, realist

framework. A number of more current models of explanation, such as Salmon’s

causal-mechanical model and Kitcher’s unificationist model, have endeavoured

to refine and update the deductive-nomological model so as to avoid the above-

mentioned difficulties, and do so within a realist framework. Others, such as van

Fraassen’s constructive empiricist account, have sought to replace it wholesale

[88], [61],[105]. I leave it as an open question, which, if either, of the main realist

refinements of the DN model best accommodates the examples I consider.

In section 1.6.2, I explain why wholly systematic approaches to reduction do

not generally succeed, illustrating my point with the by-now familiar examples of

the NM/SR and CM/QM intertheory relations. I then consider the completely

piecemeal approach in section 1.6.3, but argue that it is too weak a position. I

contend, by reference to particular examples, that it is usually possible to retain

a degree of generality and systematic-ness in deriving the image model dynamics

from the base model Ml, without having to produce a totally new derivation for

each system separately. I go on in section 1.6.4 to elaborate and defend a ‘semi-

systematic,’ or template-based, approach to theory reduction that reconciles the

role of system-specific details in reductions with the desire to understand the
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general mechanisms and principles at work in reductions across a wide range

of systems. Not surprisingly, the degree of generality that can be retained in

accounts of theory reduction will depend on the particular pair of theories, and

models, in question.

1.6.2 Completely Systematic Approaches to Theory Re-

duction

Below, I argue that a completely systematic approach to reduction does not

generally succeed in physics, and support this view with two examples: the re-

duction of Newtonian mechanics to special relativity (by ‘special relativity,’ I

mean Lorentz covariant classical dynamics) and the reduction of classical me-

chanics to quantum mechanics.

Completely Systematic Approaches to the NM-SR Reduction

If a completely systematic type-2 reduction of NM to SR is probably not possi-

ble, as argued in section 1.2.1, might a completely systematic type-1 reduction

be? That is, for all physical systems whose behavior can be approximated by

some Newtonian model, is it possible to provide a single general derivation of

the corresponding image laws of NM that applies to all such systems? I claim

that one cannot, and offer an example to illustrate my point.

Consider an SR model of an idealised system consisting of two masses con-

nected by a spring that is sufficiently stiff and sufficiently compressed that the

total system contains enough potential energy to make the rest mass of the total

system substantially exceed the sum of the individual constituent masses; the

spring itself is assumed to have effectively zero rest mass. (While perhaps not

very realistic, one can at least in principle model such a system in SR.) Assume

that the center of mass the combined system behaves in Newtonian fashion and

that the centers of mass of each of the masses do as well. An explanation as to

why this is so will have to include some explanation as to why the energy stored

in the spring is not released (for instance, because it is held together by powerful
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clamp). For, if the potential energy (which is comparable to the rest energies

of the two masses) were converted to kinetic energy, the bodies would fly off at

some substantial fraction of the speed of light and non-Newtonian effects would

become apparent. Consider also a system whose total rest mass is the same

as the total mass of the earlier system, but this time in which the mass is due

entirely to the rest masses of its constituents, and not to the contributions of

internal energy resulting from their interactions or motion. In such a case, the

explanation as to why such a system behaves in Newtonian fashion will be of a

different nature, since there is no need to explain why potential energy is not

being released. In this case, the fact that the body isn’t travelling too close to

the speed of light (relative to some fixed inertial frame) and that there aren’t

excessively strong external forces acting on it should suffice to account for its

Newtonian behavior. Thus, in each case, system-specific details concerning the

nature of the internal binding forces (or lack thereof) within the bodies will play

some role in the explanation of Newtonian behavior.

To take a more realistic example, consider a heavy atomic nucleus that fol-

lows an approximately Newtonian trajectory in a cyclotron (say, the circular

trajectory of a moving charge in a constant magnetic field). The explanation

as to why the trajectory of the nucleus is approximately Newtonian will de-

pend in part on an explanation as to why the binding energy of the nucleus

is not released, causing fragments of the nucleus to fly off at some significant

portion of the speed of light. This explanation will depend on details of the

internal constitution and binding of the nucleus in question and, in particular,

on its half-life. Again, system-specific details play some role in the explana-

tion of Newtonian behavior, precluding a single reduction that encompasses all

Newtonian systems.

By demonstrating the need to invoke system-specific details when attempting

provide a complete explanation of Newtonian behavior in different systems,

these examples illustrate that a reduction of NM to SR that is both complete

and completely general - or, to keep to my terminology, completely systematic
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- does not exist. However, given that the NM-SR reduction ought to have been

at the outset the most likely example of completely systematic reduction, this

particular case does not bode well for the widspread applicability of completely

systematic approaches to reduction.

Having demonstrated that no completely systematic account of the reduction

of NM to SR, either of type 1 or type 2, is available, I will now turn to my second

example, which also will be the focus of Chapter 2: the reduction of classical to

quantum mechanics.

Completely Systematic Approaches to the CM-QM Reduction

If a completely systematic type-2 reduction of CM to QM is probably not possi-

ble, as argued in section 1.2.1, might a completely systematic type-1 reduction

be? That is, for all physical systems whose behavior can be approximated by

some classical model, is it possible to provide some overarching demonstration

of the approximate accuracy of classical models that encompasses all of such

systems? The answer again is patently no, but the arguments to this effect

depend to some degree on what one thinks counts as a successful application of

classical mechanics.

There is potentially a wide range of things one could mean by the term

‘classical.’ From the point of view of quantum theory, the least stringent no-

tion of classicality that we can adopt is apparent definiteness of the values of

variables like position and momentum, absent any dynamical constraints on

their evolution. As I argue later on, decoherence with respect to an appropri-

ate pointer basis, combined with a solution to the measurement problem, will

suffice to reproduce this attribute of classicality. However, people usually mean

more than just apparent definiteness when they speak of the empirical success

of classical mechanics; they also mean that certain dynamical constraints on the

evolution of position and momentum variables are satisfied by the systems in

question. Such dynamical constraints, in turn, come in different varieties. For

example, we might require that the relevant variables obey Newton’s Second
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Law of Motion, without placing any constraints on the allowable force laws that

may appear in this law. Such behavior will include, among other things, be-

havior involving contact forces and friction such as the simple pendulum, mass

on a spring, or normal force systems with and without friction. Also involving

contact forces are the equations of classical fluid dynamics, such as the Navier-

Stokes equation, which are derived from Newton’s Second Law (combined with

additional assumptions affecting the form of the contact forces involved). On

the other hand, one could restrict one’s notion of classical behavior further to

systems described in terms of conservative forces, which can be characterised

in terms of a simple classical potential - for example, the mass on a spring and

the simple pendulum. And one could even further restrict one’s attention to

classical behavior which consists only of behavior that can be described in terms

of fundamental force laws, such as electromagnetism, in which the conservative

forces arise from fields rather than contact forces.

These different classes of systems, which encompass different models of clas-

sical behavior, will, of course, have different quantum mechanical underpinnings.

For classical systems involving a fundamental force law, the potential that ap-

pears in the classical equation of motion will be the same as the one appearing

in the quantum equation of motion. On the other hand, for classical systems

which involve contact forces or friction, the classical potential, if one exists, the

potential appearing the Schrodinger equation of the underlying quantum model

will be extremely complicated and different from the potential that appears in

the underlying microscopic quantum equations (it will likely only match the

potential employed in the classical model in some average sense). To be more

specific, consider two distinct systems described by the classical model of the

harmonic oscillator: the first a mass on a spring and the second an electric

charge moving in a tube bored through an axis of a uniform spherical charge

distribution (in which case the electric field will vary linearly with distance from

the center of the sphere) 9. In the second case, the classical potential generated

9I assume that the charge is sufficiently massive that energy losses through radiation can
be neglected.
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by the electric field will be the same potential that appears in the underlying

quantum model of the charge’es behavior. In the first case, the fact the that one

can employ a harmonic oscillator potential to describe the motion of the block

is something that needs to be explained in terms of the complex microscopic

constitution of the spring - at the microscopic level, this potential will be wildly

fluctuating on the length scale of the atoms making up the spring.

These two applications of the same classical model must be reduced sepa-

rately, and no complete reduction can be given that encompasses both. Thus, a

completely general, completely systematic, type-1 reduction of classical models

of macroscopic systems cannot be given, especially if one adopts a relatively

inclusive construal of what counts as classical behavior. Consideration of de-

tails specific to the system in question, or to the class of systems into which it

falls, will be required for a totally comprehensive reduction of the classical to

the quantum model of that system.

1.6.3 Completely Piecemeal Approaches to Reduction

The failure of completely systematic approaches to reduction, either of type 1

or of type 2, might lead one to take the view that reductions must be performed

in type-1, piecemeal fashion. A quote, again from David Wallace, suggests such

a piecemeal approach:

Crucially: this ‘reduction,’ on the instantiation model, is a local
affair: it is not that one theory is a limiting case of another per se,
but that, in a particular situation, the ‘reducing’ theory instantiates
the ‘reduced’ one. Consider the first example above, for instance.
The reason that classical mechanics is applicable to the planets of
the Solar System is not because of some general [italics mine] result
that classical mechanics is a limiting case of quantum mechanics.
Rather, the particular system [italics mine] under consideration -
the solar system - is such that some of its properties approximately
instantiate a classical-mechanical dynamical system. Others do not,
of course: it is not that the solar system is approximately classical,
it is that it (or a certain subset of its degrees of freedom) instantiate
an approximately classical system.

... The real story of the relations between scientific theories is not a
story about a tower of theories, with particle physics at the bottom
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and macroeconomics at the top: rather, it is a patchwork of domain-
relative instantiations [110].

According to Wallace, the fact that certain quantum systems approximately

instantiate classical Newtonian systems - or rather, that, for certain systems,

quantum models of those systems instantiate certain Newtonian models of those

same systems - is not something that can be accounted for systematically by

some general mathematical result, either involving a limit or, he seems also to

suggest, of any other form, but something that must be explained on a piecemeal

basis.

However, as I now argue, it is still possible to retain some measure of gen-

erality in our accounts of reduction, and we can do better than to provide

reductions in a totally piecemeal, case-by-case fashion. Indeed, it would be

surprising if the rather striking formal results relating the dynamical and kine-

matical structures of superseded and superseding theories in physics did not

have some fairly widespread relevance to actual instances of reduction; to say,

for instance, that the result that lim v
c→0

1√
1− v2

c2

= 1, and the fact that plenty

of relativistic equations return Newtonian ones as a result, has no widespread

relevance to the emergence of NM behavior from SR is (for reasons which I take

to be self-evident) utterly implausible. Limits or other general formal results,

while they do not in themselves constitute complete reductions, often do lend

significant insight into the mechanisms and principles that relate the high- and

low-level theory models of many or all such systems.

Piecemeal Reduction vs. the Pluralism of Cartwright and Dupre

Wallace’s piecemeal approach to reduction may call to mind the pluralism of

Cartwright and Dupre, who, like Wallace, take pains to underscore the patch-

work nature of regularities described by scientific theories and to characterise

these regularities as islands of order in a much vaster sea of irregularity. Yet the

patchwork of Wallace’s view differs dramatically in certain crucial respects from
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that of Cartwright and Dupre. Wallace’s patchwork respects the hierarchical

distinction between high- and low- level theories, with theories in physics at the

bottom and those in chemistry, biology, and psychology successively further up;

moreover, it respects the reducibility, in the sense specified by Wallace’s concept

of instantiation, of high- to low- level theories. Cartwright and Dupre’s plural-

ist view, on the other hand, is strongly anti-reductionist in that it denies the

reducibility of higher- to lower- level theories, and moreover opposes the very

distinction between high- and low- level theories [23], [32]. Thus, while both

views commonly acknowledge the patchwork nature of scientific regularities,

this is simply a reflection of the fact that both strive to grapple - in very differ-

ent ways - with the same fact about about the way in which science describes

nature.

As a consequence of the differences just cited, the reductionist and pluralist

accounts may be further distinguished in terms of the way they characterise the

relationship between the domains of different theories. In Wallace’s patchwork,

the domains of higher-level theories are contained in those of low-level theories;

that is, systems that instantiate the laws or models of a higher-level theory also

instantiate those of a lower-level theory (though the reverse is not generally

true). Cartwright and Dupre’s patchwork imposes no requirement that the

domain of a high-level theory, say in biology, be contained in that of some

low-level theory in physics. In this sense, the various patches making up the

patchwork on the pluralist view are on more level footing than they are on the

reductionist view; the domains of theories in physics and in biology are simply

different on the pluralist view and the former are not required to contain the

latter; in fact, the pluralist view explicitly requires that this kind of containment

does not occur. Thus, Wallace’s view will typically ascribe much larger domains

to low-level theories than will the pluralist view of Cartwright and Dupre, since

Wallace’s view requires these domains to subsume those of higher-level theories

while Cartwright and Dupre’s denies this subsumption.

This difference between the reductionist and pluralistic accounts of the patch-
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work nature of scientific regularities can in part be traced back to a difference

in the degree to which they condone extrapolation from the observed success

of scientific theories in the carefully controlled contexts where they are often

tested, to their applicability in the much vaster, and typically much more com-

plex, world outside of these contexts. Wallace, along with most of the scientific

and philosophical communities, accepts the legitimacy of such extrapolations,

implicitly taking them as a natural induction on the base of data extracted

from experiments. For instance, while most of what is regarded as the confirm-

ing evidence for the Standard Model of particle physics is drawn from scattering

experiments performed in particle accelerators, physicists typically assume that

these laws also apply in contexts highly remote from particle accelerator exper-

iments, such as occur in efforts to describe the evolution of the early universe.

Cartwright and Dupre, on the other hand, regard such inferences as far too

cavalier and argue that we ought to be more reserved in our extrapolations.

Cartwright, for instance, claims that the theories of physics and the other sci-

ences apply only ceteris paribus, under the carefully tuned conditions under

which they are typically tested. Thus her view goes beyond mere skepticism

about claims, for instance, that biological systems fall within the domain of the

Standard Model or any potential successor to the Standard Model; it centers

on an explicit denial of such claims. Thus, she argues that the patchwork of

scientific practice most strongly supports a metaphysical picture in which it is

not just the contexts in which we can apply our theories to make predictions

that are disjointed, but nature itself.

In summary, one must not overlook the fact that the piecemeal approach to

reduction is just that - an approach to reduction - and thus, unlike Cartwright’s

view, will generally support the idea of higher-level regularities being reduced

to lower-level ones. The kind of diversity that is supported by the piecemeal

approach to reduction is only diversity in the sense of a single underlying theory

providing different explanations of different high-level phenomena, though in

contrast to Cartwright and Dupre’s pluralism, these different explantions may
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be given within the same underlying theoretical framework; Wallace’s piecemeal

approach to reduction is thus entirely compatible with the idea that there is a

single underlying, universal theory of fundamental physics, and that the many

disparate patches of higher-level regularity all fall within the domain of this one

theory. Cartwright’s view is explicitly anti-reductionist and anti-unfication, and

the diversity that is suggested by Cartwright’s view is diversity at a much deeper,

metaphysical level, since it not only suggests different explanations for different

higher-level regularities, but ultimately that the need for different explanations

reflects a world that is dappled not only in terms of our ability to discern patterns

in high-level phenomena, but fundamentally.

1.6.4 Reduction Templates

Although it is not possible to give a completely general, systematic account of

how a superseded theory Th reduces to a superseding theory Tl, it is often pos-

sible to retain a significant degree of generality in explanations of why certain

systems modelled in Tl also may be approximately modelled in Th, and there-

fore to do better than to approach theory reduction on a completely piecemeal

basis. The degree of generality that can be retained in such explanations de-

pends strongly on the two theories in question, though in most if not all of the

cases mentioned in the first paragraph of the Introduction to this chapter, is

substantial.

Given that any system in the class is described both by a high-level model

Mh and a low level model Ml, the deductive portion of the reduction consists

of deriving the image model M∗h from Ml. Systems with models in Th can be

paritioned into classes, such that reductions to Tl of the Th models of systems

in the same class follow the same ‘template,’ and reductions of systems in dif-

ferent classes follow different templates. A template is an incomplete proof, or

outline, of the basic steps and principles and mechanisms that are involved in

deriving the image model M∗h from Ml. A given template may take for granted

assumptions that can only be proven by considering the full particularities of the
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individual system in question, or that are merely plausible conjectures awaiting

proof. Systems within a given reduction template may differ substantially in

their Tl description, though at a certain intermediate level of detail, the basic

outlines of the reasoning that explains their approximate Th behavior are the

same.

To a degree, the separation into reduction classes of systems in Th’s domain

is arbitrary, and depends in particular on how detailed the template associated

with the class is. Ultimately, the most detailed possible explanation of why

a particular Tl system exhibits Th regularities will take account of things like

the exact state of the system and its exact microscopic constitution; such an

approach amounts essentially to cranking the relevant initial conditions through

the appropriate equations of motion and then reading the information relevant

to the Th level of description off from it. At this level, each template amounts

to a completely detailed, rigorous proof of reduction, and each separate system

has its own reduction template and is the sole member of its reduction class.

However, such explanations in practice are never given because we are not ca-

pable of gaining this kind of detailed information about the systems we care

about. Moreover, they tend to obscure the general principles and mechanisms

at work across a wide range of instances of reduction. If, on the other hand,

one is willing to sacrifice some detail in the template by making certain general,

plausible assumptions about the system in question (which one can go back and

try to prove rigorously later if one likes), then one may gain some insight into

these mechanisms and principles and where they fit in to the overall scheme of

the full reduction. Templates significantly reduce the labor involved in explain-

ing particular instances of reduction by compartmentalising the derivation of

the image model on the one hand into those parts that require specific reference

to the system in question, and, on the other hand, those parts of the derivation

that are uniform across the reduction class.

Thus, a template-based approach to reduction is one in which a variety of

explanations of the approximate Th behavior of a particular system, varying ac-
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cording to level of detail, are possible. Explanations provided by more general,

less detailed templates will apply across a correspondingly larger reduction class

of systems; however, the derivations of the model of the systems in the reduc-

tion class may take a number of claims for granted, since proving these claims

would require considering the particular details of different systems within the

class. On the other hand, less general, more detailed templates will tend to take

the particularities of individual systems into account, and therefore only apply

over smaller reduction classes; the reduction classes of these more detailed tem-

plates should be subsets of the reduction classes corresponding to less detailed

templates for the same system.

Both kinds of templates, general and detailed, are necessary to a full under-

standing of reduction: the former because it illustrates the general principles

and mechanisms at work in the reduction of the Th to the Tl models of a wide

range of systems, and the latter because it ‘fills in’ or completes the more general

template with a detailed demonstration of the assumptions taken for granted

in the more general template. Thus, accounts of reduction provide the most in-

sight not when they are given exclusively at the finest level of detail, nor when

they are given exclusively at the greatest level of generality, but rather when

they are given in stages, with earlier stages corresponding to a template at the

greatest level of generality and later stages corresponding to progressively more

detailed templates, whose reduction classes narrow at each step to account for

more details specific to the system under investigation. Each stage can be seen

as combing over the same deductive path between Tl and Th, but each time in

progressively finer detail, so that both the broad outlines and the fine details of

the explanation can be understood.

Below, I return briefly to the two examples of the CM-QM reduction and the

NM-SR reduction, and suggest in broad terms how a template-based approach

might be applied to them.
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Reduction Templates for the NM-SR Reduction

I argued above that the reduction of Newtonian mechanics to special relativ-

ity cannot be given a systematic formulation, either of type 1 or type 2. On

the other hand, I claim that we can do better than to explain reductions of

Newtonian behavior to SR on a totally piecemeal, case-by-case basis.

Earlier, I argued that Newtonian systems with significant internal energy

(e.g., binding energy comparable to their rest energy) will require a different

explanation for their Newtonian behavior than Newtonian systems that do not

have significant internal energy; on a template-based approach, these two sets of

systems would belong to distinct reduction classes, where the reduction template

for the former class will include some account of why this energy is not released.

However, at a less detailed level of explanation, in which the rest of mass of

composite bodies is taken as an assumption rather than as something to be

explained, and the internal structure of these bodies not considered, these two

sets of systems might belong to the same reduction class and the reduction of

their NM models to their SR models follow the same reduction template.

Reduction Templates in the CM-QM Reduction

As in the case of the NM-SR reduction, I argued above that in the case of the

CM-QM reduction, systematic reductions of type 1 and 2 are not available.

As in the NM-SR case, the failure of totally systematic accounts does not

require us to consider all classical systems on a case-by-case basis. The largest,

most general reduction class for the quantum-classical reduction might be simply

those systems which appear to have definite values for properties such as position

and momentum. As I argue below, decoherence combined with a solution to

the measurement problem should suffice to explain the classicality - construed

in this broad sense - of these systems.

However, we might identify further subclasses of this reduction class: in par-

ticular, the subclass of systems which approximately obey Newtonian equations

of motion. Then we might identify further subclasses of this class corresponding
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to Newtonian systems involving contact forces and those involving fundamental

forces. In the latter case the potential appearing in classical equations is the

same as the potential appearing in the underlying quantum equations, while in

the latter the two potentials are different (assuming these contact forces even

admit description in terms of a classical potential). Proceeding further, we

can distinguish subclasses of the ‘contact force’ reduction class corresponding

to fluid systems exhibiting regularities like the Navier-Stokes equation (which

is derived from Newton’s second law and thus counts as an instance of it ap-

plication) and to systems like the simple pendulum. The microscopic origins

of the phenomenological force laws employed in these two sets of cases will be

substantially different. On the other hand, we can also identify subclasses of

the ‘fundamental force’ reduction class corresponding, say, to gravity and elec-

tromagnetism.

At the most fine-grained level, there will be a reduction class for every sys-

tem and every state of every system (for some states may yield classical behavior

while others don’t). Yet, as was suggested above, if one proceeds immediately

to this level of description without first providing the more general reduction

templates, the general principles and mechanisms which underlie the emergence

of many instances of classical behavior, such as decoherence, Ehrenfest’s the-

orem, and the compounding of micro into macro degrees of freedom, will be

completely obscured.

In the following chapter, I will illustrate the application of a template-based

approach to the CM-QM reduction, in particular by focusing on the reduction

class consisting of classical systems involving only basic force laws like the grav-

itational and electrostatic forces.

Template-based Reduction and the Patchwork Nature of Higher-Level

Regularities

Earlier, when discussing the piecemeal approach to reduction, I pointed to a

superficial similarity between this view and Nancy Cartwright’s ‘dappled’ pic-
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ture of physical laws: namely, that both view higher-level regularities as islands

of order in a much vaster sea of irregularity. Yet, on further analysis, the fact

they share this should come as no surprise, for both views are simply making

an effort to come to terms with what is, after all, a fact about science that any

account of higher level regularities in science must come to grips with. Scien-

tific theories do often tend to operate in isolated patches; the laws of genetics

do apply to living organisms, but not to the inorganic matter and energy and

space and time that make up most of the cosmos; the Standard Model works

well at predicting the results of scattering experiments, but none of us can use

it to predict the population dynamics of badgers in the UK; the laws of circuit

theory work well at predicting the currents and voltages in a circuit, but not for

predicting the scattering cross sections for hadron collisions. No understanding

of the relation between different sets of scientific regularities, whether they are

characterized by different theories within a single science or theories between

different sciences, can be plausible without somehow accommodating this fact.

The template-based approach to reduction, I believe, accommodates the di-

versity and patchwork nature of higher-level regularities more effectively than

does the piecemeal approach to reduction. Like the piecemeal approach, the

template-based view accommodates the diversity of higher-level regularities by

providing different explanations where necessary for different patches of regu-

larity, but all within the framework of the same fundamental theory; on the

template-based view the different explanations correspond to different reduc-

tion templates. Where the template-based approach surpasses the piecemeal

approach is in the fact that the template-based approach provides a frame-

work that facilitates the identification and emphasis of the general principles

and mechanisms that apply across different patches of higher-level regularity,

thereby enabling a more general, systematic understanding of the particular

reductions under consideration than can be achieved by following the purely

piecemeal approach.
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Reduction Templates and Multiple Realisation

Template-based reduction is ideally suited to accommodate the fact of multiple

realisation. On a DS approach, multiple realisability corresponds to the fact

that more than one model of a theory Tl can serve to reduce to the same model

of Th, or that there is more than one bridge map through which reduction

can occur between a single pair of models Ml and Mh, or that more than

one low-level state xl may instantiate the same high-level state xh (I discuss

multiple realisation in DS reduction further in the concluding chapter). The

image models M∗h corresponding to these distinct realisations may be different,

and so the templates for deriving these image models will be distinct at some

fine-grained level of detail. However, it may happen that these distinct, more

fine-grained templates, may have a sufficient number of steps in common that

they can be seen as refinements of the same more general template.

1.7 Summary

Ultimately, the approach to physical reduction that I advocate in this disserta-

tion can be classified as a dynamical systems approach, which is neither wholly

systematic nor wholly piecemeal, but based instead on the use of reduction tem-

plates. In deducing an image model M∗h for some model Mh of Th from a model

Ml of Tl, a complete proof may be difficult or practically impossible to come by

in the case of highly complicated systems. As we will see in the next chapter, in

such a case plausible but unproven assumptions about the system in question

need to be made, and the deduction of M∗h within a particular domain of Ml

should be given in the form of a template rather than a complete proof. For

simpler systems, it may be possible to provide templates that are sufficiently

complete that they constitute complete proofs of the image model.

In summary, the goal of template-based reduction as much to tell a story

about the relationship between the alternative descriptions of the physical world

offered by different physical theories as it is to give a proof of the approximate
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accuracy of the high-level theory’s models on the basis of the low-level theory’s

models (the story, if told in sufficient detail, should amount to such a proof).

Necessarily, given the semantic, dynamical systems approach taken here, as well

as the specialisation to theories in physics, it will be a story told in the language

of mathematics.
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Chapter 2

The Classical Domain of

Non-Relativistic Quantum

Mechanics

The first two theories that I consider as an application of dynamical systems,

template-based reduction are Newtonian mechanics and nonrelativistic quantum

mechanics. Specifically, I consider the reduction of a class of models of Newto-

nian mechanics describing N macroscopic centers of mass interacting through

a time-independent potential, to a class of corresponding models within Ev-

erettian and Bohmian quantum mechanics. Throughout, I refer to the Everett

theory as the Bare/Everett theory as a reminder that, from a mathematical

point of view, Everett’s theory just is the bare formalism of quantum theory,

prescribing unitary dynamics for a vector in a Hilbert space without collapse.

I do not address more abstract algebraic approaches to quantum theory in this

thesis; the interested reader can consult, for example, Landsman’s [63], or [64].

In section 2.1, I discuss the measurement problem as it relates to the re-

duction of classical to quantum mechanics, and my reasons for considering the

Everett and Bohm theories in parallel. In section 2.2, I present the model of
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Newtonian mechanics to be reduced, and the models of Everettian and Bohmian

quantum mechanics to which I reduce it. In section 2.3, I describe the basic

mechanisms of decoherence, measurement and effective wave function collapse

in Bohmian and Everettian quantum mechanics, including a review of the deco-

herent histories framework in the Schrodinger picture. In section 2.4, I provide

a template for the DS reduction of the model of Newtonian mechanics to the

corresponding model in the Bare/Everett theory. Finally, in section 2.5, I pro-

vide a template for the DS reduction of the model of Newtonian mechanics to

the corresponding model in the Bohm theory.

2.1 The Measurement Problem

Given the realist background of this thesis, any attempt to reduce classical to

quantum theory must take account of the quantum measurement problem. For,

it is only through some resolution to this problem that the connection between

the microscopic indeterminacy (relative to familiar variables such as position and

momentum) of quantum theory and the apparent macroscopic determinacy, and

determinism, of classical theory can be elucidated according to the demands of

the realist. It is for this reason that, in considering the reductions that I do, I

have adopted two proposed resolutions to the measurement problem, the Everett

and Bohm theories.

However, I hope that my analysis will contain points of interest for readers

skeptical of the Everett and Bohm theories, or of realist approaches to quantum

theory more generally. As Wallace has argued at length, Everett’s theory, from

a mathematical point of view, is just the bare formalism of quantum theory

without collapse [110]. The distinction between the two, as far as usage goes,

comes from the added points of metaphysical and epistemological interpretation

that the Everett theory attaches to the bare formalism. The most controversial

claim of Everett’s theory, that each branch of the total wave function, as defined

by the requirement of decoherence, corresponds to an independent ‘world’ with
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its own determinate reality, emerges as a consequence of taking the theory’s

mathematics seriously as a guide to the structure of the physical world; ‘taking

the math seriously,’ on this view, entails not inserting ad hoc exceptions to the

theory’s laws for purposes of agreeing with the experimental data, as advocates

of more traditional positivist or operationalist approaches, such as the famous

Copenhagen Interpretation, are often accused of doing. Since much of the thesis

concerns the bare formalism of quantum theory, and any successful interpreta-

tion of quantum theory is likely to incorporate this formalism in some fashion

or other, the skeptic about Everett and Bohm may still find a few pieces of

pertinent material in the pages to follow. This material will be concentrated

primarily in the sections pertaining to the Bare/Everett theory.

2.1.1 Motivation for Considering the Bare/Everett and

Bohm Theories in Parallel

One motivation for considering the Everett and Bohm theories together is that,

if one is going to attempt to effect these reductions within the context of the

Bohm theory, it is necessary anyway first to effect them within the context

of the Bare/Everett theory (indeed, the project of this thesis grew out of my

initial investigations into the classical domain of Bohm’s theory). The reason

for this is that in the Bohm theory, the dynamics associated with the added

structure of the theory - namely, the guidance equation for the added variables,

designated ‘beables’ by John Bell (of the famous Bell Inequality), one the Bohm

theory’s foremost proponents - depends on the value of the quantum state, but

the value of the quantum state does not depend on the dynamics or configu-

ration of the additional variables. Thus, in order to assess the behavior of the

beables it is necessary, at least in a formal mathematical sense, to go through

the Bare/Everett theory in determining the unitary evolution of the wave func-

tion. Where Everettians and Bohmians disagree, primarily, is on whether the

structure associated with the wave function is sufficient to save the appearances,

and, if not, on whether the additional structure of Bohm’s theory does enable
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the theory to save the appearances.

Brown and Wallace have argued that Bohm’s theory is Everett’s theory ‘in

denial,’ in the sense that Everett’s theory already contains all of the necessary

mathematical structure to save the appearances, and so the additional con-

figurations of Bohm’s theory are therefore merely epiphenomenal ‘idle wheels.’

However, their argument relies on the presumption that Everett’s theory does in-

deed save the appearances - by no means a consensus opinion. Accepting Brown

and Wallace’s point that, if Everett’s theory does indeed save the appearances,

Bohm’s additional configurations are superfluous, I nevertheless maintain a con-

sideration of Bohm’s theory out of recognition of the possibility that Everett’s

theory may, for one reason or other, fail to save the appearances, and that

Bohm’s additional configurations may offer the mechanism needed to address

its shortcomings. The criticism that is currently the source of most informed

skepticism about Everett’s theory is that it cannot adequately explain the role

of probability - specifically, the success of the Born, or |ψ|2, Rule - in ordi-

nary quantum mechanics. Deutsch and Wallace have proposed a derivation of

the Born Rule from the principles of rational decision theory, which has been

notably defended by Greaves [28], [109], [42]. For further discussion of the ‘Ev-

erett in denial’ charge against the Bohm theory, the reader should consult, in

particular, the exchange between Brown/Wallace and Valentini [82], [103].

In section 2.3, I provide a brief summary of the accounts of measurement

offered by the Bare/Everett and Bohm theories.

2.2 The Models

In this section, I describe the detailed structure of the models that I consider in

the context of the CM/QM reduction, specifying the state space S and dynam-

ical map D of each.

Consider a system consisting of N macroscopic centers of mass interacting

through a simple potential. Newtonian mechanics, Everettian quantum me-
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chanics and Bohmian quantum mechanics all provide different descriptions of

this system.

2.2.1 The Newtonian Model

Consider a classical system modelled in the classical Hamiltonian framework,

consisting ofN centers of mass with positions and momenta {(X1, P1, ..., XN , PN )}

and masses {M1, ...,MN}, with the standard Hamiltonian H =
∑
i
P 2
i

2Mi
+

V (X1, ..., XN ). The state space is classical N-particle phase space,

State Space

S = ΓN (2.1)

To condense the notation, I will write (X,P ) ≡ (X1, P1, ..., XN , PN ), and F (X,P ) ≡

F (X1, P1, ..., XN , PN ). The first order dynamical equations of evolution are

Hamilton’s equations:

Dynamics

dXi

dt
=
∂H

∂Pi
=

Pi
Mi

dPi
dt

= − ∂H
∂Xi

= − ∂V

∂Xi
.

(2.2)

Together, these reproduce Newton’s Second Law:

Mi
d2Xi

dt2
= − ∂V

∂Xi
(2.3)

Alternatively, as we have seen, the phase space dynamics can be prescribed in

terms of the dynamical map
(
X(t), P (t)

)
= D

[
t; (X0, P0)

]
=
(
e{◦,H}tX

∣∣
X0,P0

, e{◦,H}tP
∣∣
X0,P0

)
.
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2.2.2 The Everett/Bare-QM Model

In the context of a bare-QM/ Everettian picture, the quantum mechanical model

of N particles in isolation from their environment has as its state space the

Hilbert space of N spinless particles:

State Space w/o Environment

S = HS , (2.4)

where the subscript S denotes the system consisting of the central macroscopic

degrees of freedom under consideration. The first-order dynamics of the model

are specified by the Schrodinger equation:

Dynamics w/o Environment

i
∂

∂t
|ψ〉 = ĤS |ψ〉, (2.5)

where ĤS =
∑
i
P̂ 2
i

2Mi
+ V (X̂1, ..., X̂N ) and |ψ〉 ∈ HS .

More realistic models of macroscopic systems incorporate environmental de-

grees of freedom and their interaction with the macroscopic degrees of freedom

whose classicality we wish to explain. The state space of this model is

State Space w/ Environment

S = HS ⊗HE , (2.6)

where the subscript E denotes the environmental degrees of freedom, consisting
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of any degrees of freedom external to the centers of mass (which may include in-

ternal degrees of freedom of the bodies in question in addition to degrees of free-

dom not included in these bodies). The dynamics on the combined Hilbert space

of the macro- and micro- degrees of freedom is determined by the Schrodinger

equation,

Dynamics w/ Environment

i
∂

∂t
|χ〉 =

(
ĤS + ĤE + ĤI

)
|χ〉, (2.7)

where again ĤS =
∑
i
P̂ 2
i

2Mi
+ V (X̂1, ..., X̂N ), ĤE denotes the environmental

Hamiltonian, ĤI the Hamiltonian governing the interaction between the macro-

scopic degrees of freedom and the environment, and |χ〉 ∈ HS ⊗HE .

In the following discussion, I leave the forms of ĤI and ĤE unspecified,

though more detailed models, such as the well-known Caldeira-Legett model,

do specify the forms of these. My choice to leave the forms of ĤI and ĤE reflects

the generality of the template that I seek to provide for the reduction of CM

to QM . Accounts of macroscopic classical behavior within the context of more

specific models, like the Caldeira-Legett model, correspond to templates which,

though more complete as demonstrations of reduction, are correspondingly less

general.

2.2.3 The Bohm Model

The Bohmian model of a system of N particles incorporates all of the mathe-

matical structure of the Bare/Everett model, but adds an additional component

to the state space and to the dynamics. In addition to a quantum state residing

in a Hilbert space and the corresponding dynamics, the Bohm theory posits the

existence of a spatial configuration for each of the N particles in the system,

along with an accompanying dynamics for this configuration. The state space
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thus consists of two spaces: a Hilbert space, and a configuration space. For

purposes of concision, the state space can be regarded as the Cartesian product

of the two:

State Space w/o Environment

S = HS ×QS (2.8)

where, again, the subscript S denotes the system consisting of the central macro-

scopic degrees of freedom under consideration. The first-order dynamics of the

model are given by the first order (in time) equations:

Dynamics w/o Environment

i
∂

∂t
|ψ〉 = ĤS |ψ〉,

dQi
dt

=
1

Mi
∇iS(X)

∣∣
Q

(2.9)

where, again, ĤS =
∑
i
P̂ 2
i

2Mi
+V (X̂1, ..., X̂N ), |ψ〉 ∈ HS , Qi ∈ QS and ψ(X, t) ≡

〈X|ψ(t)〉 ≡ R(X, t)eiS(X,t).

In addition, the Bohm theory as originally formulated by Bohm was stip-

ulated to include an additional constraint, that the epistemic probability dis-

tribution over possible initial configurations Q0 is the Born Rule distribution

|〈X|ψ0〉|2. The combined dynamics of the configuration and the quantum state

possess a property known as equivariance that ensures that if this is the case,

the probability over configurations at any later time t is |〈X|ψ(t)〉|2. However,

work by Valentini and Westman, and Valentini, Russell and Towler has argued

that it may not be necessary to postulate the Born Rule distribution, but that

instead this distribution - or rather an arbitrarily close approximation to it -
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can be explained as a consequence of the dynamics of the Bohm theory, in that

these dynamics carry an arbitrary initial distribution, after coarse-graining, into

a distribution that very closely approximates the Born Rule distribution [104],

[101].

More realistic models of such systems incorporate environmental degrees of

freedom and their interaction with the macroscopic degrees of freedom whose

classicality we wish to explain. The state space of this model is

State Space w/ Environment

S =
(
HS ⊗HE

)
×
(
QS ⊕QE

)
, (2.10)

where the subscript E denotes the environmental degrees of freedom, consisting

of any degrees of freedom external to the centers of mass (which may include

internal degrees of freedom of the bodies in question in addition to degrees of

freedom not included in these bodies). The dynamics of the quantum state and

Bohmian configuration are determined by the first-order equations,

Dynamics w/ Environment

i
∂

∂t
|χ〉 =

(
ĤS + ĤE + ĤI

)
|χ〉,

dQi
dt

=
1

Mi
∇XiS(X, y)

∣∣
Q,q

dqj
dt

=
1

mj
∇yjS(X, y)

∣∣
Q,q

,

(2.11)

where |y〉 is a position eigenstate of HE , 〈X, y|χ〉 = R(X, y)eiS(X,y), Qi ∈

QS and qj ∈ QE . Moreover, the center of mass Bohmian configuration Qs is

defined by the relation QS,i =
∑
j mjqj∑
j mj

, where the sum is over all microscopic
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fundamental (from the perspective of Bohmian NRQM) particles contained in

the macroscopic body in question. Rimini and Peruzzi discuss the conditions

under which the center of mass Bohmian configuration QS obeys a guidance

equation of the usual form prescribed above [78].

2.2.4 A Few Comments About the Models

For a reduction of macroscopic Newtonian behavior to either Everettian or

Bohmian quantum theory to be complete, the class of system-environment mod-

els for the quantum theories described above, in which the degrees of freedom

of the central system S (also known as the ‘relevant’ degrees of freedom) are

centers of mass of macroscopic bodies, must be derived from a more fundamen-

tal model in which all of the degrees of freedom are microscopic - since, after

all, the center of mass degrees of freedom are simply weighted averages over

the microscopic degrees of freedom of the bodies in question. Deriving these

models from the microscopic models is an important part of a complete reduc-

tion of macroscopic classical behavior to microscopic classical behavior, but one

that is likely to involve system-specific details regarding the specific material

consitution of the body in question the particular binding interactions that join

the microscopic particules into a single macroscopic body. Again, more detailed

templates should be provided to fill in the gaps in the template provided here.

Moreover, given that no environment is included in the Newtonian model,

some explanation as to why it has been incorporated into the quantum model

of the same system should be provided. Briefly, the answer is that, as a result

of quantum entanglement, external degrees of freedom which exert a negligible

effect on the degrees of freedom in a Newtonian model - such as very tiny

particles, or electromagnetic radiation - and therefore can be left out of the

model, can have a profound effect on the dynamics of these degrees of freedom

in the context of the quantum models. We shall see this in more detail in the

coming sections.
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2.3 Decoherence, Measurement and Effective Wave

Function Collapse

A quantum measurement on a subsystem S of closed system SAE (where A

constitutes any measuring apparatus that may be present and E the microscopic

environment) in a pure state is a unitary, dynamical process on SAE’s Hilbert

space that establishes a particular kind of correlation between the degrees of

freedom of S and the degrees of freedom external to S. The presence or absence

within E of human observers is, on the following exposition, immaterial to the

physical description of the measurement process, which, like any other physical

process, is modelled throughout as a unitary evolution on a Hilbert space. The

process whereby such correlations are established in measurements is an example

of the more general phenomenon of quantum decoherence. In this section, I

review the concepts of quantum measurement and decoherence, explaining how

they are manifested in the particular contexts of the Everett and Bohm theories,

and how they give rise to the appearance of effective wave function collapse in

these theories. In the process, I emphasise, following Maroney and Hiley, that

the sort of decoherence that suffices to produce effective collapse in Everett’s

theory does not suffice to do so in Bohm’s; a more specific kind of decoherence

is required to induce effective collapse in Bohm’s theory.

I begin with a brief, preliminary mathematical review of projection valued

measures (PVM’s) and positive operator valued measures (POVM’s), since these

notions underpin much of modern quantum measurement theory, as well as the

decoherent histories framework.

2.3.1 PVM’s and POVM’s

Given a Hilbert space H, a projection valued measure (PVM) on that Hilbert

space is a set of operators {P̂i} on H satisfying the following criteria:

•
∑
i P̂i = Î
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• P̂iP̂j = δijP̂j (no sum over like indices).

Any Hermitian operator Â on H can be decomposed in some PVM, according

to the operator’s spectral decomposition:

Â =
∑
i

aiP̂i. (2.12)

Different possible measurement outcomes correspond in the bare quantum for-

malism to operators P̂i, and, if the state of the system is |ψ〉, the probability of

the outcome ai on measurement is 〈ψ|P̂i|ψ〉. Of course, on a realist interpreta-

tion of quantum theory such as the Everett or Bohm theory, the sense in which

the P̂i correspond to determinate outcomes must be elaborated, and the fact

that the probability of the outcome ai is 〈ψ|P̂i|ψ〉, must be demonstrated.

An example of a PVM is the set {
∫

∆i
dX|X〉〈X|}, where ∆i form a partition

of the configuration space, and |X〉 are position eigenstates. Another is the set

{
∫

Ωi
dP |P 〉〈P |}, where Ωi form a partition of the momentum space, and |P 〉 are

momentum eigenstates.

Given a Hilbert space H, a positive operator valued measure (POVM) on

that Hilbert space is a set of operators {Π̂i} onH satisfying the following criteria:

•
∑
i Π̂i = Î

• 〈ψ|Π̂i|ψ〉 ≥ 0 for all |ψ〉 ∈ H, for all i.

As in the case of PVM’s, each operator Π̂i corresponds to a measurement out-

come or to a range of such outcomes, the probability of which is 〈ψ|Πi|ψ〉 when

the system is in state |ψ〉. As Wallace notes in [110], the first criterion ensures

that the probabilities of all the outcomes sum to 1; the second ensures that

the probability of each outcome is a positive number. Note that any PVM is a

POVM, since 〈ψ|P̂i|ψ〉 = 〈ψ|P̂ 2
i |ψ〉, and all of the eigenvalues of P̂ 2

i , which are

the squares of the eigenvalues of P̂i, must be non-negative; in fact, for elements

of a PVM, all eigenvalues of a P̂i are either 0 or 1.
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An example of a POVM is the set {
∫

Σi
dXdP |X,P 〉〈X,P |}, where Σi form a

parition of the phase space and |X,P 〉 is a coherent state of fixed width centered

about the configuration X and the momentum P [110]. For our purposes, it

will suffice to identify a coherent state |X,P 〉 with a Gaussian wave packet of

the form

〈x|X,P 〉 =
1

L1/2π1/4
e−iPxe

−(x−X)2

2L2 (2.13)

that is narrowly peaked in both position and momentum and such that the

uncertainties in position and momentum ∆x and ∆p satisfy the minimum un-

certainty condition ∆x∆p = 1
2 (the constant L enforces this condition). The

coherent state |X,P 〉 is sometimes defined as an eigenstate of an annihilation

operator â = 1√
2
(
√
mωX̂ + 1√

mω
P̂ ) with some complex eigenvalue α and for

some m and ω (one can check that the wave packet state given is indeed an

eigenstate of this operator), though it will suffice here to understand by a co-

herent state simply a minimum uncertainty wave packet narrowly peaked both

in position and in momentum.

In general, the elements of this POVM will not be mutually orthogonal and

so will not constitute a PVM. However, if the cells Σi of the phase space partition

have dimensions in position and momentum that are significantly larger than

the position and momentum widths of the coherent states |X,P 〉, the POVM

elements Π̂i ≡
∫

Σi
dXdP |X,P 〉〈X,P | form an approximate PVM, since

Π̂iΠ̂j ≈ δijΠ̂i, (2.14)

thereby ensuring approximate orthogonality of the projectors in the POVM.

For a much more thorough account of PVM’s and POVM’s, and of quan-

tum measurement more generally, the reader should consult Busch, Lahti and

Mittelstaedt’s excellent monograph, ‘The Quantum Theory of Measurement’

[18].
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2.3.2 Quantum Measurement

Let S be a subsystem consisting of the degrees of freedom we wish to measure, A

a subsystem consisting of a measuring apparatus, and E the degrees of freedom

external to S and A (e.g., air molecules, photons, etc.) which I shall call the

‘environment.’ Ignore for the moment any potential interaction or entanglement

with the environment and let us simply consider the interaction between S and

A, which I assume for the moment to be unitary. If A is to be an effective

measuring apparatus, then it should be the case that if the states {|si〉} consti-

tute a basis for S associated with some observable of S, and |ar〉 is some initial

‘ready’ state of the apparatus then over the time of the measurement interaction

between A and S

|si〉 ⊗ |ar〉 → |θi〉 ⊗ |ai〉, (2.15)

where 〈aj |ai〉 ≈ 0 for i 6= j (if i is a discrete index) or for i sufficiently different

from j (if i is a continuous index) and |θi〉 is an arbitrary state of A. If |θi〉 = |si〉,

then the measurement is classified as a ‘nondisturbing’ measurement and the

states |si〉 are called ‘pointer states’; otherwise, it is classified as a ‘disturbing’

measurement (the paradigmatic example of a disturbing measurement is an

ideal photon measurement, in which the |θi〉 would be the vacuum state of

the electromagnetic field for every i [27]). The first analysis of measurement

in the nondisturbing case, in which the apparatus was itself treated quantum

mechanically, was famously given by von Neumann in his seminal work [107]. 1

It follows from the linearity of the evolution that if the system S starts out

in a coherent superposition
∑
i ci|si〉, then the measurement interaction induces

the evolution

(
∑
i

ci|si〉)⊗ |ar〉 →
∑
i

ci|θi〉 ⊗ |ai〉, (2.16)

1Note that the term ‘pointer state’ is sometimes used to refer to states of the measuring
device - typically some ‘pointer’ on the measuring device - rather than of the measured system
itself.
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where again the states |ai〉 of A that become correlated to the different basis

states |si〉 are mutually orthogonal.

Let us now incorporate the environment into the analysis, allowing for in-

teraction between the environment E and the system SA and assuming that

the total system SAE is in a pure state that always evolves unitarily accord-

ing to the Schrodinger equation 2. If the states |θi〉 ⊗ |ai〉 are such that they

suffer minimal entanglement with the environment under interaction with the

environment, then this interaction will induce the evolution

|θi〉 ⊗ |ai〉 ⊗ |E0〉 → |θi〉 ⊗ |ai〉 ⊗ |Ei〉, (2.17)

where, for reasons that I discuss further below in the section on environmental

scattering, 〈Ej |Ei〉 ≈ 0 for i 6= j (if i is a discrete index) or for i sufficiently

different from j (if i is a continuous index). Thus, again by linearity, if S begins

in the initial pure state
∑
i ci|si〉 we can expect the measurement interaction to

induce the following evolution:

(
∑
i

ci|si〉)⊗ |ar〉 ⊗ |E0〉 →
∑
i

ci|θi〉 ⊗ |ai〉 ⊗ |Ei〉, (2.18)

where again 〈aj |ai〉 ≈ 0 and 〈Ej |Ei〉 ≈ 0 for i 6= j (if i is a discrete index) or

for i sufficiently different from j (if i is a continuous index). Typically, because

E contains many (often on the order of 1023 or more) degrees of freedom, this

process whereby the states |Ei〉 correlated to the states |si〉 become mutually

orthogonal - which is widely referred to as ‘decoherence’ - will be effectively

irreversible, at least on timescales short of quantum-mechanical Poincare recur-

rence times (see, for example, [12] for a discussion of Poincare recurrence in

quantum mechanics).

In cases where it is only the system A that interacts directly with E, the

states |ai〉 that undergo minimal entanglement with environment are sometimes

also referred to as pointer states, and as we shall see are typically constrained

2In typical cases of quantum measurement, the system S will be microsopic and A macro-
scopic, so it will often only be A that interacts directly with the environment.
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to be localised in both position and momentum as a result of environmental

scattering.

On the Everett interpretation, a measurement requires both orthogonality

of apparatus states (〈aj |ai〉 ≈ 0) and decoherence:

Decoherence: 〈Ej |Ei〉 ≈ 0 for i 6= j. (2.19)

The irreversible process of decoherence is conventionally regarded by Everettians

as inducing effective wave function collapse.

Measurement, and efective collapse of the quantum state, in Bohm’s theory

occurs only if the sets of states and {|ai〉} and {|Ei〉} are not just orthogonal but

specifically non-overlapping in configuration space - that is, only if 〈aj |y〉〈y|ai〉 ≈

0 ∀y ∈ QA for i 6= j and

Configuration Space Decoherence:〈Ej |y〉〈y|Ei〉 ≈ 0 ∀y ∈ QE for i 6= j.

(2.20)

Note that this condition entails 2.19, but is not entailed by it. The condition

that {|ai〉} be non-overlapping in A’s configuration space QA serves to ensure

that the Bohmian configuration of A becomes appropriately correlated to the

state of S, while the condition that {|Ei〉} be non-overlapping in E’s configu-

ration space QE serves to ensure not only that the Bohmian configuration of

the environment E becomes appropriately correlated to the states of A and

S, but also that this process is efffectively irreversible. Note that what I have

called ‘configuration space decoherence,’ Maroney and Hiley elsewhere has called

‘superorthogonality,’ also identifying it as the necessary condition for effective

collapse in Bohm’s theory (see [68] and [15]); in addition, Bohm, in his original

account of quantum measurement in pilot wave theory, emphasises the need for

wave packets to be disjoint in the beable configuration space in order to in-

duce effective collapse (though he does not employ the term ‘beable,’ which was
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later coined by Bell) [14]. If (2.20) is satisfied, the branches of the total quan-

tum state will have disjoint configuration space supports and only one branch

|si〉 ⊗ |ai〉 ⊗ |Ei〉 will govern the evolution of the total Bohmian configuration

of SAE; all other branches can be disregarded, although they are still present,

and the state has in this sense effectively collapsed onto a single branch.

Thus, in bare QM, a quantum measurement generally establishes a corre-

lation between the quantum state of system AE at some time after the mea-

surement interaction and the state of system S at some time prior to the mea-

surement interaction (in measurements of the first kind, the states of B will

in addition be correlated with the states of A after the measurement). In the

Bohm theory, a quantum measurement also does this, but additionally, and

more importantly, establishes a correlation between the configuration of system

AE after the measurement interaction and the quantum state of system S at

some time prior to the measurement interaction.

A Few Points About Measurement in Bohm’s Theory

In the Bohmian model of quantum measurement, AE’s configuration qAE , which

lies in the region of AE’s configuration space where the value of φi(y) ≡

〈y|ai, Ei〉 (|ai, Ei〉 ≡ |ai〉 ⊗ |Ei〉 and y denotes position in the total configu-

ration space of AE ) is non-negligible, for some i, becomes correlated to the

state si(x) ≡ 〈x|si〉 - not, in general, to S’s configuration qS . The ‘outcome’

of a measurement corresponds to a particular index i; the Bohmian configu-

ration qAE of system AE ‘registers’ the outcome i if it lies in a region where

φi(y) is non-negligible. This aspect of effective collapse in pilot wave theory is

consistent with our usual notion of collapse from conventional quantum theory.

The ‘outcome’ of the measurement is identified by the index i corresponding

to the packet that the total system point enters. Thus, a measurement occurs

in Bohm’s theory when the Bohmian configuration specifically of the external

degrees of freedom succeed, irreversibly, in picking out a branch of the total

system’s wave function. In the case where the states |si〉 are eigenstates of
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an operator ÂS that is degenerate, the dynamics will associate qAE with some

subspace of states in S’s Hilbert space, rather than with an individual state.

The configuration qS , on the other hand, does not play a major role in the

measurement process. By equivariance, it is constrained to lie in a region where

one of the si(x) is non-negligible. However, unlike the states φi(y), the different

si(x) may and often do have substantial overlap in S’s configuration space (for

example, in a measurement of angular momentum), so that the configuration

qS does little to distinguish among them. It is the fact that φi(y) do not have

substantial configuration space overlap that is crucial to ensuring a well-defined

measurement outcome in this example.

For convenience, we define the set AEi(t) ⊂ QAE , where QAE is the config-

uration space of AE, as the the subset of AE’s configurations that ‘register’ the

outcome i:

AEi(T ) ≡ suppε[φi(y)], (2.21)

where I call suppε[f(y)] ≡ {y ∈ QB | |f(y)| > ε,where ε > 0} the ‘ε-support’

of the function f (though occasionally I may abuse terminology and refer to it

simply as the support). Note that as long as the configuration space decoherence

condition is satisfied, and one does not choose ε too small, AEi(t)∩AEj(t) = ∅

for i 6= j - that is, the sets AEi are disjoint. Thus, the measurement has

outcome i if the regions defined by (2.21) are disjoint, and if qAE(t) ∈ AEi(t).

Note that on this definition, the measurement can only have an outcome if the

wave packets φi(y) have disjoint ε-support, for some sufficiently small value of

ε. Also note that the smallest value ε such that the AEi(t) are disjoint serves to

characterize the strength of the correlations between qAE and si(x) established

by the measurement; measurements can be characterized as ‘strong’ or ‘weak’

depending on the minimum value of ε that leads to disjoint AEi(t). Unless

stated otherwise, I will assume that the minimum value of ε that yields disjoint

AEi in a measurement in Bohm’s theory is extremely small - in other words,
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that configuration space decoherence has taken effect - making the measurement

strong.

To address the measurement problem, an interpretation of quantum theory

must both explain the appearance of determinate measurement outcomes and

the fact that measurement outcomes conform to Born Rule probabilities. In the

Bohm theory, there is no indeterminacy about the systems configuration - the

Bohmian configuration is always well-defined at every moment in time. Why

then the need for any kind of decoherence at all? Because, even in spite of

the determinacy of the Bohmian configuration, the measurement outcome itself

will not be determinate if the configuration space decoherence condition is not

satisfied. Moreover, regarding the second matter of the Born Rule probabilities,

if measurement outcomes are not clearly defined or determinate to begin with,

it will not be possible to assign probabilities to them.

Addressing the matter of determinacy of outcomes first, the configuration

qAE only registers a measurement outcome if the regions AEi are disjoint; this,

in turn, requires that the configuration space decoherence condition is satisfied.

In the absence of configuration space decoherence, the regions AEi may overlap;

if qAE lies in the overlap of more than one of the regions AEi, the measurement

will be indeterminate, since in this case qAE fails to single out a unique branch of

the quantum state. Even though the configuration qAE itself is determinate, the

outcome is not. Thus, on Bohm’s theory, a measurement process is indetermi-

nate for the simple and fairly banal reason that it fails dynamically to establish

a correlation between the configuration of AE and the state of S, much as a

measurement in classical mechanics would be indeterminate if the configuration

of the pointer on a measuring device were not dynamically correlated in the

appropriate manner with the state of the system being measured.

On a separate matter, it is worth noting that in cases where there is a

continuous infinity of branches in the total quantum state, the disjointness of
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the branches’ configuration space supports does not entail effective collapse as

straightforwardly as it does in cases where the number of branches is discrete. In

the discrete case, the configuration space decoherence condition guarantees the

existence of regions of configuration space between any two adjacent branches

such that the wave function is effectively zero there; by equivariance, if the

configuration is in the support of one branch, it will not be able to transition

to another branch because the Bohmian dynamics do not permit it to tra-

verse regions where the wave function is effectively zero. Thus, for as long as

the branches remain disjoint, the configuration is guaranteed to remain in its

branch. The same reasoning does not apply in the case where the expansion of

the quantum state consists of a continuous infinity of disjoint branches. For,

although two branches sufficiently separated in their indices may have disjoint

supports, there may be a continuum of intermediate branches between them,

such that the magnitude of the quantum state between the branches never be-

comes negligible 3. The suppression of drift between disjoint branches of the

Bohmian configuration in this case takes more effort to see. In the remainder

of my analysis, I assume without proof that disjointness of branches precludes

drift between those branches even in the case of continuously indexed branches;

the reader should take this as a conjecture - which I henceforth refer to as the

‘No Drift Conjecture’ - awaiting proof.

2.3.3 Environmental Decoherence: Localisation as a Re-

sult of Environmental Scattering

Generally speaking, ‘decoherence’ is the process whereby the degrees of freedom

external to some system - whether these degrees of freedom consist of some

purpose-constructed measuring apparatus or particles of dust, air, radiation,

etc. in the environment - interact and become entangled with that system.

Assume that the system S consisting of the degrees of freedom of interest and

the system E consisting of any degrees of freedom external to S are iniitially in

3Thanks to David Wallace for pointing this out to me.
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some product state:

|ψ〉 ⊗ |E0〉 = (α|ψ1〉+ β|ψ2〉)⊗ |E0〉. (2.22)

Assume further that the interaction between S and E is such that over time

scales where the internal dynamics of S can be ignored,

|ψ1〉 ⊗ |E0〉 → |ψ1〉 ⊗ |E1〉 (2.23)

|ψ2〉 ⊗ |E0〉 → |ψ1〉 ⊗ |E2〉, (2.24)

as will be the case when |ψ1〉 and |ψ2〉 belong to the set of pointer states of S,

where ‘pointer states’ here are defined as those states of S that suffer minimal

entanglement with E as a result of the interaction between S and E (much of

the analysis in this subsection draws on [94] and [57]). From these assumptions,

it follows that

(α|ψ1〉+ β|ψ2〉)⊗ |E0〉 → α|ψ1〉 ⊗ |E1〉+ β|ψ2〉 ⊗ |E2〉 (2.25)

over timescales where the internal dynamics of S can be ignored. The reduced

density matrix of the system S is

ρ̂S =
1

2
{|ψ1〉〈ψ1|+ |ψ2〉〈ψ2|+ |ψ1〉〈ψ2|〈E2|E1〉+ |ψ2〉〈ψ1|〈E1|E2〉} (2.26)

When 〈E2|E1〉 ≈ 1, the state of the combined systems is a product state and they

are completely unentangled (as is the case at the beginning of the interaction).

If 〈E2|E1〉 ≈ 0, then

ρ̂S ≈
1

2
{|ψ1〉〈ψ1|+ |ψ2〉〈ψ2|} . (2.27)

The macroscopic objects of our everyday experience interact perpetually
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with their environments, which include degrees of freedom associated, for ex-

ample, with dust particles, air molecules, neutrinos and photons, via the scat-

tering of these particles off of the object in question. It is well-known that the

pointer states of typical macroscopic systems under such scattering interactions

are states that are localised both in position and in momentum; more specifi-

cally, they are the coherent states |q, p〉, where q and p denote the position or

spatial configuration q and the momentum p about which the coherent state is

peaked (see, for instance, [117] for arguments to this effect).

Thus, if |ψ1〉 = |q1, p1〉 and |ψ2〉 = |q2, p2〉, then

|q1, p1〉 ⊗ |E0〉 → |q1, p1〉 ⊗ |E1〉 (2.28)

|q2, p2〉 ⊗ |E0〉 → |q2, p2〉 ⊗ |E2〉, (2.29)

and

(α|q1, p1〉+ β|q2, p2〉)⊗ |E0〉 → α|q1, p1〉 ⊗ |E1〉+ β|q2, p2〉 ⊗ |E2〉 (2.30)

over timescales on which the internal dynamics of S can be ignored. The reduced

density matrix of the system S is

ρ̂S =
1

2
{|q1, p1〉〈q1, p1|+ |q2, p2〉〈q2, p2|+ |q1, p1〉〈q2, p2|〈E2|E1〉+ |q2, p2〉〈q1, p1|〈E1|E2〉}

(2.31)

If 〈E2|E1〉 ≈ 0, then

ρ̂S ≈
1

2
{|q1, p1〉〈q1, p1|+ |q2, p2〉〈q2, p2|} . (2.32)

If the environment just consists of a single particle, then if the wavelength

of the environmental particle is sufficiently small, the single particle will be
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sufficient to result in orthogonality of environmental states: 〈E2|E1〉 ≈ 0. If,

on the other hand, the wavelength is large in comparison with q1 − q2 and the

scattering sufficiently weak, then we will have 〈E2|E1〉 ≈ 1 as the result of a

single scattering event. By contrast, if the environment consists of sufficiently

many long-wavelength particles all of which scatter off of S, then this will also

cause orthogonality of environmental states 〈E2|E1〉 ≈ 0 . For models in which

there are many individual scattering events, but in which each on its own is

insufficient to induce a strong measure of entanglement, it is possible to show

for a variety of models of the environment that

〈E2|E1〉 ∝ e−Λ(q1−q2)2t, (2.33)

where the constant Λ is determined by the details of the scattering process

in question. In the limit where |q1 − q2| becomes sufficiently large that each

individual scattering event is sufficient to resolve the difference between the two

wave packets,

〈E2|E1〉 ∝ e−Γt (2.34)

where Γ is the total scattering rate, again a constant determined by the details

of the scattering process (see [94], Chs. 2 and 3 for a more detailed explanation

of these effects).

More generally, if one considers the density matrix ρ̂S of S obtained by

tracing over the degrees of freedom in E in the total density matrix for the

combined system SE, then in cases of many weakly entangling scattering events

it can be shown that on timescales for which the internal dynamics of S can be

ignored (as a result of the large of mass of S), ρ̂S evolves so that

〈q′|ρ̂S(t)|q〉 = 〈q′|ρ̂S(0)|q〉e−Λ(q−q′)2t, (2.35)

where again, Λ is a constant determined by the details of the model in question.
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That is, the off-diagonal elements of the position-space density matrix will decay

exponentially in time, and with the square of the position-space width |q − q′|

of the initial coherent superposition.

Typically, the time scales on which coherence of superpositions of macro-

scopically different positions of S is lost in such models will be extremely short

- much shorter than timescales on which the S’s internal dynamics, associated

with the Hamiltonian ĤS , will induce significant changes in the state of S, or

of SE as a whole. On the basis of such models, calculations of decoherence

timescales for various kinds of macro-(or meso-)scopic systems have been per-

formed (see, for instance, [94], p. 135). For example, a dust grain (diameter

about 10−3cm) in a coherent superposition of different positions typically will

lose coherence within 10−31s as a result of its interaction with the atmosphere

around it. In the best laboratory vacuum that we are able to create, decoher-

ence due to whatever few air molecules remain, as well as due to things like

background radiation and neutrinos which we are unable to screen out, will

typically occur in a dust grain in about 10−18s. As one would expect, the larger

the object, the more it interacts with its environment and the harder it is to

screen off from interaction with the environment.

Moreover, although the fundamental equations of our quantum models are

all time-reversible, the process of environmental decoherence is in practice irre-

versible (at least on timescales short of Poincare recurrence timescales). When

a system becomes entangled with its environment, the coherence of the super-

position that is initially localised in the system itself becomes a property of the

total system SE. In practice, this process cannot be reversed since we do not

control the behavior of all degrees of freedom in the environment. For discussion

of how the effective irreversibility of decoherence process is to be reconciled with

the reversibility of the fundamental quantum mechanical equations of motion,

the reader can consult [110], Ch.9.

To summarise, for typical macroscopic systems, environmental decoherence

will very rapidly destroy the coherence of any superpositions of macroscopically
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differing positions - typically on timescales much shorter than the characteristic

timescales of the system’s own internal dynamics. However, if the macroscopic

system is in a spatially narrowly localised state - specifically, a coherent state

that is also narrowly peaked in momentum - then entanglement with the envi-

ronment will not occur for as long as this continues to be the case. The combined

system SE will evolve as a product state, and the system S will evolve unaffected

by E, solely according to the internal dynamics prescribed by ĤS .

Decoherence Master Equations

Much of the study of environmental decoherence focuses on effective equations of

motion for the reduced density matrix ρ̂S . Equations derived for a wide variety

of environments all have the same general form, known as the Caldeira-Leggett

equation:

i
dρ̂S
dt

= [ĤS+
1

2
MΩ2X̂2, ρ̂S ]−iΛηkBT

[
X̂,
[
X̂, ρ̂S

]]
+

η

2M
[X̂, {P̂ , ρ̂S}]. (2.36)

Caldeira and Leggett first derived this equation in the context of a model,

known as the Caldeira-Leggett model. in which the environment consists of

many independent harmonic oscillators whose positions couple linearly with

that of S [22]; since this model was originally proposed, the general form of the

Caldeira-Leggett equation has found much broader applications beyond this

particular model (see [94] for a more detailed discussion of this equation and

of the Caldeira-Leggett model).The right-hand side of this equation consists of

four components: 1) The system S’s unitary dynamics, prescibed by ĤS , 2) a

renormalisation term (the term proportional to Ω2), 3) A decoherence term (the

term proportional to Λ), 4) a dissipation term (the last term), which accounts

for effects of classical friction. The constants Ω, η and Λ are all determined by

the particular model in question, while M is simply the mass that enters into

the Hamiltonian ĤS . In the systems that I consider here, the renormalisation
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and dissipation terms can be neglected by comparison with the other two terms.

It is the decoherence term that is ultimately responsible for supression of macro-

scopic coherence of superpositions on the very rapid timescales characteristic of

decoherence.

2.3.4 The Decoherent Histories Framework

The decoherent histories framework, originally developed by Griffiths and Gell-

Mann and Hartle, is an effective tool for analysing the branching structure

of the quantum state under the unitary evolution prescribed by Schrodinger’s

equation (see, for example, [43], [38], [31], [45]; for a briefer introduction, see for

instance [64]). It is especially useful when considering the behavior of closed,

macroscopic quantum systems, and for this reason has become a cornerstone of

quantum cosmology. It also provides an illuminating perspective from which to

examine the appearance of classical behavior in quantum systems.

The decoherent histories formalism makes essential use of PVM’s and POVM’s

reviewed in section 2.3.1. While many presentations of the decoherent histories

framework present it within the context of the Heisenberg picture (see, for exam-

ple, [45]), so that the pertinent PVM and POVM operators are time-dependent,

as in most (though not all) of the thesis I remain in the Schrodinger picture,

where PVM and POVM operators are time independent and it is the quantum

state, rather than the operators, that evolves. I adopt the Schrodinger picture

partly because it facilitates the extension of the analysis to the Bohm theory,

but also because the picture that it offers, in terms of states evolving in a Hilbert

space, is arguably more intuitive than that offered by the Heisenberg picture

(though this latter point is likely to be a matter of personal preference to some

extent).

Consider the usual time evolution equation for a closed quantum system in

a pure state:

|χ(t)〉 = e−iĤt|χ0〉. (2.37)
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Given an arbitrary PVM, we may divide the time interval t into N equal slices,

inserting a factor of the identity
∑
ik
P̂ik at each time interval:

|χ(t)〉 =

(∑
iN

P̂iN

)
e−iĤ

t
N ...e−iĤ

t
N

(∑
i1

P̂i1

)
e−iĤ

t
N |χ0〉 (2.38)

=
∑

i1,...,iN

[
P̂iN e−iĤ

t
N ... e−iĤ

t
N P̂i1 e

−iĤ t
N

]
|χ0〉. (2.39)

Define the history operators Ĉi,

Ĉi ≡ Ĉi1,...,iN ≡ P̂iN e−iĤ
t
N ...e−iĤ

t
N P̂i1e

−iĤ t
N , (2.40)

and note that

∑
i1,...,iN

Ĉi1,...,iN = e−iĤt. (2.41)

Eqn. (2.38) can be rewritten

|χ(t)〉 =
∑

i1,...,iN

Ĉi1,...,iN |χ0〉. (2.42)

This expansion is completely general and places no restrictions on the evolution

of the state beyond those already imposed by the Schrodinger evolution. More-

over, nothing prevents the use of different PVM’s at different times, though

there will be no need for this generalisation here. A sequence of PVM operators

constitutes a history, and can be identified by its associated sequence of indices

(i1, ..., iN ). The set of all such sequences of projectors, associated with set of

index sequences {(i1, ..., iN )}, constitutes a history space. A history (i1, ..., iN )

is realised iff Ĉi1,...,iN |χ0〉 6= 0. 4 For ease of notation, I will denote the history

(i1, ..., iN ) by i, and the history space {(i1, ..., iN )} by {i}. Note further that

two histories i ≡ (i1, ..., iN ) and i′ ≡ (i′1, ..., i
′
N ) differ if they differ if they differ

4or, more precisely, iff
∣∣∣Ĉi1,...,iN |χ0〉

∣∣∣ > ε where ε is the very small but finite threshold

below which the weight of the history is drowned out by the ‘noise’ of the miniscule but finite
residual interference terms that remain between effectively decohered branches.
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with respect to any ik, where 1 ≤ k ≤ N .

Following Gell-Mann and Hartle, a coarse graining {̄i} of the history space

{i} is a partitioning of {i} such that every history i belongs to exactly one

element ī of the partition, entailing

∑
ī

Ĉī =
∑
i

Ĉi = e−iĤt (2.43)

where

Ĉī ≡
∑
i∈ī

Ĉi =
∑

i1,...,iN∈ī

Ĉi1,...,iN . (2.44)

The coarse-grained history operators Ĉī are sums of alternating sequences of

PVM and time evolution operators, but may not themselves expressible as such

sequences - that is, they may not be expressible in the form (2.40). Note that

if the projection operators {P̂ ′i } in a PVM each can be expressed as the sum of

some projection operators in some other PVM {P̂j}, then the history operators

formed using the P̂
′

i clearly are coarse-grainings of the history operators formed

using the P̂j .

The weights
∣∣∣Ĉī|χ0〉

∣∣∣2 of the different coarse-grained histories (̄i) can be

construed as probabilities for these histories only if they satisfy the axioms of

probability theory. In particular, for two histories ī and ī′, it is necessary that

Pr(̄i or ī′) = Pr(̄i) + Pr(̄i′), (2.45)

Since

Pr(̄i or ī′) = 〈χ0|(Ĉ†ī + Ĉ†
ī′

)(Ĉī + Ĉī′)|χ0〉, (2.46)

Pr(̄i) = 〈χ0|Ĉ†ī Ĉī|χ0〉, (2.47)

and
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Pr(̄i′) = 〈χ0|Ĉ†ī′Ĉī′ |χ0〉, (2.48)

eqn. (2.45) amounts to the requirement that

〈χ0|(Ĉ†ī + Ĉ†
ī′

)(Ĉī + Ĉī′)|χ0〉 = 〈χ0|Ĉ†ī Ĉī|χ0〉+ 〈χ0|Ĉ†ī′Ĉī′ |χ0〉. (2.49)

But, in general

〈χ0|(Ĉ†ī + Ĉ†
ī′

)(Ĉī + Ĉī′)|χ0〉 (2.50)

= 〈χ0|Ĉ†ī Ĉī|χ0〉+ 〈χ0|Ĉ†ī′Ĉī|χ0〉+ 〈χ0|Ĉ†ī Ĉī′ |χ0〉+ 〈χ0|Ĉ†ī′Ĉī′ |χ0〉, (2.51)

so for (2.45) or (2.49) to be satisfied, it is necessary and sufficient that the

condition, known as weak decoherence,

Re
(
〈χ0|Ĉ†ī Ĉī′ |χ0〉

)
≈ 0 for ī 6= ī′ (2.52)

be satisfied (since the imaginary components of the cross-terms cancel each other

automatically). In practice, though, in cases where this condition is satisfied,

the stronger condition,

D(̄i, ī′) ≡ 〈χ0|Ĉ†ī′Ĉī|χ0〉 ≈ 0 for ī 6= ī′, (2.53)

known as medium decoherence, usually is also satisfied. The term D(̄i, ī′) is

known as the decoherence functional. A set {̄i} of coarse-grained histories is

consistent if D(̄i, ī′) ≈ 0 for ī 6= ī′. The probability of a history ī in this case is

given by

Pr(̄i) = D(̄i, ī) = 〈χ0|Ĉ†ī Ĉī|χ0〉 =
∣∣∣Ĉī|χ0〉

∣∣∣2 , (2.54)
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and

∑
ī

Pr(̄i) = 1. (2.55)

Beyond the above conditions, though, it is usually also required that individual

histories belonging to different coarse-grained histories satisfy either the weak,

or more often the medium, decoherence condition, so that

D(i, i′) ≡ 〈χ0|Ĉ†i′Ĉi|χ0〉 ≈ 0 for i ∈ ī and i′ ∈ ī′ with ī 6= ī′. (2.56)

This can be written more explicitly as

D(i, i′) ≡ 〈χ0|Ĉ†i′1,...,i′N Ĉi1,...,iN |χ0〉 ≈ 0 for i ∈ ī and i′ ∈ ī′ with ī 6= ī′. (2.57)

This then implies that

D(̄i, ī′) ≡ 〈χ0|

 ∑
i′1,...,i

′
N∈ī′

Ĉ†i′1,...,i′N

 ∑
i1,...,iN∈ī

Ĉi1,...,iN

 |χ0〉 ≈ 0 for ī 6= ī′,

(2.58)

which is just another way of writing eqn. (2.53).

Decoherent Histories in Bohm’s Theory

Moving to Bohm’s theory, Hartle has claimed that the probabilities associated

with decoherent histories and those associated with the histories prescribed by

the Bohmian trajectories themselves predict different probabilities [48]. Har-

tle’s analysis defines histories in the Bohmian context directly in terms of the

trajectories of Bohmian configurations, and compares the probabilities of histo-

ries defined in this manner, as specified by Bohm’s theory, to the probabilities

of corresponding histories within the decoherent histories framework. I argue
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here that the requirement of configuration space decoherence offers a more per-

spicuous way of understanding the connection between the decoherent histories

framework and Bohm’s theory, andmoreover ensures agreement between the

probabilities predicted by the decoherent histories framework within the con-

texts of the Bare/Everett theory and of the Bohm theory.

However, what Hartle does not observe in his analysis is that if the histories

as defined in the context of the decoherent histories framework satisfy the con-

figuration space decoherence requirement, rather than merely the decoherence

requirement, with respect to the initial quantum state |χ0〉, the probabilities

of histories as predicted by the Bare/Everett theory (which is at least formally

equivalent to the decoherent histories framework as Hartle defines it) and the

Bohm theory will be the same. That is, the proper way to understand the

significance of the decoherent histories formalism for Bohm’s theory is through

the result that the probabilities the probabilities predicted by the Bohm theory

for the histories ī, as defined in the decoherent histories framework, will be the

same as those in the ordinary decoherent histories formalism if the following

stronger decoherence condition on histories is satisfied:

DX (̄i, ī′) ≡ 〈χ0|Ĉ†ī′ |X〉〈X|Ĉī|χ0〉 ≈ 0 for all X if ī 6= ī′, (2.59)

where |X〉 is a eigenstate of configuration. The condition (2.59) entails (2.53),

but more importantly, guarantees that the coarse-grained branches Ĉī|χ0〉 are

disjoint (in the sense of the ε-support defined above) in the configuration space

of the system, which in turn ensures that the configuration Q of the system

selects only one such branch (again, putting aside for the moment the worry

about Bohmian effective collapse in the case of continuous pointer bases).

Typically, it will also be the case that the condition requiring states associ-

ated with individual subhistories within distinct coarse-grained histories to be

disjoint, namely,
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DX(i, i′) ≡ 〈χ0|Ĉ†i′1,...,i′N |X〉〈X|Ĉi1,...,iN |χ0〉 ≈ 0 for allX, with i ∈ ī, i′ ∈ ī′ and ī 6= ī,′

(2.60)

is satisfied. This then implies

DX (̄i, ī′) ≡ 〈χ0|

 ∑
i′1,...,i

′
N∈ī′

Ĉ†i′1,...,i′N

 |X〉〈X|
 ∑
i1,...,iN∈ī

Ĉi1,...,iN

 |χ0〉 ≈ 0 for ī 6= ī′,

(2.61)

which is just another way of writing eqn. (2.59).

2.3.5 Branching of the Quantum State

The Everett or Many Worlds interpretation is often said to associate an array

of dynamically independent ‘worlds’ with the branches of the total quantum

state. But what is exactly is meant by the claim that the quantum state has a

branching structure?

The discussion here closely follows that in Chapter 3 of Wallace’s [110]. First,

define the weight of a projector Pi at some time t as

Wi(t) ≡
∣∣∣P̂i e−iĤt|χ0〉

∣∣∣2 = 〈χ0|eiĤtP̂i e−iĤt|χ0〉 (2.62)

The transition weight between projector P̂i at time t and projector P̂
′

i′ at time

t′ (which may belong to a completely different PVM from P̂i), where t′ > t, is

defined as

T (i, t; i′, t′) ≡

∣∣∣P̂ ′i′e−iĤ(t′−t)P̂i e
−iĤt|χ0〉

∣∣∣2∣∣∣P̂i e−iĤt|χ0〉
∣∣∣2 (2.63)

=
〈χ0|eiĤtP̂ieiĤ(t′−t)P̂

′

i′e
−iĤ(t′−t)P̂ie

−iĤt|χ0〉
〈χ0|eiĤtP̂i e−iĤt|χ0〉

. (2.64)

122



In cases where
∣∣∣P̂i e−iĤt|χ0〉

∣∣∣2 = 0, the above expression for the transition

weight is not defined, so define T (i, t; i′, t′) = 0. If a history (i1, ..., iN ) is realised,

it is straightforward to see that T (in, tn; in+1, tn+1) 6= 0 for all 0 ≤ n ≤ N .

The evolution of the quantum state exhibits branching relative to the given

PVMs if it is the case that

Branching Condition: if T (i, t; i′, t′) 6= 0 and T (j, t; i′, t′) 6= 0,

then i = j,

so that no two distinct projectors at an earlier time have non-zero transition

weights into the same projector at a later time.

Branching and Decoherence

If a space of histories (i1, ..., iN ) is decoherent in the sense specified by (2.57),

then the set of operators

P̂ ki1,...,ik ≡ Ĉi1,...,ik |χ0〉〈χ0|Ĉ†i1,...,ik , (2.65)

one for each sequence (i1, ..., ik), form an approximate PVM. This can be seen

from the fact that the first condition to be a PVM,

∑
i1,...,ik

P̂ ki1,...,ik = Î , (2.66)

is satisfied straightforwardly as a consequence of (2.41) (where the resulting

evolution operators cancel to give the identity), and the second condition

P̂ ki1,...,ik P̂
k
i′1,...,i

′
k
≈ δi1,i′1 ... δi1,i′1 P̂

k
i1,...,ik

(2.67)

follows straightforwardly from the definition of the P̂ ki1,...,ik and from the deco-

herence condition (2.57).

It then follows that the evolution of the quantum state exhibits branching -

in accordance with the Branching Condition above - with P̂i in the expression
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for the transition weight above equal to P̂ ki1,...,ik at some earlier time t = k∆t

and the PVM Pi′ in the transition weight equal to P̂ k+m
i′1,...,i

′
k,i
′
k+1,...,i

′
k+m

at some

later time t′ = (k + m)∆t (where i and i′ are to be regarded as collective

indices for (i1, ..., ik) and (i′1, ..., i
′
k, i
′
k+1, ..., i

′
k+m), respectively). The Branching

Condition is satisfied for arbitrary m, as can be seen by using the expansion

|χ(t)〉 =
∑
i1,...,iN

Ĉi1,...,iN |χ0〉 and the definition of the P̂ ki1,...,ik ; specifically, the

transition weight between P̂ ki1,...,ik and P̂ k+m
i′1,...,i

′
k,i
′
k+1,...,i

′
k+m

will be zero unless

(i′1, ..., i
′
k) = (i1, ..., ik), thereby entailing that there is a unique projector at any

earlier time that contributes to the weight of the projector P̂ k+m
i′1,...,i

′
k,i
′
k+1,...,i

′
k+m

at any later time, namely P̂ ki′1,...,i′k
.

Condensing notation so that ik ≡ (i1, ..., ik), we have that

T [ik, k∆t; jk+m, (k+m)∆t] ≈ 0 unless ik is the initial segment of jk+m (2.68)

thereby entailing that only one projector in the time-k PVM contributes to the

weight of any projector in the time-(k +m) PVM.

2.4 DS Reduction of the CM Model to the Bare/Everett

Model

In Chapter 1, I discussed the case of the DS reduction of the CM Model to the

Bare/Everett model without environment. However, as Wallace argues in [110],

in cases where the degrees of freedom in question are associated with macro-

scopic degrees of freedom such as centers of mass of macroscopic bodies, there

are a number of significant problems with attempts to model the Newtonian

behavior of these systems as isolated from external degrees of freedom:

• It is unrealistic to treat macroscopic degrees of freedom as isolated, given

that actual macroscopic systems interact constantly with external degrees

of freedom in their environment.
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• Narrow wave packets are needed to underpin the appearance of classical

trajectories. However, wave packets do not necessarily remain narrow on

acceptably long timescales to account for the appearance of trajectories,

even for macroscopic systems. As Wallace observes, systems whose classi-

cal description incorporates dynamics that are chaotic may have initially

narrow wave packets spreading to macroscopic coherence lengths on rel-

atively short timescales. For instance, Zurek and Paz have argued that

in the case of Saturn’s moon Hyperion, such chaotic effects may produce

wavefunctions with macroscopic coherence lengthsfrom an initially narrow

wave packet on a time scale of about 10 years [118].

I turn, then, to the more realistic model of classical behavior that incorporates

the interaction between the macroscopic degrees of freedom and the environ-

ment.

In the case of the Bare/Everett model with environment, the DS reduction

is more subtle than it was in the example given in Chapter 1, given the addi-

tional effects of environmental decoherence at play. As in the case considered

in Chapter 1, in the case where the environment is incorporated, the relevant

bridge map for the reduction of the NM model described above to the corre-

sponding Bare QM model is given by the expectation values of the position

and momentum operators of the central system, in this case consisting of the

centers of mass of some macroscopic bodies. However, in the more realistic case

where the environment is taken into account, the domain of states does not

consist simply of narrow wave packets in the Hilbert space of the macroscopic

degrees of freedom; rather, it consists of so-called ‘branch states’ in the total

Hilbert space of the centers of mass and environment. These branch states are

components of the total quantum state of the macroscopic degrees of freedom

and their environment, and are determined by the stucture that decoherence

gives to this state. As we will see shortly, the decoherent histories formalism

will prove an especially useful tool for describing branch states. Much of the

material concerning branching of the quantum state relative to an approximate
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coherent state PVM is adapted from Chapter 3 of Wallace’s [110].

While the domain of classical behavior in the quantum model here does not

consist simply of narrow wave packets in HS , narrow wave packets still have a

crucial role to play in the reduction of models of macroscopic classical behavior

to the Bare QM model with environment. Their significance is two-fold. First,

they comprise the so-called ‘decoherence-preferred’ basis of states in HS - that

is, the states that suffer minimal entanglement with the environment, which

also form a basis for HS . Second, as observed in Chapter 1, they are the states

that exhibit approximately Newtonian behavior through Ehrenfest’s Theorem,

allbeit only on timescales for which wave packet spreading can be ignored. Nev-

ertheless, we will see in section 2.4.2 that it is important to distinguish between

the sort of narrow wave packet that suffers minimal entanglement under inter-

action with the environment - a ‘pointer state’ wave packet - and the typically

more inclusive category of wave packets that approximately follow a Newtonian

trajectories - an ‘Ehrenfest’ wave packet.

2.4.1 Decoherence and Branching in Phase Space

Define ‘quasiclassical’ histories as those in which the state of S relative to a par-

ticular branch is always localised about a particular phase space point z ≡ (q, p),

but in which that phase space point does not necessarily traverse an approxi-

mately Newtonian trajectory. Define ‘classical’ histories as those quasiclassical

histories in which the state of S relative to a particular branch does traverse

an approximately Newtonian trajectory (to within some margin of error and

relative to some timescale). In this subsection, we will see how environmental

decoherence leads generically (or at least in a very wide set of cases) to quasi-

classical histories; in the next, we will discuss how those quasiclassical histories

also turn out in certain circumstances to be classical.
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Decoherence Relative to a Coherent State Basis

Let us examine the evolution of the quantum state of the system SE, given

only the assumption that the pointer states of S - that is, states of S which

suffer least entanglement upon interaction with the environment E - are the

coherent states |q, p〉. For brevity, I will use the condensed notation z ≡ (q, p),

|z〉 ≡ |q, p〉. An arbitrary quantum state of SE at some initial time t = 0 can

be expressed in the form,

|χ0〉 =

∫
dz0 α(z0) |z0〉 ⊗ |ξ(z0)〉. (2.69)

Let us examine the evolution of an individual element of this superposition,

|z0〉⊗ |ξ(z0)〉. Note that, initially, the |ξ(z0)〉 need not be orthogonal. However,

after a very brief time τ (on the order of some typical decoherence timescale),

as a result of environmental scattering,

|z0〉 ⊗ |ξ(z0)〉 τ⇒ |z0〉 ⊗ |φ(z0)〉, (2.70)

where 〈φ(z′0)|φ(z0)〉 ≈ 0 for z0 and z′0 sufficiently different. On the longer time

scale ∆t characteristic of the Hamiltonian ĤS , over which ĤS induces significant

changes on HS , we have that

|z0〉 ⊗ |φ(z0)〉 ∆t
=⇒

∫
dz1β(z0, z1)|z1〉 ⊗ |φ(z0, z1)〉 (2.71)

where 〈φ(z′0, z
′
1)|φ(z0, z1)〉 ≈ 0 for z0 and z′0, or z1 and z′1, sufficiently different.

Moreover, we should expect that if 〈φ(z′0)|φ(z0)〉 ≈ 0, then it will turn out to

be the case that 〈φ(z′0, z
′
1)|φ(z0, z1)〉 ≈ 0 irrespective of the values of z1 and z

′

1

since the environmental particles whose scattering caused the initial decoherence

process will now be spread widely across the environment’s configuration space;

for this reason, later scatterings of certain particles in the environment are

generally unlikely to disrupt the orthogonality of environmental states resulting

from earlier scatterings of other particles. Likewise, evolving each element of
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this last superposition by ∆t, we have

|z1〉 ⊗ |φ(z0, z1)〉 ∆t
=⇒

∫
dz2β(z0, z1, z2)|z2〉 ⊗ |φ(z0, z1, z2)〉, (2.72)

where 〈φ(z′0, z
′
1, z
′
2)|φ(z0, z1, z2)〉 ≈ 0 for z0 and z′0, or z1 and z′1, or z2 and z′2,

sufficiently different. Iterating this process N times, we obtain,

|z0〉 ⊗ |φ(z0)〉 N∆t
=⇒

∫
dz1...

∫
dzN B(z0, z1, ..., zN ) |zN 〉 ⊗ |φ(z0, z1, ..., zN )〉

(2.73)

where

B(z0, z1, ..., zN ) ≡ β(z0, z1) β(z0, z1, z2) ... β(z0, ..., zN−1, zN ). (2.74)

By linearity of the Schrodinger evolution, we then have

|χ(t)〉 =

∫
dz0dz1...dzN α(z0)B(z0, z1, ..., zN ) |zN 〉 ⊗ |φ(z0, z1, ..., zN )〉, (2.75)

with

〈φ(z′0, z
′
1, ..., z

′
N )|φ(z0, z1, ..., zN )〉 ≈ 0 for zk and z′k sufficiently different for any 0 ≤ k ≤ N.

(2.76)

These last two equations provide a completely general expression for the quan-

tum state of SE evolved up to some arbitrary time N∆t, under the assumption

that the coherent states |z〉 are the decoherence-preferred states of S under its

interaction with E.

It will prove helpful for our purposes to examine this evolution also from
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the perspective of the decoherent histories formalism. The approximate PVM

of eq. (2.14) can be extended to an approximate PVM on HS ⊗ HE simply

by tensoring the projectors with the identity ÎE on HE , taking the operators

{Π̂i ⊗ ÎE} to constitute the extended approximate PVM. Using this PVM, the

evolution of a state on HS ⊗HE can be expressed generally as

|χ(t)〉 =
∑

i1,...,iN

(
Π̂iN ⊗ ÎE

)
e−iĤ

t
N ...

(
Π̂i1 ⊗ ÎE

)
e−iĤ

t
N

(
Π̂i0 ⊗ ÎE

)
|χ0〉

(2.77)

=
∑

i0,i1,...,iN

Ĉi0,i1,...,iN |χ0〉 (2.78)

where

Ĉi0,i1,...,iN |χ0〉 ≡
(

Π̂iN ⊗ ÎE
)
e−iĤ

t
N ...e−iĤ

t
N

(
Π̂i1 ⊗ ÎE

)
e−iĤ

t
N

(
Π̂i0 ⊗ ÎE

)
.

(2.79)

This history operator corresponds to a coarse-grained trajectory in phase space

that successively traverses the sequence (Σi0 ,Σi1 , ...,ΣiN ) of cells in the phase

space partition. Using the defintion of the operators Π̂i, we can rewrite the

history operators as follows:

Ĉi0,i1,...,iN |χ0〉 (2.80)

≡
∫

Σi0

∫
Σi1

...

∫
ΣiN

dz1...dzN

(
|zN 〉〈zN | ⊗ ÎE

)
e−iĤ

t
N ...e−iĤ

t
N

(
|z1〉〈z1| ⊗ ÎE

)
e−iĤ

t
N

(
|z0〉〈z0| ⊗ ÎE

)
|χ0〉

(2.81)

≡
∫

Σi0

∫
Σi1

...

∫
ΣiN

dz1...dzN Ĉz0,z1,...,zN |χ0〉, (2.82)

where
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Ĉz0,z1,...,zN ≡
(
|zN 〉〈zN | ⊗ ÎE

)
e−iĤ

t
N ...

(
|z1〉〈z1| ⊗ ÎE

)
e−iĤ

t
N

(
|z0〉〈z0| ⊗ ÎE

)
.

(2.83)

Moreover, note that

Ĉz0,z1,...,zN |z0〉 = |zN 〉 ⊗
[∑

i

|ei〉〈zN , ei|e−iĤ
t
N

(
|zN−1〉〈zN−1| ⊗ ÎE

)
(2.84)

...
(
|z1〉〈z1| ⊗ ÎE

)
e−iĤ

t
N

(
|z0〉〈z0| ⊗ ÎE

)
|z0〉
]

(2.85)

= |zN 〉 ⊗

[∑
i

|ei〉〈zN , ei|e−iĤ
t
N Ĉz0,z1,...,zN−1

|z0〉

]
(2.86)

= |zN 〉 ⊗ |φ̃(z0, z1, ..., zN )〉 (2.87)

where {ei} is an arbitrary basis for HE and

|φ̃(z0, z1, ..., zN )〉 ≡
∑
i

|ei〉〈zN , ei|e−iĤ
t
N Ĉz0,z1,...,zN−1

|z0〉. (2.88)

The vectors |φ̃(z0, z1, ..., zN )〉 will not in general be normalised. If w(z0, z1, ..., zN ) ≡

〈φ̃(z0, z1, ..., zN )|φ̃(z0, z1, ..., zN )〉, then we can define

|φ(z0, z1, ..., zN )〉 ≡ 1

w1/2(z0, z1, ..., zN )
|φ̃(z0, z1, ..., zN )〉, (2.89)

which are normalised. In terms of these normalised states, we then have

Ĉz0,z1,...,zN |z0〉 = w1/2(z0, z1, ..., zN )|zN 〉 ⊗ |φ(z0, z1, ..., zN )〉, (2.90)

and
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|χ(N∆t)〉 = e−iĤN∆t|χ0〉 (2.91)

=

∫ ∫
...

∫
dz0dz1...dzN Ĉz0,z1,...,zN |χ0〉 (2.92)

=

∫ ∫
...

∫
dz0dz1...dzN α(z0)w1/2(z0, z1, ..., zN )|zN 〉 ⊗ |φ(z0, z1, ..., zN )〉

(2.93)

Note further that if 〈φ(z′0, z
′
1, ..., z

′
N )|φ(z0, z1, ..., zN )〉 ≈ 0 for zk and z′k suffi-

ciently different, for any 0 ≤ k ≤ N , then 〈χ0|Ĉ†i′0,i′1,...,i′N Ĉi0,i1,...,iN |χ0〉 ≈ 0 for

ik 6= i′k for 0 ≤ k ≤ N - assuming that the partitioning of phase space is such

that zk and z′k are ‘sufficiently different’ when they belong to different elements

of the phase space partition.

Branching

From the above analysis, we can conclude that because the history space associ-

ated with sequences of coherent state projectors Π̂ik is decoherent, the quantum

state has branching structure relative to the history space associated with se-

quences of projectors P̂ni0,i1,...,in ≡
1

w(i0,i1,...,in) Ĉi0i1,...,in |χ0〉〈χ0|Ĉ†i0,i1,...,in , for

successive n, where w(i0, i1, ..., in) ≡ 〈χ0|Ĉ†i0,i1,...,inĈi0,i1,...,in |χ0〉. Using the

abbreviation in ≡ (i0, i1, ..., in), we can write

|χ(t)〉 =
∑

i1,...,iN

(
P̂iN ⊗ ÎE

)
e−iĤ

t
N ...

(
P̂i1 ⊗ ÎE

)
e−iĤ

t
N

(
P̂i0 ⊗ ÎE

)
|χ0〉 (2.94)

=
∑

i0,i1,...,iN

K̂i0,i1,...,iN |χ0〉. (2.95)

where K̂i0,i1,...,iN |χ0〉 ≡
(
P̂iN ⊗ ÎE

)
e−iĤ

t
N ...

(
P̂i1 ⊗ ÎE

)
e−iĤ

t
N

(
P̂i0 ⊗ ÎE

)
|χ0〉.

Thus, the set of histories in this history space corresponds to the set of sequences

(of sequences) of the form (i0, i1, ..., iN ). To say that the quantum state has

branching structure relative to this history space entails that any two realised
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histories that agree on their nth index - that is, that share the index in - agree

with respect to all previous indices ik with 0 ≤ k < n. This is indeed the case

since, as one can show quite straightforwardly, the only realised histories are

those for which in is an initial sequence of in+1 for all 1 ≤ n ≤ N − 1. Thus,

any two histories that agree on in necessarily agree on all previous indices since

all of these indices are uniquely determined by in.

Thus, we can write the state evolution in terms of a sum restricted only

to histories (i0, i1, ..., iN ) that obey the restriction that each subsequence in is

the initial sequence of the next, in+1. Abbreviating this condition by writing

in ⊂ in+1, we have

|χ(t)〉 ≈
∑

in⊂in+1

K̂i0,i1,...,iN |χ0〉, (2.96)

where (again) the condition below the summation symbol indicates that only

sequences for which each element of the sequence is a subsequence of all elements

that come after it are included in the sum.

Note moreover that the history space associated with the set of sequences

(i0, i1, ..., iN ), formed using the approximate coherent state PVM, is not branch-

ing since it is entirely possible (because of wave packet spreading) that two

realised (but mutually decoherent) histories agree on some index in, with 1 ≤

n ≤ N , but not with respect to some or any of the previous indices ik, where

0 ≤ k < n.

Finally, note that the history space associated with the set of sequences

(i0, i1, ..., iN ) is a coarse-graining of the history space associated with the set of

sequences (i0, i1, ..., iN ), since

Ĉi0,i1,...,iN |χ0〉 = ĈiN |χ0〉 =
∑

i0,i1,...,iN−1

K̂i0,i1,...,iN |χ0〉, (2.97)

where the reader should note that only the indices (i1, ..., iN−1) have been
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summed over.

Returning to the history space associated with sequences of coherent state

PVM’s (as opposed to the history space associated with sequences of such se-

quences), the sum in eq. (2.77) includes all histories (i1, ..., iN ) in the history

space associated with the approximate PVM of eq. (2.14). Typically, not all

histories in the history space associated with the set of sequences (i1, ..., iN ) will

be realised - that is, for many of these histories, we will have

Ĉi1,...,iN |χ0〉 ≈ 0. (2.98)

For this reason, one can to a good approximation restrict the sum in eq. (2.77)

to only those histories that are realised. If we denote the set of realised histo-

ries (where realised histories are defined as those whose weights surpass some

arbitrarily specified but small threshold ε) as Ir, then we have,

|χ(t)〉 ≈
∑

(i1,...,iN )∈Ir

Ĉi1,...,iN |χ0〉. (2.99)

What can we say, then, about which histories tend to be realised in a model like

the Bare/Everett model described above, in which the central system S consists

of some macroscopic centers of mass interacting through a conservative time-

independent potential, as well as with some external environment E? As we will

see in the next subsection, under certain conditions and for a certain measure of

coarse graining, the realised histories will be those that traverse approximately

Newtonian trajectories.

2.4.2 The Occurrence of Classical Newtonian Trajectories

Thus far, decoherence has explained why a branch of the total quantum state

should be such that the state of S relative to that branch evolves quasiclassically.
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However, the analysis above has not offered any suggestion as to why the state

of S relative to each branch should traverse a classical trajectory - i.e., why its

evolution should conform approximately to Newtonian equations of motion. It

is here that Ehrenfest’s Theorem enters the analysis.

Ehrenfest’s Theorem for Open Systems

As we saw in Chapter 1, Ehrenfest’s Theorem applies only to systems that

evolve unitarily in a pure state. However, as I explain here, the theorem can be

straightforwardly generalised to certain models of open quantum systems. In

situtations of the sort considered in this thesis, the interaction between system

and environment is typically sufficiently weak that the dissipation and renor-

malisation terms in (2.36) can be ignored (see, for instance, [110], section 3.6)

so that only a ‘pure decoherence’ term, −iΛ
[
X̂,
[
X̂, ρ̂S

]]
, remains:

i
dρ̂S
dt

= [ĤS , ρ̂S ]− iΛ
[
X̂,
[
X̂, ρ̂S

]]
(2.100)

5. In this model, the time derivative of the expectation value of momentum

〈P̂ 〉 = Tr[ρ̂SP̂ ] can be calculated by multiplying both sides of this equation by

the operator P̂ and then taking the trace of both sides. Using the commutation

relations [X̂, P̂ ] and the cyclic property of the trace, one can show that

Tr
{[
X̂,
[
X̂, ρ̂S

]]
P̂
}

= 0. (2.101)

Thus,

i
d〈P̂ 〉
dt

= Tr
{

[ĤS , ρ̂S ]P̂
}
. (2.102)

But this equation is the same as the equation for the evolution of 〈P̂ 〉 under

the unitary dynamics prescribed by ĤS , the primary difference from the closed

5I have not encountered this generalisation of Ehrenfest’s Theorem elsewhere in the lit-
erature on decoherence, though the calculation required for the generalisation is sufficiently
straightforward, and the motivation sufficiently obvious, that I will refrain from claiming any
originality for the result.
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system case being that ρ̂S in this case will not in general be pure. Just as in

the derivations of Ehrenfest’s Theorem in the case of a closed system governed

solely by the Hamiltonian ĤS = P̂ 2

2M +V (X) - which does not rely on the purity

of ρ̂S - we then have

d〈P̂ 〉
dt

= −

〈
ˆ∂V (X)

∂X

〉
. (2.103)

thus furnishing a generalisation of Ehrenfest’s Theorem to systems whose inter-

action with their environment is characterised approximately by ‘pure decoher-

ence.’

Specialising now to the case where ρS(X,X ′) ≡ 〈X ′|ρ̂S |X〉 represents a state

with narrow ensemble width - i.e., such that the diagonal elements ρS(X,X)

are narrowly peaked about some particular value of X - we have that 〈f(X̂)〉 ≈

f(〈X̂〉), so that

d〈P̂ 〉
dt
≈ −∂V (〈X̂〉)

∂〈X̂〉
, (2.104)

thereby furnishing an approximate version of Newton’s Second Law for expec-

tation values. The relation d〈X̂〉
dt = 〈P̂ 〉

M also continues to hold as long as the

interaction Ĥint depends only on position X̂ and not on the momentum P̂ , as

is the case in all models considered here - and notably, in particular, in the

Caldeira-Legett model. Note that the expectation value in this relation is taken

relative to the total quantum state of system S, not its state relative to a par-

ticular branch of the quantum state. While ‘branch-relative’ expectation values

will prove crucial to my analysis of Newtonian behavior below, it is crucial

to recognise that the expectation values here average across multiple mutually

decohered branches.

From this generalisation of Ehrenfest’s Theorem, we can conclude that po-

sition and momentum expectation values even of decohering systems will follow

approximately classical trajectories, so long as the internal dynamics ĤS does

not cause ρS(X,X) to become too spread out; if it does become too spread out
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relative to the characteristic length scales on which the potential V (X) varies,

the relation

〈
ˆ∂V (X)
∂X

〉
≈ ∂V (〈X̂〉)

∂〈X̂〉 will cease to hold, and approximate Newtonian

behavior will no longer be guaranteed.

The Dual Role of Narrow Wave Packets

At this point, it is worth underscoring the fact that narrow wave packets play a

dual role in accounting for the classical behavior of macroscopic open quantum

systems: first, among them are the states of S - the coherent states - that are

minimally entangled with the environment on timescales short relative to the

characteristic timescales associated with ĤS ; second, they evolve in approxi-

mately Newtonian fashion, even when S is open.

However, it is also crucial to distinguish two corresponding senses of nar-

rowness here: one that relates to considerations of environmental decoher-

ence, which ensures quasi -classicality of the state evolution (at least on the

Bare/Everett model), and the other that relates to approximate Newtonian be-

havior, which ensures approximate classicality of the evolution. The former

requires narrowness in the sense of not being wider than the typical coherence

length of the system under its interaction with the environment, which is char-

acteristed by the position-space width of a coherent pointer state |q, p〉. The

latter requires narrowness of ρS(X,X) relative to the dimensions of the poten-

tial V (X); assuming that V (X) varies significantly only on macroscopic length

scales, this notion of narrowness will include wave packets that are narrow in

the first sense as well as those whose widths exceed typical coherence lengths of

the system S.

As a result of these considerations, there is a regime of behavior in which

wave packets may spread to width beyond the coherence length - thereby induc-

ing decoherence and the branching that goes along with it - but remain narrow

with respect to the relevant dimensions of the potential V (X). This will be a

regime in which it is both the case that: 1) on any given branch, expectation

values of position and momentum evolve along approximately deterministic,
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Newtonian trajectories, to within a certain margin of error associated with the

distribution ρS(X,X) ; 2) branching still occurs on length scales below this mar-

gin of error, which one might characterise as being associated with ‘quantum

fluctuations’ around an average classical, deterministic trajectory.

Thus, macroscopic classical behavior is underwritten quantum mechanically

by a wave packet for S that spreads out, as it does so rapidly becoming replaced

by an incoherent superposition of localised states. Each of the localised states

in the incoherent mixture will in turn spread out and be replaced by its own

incoherent superposition of localised states. Eventually, an initially narrowly

peaked ρS(X,X) will spread incoherently to a width comparable to the scales

on which V (X) varies significantly, and at this point Newtonian behavior cannot

be expected even as an approximation.

Factors Affecting the Rate of Wave Packet Spreading

The primary factors that determine the rate of wave packet spreading in S are

1. the size of the masses M appearing in ĤS : other factors being equal, larger

masses typically correlate to slower spreading; a simple back-of-the-envelope

calculation for the case of a free particle indicates that it would take an

initially narrow wave packet of an object with macroscopic mass, localised

on atomic length scales, longer than the age of the universe to spread to

macroscopic size (say 1cm.);

2. the presence of chaotic effects: these can significantly accelerate the rate

of wave packet spreading; in systems with macroscopic mass where ĤS

is strongly chaotic (i.e., in which closely spaced initial conditions diverge

on short timescales), a wave packet initially localised on atomic length

scales may spread to macroscopic length scales over much shorter time

periods than in cases where the effects of chaos are weak or absent; for

example, Zurek and Paz have argued convincingly that Saturn’s moon Hy-

perion, which tumbles chaotically in its orbit, should exhibit macroscopic
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divergences from Newtonian predictions on a timescale of about 10 years

[118];

3. pure decoherence: the pure decoherence term characterising the influence

of E on S in the master equation (2.36) typically will also increase the

rate of wave packet spreading; while this term constantly suppresses the

coherent spreading of S’s state, it actually results in a slight increase in

the rate of ensemble spreading in S (see, for example, [94], p. 145 ).

Parallel Coarse-Grained Classical Histories

Consider an arbitrary initial superposition at time t = 0:

|χ0〉 =

∫
dz0 α(z0) |z0〉 ⊗ |φ(z0)〉. (2.105)

Let us examine the evolution of a single element of this superposition,

|z0〉 ⊗ |φ(z0)〉. (2.106)

The position space density matrix associated with this state, ρz0S (X,X ′, 0), is

pure and has both a narrow coherence length and ensemble width, which are

both equal to the position space width of the packet |z0〉. Over some time ∆t,

the wave packet will spread both under the influence of the internal dynamics

ĤS and as a result of the influence of the environment; however, as long as

the ensemble width remains narrow by comparison with the potential V (X),

the expectation value of X in this incoherent superposition will continue to

evolve along an approximately Newtonian trajectory to within a margin of error

determined by the the ensemble width. The total state of SE will evolve to a

state of the form

∫
Σ1

dz1β1(z0, z1)|z1〉 ⊗ |φ(z0, z1)〉, (2.107)

such that 〈φ(z′0, z
′
1)|φ(z0, z1)〉 ≈ 0 for z0 and z′0, or z1 and z′1, sufficiently dif-
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ferent, and such that the integral over z1 can, to a good approximation, be

restricted to a small cell Σ1 containing the classical future evolute of z0 up to

time ∆t. The density matrix ρz0S (X,X ′,∆t) associated with this state will have

narrow coherence length equal to the width of a pointer coherent state, while

the ensemble width will have spread beyond this; thus, it will be more spread

out along the diagonal direction than along the off-diagonal direction. A single

element |z1〉⊗|φ(z0, z1)〉 of this last superposition will evolve over the next inter-

val ∆t into a superposition of the form
∫

Σ2
dz2β2(z0, z1, z2)|z2〉 ⊗ |φ(z0, z1, z2)〉,

where Σ2 is the classical future evolute of of z0 up to time 2∆t. Thus, the total

state to which |z0〉 ⊗ |φ(z0)〉 has evolved by time 2∆t is

∫
Σ1

∫
Σ2

dz1dz2β2(z0, z1, z2)β1(z0, z1)|z2〉 ⊗ |φ(z0, z1, z2)〉, (2.108)

Iterating this procedure, then, the single initial state |z0〉 ⊗ |φ(z0)〉 will evolve

over some time N∆t into a state of the form

∫
Σ1

...

∫
ΣN

dz1...dzNB(z0, z1, ..., zN )|zN 〉 ⊗ |φ(z0, z1, ..., zN )〉, (2.109)

where

B(z0, z1, ..., zN ) ≡ βN (z0, z1, ..., zN )βN−1(z0, z1, ..., zN−1)...β1(z0, z1), (2.110)

and

〈φ(z′0, z
′
1, ..., z

′
N )|φ(z0, z1, ..., zN )〉 ≈ 0 for zk and z′k sufficiently different for any 0 ≤ k ≤ N.

(2.111)

The functionB(z0, z1, ..., zN ) differs substantially from zero only when (z0, z1, ..., zN )
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all lie close to the classical trajectory associated with z0. The density matrix

ρz0S (X,X ′, N∆t) will be an incoherent mixture of localised wave packets, with

coherence length equal to the position width of one coherent pointer state and

the ensemble width growing progressively larger for increasing values of N .

As we have seen, decoherence of the form we have been discussing lends the

evolution of the quantum state a branching structure. However, even as this

branching occurs, the histories associated with the different branches of the to-

tal state will remain concentrated around a single classical trajectory for as long

as the ensemble width ρz0S (X,X ′, N∆t) remains sufficiently narrow relative to

the dimensions of the potential V (X). For systems in which chaotic effects on

wave packet spreading are significant, the timescales on which this narrowness

is maintained will be significantly shorter than for those in which chaotic effects

can be neglected. Nevertheless, even for chaotic systems there will be some

time scale on which Newtonian predictability holds to within some reasonable

margin of error.

The preceding analysis has shown that if we restrict our consideration to

timescales less than those on which the ensemble width of S becomes com-

parable to the relevant dimensions of the potential V (X), then the evolution

of a single initial wave packet |z0〉 ⊗ |φ(z0)〉 gives rise to multiple decohered

branches, with the histories associated with different branches of the quantum

state all concentrated around the single classical trajectory associated with z0.

Because the ensemble width will typically grow with time, the average deviation

of these branches from the classical trajectory also will tend to increase with

time. Eventually, when the ensemble width becomes comparable to the scale

on which the potential V (X) changes significantly, it will be the case note only

that the individual branches will be be prone to deviate more widely from the

mean, but also that the mean itself will cease to evolve approximately classically.

Thus, the time scales on which one should generally expect Newtonian behavior

are limited by the scale on which the ensemble width of an initial narrow wave

packet product state |z0〉⊗ |φ(z0)〉 expands to a scale comparable to the spatial
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dimensions of V (X). Before this point, one still may observe deviations from

classicality that can be characterised as fluctuations around some mean classical

behavior; but after this time, classicality ceases to hold even in the mean.

Given that for a single wave packet, the evolution is

e−iĤN∆t (|z0〉 ⊗ |φ(z0)〉) ≈
∫

Σ1(z0)

...

∫
ΣN (z0)

dz1...dzNB(z0, z1, ..., zN )|zN 〉 ⊗ |φ(z0, z1, ..., zN )〉

(2.112)

≈
∫

Σ1(z0)

...

∫
ΣN (z0)

dz1...dzN Ĉz0,z1,...,zN |z0〉, (2.113)

the linearity of the Schrodinger evolution entails that

|χ(N∆t)〉 = e−iĤN∆t|χ0〉 (2.114)

≈
∫
dz0 α(z0)

∫
Σ1(z0)

...

∫
ΣN (z0)

dz1...dzNB(z0, z1, ..., zN )|zN 〉 ⊗ |φ(z0, z1, ..., zN )〉

(2.115)

=

∫
dz0 α(z0)

∫
Σ1(z0)

...

∫
ΣN (z0)

dz1...dzN Ĉz0,z1,...,zN |z0〉 (2.116)

where (Σ1(z0), ...,ΣN (z0)) are all concentrated around the classical trajectory

whose initial condition is z0, and where

〈z0|Ĉ†z′0,z′1,...,z′N Ĉz0,z1,...,zN |z0〉 ≈ 0 for zk and z′k sufficiently different for any 0 ≤ k ≤ N,

(2.117)

since

〈φ(z′0, z
′
1, ..., z

′
N )|φ(z0, z1, ..., zN )〉 ≈ 0 for zk and z′k sufficiently different for any 0 ≤ k ≤ N,

(2.118)

which in turn, as we have seen, will be satisfied as a result of environmental
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scattering.

Rather than examine the evolution of the total state at the level of individ-

ual wave packets, we can examine it on a more coarse-grained scale, in terms

of histories defined using approximate coherent state PVM’s. If the cells of the

partitions {Σik} associated with approximate coherent state PVMs {Π̂ik} are of

a certain intermediate size - somewhere between the phase space volume of a sin-

gle coherent state |z〉 and the phase space volumes associated with macroscopic

differences of position and momentum - then the associated history space will be

decoherent and the realised histories, while all close to a Newtonian trajectory

(assuming the ensemble width of ρz0S remains sufficiently narrow by comparison

with V (X)) will also exhibit branching behavior. The state evolution can be

expressed in the form,

|χ(N∆t)〉 =
∑

i0,i1,...,iN

Ĉi0,i1,...,iN |χ0〉 (2.119)

where

Ĉi0,i1,...,iN |χ0〉 = Π̂iN e
−iĤ∆t...Π̂i1e

−iĤ∆tΠ̂i0 |χ0〉 (2.120)

=

∫
Σi0

∫
Σi1

...

∫
ΣiN

dz0dz1...dzN Ĉz0,z1,...,zN |χ0〉 (2.121)

and, as a consequence of (2.117),

〈χ0|Ĉ†i′0,i′1,...,i′N Ĉi0,i1,...,iN |χ0〉 ≈ 0 if ik 6= i′k for 0 ≤ k ≤ N, (2.122)

and, in addition, all realised histories are such that the sequence of regions

(Σi0 ,Σi1 , ...,ΣiN ) associated with each history fall close, to within some rea-

sonable margin of error, to some Newtonian trajectory (though they will ex-

hibit fluctuations around this trajectory associated with their branching be-

havior). As we have seen, by virtue of satisfying this decoherence condition,
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the quantum state will possess a branching structure relative to the history

space associated with a time-indexed sequence of PVM’s that take the form

{P̂ ki0,...,ik ≡ Ĉi0,...,ik |χ0〉〈χ0|Ĉi0,...,ik}, where {P̂ ki0,...,ik} is the PVM assigned to

time k∆t.

However, by choosing a history space such that the phase space partitions

{Σ′kjk} used to define the associated coherent state PVM’s are allowed to de-

pend on the time index k and such that the partition cells Σ′kjk are large in

comparison with the regions ΣN (z0) of phase space over which a coherent wave

packet spreads on the timescale in question, and also large in comparison with

the elements of the more fine-grained partition {Σik} just discussed, we can

find a set of time-indexed PVM’s {Π̂′kjk} such that the quantum state evolution

approximately takes the form of parallel, non-interfering classical histories on

phase space - that is, such that at any given time N∆t within the appropriate

timescale,

|χ(N∆t)〉 =
∑

j0,j1,...,jN

Ĉj1,...,jN |χ0〉 ≈
∑
j0

Ĉj0,jc1 ,...,jcN |χ0〉. (2.123)

where

Ĉj0,j1,...,jN |χ0〉 ≡ Ĉj1,...,jN Π̂′0j0 (2.124)

= Π̂′NjN e
−iĤ∆t...Π̂′1j1e

−iĤ∆tΠ̂′0j0 |χ0〉 (2.125)

=

∫
Σ′0j0

∫
Σ′1j1

...

∫
Σ′NjN

dz0dz1...dzN Ĉz0,z1,...,zN |χ0〉 (2.126)

=

∫
Σ′0j0

∫
Σ′1j1

...

∫
Σ′NjN

dz0dz1...dzN B(z0, z1, ..., zN )|zN 〉 ⊗ |φ(z0, z1, ..., zN )〉,

(2.127)

and where the only realised histories will be those indexed by sequences of the

form (j0, j
c
1, ..., j

c
N ), where the superscript c indicates that a given index jck is
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associated with a partition cell {Σ′kjck that contains the classical phase space

points future-evolved up to k∆t from the initial region Σ0
j0

(so, the value jck

implicitly depends on the value of j0 at the beginning of the sequence).

These histories, of course, satisfy the decoherence condition:

〈χ0|Ĉ†j0,j′1,...,j′N Ĉj0,j1,...,jN |χ0〉 ≈ 0 if jk 6= j′k for 0 ≤ k ≤ N. (2.128)

In most cases, this is a consequence of the fact that Ĉj0,j1,...,jN |χ0〉 ≈ 0 or

Ĉj′0,j′1,...,j′N |χ0〉 ≈ 0 - i.e., one of the histories simply isn’t realised. The condition

is satisfied non-trivially between two realised classical histories by virtue of

(2.117).

Except at t = 0, when the initial superposition becomes decohered, the quan-

tum state evolution exhibits branching relative to the history space (j0, j1, ..., jN )

only in a trivial sense: for a given jk, with 0 < k < N , the transition amplitude

T (jk, k∆t; jk+1, (k+1)∆t) for any projector P̂ kjk into P̂ k+1
jk+1

is zero for all but one

value of jk+1, whereas archetypal branching behavior involves non-zero transi-

tion amplitudes from one projector into more than one future projector. As we

will see presently, the uniqueness of the future projectors into which the present

projector has non-zero transition amplitude helps to account for the appearance

of determinism on a coarse-grained level.

The appropriate bridge map BCMMW (where the MW is for ‘Many Worlds’) for

the reduction of the given model of CM to the given model of the Bare/Everett

theory is given by the expectation value of the extended position and momentum

operators, X̂ ⊗ ÎE and P̂ ⊗ ÎE for S:

Bridge Map:
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BCMMW : HS ⊗HE −→ ΓN

BCMMW : |χ〉 7−→
(
〈χ|X̂ ⊗ ÎE |χ〉, 〈χ|P̂ ⊗ ÎE |χ〉

)
.

(2.129)

At any given time N∆t, the domain of states from which we should expect ap-

proximately classical behavior is the set of branch states defined by decoherence

and the appropriate level of coarse-graining that serves to mask the branching

behavior that occurs on smaller scales:

Domain:

dCM =

{
|χ(N∆t)〉 ∈ HS ⊗HE

∣∣∣∣ |χ(N∆t)〉 =
1

W 1/2(j0, jc1, ..., j
c
N )
Ĉj0,jc1 ...,jcN |χ0〉

}
.

(2.130)

Through this bridge map, the dynamics associated on a given branch will induce

a dynamics on the phase space Γ:

Bridge Rule:

(
X ′(N∆t), P ′(N∆t)

)
≡
(
〈χ(N∆t)|X̂ ⊗ ÎE |χ(N∆t)〉, 〈χ(N∆t)|P̂ ⊗ ÎE |χ(N∆t)〉

)
.

(2.131)

Note that, as a consequence of the coarse-graining, the branch states here do

not actually ‘branch’ in the sense of one projector’s weight contributing to the

weights of many projectors at a later time, but rather evolve in such a way

that one projector contributes only to a single, unique future projector, in this

respect serving to mimic dynamics that are effectively deterministic.

The foregoing considerations entail that expecation values of X̂⊗ ÎE and P̂⊗ ÎE ,

which I abbreviate 〈X̂〉 and 〈P̂ 〉 respectively, will, for states in the specified do-
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main, follow an approximately Newtonian trajectory. The dynamical equations

of the image model are

Image Model:

d〈P̂i〉
dt
≈ −∂V (〈X̂〉)

∂〈X̂i〉
(2.132)

d〈X̂i〉
dt

≈ 1

Mi
〈P̂i〉. (2.133)

Recall that if the image model holds then the DSR condition is satisfied. The

analogue model is obtained straighforwardly from the image model by the bridge

rule substitutions (X ′, P ′) ≡
(
〈X̂〉, 〈P̂ 〉

)
:

Analogue Model:

dP ′i
dt
≈ −∂V (X ′)

∂X ′i
(2.134)

dX ′i
dt
≈ 1

Mi
P ′i . (2.135)

Note finally that the condition of strong analogy is simply a rephrasing of the

DSR condition and requires that

‘Strong Analogy’:

|X(N∆t)−X ′(N∆t)| < δX

|P (N∆t)− P ′(N∆t)| < δP .

(2.136)
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for 0 ≤ N∆t ≤ τ . This condition will be satisfied as long as the laws of the

image model hold to good approximation. The margins of error δX and δP are

determined by the size of the partition cells - i.e. the measure of coarse-graining

- associated with elements of the history space {(j0, j1, ..., jN )}. Given these

margins of error, the timescale τ will depend on the sizes of the mass parameters

in ĤS , on the strength of chaotic effects associated with this Hamiltonian, and

on the value of the coefficient Λ characterising the strength of environmental

decoherence (recall that the decoherence term in (2.100) can increase the rate

of ensemble spreading while constantly maintaining the coherence length below

a certain threshold).

2.5 DS Reduction of the CM Model to the Bohm

Model

As in the case of the Bare/Everett theory, it is instructive when considering

the reduction of classical models of macroscopic systems to the Bohm theory

to begin by considering the idealised case in which the relevant macroscopic

degrees of freedom S are isolated from any environment. I consider two existing

approaches to reducing classical mechanics to Bohm’s theory that for the most

rely on the assumption that the relevant degrees of freedom in question are iso-

lated. I refer to these approaches as the ‘narrow wave packet approach’ and the

‘quantum potential approach.’ I then explain the need to consider the environ-

ment in explaining macroscopic classical behavior in Bohm’s theory. Finally, I

provide a template for the DS reduction of the N -center-of-mass classical model

described above to the corresponding Bohm model, including the environment.

2.5.1 The Narrow Wave Packet Approach

Let us first consider the evolution of a narrow wave packet |q, p〉 in S with average

position q and average momentum p at some time t0. Given our assumptions

about the non-spreading of wave packets, Ehrenfest’s Theorem, which states
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that for a general wave function,

m
d2〈x̂〉
dt2

= −〈∂V (x̂)

∂x̂
〉 (2.137)

dictates that such a wave packet will approximately satisfy the stronger condi-

tion

m
d2〈x̂〉
dt2

≈ −∂V (〈x̂〉)
∂〈x̂〉

(2.138)

and that the wave packet therefore will follow an approximately classical tra-

jectory as long as it remains sufficiently narrow. More specifically, it will follow

the classical trajectory whose position and momentum at time t0 are q and p.

If the wave packet follows a classical trajectory, then by equivariance, es-

sentially all of the Bohmian trajectories associated with that wave packet will

also be approximately classical; by the phrase ‘essentially all of the Bohmian

trajectories,’ I am referring to an ensemble of possible Bohmian trajectories cor-

responding to different possible initial configurations. Thus, it seems initially

that the system S being in a narrow wave packet suffices to ensure that Bohmian

trajectories are classical. Among others, Bowman has been a strong advocate

of this approach, although, as I discuss below, he begins to incorporate effects

of the environment after considering this result for the base of isolated systems.

However, narrow wave packets constitute only a very restricted subset of

possible solutions to the Schrodinger equation, and the most general solution

will not necessarily be narrowly peaked in both position and momentum space.

The most general solution will rather be a superposition of narrow wave packets,

of the form

|Ψ〉 =

∫
dq dp α(q, p) |q, p〉, (2.139)

where each |q, p〉 traverses its own classical trajectory.

But such a solution will not, in general, yield a classical trajectory for the
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Bohmian configuration. For example, consider the simple case where S consists

of a single center of mass with a free Hamiltonian ĤS = P̂ 2

2m ; the mass may be

macroscopic, though this does not affect my conclusion in this instance. Let the

wave function of this system initially take the form of two spatially separated

wave packets moving toward each other with opposite average momenta, so that

they overlap at some point in time and then pass through each other:

|Ψ〉 =
1√
2

[|q1, p〉+ |q2,−p〉]. (2.140)

Initially, the set of Bohmian trajectories associated in the ensemble with each of

these packets will, by equivariance, follow the same classical path that its wave

packet follows. However, this will cease to be true when the packets overlap.

Because Bohmian trajectories associated with a single pure state can never

cross, when the packets overlap and pass through each other, the trajectories

will not be able to follow suit. Instead, they will reverse direction and leave the

region of overlap in the packet in which they did not begin. This reversal of

direction represents a highly non-classical effect on the trajectories in S, since

if the trajectories were classical, they would simply follow a straight line path

with the same wave packet all the way through.

We can see more generally that this sort of non-classical behavior on the

part of the Bohmian trajectory will occur whenever the expansion (2.139) of

the wave function in terms of spatially localized wave packets (e.g., coherent

states) contains wave packets that are initially separated and later come to

overlap in configuration space. If α(q, p) and α(q′, p′) are non-zero for any two

initially non-overlapping wave packets |q, p〉 and |q′, p′〉 whose future evolutions

cause them to overlap in configuration space at some point in time, the Bohmian

trajectories associated with |Ψ〉 will become non-classical. Thus, non-classical

Bohmian trajectories can result from a very wide variety of wave functions, even

when the mass is large.

Since generic states of S yield nonclassical trajectories for the Bohmian
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configuration, we cannot explain the emergence of classical trajectories at the

macroscopic scale in terms of an isolated set of macroscopic degrees of freedom

without excluding a very broad class of solutions to the Schrodinger equation

as viable physical descriptions of the system in question. Since one would have

to exclude any wave functions that contain a pair of wave packets that inter-

sect in configuration space, the set of wave functions that one must discard will

depend heavily on the dynamics of the particular system, which makes such an

exclusion seem especially ad hoc.

Bowman has suggested invoking environmental decoherence - and therefore

abandoning the assumption of isolation - as the explanation for a restriction to

narrow wave packets; while the analysis that I provide below agrees with this

approach, Bowman’s analysis overlooks certain subtleties involving the need

specifically for configuration space decoherence, and is less comprehensive in

that it does not consider the stucture of the total pure state of the closed system

SE, but only that of the mixed state of the open system S.

As in the case of Bare/Everett theory, another problem with attempting

to model classical behavior using an isolated macroscopic system is that the

assumption of isolation is highly unrealistic. While microscopic environmental

degrees of freedom are often ignored in classical descriptions of macroscopic sys-

tems, the extreme succeptibility of macroscopic superpositions in these systems

to entanglement with their environment requires us to consider the effect of the

environment when we are examining such systems at the quantum level. In

section 2.5.4, we shall see in more detail what sort of effect interaction with the

environment can have on such a system.

2.5.2 The Quantum Potential Approach

The most popular approach to explaining Newtonian behavior on the basis of

Bohm’s theory is the so-called ‘quantum potential’ approach (see, e.g., [51] Ch.6,

[1], [15] ). Consider a closed system, such as the system S we have been dis-
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cussing, and assume initially, as before, that there is no interaction or entangle-

ment with any external environment E. If one plugs in the polar decomposition

of the wave function, ψ(x, t) = R(x, t) exp[ iS(x,t)
~ ], where R and S are real, into

the time-dependent Schrodinger equation, one obtains the following pair of cou-

pled differential equations for R and S (one corresponding to the real part of

Schrodinger’s equation and one to the imaginary part):

∂S

∂t
+

1

2m
(∇S)2 + V − ~2

2m

∇2R

R
= 0, (2.141)

∂R2

∂t
+∇ · (R2∇S

m
) = 0. (2.142)

The first of these equations is the Hamilton-Jacobi equation, but with an ad-

ditional ‘quantum potential’ term, Q ≡ − ~2

2m
∇2R
R , added to the usual classical

potential V . The second is a continuity equation for the probability distibution

R2. In the limit Q → 0, the solution S becomes a solution to the classical

Hamilton-Jacobi equation, and the trajectories that it determines through the

guidance equation (which also appears in classical Hamilton-Jacobi theory),

q̇i =
1

m
∇S(x, t), (2.143)

are Newtonian in form.

Moreover, from (2.141) and (2.143) one can deduce the following Bohmian

version of Newton’s Second Law:

m
d2q

dt2
= −∇V −∇Q. (2.144)

The term −∇Q, which I denote Q′ for short, is sometimes referred to as the

‘quantum force.’ Here, the classical equation of motion is retrieved if Q′ van-

ishes.

Thus, the Bohmian trajectories q(t) of an isolated quantum system like S

are approximately classical in form whenever the conditions Q′ → 0 and Q→ 0,
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sometimes called the ‘canonical conditions’ for classicality in pilot wave theory,

are satisfied; in fact, they will be classical in form as long as Q is a constant.

Here, just as in classical mechanics, one has macroscopic centers of mass travers-

ing classical trajectories. For this reason, it is tempting in Bohm’s theory to

characterise macroscopic classical motion in terms of an isolated quantum sys-

tem like S, in which the conditions Q′ → 0 and Q→ 0 are satisfied.

There are two primary flaws with this approach.

1) First, the quantum potential cannot be relied upon to remain small even

in isolated macroscopic systems with large mass.

It may appear on the surface that in order for the center of mass to follow

a classical trajectory, it suffices for the system to have large mass because the

quantum potential Q = − ~2

2m
∇2R
R , which characterizes deviations of Bohmian

trajectories from classicality, becomes negligible as the mass m becomes macro-

scopically large. However, it may happen as a rather generic phenomenon that

the term ∇2R
R in the quantum potential becomes large enough to cancel out the

effects of m being large. As we saw in the last section, when two initially sepa-

rated wave packets converge in configuration, the no-crossing rule for Bohmian

trajectories (associated with a single pure state) prevents these trajectories from

following the wave packet in which they initially lay. The Bohmian trajectories

become highly non-classical, and, returning to equation (2.141) or (2.144), it

is easy to see that this non-classical effect must be attributed to the quantum

potential or force.

2) The second reason that the quantum potential approach does not work

is that the quantum potential and force, as they occur in the above equations,

and as they ordinarily are presented, are only well-defined for systems in a pure

state. When the system S is open to the environment E, the above equations

involving the quantum potential and quantum force on system S no longer

apply. Yet it is these equations that form the basis for the quantum potential

approach to explaining classical behavior of S in Bohm’s theory. Thus, the
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quantum potential approach, as it usually presented, does not apply to the

systems for which we ought to expect actual classical behavior to occur. Some

accounts of classical motion in pilot wave theory do attempt incorporate the

effects of environmental decoherence into a quantum potential approach [1],

[15]. However, these accounts do not offer any specific suggestions as to how to

quantum potential should be defined in the context of open systems, or why it

should be negligible in the context of such systems. One can define the quantum

potential for the closed system SE, but since behavior of the microscopic degrees

of freedom in the environment should be non-classical in nature (consider an

electron in one of the atoms of the macroscopic body), we would not expect this

quantum potential to be zero.

While it may be possible to modify the quantum potential approach so as

to address these criticisms, no such modification has yet been given in the

literature.

2.5.3 Other Approaches

Unlike the most other accounts of classicality in Bohm’s theory, which rely on

the quantum potential, Bowman has suggested in [16] and [17] that narrow wave

packets and Ehrenfest’s theorem lie at the root of classical behavior; moreover,

he asserts, as I do below, that decoherence lies at the root of explaining why

macroscopic systems can reliably be expected to be in states which are effectively

narrow wave packets. However, Bowman’s analysis is approached from the

perspective of S’s being a open system, without analysing the full dynamics of

the closed system SE in which S is contained. Moreover, he does not recognise

the insufficiency or decoherence simpliciter to account for classical behavior in

Bohm’s theory, and the need specifically for configuration decoherence. The

analysis that I provide in a number of respects extends Bowman’s approach to

fill these gaps.

Appleby, also, has examined the behavior of Bohmian trajectories in the con-
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text specifically of a quantum Brownian motion model, investigating through

extensive calculation the effects of environmental decoherence on the velocities

of Bohmian configurations, when the system under investigation begins in an

approximate energy eigenstate. While his results are consistent with the classi-

cal evolutions of the Bohmian configuration of the central degrees of freedom,

they do not necessarily imply it. From a template-based perspective, Appleby’s

analysis focuses on a set of narrowly prescribed parameters for a rather specific

model, obscuring the general mechanisms at work in the occurrence of macro-

scopic classical behavior [3], [4].

Below, I offer what I believe to be a more transparent account of macroscopic

classical motion that makes no reference to the quantum potential or force,

and that fills certain gaps or corrects certain flaws in other decoherence-based

accounts. Before doing so, however, I explain why it is essential to consider the

effects of environmental decoherence in explaining the classical trajectories for

macroscopic systems, and how doing so can address the difficulties encountered

in the case of isolated systems.

2.5.4 The Need to Consider the Environment

Above, I considered an example where S was an isolated free system in which

two initially separated wave packets overlap, passing through each other, and

in which the overlap of the packets caused the associated Bohmian trajectories

to become non-classical. Returning to that example, let us now abandon our

assumption that S is isolated and allow the center of mass to become entangled

with the external degrees of freedom in the environment E. Suppose that at

every time the wave function of the closed system SE consisting of the center

of mass and its environment (which may consist of photons, neutrinos, or other

particles of matter) takes the form

|Ψ〉 =
1√
2

[|q1, p〉 ⊗ |φ1〉+ |q2,−p〉 ⊗ |φ2〉], (2.145)
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for some values of q1, q2, and p, where the states |φ1〉 and |φ2〉 belong to E’s

Hilbert space HE and are assumed always to have disjoint supports in E’s

configuration space QE . The disjointness of the supports can be expressed as

the condition

〈φ1|y〉〈y|φ2〉 ≈ 0 for all y ∈ QE (2.146)

where |y〉 is a position (or more accurately, configuration) eigenstate of the en-

vironment. Note that this is the condition for configuration space decoherence,

which implies, but is not equivalent to, the condition that |φ1〉 and |φ2〉 are

orthogonal, the condition for decoherence.

Because of the disjointness of the supports of |φ1〉 and |φ2〉, the two wave

packets comprising |Ψ〉 will never overlap in the total configuration space of the

combined system SE, although the profiles of these wave packets with respect

to the configuration space of the center of mass will overlap. The motion of

Bohmian trajectories in the total system SE’s configuration space follows the

motion of the wave packets in this space. Since these packets never overlap, there

is never any reversal of direction of the Bohmian trajectories. In the center

of mass’ configuration space, the Bohmian trajectories of the center of mass

associated with the two wave packets pass right through each other, and continue

in a straight line. Thus, they remain classical, even though the profiles of the

wave packets with respect to the center of mass configuration space overlap.

This example illustrates how configuration space decoherence suppresses the

non-classical effects of wave packet overlap in S, by virtue of the fact that it

prevents wave packets from overlapping in the total configuration space of the

entire system SE. Note that the above analysis applies irrespective of whether

the environment contains 1 degree of freedom or 1023 degrees of freedom. An

example of the former case is a single high frequency photon or electron destroy-

ing macroscopic coherence of a wave function in position space. Macroscopic

superpositions are extremely sensitive to interactions with environmental de-
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grees of freedom that in a classical description of the same system would exert

negligible influence - providing one among several reasons why the environment

cannot be ignored when attempting to provide a pilot wave, or any quantum,

description of macroscopic systems. In cases where the environment consists of

a very large number of degrees of freedom, this fact typically serves to make the

destruction of coherence effectively irreversible.

The fact that we require a special kind of decoherence, characterised by

equation (2.146), to enforce classicality of the central system’s trajectory also

implies a constraint on the evolution of the environment’s configuration. Since

the environmental states correlated to different wave packets for the central

system have disjoint supports, by equivariance, the Bohmian configuration of

the environment must lie in one of these supports. Equivariance further entails

that this configuration must lie in the support of the environmental state which

is correlated to the wave packet in which the Bohmian configuration of the

central system lies. In this manner, decoherence, which we originally invoked

in order to enforce classicality of the central system’s Bohmian trajectory, also

causes the Bohmian configuration of the environment E to become correlated

strongly with that of the central system S (though this is only the case because

the pointer states in S are narrowly peaked in S’s configuration space).

2.5.5 A DS Template for the Reduction of the CM Model

to the Bohm Model

As we saw in section 2.4, under the dynamical assumptions made there, a fairly

generic 6 quantum state at t = 0, which can be written

|χ0〉 =

∫
dz0 α(z0) |z0〉 ⊗ |φ(z0)〉, (2.147)

can be expected to evolve into a state of the form,

6The time-reversibility of the quantum dynamics requires us to impose some restrictions,
which I will not discuss further here.
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|χ(N∆t)〉 ≈
∫
dz0 α(z0)

∫
Σ1(z0)

...

∫
ΣN (z0)

dz1...dzN Ĉz1,...,zN |z0〉

≈
∑

(i1,...,iN )∈Ir

Ĉi1,...,iN |χ0〉

≈
∑
j0

Ĉj0,jc1 ,...,jcN |χ0〉

(2.148)

where, again, the sequence of integration regions (Σ1(z0), ...,ΣN (z0)) falls ap-

proximately along a Newtonian trajectory starting at z0; likewise, the more

coarse-grained sequence of regions (Σi1 , ...,ΣiN ) falls approximately along New-

tonian trajectories beginning in some region Σi0 , and the still more coarse-

grained sequences (Σ′1jc1 , ...,Σ
′N
jcN

) fall along the Newtonian trajectories beginning

in some region Σ′0j0 . However, in the context of the Bohm theory, the fact that

these sets of histories are decoherent does not suffice to induce irreversible ef-

fective collapse of the state |χ0〉 , and so as a criterion for classical Newtonian

behavior on the Bohm model we must impose the stronger condition of config-

uration space decoherence 7:

〈χ0|Ĉ†z′N ,...,z1 |X, y〉〈X, y|ĈzN ,...,z1 |χ0〉 ≈ 0

for all X, y, if zi and z′i are sufficiently different, for any 1 ≤ i ≤ N .

(2.149)

In fact, we should impose the even stronger condition,

〈φ(z′N , ..., z
′
0)|y〉〈y|φ(zN , ..., z0)〉 ≈ 0

for all y, if zi and z′i are sufficiently different, for any 0 ≤ i ≤ N ,

(2.150)

which will ensure irreversibility of the collapse, given that the number of degrees

7Note that while this condition may be logically stronger than simple decoherence, the
question as to whether it is stronger in practice depends on the dynamics of the system and
more specifically on whether the state comes to satisfy the ordinary decoherence condition,
without configuration space decoherence, on the way to satisfying the configuration space
decoherence condition.
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of freedom in the environment is very large. As a consequence of these relations,

configuration space decoherence also holds among histories in the more coarse-

grained history spaces:

〈χ0|Ĉ†i′1,...,i′N |X, y〉〈X, y|Ĉi1,...,iN |χ0〉 ≈ 0 for all X, y, if ik 6= i′k, for any 0 ≤ k ≤ N .

(2.151)

〈χ0|Ĉ†j′0,j′c1 ,...,j′cN |X, y〉〈X, y|Ĉj0,jc1 ,...,jcN |χ0〉 ≈ 0 for all X, y, if j0 6= j′0. (2.152)

Assuming that the quantum state has the structure specified by these relations,

the disjointness in configuration space entails that the total configuration of SE

will not drift between branches (taking for granted the No Drift Conjecture),

and that all but one branch effectively can be ignored in assessing the Bohmian

configuration’s dynamics. At the most coarse-grained level, we can ignore all but

one branch, so the state |χ(N∆t)〉 can be replaced by the effectively collapsed

state corresponding to a single branch, so that

|χeff (N∆t)〉 =
1

W (j0, jc1, ..., j
c
N )
Ĉj0,jc1 ,...,jcN |χ0〉 (2.153)

=
1

W (j0, jc1, ..., j
c
N )

∫
Σ0
j0

∫
Σ1
jc1

...

∫
ΣN
jc
N

dz0dz1...dzN B(z0, z1, ..., zN )|zN 〉 ⊗ |φ(z0, z1, ..., zN )〉

(2.154)

for some j0.

Turning to configuration space, Q = QS ⊕QE , we have for the ε-support in

Q of the branch 1
W (j0,jc1 ,...,j

c
N ) Ĉj0,jc1 ,...,jcN |χ0〉
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SEj0,jc1 ,...,jcN ≡ suppε
[
Ĉj0,jc1 ,...,jcN |χ0〉

]
=

⋃
z0∈Σ0

j0
,...,zN∈ΣN

jc
N

(SzN × EzN ,...,z0) ,

(2.155)

where SzN ≡ suppε
(
|zN 〉

)
and EzN ,...,z0 ≡ suppε

(
|φ(zN , ..., z0)〉

)
. After effective

collapse, we have that

Q ∈ SEj0,jc1 ,...,jcN ⊂ Q (2.156)

for some branch (j0, j
c
1, ..., j

c
N ). Defining Ej0,jc1 ,...,jcN ≡

⋃
z0∈Σ0

j0
,...,zN∈ΣN

jc
N

EzN ,...,z0 ,

and SΣN
jc
N

≡
⋃
zN∈ΣN

jc
N

SzN , it follows that

QS(N∆t) ∈ SΣN
jc
N

⊂ QS (2.157)

qE(N∆t) ∈ Ej0,jc1 ,...,jcN ⊂ QE . (2.158)

Since the region SΣN
jc
N

proceeds roughly along a Newtonian trajectory for in-

creasing N , the configuration QS(N∆t) will do the same. Furthermore, since

Ej0,jc1 ,...,jcN ∩ Ej′0,j′c1 ,...,j′cN = ∅ if j0 6= j′0, (2.159)

the configuration qE becomes correlated through the dynamics to the entire past

trajectory of the wave packet |zN 〉, and since |zN 〉 has narrow support in S’s

configuration space, also to the entire past trajectory of QS .

In order to frame this analysis within the DS approach to reduction, we can

adopt the bridge map

Bridge Map:
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BCMBM : H×Q −→ ΓN

BCMBM : (|χ〉, Q) 7−→
(
QS ,MQ̇S

)
,

(2.160)

which is, notably, distinct from the bridge map employed in the reduction to

the Bare/Everett model (the subscript BM stands for ‘Bohmian Mechanics’).

Also note that the bridge map only depends on the Bohmian configuration QS

of the macroscopic system S, and not on the quantum state |χ〉, and not on

qE .

The dynamical equations of the image model are

Image Model:

d

dt
(MiQ̇S,i) ≈ −

∂V (X)

∂X

∣∣
X=QS

(2.161)

dQS,i
dt

≈ 1

Mi
(MiQ̇S,i), (2.162)

where, recall, the validity of the image model is equivalent to satisfying the DSR

condition. The domain of the image model is

Domain:

dCM =

{
(|χ〉, Q) ∈

(
HS ⊗HE

)
×
(
QS ⊕QE

) ∣∣∣∣
|χ(N∆t)〉 =

∑
j0

Ĉj0,jc1 ,...,jcN |χ0〉
}
,

(2.163)
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where the decoherence of branches and other restrictions on the state
∑
j0
Ĉj0,jc1 ,...,jcN |χ0〉

that were discussed should be taken as implicit. Note that I have made no men-

tion of the Bohmian configuration in the specification of the domain because

there is no need to; if the quantum state lies within the specified domain, the

dynamics of the Bohm model ensure that the Bohmian configuration, what-

ever it happens to be, will follow an approximately Newtonian trajectory. Note

also that no restriction to a particular branch has been made, either in the do-

main or in the bridge map, again because none is needed; the dynamics of the

Bohmian configuration automatically entail this restriction through the process

of effective collapse.

With the bridge rule substitutions:

Bridge Rule:

(X ′(N∆t), P ′(N∆t)) ≡
(
QS(N∆t),mQ̇S(N∆t)

)
. (2.164)

the analogue model is obtained straighforwardly from the image model:

Analogue Model:

dP ′i
dt
≈ −∂V (X)

∂Xi

∣∣
X=X′

(2.165)

dX ′i
dt
≈ 1

Mi
(P ′i ). (2.166)

The ‘strong analogy’ condition 8 states,

8I continue to use the term ‘strong analogy’ only to emphasise the parallels of DS reduction
with the GNS account; ‘approximate agreement’ would more adequately reflect the nature the
relationship in question.
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‘Strong Analogy’:

|X(N∆t)−X ′(N∆t)| < δX

|P (N∆t)− P ′(∆t)| < δP ,

(2.167)

for 0 ≤ t ≤ τ , and is satisfied as long as the image model holds, which we should

expect to be the case on the same timescale as in the Everettian/Bare-QM case.

2.6 Summary

From the analyses of reduction performed in this chapter, we can see that the

occurrence of approximate classical behavior at the macroscopic scale, whether

in the Bare/Everett or in the Bohm model, is grounded in the following sequence

of insights:

1. In the Bare-QM model, environmental decoherence is responsible for quasi-

classicality - that is, approximate localisation - of the the branch-relative

state of S; this localisation permits us to speak of a ‘trajectory’ for S

relative to a particular branch of the total quantum state. In the Bohm

model, quasi-classicality comes automatically as a result of the localisation

of the particle configurations.

2. Ehrenfest’s Theorem, as generalised to the case of open systems, is re-

sponsible for approximate classicality - that is, conformity to Newtonian

equations - of the trajectory of the localised relative state of S over certain

timescales. In the case of the Bohm model, this combined with the fur-

ther requirement of configuration space decoherence ensures approximate

classicality of S’s trajectory on the same timescales.
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3. Three factors determine the rate of wave packet spreading, and therefore

the timescales on which classicality reliably holds in S: the mass of S,

and the strength of chaotic effects on S’s evolution, and pure decoher-

ence. For systems in which chaotic effects are strong, the timescales on

which classicality holds are typically much shorter than for systems in

which these effects can be ignored, in both the Bare/Everett and Bohm

models (in both models ,quasi -classicality, unlike classicality, is ensured

for all times irrespective of chaotic effects). Nevertheless, even for systems

in which chaotic effects are small or nonexistent, the relatively small mea-

sure of wave packet spreading that does occur still causes branching when

the state evolution is examined on sufficiently small scales of length and

momentum.

We will see in Chapter 4 that the same basic pattern of reasoning - decoherence

or definiteness of configurations ensuring quasi-classicality, Ehrenfest’s Theorem

further imposing approximate classicality for narrow wave packets, wave packet

spreading limiting the timescales on which approximate classicality holds - will

apply, in broad outline, to the reduction of classical field theory models to

quantum field theory ones.
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Chapter 3

Quantum Field Theory -

Preliminaries

Chapters 4 and 5 provide templates for the DS reduction of certain models of

classical field theory and of certain models of nonrelativistic quantum mechan-

ics to relativisitic quantum field theory. While quantum field theory is usually

presented in the manifestly covariant Heisenberg picture, or in terms of path

integrals, it will prove particularly helpful in the analysis of DS reduction within

these contexts to approach the reduction from the perspective of the less con-

ventional - and also less fully developed - Schrodinger picture of quantum field

theory, most obviously because it formulates the models quantum field theory

as dynamical systems. In addition, the Schrodinger picture of QFT facilitates

an analysis of decoherence and effective collapse in QFT that closely parallels

the analysis of these subjects in the context of NRQM. Finally, the Schrodinger

picture of QFT forms the basis for Bohmian versions of QFT that have been

proposed in the literature. In section 3.1, I offer a basic introduction to vari-

ous models of quantum field theory in the Schrodinger picture. In section 3.2,

I present the Bohmian versions of several models of QFT. For an extensive

overview of QFT in the Schrodinger picture, the reader may consult Hatfield’s
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[49], Jackiw’s [55], and Jackiw and Floreannini’s [54]. For reviews of the ma-

jor approaches to Bohmian QFT, see Struyve and Westman’s [99], Colin and

Struyve’s [26], and Struyve’s [98].

I emphasise here that, as regards the question of mathematical rigor, there

are a number of approaches one can take to QFT. Arguably the most mathe-

matically rigorous of the approaches to QFT is the algebraic approach, though

currently there do not exist any formulations of realistic, interacting, quantum

field theories within the framework of algebraic QFT; thus, for the moment

at least, in return for the added mathematical sophistication of the algebraic

approach we must incur the rather severe cost of not being able to link the

mathematical models to empirical data, or generally generally to reproduce the

empirical successes of QFT as it is practiced most physicists. It is for this reason

that I adopt an alternative, but admittedly more heuristic, approach to founda-

tional analysis of QFT that has been developed more closely in line with QFT

as it is practiced by most physicists and taught in most textbooks - namely,

what David Wallace has dubbed the ‘cutoff’ approach to QFT, which involves

performing a foundational analysis on QFTs not in the case where the models

are taken to incorporate an infinite number of degrees of freedom, but rather

in the case where the model in question has been regularised by some cutoff

(typically either a lattice or strict bounds on momentum) so that it incorpo-

rates only a large-but-finite number of degrees of freedom, thereby making the

model more mathematically and conceptually tractable. For further details of

the cutoff approach, the reader may consult [108]. For an introduction to and

overview of the algebraic approach, the reader may consult [47].

3.1 QFT in the Schrodinger Picture

In this section, I present the Schrodinger picture models for free scalar and

fermionic quantum field theories, and for interacting scalar quantum field theory

(with λφ4 interaction term) and relativistic QED. As in the case of NRQM,
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quantum field theories can be modelled in terms of a state space

S = H (3.1)

for some Hilbert spaceH, and some Schrodinger dynamics on that Hilbert space,

i
∂

∂t
|Ψ〉 = Ĥ|Ψ〉, (3.2)

for some hermitian Hamiltonian Ĥ on H, and some |Ψ〉 ∈ H. Note that the

although all QFT’s that I consider are relativistically covariant at the level of

the amplitudes that they predict, the Schrodinger picture destroys manifest

Lorentz covariance of the theory by specialising to a particular reference frame

with a particular time parameter t. (Bohmian QFT’s, on the other hand, destroy

more than merely the manifest Lorentz invariance; the dynamics at the level of

the beables breaks fundamental Lorentz invariance as well, while maintaining

Lorentz invariance at the level of the theory’s empirical predictions.)

The choice of the Hilbert space corresponds to a particular choice of rep-

resentation for the quantum field theory’s commutation or anti-commutation

relations. If the number of degrees of freedom in the quantum field theory is

infinite - that is, if no cutoffs are imposed in the infrared and ultraviolet - then

there will be infinitely many unitarily inequivalent representations of these re-

lations. Partly for this reason, algebraic approaches to quantum field theory

attempt to model these theories without specialising to a particular represen-

tation on some Hilbert space, as is done in the Schrodinger picture, but rather

solely on the basis of the algebraic properties of the theory’s observables. I do

not adopt this approach here; for more on the algebraic approach to QFT, the

reader may consult, for instance, [44] or [47]. The approach to quantum field

theory taken here is to address the various difficulties generated by QFT’s infi-

nite degrees of freedom by adopting a large but finite UV cutoff throughout my

analysis (and where necessary, an infrared cutoff as well). The reader should

assume these cutoffs to be implicit in my notation. For a discussion of the con-
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ceptual foundations of the cutoff approach to QFT, see Wallace’s [108]. Most

material here is adapted from the QFT texts of Peskin and Schroeder, Hatfield,

and Srednicki.

3.1.1 Free Scalar Field Theory

The Hamiltonian for a free scalar quantum field theory, also known as Klein-

Gordon theory, is

ĤKG =
1

2

∫
d3x

[
π̂2(x) +

(
∇φ̂(x)

)2

+m2φ̂2(x)

]
, (3.3)

where φ̂(x) and π̂(x) are, respectively, field operators and field momentum op-

erators associated with each point in 3-space x, satisfying the canonical com-

mutation relations

[
φ̂(x), π̂(y)

]
= iδ3(x− y), (3.4)

with all other commutators zero. The Hilbert space of the theory, however it is

defined, must carry a representation of these commutation relations.

Particle Representation

Define the creation and annihilation operators,

â(k) =

∫
d3x eikx

[
Ekφ̂(x) + iπ̂(x)

]
(3.5)

â†(k) =

∫
d3x e−ikx

[
Ekφ̂(x)− iπ̂(x)

]
, (3.6)

with Ek ≡
√
k2 +m2. For later use, the inverse of these relations is

φ̂(x) =

∫
d̃3k

[
e−ikxâ(k) + eikxâ†(k)

]
(3.7)
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π̂(x) =

∫
d̃3k iEk

[
e−ikxâ(k) − eikxâ†(k)

]
. (3.8)

where, following Srednicki’s notation,

d̃3k ≡ d3k

(2π)32Ek
. (3.9)

One can prove on the basis of (3.4) that the â†(k) and â(k) satisfy the commu-

tation relations

[
â(k), â†(k′)

]
= (2π)32Ekδ

3(k − k′). (3.10)

ĤKG then can be rewritten

ĤKG =
1

2

∫
d̃3k Ek

[
â†(k)â(k) + â(k)â†(k)

]
=

∫
d̃3k Ek

[
â†(k)â(k) + (2π)3Ekδ

3(0)
] (3.11)

The term (2π)3Ekδ
3(0) (although divergent with the theory’s UV cutoff) is a

constant and so has no detectable effect, so for convenience we can redefine

ĤKG as

ĤKG =

∫
d̃3k Ek â

†(k)â(k). (3.12)

If |0〉 is the ground state, or vacuum, of ĤKG, so that ĤKG|0〉 = 0, then it is

easily proven that the eigenstates of ĤKG are states of the form

|k1, ..., kn〉 ≡ â†(kn)...â†(k1)|0〉 (3.13)

for n = 1, 2, 3, ..... That is,

ĤKG|k1, ..., kn〉 = (Ek1 + ...+ Ekn) |k1, ..., kn〉. (3.14)
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The states {|0〉, |k1, ..., kn〉} (being eigenstates of a Hermitian operator) form an

orthonormal basis for the state space H of the theory, known as the Fock basis.

In this basis, the identity operator takes the form,

Î = |0〉〈0|+
∞∑
n=1

∫
d3k1...d

3kn |k1, ..., kn〉〈k1, ..., kn|. (3.15)

Thus, a general state |Ψ〉 ∈ H can be expressed in the form

|Ψ〉 = ψ0|0〉+

∞∑
n=1

∫
d3k1...d

3kn ψ̃n(k1, ..., kn) |k1, ..., kn〉 (3.16)

where ψ0 ≡ 〈0|Ψ〉 and ψ̃n(k1, ..., kn) ≡ 〈k1, ..., kn|Ψ〉. The inner product of two

states in this representation is

〈Φ|Ψ〉 = φ0ψ0 +

∞∑
n=1

∫
d3k1...d

3kn φ̃
∗
n(k1, ..., kn) ψ̃n(k1, ..., kn). (3.17)

The Schrodinger equation for free Klein-Gordon QFT,

i
∂

∂t
|Ψ〉 = ĤKG|Ψ〉, (3.18)

entails

i
∂

∂t
ψ0 = 0

i
∂

∂t
ψ̃n(k1, ..., kn, t) = (Ek1 + ...+ Ekn) ψ̃n(k1, ..., kn, t).

(3.19)

This, in turn, entails that the general time-dependent solution takes the form

|Ψ(t)〉 = ψ0(t = 0)|0〉+
n∑
i=1

∫
d3k1...d

3kn ψ̃n(k1, ..., kn, t = 0) e−i(Ek1+...+Ekn)t |k1, ..., kn〉.

(3.20)

Turning attention from k-space to x-space, define the n-particle position space
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wave function as

ψn(x1, ...xn) ≡
∫
d̃3k1...d̃3kn ψ̃n(k1, ..., kn) e−i(k1x1+...+knxn)

= 〈0|φ̂(x1)...φ̂(xn)|Ψ〉.
(3.21)

The inner product between two states in this representation takes the form

〈Φ|Ψ〉 = φ0ψ0 +

∞∑
n=1

∫
d3x1...d

3xn φ
∗
n(x1, ..., xn) ψn(x1, ..., xn). (3.22)

The Klein-Gordon Schrodinger equation entails that

i
∂

∂t
ψ0 = 0

i
∂

∂t
ψn(x1, ...xn, t) =

(√
∇2
x1

+m2 + ...+
√
∇2
xn +m2

)
ψn(x1, ...xn, t)

(3.23)

where
√
∇2 +m2f(x) ≡ C

∫
dk
√
k2 +m2 f̃(k) e−ikx (C is a convention-

dependent normalisation constant for the Fourier integral).

The k-space and x-space expansion coefficients ψ̃n(k1, ..., kn, t) and ψn(x1, ...xn, t)

are the n-particle momentum and position space wave functions, respectively.

Ultimately, the justification for this association must come from a demonstra-

tion that these functions characterise the behavior of n-particle systems - either

quantum or classical - in the appropriate circumstances. At the present stage

of the analysis, though, one major motivation for identifying the operator â†(k)

as creating a single particle of momentum k is that, associating k with momen-

tum and Ek with energy, the state â†(k)|0〉 exhibits the appropriate relativistic

relationship between energy and momentum: namely E2 − k2 = m2.
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Field Representation

An alternative to the Fock basis for the Hilbert space H is the basis of simula-

taneous eigenstates of the field operators φ̂(x). The field operators ˆφ(x) form a

complete set of commuting operators. The eigenstates of this complete set are

the states |φ〉 which are simultaneous eigenstates of all field operators ˆφ(x):

φ̂(x)|φ〉 = φ(x)|φ〉 for all x, (3.24)

where, note, φ(x) is a number representing an eigenvalue of the operator φ̂(x).

The field eigenstates constitute an eigenbasis {|φ〉}, known sometimes as the

field basis. (It is worth noting here that in the case of an inifinite number of

degrees of freedom, the Hilbert space is non-separable since it does not admit a

countable orthonormal basis; however, given the cutoff approach adopted here,

the number of degrees of freedom will typically be taken to be large-but-finite;

the reader should keep this in mind when interpreting my admittedly heuristic

use of notation here.) Being orthonormal, the states {|φ〉} satisfy the relation

〈φ′|φ〉 = δ[φ− φ′], (3.25)

where δ[φ−φ′] is the functional delta function (for a review of functional calculus,

see Hatfield [49]). In this basis, the identity operator on H takes the form

Î =

∫
Dφ |φ〉〈φ|, (3.26)

where
∫
Dφ designates a functional integral over field configurations. The quan-

tum state |Ψ〉 can thus be represented as

|Ψ〉 =

∫
Dφ Ψ[φ] |φ〉, (3.27)

where Ψ[φ] ≡ 〈φ|Ψ〉. Note that this is simply an alternative, equivalent rep-

resentation of |Ψ〉 to the representation provided by (5.1). We can use this

expression for the state |Ψ〉 to determine the action of the operator φ̂ on an
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arbitrary state in H:

φ̂(x)|Ψ〉 =

∫
Dφ φ(x) Ψ[φ] |φ〉. (3.28)

The momentum operator π̂(x) must be defined to act on Ψ[φ] in such a way

as to produce a representation of the commutation relations (3.4). Define the

action of π̂(x) by

π̂(x)|Ψ〉 =

∫
Dφ − i δ

δφ(x)
Ψ[φ] |φ〉 (3.29)

where δ
δφ(x) is the functional derivative with respect to the variable φ(x). It is

then straightforward, using the rules of functional differentiation, to check that

[
φ̂(x), π̂(y)

]
|Ψ〉 =

∫
Dφ−i

(
φ(x)

δ

δφ(y)
− δ

δφ(y)
φ(x)

)
Ψ[φ] |φ〉 =

∫
Dφ iδ3(x−y) Ψ[φ] |φ〉 = iδ3(x−y)|Ψ〉.

(3.30)

Employing the representation of the identity, we obtain an expression for the

inner product of two states:

〈Φ|Ψ〉 =

∫
Dφ Φ∗[φ]Ψ[φ] (3.31)

In the field representation, the Schrodinger equation for free Klein-Gordon field

theory,

i
∂

∂t
|Ψ〉 = ĤKG|Ψ〉, (3.32)

entails

i
∂

∂t
Ψ[φ, t] =

[
− δ2

δφ(x)2
+ (∇φ(x))

2
+m2φ2(x)

]
Ψ[φ, t]. (3.33)

Because the Hamiltonian is time-independent, the solution takes the form

Ψ[φ, t] = Ψ[φ]e−iEt, (3.34)
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and the corresponding time-independent Schrodinger equation takes the form

[
− δ2

δφ(x)2
+ (∇φ(x))

2
+m2φ2(x)

]
Ψ[φ] = EΨ[φ]. (3.35)

where E is an energy eigenvalue. Note that the Schrodinger equation is more

straightforwardly solved in the momentum space particle representation, where

the Hamiltonian is diagonal.

Transforming Between Field and Particle Representations

It is possible to transform between the field and particle representations by

means of straightforward insertions of the identity operator.

Transforming first from the field to the particle representation, we have

ψ0 = 〈0|Ψ〉 =

∫
Dφ 〈0|φ〉〈φ|Ψ〉 =

∫
Dφ Ψ∗0[φ] Ψ[φ] (3.36)

ψ̃n(k1, ..., kn) = 〈k1, ..., kn|Ψ〉 =

∫
Dφ 〈k1, ..., kn|φ〉〈φ|Ψ〉 =

∫
DφΨ∗k1,...,kn [φ] Ψ[φ]

(3.37)

ψn(x1, ..., xn) = 〈x1, ..., xn|Ψ〉 =

∫
Dφ 〈0|φ̂(x1), ..., φ̂(xn)|φ〉〈φ|Ψ〉 =

∫
Dφ φ(x1)...φ(xn) Ψ∗0[φ] Ψ[φ],

(3.38)

where Ψ∗0[φ] is the conjugate vacuum state wave functional and Ψ∗k1,...,kn [φ]

the conjugate wave functional of an n-particle state with momenta (k1, ..., kn).

Explicit expressions for the former and certain of the latter with low particle

numbers can be found in Hatfield [49]. Note that the wave functional for an

n-particle state localised about (x1, ..., xn) is simply φ(x1)...φ(xn) Ψ0[φ].

Transforming in the reverse direction, from the particle to the field repre-
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sentation, we have

Ψ[φ] = 〈φ|Ψ〉 = 〈φ|

(
|0〉〈0|+

n∑
i=1

∫
d3k1...d

3kn |k1, ..., kn〉〈k1, ..., kn|

)
|Ψ〉

= Ψ0[φ] ψ0 +

n∑
i=1

∫
d3k1...d

3kn Ψk1,...,kn [φ] ψ̃n(k1, ..., kn),

(3.39)

where I have inserted the identity operator in the momentum space particle

representation rather than in the field representation.

3.1.2 Theory of the Free EM Field

The Hamiltonian for a free electromagnetic field quantised in Coulomb gauge,

∇ · ~̂A = 0, is

ĤEM =

∫
d3x

[
~̂E2 + ~̂B2

]
=

∫
d3x

[
~̂E2(x) +

(
∇× ~̂A(x)

)2
]
, (3.40)

where the vector potential operator ~̂A(x) and electric field operator ~̂E satisfy

the canonical commutation relations

[
Âi(x), Êj(y)

]
= −iδTij(x− y), (3.41)

where δTij(x− y) is transverse delta function, defined by

δTij(x− y) ≡
(
δij −

∂i∂j
∇2

)
δ3(x− y) =

∫
d3k

(2π)3
eik·(x−y)

(
δij −

kikj
|k|2

)
. (3.42)

It is straightforward to see that, when integrated against an arbitrary vector

vield vi(x), the transverse delta function returns the transverse component of

this vector field (where, recall, this is defined as the vector field whose Fourier

transform is obtained by projecting out the component of vi(x)’s Fourier trans-
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form parallel to ~k, for each ~k.) So,

vTi (x) =

∫
d3y δTij(x− y) vj(y). (3.43)

As in the case of the free scalar field, the EM field state has both particle and

field representations. I consider the particle representation first.

Particle Representation

To extract a particle representation from the model, expand the operators ~̂A(x)

and ~̂E(x) as

~̂A(x) =

∫
d̃3k

∑
λ=1,2

~ε(k, λ)
(
â(k, λ) eik·x + â†(k, λ) e−ik·x

)
(3.44)

~̂E(x) =

∫
d̃3k

∑
λ=1,2

~ε(k, λ) i|k|
(
−â(k, λ) eik·x + â†(k, λ) e−ik·x

)
(3.45)

where again,

d̃3k ≡ d3k

(2π)32Ek
, (3.46)

with Ek = |k| and the ~ε(k, λ) two linear polarisation vectors satifying transver-

sality, ~k · ~ε(k, λ) = 0, and orthogonality ~ε(k, λ) · ~ε(k, λ′) = δλλ′ . The expansion

(3.45) reproduces the canonical commutation relations for ~̂A(x) and ~̂E(x) if

[
â(k, λ), â†(k′, λ′)

]
= (2π)32Ekδ

3(k − k′)δλλ′ , (3.47)

with all other commutators among the a’s and a†’s zero. The Hamiltonian of

the theory then takes the form, after dropping dropping an infinite (or rather

divergent with the UV cutoff) constant,
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ĤEM =
∑
λ=1,2

∫
d̃3k Ek â

†(k′, λ′)â(k, λ). (3.48)

The identity in this representation takes the form

Î = |0EM 〉〈0EM |+
2∑

λ1,...,λn=1

∞∑
n=1

∫
d3k1...d

3kn â
†(kn, λn)...â†(k1, λ1)|0EM 〉〈0EM | â(k1, λ1)...â†(kn, λn)

(3.49)

and a general state |Φ〉 ∈ HEM can be expressed in the form

|Φ〉 = φ0|0〉+
2∑

λ1,...,λn=1

∞∑
n=1

∫
d3k1...d

3kn φ̃
λ1,...,λn
n (k1, ..., kn) â†(kn, λn)...â†(k1, λ1)|0EM 〉

(3.50)

with φ̃λ1,...,λn
n (k1, ..., kn) the n-photon momentum space wave function. Insert-

ing this into the Schrodinger equation as an initial condition, the general solution

for the time evolution of the state is

|Φ〉 = φ0|0〉+
2∑

λ1,...,λn=1

∞∑
n=1

∫
d3k1...d

3kn φ̃
λ1,...,λn
n (k1, ..., kn, t = 0) e−i((|k1|+...+|kn|)t â†(kn, λn)...â†(k1, λ1)|0EM 〉

(3.51)

We could go on to consider the position space representation for the free EM

field state in a manner analogous to the analysis for the free scalar field, but I

will have no use for it in my later analysis.

Field Representation

An alternative representation of the quantum state of the free EM field is pro-

vided by the field eigenstates | ~A〉, which satisfy

~̂A(x)| ~A〉 = ~A(x)| ~A〉 for all x, (3.52)

where, note, ~A(x) is a number representing an eigenvalue of the operator ~̂A(x).

Since ∇ · ~̂A = 0 and ∇ · ~̂A| ~A〉 = ∇ · ~A| ~A〉, all eigenvalue field configurations
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are also transverse: ∇ · ~A = 0. As a reminder that the field configurations

are transverse, I will designate them as ~AT . The field eigenstates constitute an

eigenbasis {| ~AT 〉}; being orthonormal, they satisfy the relation

〈 ~AT
′
| ~AT 〉 = δ[ ~AT − ~AT

′
], (3.53)

where δ[ ~AT − ~AT
′
] is the functional delta function, satifying

f [ ~AT0 ] =

∫
DAT f [ ~AT ] δ[ ~AT − ~AT0 ] (3.54)

where
∫
DAT ≡

∫
DA δ[∇ · ~A] designates a functional integral only over trans-

verse field configurations; note that the delta functional δ[∇ · ~A] enforces the

restriction to transverse field configurations in the integral. In the field basis,

the identity operator on H takes the form

Î =

∫
DAT | ~AT 〉〈 ~AT |, (3.55)

so the quantum state |Φ〉 thus can be represented as

|Φ〉 =

∫
DAT Φ[ ~AT ] | ~AT 〉, (3.56)

where Ψ[ ~AT ] ≡ 〈 ~AT |Φ〉. We can use this expression for the state |Φ〉 to deter-

mine the action of the operator ~̂AT (x) on an arbitrary state in H:

ÂTi (x)|Φ〉 =

∫
DAT ATi (x) Φ[ ~AT ] | ~AT 〉. (3.57)

The canonically conjugate electric field operator Êi(x) must be defined to act

on Φ[ ~AT ] in such a way as to produce a representation of the commutation

relations (3.41). Define the action of ~̂E(x) by

Êi(x)|Φ〉 =

∫
DAT i

δ

δATi (x)
Φ[ ~AT ] | ~AT 〉 (3.58)

where δ
δATi (x)

≡
(
δij − ∂i∂j

∇2

)
δ

δAi(x) is the functional derivative with respect to
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ATj (x). It is then straightforward, using the rules of functional differentiation,

to check that

[
Âi(x), Êj(y)

]
|Φ〉 =

∫
DAT i

(
ATi (x)

δ

δATj (y)
− δ

δATj (y)
ATi (x)

)
Φ[ ~AT ] | ~AT 〉

= −iδTij(x− y)

∫
DAT Φ[ ~AT ] | ~AT 〉,= −iδTij(x− y)|Φ〉,

(3.59)

where I have used the result δ
δATj (y)

ATi (x) = δTij(x − y), which can be proven

straightforwardly using the rules of functional differentiation and the defini-

tion of the transverse projection operator. Employing the representation of the

identity, we obtain an expression for the inner product of two states:

〈Φ|Ψ〉 =

∫
DAT Φ∗[ ~AT ]Ψ[ ~AT ] (3.60)

In the field representation, the Schrodinger equation for free EM field theory,

i
∂

∂t
|Φ〉 = ĤEM |Φ〉, (3.61)

entails

i
∂

∂t
Φ[ ~AT , t] =

∫
d3x

[
− δ2

δ ~AT (x)2
+
(
∇× ~AT

)2
]

Φ[ ~AT , t], (3.62)

where δ2

δ ~AT (x)2
≡
∑3
i=1

δ2

δATi (x)2
is the fuctional Laplacian. Because the Hamil-

tonian is time-independent, the solution takes the form

Φ[ ~AT , t] = Φ[ ~AT ]e−iEt, (3.63)

and the Schrodinger equation takes the form
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∫
d3x

[
− δ2

δ ~AT (x)2
+
(
∇× ~AT

)2
]

Φ[ ~A] = EΦ[ ~AT , t]. (3.64)

where E is the energy eigenvalue. Note that the Schrodinger equation is much

more straightforwardly solved in the momentum space particle representation,

where the Hamiltonian is diagonal.

Coherent States of the EM Field

A particular set of states of the electromagnetic field, known as coherent states,

will prove central to the discussion in the next two chapters. Before defining a

coherent state of the field, though, it is helpful to define the notion of a coherent

state for a single mode k of the field, which in the free theory has the dynamics

of a simple quantum harmonic oscillator. A coherent state |αk〉 of the mode

(k, λ) is defined as an eigenstate of the annihilation operator âk:

âk|α〉k = α|α〉k, (3.65)

where, because âk is not Hermitian, the eigenvalue α may be complex. Inserting

a complete set of energy eigenstates for the mode (which are just the eigenstates

of the quantum harmonic oscillator associated with that mode),
∑
n |nk〉〈nk|,

one has after some calculation that

|α〉k = e−
1
2 |α|

2 ∑
nk

(
αn√
n!

)
|nk〉. (3.66)

Noting that âk = 1√
2ωk

(
ωk

ˆ̃Ak + i ˆ̃Ek

)
and designating α = 1√

2ωk

(
ωkÃ

0
k + iẼ0

k

)
For the wave function of the mode k, we have

φ(Ãk) ≡ 〈Ãk|α〉k =
(ωk
π

) 1
4

e−
ωk
2 (Ãk−Ã0

k)
2
+iẼ0

kÃk (3.67)

Having defined a coherent state of a single mode of the field, we can now define

a coherent state of the whole field, which consists simply of the tensor product

of coherent state wave functions for all modes:
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|α〉 =
⊗
k,λ

|α〉λk (3.68)

As a functional of the whole field configuration, specified by the field Fourier

transform ~̃A(k), the coherent state takes the form

α[ ~̃A] =
∏
k,λ

(ωk
π

) 1
4

e−
ωk
2 (Ãk−Ã0

k)
2
+iẼ0

kÃk

=

∏
k,λ

(ωk
π

) 1
4

 e−
∫
d3k

ωk
2 (Ãk−Ã0

k)
2
+iẼ0

kÃk .

(3.69)

This functional over the field Fourier transform ~̃A(k), describes a product of

states each narrowly peaked about a particular configuration ~̃A0(k) of the field

Fourier transform and simultaneously (to within constraints established by the

canonical field commutators), a particular configuration of Ẽ0(k) of the field

momentum Fourier transform. This state, in turn, corresponds to a wave func-

tional narrowly peaked about a particlar spatial field configuration ~A0(x) and

a particular spatial field momentum configuration ~E0(x). In later chapters,

I designate the coherent state centered on field configuration ~A(x) and field

momentum configuration ~E(x), | ~A, ~E〉.

3.1.3 Free Fermionic Field Theory

The Hamiltonian for a free fermionic field theory, also known as free Dirac field

theory, is

ĤD =

∫
d3x ψ̂†(x) (−i~α · ∇+ βm) ψ̂(x) (3.70)

where ψ̂(x) and ψ̂†(x) are, respectively, 4-spinor field operators and their canon-

ically conjugate field momentum operators associated with each point in 3-space

x, αi = γ0γi, i = 1, 2, 3 and β = γ0, where the γ’s are Dirac matrices. The field

operator and conjugate momentum operator in this theory are stipulated to
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satisfy the canonical anti-commutation relations,

{ψ̂a(x), ψ̂†b(y)} = iδabδ3(x− y), (3.71)

where the 4-spinor indices on the field operators have been made explicit. The

Hilbert space of the theory, however it is defined, must carry a representation

of these anticommutation relations.

Particle Representation

Designating the energy eigenstates of the free Dirac equation ur(k), vs(k) with

r, s = 1, 2, we have

(−i~α · ∇+ βm)ur(k) = Eku
r(k), (3.72)

(−i~α · ∇+ βm) vs(k) = −Ekvs(k), (3.73)

where Ek =
√
k2 +m2. Expand the field operators ψ̂(x) and ψ̂†(x) in terms of

these eigenspinors,

ψ̂(x) =

∫
d̃3k

∑
r

(
b̂r(k) ur(k) eikx + ĉ†r(k) vr(k) e−ikx

)
(3.74)

ψ̂†(x) =

∫
d̃3k

∑
r

(
b̂†r(k) u†r(k) e−ikx + ĉr(k) v†r(k) e−ikx

)
(3.75)

where, in the context of the fermionic theory d̃3k has been redefined as

d̃3k =
d3k√
2Ek

. (3.76)

Stipulating the operators b̂r(k), b̂†r(k), ĉr(k), and ĉ†r(k) to satisfy the anticom-

181



mutation relations

{b̂r(k), b̂s†(k′)} = (2π)3δrsδ
3(k − k′)

{ĉr(k), ĉs†(k′)} = (2π)3δrsδ
3(k − k′),

(3.77)

with all other anticommutators zero, the above expansions of the the field op-

erators reproduces the anticommutators (3.71). In terms of creation and anni-

hilation operators, and subtracting the usual infinite constant, the Hamiltonian

is

ĤD =
∑
r

∫
d3k

(2π)3
Ek[b̂r†(k)b̂r(k) + ĉr†(k)ĉr(k)]. (3.78)

Designating the ground state of this Hamiltonian |0D〉, we can define the n-

particle, l-antiparticle states ĉsl†(pl)...ĉ
s1†(p1) b̂rn†(kn)...b̂r1†(k1)|0D〉, we can

write the identity operator on the Hilbert space HD as in earlier field theories

(the expression is cumbersome and straightforward generalisation of those that I

have written down earlier, so I forego writing it down here). Since the eigenstates

of ĤD constitute a basis, we can expand any state inHD in terms of these states:

|Ψ〉 = ψ0|0D〉

+

∞∑
n=1

∑
r1,...,rn

∫
d3k1...d

3kn ψ̃
r1,...,rn
n,0 (k1, ..., kn) b̂†,rnkn

...b̂†,r1k1
|0D〉

+

∞∑
l=1

∑
s1,...,sl

∫
d3p1...d

3pl ψ̃
s1,...,sl
0,l (p1, ..., pl) ĉ

†,sl
pl

...ĉ†,s1p1 |0D〉

+

∞∑
n,l=1

∑
r1,...,rn,
s1,...,sl

∫
d3k1...d

3kn d
3p1...d

3pl ψ̃
r1,...,rn,
s1,...,sl
n,l (k1, ..., kn; p1, ..., pl)ĉ

†,sl
pl

...ĉ†,s1p1 b̂†,rnkn
...b̂†,r1k1

|0D〉,

(3.79)

where ψ̃
r1,...,rn,
s1,...,sl
n,l (k1, ..., kn; p1, ..., pl) ≡ 〈0|b̂r1k1 ...b̂

rn
kn
ĉs1p1 ...ĉ

sl
pl
|Ψ > and likewise for

the (n, 0), (0, l) and (0, 0) coefficients. Thus, the quantum state of a Dirac field
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with n particles and l antiparticles is encoded in the 2n+l functions ψ̃
r1,...,rn,
s1,...,sl
n,l (k1, ..., kn; p1, ..., pl).

A general state of the field is given by an arbitrary (normalized) superposition

of these states for all positive integral values of n and l and of the vaccuum.

The Schrodinger equation for the free fermionic field is

i
∂

∂t
|Ψ〉 = ĤD|Ψ〉, (3.80)

In the momentum space particle representation, this yields the following uncou-

pled (as in the previous free theories we have considered) dynamical equations

for ψ̃
r1,...,rn,
s1,...,sl
n,l (k1, ..., kn; p1, ..., pl) and the other momentum space coefficients:

i
∂

∂t
ψ0 = 0

i
∂

∂t
ψ̃r1,...,rnn,0 (k1, ..., kn, t) =

(√
|k1|2 +m2 + ...+

√
|kn|2 +m2

)
ψ̃r1,...,rnn,0 (k1, ..., kn, t)

i
∂

∂t
ψ̃
s1,...,sl
0,l (s1, ..., sl, t) =

(√
|p1|2 +m2 + ...+

√
|pl|2 +m2

)
ψ̃
s1,...,sl
0,l (p1, ..., pl, t)

i
∂

∂t
ψ̃
r1,...,rn,
s1,...,sl
n,l (k1, ..., kn; p1, ..., pl, t) =

(√
|k1|2 +m2 + ...+

√
|kn|2 +m2

+
√
|p1|2 +m2 + ...+

√
|pl|2 +m2

)
ψ̃
r1,...,rn,
s1,...,sl
n,l (k1, ..., kn; p1, ..., pl, t)

(3.81)

with solutions

ψ0 = ψ0(t = 0)

ψ̃r1,...,rnn,0 (k1, ..., kn, t) = e
−i
(√
|k1|2+m2+...+

√
|kn|2+m2

)
t
ψ̃r1,...,rnn,0 (k1, ..., kn, t = 0)

ψ̃
s1,...,sl
0,l (p1, ..., pl, t) = e

i
(√
|p1|2+m2+...+

√
|pl|2+m2

)
t
ψ̃
s1,...,sl
0,l (p1, ..., pl, t = 0)

ψ̃
r1,...,rn,
s1,...,sl
n,l (k1, ..., kn; p1, ..., pl, t) =e−i(

√
|k1|2+m2+...+

√
|kn|2+m2−

√
|p1|2+m2−...−

√
|pl|2+m2)tψ̃

r1,...,rn,
s1,...,sl
n,l (k1, ..., kn; p1, ..., pl, t = 0)

(3.82)

The Schrodinger equation for free Dirac theory can also be given a position rep-

resentation. For example, defining ψ
a1,...,an,
b1,...,bl
n,l (~x1, ..., ~xn; ~y1, ..., ~yl) ≡ 〈0D|ψ̂a1( ~x1)...ψ̂an( ~xn)ψ̂†b1(~y1)...ψ̂†bl(~yl)|Ψ >,

we have
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i
∂

∂t
ψ
a1,...,an,
b1,...,bl (~x1, ..., ~xn; ~y1, ..., ~yl; t) =

{[
− i~α · ~∇1 + βm

]a1c1
δa2c2 ... δancn + δa1c1

[
− i~α · ~∇2 + βm

]a2c2
δa3c3 ... δancn

+ ...+ δa1c1 ... δan−1cn−1
[
− i~α · ~∇n + βm

]ancn
+
[
− i~α · ~∇1 + βm

]b1d1
δb2d2 ... δbldl + δb1d1

[
− i~α · ~∇2 + βm

]b2d2
δb3d3 ... δbldl

+ ...+ δb1b1 ... δbl−1dl−1
[
− i~α · ~∇l + βm

]bldl} ψ
c1,...,cn,
d1,...,dl (~x1, ..., ~xn; ~y1, ..., ~yl; t)

(3.83)

and likewise for the other coefficients. Note that in both the momentum and po-

sition representations, the free Schrodinger equation keeps states with different

(n, l) uncoupled.

Field Representation

Due to the anticommuting, rather than commuting, nature of fermionic field

operators, there do not exist states in HD that are simultaneously eigenstates

of all the field operators ψ̂(x) at all positions x. Thus, in the fermionic case,

there is no field eigenbasis in the same way that there is in the case of bosonic

quantum field theory. However, there do exist representations of the canonical

anticommutation relations on a Hilbert space of fermionic functionals, otherwise

understood as elements of an infinite-dimensional Grassman algebra (or rather

very high-dimensional with the cutoffs). There exist strong formal analogies

between the functional formulation of fermionic field theory and the functional

formulation of bosonic field theory; however, because the particle representation

of fermionic field theories will suffice for my purposes, I do not review the

functional formulation of fermionic field theory here. For two distinct Grassman

algebra representations of the fermionic field, see [49] and [35].

3.1.4 Interacting Scalar Field Theory

The Hamiltonian for scalar field theory with a φ̂4(x) interaction term is
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Ĥint =
1

2

∫
d3x

[
π̂2(x) +

(
∇φ̂(x)

)2

+m2φ̂2(x) +
1

4!
λφ̂4(x)

]
. (3.84)

The Hilbert space in this theory is the same as in the case of the free Klein-

Gordon theory, as the presence of an interaction term in the dynamics does not

alter the state space, only the evolution of states within it. The perturbative

calculation of amplitudes such as S-matrix elements produces the famous di-

vergences of quantum field theory at order λ2 and higher in the perturbation

expansion.

However, through the process of renormalisation, the amplitudes predicted

by the theory can be made finite by absorbing the divergences of the theory into

the definitions of m, λ and the normalisation of the field and field momenum

operators φ̂(x) and π̂(x). Specifically, we can rewrite Ĥint in the form

Ĥint = Ĥr
int + ĤCT = Ĥr

KG + Ĥr
I + ĤCT , (3.85)

where Ĥr
int = Ĥr

KG + Ĥr
I and,

Ĥr
KG ≡

1

2

∫
d3x

[
π̂2
r(x) +

(
∇φ̂r(x)

)2

+m2
rφ̂

2
r(x)

]
Ĥr
I ≡

1

4!

∫
d3x λrφ̂

4
r(x)

ĤCT ≡
1

2

∫
d3x

[
−δZ
Z

π̂2
r(x) + δZ

(
∇φ̂r(x)

)2

+ δm2 φ̂2
r(x) +

1

4!
δλ φ̂4

r(x)

]
,

(3.86)

where φ̂(x) = Z
1
2 φ̂r(x), π̂(x) = Z−

1
2 π̂r(x), so that

[
φ̂r(x), π̂r(y)

]
= iδ3(x − y)

), and where δZ ≡ Z − 1, δm ≡ Zm − mr, and δλ ≡ Z2λ − λr; the field

renormalisation Z is defined by Z = |〈Ω|φ̂(0)|λ0〉|2, where |Ω〉 is the vacuum of

the fully interacting Hamiltonian Ĥint and |λ0〉 is an eigenstate of Ĥint with field

momentum zero, so ~̂P |λ0〉 = 0 (for further discussion of the field renormalisation
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constant and its significance, see [79]).

The renormalised mass mr and renormalised coupling λr are finite values

fixed by measurements of particular amplitudes of the theory, which establish

the so-called renormalisation conditions of the theory. If λr is sufficiently small,

the renormalisation conditions can be used to perturbatively compute the values

of the counterterms order by order in λr.

The Schrodinger equation for λφ̂4 theory is

i
∂

∂t
|Ψ〉 = Ĥint|Ψ〉. (3.87)

Splitting Ĥint into the renormalised free Hamiltonian Ĥr
KG, whose solutions we

know, and the perturbative interaction term V̂ ≡ Ĥr
I + ĤCT , we can write

i
∂

∂t
|Ψ〉 =

[
Ĥr
KG + V̂

]
|Ψ〉. (3.88)

Expressed in this form, it is possible to solve for the perturbed energy eigenvalues

and energy eigenstates using the traditional Rayleigh-Schrodinger perturbation

theory familiar from nonrelativistic quantum mechanics. That is, designating

the perturbed energy Ek1,...,kn , the unperturbed energy E
(0)
k1,...,kn

, the order λr

correction E
(1)
k1,...,kn

, the order λ2
r correction E

(2)
k1,...,kn

, and so on, we have

Ek1,...,kn = E
(0)
k1,...,kn

+ E
(1)
k1,...,kn

+ E
(2)
k1,...,kn

+ ... (3.89)

and likewise for eigenstates of the Hamiltonian,

|k1, ..., kn〉 = |k1, ..., kn〉(0) + |k1, ..., kn〉(1) + |k1, ..., kn〉(2) + ... (3.90)

where |k1, ..., kn〉(0) is the eigenstate of the renormalised free Hamiltonian Ĥr
KG

with momenta (k1, ..., kn), and |k1, ..., kn〉 the corresponding eigenstate of the

perturbed Hamiltonian Ĥint. Rayleigh-Schrodinger theory enables us to calcu-

late the corrections to the energy eigenvalues and eigenstates order by order in
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λr. For example,

E
(1)
k1,...,kn

= (0)〈k1, ..., kn|V̂ |k1, ..., kn〉(0) (3.91)

|k1, ..., kn〉(1) =
∑

E
(0)
p1,...,pm

6=E(0)
k1,...,Ekn

(0)〈p1, ..., pm|V̂ |k1, ..., kn〉(0)

E
(0)
k1,...,kn

− E(0)
p1,...,pm

|p1, ..., pm〉(0).

(3.92)

Hatfield has performed this calculation up to first order for the vacuum state

and for one- and -two particle states. (As far as I am aware, no calculation to

1-loop order in this framework has been published.)

3.1.5 Quantum Electrodynamics

The Hamiltonian for quantum electrodynamics, quantised canonically in Coulomb

gauge, is

ĤQED =

∫
d3x

[
ψ̂†(−i~α·∇+βm)ψ̂+

1

2
( ~̂E2+ ~̂B2)+eψ̂†~α· ~̂Aψ̂

]
+
e2

8π

∫
d3x d3y

ρ̂(x)ρ̂(y)

|x− y|
,

(3.93)

where ρ̂(x) ≡ eψ̂†(x)ψ̂(x). The commutation relations for the fermionic and

bosonic field operators are the same as in the respective free field versions of

these theories, and the fermionic and bosonic operators commute with each

other. The state space of the theory is the tensor product of the fermionic

Hilbert space and the electromagnetic Hilbert space:

HQED = HD ⊗HEM . (3.94)

Note that the operators ψ̂, ψ̂†, and therefore ρ̂, are operators onHD, while ~̂A, ~̂B,

and ~̂E are operators on HEM . In the Hamiltonian, they should be understood

as operators extended to the full Hilbert space by tensoring with the identity on

the Hilbert on which they are not originally defined: e.g., ψ̂†⊗ ÎEM , or ÎD ⊗ ~̂A.
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As in the case of the interacting scalar field, we can rewrite the Hamiltonian by

splitting it into renormalised and counterterm parts:

ĤQED = Ĥr
QED + ĤCT = Ĥr

D + Ĥr
EM + Ĥr

I + Ĥr
C + ĤCT , (3.95)

where

Ĥr
D ≡

∫
d3x

[
ψ̂†r(−i~α · ∇+ βmr)ψ̂r

Ĥr
EM ≡

∫
d3x

1

2

(
~̂E2
r + ~̂B2

r

)
Ĥr
I ≡ er

∫
d3x ψ̂†r~α · ~̂Arψ̂r

Ĥr
C ≡

e2
r

8π

∫
d3x d3y

ρ̂r(x)ρ̂r(y)

|x− y|

ĤCT ≡
1

2

∫
d3x

[
ψ̂†r(−iδ2~α · ∇+ βδm)ψ̂r +

1

2
δ3

(
~̂E2
r + ~̂B2

r

)
+ δe ψ̂†r~α · ~̂Arψ̂r

]
,

(3.96)

where ψ̂(x) = Z
1/2
2 ψ̂r(x), Âi = Z

1/2
3 Âri , δm = Z2m−mr, and δe ≡ Z2Z

1/2
3 e−er.

The field renormalisation constant Z2 is defined by the relation 〈Ω|ψ̂(0)|p, s〉 =
√
Z2u

s(p) (again, see [79] for further discussion of the field renormalisation’s

signficance). As in the case of interacting scalar field theory, the renormalised

mass and coupling are defined by suitable renormalisation conditions, which I do

not include since they go beyond what is needed for the analysis provided in the

next two chapters; I do, however, assume that the renormalisation conditions

fix mr at the usual value for the electron mass and er at the usual value for the

electron charge.

The Schrodinger equation for QED is

i
∂

∂t
|Ξ〉 = ĤQED|Ξ〉, (3.97)

where |Ξ〉 ∈ HQED. To apply perturbation theory in the coupling er, we can
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rewrite this in the form

i
∂

∂t
|Ξ〉 =

[
Ĥr
D + Ĥr

EM + Ĥr
C + V̂

]
|Ξ〉, (3.98)

where V̂ ≡ Ĥr
I + ĤCT describes the interaction between the fermionic and

bosonic degrees of freedom of the theory. Note that the renormalised Coulomb

portion of the Hamiltonian, Ĥr
C , introduces a nonlinear interaction among the

momentum modes within HD, but does not cause any interaction between the

fermionic degrees of freedom described by states in HD and the bosonic degrees

of freedom described by states in HEM since it is an operator only on HD.

As we have seen, multiple representations of states in both factor spaces are

possible; to each pair of bases{|fi〉 ∈ HD}, {|bj〉 ∈ HEM}, there corresponds a

basis {|fi〉 ⊗ |bj〉 ∈ HQED} of HQED, and therefore a distinct representation of

the state |Ξ〉:

|Ξ〉 =
∑
i,j

ci,j |fi〉 ⊗ |bj〉, (3.99)

where the sum also may be understood as an integral and the indices as contin-

uous variables for the case of continuously indexed bases.

Applying the Rayleigh Schrodinger formulas in a manner directly analogous

to their application in the case of self-interacting scalar field theory, we may

obtain a perturbative expansion of the energies and energy eignenstates of the

unperturbed Hamiltonian Ĥr
0 ≡ Ĥr

D + Ĥr
C + Ĥr

EM . Note that the unperturbed

eigenstates will be product states of fermionic and bosonic eigenstates. The

bosonic eigenstates are simply the eigenstates of the free renormalised EM field

Hamiltonian Ĥr
EM ; the fermionic eigenstates, because of the presence of the

Coulomb term Ĥr
C , will not be the simple momentum states, but rather will

consist of both a discrete set of bound n-particle, l-antiparticle states and a

continuum of unbound n-particle, l-antiparticle states, for each pair of non-

negative integers (n, l).
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3.2 Bohmian QFT

In this section, I review two Bohmian models of quantum field theory, one for

scalar field theory and the other for QED. Both models are deterministic models

with field beables. For a deterministic model of QED with particle beables, see

Colin’s [26]. For a stochastic model of QFT, see for instance Bell’s [9].

3.2.1 Scalar Field Theory

A Bohmian model of scalar field theory can be formulated by close analogy

with the case of NRQM; the guidance equations and posited probability dis-

tributions are not affected by the presence of the λφ4 interaction term, so the

following points apply to both the interacting and free theories. Assume a field

configuration beable η(x). With the choice of field beable, the natural represen-

tation of the quantum state to use is the field or wave functional representation

Ψ[φ, t]. Expanding the wave functional in polar form Ψ[φ, t] = R[φ, t]eiS[φ,t], the

Schrodinger equation (3.87) yields a continuity equation and Hamilton-Jacobi

equation as in the NRQM case. From this, one can extract that the probability

P [φ, t] = |Ψ[φ, t]|2 (3.100)

is preserved equivariantly by the guidance equation,

∂η(x, t)

∂t
=
δS[φ, t]

δφ(x)

∣∣∣∣
φ(x)=η(x)

. (3.101)

That is, if the probability over the possible beable configurations is |Ψ[φ, t = 0]|2

at time t = 0, then it will be |Ψ[φ, t]|2 at all later times.

Effective Collapse

For effective collapse to take place in this theory, the branches of the wave

function, as defined by the ordinary decoherence condition, must be disjoint

specifically with respect to the field configuration space. In the decoherent
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histories framework, this disjointness can be expressed as the condition that

〈Ψ0|Ĉi′n,...,i′1 |φ〉〈φ|Ĉin,...,i1 |Ψ0〉 for all φ ∈ Q and for ik 6= i′k for any 1 ≤ k ≤ n

(3.102)

thus guaranteeing that the branches defined by decoherence are disjoint specif-

ically with respect to the beable configuration space.

3.2.2 Struyve and Westman’s Minimalist Model of QED

Struyve and Westman proposed a Bohmian model of QED in which the sole

beables are those associated with the transverse components ~AT of the elec-

tromagnetic field. The state space of the theory consists of the Hilbert space

of QED, HQED, discussed above, in addition to the field beable configuration

space QEM :

S = HQED ×QEM . (3.103)

Thus, a full specification of the state in this model is (|Ξ〉,~aT ) ∈ HQED ×QEM

(where I have used a lowercase a to distinguish the beable ~aT from the eigenvalue

~AT ). The dynamics of the quantum state of the model, |Ξ〉, has been specified in

eqn. (3.97). The model is thus fully specified once we have provided a guidance

equation for the beable ~aT and a probability distribution over the beables that

is equivariant with respect to the dynamics. Before reproducing Struyve and

Westman’s guidance equation here, a few preliminary remarks will be necessary.

Struyve and Westman begin by Fourier transforming the transverse field and

field momentum operators as follows:

~̂AT (x) =
1

(2π)3

2∑
λ=1

∫
d3k eikx ~ελ(k)q̂λ(k) (3.104)

~̂ET (x) =
1

(2π)3

2∑
λ=1

∫
d3k e−ikx ~ελ(k)π̂λ(k) (3.105)
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with

[q̂λ(k), π̂λ′(k
′)] = δλ,λ′ δ

3(q − q′), (3.106)

and all other commutators for the EM Hilbert space zero. Note that these are

simply the canonical commutation relations (3.41) as applied to the Fourier

transforms of the transverse field and field momentum operators. The operator

q̂λ(k) is the Fourier transform of the field operator corresponding to polarisa-

tion λ; π̂λ′(k
′) is the Fourier transform of the transverse momentum operator

corresponding to polarisation λ′. Also, ~ελ(k) is a transverse polarisation vec-

tor, with ~ελ(k) · ~k = 0,
∑2
λ=1 ε

i
λ(k)εjλ(k) = δij − kikj

|k|2 , ~ελ(k) · ~ελ′(k) = δλ,λ′ ,

~ελ(k) = ~ελ(−k). The operators ~̂AT and ~̂ET are Hermitian, so q̂λ(k) = q̂†λ(−k)

and π̂λ(k) = π̂†λ(−k).

Struyve and Westman take as a basis for the Hilbert space the eigenstates

|q1, q2〉, where q̂λ(k)|q1, q2〉 = qλ(k)|q1(k), q2(k)〉 for all k. That is, each state

|q1(k), q2(k)〉 is a simultaneous eigenstate of q̂λ(k) for every k and λ, and is also

an eigenstate of the Fourier transformed field operator
ˆ̃
~A(k), whose eigenvalues

yield a particular Fourier transform function ~̃A(k) =
∑
λ~ελ(k)qλ(k). Moreover,

the eigenvalues qλ(k) satisfy the relation qλ(k) = q∗λ(−k), as do the eigenvalues

of the Fourier transformed field operator, ~̃A(k) = ~̃A∗(−k).

Struyve and Westman then posit beables for the values of (q1(k), q2(k)), for

every k. Since these values are equivalent to specifying the value of the field

Fourier transform, they are equivalent (at least mathematically, if arguably

not ontologically) to specifying the spatial configuration of the field itself. As

preparation for writing down the guidance equation, let the QED quantum state

|Ξ〉 be written as

|Ξ〉 =
∑
q1,q2

∑
f

Ξ(f ; q1, q2)|f〉 ⊗ |q1, q2〉 (3.107)

where f indexes any basis for the fermionic Hilbert space HD and Ξ[f ; q1, q2] ≡

〈f ; q1, q2|Ξ〉, with |f ; q1, q2〉 ≡ |f〉 ⊗ |q1, q2〉. The probability distribution over
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the beables (q1(k), q2(k)) that Struve and Westman posit is

P [q1, q2; t] =
∑
f

|Ξ[f ; q1, q2]|2. (3.108)

Note that this is simply the ordinary Born Rule probability integrated over the

fermionic degrees of freedom. Writing the state expansion coefficient in polar

form, we have Ξ[f ; q1, q2; t] = R[f ; q1, q2; t]eiS[f ;q1,q2;t]. The guidance equation,

which is explicitly consitructed to be equivariant with respect to the probability

distribution P , then can be written in the form

∂ql(k, t)

∂t
=

1

P (q1, q2, t)

∑
f

|Ξ[f ; q1, q2]|2 δS[f ; q1, q2; t]

δq∗l (k)

∣∣∣∣
q1,q2

. (3.109)

The evolution of (q1(k), q2(k)) determined by this guidance equation determines

the evolution of the beable field configuration ~aT (x) through the relation

~aT (x, t) =
1

(2π)3

2∑
λ=1

∫
d3k eikx ~ελ(k)qλ(k, t). (3.110)

The full dynamics of the theory are thereby specified.

Struyve and Westman further make a point of noting that while the only

beables in this theory are associated with the transverse electromagnetic field,

one may, without any change to the theory’s predictions, attribute beables to the

fermionic degrees freedom simply by choosing some Hermitian operator on HD

and defining the beable as the expectation value of this operator conditional

on the EM field beable configuration. For example, take the charge density

operator ρ̂(x) = eψ̂†(x)ψ̂(x). The beable associated with this operator is

ρ(x, t) ≡
∑
f,f ′ Ξ[f ; q1, q2] ρf,f ′(x) Ξ[f ′; q1, q2]

P [q1, q2; t]

∣∣∣∣
q1(t),q2(t)

(3.111)

where ρf,f ′(x) ≡ 〈f ′|ρ̂(x)|f〉. This equation entails that ρ(x, t) has no dynam-
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ics of its own and is merely ‘along for the ride,’ with its value and evolution

determined entirely by the quantum state |Ξ〉 and the beables (q1(k, t), q2(k, t)).

Effective Collapse in the QED Minimalist Model

Assume that the total state |Ξ〉 of QED consists of a number of approximately

orthogonal branches, so that

|Ξ〉 =
∑
i

ci|Ξi〉 (3.112)

where 〈Ξi|Ξj〉 ≈ 0 for i 6= j. For effective collapse onto one of these branches to

take place, the probability distribution at any given point (q1, q2 in the config-

uration space QEM should be the probability distribution associated with just

one of the branches. That is, effective collapse requires that

P [q1, q2] ≈ Pi[q1, q2] for some i, for all (q1, q2) ∈ QEM . (3.113)

Expanding P [q1, q2] for the state (3.112), we have

P [q1, q2] ≡
∑
f

|Ξ[f ; q1, q2]|2 =
∑
f

∣∣∑
i

Ξi[f ; q1, q2]
∣∣2

=
∑
i

Pi[q1, q2] +
∑
i 6=j

∑
f

Ξ∗i [f ; q1, q2]Ξj [f ; q1, q2]

(3.114)

If we impose the two conditions

∑
f

Ξ∗i [f ; q1, q2]Ξj [f ; q1, q2] ≈ 0 for all (q1, q2) ∈ Q for i 6= j, (3.115)

Pi[q1, q2; t]Pj [q1, q2; t] ≈ 0 for all (q1, q2) ∈ Q for i 6= j (3.116)

the condition (3.113) will be satisfied. Thus, in the case of the minimalist model,

there are two conditions for effective collapse. Alternatively, but equivalently,
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one can formulate these two conditions in terms of spatial configurations ~AT ,

in which case we have

∑
f

Ξ∗i [f ; ~AT ]Ξj [f ; ~AT ] ≈ 0 for all ~AT ∈ Q for i 6= j, (3.117)

Pi[ ~A
T ]Pj [ ~A

T ] ≈ 0 for all ~AT ∈ Q for i 6= j. (3.118)

This case illustrates how the effective collapse conditions in Bohm’s theory de-

pend on the choice of beable.
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Chapter 4

The Classical Domain of

Relativistic Quantum

Electrodynamics

In this chapter, I provide templates for the DS reduction of certain models of

classical electrodynamics to the Bare/Everett and Bohm models of quantum

electrodynamics. Classical electrodynamics (CED) describes a vast and dis-

parate array of systems, ranging from the propagation of electromagnetic waves

through various media, to the behavior of electrical circuits, to the motions of

and radiation produced by elementary particles in an electromagnetic field. In

this chapter, I will be considering the reduction of classical to quantum electro-

dynamics for a very particular kind of system: a small number of elementary

charges, such as electrons, interacting with an electromagnetic field in empty

space. One can find instances of such applications in particle accelerators, where

the laws of classical electrodynamics are used to guide beams of charged ele-

mentary particles, and also to describe the radiation emitted by these particles

[86].

Before beginning to formulate the DS reduction for these cases, I discuss
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a challenge to the internal consistency of CED that was raised by Frisch, and

that was addressed by Muller, Belot, Vickers and Zuchowski. While I agree

that these authors are collectively successful in rebutting Frisch’s particular

concern about the internal consistency of CED, it is important to keep in mind

that the claim of the internal consistency of CED still has yet to be proven.

For the purposes of my analysis here, the question of internal consistency of

CED does not enter in any crucial way since the reductions that I perform

are reductions not of the full theory of CED, whose consistency is at issue,

but of approximations to CED in which either the charge/current distribution

or the electromagnetic field is independently prescribed, and whose internal

consistency is not in doubt. I designate the approximation to CED in which the

charge/current distribution is independently prescribed and the electromagnetic

field solved for using Maxwell’s equations as the ‘Classical Maxwell’ model;

likewise, I designate the approximation to CED in which the electromagnetic

field is independently prescribed and the motion of charge distribution solved

for using the Lorentz Force Law the ‘Classical Lorentz’ model.

Corresponding to the two classical models of CED that I consider in the

context of DS reduction are two models of QED that likewise are only approx-

imations to the full theory of QED; I consider both models in the context of

both the Everettian/Bare and Bohmian interpretations. The first model, which

I call the‘ Quantum Maxwell’ model, takes the evolution of the fermionic degrees

of freedom as classically prescribed and solves for the evolution of the bosonic

quantum state using an effective Hamiltonian where the fermionic charge cur-

rent is given. The second quantum model, which I call the ‘Quantum Lorentz’

model, takes the evolution of the bosonic degrees of freedom as classically pre-

scribed and solves for the evolution of the fermionic degrees of freedom. As we

will see, the Quantum Maxwell and Lorentz models are variations on so-called

‘semiclassical’ models of quantum theory.

After introducing the Quantum Maxwell and Lorentz models, I go on to

derive analogues to Ehrenfest’s Theorem for these models; as I explain shortly,
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the extraction of approximately classical behavior from these models procedes

along lines that are largely analogous to the reduction of nonrelativistic particle

theories considered in Chapter 2, and just as Ehrenfest’s Theorem plays a crucial

role there, so the appropriate analogues to this theorem will here. Subsequently,

I consider the domains of both the Quantum Maxwell and Lorentz models in

the full theory of QED and conclude that they must be product states obeying

a number of other restrictions that I go on to specify. Finally, on the basis of

these considerations, I frame the reduction of the classical to quantum models

in the DS approach.

By analogy with the reduction of classical to quantum models in the nonrela-

tivistic case, we will see that the reduction of classical to quantum models in the

relativistic, field-theoretic context can be understood as proceeding according

to the same basic outline, with modifications:

1. Quasiclassicality: In the Quantum Maxwell and Quantum Lorentz mod-

els, examined the Everttian/Bare context, quasi-classicality can be under-

stood to follow from localisation (either in physical space or in field config-

uration space) that results from decoherence induced by degrees of freedom

external to those under consideration. In the Bohmian context, quasiclas-

sicality in the associated Quantum Maxwell model follows automatically

from the localisation of the electromagnetic field beables; quasiclassicality

in the associated Quantum Lorentz Model is a more complicated matter,

given that the Bohmian minimalist model of QED does not necessarily

incorporate any beables for the fermionic degrees of freedom, so any ap-

pearance of quasiclassicality on the part of these degrees of freedom is

necessarily, in a sense, an illusion created by the behavior of the bosonic

field beables.

2. Ehrenfest Theorems: The appropriate generalisation or analogue of

Ehrenfest’s Theorem in the Quantum Maxwell or Lorentz model ensures,

for special states, approximate classicality of quasiclassical trajectories.
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By analogy with the nonrelativistic case, these special states are also nar-

row, coherent wave packets: to be more specific, in the fermionic sector,

they are states of definite particle number in which all particles are nar-

rowly peaked in both particle position and momentum; in the bosonic

sector, they are coherent states | ~A, ~E〉 of the electromagnetic field nar-

rowly peaked about some classical field configuration and momentum

( ~A, ~E). Moreover, whereas effective collapse of the quantum state in the

Everett/Bare version of these models is ensured by simple decoherence,

in the Bohmian case, disjointness of branches of the state with respect

to the beable configuration space, which amounts to a particular form of

decoherence that is logically stronger than the one required for effective

collapse in the Everett/Bare case, is again required.

3. Wave Packet Spreading and Branching: By disanalogy with the non-

relativistic case, the internal dynamics of the electromagnetic field, as it

turns out, will not generallty cause wave packet coherent states in this

space to spread; this is a consequence of the fact that the free electro-

magnetic field in fact consists of many distinct harmonic oscillators, and

a coherent state of the EM field is built from coherent states for all the

individual oscillators, and the harmonic oscillator is the one system for

which coherent states retain their width. Moreover, because the Maxwell

field couples linearly to its fermionic source term, and because the oper-

ator Maxwell equations are linear in the electromagnetic field operators,

in the Quantum Maxwell model one can always expect expectation values

of the electric and magnetic field operators to exactly obey the classical

Maxwell’s equations. On the other hand, the analogy with the nonrel-

ativistic case does continue to hold in the case of the Quantum Lorentz

model insofar as the internal dynamics of the fermionic sector does typ-

ically cause wave packets in states of definite particle number to spread

out. One should expect that on appropriate timescales, this spreading

will result in branching as the coherent superposition that results from
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the spreading is decohered by interaction either with the electromagnetic

field or with other fermions.

In the Quantum Maxwell model, the factors that affect the rate of

bosonic wave packet spreading are simply those that affect fermionic wave

packet spreading, since bosonic packets do not tend to spread of their own

accord but only indirectly by virtue of their interaction with fermionic de-

grees of freedom (for example, a fermionic state consisting of two widely

separated wave packets for a single particle will tend to generate a su-

perposition of very different classical electromagnetic field configurations,

where each field configuration can be regarded as being generated by a

different one of the quasi-classical fermionic wave packets). In the Quan-

tum Lorentz model, on the other hand, the factors affecting wave packet

spreading are likely to include those that affect wave packet spreading

in the nonrelativistic case: namely the mass of the particles in question

(which, unlike in the nonrelativistic instances I considered, will be small

in the cases I consider here, on the order of the mass of, say, an electron);

it is possible if not likely that chaotic effects also will promote wave packet

spreading in these relativistic cases, though I do not explore this question

in any depth.

The derivation of the Ehrenfest Theorem in the quantum Lorentz model below

is original; in the case of the quantum Maxwell model, as we will see, it is trivial.

The discussion of the reduction of the quantum Maxwell and Lorentz models

to QED, and of the role of decoherence therein, is also original. Finally, the

framing of the reduction of the classical Maxwell and Lorentz models to their

quantum counterparts in the context of the DS approach is also original.

4.1 Models of Classical Electrodynamics

The full theory of classical electrodynamics can be formulated in a Hamiltonian

framework, with state space equal to the Cartesian product of N -particle phase
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space ΓNp and the phase space ΓEM of the transverse electromagnetic field

(continuing to assume the Coulomb gauge condition ∇ · ~A = 0):

S = ΓNp × ΓEM . (4.1)

The equations of motion of the theory take the form

d~qi
dt

=
∂HCED

∂~pi
d~pi
dt

= −∂HCED

∂~qi

(4.2)

∂ ~AT

∂t
=
δHCED

δ ~ET

∂ ~ET

∂t
= −δHCED

δ ~AT

(4.3)

where ~pi = γm~̇qi + e ~A(~qi), and the Hamiltonian HCED, formulated in the

Coulomb gauge ∇ · ~A = 0, is a funcion of the particle positions and canonical

momenta qi and pi, and a functional of the field configuration ~AT (x) and field

canonical field momentum ~ET (x), which is also the transverse electric field:

HCED(~q, ~p; ~A, ~ET ] =
∑
i

√
(~pi − e ~A(~qi))2 +m2+

e2

4π

∑
i 6=j

1

|~qi − ~qj |
+

1

2

∫
d3x

[
~E2
T + ~B2

]
.

(4.4)

Jackson, in his canonical text on classical electrodynamics, notes that most ap-

plications of classical electrodynamics are not applications of this model, which

represents the complete theory of classical electrodynamics, but rather applica-

tions of one of two kinds of model that approximate the full laws of classical

electrodynamics in cases where back reaction effects between charges and field

can be neglected [56]:

• Lorentz Model: First, models in which some background electric and
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magnetic fields ~E(~x, t) and ~B(~x, t) are independently prescribed, and the

motion ~x(t) of charged particles is determined on the basis of the Lorentz

Force Law. In this model, the state space is N-particle phase space:

SL = ΓNp. (4.5)

The dynamics are determined by the effective classical Hamiltonian

Heff
L (~q, ~p) =

∑
i

√
(~pi − e ~A(~qi), t)2 +m2 +

e2

4π

∑
i 6=j

1

|~qi − ~qj |
, (4.6)

in which the kinetic term for the electromagnetic field has been ignored

and a prescribed time evolution for the electromagnetic ( ~A(x, t), ~E(x, t)) -

written in boldface to underscore the fact that it is an independently spec-

ified function - inserted instead into the Hamiltonian. With this Hamilto-

nian, the particle Hamilton equations (4.2) yield the Lorentz Force Law:

d

dt
[γm

d~q(t)

dt
] = e~E(~q(t), t) + e

d~q(t)

dt
× ~B(~q(t), t), (4.7)

where ~E(x, t) = ~ET (x, t) + ~EL(x, t), and ~EL(x) is a longitudinal solution

to the Gauss equation ∇ · ~EL(x) = ρ(x, t) =
∑
i eδ

3(x− qi(t)). Note that

~EL is completely determined by the locations of the charges and therefore

does not constitute an independent degree of freedom of the theory, either

electromagnetic or fermionic.

• Maxwell Model: Second, models in which some possibly time-dependent

charge and current distributions ρ(~x, t) ≡
∑
i eδ

3(~x− ~qi(t)) and ~j(x, t) ≡∑
i e~̇qiδ

3(~x− ~qi(t)) are prescribed, and the resulting electromagnetic field

must be determined on the basis of Maxwell’s equations. In this model,

the state space is the electromagnetic phase space of field configurations

and momenta:

202



SM = ΓEM . (4.8)

The dynamics are determined by the effective classical Hamiltonian

Heff
M [ ~A, ~E] =

∫
d3x

[
~E2
T + ~B2

]
+
∑
i

√(
~pi(t)− e ~A(~qi(t), t),

)2

+m2

(4.9)

where ~qi(t) and ~pi(t) have been written in boldface to indicate that they

are independently prescribed functions. The field Hamilton equations

(4.3) yield Maxwell’s equations:

∂ ~E

∂t
= −∇× ~B + 4π~j, (4.10)

∂ ~B

∂t
= ∇× ~E, (4.11)

where the Maxwell equation ∇ · ~B = 0 is automatically entailed by the

definition ~B ≡ ∇ × ~A, and the Gauss Law ∇ · ~E = ρ does not concern

the electromagnetic degrees of freedom ~ET and ~B, but instead, as a con-

sequence of the Coulomb gauge condition, reflects only the dynamics of

the particle degrees of freedom.

It is on these two models of classical electrodynamics, which should be seen as

approximations to the full dynamics of CED, that I shall focus while discussing

the DS reduction to quantum electrodynamics; the reduction of classical systems

exhibiting back reaction effects is beyond the scope of my analysis. In the next

two sections, I provide distinct templates for the reduction of these models to

QED.

While these two models apply to a wide variety of systems, the specific

applications that I will be considering in my analysis concern the interaction
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of charged elementary particles with the electromagnetic field. As regards ap-

plications of the Lorentz model, the physics used to guide beams of charged

subatomic particles at relativistic energies is nothing other than the classical,

relativistic, Lorentz force law for a single particle in an electromagnetic field.

As regards the description of radiation emitted by a prescribed, generally time-

dependent, charge distribution consisting of a single charged particle, one suc-

cessful application of the Maxwell model is the prediction of the angular and

frequency distribution of synchroton radiation by means of the Lienard-Wiechert

potentials (which in turn are derived from Maxwell’s equations), and also to the

description of low-frequency bremsstrahlung [56]. It is these sorts of relatively

simple, but very important, applications of CED that I seek to understand on

the basis of QED.

While there can be little doubt that classical models have been applied suc-

cessfully to the description of subatomic charged particles and their electromag-

netic interactions, the reader may nevertheless wonder why this should be the

case, given that subatomic particles such as electrons and protons are typically

the types of systems which we expect to behave nonclassically since, because

of their small mass, their wave packets tend to spread on relatively short time

scales. In short, the microscopicness of these systems would seem to preclude

any robust classical behavior on the their part.

However, a little further thought shows that this is not the case. When

particles such as electrons are moving sufficiently quickly, the centers of their

wave packets may traverse a substantial distance in the time it takes their

wave packets to spread. In this time, the position and momentum expectation

values of these wave packets will approximately satisfy Newtonian equations

of motion. To make this assumption more plausible, let us do a back-of-the-

envelope calculation to show that the timescales on which wave packets of a

particle like an electron (mass ∼ 1031kg.) which is moving sufficiently fast (say

106 m/s.) spread are sufficiently long to allow for trajectory-like, Newtonian

behavior to within a reasonable margin of error (say, 10−3m), over the typical
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length of particle tracks observed in a detector (say ∼ 1m.). The timescale on

which a free electron Gaussian wave packet spreads can be determined using

the expression for the width a of the wave packet over time:

a =

√
a2

0 +
4~2t2

m2a2
0

. (4.12)

If the initial packet width is on the order of 10−5m. (we do not want to make

it too narrow initially, or else it will spread too quickly), so that a0 ∼ 10−5m.,

then inserting a ∼ 10−3m., m ∼ 10−31kg., and ~ ∼ 10−34kg.m.2/s., we have

t =

√
m2a2

0

4~2
(a2 − a2

0) =
ma0

2~

√
(a2 − a2

0) ≈ ma0a

2~
∼ 10−3110−510−3

10−34
∼ 10−5s.

(4.13)

If the velocity is semi-relativistic, say 106m./s, then the length of the electron

path over which Newtonian trajecories can be expected to within a margin of

error (trajectory width) of 10−6m is then given approximately by

D = vt ∼ 106m./s10−5s. ∼ 101m. (4.14)

Thus, for particles travelling at velocities that are sufficiently fast, but not nec-

essarily strongly relativistic, Newtonian trajectories can be expected to persist

over length scales of tens of meters, to within a path width of a millimeter.

Thus, behavior in this domain can be approximated as classical, though an

order-of-magnitude adjustment of initial wave packet width or velocity could

disrupt this classicality.

4.2 Worries about the Consistency of Classical

Electrodynamics

Before proceeding to discuss the reduction of CED to QED, it is worth taking a

moment to consider concerns about the internal consistency of CED that have
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recently received a significant amount of attention in the philosophy of physics

literature. While I do not engage in any depth with this debate here, these

concerns are worth taking note of if only to flag the worry that the theory whose

reduction I am considering contains internal contradictions, which of course

will have bearing on the possibility of reducing it to some more fundamental

theory. While my discussion here is limited to reduction in the context of basic

applications of the Lorentz and Maxwell models (quantum and classical), any

completely comprehensive account of the manner in which the exact CED model

- not just the approximations I consider here - reduces to the full QED model

first must place the consistency of CED on firm footing. Here, I discuss one

worry about the internal consistency of CED recently raised by Frisch and the

responses it has elicited; I focus here on Zuchowski’s reply to Frisch’s argument,

which draws on those of Muller, Belot and Vickers, while also diverging from

them in important respects.

Frisch has argued that CED is inconsistent because, he claims, it prescribes

two mutually contradictory ways of setting up energy conservation in its descrip-

tion of an accelerating charged particle [37]. Frisch starts from what Zuchowski

has dubbed Jackson’s ‘two-step procedure,’ in which one either begins with some

prescribed electromagnetic fields and calculates the resulting particle trajectory

from the Lorentz Force Law or one begins with some prescribed charge and cur-

rent distribution and calculates the resulting electromagnetic field. However,

as Zuchowski has observed, Frisch’s inconsistency claim seems to result at least

partially from a failure to recognise that this two-step procedure does not repre-

sent the theory of CED itself, but rather two separate approximations to CED

that work well only in certain contexts and whose solutions do not represent

exact solutions to the full theory of CED. As with the three-body problem in

classical mechanics, solutions to the fully coupled, exact equations of CED have

thus far resisted any exact, closed-form statement and so most applications of

the theory have, as a result, relied on approximations such as the Maxwell and

Lorentz models.
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First, for a charged particle moving in some prescribed electric and magnetic

fields ~E0 and ~B0 (importantly, that are not generated by the particle itself, but

that may be generated by other charges and currents), the energy transfer from

the field to the particle is determined by the relation

1

2
m~̇x2 =

∫
~Fext( ~E0, ~B0) · d~x (4.15)

where ~Fext( ~E0, ~B0) is the Lorentz force associated with the given fields, ~x is

the position of the particle, and the integration extends over the volume over

which the particle’s charge is distributed. However, this prescription does not

take account of the fact that charged particles radiate when they accelerate (a

fact that is verified empirically and that is also expected on a theoretical basis

from Maxwell’s equations), and so lose energy in the process. This energy loss is

sometimes accounted for by the addition of another term to the energy balance,

associated with an internal or ‘self’ force, due to the fields generated by the

particle itself (which are, in turn, determined by Maxwell’s equations):

1

2
m~̇x2 =

∫
~Fext( ~E0, ~B0) · d~x+

∫
~Fint( ~Ep, ~Bp) · d~x. (4.16)

Here, ~Fint is the Lorentz force associated with the fields ~Ep and ~Bp, which

are generated by the charged particle itself and which are determined using

Maxwell’s equations with the charged particle as source.

The conservation relations (4.15) and (4.16) are clearly in contradiction with

each other. On this basis, Frisch concludes that CED, which he understands

to be a theory that neglects the energy loss associated with the self force in

describing the motion of the particle, does not conserve energy. Frisch further

concludes on this basis that the Lorentz equation (which on its own neglects the

self force) is inconsistent with Maxwell’s equations (which entail the presence

of the fields associated that generate the self-force ), and since these are the

central equations of CED, he concludes that CED itself is inconsistent. However,

as Zuckowski notes, Frisch’s notion of inconsistency seems to deviate from the
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more conventional definition, which regards equations as inconsistent only when

they have no solutions; Frisch does not offer any proof of the claim that there

are no solutions to the combined Maxwell and Lorentz equations, but only the

observation that there are two mutually contradictory, and arguably permissible,

ways of setting up energy conservation.

Muller, Belot, Vickers and Zuchowski have all offered extended critiques of

Frisch’s inconsistency argument [74], [10], [106]. I will not review them all here

as this has already been done in Zuchowski’s [116]. However, Zuchowski has

shown that Frisch’s argument against the constitency of CED fails because one

can show, without invoking any approximations, that full CED does indeed

respect energy conservation; when one considers the fully coupled equations of

CED, rather than the approximate two-step procedure, there is no contradiction

or ambiguity about energy conservation; this apparent contradiction is merely an

artefact of the approximation scheme that Frisch considers, which he incorrectly

identifies with the full theory of CED. The original proof of energy conservation

for an accelerating charged particle was given by Kiessling in [59]; Zuchowski

presents a simplified version of it specialised to the nonrelativistic case.

As Zuchowski emphasizes, her refutation of Frisch’s argument to the effect

that CED is inconsistent should not be taken to entail that CED is in fact

consistent - only that if it happens not to be consistent, then it is not for the

reasons that Frisch cites. I have restricted my attention in this thesis to the

reduction of the classical Maxwell and Lorentz model in part because there is

not space here to fully and properly engage the more general and much more

difficult question of how to reduce the full interacting CED model. If CED is

indeed inconsistent, then it would be unreasonable to attempt a reduction of the

exact theory of CED to QED; rather, we would have to satisfy ourselves with

analysing the reduction of those particular approximations to the full theory,

such as the Lorentz and Maxwell models , that are internally consistent and

that do generate clear empirically well-confirmed predictions. Pending further

developments on this matter, I have limited myself here to considering the DS
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reduction only of two successful approximations to CED that are mathemat-

ically well-understood and empirically well-confirmed. Because these models

can indeed be treated in the framework of dynamical systems theory, and be-

cause, as I demonstrate shortly, one can construct quantum analogues to the

classical Maxwell and Lorentz models that are likewise approximations to the

full QED model, we are in a position to see whether the classical and quantum

versions of these simplified approximations relate to each other in the way that

DS reduction requires.

Of course, once one has considered the question of the internal consistency

of CED, it becomes natural to inquire as to the internal consistency of QED. On

this question, the matter of the so-called ‘Landau pole’ in the renormalisation

group flow of the ‘physical’ electromagnetic coupling is sometimes cited as a

potential source of internal inconsistency in QED. In order to evade such issues

here, one can, without significant alteration to the theory’s low-momentum pre-

dictions, simply set the high-momentum cutoff for the theory at a scale very

much larger than the momenta involved in the pheneomena under considera-

tion, but less than the momentum at which the renormalised coupling diverges

(for further discussion of the Landau pole, see for instance [5], section 9.9, and

[40]) 1.

As Zuchowski also makes a point of emphasising, the sheer technical difficulty

of devising a closed-form solution to the full model of CED - i.e., of solving

the Maxwell and Lorentz equations simultaneously, rather than iteratively and

perturbatively - in no way entails that solutions to this model do not exist.

As an illustration of this point, she refers back repeatedly to the case of the

three-body problem in classical mechanics. Although this problem has for more

than a century resisted the efforts of mathematicians and physicists to devise

a closed-form solution, it is widely acknowledged that these difficulties do not

entail that the model is inconsistent - that is, that it has no solutions. However,

the consistency of the full CED model clearly needs to be proven, and the nature

1Thanks to David Wallace for a helpful discussion on this point.
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of its solutions better understood, before a fully comprehensive DS reduction of

CED to QED can be carried out.

4.3 The Quantum Maxwell and Lorentz Models

As discussed above, the classical Lorentz and Maxwell models each have quan-

tum counterparts. In the quantum Maxwell model, it is the evolution of the

fermionic degrees of freedom that is prescribed; in the quantum Lorentz model,

it is the evolution of the electromagnetic degrees of freedom that is prescribed.

Quantum Maxwell Model

The quantum counterpart to the Maxwell model has as its state space the

electromagnetic Hilbert space,

SM = HEM (4.17)

and its dynamics are determined by the effective Schrodinger equation,

i
∂

∂t
|Φ〉 = ĤM |Φ〉 (4.18)

where

ĤM |Φ〉 ≡
∫
d3x

[1
2

( ~̂E2
T + ~̂B2) +~j · ~̂A

]
|Φ〉, (4.19)

and ~j(x) is some prescribed classical (that is, c-number- rather than operator-

valued) source current. This model, which I refer to as the quantum Maxwell

model, and is an example of a ‘semiclassical’ model of quantum field theory, in

which one set of degrees of freedom is treated quantum mechanically - in this

case, the bosonic degrees of freedom - while the other is treated classically -

in this case, the fermionic degrees of freedom. (The reader may consult, for

instance, [79], p. 32-33, for a brief introduction to semi-classical models of
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quantum field theory.)

Much of the discussion in section 4.4 will concern the matter of how to reduce

the classical Maxwell model to the quantum Maxwell model. For the moment,

though, I will briefly discuss the reduction of the quantum Maxwell model to

the full QED model, before returning to this matter in section 4.5.

In order that the evolution of the bosonic degrees of freedom in QED may

be approximated by some unitary evolution - i.e. in terms of some Schrodinger

equation, as it is in (4.19) - it is necessary that the underlying QED state in

HD ⊗ HEM remain a product state over the timescale for which the quantum

Maxwell model is expected to apply. In addition, it is also necessary that

the fermionic degrees of freedom not vary too rapidly in time - that is, that

the fermionic state not involve energies that are too high. To see the reason

for this requirement, consider the time derivative of the QED product state

|Ψ(t)〉 ⊗ |Φ(t)〉, as determined by the full QED Schrodinger equation:

∂

∂t
(|Ψ(t)〉 ⊗ |Φ(t)〉) = ĤQED (|Ψ(t)〉 ⊗ |Φ(t)〉) . (4.20)

Now since ∂
∂t (|Ψ(t)〉 ⊗ |Φ(t)〉) = ∂

∂t (|Ψ(t)〉)⊗ |Φ(t)〉+ |Ψ(t)〉 ⊗ ∂
∂t (|Φ(t)〉), if we

stipulate that the fermionic degrees of vary slowly - i.e., ∂
∂t |Ψ(t)〉 ≈ 0 - then

∂
∂t (|Ψ(t)〉 ⊗ |Φ(t)〉) ≈ |Ψ(t)〉 ⊗ ∂

∂t (|Φ(t)〉). If moreover, |Ψ(t)〉 and |Φ(t)〉 are

such that

ĤQED (|Ψ(t)〉 ⊗ |Φ(t)〉) ≈ |Ψ(t)〉 ⊗ Ĥeff
M (|Φ(t)〉) , (4.21)

for some Hermitian operator Ĥeff
M on HEM , then it follows that

|Ψ(t)〉 ⊗ ∂

∂t
|Φ(t)〉 ≈ |Ψ(t)〉 ⊗ Ĥeff

M |Φ(t)〉 (4.22)

and from this, that

∂

∂t
|Φ(t)〉 ≈ Ĥeff

M |Φ(t)〉 (4.23)
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thereby yielding an approximately unitary, pure state evolution for the bosonic

degrees of freedom. To derive the semiclassical quantum Maxwell model dis-

cussed above, we need Ĥeff
M ≈ ĤM .

A full reduction of the semiclassical Maxwell model to the full QED model

goes beyond the scope of my analysis here. Nevertheless, I will endeavour to

provide some level of heuristic insight into how it comes about. Consider for

the moment just the renormalised portion Ĥr
QED = Ĥr

D + Ĥr
C + Ĥr

EM + Ĥr
I of

ĤQED, ignoring the counterterm portion ĤCT .

If |Ψ(t)〉 is slowly varying, then the energies associated with the purely

fermionic portion Ĥr
D+Ĥr

C of the renormalised QED Hamiltonian will be low, so

that by comparison with other terms in the Hamiltonian, (Ĥr
D+Ĥr

C)|Ψ(t)〉 ≈ 0.

If in addition, |Ψ(t)〉 is an approximate eigenstate of the interaction Hamilto-

nian Ĥr
I , so that ψ̂r†(x)~α ·ψ̂r(x) · ~̂A(x)|Ψ(t)〉⊗|Φ(t)〉 ≈ ~j(x) · ~̂A(x)|Ψ(t)〉⊗|Φ(t)〉,

then

Ĥr
I |Ψ(t)〉 ⊗ |Φ(t)〉 =

[∫
d3x erψ̂

r†~α · ~̂Arψ̂r
]
|Ψ(t)〉 ⊗ |Φ(t)〉 (4.24)

≈
[∫

d3x ~j · ~̂Ar
]
|Ψ(t)〉 ⊗ |Φ(t)〉. (4.25)

From this it follows that

Ĥr
QED|Ψ(t)〉 ⊗ |Φ(t)〉 ≈

(
Ĥr
EM + Ĥr

I

)
|Ψ(t)〉 ⊗ |Φ(t)〉 (4.26)

≈ |Ψ(t)〉 ⊗
[∫

d3x
1

2
( ~̂Er2T + ~̂Br2) +~j · ~̂Ar

]
|Φ(t)〉.

(4.27)

in accordance with (4.21), with Ĥeff
M ≈ ĤM , except that here I have employed

only the renormalised portion Ĥr
QED of the QED Hamiltonian rather than the

full Hamiltonian Ĥr
QED + Ĥr

CT , and in ĤM appearing in (4.19) the superscripts

r are omitted. Noting that we have employed in this discussion only the renor-
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malised portion Ĥr
QED of the QED Hamiltonian rather than the full Hamiltonian

Ĥr
QED = Ĥr

QED + Ĥr
CT , we are still left with the issue of how to address the

presence of the counterterms and to account for their effect. I defer this issue

to future research, acknowledging that modifications to the present discussion

may be required in light of the effects of the counterterms.

A full reduction of the classical Maxwell model to QED may take as an

intermediary step the reduction of the quantum Maxwell model to QED. In

doing so, it must explain why and in what domains the quantum Maxwell model

successfully approximates QED. I have offered some heuristic and preliminary

remarks on this matter, though they are no doubt incomplete. In particular, I

have suggested that the domain of QED in which the quantum Maxwell model

applies should be restricted to a domain of states that are approximately product

states, and moreover that the fermionic factor of these product states should be

slowly varying (so, contain only low energies by comparison with those contained

in the bosonic factor). I offer some further suggestions on this matter in section

4.5.

Quantum Lorentz Model

The quantum counterpart to the classical Lorentz model has as its state

space the fermionic Hilbert space,

SL = HD (4.28)

and its dynamics are determined by the effective Schrodinger equation

i
∂|Ψ〉
∂t

= ĤL|Ψ〉, (4.29)

where
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ĤL|Ψ(t)〉 ≡
∫
d3x

[
ψ̂†(−i~α · ∇+ βm)ψ̂ + e ψ̂†~α · ~Aψ̂

+
e2

8π

∫
d3y

ρ̂(x)ρ̂(y)

|x− y|

]
|Ψ(t)〉

(4.30)

with ~A(x) a prescribed classical electromagnetic field. Like the quantum Maxwell

model, this model, which I call the quantum Lorentz model, is semiclassical;

however, in this model it is the electromagnetic field that is treated as classical

and the fermionic field that is treated as quantum in nature.

All of the considerations that applied to the reduction of the quantum

Maxwell model to QED also apply, mutatis mutandis, to the reduction of the

quantum Lorentz model to QED. In particular, while we must require as in

the Maxwell model that the underlying QED state be approximately a prod-

uct state, it should now be the bosonic degrees of freedom, described by the

state |Φ〉, that are slow and so contain only low energies. Moreover, it is now

the bosonic state |Φ〉 that should be an approximate eigenstate of the inter-

action Hamiltonian, so that ψ̂r†(x)~α · ~̂A(x)ψ̂r(x)|Ψ(t)〉 ⊗ |Φ(t)〉 ≈ ψ̂r†(x)~α ·

~A(x)ψ̂r(x)|Ψ(t)〉 ⊗ |Φ(t)〉, where the reader should note that the vector poten-

tial on the right-hand side is now a c-number rather than an operator.

As in the case of the Maxwell model, a full reduction of the classical Lorentz

model may take the reduction of the quantum Lorentz model to QED as an

intermediary step. However, in doing so it must explain why and in what

domains the quantum Lorentz model successfully approximates QED. We have

seen that the QED states that approximately instantiate the quantum Lorentz

model should be approximate product states in which the bosonic degrees of

freedom are low-energy. As I discuss further in section 4.5, the set of QED

states that evolve approximately as product states (again, over some limited

timescale) should include the set of product coherent states (and states close

to these); so, product coherent states for which the bosonic state is low-energy

and an approximate eigenstate of the interaction Hamiltonian (as it will be if
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it is sufficiently narrowly peaked in field configuration space) seem likely to be

among the elements of the Lorentz model’s domain.

4.4 Ehrenfest Theorems for Quantum Maxwell

and Lorentz Models

4.4.1 Ehrenfest Theorem for the Quantum Maxwell Model

As in Chapter 2’s discussion of the classical domain of NRQM, an Ehrenfest

Theorem for the electromagnetic field in the quantum Maxwell model is crucial

to explaining classical behavior of this field. To derive the Ehrenfest Theorem

in this case, it will prove convenient to work in the Heisenberg picture. In the

Heisenberg picture, one finds, if one employs ĤM as the system’s Hamiltonian

and uses the equal-time commutation relations [ÂTi (x, t), Êj(x
′, t)] = −iδTij(x−

x′), that the Heisenberg equations of motion for the operators ~A and ~E take

the form:

~̇AT (x, t) =
∂ ~̂AT (x, t)

∂t
= i[ĤM , ~̂A

T (x, t)] = ~̂ET (x, t) (4.31)

from which it immediately follows that

~̇B =
∂ ~̂B

∂t
= ∇× ∂ ~̂AT

∂t
= ∇× ~̂ET (4.32)

giving the operator form of Maxwell’s magnetic induction equation. Likewise,

~̇ET =
∂ ~̂ET

∂t
= i[ĤM , ~̂E

T ] = −∇× ~̂B + 4π~j, (4.33)

where ~j is the prescribed source current appearing in ĤM . Taking expectation

values with respect to an arbitrary state in HEM , we find

∂〈 ~̂B〉
∂t

= ∇× 〈 ~̂E〉 (4.34)
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and

∂〈 ~̂E〉
∂t

= −∇× 〈 ~̂B〉+ 4π~j. (4.35)

Thus, no matter what the state of the EM field, the expectation values of the

electric and magnetic fields obey classical equations of motion, with ~j standing

in as a prescribed classical source current. That is, no restriction need be placed

on the quantum state in HEM in order for expectation values of the electric and

magnetic fields to behave classically. This fact can be traced back to the fact

that the electromagnetic field couples linearly to the Fermi field, and to the fact

that the operator Maxwell equations are linear in the field and field momentum

operators. However, while general states in the Maxwell model produce classical

evolutions for expectation values of the electromagnetic field, generally it is still

only states | ~A, ~E〉 that are narrowly peaked in field configuration position and

momentum - of which the EM coherent states are a subset - that can reasonably

be called ‘classical.’ For while other states may yield classical evolutions for

expectation values of the EM field operators, these states are widely distributed

about these expectation values and, as we will discuss, prone to entanglement

with fermionic degrees of freedom. This entanglement then can be expected

to cause the branch-relative expectation values of the field operators to evolve

nonclassically, even though the total expectation values always evolve classically.

As we will see in the next section, the universal classical evolution of expectation

values cannot be extended to the Dirac field.

As discussed in Introduction to this chapter, DS reductions of classical mod-

els to quantum ones typically exhibit a common sequence of steps: 1) in the

Bare/Everett model, decoherence ensures quasiclassicality, while in the Bohm

model it is ensured by the definiteness of the field beable configuration; 2) some

analogue of Ehrenfest’s Theorem then ensures classicality, but potentially only

for a restricted domain of states; 3) while decoherence will usually serve to

enforce quasi-classicality at all times, wave packet spreading can disrupt classi-
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cality; the factors that affect wave packet spreading depend most strongly on the

internal dynamics of the degrees of freedom under consideration, though may

also depend on the nature of the interaction with external degrees of freedom.

In the case of the reduction of the classical Maxwell model to the Bare/Everett

version of the quantum Maxwell model, we should expect degrees of freedom

external to the EM field - in particular, the fermions - to help to enforce qua-

siclassicality of field states in systems where we observe the field to behave

classically. I discuss this further in section 4.5. Ehrenfest’s Theorem, however,

does not in this particular case require any restriction to a particular domain of

states in order to ensure that expectation values evolve classically. Rather, the

relevance of coherent states, or of narrow wave packets more generally, to the

classical behavior of electromagnetic fields is derived not from the need for clas-

sicality, but solely from the need for quasiclassicality. As regards wave packet

spreading, in the case of the quantum Maxwell model, the free dynamics of the

EM field do not cause coherent packets to spread. However, it is possible the

external classical source current may furnish an external cause of spreading.

4.4.2 Ehrenfest Theorem for the Lorentz Model

In this section, I derive an Ehrenfest Theorem for the quantum Lorentz model,

which will be essential to reducing the classical Lorentz model. I will specialise

here to the classical model of two electrons, though the analysis can be gen-

eralised straightforwardly to higher numbers. Focusing then on the domain of

2-particle, 0-antiparticle states in the quantum Lorentz model,

|Ψ(t)〉 =

∫
d3x1 d

3x2 ψ
a1a2
2,0 (x1, x2) ψ̂†a1r (x1)ψ̂†a2r (x2) |0rD〉 (4.36)

one can show through straighforward manipulation of the canonical anticom-

mutation relations that the effective Schrodinger for the Lorentz model, (4.29),

entails that
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i
∂

∂t
ψa1a22,0 (x1, x2) =

{[
~α · (−i~∇1 + er ~A(x1)) + βmr

]a1c1δa2c2
+ δa1c1

[
~α · (−i~∇2 + er ~A(x2)) + βmr

]a2c2 +
e2r
4π

1

|x1 − x2|

}
ψc1c22,0 (x1, x2)

(4.37)

for the two-particle wave function ψa1a22,0 (x1, x2, t) ≡ 〈0D|ψ̂a1r (x1)ψ̂a2r (x2)|Ψ(t)〉,

where an infinite constant corresponding to the quantum Coulomb self-energy

has been left out.

As a first step to reducing the classical Lorentz model to the quantum

Lorentz model, I will prove the following generalisation of Ehrenfest’s Theo-

rem for two relativistic Dirac fermions interacting via a Coulomb potential in

a background electromagnetic field (the generalisation to higher numbers of

fermions is straighforward):

Ehrenfest Theorem (2 fermions in background EM field):

d

dt
〈~̂p1〉 =

∫
d3x1 d

3x2 ρ(x1, x2)~E1(x1, x2) +

∫
d3x1 d

3x2
~j(x1, x2)× ~B1(~x1).

(4.38)

where

~j1(x1, x2) ≡ −er
∑
a1a2

ψ†a1a22,0 (x1, x2)~αa1b1δa2b2 ψb1b22,0 , (x1, x2) (4.39)

ρ(x1, x2) ≡ −er
∑
a1a2

ψ†a1a22,0 (x1, x2, t)ψ
a1a2
2,0 (x1, x2), (4.40)

~E1(x1, x2) ≡ ~E1
T (x1, x2) + ~E1

L(x1, x2) (4.41)
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~E1
L(x1, x2) ≡ ∇1

(
e2
r

4π

1

|x1 − x2|

)
, (4.42)

~E1
T (x1) ≡ − ∂

∂t
~A(x1) = − d

dt
~A(x1) (4.43)

~B1(x1) ≡ ∇1 × ~A(x1), (4.44)

〈~̂x1〉 =
∑
a1a2

∫
d3x1d

3x2 ψ
†a1a2
2,0 (x1, x2) (x1)ψa1a22,0 (x1, x2). (4.45)

〈~̂p1〉 =
∑
a1a2

∫
d3x1d

3x2 ψ
†a1a2
2,0 (x1, x2) (−i∇1)ψa1a22,0 (x1, x2). (4.46)

Note that the Ehrenfest relation, though notationally reminiscent of the classical

Lorentz Force Law, does not on its own imply classical evolutions for electron

wave packet trajectories. The proof of this particular Ehrenfest Theorem that

I provide employs the 2-electron Dirac Hamiltonian in prescribed background

field that appears on the right-hand side of (4.37),

Ĥ2e =

{[
~α·(−i~∇1 + er ~A(x1)) + βmr

]a1c1
δa2c2 + δa1c1

[
~α·(−i~∇2+er ~A(x2)) + βmr

]a2c2
+
e2
r

4π

1

|x1 − x2|

}
(4.47)

and designates the Coulomb term Vc ≡ e2r
4π

1
|x1−x2| . The Heisenberg equation of

motion for the 2-electron model with this Hamiltonian entails

Proof:
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d

dt
〈~̂p1 + er ~A(x1)〉 = i〈

[
Ĥ2e, ~̂p1 + er ~A(x1)

]
〉

= i〈
[
Ĥ2e, ~̂p1

]
〉+ ier〈

[
Ĥ2e, ~A(x1)

]
〉

= i〈
[
er~α · ~A(x1), ~̂p1

]
〉+ i〈

[
VC , ~̂p1

]
〉+ i〈

[
er~α · ~̂p1, ~A(x1)

]
〉

= i〈ierαj∇1Aj(x1)〉+ i〈i∇1VC〉+ i〈−ier (~α · ∇1) ~A(x1)〉

= −er
∫
d3x1d

3x2 ψ
†a1a2
2,0 (x1, x2) αa1b1j δa2b2 ψb1b22,0 (x1, x2) ∇1Aj(x1)

+ er

∫
d3x1d

3x2 ψ
†a1a2
2,0 (x1, x2)ψa1a22,0 (x1, x2) ∇1VC

+ er

∫
d3x1d

3x2 ψ
†a1a2
2,0 (x1, x2) αa1b1j δa2b2 ψb1b22,0 (x1, x2) (∇1)j ~A(x1)

(4.48)

where repeated indices have been summed over implicitly, and in going from

the third to the fourth line I have used the identity [p̂i, F (~̂x)] = −i ∂F∂xi . Now,

employing the identity [~j × (∇× ~A)]i = jj∂iAj − jj∂jAi, we have

d

dt
〈~̂p1〉 − er

∫
d3x1 d

3x2 ψ
†a1a2
2,0 (x1, x2)ψa1a22,0 (x1, x2) ~E1

T (x1)

=

∫
d3x1 d

3x2 ρ(x1, x2) ~E1
L(x1, x2) +

∫
d3x1d

3x2
~j(x1, x2)× ~B1(~x1).

(4.49)

or,

d

dt
〈~̂p1〉 −

∫
d3x1 d

3x2 ρ(x1, x2) ~E1
T (x1, x2) =

∫
d3x1 d

3x2 ρ(x1, x2) ~E1
L(x1, x2) +

∫
d3x1 d

3x2 ~j(x1, x2)× ~B1(~x1).

(4.50)

Finally, this yields

d

dt
〈~̂p1〉 =

∫
d3x1 d

3x2 ρ(x1, x2) ~E1(x1, x2) +

∫
d3x1

~j(x1, x2)× ~B1(~x1), (4.51)

which completes the proof.
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Now, given Ehrenfest’s theorem, if the wave packet ψa1a22,0 (x1, x2) is an ap-

proximate product state, so ψa1a22,0 (x1, x2) ≈ ψa11,0(x1)ψa21,0(x2), narrowly peaked

in both position and momentum for both particles 1 and 2, so that both ρ(x1, x2)

and~j1(x1, x2) are substantially different from zero only in a small volume around

(〈x̂1〉, 〈x̂2〉), 2 we can write

d

dt
〈~̂p1〉 ≈

(∫
d3x1d

3x2 ρ(x1, x2)

)
~E1(〈x̂1〉, 〈x̂2〉) +

(∫
d3x1d

3x2
~j1(x1, x2)

)
× ~B1(〈x̂1〉)

= (−er) ~E1(〈x̂1〉, 〈x̂2〉) + (−er)
d〈x̂1〉
dt
× ~B1(〈x̂1〉),

(4.52)

since
∫
d3x1d

3x2 ρ(x1, x2) = −er and, as we will see,
∫
d3x1d

3x2
~j1(x1, x2) =

−er d〈x̂1〉
dt . 3 As mentioned above, the relation

d

dt
〈~̂p1〉 ≈ (−er) ~E1 (〈x̂1〉, 〈x̂2〉) + (−er)

d〈x̂1〉
dt
× ~B1 (〈x̂1〉) , (4.53)

does not suffice to guarantee that position expectation values follow classical

trajectories. What we need in addition is that

〈~̂p1〉 ≈ γmr
d〈~̂x1〉
dt

, (4.54)

with γ the relativistic Lorentz factor, for narrow wave packets. To show that

this is the case, I make use of the identity

〈~̂p1〉 =
1

2
〈Ĥ1

0 ~α+ ~αĤ1
0 〉, (4.55)

where Ĥ1
0 ≡ α · ~̂p1 + βmr is the Dirac Hamiltonian for particle 1 in the absence

of electromagnetic potentials. If ψa1a22,0 (x1, x2) ≈ ψa11,0(x1)ψa21,0(x2) is not only

2Note that by 〈x̂1〉 here, I mean the quantity
∫
d3x1d3x2 ψ

†c1c2
2,0 (x1, x2)

(
x1
)
ψc1c22,0 (x1, x2),

and likewise for 〈x̂2〉. The matter of how to define the position operator x̂1 outside of the
expectation value in relativistic quantum theories is one of the notoriously difficult problems
in the foundations of relativistic quantum theory. One well-known approach to defining such
an operator is the so-called Newton-Wigner method; see, for instance, [46].

3Note that ρ(x1, x2), being a function on configuration space, does not correspond to
ordinary spatial charge density except in the 1-particle case.
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narrowly peaked in x1 and x2 but ψa11,0(x1) is approximately an eigenstate of

~̂p1 in such a way that its spinor components make it also approximately an

eigenstate of Ĥ1
0 , then

〈~̂p1〉 =
1

2
〈Ĥ1

0 ~α+ ~αĤ1
0 〉 ≈ 〈Ĥ1

0 〉〈~α〉. (4.56)

If ψa11,0(x1) is centered about momentum ~p0, then 〈Ĥ0〉 ≈
√
~p2

0 +m2 = γm,

where γ is the Lorentz factor corresponding to the classical 3-momentum ~p0 .

Also, one can check that d〈~̂x1〉
dt = 〈~α1〉 =

∫
d3x1d

3x2
~j1(x1, x2). So, for packets

peaked narrowly in both position and momentum, we have

〈~̂p1〉 ≈ γmr
d〈~̂x1〉
dt

, (4.57)

and thus

d

dt

[
mrγ

d

dt
〈~̂x1〉

]
≈ (−er) ~E1(〈x̂1〉, 〈x̂2〉) + (−er)

d〈x̂1〉
dt
× ~B1(〈x̂1〉), (4.58)

as required for the electron packet to follow an approximately classical trajec-

tory. The generalisation to the N -fermion case proceeds by direct analogy to

the 2-particle case.

4.5 The Domains of the Classical and Quantum

Maxwell and Lorentz Models

The preceding analysis of the Lorentz model strongly suggests that the states

that instantiate approximate classical behavior of the combined fermionic and

electromagnetic degrees of freedom are tensor products of an electromagnetic

coherent state | ~A, ~E〉 and a fermionic state of definite particle number that is

itself a product of 1-particle states localised in both position and momentum

that are also approximate eigenstates of the free renormalised 1-particle Dirac
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Hamiltonian. For notational simplicity, I abbreviate such fermionic N -particle

states |q, p〉. Thus, the states that comprise the classical domain of the Lorentz

model - as well as of the Maxwell model, although as already discussed, classi-

cality of expectation value evolutions is ensured for any state evolution in this

model - are the product wave packet states,

|q, p〉 ⊗ | ~A, ~E〉, (4.59)

and states in the total Hilbert space that are ‘close’ to such states.

Beyond the fact that they yield approximately classical dynamical evolutions

for expectation values, the introduction of product wave packet states is also

motivated by considerations of decoherence. Both the quantum Maxwell and

Lorentz models presuppose that the total state of the combined fermionic and

electromagnetic system remains as a product state, without suffering entangle-

ment, throughout its dynamical evolution. In the dynamics prescribed by the

full QED model, however, a generic product state will evolve into an entangled

state. It is only for special product states in HD ⊗ HEM , if any at all, that

the absence of entanglement between fermionic and bosonic Hilbert spaces will

persist to a reliable approximation under the influence of the QED dynamics,

so that

e−iĤQEDt (|Ψ0〉 ⊗ |Φ0〉) ≈ |Ψ(t)〉 ⊗ |Φ(t)〉. (4.60)

The states satisfying this condition constitute the entanglement-free subspace

of HQED.

It is natural to guess, by analogy with analyses of decoherence in a wide

variety of systems, that the decoherence-free subspace of QED includes the

product coherent states |q, p〉 ⊗ |A,E〉 - that is, that

e−iĤQEDt
(
|q0, p0〉 ⊗ | ~A0, ~E0〉

)
≈ |q(t), p(t)〉 ⊗ | ~A(t), ~E(t)〉. (4.61)
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A more rigorous quantitative analysis - possibly employing Zurek’s well-known

‘predictability sieve’ method - should be given in order to confirm this assump-

tion [77], [117]. However, the assumption is already supported to some extent

by Anglin and Zurek’s analysis demonstrating that pointer states of the elec-

tromagnetic field under a certain model of its interaction with an environment

of massive particles should be coherent states | ~A(t), ~E(t)〉, and by Zurek’s ear-

lier analysis that coherent states of matter degrees of freedom under interaction

with an environment - either electromagnetic or fermionic - should, under fairly

generic assumptions, be coherent states [2], [117].

However, given the assumption that the pointer states of QED are product

coherent states, it should be recongnised that the spreading of wave packets

in the N-electron subspace of the fermionic Hilbert space is likely to limit the

time-scale on which the approximation of a persisting product state holds, since

such spreading is likely to generate entanglement when the N-electron wave

packets become sufficiently broad in position space. (Again, that while the

free fermionic dynamics generically causes spreading of the states |q, p〉, the free

electromagnetic dynamics does not cause the coherent states | ~A0, ~E0〉 to spread;

the states | ~A0, ~E0〉 spread only as a consequence of the interaction between the

electromagnetic and fermionic degrees of freedom.)

For the purposes of moving forward with the analysis, I assume that the

product coherent states and nearby states in HQED resist entanglement, and

restrict my analysis to timescales for which the full QED dynamics approxi-

mately carries coherent product states into other coherent product states.

4.5.1 Dealing with Counterterms

The dynamics of the fermionic quantum state |Ψ(t)〉 in the quantum Lorentz

model is determined by the effective Hamiltonian ĤL; the dynamics of the quan-

tum state in the Maxwell model likewise is determined by ĤM . The analysis

of section 4.3 showed that these effective Hamiltonians could be extracted in

certain state domains as approximations to the renormalised QED Hamilto-
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nian Ĥr
QED. Yet the dynamics of QED are determined by the full Hamilto-

nian Ĥr
QED + ĤCT , which includes the divergent counterterms of ĤCT . For a

complete reduction of the classical Lorentz and Maxwell models to QED, it is

necessary to explain why, even though the quantum Lorentz and Maxwell mod-

els only seem to be underwritten solely by the renormalised Hamiltonian, these

models nevertheless serve as reliable approximations to a dynamics that incor-

porates both the renormalised and counterterm components of the full QED

Hamiltonian. I leave this as a subject for future research.

4.6 DS Reductions of the Classical Maxwell and

Lorentz Models

In this section, I frame the preceding discussion within the context of the DS

approach to reduction.

4.6.1 DS Reduction of Classical Maxwell Model

The bridge map connecting the state spaces of the quantum Maxwell and clas-

sical Maxwell models, BMM , is simply the expectation values of the renormalised

field and field momentum operators:

Bridge Map:

BMM : HEM −→ ΓEM

BMM : |Φ〉 7−→
(
〈Φ| ~̂Ar,T (x)|Φ〉, 〈Φ| ~̂Er,T (x)|Φ〉

)
.

(4.62)

Because expectation values of the electric and magnetic field operators sat-

isfy Maxwell’s equations for any state |Φ〉 ∈ HEM , the domain of the classical

Maxwell model in the quantum one consists of all states in HEM :
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Domain:

dMC = {|Φ〉 ∈ HEM} (4.63)

However, as we have seen, for the classical Lorentz model to apply as well, a

restriction specifically to coherent states | ~A, 〉E〉 is necessary. Also, it should be

noted that since the expectation values used to define the bridge map are not

branch-relative, the classical evolution of the expectation value may not reflect

the behavior of the field in individual branches of the total state.

The laws of the image theory, which ensue satisfaction of the DSR condition,

are

Image Model:

∂〈 ~̂Br〉
∂t

= ∇× 〈 ~̂Er,T 〉 (4.64)

∂〈 ~̂Er,T 〉
∂t

= −∇× 〈 ~̂Br〉+ 4π〈~̂j〉, (4.65)

as proven above. The laws of the analogue theory are then straightforwardly

obtained through the bridge rule substitution

Bridge Rules:

(
~A′(x), ~E′(x)

)
≡
(
〈Φ| ~̂Ar,T (x)|Φ〉, 〈Φ| ~̂Er,T (x)|Φ〉

)
(4.66)

~j′(x) ≡ er〈Ψ(t)|ψ̂r,†(x) ~α ψ̂r(x)|Ψ(t)〉. (4.67)
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Explicitly, the laws of the analogue theory are

Analogue Model:

∂ ~B′

∂t
= ∇× ~E′ (4.68)

∂ ~E′

∂t
= −∇× ~B′ + 4π~j. (4.69)

The ‘strong analogy’ condition,

‘Strong Analogy’:

| ~A(x, t)− ~A′(x, t)| < δA ∀ x

| ~E(x, t)− ~E′(x, t)| < δE ∀ x
(4.70)

is then satisfied for all times since ~A′(x, t) = ~A(x, t) and ~E′(x, t) = ~E(x, t). In

this particular case, the reduction timescale τ is infinite.

4.6.2 DS Reduction of the Classical Lorentz Model

Let us examine now how the results discussed above fit into the framework of

DS reduction.

The bridge map connecting the state spaces of the quantum Lorentz and

classical Lorentz models, BLL , is simply to take the expectation values of particle

position and momentum. Note that the domain of this bridge map is restricted

to the 2-particle states in HD. There may be a way to extend the map to all of

HD so that it coincides with the definition I give here on the 2-particle subspace;

however, the map I provide serves my purposes here:
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Bridge Map:

BLL : HD −→ Γ2p

BLL : |Ψ2p〉 7−→
(
〈x̂1〉, 〈x̂2〉; 〈p̂1〉, 〈p̂2〉

)
=

(∫
d3x1d

3x2 ψ
†c1c2
2,0 (x1, x2)

(
x1
)
ψc1c22,0 (x1, x2),

∫
d3x1d

3x2 x2ψ
†c1c2
2,0 (x1, x2)

(
x2
)
ψc1c22,0 (x1, x2);∫

d3x1d
3x2ψ

†c1c2
2,0 (x1, x2) (−i∇1)ψc1c22,0 (x1, x2),

∫
d3x1d

3x2ψ
†c1c2
2,0 (x1, x2) (−i∇2)ψc1c22,0 (x1, x2)

)
.

(4.71)

The domain of the classical 2-electron Lorentz model is the set of 2-electron

states that are products of 1-electron states that are narrow wave packets in

both position and momentum and approximate eigenstates of the free first-

quantised Dirac Hamiltonian:

Domain:

dL = {|Ψ2e〉 ∈ H2e| |Ψ2e〉 = |q1, p1〉 ⊗ |q2, p2〉}. (4.72)

The laws of the image theory are

Image Model:

d

dt

[
mγ

d

dt
〈~̂x1〉

]
≈ (−e)〈 ~̂Er〉(〈~̂x〉1, 〈~̂x2〉) + (−e)d〈~̂x1〉

dt
× 〈 ~̂Br〉(〈~̂x1〉), (4.73)

as proven above, and likewise for 〈~̂x2〉. The laws of the analogue theory are then

straightforwardly obtained through the bridge rule substitutions
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Bridge Rules:

(x′1, x
′
2; p′1, p

′
2) ≡ (〈x̂1〉, 〈x̂2〉; 〈p̂1〉, 〈p̂2〉) (4.74)

~E
′

T (x, t) = 〈 ~A(t), ~E(t)| ~̂Er,T (x)| ~A(t), ~E(t)〉 (4.75)

~E
′

L(x1, t) = ∇x1

(
er
4π

1

|x1 − x2|

)
(4.76)

~E
′

L(x2, t) = ∇x2

(
er
4π

1

|x1 − x2|

)
(4.77)

~B′(x, t) = ∇× 〈 ~A, ~E| ~̂Ar,T (x)| ~A, ~E〉 (4.78)

Applying these bridge rules to the dynamical equations of image model above,

we obtain the dynamics of the analogue model,

Analogue Model:

d

dt

[
mrγ

dx′1
dt
〉
]
≈ (−er)~E′(x′1, x

′
2) + (−er)

dx′1
dt
× ~B′(x′1), (4.79)

and similarly for x′2. Applying the abbreviation, (x′(t), p′(t)) ≡ (x′1, x
′
2; p′1, p

′
2),

the ‘strong analogy’ condition, which is ensured by validity of these analogue

dynamics, reads

‘Strong Analogy’:
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|x(t)− x′(t)| < δx

|p(t)− p′(t)| < δp.

(4.80)

for 0 ≤ t ≤ τ , where the reduction timescale τ is bounded by the timescale on

which wave packets in H2e spread substantially.

4.7 DS Reduction of CED to Bohmian QED

The preceeding discussion has argued that the domains of the classical Maxwell

and Lorentz models within HQED include the coherent product states |q, p〉 ⊗

| ~A, ~E〉. I suggested that these states likely reside in the decoherence free sub-

space of HQED, and thus likely provide the product states required by both

the quantum Maxwell and quantum Lorentz models. Moreover, the fact that

these states are narrow wave packets provides the added assurance that they

will evolve approximately along classical trajectories, at least on certain limited

timescales. In discussing the reduction of the classical Lorentz and Maxwell

models to the Bohmian minimalist model of QED, I assume, as in the preceding

discussion, that the state, or effective state, of the total system in HQED is a

product coherent state evolving approximately according to classical equations

of motion.

4.7.1 DS Reduction of Classical Maxwell Model to the

Bohmian Minimalist Model

The bridge map connecting the state spaces of the Bohmian minimalist and

classical Maxwell models, BMM ,

Bridge Map:
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BMM : HEM ×QEM −→ ΓEM

BMM :
(
|Φ〉,~aT (x, t)

)
7−→

(
~aT (x, t),−∂~a

T (x, t)

∂t

)
.

(4.81)

The domain of HEM ×QEM that instantiates the classical Maxwell model is

Domain:

dMC =

{(
| ~A, ~E〉,~aT (x, t)

)
∈ HEM ×QEM

∣∣∣∣~aT (x, t) ∈ suppε(〈 ~AT | ~A, ~E〉)
}

(4.82)

since, by equivariance, if the support of the wave packet | ~A, ~E〉 traverses a

Maxwellian evolution, then so must the Bohmian configuration ~aT (x, t). Defin-

ing ~b(x, t) ≡ ∇×~aT (x, t) ~eT (x, t) ≡ −∂~a
T (x,t)
∂t , the laws of the image theory can

be stated

Image Model:

∂~b

∂t
≈ ∇× ~eT (4.83)

∂~eT

∂t
≈ −∇×~b+ 4π〈~̂j〉, (4.84)

where, note, the source current 〈~̂j〉 continues in the Bohmian case to be a

function of the quantum state and not of a Bohmian configuration, in part

because there are no beables corresponding to the fermionic sources, but more

importantly because the beable ~aT (x, t) evolves approximately classically only

by virtue of the fact that the quantum state | ~A, ~E〉 does, and the classical

evolution of | ~A, ~E〉 in turn is one associated with the source current 〈~̂j〉. The
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bridge rules for this model are

Bridge Rules:

(
~A′(x), ~E′(x)

)
≡
(
~aT (x, t),−∂~a

T (x, t)

∂t

)
(4.85)

~j′(x) ≡ 〈Ψ(t)|eψ̂†r(x)~αψ̂r(x)|Ψ(t)〉. (4.86)

Applying these bridge rule substitutions to the image model, we find that the

laws of the analogue model are

Analogue Model:

∂ ~B′

∂t
≈ ∇× ~E′ (4.87)

∂ ~E′

∂t
≈ −∇× ~B′ + 4π~j′. (4.88)

The ‘strong analogy’ condition,

‘Strong Analogy’:

| ~A(x, t)− ~A′(x, t)| < δA ∀ x

| ~E(x, t)− ~E′(x, t)| < δE ∀ x
(4.89)

is then satisfied only for times τ such that the wave packet | ~A, ~E〉 evolves classi-

cally, which in turn occurs only when the electromagnetic and fermionic degrees
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of freedom remain unentangled - that is, when total effective state of HD×HEM

persists approximately as a product state.

4.7.2 DS Reduction of Classical Lorentz Model to the

Bohmian Minimalist Model

Since there are no beables corresponding to the fermionic degrees of freedom in

the QED minimalist model, the motion of electrons as described in the classical

Lorentz model is, in a sense, merely ‘implied’ by the behavior of the beable

radiation field. The domain of Bohmian QED in which the classical Lorentz

model applies approximately is the domain in which the beable radiation field

is approximately one which would be produced by an electron evolving along a

classical trajectory.

The domain of HQED in which the classical Lorentz model applies is the

domain of product coherent states |q, p〉 ⊗ | ~A, ~E〉. Assuming that the state, or

effective state, |Ξ〉 of the full system lies in this domain, then the trajectory

q(t), p(t) followed by the fermionic wave packet |q, p〉, will be approximately

classical. The state | ~A, ~E〉 will be centered on a classical EM field configuration

corresponding to the radiation field generated by this trajectory. So,

|q0, p0〉 ⊗ | ~A0, ~E0〉 =⇒ |qc(t), pc(t)〉 ⊗ | ~A[qc(t)], ~E0[qc(t)]〉 (4.90)

where ~A[qc(t)] is a solution to Maxwell’s equations (in vector potential form)

corresponding to the source distribution ~j(x, t) = er
∑N
i ~̇qc,iδ

3(x − qc,i(t)),

and where i indexes the different charged particles in an N -particle system;

~E0[qc(t)] ≡ −∂
~A[qc(t)]
∂t is the transverse electric field associated with ~A[qc(t)].

Given the assumptions made so far, equivariance requires the beable conifu-

gration ~aT to lie in the support of the wave packet | ~A[qc(t)], ~E0[qc(t)]〉, which

entails

~aT ≈ ~A[qc(t)]. (4.91)
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So the electromagnetic field beable configuration in a sense functions as a record

of the fermionic particle trajectory associated with the wave packet |qc(t), pc(t)〉,

even though there are no fermionic beables associated with the evolution of this

packet. On the minimalist model of Bohmian QED, successful applications of

the classical Lorentz model are instantiated by a Bohmian system in which the

fermionic degrees of freedom are characterised by a wave packet quantum state

of definite particle number, and in which, through the dynamics of the model,

the electromagnetic field beable ~aT [qc(t)] comes to be configured as a radiation

field of the trajectory qc(t).

Because it is ultimately the wave packet evolution in the fermionic Hilbert

space that determines the trajectory qc(t) recorded in the electromagnetic beable

configuration ~aT [qc(t)], the DS reduction of the classical Lorentz model to the

minimalist Bohmian model will proceed much as the reduction of the classical

Lorentz model to the quantum Lorentz model described in section 4.6.2. Recall

that the reduction there also depended essentially on the fermionic wave packets

evolving classically, though for different reasons.

4.8 Summary

In the preceding analysis, I have offered templates for the reduction of two

models of classical electrodynamics both to Bare/Everettian versions of these

models, and to minimalist Bohmian QED. A number of assumptions of have

been taken for granted which require more detailed justification: in particular,

a more detailed analysis should demonstrate that the dynamics determined by

the full QED Hamiltonian ĤQED = Ĥr
QED + ĤCT coincides with the dynam-

ics determined by the quantum Maxwell and Lorentz models in appropriate

domains.
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Chapter 5

The Nonrelativistic Domain

of Quantum

Electrodynamics

In this chapter, I provide two templates for the reduction of the nonrelativistic

quantum mechanics of a spin-1/2 particle to relativistic quantum electrody-

namics. As a preliminary, I first consider the nonrelativistic domain of both

free scalar and free Dirac quantum field theory; not surprisingly, both theories

return the nonrelativistic quantum mechanics of free particles - that is, nonrel-

ativistic quantum mechanics without any potential terms in the Hamiltonian.

I then provide a template for the DS reduction of the nonrelativistic quantum

mechanics model of two spin-1/2 charges in a Coulomb potential to the quan-

tum Lorentz model of QED discussed in the previous chapter; I also provide a

template for the nonrelativistic quantum mechanics model of a single charge in

a background electromagnetic field. Following this, I consider the relation be-

tween Bell’s Bohmian model of a spin-1/2 particle and the minimalist Bohmian

model of QED, and the extent to which a reduction between the two can be

effected.
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Not much work on the nonrelativistic domain of QFT has been done. What

work there is takes an approach completely different from the one taken here,

focusing on the nonrelativistic approximation to S-matrix elements (for example,

see Peskin and Schroeder [79], Colin [25], and Beg and Furlong [8]). Thus, all

of my work here, which takes a completely different approach based on the

Schrodinger picture of QFT, is original as far as I am aware, unless explicitly

stated otherwise.

5.1 The Nonrelativistic Domain of Free Quan-

tum Field Theory

In this section, I will demonstrate the reduction of two models of nonrelativistic

quantum mechanics, the free Schrodinger equation for spinless particles, and the

free Pauli equation for particles of spin-1/2, from free Klein-Gordon quantum

field theory and free Dirac quantum field theory, respectively.

Free Scalar Field Theory

Recall from Chapter 3 that a general state |Ψ〉 in scalar quantum field theory

can be expressed in the form

|Ψ〉 = ψ0|0〉+

∞∑
n=1

∫
d3k1...d

3kn ψ̃n(k1, ..., kn) |k1, ..., kn〉 (5.1)

where ψ0 ≡ 〈0|Ψ〉 and ψ̃n(k1, ..., kn) ≡ 〈k1, ..., kn|Ψ〉. The Schrodinger equation

for free Klein-Gordon QFT,

i
∂

∂t
|Ψ〉 = ĤKG|Ψ〉, (5.2)

entails
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i
∂

∂t
ψ0 = 0

i
∂

∂t
ψ̃n(k1, ..., kn, t) =

(√
|k1|2 +m2 + ...+

√
|kn|2 +m2

)
ψ̃n(k1, ..., kn, t).

(5.3)

If we now restrict the state |Ψ〉 to be a superposition only of states of momentum

of magnitude much less than the mass m - that is, if we restrict ψ̃m(k1, ..., km) =

0 for ki << m ∀i - then we may make the approximation
√
|ki|2 +m2 ≈ m +

1
2mk

2
i . It is this approximation that ultimately accounts for the emergence of

nonrelativistic behavior. Under this approximation, the Schrodinger equation

for the momentum space wave functions take the form

i
∂

∂t
ψ0 = 0

i
∂

∂t
ψ̃n(k1, ..., kn, t) ≈

(
nm+

1

2m
k2

1 + ...+
1

2m
k2
n

)
ψ̃n(k1, ..., kn, t).

(5.4)

Returning to the position representation ψn(x1, ..., xn, t) ≡ 〈0|φ̂(x1)...φ̂(xn)|Ψ〉

the Schrodinger equation takes the form

i
∂

∂t
ψn(x1, ..., xn, t) ≈ (nm− 1

2m
∇2

1 − ...−
1

2m
∇2
n)ψn(x1, ..., xn, t). (5.5)

This equation predicts the same amplitudes (up to an overall phase) as the

ordinary Schrodinger equation,

i
∂

∂t
ψn(x1, ..., xn, t) ≈

(
− 1

2m
∇2

1 − ...−
1

2m
∇2
n

)
ψn(x1, ..., xn, t), (5.6)

thus accounting for the fact that the latter successfuly approximates nonrela-

tivistic free systems.
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Free Dirac Field Theory

Recall from Chapter 3 that a general state |Ψ〉 in free Dirac quantum field theory

can be expressed in the form

|Ψ〉 = ψ0|0D〉

+

∞∑
n=1

∑
r1,...,rn

∫
d3k1...d

3kn ψ̃
r1,...,rn
n,0 (k1, ..., kn) b̂†,rnkn

...b̂†,r1k1
|0D〉

+

∞∑
l=1

∑
s1,...,sl

∫
d3p1...d

3pl ψ̃
s1,...,sl
0,l (p1, ..., pl) ĉ

†,sl
pl

...ĉ†,s1p1 |0D〉

+

∞∑
n,l=1

∑
r1,...,rn,
s1,...,sl

∫
d3k1...d

3kn d
3p1...d

3pl ψ̃
r1,...,rn,
s1,...,sl
n,l (k1, ..., kn; p1, ..., pl)ĉ

†,sl
pl

...ĉ†,s1p1 b̂†,rnkn
...b̂†,r1k1

|0D〉,

(5.7)

where ψ̃
r1,...,rn,
s1,...,sl
n,l (k1, ..., kn; p1, ..., pl) ≡ 〈0|b̂r1k1 ...b̂

rn
kn
ĉs1p1 ...ĉ

sl
pl
|Ψ > and likewise for

the (n, 0), (0, l) and (0, 0) coefficients. The Schrodinger equation for the free

fermionic field,

i
∂

∂t
|Ψ〉 = ĤD|Ψ〉, (5.8)

entails,

i
∂

∂t
ψ0 = 0

i
∂

∂t
ψ̃r1,...,rnn,0 (k1, ..., kn, t) =

(√
|k1|2 +m2 + ...+

√
|kn|2 +m2

)
ψ̃r1,...,rnn,0 (k1, ..., kn, t)

i
∂

∂t
ψ̃
s1,...,sl
0,l (s1, ..., sl, t) =

(√
|p1|2 +m2 + ...+

√
|pl|2 +m2

)
ψ̃
s1,...,sl
0,l (p1, ..., pl, t)

i
∂

∂t
ψ̃
r1,...,rn,
s1,...,sl
n,l (k1, ..., kn; p1, ..., pl, t) =

(√
|k1|2 +m2 + ...+

√
|kn|2 +m2

+
√
|p1|2 +m2 + ...+

√
|pl|2 +m2

)
ψ̃
r1,...,rn,
s1,...,sl
n,l (k1, ..., kn; p1, ..., pl, t)

(5.9)

Specialising to the domain of n-electron states, and assuming |Ψ〉 is a superposi-

tion only of states with momentum much less than m, the Schrodinger equaiton

for the n-electron momentum space wave function takes the form
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i
∂

∂t
ψ̃r1,...,rnn,0 (k1, ..., kn, t) ≈

(
nm+

1

2m
k2

1 + ...+
1

2m
k2
n

)
ψ̃r1,...,rnn,0 (k1, ..., kn, t).

(5.10)

Fourier transforming back to the position representation, we have

ψa1,...,ann,0 (x1, ..., xn) =
∑

r1,...,rn

∫
d3k1

(2π)3
...
d3kn
(2π)3

1√
2Ek1

...
1√

2Ekn

ua1r1 (k1)...uanrn (kn)ψ̃r1,...,rnn,0 (k1, ..., kn)e−ik1·x1 ...e−ikn·xn .

(5.11)

Noting that for momenta k such that k
m << 1, the basis 4-spinors uri(ki)

approximately take the form

u1(k) ≈



1

0

0

0


(5.12) u2(k) ≈



0

1

0

0


(5.13)

Because the lower two components of the basis spinors u1(k) and u2(k) can be

neglected in the nonrelativistic approximation, we may in this approximation

deal exclusively with 2-spinors consisting of the upper two components φαr :

φ1 =

 1

0

 (5.14) φ2 =

 0

1

 . (5.15)

Note that in the nonrelativistic approximation, the momentum dependence of

the basis spinors disappears. In this approximation, the spinor wave function
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can be approximated

ψα1,...,αn
n,0 (x1, ..., xn) =

2∑
r1,...,rn=1

∫
d3k1

(2π)3
...
d3kn
(2π)3

1√
2Ek1

...
1√

2Ekn

φα1
r1 ...φ

αn
rn ψ̃

r1,...,rn
n,0 (k1, ..., kn)e−ik1·x1 ...e−ikn·xn .

(5.16)

Translating the momentum space Schrodinger equation (5.10) to the position

representation, we have in the nonrelativistic approximation

i
∂

∂t
ψα1,...,αn
n,0 (x1, ..., xn) ≈

(
− 1

2m
∇2

1 − ...−
1

2m
∇2
n

)
ψα1,...,αn
n,0 (x1, ..., xn)

(5.17)

Summary

Thus far, my analysis has shown how the kinetic part of a nonrelativistic

Schrodinger equation approximates the dynamics of particular domain of free

quantum field theory - namely, low-momentum n-particle states. In the next

section, I consider the extension to models of nonrelativistic quantum mechanics

whose Hamiltonians include potential terms.

5.2 The Nonrelativistic Domain of QED

In this section I will provide templates for the reduction of two models of nonrel-

ativistic quantum mechanics to the Lorentz model of QED: First, the interaction

of two nonrelativistic electrons via a Coulomb potential, and second, the Pauli

equation for a single electron in a background electromagnetic field.
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5.2.1 DS Reduction of the Nonrelativistic Coulomb Model

to QED

The model of two nonrelativistic electrons interacting via a Coulomb potential

takes as its state space the Hilbert space of two nonrelativistic spin-1/2 particles:

S = HNR2e . (5.18)

The dynamics of this model are determined by the Schrodinger equation

i
∂

∂t
|ψ〉 = ĤNR

C |ψ〉, (5.19)

where |ψ〉 ∈ HNR2e and

ĤNR
C =

p̂2
1

2m
+

p̂2
2

2m
+
e2

4π

1

|x̂1 − x̂2|
. (5.20)

The low level model to which I reduce this model is the Lorentz model of QED, in

which the state of the electromagnetic field is the vaccuum state |0rEM 〉 of the free

renormalised electromagnetic field Hamiltonian, which is simply the coherent

state of the electromagnetic field centered around the field configuration ~A(x) =

0 and the field momentum configuration ~E(x) = 0. In this case, the Lorentz

model for two electrons simplifies to

i
∂

∂t
ψa1a22,0 (x1, x2) =

{[
~α · (−i~∇1) + βmr

]a1c1δa2c2
+ δa1c1

[
~α · (−i~∇2) + βmr

]a2c2 +
e2r
4π

1

|x1 − x2|

}
ψc1c22,0 (x1, x2)

(5.21)

In section 5.1, I showed that in the nonrelativistic domain, in which we restrict

the wave function ψc1c22,0 (x1, x2) to contain only momenta k1 and k2 such that

k1
m << 1 and k2

m << 1, the following approximation holds
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{[
~α · (−i~∇1) + βmr

]a1c1
δa2c2

}
ψc1c2,λ2,0 (x1, x2)

≈ − 1

2mr
∇2

1 ψ
a1a2,λ
2,0 (x1, x2).

(5.22)

Because the a = 3, 4 components of the basis spinors ua1(k) and ua2(k) are

effectively zero for low momenta, we can neglect them and focus on the upper

two components α = 1, 2.

{[
~α · (−i~∇1) + βmr

]α1c1
δα2c2

}
ψc1c2,λ2,0 (x1, x2)

≈ − 1

2mr
∇2

1 ψ
α1α2,λ
2,0 (x1, x2).

(5.23)

Likewise approximating

{
δα1c1

[
~α · (−i~∇2) + βmr

]α2c2

}
ψc1c2,λ2,0 (x1, x2)

≈ − 1

2mr
∇2

2 ψ
α1α2,λ
2,0 (x1, x2).

(5.24)

we obtain the relation

i
∂

∂t
ψα1α2

2,0 (x1, x2) ≈
{
− 1

2mr
∇2

1 −
1

2mr
∇2

2 +
e2r
4π

1

|x1 − x2|

}
ψα1α2

2,0 (x1, x2), (5.25)

which we recognise as the Schrodinger equation for two nonrelativistic spin-

1/2 particles. If we further restrict to the domain of states in which the spin

and position degrees of freedom of the two electrons are unentangled, so that

ψα1α2
2,0 (x1, x2) = ψ(x1, x2)sα1,α2 , where sα1,α2 is a 2 × 2 matrix independent of

position, then we retrieve the more conventional-looking equation,

i
∂

∂t
ψ(x1, x2, t) ≈

{
− 1

2mr
∇2

1 −
1

2mr
∇2

2 +
e2r
4π

1

|x1 − x2|

}
ψ(x1, x2, t), (5.26)
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which is simply the Schrodinger equation for two electrons, without regard to

spin.

I now frame these results within the context of DS reduction.

The bridge map connecting the state spaces of the Lorentz model of QED

and the nonrelativistic Coulomb model, BCL , is simply to project the fermionic

wave function onto the first two spinor components α = 1, 2, using the projection

operator Pαa :

Bridge Map:

BCL : H2e −→ HNR2e

BCL : ψa1a22,0 (x1, x2) 7−→ Pα1
a1 P

α2
a2 ψ

a1a2
2,0 (x1, x2).

(5.27)

The domain of the 2-particle NR Coulomb model in the Lorentz model of QED

consists of 2-particle states with momenta below the nonrelativistic cutoff:

Domain:

dNRC =

{
|Ψ〉 ∈ HD | |Ψ〉 =

∫
d3x1d

3x2 ψ
a1a2,λ
2,0 (x1, x2)ψ̂a1,λ(x1)ψ̂a2,λ(x2)|0rD〉, with λ << mr

}
,

(5.28)

with ψ̂ai,λ(xi) is a fermionic field operator containing Fourier components only

up to momentum λ. The laws of the image theory, which also constitute the

requirement for DS reduction, are

Image Model:
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i
∂

∂t

[
Pα1
a1 P

α2
a2 ψ

a1a2
2,0 (x1, x2, t)

]
≈
{
− 1

2mr
∇2

1−
1

2mr
∇2

2+
e2
r

4π

1

|x1 − x2|

}[
Pα1
a1 P

α2
a2 ψ

a1a2
2,0 (x1, x2, t)

]
(5.29)

as proven above. The laws of the analogue theory are then straightforwardly

obtained through the bridge rule substitution

Bridge Rules:

ψ
′α1α2(x1, x2, t) ≡ Pα1

a1 P
α2
a2 ψ

a1a2
2,0 (x1, x2, t) (5.30)

Explicitly, the laws of the analogue theory are

Analogue Model:

i
∂

∂t
ψ
′α1α2(x1, x2, t) ≈

{
− 1

2mr
∇2

1 −
1

2mr
∇2

2 +
e2
r

4π

1

|x1 − x2|

}
ψ
′α1α2(x1, x2, t).

(5.31)

The ‘strong analogy’ condition,

‘Strong Analogy’:

∣∣∣ψα1α2(x1, x2, t)− ψ
′α1α2(x1, x2, t)

∣∣∣
HNR2e

< δ (5.32)

is then satisfied for all times for which the state continues to contain only non-

relativistic momenta.
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5.2.2 DS Reduction of Nonrelativistic Pauli Model to QED

The state space of the Paul Theory is the Hilbert space of a single nonrelativistic

electron:

Sh = HNR1e . (5.33)

The dynamics of this model are determined by the Schrodinger equation

i
∂

∂t
|ψ〉 = ĤNR

P |ψ〉, (5.34)

where |ψ〉 ∈ HNR1e and

ĤNR
P =

1

2m

[
~σ ·
(
~̂p+ e ~A(x)

)]2
. (5.35)

Note that because there is only one particle in this model, the Coulomb term

of the QED Lorentz model does not appear. The model to which I reduce has

as its state space the 1-electron subspace of the Lorentz model,

Sl = H1e; (5.36)

and for its dynamics, the QED Lorentz model dynamics restricted to the 1-

electron subspace

i
∂

∂t
ψa1,0(x) =

[
~α · (−i~∇+ er ~A(x)) + βmr

]ac
ψc1,0(x). (5.37)

Write ψc1,0(x) in terms of two 2-spinors φ(x) and χ(x):

ψc1,0(x) =

 φ(x)

χ(x)

 . (5.38)

Employing the Dirac representation of the matrices αi and β,
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αi =

 0 σi

σi 0

 .

β =

 1 0

0 −1

 ,

we can write the equation (5.37), in terms of the 2-spinors as the two coupled

equations,

i
∂

∂t
φ(x) = ~σ ·

(
−i∇+ er ~A(x)

)
χ(x) +mrφ(x) (5.39)

i
∂

∂t
χ(x) = ~σ ·

(
−i∇+ er ~A(x)

)
φ(x)−mrχ(x) (5.40)

In momentum space, these equations read,

Eφ̃(k) = ~σ ·
(
−~k + er ~A(−k)

)
χ̃(k) +mrφ̃(k) (5.41)

Eχ̃(k) = ~σ ·
(
−~k + er ~A(−k)

)
φ̃(k)−mrχ̃(k). (5.42)

In the nonrelativistic approximation, where φ(x) and χ(x) contain only mo-

menta k << mr, E ≈ mr, the second of these equations gives

χ̃(k) ≈ 1

2mr
~σ ·
(
−~k + er ~A(−k)

)
φ̃(k). (5.43)

Equations (5.38) to (5.46) follow, with variations, a well-known derivation of

the Pauli equation from the Dirac equation that can be found in many texts

and lectures on relativistic quantum mechanics [29]. Substituting this relation

into the first of the 2-spinor equations, we find

Eφ̃(k) ≈ 1

2mr
~σ ·
(
−~k + er ~A(−k)

)2

φ̃(k) +mrφ̃(k). (5.44)
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Transforming back to position space, we have

i
∂

∂t
φ(x, t) ≈

[
mr +

1

2mr
~σ ·
(
−i∇+ er ~A(x)

)2
]
φ(x, t). (5.45)

We can ignore the term mr corresponding to the rest energy since this just

contributes the overall phase of the spinor φ(x, t). This yields the Pauli equation:

i
∂

∂t
φα(x, t) ≈ 1

2mr

{[
~σ ·
(
−i∇+ er ~A(x)

)]2}αβ
φβ(x, t). (5.46)

where the 2-spinor indices have been made explicit.

I now frame these results within the context of DS reduction.

The bridge map connecting the state spaces of the Lorentz model of QED

and of the 1-particle nonrelativistic Pauli model, BPL , is simply to project the

fermionic 1-particle wave function onto the first two spinor components α = 1, 2,

using the projection operator Pαa :

Bridge Map:

BCL : H1e −→ HNR1e

BCL : ψa11,0(x1) 7−→ Pα1
a1 ψ

a1
1,0(x1).

(5.47)

The domain of the 1-particle NR Pauli model in the QED Lorentz model state

space consists of 1-particle states with momenta below the nonrelativistic cutoff:

Domain:

dNRP =

{
|Ψ〉 ∈ HD

∣∣ |Ψ〉 =

∫
d3x1 ψ

a1,λ
1,0 (x1)ψ̂a1,λ(x1)|0rD〉, with λ << mr

}
,

(5.48)
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where ψ̂a1,λ(x1) is a fermionic field operator containing Fourier components only

up to momentum λ. The laws of the image theory are

Image Model:

i
∂

∂t
Pα1
a1 ψ

a1
1,0(x1, t) ≈

1

2mr

{[
~σ ·
(
−i∇+ er ~A(x)

)]2}α1β1

P β1
a1 ψ

a1
1,0(x1, t) (5.49)

as proven above. The laws of the analogue theory are then straightforwardly

obtained through the bridge rule substitution

Bridge Rules:

ψ
′α1(x1, t) ≡ Pα1

a1 ψ
a1
1,0(x1, t) (5.50)

Explicitly, the laws of the analogue theory are

Analogue Model:

i
∂

∂t
ψ
′α1(x1, t) ≈

1

2mr

{[
~σ ·
(
−i∇+ er ~A(x)

)]2}α1β1

ψ
′β1(x1, t) (5.51)

The ‘strong analogy’ condition,

‘Strong Analogy’:

∣∣∣ψα1(x1, t)− ψ
′α1(x1, t)

∣∣∣
HNR1e

< δ (5.52)
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is then satisfied for all times for which the state continues to contain only non-

relativistic momenta.

5.3 The Connection Between Bohmian NRQM

and Bohmian QED

In this section, I discuss the reduction of Bohmian nonrelativistic quantum

mechanics of a spin-1/2 particle to the minimalist Bohmian model of QED.

Note that in contrast to previous reductions concerning a Bohmian theory, in

which the high level theory was classical, in the present case both theories are

Bohmian. I briefly present Bell’s model of a non-relativistic spin-1/2 system, and

consider in what sense if any it is possible to effect a reduction of this model to

the minimalist model of QED, especially given that in Bell’s model, the beables

correspond to the positions of fermionic particles and in the minimalist QED

model, there are no beables corresponding to the fermionic field, only to the

electromagnetic field. The answer that I arrive at is that while in the strictest

sense, the electromagnetic beables of the minimalist model do not instantiate

the evolution of the fermionic particle beables, in the nonrelativistic domain

where both models are applicable, the electromagnetic field beables do perform

the same function as Bell’s particle beables - namely, to select a branch of the

total quantum state with probability given by the relevant Born Rule coefficient

|ci|2.

5.3.1 Bell’s Model of Spin-1/2 Particles

The state space of Bell’s model of a nonrelativistic spin-1/2 particle is

S = HNR1p ×Q1p (5.53)

where Q1p is the configuration space of a single particle in 3-space. The dynam-

ics of |ψ〉 ∈ HNR1p are specified by the Pauli Schrodinger equation

249



i
∂

∂t
ψα(x, t) =

1

2m

{[
~σ ·
(
−i∇+ e ~A(x)

)]2}αβ
ψβ(x, t) (5.54)

Expanding the wave function in polar form, ψα(x, t) = Rα(x, t)eiS
α(x,t), the

guidance equation for the configuration q ∈ Q1p is

q̇ =
∑
α

1

m

(
∇Sα(x)− e ~A(x)

)
. (5.55)

These dynamics are equivariant with respect to the probability distribution,

ρ(x, t) ≡
∑
α

ψ∗α(x, t)ψα(x, t). (5.56)

In this model there are no beables corresponding to the spin degrees of freedom

[9]. For other Bohmian models of nonrelativistic spin-1/2 particles, see Holland’s

[51]. The generalisation to N-particles, and the inclusion of a Coulomb potential,

is straightforward.

5.3.2 Connecting Bell’s Model and the Minimalist QED

model

In the Pauli equation, the electromagnetic field has no independent dynamics

of its own, but is rather independently prescribed so there is no obvious role

for electromagnetic field beables within this model. Yet there is a sense in

which the transverse electromagnetic field configuration ~aT (x, t) can serve the

same functional role as Bell’s particle beables q(t), even if it is a completely

different sort of mathematical object, and associated with bosonic rather than

fermionic degrees of freedom. Consider the process of entanglement between

a spin-1/2 particle and some external degrees of freedom, such as occurs in a

measurement. As in Chapter 2, let the initial state |χ0〉 of AB be a product

state, so that |χ0〉 = |ψ0〉 ⊗ |φ0〉. Also, let {|ai〉} be a (possibly overcomplete)

basis A’s Hilbert space. Then, if |ψ0〉 =
∑
i ci|ai〉, the unitary evolution of the

quantum state takes the following form
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(
∑
i

ci|ai〉)|φ0〉 =⇒
∑
i

ci|θi〉|φi〉 (5.57)

where |θi〉 are abitrary states. Assuming that the environment consists both

of electromagnetic and fermionic degrees of freedom, then as long as the states

|φi〉 are disjoint both with respect to the electromagnetic configuration space

and with respect to the configuration space of the fermionic beables associated

with environmental degrees of freedom, either type of beable will succeed in

selecting a branch of the wave function with probability |ci|2. In this sense, the

electromagnetic field beables may fill the functional role of Bell’s particle beables

in nonrelativistic contexts even though the electromagnetic field in models of

nonrelativistic quantum mechanics is not associated with any set of independent

degrees of freedom.

An alternative Bohmian model of QED that does attach beables to the

fermionic degrees of freedom, such as Colin’s Dirac Sea model, may succeed in

filling not only the functional role of the beables in the Bell model, but in repli-

cating (approximately) the detailed motions of these beables in nonrelativistic

contexts. However, assuming that both Bell’s model and the minimalist QED

model can be regarded as empirically adequate in their domains, and that the

domain of QED encompasses the domain of nonrelativistic quantum mechan-

ics, these facts together suggest that the particle beables of Bell’s model are

expendable in the process of extending to the more encompassing domain of

QED, and that they do not play an indispensable role in the empirical success

of the nonrelativistic Bohmian model. What it suggests instead is that the part

of the model that does the essential predictive work, and which is most strongly

corroborated by the model’s empirical success, is the structure associated with

the quantum state.
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5.3.3 Metaphysical Considerations Regarding the Adequacy

of Minimalist Models

I have outlined, in a schematic way, how the electromagnetic field beables may

serve to fill the functional role of the fermionic particle beables in nonrelativistic

pilot wave models - namely, by selecting one of the decoherence-defined branches

of the total quantum state - and thereby to ensure the empirical adequacy of

the minimalist model in the particular domain that is well-described by the

nonrelativistic models. However, the legitimacy of the minimalist QED model

can be challenged on the basis of at least two distinct metaphysical arguments.

First, as Tim Maudlin would argue, it is not sufficient that the electromagnetic

field beables solely to fulfill the functional role of the particle beables of the

non-relativistic model; even if these beables do succeed in selecting a branch

of the quantum state, electromagnetic field beables, unlike fermionic particle

beables, are simply not the ‘sort of stuff’ out of which it is possible to reconstruct

the world of our experience. Second, and unlike Maudlin (who has written

extensively in defense of pilot wave approaches to quantum theory - though only

ones employing the ‘right sort’ of beable), Everettians like Brown and Wallace

would reject the minimalist model on the grounds that electromagnetic field

beables, like all other beables in all other non-collapse pilot wave models, are

epiphenomenal and therefore superfluous; it simply does not matter how they

behave because the quantum state, they claim, is sufficient to recover the world

of our experience (as well as the experience of inahbitants of other branches of

the quantum state).

Before delving into these metaphysical worries about minimalist models, let

us first consider in further detail Struyve and Westman’s account of how this

model is supposed to reproduce the ordinary quantum predictions. I quote them

directly:

While there are no variables representing matter, the wave functional
which guides the field ~AT (x), still contains the fermionic degrees of

freedom. As such, the field configuration ~AT (x) will in certain cases

252



behave as if there was matter present. For example, it might look
like radiation that has been scattered off some matter distribution,
or like thermal radiation emitted by such a distribution. In this way,
it was argued that the model is empirically adequate, because there
will be an image of macroscopic matter distributions in the radiation
field. Nevertheless such a model seem rather far removed from our
everyday experience of the world and probably takes minimalism too
far. [100]

As we can see from this last line, Struyve himself has doubts about the plau-

sibility of the minimalist model as a serious candidate for describing physical

reality - though to read between the lines, it seems that his reasons are rooted

less in doubts about the model’s empirical adequacy than they are in deeper

metaphysical worries that are more intrinsic to the model itself, akin perhaps

to those that Maudlin raises. Nevertheless, the essential idea of Struyve and

Westman’s model is that the electromagnetic field beables behave in a sense as

if there were fermionic matter, thus giving the appearance of such matter even

though no beables need be associated with the fermionic degrees of freedom in

these models. After all, our experience of a projectile moving through the air is

not a direct interaction with the fermionic matter making up the projectile, but

is invariably mediated by the radiation that is scattered off of it and that enters

our retina, or by the electromagnetic forces of repulsion between ourselves and

the projectile, say when we catch it. As far as our experience of the projectile is

concerned, the fermions constituting the projectile play no direct role and are,

at least from a certain point of view, dispensable. There is no need for them

because the electromagnetic degrees of freedom that more directly determine

our experience of the projectile behave as if the fermions were there.

In his paper, ‘Why Bohm’s Theory Solve’s the Measurement Problem,’

Maudlin writes of the nonrelativistic pilot wave theory that ‘the particle posi-

tions are the heart of the theory, they specify the world as we know it. Further,

without the the effective wave function cannot be defined... .’ That is, Maudlin

requires that the beables be such that we may find an image of the world in them.

One benefit of particle beables such as the ones encountered in nonrelativistic
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pilot wave theories is that it is relatively straightforward to see how one would

find an image of the world in them. The cats that we see are cat-shaped bunches

of particles, tables table-shaped bunches of particles, and the reason that we are

able to see them is that the configurations of the particles in our brains become

correlated through the dynamics to the configurations of these objects (much

as would be the case in a classical mechanical account). As Maudlin writes,

‘If we want to know what happened to the measuring device (e.g. which way

the pointer went), we look at it, thereby correlating positions of particles in our

brains with the pointer position. If getting the state of our brain correlated

with previously unknown external conditions is not getting information about

the world, then nothing is’ [70].

However, as is evident from Struyve’s comments on the minimalist model

above, the manner in which one might hope to find an image of the world in a

minimalist model of Bohmian QED - if indeed the sort of analysis that Struyve

sketches does go through - is far less direct and less transparent. In a separate

article, ‘Descying the World in the Wave Function,’ Maudlin applies a distinction

between what Sellars calls the ‘Manifest Image’ and the ‘Scientific Image’ of

the world to the interpretation of quantum mechanics. Maudlin describes the

distinction as follows:

The Manifest Image is the world in which we first find outselves, a
world of people and actions, characters and habits, tables and chairs.
The Scientific Image, in contrast, is a world of postulated theoretical
entities, atoms and quarks and electromagnetic fields [71].

The distinction, says Maudlin, is illustrated by Eddington’s famous passage

about ‘The Two Tables’:

One of the has been familiar to me from my earliest years. It is a
commonplace object of that environment which I call the world. How
shall I describe it? It has extension; it comparatively permanent; it
is coloured; above all it is substantial...

Table No. 2 is my scientific table. It is a more recent acquain-
tance and I do not feel so familiar with it. It does not belong to
the world previously mentioned - that world which spontaneously
appears around me when I open my eyes ... My scientific table
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is mostly emptiness. Sparsely scattered in that emptiness are nu-
merous electric charges rushing about with great speed; but their
combined bulk amounts to less than a billionth of the bulk of the
table itself ...

I need not tell you that modern physics has by delicate test and
remorseless logic assured me that my second scientific table is the
only one which is really there - wherever ‘there’ may be. [33], ix-xii

Of course, Eddington’s first table belongs to the Manifest Image and the second

to the Scientific Image.

Maudlin is interested in how the Scientific Image offered by each of the

various interpretations of quantum mechanics, and particularly pilot wave in-

terpretations, serves to undergird the Manifest Image that presents itself most

immediately to us. For this to occur, he notes, there must be an isomorophism

between some portion of the Scientific Image and the Manifest Image. As a

supporter of the Bohm theory, he argues that unlike the Everett and GRW

theories, which posit the existence only of the wave function evolving on some

very high-dimensional space, the Bohm theory makes the connection between

the Manifest Image - a world of localised objects existing in three dimensional

space - and the Scientific Image - on Bohm’s theory, a set of localised point

particles guided by a wave function - especially transparent. As he writes,

The justification for Bohm’s choice of beables is simple and pow-
erful. It is relatively easy to discover an isomorphism between the
Manifest Image and a Scientific Image which contains particles with
determinate positions. It is not a hard task to construct a passable
doppelganger for the world revealed by experience using particles
in motion. Cats in the Manifest Image correspond to cat-shaped
collections of particles in the Scientific [71].

In a separate article, his contribution to the Many Worlds conference volume

of Saunders, Barrett, Kent and Wallace, he argues that so-called monist in-

terpretations of quantum mechanics like the Everett and GRW theories, which

assume that the wave function is a complete description of the state of a sys-

tem - i.e. that no additional variables are needed - make the link between the

Manifest and Scientific Images far more opaque than does the Bohm theory.
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The Scientific Image that they posit is one of a complex valued function evolv-

ing on a very high-dimensional space, not in the three-dimensional space that

characterises the Manifest image, so that the three dimensions of our experience

must emerge from the theory in a relatively complicated and indirect way. In

he Bohm theory, which simply posits from the outset the existence of particles

evolving in 3-D space [72], the connection is much clearer.

Turning to the case of pilot wave versions of quantum field theory, he writes

If the acceptance of field theory demands a new choice of beables,
at least we now understand what those beables are for. They must
be used to fashion, within the Scientific Image, a structure which
corresponds to the Manifest Image [71].

Yet while Maudlin regards the simplicity of the link between the Manifest Image

and the Scientific Image as a major advantage of the nonrelativistic Bohm theory

over monist interpretations, he acknowledges that the Manifest Image is not

sacrosanct:

There is no requirement that all, or even most, of the Manifest Image
be vindicated by the Scientific Image: we might conclude on the basis
of our physical theory that some of the most central aspects of our
pre-theoretical picture of the world are false. So the demand for
isomorphism seems to entail rather little [71].

But presumably, the fallibility of the Manifest Image should include the pos-

sibility that, contrary to immediate appearances, the world around us is not

constructed out of fermionic matter, but instead may be built out of something

like the electromagnetic field - assuming that is, that the behavior of this field,

together with the links that the minimalist model implicitly takes to hold be-

tween field beable configurations and the world of appearances, suffice to save

the appearances. Presumably, one such link would entail that there is a charged

particle whenever the field beable takes the configuration of a field emanating

from a moving charge (e.g. something akin to the field associated with a classi-

cal Lienard-Wiechert potential). Clearly, for the minimalist model to succeed,

such correspondences need to fleshed out in more detail. Once this is done, the
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question as to whether the theory is empirically adequate becomes a theoretical

rather than a metaphysical one. And this theoretical question seems at the

moment to be an open one.

While the link between the Scientific Image and the Manifest Image that

would be required on a minimalist model with only EM field beables would be

much less direct than the link presupposed by nonrelativistic particle models,

Maudlin’s analysis seems to suggest that we should not dismiss a theory simply

because it undercuts our Manifest Image of the world. To be sure, a picture in

which everything around us is ultimately constructed out of different configura-

tions of an electromagnetic field does just this; but, as Maudlin himself should

admit, this alone does not consitute sufficient reason for dismissing the theory.

Nevertheless, it is also important to recognise that minimalist models may, if

we like, incorporate fermionic beables as well. These beables, although they will

not possess any independent dynamics of their own - their values and evolution

will depend entirely on the value of the electromagnetic field beables and on the

quantum state - can be expected to behave very much in accord with the way

matter behaves on in the Manifest Image, at least insofar as distributions of

fermionic matter can be expected to be localised in the appropriate sorts of sit-

uations. In such a case, the appropriate isomorphism between the Scientific and

Manifest Images may be simpler and more direct than in the model with only

electromagnetic beables, since this model will, as in the case on non-relativistic

Bohm theory, simply associate cat-like distributions of fermionic matter in the

Scientific Image with the cats of the Manifest Image. The only potentially salient

difference, in this case, with the nonrelativistic particle model is that in this case

the fermionic degrees of freedom do not possess their own dynamics but instead

‘piggyback’ on the dynamics of the electromagnetic field beables. Whether the

lack of any independent dynamics on the part the fermionic beables somehow

ought to disqualify them as a legitimate substrate of the Manifest Image I leave

as a subject for another discussion.
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5.4 Summary

In this chapter, I have provided templates for the DS reduction of two models

of the nonrelativistic quantum mechanics of a charged spin-1/2 particle - the

nonrelativistic 2-particle Coulomb model and the 1-particle Pauli model - and

discussed the connection between Bell’s nonrelativistic Bohmian model of a

spin-1/2 particle and Struyve and Westman’s minimalist QED model.
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Chapter 6

Conclusion: DS Reduction

and Nagelian Reduction

In Chapter 1, I highlighted a number of parallels between GNS reduction and DS

reduction, and suggested that these parallels were strong enough to justify the

claim that DS reduction simply is GNS reduction applied within the context of

a semantic, dynamical systems view of physical theories. Presently, I argue that

in the narrowed context of physical, dynamical systems reduction, in which the

various concepts of GNS reduction can be given more precise meanings than they

are given in formulations that attempt to encompass reduction across all of the

sciences, many of the usual criticisms of GNS reduction can be straighforwardly

addressed. I consider these criticisms one-by-one, and in order. For the reader’s

convenience, I reproduce the summary of these criticisms here, as quoted from

[30]:

• Problem 1: The syntactic view of theories. Nagel formulated his theory
in the framework of the so-called syntactic view of theories, which regards
the- ories as axiomatic systems formulated in first-order logic whose non-
logical vocabulary is bifurcated into observational and theoretical terms.
This view is deemed untenable for many reasons, one of them being that
first-order logic is too weak to adequately formalise theories and that the
distinction between observational and theoretical terms is unsustainable.
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This, so one often hears, renders Nagelian reduction untenable.

• Problem 2: The content of bridge laws. There is a question about what
kind of statements bridge laws are. Nagel considers three options (1961,
354-355): they can be claims of meaning equivalence, conventional stipula-
tions, or assertions about matters of fact. The third option can be broken
down further, since a statement connecting two quantities could assert the
identity of two properties, the presence of a (merely) de facto correlation
between them, or the existence of a nomic connection. Although the issue
of the content bridge laws is not per se an objection, it is a question that
has often been discussed in ways that gave rise to various objections, in
particular in connection with multiple realisability, to which we turn now.

• Problem 3: Bridge laws and multiple realisability. The issue of multiple
real- isability (MR) is omnipresent in discussions of reduction. A TP -
property is multiply realisable if it corresponds to more than one different
TF -properties. The standard example of a multiply realisable property is
that of pain: Pain can be realised by different physical states, for instance
in a humans and in a dogs brain. The issue also seems to arise in SM
because, as Sklar points out, temperature is multiply realisable. MR is
commonly considered to undermine reduction. ... [One] argument from
MR is that, in order to reduce TP -phenomena to TF -phenomena, TP
-properties must be shown to be nothing over and above TF -properties.
That is, it must be shown that TP -properties do not exist as something
extra or in addition to TF -properties: There is only one group of entities,
TF -properties. Showing this requires the identification of TP - proper-
ties with TF -properties. But a multiply realisable TP -property is not
identifiable with a TF -property. This undercuts reduction.

• Problem 4: The Epistemology of Bridge Laws. How are bridge laws estab-
lished? Nagel points out that this is a difficult issue since we cannot test
bridge laws independently. The kinetic theory of gases can be put to test
only after we have adopted Equation 5 as a bridge law, but then we can
only test the entire package of the kinetic theory and the bridge law, while
it is impossible to subject the bridge law to independent tests. While this
is not a problem if one sees bridge laws as analytical statements or mere
conventions, it is an issue for those who see bridge laws as making factual
claims.

• Problem 5: Strong analogy. Strong analogy is essential to GNS. This raises
three issues. The first is that the notion of strong analogy is too vague and
hard to pin down to do serious work in a reduction. It is a commonplace
that everything is similar to everything else, and hence saying that one
theory is analogous to another one is a vacuous claim. [30]
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6.1 Problem 1: The Syntactic View of Theories

DS reduction is formulated specifically within the semantic view of theories,

and concerns the reduction of models to other models. For this reason, it is not

subject to arguments against the syntactic view of theories. As the authors of

[30] note, although Nagel was a proponent of the syntactic view of theories, there

is no textual evidence to the effect that he saw it as an essential prerequisite for

Nagelian reduction.

Independently of what Nagel or Schaffner may originally have intended,

though, I have explicitly demonstrated in the preceding chapters how the core

elements of Nagelian reduction (as intepreted by the GNS account) apply within

a semantic, dynamical systems view of theories, and have thereby shown that the

syntactic view is not a prerequisite for the application of Nagel and Schaffner’s

insights. Of course, the semantic view adopted here, like the syntactic view, is

subject to its own criticisms, though to address these would be to go beyond

the scope of this thesis (see, for instance, [36] for some of these criticisms).

6.2 Problem 2: The Content of Bridge Laws

In The Structure of Science, Nagel raises the question as to the logical status of

the connecting assumptions employed in his account of reduction:

There appear to be just three possibilities as to the nature of the
linkages postulated by these additional assumptions [i.e., the bridge
rules]: (1) The first is that the links are logical connections between
established meanings of expressions. The assumptions then assert
‘A’ to be logically related (presumably by synonymy or by some form
of one-way analytical entailment) to a theoretical expression ‘B’ in
the primary science. On this alternative, the meaning of ‘A’ as fixed
by the rules or habits of usage of the secondary science must be expli-
cable in terms of the established meanings of theoretical primitives
in the primary discipline. (2) The second possibility is that the link-
ages are conventions, created by deliberate fiat. The assumptions
are then coordinating definitions, which institute a correspondence
between ‘A’ and a certain theoretical primitive, or some construct
formed out of the theoretical primitives, of the primary science. On
this alternative, unlike the preceding one, the meaning of ‘A’ is not
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being explicated or analyzed in terms of the meanings of theoretical
primitives. On the contrary, if ‘A’ is an observation term of the sec-
ondary science, the assumptions in this case assign an experimental
significance to a certain theoretical expression of the primary sci-
ence, consistent with other such assignments that may have been
previously made. (3) The third possibility is that the linkages are
factual or material. The assumptions then are physical hypotheses,
asserting that the occurrence of the state of affairs signified by a
certain theoretical expression ‘B’ in the primary science is a suffi-
cient (or necessary and sufficient) condition for the state of affairs
designated by ‘A.’ It will be evident that in this case independent
evidence must in principle be obtainable for the occurrence of each
of the two states of affairs, so that the expressions designating the
two states must have identifiably different meanings. On this alter-
native, therefore, the meaning of ‘A’ is not related analytically to
the meaning of ‘B.’ Accordingly, the additional assumptions cannot
be certified as true by logical analysis alone, and the hypothesis they
formulate must be supported by empirical evidence.

Nagel is occupied largely with the question of whether bridge rules are analytic

(possibilities (1) and (2)) or synthetic (possibility (3)) in nature, and if they are

analytic, what the precise nature of their analyticity is - that is, whether their

analyticity is more aptly characterized by proposal (1) or proposal (2).

In the context of DS reduction, concepts such as bridge maps, bridge rules,

image and analogue models, and ‘strong analogy’ have precise mathematical def-

initions. The question as to their status as analytic or synthetic claims seems

beside the point, to the extent that it has any meaning in a semantic, dynam-

ical systems context. Unlike most of the core elements of Nagelian reduction,

Nagel’s comments regarding the logical status of bridge laws do seem more ap-

propriate to the syntactic view of theories than they do to the semantic view.

In the semantic view, a model as a whole represents some domain of reality; it

is difficult to see how one might isolate individual propositions within the model

and identify them as analytically or synthetically true claims. Of course, the

claim that it is difficult to see how to apply the analytic/synthetic distinction

within a semnatic, dynamical systems framework doesn’t mean it can’t be done.

For this reason, I present what I believe is the most natural attempt to carry

over Nagel’s inquiry as to the logical status of laws into the context of DS reduc-
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tion, although, insofar as Nagel’s three possibilities can be given any reasonable

construal in a dynamical systems framework, I reach a different conclusion from

Nagel on this matter. Specifically, Nagel concludes that the bridging assump-

tions cannot be logical connections and that they must be either conventions

or empirical claims. That is, he denies (1) as a possibility and claims that a

mixture of (2) and (3) serve to characteise the nature of the bridging assump-

tions in a reduction. On the other hand, I claim that within the context of DS

reduction, it is (3) that can be ruled out, and that there are senses in which

both (1) and (2) serve to characterise the nature of the bridging assumptions.

6.2.1 Do Bridge Maps Reflect Synthetic Claims?

I begin by addressing Nagel’s third possibility, that the bridging assumptions

have the status of physical hypotheses - that is, that they are synthetic propo-

sitions. Given a high-level model (Sh, Dh) and a low-level model (Sl, Dl), the

question as to which bridge maps, if any, satisfy the conditions for DS reduction,

and in which domains of Sl and over what timescales and to what margins of

approximation, is a question purely of mathematics. It is not a question re-

quiring empirical investigation for its resolution. Given a high- and a low- level

model that describe the same system, I do not need to perform any experiments

to determine whether any bridge maps, and if so which ones, exist that sat-

isfy the conditions of DS reduction; in principle, this can be decide purely by

theoretical means, with a pen and paper. The specification of the two models,

along with the stipulation that they describe the same physical system, very

severely constrain what the bridge map can be, since they specify the dynam-

ical maps and the symmetries with which the bridge map (which, recall, must

be time-independent) must be compatible. Once we have specified the high-

and low- level models and stipulated that they describe the same system, It

is simply not the case that prior to further empirical investigation the bridge

map could conceivably be anything and that it is up to us to find out through

experiment what it is. The constraints of DS reduction very severely limit the
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set of possibilities, even if they do not single out a unique one.

To elaborate, bridge maps Bhl are functions from Sl to Sh, and given the

dynamical maps Dl and Dh of the high- and low- level models, as well as

a particular approximation margin δ and a reduction timescale τ , it is pos-

sible to decide entirely by mathematical means whether the DSR condition,∣∣∣∣Bhl (Dl(x
l
0)
)
−Dh

(
Bhl (xl0)

)∣∣∣∣
h

< δ for 0 ≤ t ≤ τ , as well as the condition 2) en-

suring compatibility with the dynamical symmetries of the models, is satisfied

for a particular choice of B, without ever performing a single experiment. The

only assumptions of an empirical nature that enter into the analysis are that

the high- and low- level models both approximately describe the same phenom-

ena. But this empirical assumption is one concerning the relationship between

the models and the physical world, not concerning the relationship between the

models, as bridge maps and bridge rules do. Once the models are specified

and stipulated to describe the same system, the question of what bridge maps

may exist that connect the two within the constraints of the DSR condition is,

again, solely a mathematical one. For this reason, we should discard Nagel’s

third possibility, namely that the linkages posited by the bridging assumptions

are physical hypotheses, at least within the context of physical reductions that

fit within the framework of DS reduction.

To this line of argument, one might object that bridge maps nevertheless

reflect synthetic claims with empirical content because the assertion that the

state xl of Ml subvenes or instantiates the state x′h = B(xl) of Mh is one

with empirical content that goes beyond that of Ml and Mh alone. But to say

that such a claim of instantiation has independent empirical content is to say

that it asserts a contingent link between properties, or more appropriately in

the context of DS reduction, a contingent link between the states, posited by

the two theories - a link that, logically speaking, need not have been so. This,

in turn, entails that given the empirical assumptions that the high- and low-

level models both describe some system, nature, so to speak, still has complete

discretion in deciding what the linkages between the states of the models should
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be, so that these linkages reflect empirical facts that are logically independent

of the empirical claims that the high- and low- level models describe the same

system. But of course this is not the case, because the allowable linkages are

tighly constrained by the DSR conditions, and therefore not independent of the

empirical claims that the high- and low- level model describe a given system

(since the allowable linkages depend strongly on what the models are).

The only recourse, it seems, for those who wish to retain the notion that

bridge maps possess empirical content over and above the empirical claims that

the high- and low- level models describe a particular system, is the potential non-

uniqueness of the bridge map that satisfies the DSR conditions. Perhaps, in this

case, there is still a range of possibilities compatible with the DSR constraints

for nature to choose from, so that while many linkages are possible that satisfy

the constraints, as a matter of empirical fact only one reflects the correct linkage

between the states of the high- and low- level models.

There are a number of responses one can give to this line of thinking. The

first is to ask, in cases where a bridge map is already known to satisfy the DSR

conditions to within a certain margin of error and within a particular timescale

and on a particular domain of states, for a concrete example of an alternative

bridge map that satisfies these conditions to within the same margins before

one begins to seriously worry about non-uniqueness of the bridge map. The

question of a bridge map’s uniqueness given these constraints is one that cannot

be addressed in general but must be assessed on a case-by-case basis, unless one

constructs a general recipe for constructing alternative bridge maps that satisfy

the DSR conditions to with the given specifications. Pending such a general

recipe, or proposals of alternative bridge maps in specific cases, one can simply

choose to be relaxed about the possible non-uniqueness of bridge maps, and to

worry about it when it has more concretely been shown to be an issue and not

merely a hypothetical possibility. Ideally, though, a proof of uniqueness of the

bridge map in all cases would be the best and most conclusive way to confront

to the line of thinking expounded in the previous paragraph.
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If a general recipe for constructing alternative bridge maps does exist, then

this may suggest further conditions that need to be added to those already

imposed by the framework of DS reduction.

On the other hand, one also might respond to the worry about the non-

uniqueness of the bridge map by questioning whether it is in fact a problem

to begin with. Any bridge map identifies some mathematical structure that

can be defined within the low-level model; if more than one structure exists

that satisfies the necessary conditions to within the specified margins, then

it is simply inappropriate to question which is the ‘real’ structure and which

are those that nature chose not to make use of. For, given that the low-level

model applies, all of these structures are defined within the low-level model

and therefore exist within the model and are in some sense equally ‘real;’ they

simply represent different functions of the low-level state. Of course, in such a

case there still remains the question of which among these various structures

corresponds to the physical system in question. In such a case (again, if any such

cases exist) there may be genuine underdetermination as to which of the various

structures in the low-level theory represents the physical system in question. In

such a case, it will indeed turn out to be a matter of fact, independent of the

claims that the high- and low- level theories apply, as to which of the many

alternative low-level structures (all satisfying the DSR conditions to within the

same specifications) represents the system in quesiton.

Having listed these possible responses to the non-uniqueness worry, I choose

here to adopt a relaxed attitude to this possibility until a concrete example of

non-uniqueness or a general recipe for constructing alternative bridge maps has

been put forward.

Finally, as a caveat, it should be noted here that ifB is a bridge map satisying

the DSR conditions, and Tl is a symmetry of the low-level dynamics, then B ◦Tl

is also a bridge map satisfying these conditions. Likewise, if Th is a high-level

symmetry, then Th ◦ B will also be bridge map satisfying the DSR conditions.

Thus, uniqueness here should be understood as uniqueness up to symmetries of
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the high and low-level models.

6.2.2 The Analytic Nature of Bridge Maps and Bridge

Rules

If they are not characterised by Nagel’s third possibility, might the bridge maps

and bridge rules of DS reduction be characterised by one of his first two possi-

bilities? Insofar as bridge maps are required to satisfy the DSR condition with

respect to the dynamical maps of the two models, as indeed any bridge map in

a DS reduction would, they reflect the non-empirical fact of a certain correspon-

dence, defined by the DSR condition, between the mathematical structures of

the high and low level models. It would be incorrect to describe the claim of the

existence of such a map as a definition or a convention, as per Nagel’s second

possibility, because the claim that between two models there exists such a map

is a mathematical fact, not a reflection of some arbitrary choices on our part.

However, there is a sense in which not bridge maps but bridge rules, as

defined in Chapter 1, are simply coordinating definitions or conventions as per

Nagel’s second possibility, in that bridge rules simply assign a label familiar

to the mathematical language of the high level model to a term of the same

mathematical form constructed from the mathematical ingredients of the low

level model. That is, they coordinate some element of the high level model with

some construction within the low level model that is constrained to be same

kind of mathematical object (e.g., a vector in a particular Hilbert space, or point

on a 6n-dimensional symplectic manifold, etc.). Beyond the constraint that it

represent a variable of the same mathematical form, the choice of what label to

assign the image under the bridge map is, of course, a matter of arbitrary choice;

so bridge rules (again, as differentiated from bridge maps) are conventional in

the trivial sense that we may assign whatever letter or name we like to the

relevant quantity without altering its significance.

What about Nagel’s first possibility, on which ‘the meaning of “A” as fixed

by the rules or habits of usage of the secondary science [in a DS context, the high
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level model] must be explicable in terms of the established meanings of theoret-

ical primitives in the primary discipline [in a DS context, the low level model]’

[75]? There is an approximate sense in which bridge maps and bridge rules, as

understood in the context of DS reduction, fit this description. In DS reduction,

the laws of the low-level model (i.e., the dynamical map of the low level model,

along possibly with other constraints on the state evolution), combined with

an appropriate domain restriction within the low-level state space, logically en-

tail that the quantity defined by the bridge map satisfies the laws of the image

model, which reflect in an approximate sense the behavior characteristic of the

high-level model. Insofar as the meaning of a term in the high level model is

established by the mathematical behavior that it exhibits within that model,

and insofar as the meaning of a term constructed within the low-level model

is established by its behavior in the low-level model, the meaning of the term

construed according to the bridge map in the low-level theory entails, within

a restricted domain of the low-level theory, that it exhibits approximately the

same behaviour, and in this sense holds approximately the same meaning, as the

corresponding term in the high-level theory. The bridge rule and strong analogy

relations that together connect a term in the high-level model to a corresponding

image term in the low-level model in this sense reflect a logical entailment from

the meaning of a term in the low-level theory to the (approximate) meaning of

the corresponding term in the high-level theory.

6.3 Problem 3: Bridge Laws and Multiple Re-

alisability

One major criticism of Nagelian reduction states that because multiple realis-

ability entails that certain high-level properties cannot be identified with low-

level properties, and because the bridge laws of Nagelian reduction - or so the

line of argument goes - must be statements of identity between high and low

level properties, the Nagelian account fails. While Nagel himself did not re-
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quire bridge laws to be identities in his original account of reduction, a number

of authors have argued that these laws must be identities because reductions

require inclusion of the domain of one theory into that of another, and such

inclusion requires the identification of properties in the high-level theory with

those in the low-level theory (see, for instance, [24], Ch. 4). As Sklar has ar-

gued in [95], bridge laws must be identities in order to distinguish reductions

from mere correlations between different sets of laws; he cites the example of

the Wiedemann-Franz law, which expresses a correlation between thermal and

electrical conductivity in a metal, and, in particular, permits the derivation of

certain laws of electrical conductivity from certain laws of thermal conductiv-

ity. Yet we would not wish to say that the laws of electrical conductivity have

thereby been reduced to those of thermal conductivity, even though one may

be deduced from them. The reason is that the nature of the correlations estab-

lished by the Wiedemann-Franz law are not identities but ‘mere’ correlations;

the domain of the theory of electrical theory has not been subsumed into that

of the theory of thermal conductivity as it ought to be in a reduction.

If reduction rests on bridge laws that are identities, and multiple realisation

of some high-level properties by some low-level ones is incompatible precludes

identification of each high-level property with some unique low-level property,

then - or so the antireductionist argument from multiple realisability goes -

multiple realisability precludes reduction. A number of lines of response to this

antireductionist argument have been developed in the literature. While there is

not space here to discuss them all in detail, I will briefly describe a few. The first

denies, contra Causey and Sklar, that bridge rules need to be identities in order

to effect genuine reductions, but argues instead that they need only be one-

way conditionals (see [84] and [11]). The second upholds the requirement that

bridge laws be identities, but instead argues that a given high-level property

realised by various low-level properties should in fact be divided into several

distinct high-level properties, each of which can be identified with a particular

low-level property; for example, the property of pain, rather than being multiply
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realised in humans, dogs and Martians, in fact should be conceived of as three

distinct properties: pain-in-humans, pain-in-dogs, pain-in-Martians. The third

line of argument is to regard the disjunction of all low-level properties that

realise a particular high-level property as a property in itself, and to identify

this disjunction with the high-level property (again, this approach upholds the

requirement that bridge laws be identities).

In the context of DS reduction, where we deal with the reduction of models

rather than of laws or theories, it is indeed the case that we expect the domain

of a high-level model to be subsumed into that of a low-level model, for a given

set of applications of that high-level model. For a different set of applications

of the same high-level model, it is entirely possible that an altogether different

low-level model from the first will be required to effect a reduction. For example,

a particlar classical model of the simple harmonic oscillator might reduce to one

quantum model in applications where the physical system in question is a bob

on a spring; on the other hand, the very same classical model may be reduced

to an altogether different quantum model in the case where the physical system

being described is a charge moving along an axis bored through a uniformly

charged sphere (which will also produce a linear restoring force on the charge).

Certainly, the quantum mechanical models underlying these two applications

of the classical simple harmonic oscillator model will be very different - for

example, as regards the origin of the restoring force, since in the case of the

spring the restoring force is compounded from the individual forces between the

atoms inside the spring, and in the case of the electric charge it is simply the

result of a classical background electrostatic field. We should not expect that

the domain of the high-level model, without further specification as to the class

of applications, will be subsumed into the domain of any single low-level model,

for it may be the case that different low-level models are needed to reduce

the high-level model in the context of different applications of the high-level

model. In this sense, a uniform, systematic reduction of the high-level model

will not be possible, and the reduction must proceed on a more piecemeal basis

270



(though it will often be possible to retain significantly more generality than

to proceed with the reductions on a system-by-system basis; rather, classes of

systems can be treated all at once; for example, all low-level systems that can be

modeled with the same form, but different parameter values, for their quantum

Hamiltonian might constitute one class of models to which a particular class of

classical high-level models reduces). Given that a particular high-level model

may have a number of distinct low-level models to which it reduces depending

on the particular application in question, it would be inappropriate to require

that the relation between the components of the high-level model and those of

the various low-level models to which it reduces (in the DS sense) be one of

identity.

Yet even specialising to a particular class of applications of a high-level

model, and requiring its domain relative to this range of applications to be

subsumed within that of some low-level model, there are reasons to doubt that

the bridge maps of DS reduction should be required to be identifies, even though

the terms linked by the bridge map will both refer to the same physical state of

affairs. The term ‘identity’ in the mathematical context of DS reduction suggests

that the bridge maps should be required to be one-to-one; certainly, this is not

the case with any of the bridge maps we have seen in any of the examples

considered, as there are often numerous states in the low-level theory that will

emulate the behavior of a given high-level state given some timescale and margin

of error. The best we can do - within the level of precision characterising the

high-level model’s success - is to say that the high-level state used to describe a

particular system is instantiated or realised by some particular one or other of

the many numerous low-level states that emulate its behavior under the bridge

map. But the correspondence certainly is not one-to-one, and for this reason

also it would be a mistake to require that bridge maps be identities.

In short, we have seen that DS reduction serves to describe a wide range of

inter-theory (or rather inter-model) relations in physics, but that its ability to do

so rests on an understanding of bridge maps that permits them to be many-one
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rather than one-one. If we were to require that bridge maps of DS reduction be

one-one, the account would likely no longer successfully characterise the inter-

theory relations discussed here. We can either choose to abandon the condition

of identity on bridge maps, and incorporate many intertheory relations into

our account of reduction; or we could continue to insist that ‘reduction’ requires

identity and simply call the relationship that does hold among these models, and

characterised by the conditions set out in the first chapter, something other than

reduction. I have opted for the first option here, given that DS reduction does

exhibit many of the other characteristics typically associated with the reduction

relation.

But if the links entailed by bridge maps are not required to be identities,

how do we avoid Sklar’s concern that they simply reflect correlations? Instead of

interpreting these links as identities, we should understand them links as claims

of co-reference: that is, within a given physical context, for instance, both the

classical phase space point (X,P ) and a state |ψ〉 such that 〈ψ|X̂|ψ〉, 〈ψ|P̂ |ψ〉

refer to the same condition of the physical system in question; however, because

the low-level model describes this system in greater detail and with greater

accuracy, it is possible that multiple states |ψ〉 are compatible with the condition

(or rather set of possible conditions) represented by (X,P ).

Since the anti-reductionist’s multiple realisability argument loses traction

once the links between high- and low-level descriptions are no longer required to

be identities, the fact of multuple realisability simply occurs as a characteristic

of DS reduction, rather than a reason to doubt its applicability. I will now

survey the different possible senses in which multiple realisability can occur in

DS reduciton.

In the context of DS reduction, multiple realisability can be attributed to a

variety of potential characteristics of the reduction relation between two models.

First, it can be attributed to the possibility of there being more than one low-

level model to which a given high-level model reduces. For example, the classical
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model of the simple harmonic oscillator is multiply instantiated, even within

classical theory, as a bob on a spring or as a charge moving through the hollowed-

out axis of a uniformly charged sphere. Certainly, then, the quantum mechanical

models underlying these two instantiations of the simple harmonic oscillator

model will be very different - for example, as regards the origin of the restoring

force, since in the case of the spring the restoring force is compounded from

the individual forces between the atoms inside the spring, and in the case of

the electric charge it is simply the result of a classical background electrostatic

field.

Multiple realisability also can be associated with the existence of more than

one bridge map between a single high level and a single low level model, and with

the distinct domains of approximate Mh-behavior in the low-level state space

that are associated with these distinct bridge maps. For example, a classical

model of two planets orbiting each other can be instantiated in two different

ways by a classical model of two pairs of oribting planets in which the pairs

are widely separated in space so as not to affect each other; one bridge map

will associate the pair of planets in the first model with one pair in the second

model, while a different bridge map will associate the pair of planets in the first

model with the other pair in the second model.

Finally, multiple realisability could be associated with the fact that the

bridge map is typically many-one, even when restricted to the domain of states

that exhibit approximate Mh behavior under the bridge map. For example, in

the reduction of the single-particle model of classical mechanics to the single-

particle model of quantum mechanics discussed in the first chapter, there may

be a range of narrow wave packets, with varying widths and slightly varying

shapes, all of which instantiate the same classical phase space point, and the

same classical dynamics, when expectation values are taken.

Still, while acknowledging that DS reduction incorporates these various forms

of mutliple realisation, one could object that precisely for this reason it should

not be considered as a form of reduction at all, for reduction ought to require
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that the corresponding elements of the high and low-level models be identified.

To some extent, this objection is simply one of what a legitimate application of

the term ‘reduction’ is, and of whether one must include identifications as a nec-

essary component of its proper usage. What I hope I’ve demonstrated at least

somewhat convincingly in the preceding chapters is that the DS account suc-

ceeds in characterising a number of inter-theory relations in physics, irrespective

of whether these particular inter-theory relations conform to some previously

conceived notion of reduction. Moreover, as I have argued in Chapter 1, the

DS account characterises these inter-theory relations in a manner that conforms

with at least some uses of the term reduction that are flexible enough to ac-

commodate multiple realisation - in particular, the usage of the term associated

with the GNS account.

6.4 Problem 4: The Epistemology of Bridge Laws

How are bridge laws estabished on the GNS account? As argued above, they

are not established empirically, but mathematically. Given a model of a high-

level theory and a model of a low-level theory, both of which describe the same

physical system, it is a purely mathematical fact whether there exist bridge

laws and corresponding domains within the low-level state space such that the

DSR condition is satisfied. If one considers a particular function from the low-

level state space to the high-level state space, and the fixed dynamical maps of

the high- and low- level models, as well as a particular approximation margin

and a reduction timescale, it is possible to decide entirely by mathematical

means whether the DSR condition is satisfied, without ever performing a single

experiment.
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6.5 Problem 5: Strong Analogy

The relation of ‘strong analogy’ between an image and analogue theory is sup-

posed to signify some approximate agreement between the two, at least on the

GNS model 1. Yet what this approximate agreement consists in is left open on

the GNS account. Given the more specialised context of DS reduction, we can

make the sense of ‘approximate agreement’ and therefore of ‘strong analogy,’

exact. Specifically, as we have seen, on the DS approach the condition of strong

analogy between a high- and a low- level model requires that

∣∣x′h(t)− xh(t)
∣∣ < δ ∀ 0 ≤ t ≤ τ, (6.1)

where τ again is the reduction timescale and δ some margin of error.

Immediately we can see that this notion is much more precise than the simple

requirement of approximate agreement between theories. The only potential

ambiguities, it seems, with this notion of ‘strong analogy’ concern the choice of

norm on the high level state space, and the arbitrariness in the choices of margin

of error. Although from a mathematical point of view it is usually possible to

define any number of norms on the high level state space, in practice there is

usually one that presents itself as the natural norm to use on the space; indeed,

the DSR condition in all cases that we have considered is satisfied with respect

to the most obvious norm on the high-level space. One may ask what uniquely

qualifies these norms as the ‘natural’ ones to use, or whether there is likely to be

a uniquely obvious norm to use in every case of dynamical systems reduction.

I will not attempt to address these concerns here, except to note that in the

particular examples that I have considered, it was possible to demonstrate DS

reduction according to the most obvious choice of norm on the high level space in

1It is possible that this construal of the concept of ‘strong analogy’ is more narrow than
Nagel or Schaffner intended; here I follow the usage of this term employed in [30], which takes it
simply to signify approximate agreement between the analogue and high-level theories; on the
DS approach, approximate agreement between analogue and high-level models is, as discussed
in Chapter 1, determined according to the norm on the high-level state space. Insofar as any
ambiguities in the meaning of ‘strong analogy’ are resolved by the DS approach, I only argue
that this is the case with respect to the construal of this term adopted [30].
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question, and that there was never any cause to consider other possible norms.

As regards the potential concern about the arbitrariness in the margin of

error characterising the approximation, this is no more serious a concern than

it is in the most straightforward cases of approximation: for which values of

x does the first-order Taylor expansion, 1 + x, of f(x) = ex count as a good

approximation to this function? Clearly, there is no unique answer, for the

answer depends on how close an agreement one desires between the value of

the first-order expansion and the value of the function for the approximation

to be ‘good’; narrower agreement will require more stringent restrictions on

x. Likewise, in the context of the DSR condition, narrower restrictions on the

margin of error in the approximation typically will reduce the timescale over

which the approximation can be expected to hold, while allowing for larger

margins of error usually will increase this timescale.

6.6 Summary

In the preceding chapters, I have exibited what I believe to be the correct

methodology for the reduction of physical theories by building upon an insight

that has received too little attention in the literature on reduction - namely, the

DSR condition. I also claim that beyond its methdological virtues, DS reduc-

tion provides the correct account of the relationship between different models

of physical theories that describe the same phenomena. Unlike much of the

philosophical literature on the subject of reduction, my analysis has not en-

deavoured to include the whole of science or the whole of reduction, but rather

has specialised to particular set of reductions within physics. However, I hope

that the reader is convinced that what we pay for with this loss of generality

in our analysis is a significant gain in the precision with which we may discuss

various notions relating to the reduction of physical theories. By specialising

in this manner, a number of important insights about reduction from the gen-

eral philosophy of science literature can be given more exact formulations. In
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particular, I showed that many of the insights of Nagelian reduction, construed

according to the GNS account - can be carried over into the semantic framework

of dynamical systems reduction and much of the ambgiuity surrounding them

eliminated in the process.
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