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This paper examines two questions about scientists’ search for knowledge. First,
which search strategies generate discoveries effectively? Second, is it advantageous
to diversify search strategies? We argue pace Weisberg and Muldoon (2009)
that, on the first question, a search strategy that deliberately seeks novel research
approaches need not be optimal. On the second question, we argue they have
not shown epistemic reasons exist for the division of cognitive labor, identifying
the errors that led to their conclusions. Furthermore, we generalize the epistemic
landscape model, showing that one should be skeptical about the benefits of social
learning in epistemically complex environments.

1. Introduction. A well-known example of the benefits conferred by the division
of labor appears in Adam Smith’s The Wealth of Nations. In his discussion of the
pin factory, Smith noted that the efficiency gains derived from specialization could
yield an increase of productivity between 240- and 4,800-fold from that of a single
individual. Whereas a single worker might endeavor to produce twenty pins in a
day, a group of ten in a single factory had been seen to produce upwards of twelve
pounds.

Does the same hold true for the division of cognitive labor? Would there
be more discoveries or would discoveries come faster if scientists divided their
labor? For a number of reasons, the answer is obviously yes: undivided cognitive
labor would lead to unnecessary repetition, scientists would fail to benefit from
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the unequal distribution of skill and talent and, finally, complex projects would
become unmanageable given only a single worker. However, some have argued
for a positive answer for other reasons. In particular, Weisberg and Muldoon
(2009)1 suggest that diversity of research strategies may “stimulate [...] greater
levels of epistemic production” (225) and contend that even small steps towards a
more diverse community of scientists “massively boosts the productivity of that
population” (246–47, italics inserted).

The argument Weisberg and Muldoon provide for this claim utilizes a formal
model of search strategies on an “epistemic landscape”, a natural reinterpretation of
the idea of a fitness landscape from evolutionary biology. In what follows, we show
that, contrary to what they report, a careful examination of their formal model does
not actually support many of the conclusions they attempt to draw regarding the
division of cognitive labor. There are three main reasons. First, for the particular
epistemic landscape they consider, the purported benefits of cognitive diversity
are exaggerated due to a failure to consider a broad enough comparison class of
search strategies. We provide several examples of homogeneous populations which
prove surprisingly efficient at searching the space and identifying the points of
epistemic interest. Second, the apparent benefits of cognitive diversity reported
largely derive from implementation errors in two of the three search strategies they
discuss. And third, if the model of epistemic landscapes is generalized to more
rugged, higher dimensional landscapes whose overall topography is not discernible
by the individuals,2 social learning and the division of cognitive labor only helps
in particular circumstances. The upshot is that, although there clearly are real
benefits from the division of cognitive labor, the reasons have nothing to do with
the epistemic reasons suggested by Weisberg and Muldoon’s formal model.

The overall structure of the paper is as follows. In section 2 we briefly revisit
the original epistemic landscape model. In section 3 we derive results providing
an upper bound for efficient search strategies on that landscape; essentially, no
rational scientist should perform worse than this value. We then show that some of
the search strategies investigated by Weisberg and Muldoon fare far worse than this
constraint. Section 4 shows why the search strategies considered by Weisberg and
Muldoon performed so badly. Section 5 considers two key hypotheses which they
claim to have substantiated, and we show that our re-examination of the model
invalidates both hypotheses, effectively undermining their attempts to provide
epistemic reasons for the division of cognitive labor. Section 6 demonstrates that
homogeneous populations can do even better than heterogeneous populations,
in some cases. And, finally, in section 7 we generalize the epistemic landscape

1. References given as page numbers only refer to this article.
2. We use the general framework of NK-fitness landscapes of Kauffman and Levin (1987).
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model and argue that whether the division of cognitive labor is advantageous or
not depends upon features of the landscape which may well be unknowable.

2. Epistemic Landscapes. The basic idea of an epistemic landscape derives from
Sewall Wright’s (1932) insight in population biology that one can represent the
fitness values of genotypes in terms of an abstract landscape. There, a particular
genotype corresponds to a point in a highly multidimensional landscape, with the
fitness value of that genotype as its “height”, and “nearby” points on the landscape
being genotypes accessible via point mutation, recombination and so on.3 Analo-
gously, we can think of an “epistemic landscape,” where a point of the landscape
represents a particular research approach to investigating a topic of inquiry. A
research approach consists of the composite set of research questions, instruments,
techniques and methods used, as well as background theories a scientist or group
of scientists rely on.

Not all research approaches to a topic of inquiry are equally fruitful, though.
Some research approaches bring better results, or more publications, or more useful
applications, than others. Following Weisberg and Muldoon, we can treat each
approach as having a significance between 0 and 1. This generates an abstract
landscape over the various research approaches, with the height of each approach
corresponding to its significance. The entire landscape itself represents a single
topic of inquiry.4

How do they proceed to model this? First, they fix the form of the epistemic
landscape. For simplicity, they work with a discrete 101×101 lattice, wrapping at
the edges to form a torus, with two peaks as illustrated in figure 1. Second, they
must operationalize the concept of finding points of epistemic significance on this
landscape. This can be broken down into two components:

Epistemic Success. The time required to visit the two peaks.

Epistemic Progress. The percentage of the significant regions explored after a
given time.

Given these two aims, how should scientists search the space? Since a point in
two dimensions represents a research approach, this becomes the question of how

3. Of course, this description ignores the fact that frequently one cannot meaningfully speak of
the fitness of a genotype separate from the distribution of genotypes/phenotypes in a population. For
the purposes of investigating their model, we share this idealization with Weisberg and Muldoon.
However, we agree that this assumption is highly dubious and future work should investigate the
consequences of dropping it.

4. This can be seen from the fact that the same set of research methods may have very different
degrees of fruitfulness over different topics of inquiry: randomized controlled trials are highly
fruitful for determining the efficacy of various drugs, less so for purposes of literary theory.
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Figure 1: 3D and 2D projections of the epistemic landscape. On the right, signifi-
cance hills are indicated by shaded gradient, with the perimeter highlighted.

a scientist should move about the landscape in light of the information available to
her.5 A variety of different kinds of information exist which one might use. There
is epistemic information, such as the significance of one’s current approach. There
is also social information, such as how often a certain approach has been tried
before, or whether it has been tried at all. Finally there is the possibility of using
metric information, such as how far away is the nearest scientist.6

Weisberg and Muldoon consider three search strategies: a “control”, and two
others which they call “mavericks” and “followers”. The control strategy, also
referred to as the “HE rule” (short for “hill-climbing with experimentation”) only
uses epistemic information, whereas mavericks and followers use both epistemic
information and social information. Essentially, the HE rule instructs a scientist to
try to climb a hill towards the peak (without being able to detect the gradient), and
otherwise to follow a straight line on the landscape with, occasionally, a random
change in direction. Followers, as the name suggests, are intended to favor explored
approaches which have been previously considered, and only take significance into
consideration as a secondary consideration. The maverick strategy, on the other
hand, is sensitive to research approaches which have been explored previously and
deliberately seeks out unexplored approaches at random.

5. In turn, this requires specifying just exactly what information is, in fact, available to a scientist.
This purportedly simple model has a lot of detail which needs to be posited before one can begin to
make any headway with the two questions.

6. Strictly speaking, the epistemic landscape provides a topological model rather than a metric
model, since the spatial “positions” are supposed to be abstract representations of variations in
some research approach. (Consider, by way of comparison, the concept of “distance” between two
genomes identical except at one base. If the differing base was, say, adenine instead of thymine,
does that make the second genome closer or farther than it would have been if the base had been
guanine or cytosine? It’s hard to make sense of this question.) Nonetheless, one could impose a
metric onto the epistemic space by simply imposing a Euclidean metric onto the landscape. Whether
this would mean anything is, of course, unclear.
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3. Controls, followers, mavericks, and the efficiency of search. Before getting
into the details of the Weisberg and Muldoon model, let us first establish some
clear upper bounds on the search efficiencies one might expect to find. Recall that
the control strategy attempts to hill climb, if in an area of epistemic significance,
and otherwise follows a straight line, with occasional random changes in direction.
If we dispense with the requirements of hill climbing and the occasional random
reorientation when in areas of zero significance, we get a search strategy which
can be proven to almost always visit both peaks and exhaustively search the entire
space. How so? Recall that, since the two-dimensional landscape wraps at the
edges, it is topologically equivalent to a torus. The Kronecker foliation of the torus
is obtained by projecting a straight line in the real plane with slope θ onto the
surface of the torus. If the slope θ is rational, the projected line forms a closed
loop; if the slope is irrational, the line will be dense in the surface of the torus.7

Figure 2 illustrates both types of foliations. Since the epistemic landscape under
consideration is divided into discrete cells, the fact that the Kronecker foliation is
dense in the surface of the torus guarantees that a single agent who simply follows
a straight line will, in finite time, search the entire space.8 Call an agent employing
such a strategy a “foliator”.9 A population of foliators will manage to explore the
entire space more quickly than a single agent. And since almost all of the possible
slopes θ which an agent may follow are irrational, a population of foliators use a
simpler search strategy than Weisberg and Muldoon’s control agents, but can be
proven to almost always succeed in achieving both epistemic aims.

Let us estimate the efficiency of this search rule by simulation. Figure 3
illustrates one result from a simulation containing 10 foliators beginning at random
locations in the area of zero significance, which we call the “desert”. Notice
that the foliator strategy can be quite quick: within 500 steps, one peak of the
landscape had already been found and 36% of the entire landscape explored. Out
of 5,000 simulations run with ten foliators and random initial conditions, 4,988

7. Strictly speaking, the slope of the line needs to be classified as rational or irrational relative
to both the major and minor radii of the torus. Let the major radius have a length of 1

2

√
3 and the

minor radius a length of 1
2 . The surface of the torus is equivalent to a rectangular lattice of height 1

and width
√

3 which wraps at the edge. A line in the plane with slope of 1
1
3
√

3
(and hence irrational)

will, when mapped onto the torus, self-intersect after three loops. However, if we take ‘irrational’
to mean ‘irrational with respect to the major and minor radii of the torus’, then the claim holds.

8. Although the lattice is divided into discrete cells, the heading of an agent may vary continu-
ously.

9. Note that for the purpose of establishing a theoretical upper bound, strictly speaking, we
may not require the existence of a real-world analog to this strategy. This strategy requires to
impose a Euclidian metric onto the landscape, which is a plausible assumption when real-world
constraints are set aside (see our remarks in footnote 6). We discuss the real-world applicability of
the epistemic landscape model at length in section 7.
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(a) Partial foliation of the torus by a line with
a rational slope. Notice that the line self-
intersects.

(b) Partial foliation of the torus by the initial
segment of a line with an irrational slope. No-
tice that the line fails to self-intersect and will
densely cover the torus over repeated windings.

Figure 2: Foliations of the torus.

(a) 50 iterations (b) 100 iterations (c) 200 iterations (d) 500 iterations

Figure 3: Epistemic search by 10 foliators. The squares are ‘breadcrumbs’ showing
approaches that have been visited.
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managed to find both peaks with 50,000 steps. The mean time required to find both
peaks was 1,855 steps, with minimum and maximum times of 43 and 32,167 steps,
respectively, and a median time of 1,430 steps.

Now compare these results with the results reported by Weisberg and Muldoon
(see figure 6). The discrepancy reveals something rather curious. In a simulation
with 100 repetitions of populations of 10 HE rule agents, only 95 populations found
both peaks within the time allowed (50,000 steps). Of these 95 populations:

“the time to finding the two significant peaks varied considerably from
a maximum of 43,004 cycles to a minimum of 553 cycles. The mean
for these runs was 6,075 with standard deviation 8,518 and the median
was 2,553. More importantly, the length of runs is distributed in a
heavy-tailed distribution, with 60% of the runs being completed in
4,000 cycles and 80% being completed in 10,000 cycles.” (236)

In short, foliators — who never attempt to hill climb, and who never pick a new
direction of travel — are both more effective at finding both peaks (with a success
rate of 99.7% instead of 95%) and faster (a mean time of 1,855 steps, as opposed
to 6,075). Let us bracket this observation, for the moment, and return to it at the
end of this section.

Now consider, as an alternative search strategy, the case of a simple random
walk. Assume that at points of zero significance (the “desert”) the agent randomly
moves to one of its eight nearest neighbors, with all transition probabilities equal;
at points with positive significance, the agent follows the gradient. This means that
at points of zero significance, an agent’s movement at a time is independent from
her movement at all previous times and that once the agent enters a region with
positive epistemic significance, she never leaves. Thus we can treat the two hills as
a single absorbing states and model the movement of the agent in the desert as a
Markov process.

Let kn,m denote the expected time to absorption for an agent starting at location
(n,m). By construction, ki, j = 0 for all points (i, j) having positive epistemic
significance. Furthermore, for all points (n,m) having zero epistemic significance,
we know that

kn,m = 1+
1
8

(
kn−1,m+1 + kn,m+1 + kn+1,m+1

+ kn−1,m + kn+1,m

+ kn−1,m−1 + kn,m−1 + kn+1,m−1

)
.

Figure 4(a) illustrates the local transition diagram for a point in the desert bordering
the perimeter of a hill. This gives a system of 10,201 simultaneous linear equations.
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(n−1,m−1)

(n−1,m)

(n−1,m+1) (n,m+1) (n+1,m+1)

(n,m) (n+1,m)

(n,m−1) (n+1,m−1)

(a) A portion of the Markov chain transition
diagram for the random walk search strategy.
Gray areas represent absorbing states. For
simplicity, only the state transitions exiting
the 3×4 block of points have been shown.

(b) A plot of the expected number of steps required
for an agent to encounter a region of epistemic
significance via a random walk (the height of each
column represents the expected number of steps).

Figure 4: Analytically solving for the expected waiting time of the random walk
search strategy.

If we only consider equations generated from points having zero significance, and
the perimeter of the two epistemically significant regions, the system reduces to
8,273 simultaneous linear equations. Figure 4(b) illustrates the expected hitting
time of the absorbing state, for each point in the landscape.10 The maximum
expected hitting time is a fraction over 1,600 steps. The average hitting time, for a
single agent starting in the desert, is 881.9 steps.

Since it is not feasible to obtain an analytic solution for a population of ten
agents engaged in independent random walks, we examined this via simulation.
Out of 5,000 populations of 10 agents, all starting from random initial conditions,
4,944 found both peaks. In all remaining 56 cases, all 10 agents had found the
same peak. (With the random walk search strategy, when an agent finds a peak
it stays there.) The mean time required to find both peaks was 249 steps, with a
minimum and maximum time of 14 and 4,241 steps respectively, and a median of
141 steps. After 500 iterations on average 15.6% of the total landscape had been
explored.

In summary, we have shown the following: if we are interested in both effec-
tiveness (were both peaks found?) and efficiency (how long did it take to find

10. The system of equations was programmatically generated and then solved using Mathematica.
Since the system of equations is both linear and described with a sparse coefficient matrix, a solution
is found quite quickly.
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(a) 50 iterations (b) 100 iterations (c) 200 iterations (d) 500 iterations

Figure 5: Epistemic search by 10 agents using the random walk strategy. One
peak has been found after less than 50 steps. Within 100 steps both peaks have
been found. Within 500 steps, 5 agents have found peaks and roughly 17% of the
landscape have been explored.

Epistemic success

Strategy P Mean SD Min Max Median

HE rule 0.95 6,075 8,518 553 43,004 2,553
Random Walk 0.9888 249 327 14 4,241 141
Foliator 0.9976 1,855 1,755 43 32,167 1,430

Figure 6: A comparison of simulation results reported in Weisberg and Muldoon
on 10 agents using the HE rule with results of agents using the random walk and
Kronecker foliation search strategies. P denotes the proportion of populations that
found both peaks.

both peaks?), the HE rule did worse than pure populations of foliators or ran-
dom walkers. (Figure 6 has a side-by-side comparison of all three strategies.) In
particular the HE rule — despite taking epistemic information into account by
hill-climbing — did worse on average by a factor of three when compared to the
foliator strategy, which simply ignored this information. Furthermore, the HE rule
did worse than the random walk strategy by a factor of roughly 24. Admittedly,
our random walk strategy would be expected to do better, in regions of positive
significance, because it simply followed the gradient, whereas the HE rule used a
probe-and-adjust method to hill climb. But that surely doesn’t explain everything
about why it did over 24 times worse.
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4. A closer look. Why did the control scientists perform so badly? Let us
examine the exact statement of the HE rule as described in the original paper. It is
as follows:

HE Rule:

1. Move forward one patch.
2. Ask: Is the patch I am investigating more significant than my previous

patch?
If yes: Move forward one patch.
If no: Ask: Is it equally significant as the previous patch?
If yes: With 2% probability, move forward one patch with a random

heading. Otherwise, do not move.
If no: Move back to the previous patch. Set a new random heading.

Begin again at Step 1.

Scope ambiguities regarding the nested conditionals in step 2 make the rule, as
stated, open to multiple interpretations. The pseudocode representation provided
in figure 7(a) makes precise the scope relations between the else-clauses of the
conditionals under one interpretation. Here, step 1 of the published version of the
HE rule corresponds to the forward() command in line 2. Step 2 corresponds to
the nested conditionals and commands in lines 3–20. There is nothing correspond-
ing to the “Begin again at Step 1” instruction because we assume each agent calls
HE_rule() at the start of each iteration.

From this, it is clear that our foliator rule approximates the HE rule quite
well: when exploring areas of zero significance, the test on line 3 fails and the
test on line 7 succeeds. As the test on line 8 succeeds only 2% of the time, the
remaining 98% of the time the HE rule will not reset its heading. Thus, when
the forward() command on line 2 is invoked at the start of the next iteration,
the agent continues to move forward according to its previous heading, i.e., in a
straight line. Furthermore, this shows that the stay_put() command on line 13
is not, strictly speaking, necessary, since the agent has already taken one step
forward during the current iteration. (Indeed, this serves to highlight a small error
in the Weisberg-Muldoon statement of the HE rule: when in areas of increasing
significance, the combination of the the forward() command on line 2 and the
successful test on line 3 ensures that the agent will step forward twice in the same
iteration.)

Inspection of the original code used in the Weisberg-Muldoon simulation,
which they made available, revealed that their actual implementation was as in
figure 7(b). There are several things to note. First, the absence of a forward()
command at the beginning means that agents are not guaranteed to move at least
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once each iteration. Second, the test condition at line 2 contains the >= operator.
When exploring regions of zero significance, this means the test at line 2 will
succeed, dropping us immediately into the test at line 3, which will also succeed.
A control agent, given lines 4–6, moves forward at a random heading with a 2%
probability and otherwise remains stationary 98% of the time.

In other words, whereas the description of the HE rule in the paper suggests
that agents ought to behave rather like foliators, their actual implementation has
those agents behaving like lethargic random walkers. This explains the difference
between our baseline results and those reported by Weisberg and Muldoon. How-
ever, it also calls into question the meaningfulness of the comparison between
control agents who use the HE rule and other search strategies. Since control
agents do nothing 98% of the time, unless a similar delay is incorporated into the
definition of any compared search strategies, we are comparing rules which operate
on fundamentally different time-scales.

1 HE_rule() {
2 forward();
3 if (curr_sig > prev_sig) {
4 forward();
5 }
6 else {
7 if (curr_sig == prev_sig) {
8 if (random() < 0.02) {
9 random_heading();

10 forward();
11 }
12 else {
13 stay_put();
14 }
15 }
16 else {
17 backward();
18 random_heading();
19 }
20 }
21 }

(a) As in the paper.

1 HE_rule() {
2 if (curr_sig >= prev_sig) {
3 if (curr_sig == prev_sig) {
4 if (random() < 0.02) {
5 random_heading();
6 forward();
7 }
8 else {
9 stay_put();

10 }
11 }
12 else {
13 forward();
14 }
15 }
16 else {
17 backward();
18 random_heading();
19 }
20 }

(b) As implemented.

Figure 7: Two implementations of the HE rule search strategy. The variables
curr sig and prev sig refer to the significance of the site currently occupied
by the agent and the significance of the site previously occupied by the agent,
respectively.
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Let us now turn to the follower strategy. Here is the definition, as in the original
paper:

Follower rule:

Ask: Have any of the approaches in my Moore neighborhood been
investigated?

If yes: Ask: Is the significance of any of the investigated approaches
greater than the significance of my current approach?

If yes: Move towards the approach of greater significance. If there is a
tie, pick randomly between them.

If no: If there is an unvisited approach in the Moore neighborhood,
move to it, otherwise, stop.

If no: Choose a new approach in the Moore neighborhood at random.

The following pseudocode disambiguates the scope of the nested conditionals:

1 Follower_rule() {
2 if (any Moore neighbors visited?) {
3 let n = random visited neighbor with max significance;
4 if (significance(n) > current_significance) {
5 go_to(n);
6 }
7 else {
8 if (any unvisited neighbors?) {
9 let m = random unvisited neighbor;

10 go_to(m);
11 }
12 else {
13 stay_put();
14 }
15 }
16 }
17 else {
18 let m = random unvisited neighbor;
19 go_to(m);
20 }
21 }

In this version, there is no need to specify the tie-breaking rule explicitly be-
cause we have already selected, at line 3, a random visited neighbor with maximum
significance.

As interpreted, the follower rule performs a biased random walk which can
get stuck. In the presence of sites which have been previously visited, and which
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are of greater significance, the rule moves to one of those sites at random. When
no visited sites are of greater significance, it moves to a random unvisited site.
However, when entirely surrounded by visited sites of equal significance — as can
happen in the desert — the follower rule will always end up selecting stay_put()
at line 13.

How does this interpretation compare with the results Weisberg and Muldoon
report? They write:

“With only 10 followers, not a single population managed to find
both approaches of maximum significance and only 3% managed to
find at least one approach of maximum significance [. . . ] with 200
followers, a single approach of maximum significance was found 60%
of the time, with both approaches being found only 12% of the time.
However, when the populations of followers did find both peaks, this
happened very rapidly with an average time to converge [. . . ] of 56
cycles, which suggests that the randomly placed agents were near the
boundary of significance at the beginning of the simulation.” (240)

Weisberg and Muldoon (2009, 240)

Even though the biased random walk performed by the followers can get stuck in
the desert, it seems strange that a population of 200 followers only found one peak
60% of the time, and both peaks only 12% of the time. Further cause for concern
should arise when one reads that when followers did find both peaks it happened
“very rapidly.” How can a search strategy perform so badly at search, generally, yet
succeed so rapidly when it does?

Inspection of the code used by Weisberg and Muldoon showed that their
implementation was functionally equivalent to our interpretation above except for
the test at line 4, which in their version was:

if (significance(n) >= current_significance) {

The use of the >= operator instead of the > operator is a serious error. Given a
sparse distribution of followers, where each agent is at least three squares distant
from every other in regions of zero significance, the agents get stuck in a loop.

Figure 8 illustrates how this happens in detail. In the initial state shown up left,
the if-test at line 2 of the follower rule fails, but the if-test at line 8 succeeds,
resulting in the agent moving to an adjacent site selected at random. But then, in
a configuration like that shown up right, the if-test at line 2 now succeeds, and
because the Weisberg-Muldoon implementation of the follower rule has the >=
operator at line 4, the agent simply moves back to its previous position.11 From this

11. This happens because there is exactly one previously visited neighbor, and so it is guaranteed
to be chosen when we select “a previously visited neighbor with maximum significance”.
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Figure 8: The implementation of the follower rule typically results in cycles of
length two. (All shown sites have zero significance.) The agent moves from the
initial configuration (up left) to a randomly selected unvisited square (up right). It
then returns to a previously visited site whose significance is greater than or equal
to the significance of the current site (bottom left) and is stuck in a loop (bottom
right).

point on, the follower oscillates between the two visited sites. Instead of following
others, the agent ‘chases his own tail’.

Thus we see why only 3% of the 100 simulations of 10 followers managed
to find a single peak: most of the time they were trapped in regions of zero
significance, with at least one visited site in their neighborhood. It also explains
why larger populations of followers, when they managed to find both peaks, found
both peaks so quickly: the random initialization positioned a few followers in a
site of zero significance which was adjacent to a region of positive significance.
If the follower happened to randomly move into an area of positive significance,
it will then proceed to climb up the hill via a random walk. With this in mind,
consider the one graphic from the original Weisberg and Muldoon paper which
showed the paths traveled by a population of 300 followers, reproduced in figure 9.
Here we see that only agents positioned near the region of epistemic significance
eventually managed to climb towards the top of the peak. Furthermore, the vast
majority of paths traveled by followers consist of mere oscillation between two
adjacent squares, exactly as one would expect given the code analysis.

5. On the division of cognitive labor. Weisberg and Muldoon note that “modern
science requires the division of cognitive labor” (225) and claim that their simula-
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244 MICHAEL WEISBERG AND RYAN MULDOON

Figure 8. Exploration of the epistemic landscape by a community of 300 followers
before (A) and after (B) movement begins. The tails behind agents are a plot of the
paths they followed during the course of the simulation.

mavericks always found both peaks in our simulations. In addition, the
mavericks are far more efficient at finding the peaks than controls. With
10 mavericks, the mean time to find both peaks was only 80 model cycles.
With 100 mavericks, the mean time to find both peaks was 37 cycles and
this is only slightly improved by adding 100 more mavericks to make a
total of 200. With 200 mavericks, the average time to find both peaks is
33 cycles.

The mavericks are similarly impressive when we examine their epistemic
progress: Large amounts of progress is made with very few agents in a
very short amount of time. As with the controls and followers, we ex-
amined populations of 10–400 mavericks in increments of 10. We sampled
the community’s epistemic progress after 200, 500, and 2,000 cycles of
the model.

As expected, the worst performance was with 10 agents and the shortest
amount of time. The mean value for epistemic progress in this case was
merely 0.10. In other words, 10% of the significant approaches had been
found. After another 300 cycles, this hardly improves (0.12) suggesting
that the source of this low value is actually the mavericks’ efficiency at
hill climbing. Populations of 10 mavericks find the peak approaches before
they can explore a sufficient number of alternative approaches.

Increasing the number of mavericks drastically increases the epistemic
progress of the community. With 100 mavericks, the community achieves
0.55 epistemic progress after 200 cycles. With 400 mavericks, they achieve
epistemic progress of 0.90 after 200 cycles, meaning that nearly every
significant approach has been explored.

Figure 9: A figure from the Weisberg and Muldoon paper showing the exploration
of the epistemic landscape by 300 followers before (A) and after (B) movement
began. The tails show a plot of the path they followed. Note that the vast majority
of followers are trapped in cycles of length 2.

tion results illustrate the epistemic benefit so conferred. But what, exactly, do we
mean by the “division of cognitive labor”? Consider the following disambiguation.
On one hand we have the phenomenon that scientists choose different approaches
to investigate a research topic. In the epistemic landscape (which represents the
research topic), the agents can occupy different points (which represent research
approaches). Scientists specialize in different approaches. This is one meaning
of division of cognitive labor. It describes a phenomenon of coordination. On
the other hand, we have the phenomenon that scientists use different strategies to
choose their research approach. The agents move across the epistemic landscape
according to different strategies. Some scientists employ methods simply because
they are trending (these would be the followers) whereas others favour approaches
because they are exotic or unusual (these would be the mavericks). This is a second
meaning of division of cognitive labor. It describes a phenomenon of diversity.
Let’s call the phenomenon where different people work on different projects epis-
temic coordination, and the latter, where different people have different reasons to
work on different projects, cognitive diversity.

When Kitcher (1993) and Strevens (2003) use the Marginal Contribution and
Reward model to explain why scientists pursue different research approaches, they
seek to explain the phenomenon of epistemic coordination. They show that research
behavior of scientists is coordinated when scientists are sensitive to social and
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epistemic information. Very roughly, scientists seek to maximize the rewards that
accrue from scientific discoveries. They consider both the likelihood that an avenue
will generate results (epistemic information) and the number of other scientists
working on that avenue (social information). This yields the phenomenon that the
scientific community spreads out across different possible avenues for research.
However, because Kitcher and Strevens assume that all scientists choose among
possible avenues for research in essentially the same way, they do not address
cognitive diversity.

In contrast, an example of research on cognitive diversity can be found under
the headings of “swarm intelligence” or “wisdom of the crowds”.12 For example,
similar to Weisberg and Muldoon, Hong, Page, and Baumol (2004) develop a model
of agents searching for local maxima in a space. The agents are cognitively diverse
in two ways. Not only do they use different strategies to explore the epistemic
space, they also represent the epistemic space differently; each individual has its
own language to describe the points in the space. This is an example of a model of
agents that are cognitively diverse.13 More generally, models of cognitive diversity
can be found in areas ranging from complex systems research and theoretical
biology (Bonabeu, Dorigo, and Theraulaz 1999; Krause et al. 2011), management
and organization studies (Thomas and Ely 1996; Polzer, Milton, and Swarm 2002;
Jackson, Joshi, and Erhardt 2003) to psychology (Kerr and Tindale 2004), computer
science (Clearwater, Huberman, and Hogg 1991) and economics (Hong, Page, and
Baumol 2004; Arrow et al. 2008).

The epistemic landscape of Weisberg and Muldoon models division of cognitive
labor in both senses. Agents take different approaches on a research topic (epis-
temic coordination) and they use different strategies in choosing those approaches
(cognitive diversity). The central observation of “general trends about the division
of cognitive labor” (249) made by Weisberg and Muldoon is that cognitive diversity
gives a scientific community an epistemic advantage. An increase in epistemic
performance ensues if a community of researchers uses different epistemic search
strategies. They argue that “to be maximally effective, scientists need to really
divide their cognitive labor” (227) and that a “healthy number of followers with a
small number of mavericks” would provide an “optimal way” (251) to do so. They
write that this is because there is a “very significant indirect affect that mavericks
have on the research progress via their ability to stimulate the followers.” (249)

12. However, a very different research project also uses the same label. It surrounds the phe-
nomenon that large numbers of people are better at solving epistemic tasks. “Wisdom of the crowds”
in this sense is related to the Condorcet Jury Theorem and not so much to cognitive diversity.

13. Hong, Page, and Baumol (2004) use the term “functional diversity”.
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That sounds like a fine example of epistemic benefits of cognitive diversity.14 Is it
true?

Weisberg and Muldoon observe that the epistemic performance of a population
of followers increases when mavericks are added to it (247-8).15 Does this vindicate
the thesis that cognitive diversity improves epistemic performance? It does not
if the improvement rests on a defective implementation of the search strategies.
And it does not vindicate the thesis if the improvement is only due to the epistemic
performance of the agents which have been added. It seems that both is the case
here.

Furthermore, Weisberg and Muldoon describe that the improvement in epis-
temic performance is due to the following “indirect affect”. They write “Mavericks
help many of the followers to get unstuck, and to explore more fruitful areas of
the epistemic landscape.” (247) Maverick scientists may help follower scientists
getting unstuck, but the followers should not have been stuck in the first place. As
shown above, the search strategy of follower scientists suffered from a defective
implementation such that they ended up chasing their own tail. The beneficial
“indirect affect” that Weisberg and Muldoon describe requires a population of
follower scientists that has hardly left the place where they started. If a search
strategy performs so direly, the result that a complementary strategy improves
overall performance is hardly surprising. It does not vindicate the thesis that there
is an epistemic reason for cognitive diversity in any interesting sense.

If the follower strategy worked properly, in that it did not get stuck almost
immediately in a cycle, would there still be an indirect affect to vindicate the thesis
that there is an epistemic reason for cognitive diversity? We show that this is not the
case. It turns out that the improvement in epistemic performance is exclusively due
to the performance of the mavericks that are added to the population of followers.
It should not be surprising that the epistemic performance of a population increases
when agents are added. In particular, when these agents are mavericks, who have
been shown to perform quite well.

We set up a simulation to record the epistemic progress of followers and
mavericks separately as the mavericks are added to a population of followers.
In these simulations, we used a correct implementation of the follower search
strategy. This separate bookkeeping enables us to identify which sub-population
caused the increase in the total epistemic progress of the mixed population. We ran
simulations with 100 repetitions for each condition, for populations of followers

14. Assuming that each stimulated follower would do better than a maverick would in her place.
Otherwise, why should we ideally not have only maverick scientists to begin with?

15. More precisely, Weisberg and Muldoon consider two settings. In one setting the size of the
mixed population remains fixed and merely the proportion of followers to mavericks changes. In the
second setting mavericks are added to a population of followers. We focus on the second because it
is more instructive. Our findings apply to both.
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with an initial size of 100, 200, 300 and 400. We observed how the epistemic
progress of this population changes as maverick scientists are added. Replicating
the experiment from Weisberg and Muldoon we added 10, 20, 30, 40 and 50
maverick scientists. We measured the epistemic progress after 1,000 iterations
recording the total epistemic progress of the mixed population, and the progress of
each sub-population.

(a) mixed population (b) follower sub-population (c) maverick sub-population

Figure 10: Epistemic progress of a population as mavericks are added. The increase
of the mixed population (a) is almost entirely due to the maverick sub-population
(c). The epistemic progress of the follower sub-population remains unchanged
while mavericks are added (b).

For all initial sizes of follower populations, the epistemic progress of the
followers remains virtually unaffected by the presence of mavericks. In the case of
the initial population size of 100 followers, the epistemic progress of the follower
sub-population even decreased. While a pure population of 100 followers managed
to explore 23% of the significant points after 1,000 steps, when mavericks are
added to the population this number goes slightly downwards. The epistemic
progress of the follower sub-population in the presence of 50 mavericks reaches
only 21%.

Thus the increase in the epistemic progress of the mixed population can be
solely accounted for by the epistemic progress of the maverick sub-population.
Indeed, if anything, the followers seems to get in the way of the mavericks. The
mavericks are doing particularly well when only few followers are present. Notice
that the epistemic progress of a maverick sub-population of the size of 50 is 19% in
the presence of a follower sub-population of a size of 100. The epistemic progress
of the maverick sub-population decreases as the size of the follower sub-population
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increases. The maverick sub-population of the same size achieves an epistemic
progress of 15% when the follower sub-population has a size of 200, 14% when it
has a size of 300, and 12% when it has a size of 400.

6. Efficient search in homogeneous populations. The Weisberg and Muldoon
epistemic landscape model features three different kinds of information: epistemic,
social, and metric. Although control agents use epistemic, and followers and
mavericks use both epistemic and social information, none of the three strategies
considered utilize metric information. To an extent, using metric information (how
far away other nearby scientists are and where they are going) can be interpreted as
a “strategic follower” strategy: it pays attention to where other scientists are going
rather than seeking parts of the landscape where they have been. Since there is
good reason to suspect that some scientists behave in roughly similar ways (in that
they consciously align their “research brand” with what is trending), let us consider
how such a search strategy performs. Let us call this strategy the “swarm”. Stated
informally, a swarm scientist receives information about what others in her area
are working on via journals and conferences and adjusts her own approach such
that it is always similar but yet distinct to the approaches pursued by others in her
area. Furthermore, when she observes that many of her colleagues incorporate a
certain turn into their approaches, she will try to imitate this change.

There are at least four interesting parallels between the epistemic search of a
scientific community and the foraging behavior of animal groups. First, individuals
in a school of fish or a flock of birds need to coordinate their behavior to avoid
occupying the same space at the same time. In scientific research, this is the prob-
lem of epistemic coordination: we don’t want everyone to be attempting to do the
same thing at the same time, as such redundancy would often be a waste of effort.
Second, the animal group often has a common goal, such as finding food or travel-
ing to a nesting site. Analogously, the scientific community has epistemic aims,
such as determining a high-yield, cost effective way of manufacturing graphene.
Third, information is distributed differently among individuals in a group: only
a small subset of individual animals in a group may have information about the
location of particular food site. Analogously, only a small subset of researchers
has experience with a particular approach to the research topic. Finally, just like
how some herd-based animals follow others who take the lead, a similar behavior
may be found in the scientific community.16

Theoretical biology has a rich literature on collective behavior (see Sumpter
2010, ch.5, for an overview). The swarm search strategy we use is a simplified

16. An instructive example on the last two points are honeybees (see Seeley 2010). Once a
decision about a nest site has been made, “[u]p to around 10,000 bees of which only 2 or 3% are
informed of the location of the nest site fly as a single swarm to the site” (Sumpter 2010, 123). See
also (Ward, Krause, and Sumpter 2012).
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version of one by Couzin et al. (2005) and similar to the Boids model (Reynolds
1987). Roughly, if another agent gets too close, then the agent swerves to avoid
collision. Otherwise, the agent aligns its direction of travel with the other agents
around it. More precisely, the space surrounding the agent is divided into two dif-
ferent “zones”, as shown in figure 11, a zone of repulsion and a zone of orientation.
If there is another agent in the front half of the agent’s zone of repulsion, then
the agent changes its direction to the right if the closest individual is ahead and
to the left, and to the left if it is ahead and to the right. If there are individuals in
an agent’s zone of orientation but not its zone of repulsion, then the agent adjusts
its direction by the mean of the differences between its own direction and the
directions of the individuals in the zone of orientation.

Although figure 11 assumes that the radius of the zone of repulsion is smaller
than that of the zone of orientation, this need not be the case. If the radius of
the zone of repulsion is greater or equal to the radius of the zone of orientation,
the resulting swarm has considerably different properties. To distinguish between
these two cases, let us introduce some terminology: call the latter case a “repulsing
swarm”, and the former case a “flocking swarm”. The flocking swarm can be
thought of as being composed of “strategic followers,” with the repulsing swarm
being composed of “strategic mavericks”.

Figure 11: The focal agent of a flocking swarm with its zone of orientation (outer
circle) and repulsion (inner circle).

Note that swarm scientists also use epistemic information, but in a manner
somewhat different from the HE rule. Since some scientists have the ability to intuit
the correct way to develop a theory — think of Newton, Einstein, von Neumann,
and Feynmann — we incorporate this into the model by assigning to each agent
a probability of being “clairvoyant.” That is, each agent who happens to be in a
region of positive significance has a probability of guessing the direction to the top
of the hill.17 When this happens, the clairvoyant agent adjusts its heading to point
in the direction of its insight. Clairvoyance does not last, though, and so the initial

17. The probability is the same for all agents.
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(a) 50 iterations (b) 100 iterations (c) 200 iterations (d) 500 iterations

Figure 12: Epistemic search by 10 swarm agents in the flocking configuration.
Notice that one peak has been found within 50 steps. Within 100 steps both peaks
have been found and around 14% of significant points and 8% of the total landscape
have been explored. Within 500 steps, 47% of significant points and 32% of the
total landscape have been explored.

flash of insight might disappear as the agent further adjusts its behavior to the rest
of the surrounding swarm. Brilliant ideas may go unrecognized.

Compare this with the complexity of the behavior of the other agents. The HE
rule, maverick and follower agents each change their behavior when they enter
an area of positive significance. Each of them uses epistemic information in each
move to climb towards the top of the hill. The swarm strategy exhibits no richer
behavior or greater complexity than these strategies.

In short, in each iteration a swarm scientist does the following. With probability
p, and only if the agent is on a point of positive significance, it has a one-off moment
of clairvoyance, which causes it to changes its direction towards the closest peak,
taking one step forward. Otherwise, it adjusts its direction to align with all the
other agents in its zone of orientation, or it swerves away from the closest nearby
agent in its zone of repulsion, if there is any. After aligning or swerving, the agent
moves one step forward.

We ran simulations starting with populations of 10 agents, increasing it by 10 to
up to 400 agents with 100 repetitions each.18 We investigated the flocking swarm
strategy and the repulsing swarm strategy.19 The probability of clairvoyance was
0.03 for the flocking swarm and 0.015 for the repulsing swarm. We compare our

18. Let the number of agents be n, the radius of the zone of repulsion r, and the number of groups
s. The agents were placed in s = 3+n/10 groups that were randomly located in the desert. The
radius for each group, in which each agent was randomly placed is

√
rs. To start the simulation

without a pre-run to form stable swarms, all members of a group were given the same random
heading.

19. The radii were set to 3 and 1 respectively. Note that when the zone of repulsion is greater than
the zone of orientation, the agents never align their direction with that of the agents in their vicinity.
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Epistemic success Epist. progress

n Strategy P Mean SD Min Max Median 200 500

10 Maverick 0.75 121 58 52 299 109 7.74 8.79
Follower 0.79 123 63 50 509 110 6.76 7.24
Control 1 107 71 37 668 93 19.32 27.41
Swarm-F 1 167 110 34 602 133 17.94 39.51
Swarm-R 1 151 88 17 488 131 17.80 39.42

100 Maverick 1 54 8 37 75 54 36.95 36.99
Follower 1 52 7 38 73 52 22.92 22.92
Control 1 42 10 23 71 41 67.35 74.25
Swarm-F 1 64 29 21 154 57 80.85 97.54
Swarm-R 1 41 18 12 111 37 86.49 99.32

200 Maverick 1 49 6 37 66 48 51.23 51.23
Follower 1 43 5 31 59 43 29.10 29.10
Control 1 33 8 20 54 32 84.24 88.70
Swarm-F 1 45 20 20 135 40 93.87 99.78
Swarm-R 1 32 11 13 66 31 98.09 99.99

Figure 13: Results comparing epistemic success and epistemic progress of differ-
ent strategies. ‘Swarm-F’ and ‘Swarm-R’ are respectively the flocking and the
repulsing configuration of swarm scientists. The Follower and Control strategies
used here are as intended: Followers do not necessarily get stuck in a cycle of
length two when isolated (although they might get stuck eventually) and Controls
do not have an artificial time delay (nor do they move twice per iteration in regions
of increasing significance). Regarding the column headings, n is the number of
agents, P the proportion of populations that found both peaks with the time allotted,
and 200 and 500 is percentage of significant landscape that has been explored after
200 and 500 iterations respectively. (Simulations were stopped after any number
of iterations equal to 0 modulo 500 if no epistemic progress had been made in the
last 500 iterations.)
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results with similar simulations using maverick and the follower scientists.20 The
results for 10, 200 and 400 agents can be found in figure 13.21

On epistemic success we found that mavericks and followers perform better
than the swarm strategy only if the populations are sufficiently small and the
population of maverick or follower agents actually manages to find both peaks.
We found that as the size of the population increases beyond 30, this result no
longer holds. Then the swarm strategy performs better than the maverick and
the follower strategy. The repulsing swarm configuration performs particularly
well. Consider the median time to find both peaks for populations of size 100.
Mavericks, followers, and the flocking swarm configuration have a median time
between 50 and 60 iterations to find both peaks, whereas half of all the repulsing
swarm populations find both peaks already after 37 iterations.

On epistemic progress, as previously shown, we found that the maverick
scientists have a greater epistemic performance than follower agents. However,
swarm scientists have an even greater epistemic performance than the maverick
scientists; the repulsive swarm configuration seems to do slightly better than the
flocking swarm configuration. The take-home message is the following: cognitively
homogeneous populations of agents can do very well.

7. A generalized epistemic landscape model. One further concern with the
Weisberg and Muldoon model derives from the simplicity of the epistemic land-
scape considered. Although we are generally ignorant about the shape of the
epistemic landscapes underlying real scientific research, it is clear that they have
at least two properties which are largely absent from the Weisberg and Muldoon
landscape. First, on real epistemic landscapes, it is much easier to get trapped at
a local optimum and much harder to identify the global optimum. And second,
when we consider the “epistemic fitness” conferred by a combination of scientific
methods, theories, techniques, and so on, there is a much greater degree of inter-
dependency than a two-dimensional landscape would allow. If we consider more
“realistic” epistemic landscapes, what, if anything, can we infer about the benefits
of cognitive diversity?

20. We used a repaired implementation of the follower strategy, not the defective implementation
that was originally used, as discussed above.

21. Comparisons between the two swarm strategies and the correct implementation of the Weis-
berg and Muldoon strategies regarding epistemic progress are not likely meaningful because
controls, followers, and mavericks remain at epistemic peaks, once found. That said, it is worth
noting that the control strategy — when implemented as intended — performs very well in terms
of epistemic progress compared with pure populations of mavericks or followers (thereby again
undermining the results of the original paper). Comparisons between all strategies regarding
epistemic success, though, are meaningful.
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· · · bi−3 bi−2 bi−1 bi bi+1 bi+2 bi+3 · · ·

K = 2

K = 4

Figure 14: Two different regions of epistasis for the bit bi.

We can begin to consider this question by reinterpreting the NK-landscape
model of Kauffman and Levin (1987) and Kauffman and Weinberger (1989) as
an epistemic landscape. The idea is straightforward: suppose we have a set of
N scientific propositions, where these propositions may consist of both abstract,
general statements of high theory as well as specific statements of particular
laboratory technique. The belief state of an individual scientist can be represented
by a vector~b = 〈b1, . . . ,bN〉, where bi = 0 if the scientist does not believe the ith

proposition, and bi = 1 if the scientist does believe the ith proposition.
The reason why NK-landscapes are useful for thinking about epistemic land-

scapes is that they allow one to model interdependencies between the various
propositions believed (or not believed) by a scientist. That is, the fitness contri-
bution of bi may depend on not just the value of bi (0 or 1), but on the value of
several other entries in the scientist’s overall belief state. The fitness function, in a
word, may have varying degrees of epistasis. Let 0≤ K ≤ N denote the number of
interdependencies contributing to the fitness contribution of bi. (See figure 14 for
an illustration of two different epistatic regions.) One can think of the amount of
epistasis in a fitness function for an epistemic landscape as a formal model of the
Quinean web of belief.

Figure 15 illustrates how the fitness of a belief vector is calculated for a bitstring
of length 8 and epistasis 2. The fitness function f is defined in terms of eight other
functions f1, . . . , f8, where function fi is used to determine the fitness contribution
of bit bi. Since the degree of epistasis is 2, the fitness of bit bi also depends on the
values of bi−1 and bi+1 (where, at the end of the bit string, we wrap around the
ends to avoid edge effects). The individual fitness functions f 1, . . . , f8 are defined
using the lookup table in figure 15(a). In general, if N is the length of the bitstring
~b, then

f (~b) =
N

∑
i=1

fi

(
bi−K

2
· · ·bi · · ·bi+K

2

)
.

Although we consider, simply for reasons of simplicity, only two possible
values for each bi (full belief or full denial), there is no reason why we could not
allow more finely-grained credal states. If we denote the number of credal states
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1

000

f1 0

001

0

010

0

011

1

100

0

101

1

110

-1

111

1f2 1 1 -1 2 0 1 -1

1f3 1 -1 0 0 1 -1 0

1f4 1 -1 -1 1 1 2 1

2f5 -1 -1 2 2 -1 1 1

0f6 2 0 -1 -1 0 -1 -1

2f7 0 -1 0 -1 2 0 0

1f8 1 0 1 0 -1 2 -1

K = 2N = 8

(a) The lookup table for the fitness func-
tion f .

f (01001101) =
f1(101)+ f2(010)
+ f3(100)+ f4(001)
+ f5(011)+ f6(110)
+ f7(101)+ f8(010)
= 0+1+0+1
+2−1+2+0
= 5.

(b) Applying the fitness
function f to the bitstring
01001101.

Figure 15: Applying a fitness function defined via a lookup table to a bitstring.

by A, then we see that the Weisberg-Muldoon epistemic landscape model is simply
an NK-landscape with N = 2, K = 2 and A = 101, and a particular fitness function.
(See appendix A for further details regarding the calculation of fitness functions on
NK-landscapes.)

In order to see whether social learning and cognitive diversity help people reach
the peak of greatest epistemic fitness on NK-landscapes, let us consider — as a
baseline result — how a single independent agent would fare. Assume that the
agent searches via probe and adjust as follows. The agent starts with a randomly
selected belief vector of length N. In each iteration, the agent probes one randomly
selected belief by considering its alternate value (0 if 1, and 1 if 0). If changing that
belief yields an overall increase in fitness, the agent keeps the change; if changing
that belief decreased the fitness, the change is rejected. Figure 16 illustrates the
simulation results for a range of values of N and K. For each set of values of N and
K, one hundred simulations were performed, running for 1,000 iterations. Each
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simulation used a randomly generated uncorrelated fitness function.22 The mean
fitness over all simulations (and the standard deviation) are shown.

N = 8 N = 16 N = 24 N = 48 N = 96

K = 0 0.66 (0.08) 0.67 (0.05) 0.66 (0.05) 0.67 (0.04) 0.66 (0.03)
K = 2 0.70 (0.07) 0.70 (0.05) 0.70 (0.04) 0.70 (0.03) 0.71 (0.02)
K = 4 0.69 (0.06) 0.70 (0.04) 0.70 (0.03) 0.70 (0.03) 0.70 (0.02)
K = 8 0.67 (0.06) 0.68 (0.04) 0.68 (0.03) 0.68 (0.02) 0.68 (0.02)
K = 16 0.64 (0.03) 0.65 (0.03) 0.66 (0.02) 0.66 (0.02)
K = 24 0.62 (0.03) 0.64 (0.02) 0.64 (0.02)
K = 48 0.60 (0.02) 0.61 (0.02)
K = 96 0.58 (0.01)
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K = 0 0.66 (0.10) 0.67 (0.06) 0.67 (0.05) 0.67 (0.04) 0.67 (0.03)
K = 2 0.73 (0.07) 0.72 (0.04) 0.72 (0.04) 0.71 (0.02) 0.71 (0.02)
K = 4 0.70 (0.06) 0.72 (0.04) 0.72 (0.03) 0.71 (0.02) 0.72 (0.02)
K = 8 0.66 (0.05) 0.68 (0.04) 0.70 (0.03) 0.70 (0.02) 0.70 (0.02)
K = 16 0.64 (0.04) 0.65 (0.03) 0.66 (0.02) 0.66 (0.02)
K = 24 0.62 (0.03) 0.64 (0.02) 0.65 (0.02)
K = 48 0.60 (0.02) 0.61 (0.01)
K = 96 0.58 (0.02)
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Figure 16: Social learning makes no difference to the global performance given
uncorrelated fitness functions. (When K = N, the fitness function fi for bi depends
upon the entire belief state of the agent.)

Now consider the possibility of social learning. Suppose we have a population
consisting of some fixed number of agents. At the end of each iteration, each indi-
vidual polls every other. If agent M changed bi such that it yielded greater fitness
to M, then all other agents incorporate that change.23 As figure 16 shows, social

22. According to Kauffman and Weinberger (1989), a fitness function is said to be uncorrelated if
“the fitness of 1-mutant neighbors [is] assigned at random from some fixed underlying distribution.”
For the purpose of this paper, an uncorrelated fitness function assigns the fitness to 1-mutant
neighbors at random using the uniform distribution over [0,1]. More precisely, the fitness function fi,
specifying the fitness contribution for bit bi and its surrounding epistatic region, is defined on the
substring bi−K

2
· · ·bi · · ·bi+K

2
of~b, which has length K +1. The fitness contribution of each of the

possible 2K+1 arguments to fi are set to a randomly chosen value in [0,1], drawn from the uniform
distribution. With such an uncorrelated fitness function, knowledge of the values of the entries in
the region of epistasis around some bi gives no information as to whether the 1-mutant neighbor
will have greater or lower fitness than the present belief vector.

23. Think of this as a model where each agent publishes the result of each experiment, and people
always trust each other’s results.
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· · · 1 0 1 1 0
bi

1 0 0 1 · · ·
K = 6

w(bi) =
4
7

Figure 17: The correlated fitness function. The local fitness of any bit bi is the
relative frequency of the current value of bi = 1 in its epistatic region.

learning makes absolutely no difference in cases of uncorrelated fitness functions.
Furthermore, social learning may actually be detrimental for the performance of
the agents, given epistasis.24

The crucial difference between the NK-model just described and the Weisberg
and Muldoon epistemic landscape is this. Expressed as an NK-model, Weisberg
and Muldoon assume fitness functions are highly correlated. Let us suppose, for
the sake of argument, that the fitness function used is similarly highly correlated.
In particular, assume that the fitness of bi is simply the relative frequency of the
current value of bi in its epistatic region. (See figure 17 for an illustration.) The
results for simulations where the fitness functions are correlated in this way, as in
figure 18, show that, in this case, there is indeed a positive effect of social learning
on the rate of epistemic progress.

Why does this matter? It matters because the Weisberg and Muldoon model
builds into the basic topology of the epistemic landscape correlations which make
social learning advantageous. As such, we should not be surprised to find, in
the case they consider, that cognitive diversity and social interactions between
agents can be beneficial. But, as the generalisation to NK-landscapes shows, social
learning is not always beneficial. Whether social learning is beneficial or harmful
depends on the topology of the epistemic landscape, a point of which we know very
little. In some cases we might well suspect that social learning will be advantageous
(e.g., does the problem decompose into sub-problems? Does the problem require
a diverse set of skills possessed by no single individual?), but we cannot be sure
that social learning will be advantageous because we won’t know the epistemic
landscape’s topology.

We stress this point because, although Weisberg and Muldoon acknowledge
that “[l]andscapes can be made more rugged, they can contain more information”

24. Suppose agent M finds a fitness-enhancing change for bi. The reason why it may be detri-
mental for other agents to adopt this change is because the fitness increase, for M, depends on
the particular value of the other beliefs in the region of epistasis around bi. If other agents in the
population don’t have the same K other beliefs that agent M has, there’s no guarantee that changing
the value of bi for them will have the same effect.
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N = 96
No social learning Social learning

Mean (SD) Mean steps Mean (SD) Mean steps

K = 2 0.92 (0.01) 994.43 0.94 (0.02) 508.14
K = 4 0.93 (0.01) 997.74 0.95 (0.02) 277.66
K = 8 0.90 (0.01) 994.77 0.93 (0.03) 253.35
K = 16 0.90 (0.02) 989.29 0.92 (0.04) 215.37
K = 24 0.90 (0.02) 927.92 0.92 (0.06) 197.83
K = 48 0.93 (0.04) 916.71 0.97 (0.08) 183.61
K = 96 1.00 (0.00) 600.94 1.00 (0.00) 185.58

Figure 18: When correlation exists for the fitness function, social learning makes a
positive difference in the rate at which epistemic progress occurs.

and so on, they suggest that some of their findings do, in fact, generalise. They
state that “[e]ven with our current models and current landscape, we have observed
a number of very interesting general trends about the division of cognitive labour.”
What are some of these general trends? For one, that

“followers seem very well suited for puzzle solving — the simple
articulation of details of a paradigm. Mavericks can partially fulfill
this role, but their search patterns through the epistemic landscape are
not particularly well suited for the kind of long term analyses required,
for example, to add one more decimal place to a known constant.”
(249)

And also:

“We have also seen that in mixed populations, mavericks can provide
pathways for followers to find the base of the peaks on the epistemic
landscape. Once the followers find these bases, they are reasonably
efficient at finding the tops. And mavericks can also stimulate fol-
lowers to engage in pure puzzle solving, ensuring that the landscape
is fully explored to find hidden significant approaches. Therefore,
mixed populations of mavericks and followers are valuable divisions
of cognitive labor.” (250)

And, finally (italics added):

“As we showed, individual mavericks find the peaks extraordinarily
quickly and indeed the whole population converges rapidly on those
peaks. This means that if one wants to search the landscape rapidly
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for the most significant truths, one should employ a population of
mavericks, at least as opposed to followers or controls.” (250)

Each of these claims would be uninteresting if “the [epistemic] landscape” only
referred to the epistemic landscape modelled in the paper. The reason why these
claims are interesting is that they gesture towards general properties of scientific
practice and suggest fruitful ways of organising scientific research. Yet it only
makes sense to say that one should employ a population of mavericks in cases where
the epistemic landscape is such that the maverick strategy would be beneficial, and
it is far from obvious that the maverick strategy will prove to be beneficial on an
arbitrary epistemic landscape, or when the model is adjusted to allow for greater
realism by, say, incorporating observation error.25 So, although the general trends
have a certain degree of intuitive appeal, it is unclear to what extent these claims
are, in general, justified by the Weisberg and Muldoon epistemic landscape model.

8. Conclusion. In recent years, the Weisberg-Muldoon model has received a
considerable amount of attention regarding its purported claim to show that there
are epistemic reasons for the division of cognitive labor. In particular, Weisberg
and Muldoon alleged to show that the “maverick” research strategy is far better
than its competitors,26 and one of the “general trends” (249) they observed is
that “to be maximally effective, scientists need to really divide their cognitive
labor” (227). We have argued that these two claims are not true. Maverick
scientists do not perform far better than their competitors, such as the HE rule,
once the implementation errors which handicapped the other search types have
been corrected. By proper bookkeeping, we have shown that the increase in the
performance of the mixed population is only due to the performance of the added
mavericks. As for the benefits of cognitive diversity, we have constructed at least
one other search strategy, the “swarm scientist”, which, in some cases, outperforms
the maverick scientists.

In saying this, we do not wish to be understood as arguing that there are no
epistemic reasons for cognitive diversity. We are simply pointing out that, despite
its intuitive appeal, the Weisberg and Muldoon model does not succeed in showing

25. One way this could be done would be to incorporate a probability that an agent incorrectly
perceives the true epistemic fitness of the point they currently occupy on the landscape. Suppose
agents “publish” their findings, and this incorrect report will be the epistemic fitness ascribed to that
point on the landscape by other agents. (If another agent visits that same point on the landscape,
they have the chance to perceive correctly the “true” value, of course.) If the change of experimental
error is sufficiently high, the maverick strategy, in these cases, could well prove disadvantageous:
mavericks, by avoiding parts of the landscape already explored, could miss finding peaks for a very
long time if that peak was explored previously, but incorrectly identified.

26. “[I]f one wants to search the landscape rapidly for the most significant truths, one should
employ a population of mavericks, at least as opposed to followers or controls.” (250)
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that there are epistemic reasons for cognitive diversity. Furthermore, since so much
in their methodology turns on assumptions regarding the specific nature of the
epistemic landscape — something whose very nature is beyond our ken — we are
skeptical as to whether their particular method of arguing for the epistemic benefits
of cognitive diversity can ever succeed.
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A. Generating uncorrelated fitness functions on large NK-landscapes. Fol-
lowing Kauffman and Levin 1987, fix integers N and K such that 0≤ K ≤ N. The
total fitness of a bit string b1b2 · · ·bN is calculated using fitness functions f1, . . . , fN ,
where fi is applied to bit bi and the surrounding region of epistasis consisting of
the K bits flanking bi on the left and right. (To prevent edge effects, we assume
the bit string wraps at the edges to ensure that all bits have regions of epistasis the
same size.) For small N and K, the fitness function can be defined using a lookup
table specifying all 2K+1 values for each of the N fitness functions, as shown in
figure 15.

For large N and K, it is not feasible to define fitness functions using a lookup
table. If N = 100 and K = 60, an uncorrelated fitness function would have 100 ·261

different values. However, it is possible to procedurally define an uncorrelated
fitness function using a trick similar to that used by programmers of the 1984 video
game Elite. (That game had to fit 8 different universes, each containing 256 planets
with unique properties, into 16 kilobytes of memory.) We used a common 19937
Mersenne Twister RNG to procedurally generate the fitness functions.

Given fixed values of N,K with K < N, let S = (s1, . . . ,sN) be a list of N
different salt values. Denote the region of epistasis around bit i at time t by
η t

i = {η t
i,1, . . . ,η

t
i,K+1}. The fitness contribution of bi at t is determined by seeding

the RNG with the bits of si⊕η t
i (zeroing out the remaining bits in the state space of

the RNG) and generating a random real between 0 and 1. As long as the length of
si⊕η t

i ≤ 19,968, we obtain a unique seed. This is because the state of the 19937
Mersenne Twister is 624 words, each with 32 bits, so there are 624 ·32 = 19,968
bits in the state. If the length of si⊕η t

i is sufficiently less than the length of the
state space, the random value will be unique (and reproducible). This yields a
completely uncorrelated fitness function.
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