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Abstract

Beginning with Anderson (1972), spontaneous symmetry breaking (ssb) in infinite
quantum systems is often put forward as an example of (asymptotic) emergence in
physics, since in theory no finite system should display it. Even the correspondence
between theory and reality is at stake here, since numerous real materials show ssb
in their ground states (or equilibrium states at low temperature), although they are
finite. Thus against what is sometimes called ‘Earman’s Principle’, a genuine physical
effect (viz. ssb) seems theoretically recovered only in some idealization (namely the
thermodynamic limit), disappearing as soon as the idealization is removed.

We review the well-known arguments that (at first sight) no finite system can
exhibit ssb, using the formalism of algebraic quantum theory in order to control the
thermodynamic limit and unify the description of finite- and infinite-volume systems.
Using the striking mathematical analogy between the thermodynamic limit and the
classical limit, we show that a similar situation obtains in quantum mechanics (which
typically forbids ssb) versus classical mechanics (which allows it).

This discrepancy between formalism and reality is quite similar to the measurement
problem (now regarded as an instance of asymptotic emergence), and hence we address
it in the same way, adapting an argument of the author and Reuvers (2013) that was
originally intended to explain the collapse of the wave-function within conventional
quantum mechanics. Namely, exponential sensitivity to (asymmetric) perturbations
of the (symmetric) dynamics as the system size increases causes symmetry breaking
already in finite but very large quantum systems. This provides continuity between
finite- and infinite-volume descriptions of quantum systems featuring ssb and hence
restores Earman’s Principle (at least in this particularly threatening case).

Motto

“The characteristic behaviour of the whole could not, even in theory, be deduced from
the most complete knowledge of the behaviour of its components, taken separately or
in other combinations, and of their proportions and arrangements in this whole. This
is what I understand by the ‘Theory of Emergence’. I cannot give a conclusive example
of it, since it is a matter of controversy whether it actually applies to anything.”

(Broad, 1925, p. 59)
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1 Introduction

1.1 Emergence: from philosophy to physics

In a philosophical context, the notion of ‘emergence’ is usually traced to J.S. Mill, who did
not actually use this terminology himself but drew attention to “a distinction so radical,
and of so much importance, as to require a chapter to itself.” (wow!) The distinction in
question is the one between the principle of the “Composition of Causes”, according to
which the joint effect of several causes is identical with the sum of their separate effects,
and the negation of this principle. For example, in the context of his overall materialism,
Mill believed that although all “organised bodies” are composed of material parts,

“the phenomena of life, which result from the juxtaposition of those parts in a
certain manner, bear no analogy to any of the effects which would be produced
by the action of the component substances considered as mere physical agents.
To whatever degree we might imagine our knowledge of the properties of the
several ingredients of a living body to be extended and perfected, it is certain
that no mere summing up of the separate actions of those elements will ever
amount to the action of the living body itself.” Mill (1952 [1843], p. 243).1

This kind of thinking began what is now called ‘British Emergentism’ (cf. Stephan, 1992;
McLaughlin, 2008; O’Connor and Wong, 2012), a school of thought which included A.
Bain and G.H. Lewes in the 19th century and virtually ended with C.D. Broad (who has
our sympathy over Mill because of the doubt he expresses in our motto on the title page).
Of this group, the most modern views seem to have been those of S. Alexander, who, as
paraphrased in O’Connor & Wong (2012), was committed to a view of emergence as

“the appearance of novel qualities and associated, high-level causal patterns
which cannot be directly expressed in terms of the more fundamental entities
and principles. But these patterns do not supplement, much less supersede,
the fundamental interactions. Rather, they are macroscopic patterns running
through those very microscopic interactions. Emergent qualities are something
truly new (. . . ), but the world’s fundamental dynamics remain unchanged.”

Alexander’s idea that emergent qualities “admit no explanation” and had “to be accepted
with the ‘natural piety’ of the investigator” seems to foreshadow the contemporary notion
of explanatory emergence.2 More precisely, the authorities wrote:

“The concept of emergence has been used to characterize certain phenomena
as ‘novel’, and this not merely in the psychological sense of being unexpected,
but in the theoretical sense of being unexplainable, or unpredictable, on the
basis of information concerning the spatial parts or other constituents of the
systems in which the phenomena occur, and which in this context are often
referred to as ‘wholes’.” (Hempel & Oppenheim, 2008 [1965], p. 62).

1Quotation taken from O’Connor and Wong (2012).
2Seen as a branch of ‘epistemological’ emergence. Philosophers distinguish between ontological and

epistemological reduction or emergence, but ontological emergence seems a relic from the days of vitalism
and other immature understandings of physics and (bio)chemistry (including the formation of chemical
compounds, which Broad and some of his contemporaries still saw as an example of emergence in the
strongest possible sense, i.e., falling outside the scope of the laws of physics). Recent literature, including
the present paper, is concerned with epistemological (or rather explanatory) emergence.
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More recently, Silberstein (2002, p. 92) states (paraphrased) that a higher-level theory H

“bears predictive/explanatory emergence with respect to some lower-level the-
ory L if L cannot replace H, if H cannot be derived from L [i.e., L cannot
reductively explain H], or if L cannot be shown to be isomorphic to H.”

In similar vein, Batterman (2002, p. 20) paraphrases Kim as stating that emergent proper-
ties are neither explainable nor predictable even from “exhaustive information concerning
their basal [i.e., lower-level] conditions”. Wayne & Arciszewski (2009, p. 852) propose
that “the failure of reductive explanation is constitutive of emergence in physics”. Last
but not least, the John Templeton Foundation defines (strongly) emergent phenomena as
those which “are, in principle, not derivable from the laws or organizing principles for, or
even from an exhaustive knowledge about, their constituents”.3

In giving quotations like this, we are interested not so much in giving a precise defi-
nition of emergence (which may well be impossible and arguably also useless for such a
broad concept), but rather in stressing that it is usually meant to be the very opposite
of the idea of ‘reduction’, or ‘mechanicism’, as Broad (1925) calls it. Indeed, for many
authors this opposition seems to be the principal attraction of emergence. In principle,
two rather different notions of reduction then lead (contrapositively) to two different kinds
of emergence, which are easily mixed up but should be distinguished (Norton, 2012):

• the reduction of a whole (i.e., a composite system) to its parts;

• the reduction of a ’higher-level’ theory H (also known in physics as a ‘phenomeno-
logical’ theory, or in philosophy as a ‘reduced’ theory) to a lower-level one L (called
a ‘fundamental’ or a ’reducing’ theory in physics and philosophy, respectively).

In older literature, e.g. concerned with the reduction of chemistry to physics (still chal-
lenged by Broad (1925)), the first notion also referred to ‘wholes’ consisting of a small
number of particles. In this case, the possibility of whole-part emergence seems a lost
cause in the sense originally intended,4 but it might be revived in the context of entangle-
ment. We will not go into this here, but instead follow Anderson (1972), who initiated the
modern discussion on emergence in physics in emphasizing the possibility of emergence
in large systems.5 In particular, Anderson claimed ssb to be an example of emergence
(if not the example), duly adding that one really had to take the N → ∞ limit. Thus
the interesting case for emergence in the first (i.e. whole-part) sense arises if the ‘whole’
is strictly infinite, as in the thermodynamic limit of quantum statistical mechanics. The
latter plays the role of the lower-level theory, and, as we shall see, there are two natural
choices for the corresponding higher-level theory describing the ‘infinite whole’, namely:

• classical thermodynamics as a theory of macroscopic (or global) observables;

• infinite-volume quantum statistical mechanics as a theory of local observables.

3From www.templeton.org/what-we-fund/funding-competitions/the-physics-of-emergence, on-
line at least from 2011–2013. The jtf specifically funds research on emergence in this ‘strong’ sense.

4“If a characteristic of a whole is counted as emergent simply if its occurrence cannot be inferred from a
knowledge of all the properties of its parts, then (. . . ) no whole can have any emergent characteristics. Thus
(. . . ) the properties of hydrogen include that of forming, if suitably combined with oxygen, a compound
which is liquid, transparent, etc.” (Hempel & Oppenheim, 2008 [1965], p. 62).

5Surprisingly, Anderson actually avoids the term ‘emergence’ but speaks about new laws and even “a
whole new conceptual structure” that each (higher) level can acquire.
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But such consideration take us straight into the realm of the second kind of emergence,
especially if the inter-theory relation is asymptotic in the sense that the higher-level theory
is a limiting case of the lower-level one.

The conclusion, then, is that in the interesting case of whole-part reduction, namely
when the whole is infinite, one is actually dealing with asymptotic inter-theory reduction,
so that the distinction between the two kinds of emergence is blurred. The other case
we will consider, viz. the classical limit of quantum mechanics (as the lower-level theory,
where the higher-level theory is classical mechanics) does not fall under the umbrella of
the whole-part dichotomy and is purely a case of asymptotic inter-theory reduction.

Indeed, it is the inter-theoretic reduction perspective (rather than the whole-part no-
tion of reduction) that will be the most useful for us, because we will display striking
analogies between ssb in classical mechanics (as a limiting theory) and ssb in thermody-
namics (idem). In fact, it is exactly this ‘asymptotic’ situation that contemporary research
on emergence in physics is mostly concerned with. In particular, it has been claimed that
in certain situations some properties of the higher-level theory (like ssb) could in principle
‘emerge’ asymptotically, in that nothing in the lower-level theory corresponds or gives rise
to those properties, not even if one is close to the limit. In this case, the higher-level
theory is claimed to be ‘ineliminable’, or, in other words, the lower-level theory is said to
be ‘explanatorily insufficient’.

In order to make such claims one has to assume that the limiting higher-level theory
is well defined and understood by itself (i.e., ignoring its nature as a limiting theory); his-
torically it typically preceded the lower-level theory, as in the cases of classical thermody-
namics vis-à-vis (quantum) statistical mechanics, and classical mechanics versus quantum
mechanics. In contrast, local quantum statistical mechanics in infinite volume became a
well-defined theory in the 1970s only after the construction of its finite-volume counter-
part, but we still have widely accepted and well-understood construction of it (Bratteli &
Robinson, 1997; Haag, 1992).

In summary, we speak of asymptotic emergence if the following conditions are satisfied:6

1. A higher-level theory H is a limiting case of some lower-level theory L;

2. Theory H is well defined and understood by itself;

3. Theory H has ‘emergent’ features that cannot be explained by L.

This scenario has been proposed and developed most notably by Batterman (2002,
2011) and Rueger (2000, 2006), who gave a number of beautiful examples illustrating
their point.7 In our examples, the theories H and L will be chosen and related as follows:

• H = quantum mechanics, taken to be the ~→ 0 limit of L = quantum mechanics;

• H = thermodynamics as the N →∞ limit of L = quantum statistical mechanics;

• H = local quantum statistical mechanics in infinite volume, seen as the N →∞ limit
of L = quantum statistical mechanics (defined for N <∞, as also above).

6Note that the lower-level theory L is really a family of theories, parametrized (in this case) by N or ~.
7For criticism of a different kind from the present paper see Hooker (2004), Belot (2005) with a reply

by Batterman (2005), Wayne & Arciszewski (2009), Butterfield (2011), and Menon & Callender (2013).
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1.2 Two questions, two examples

A distinction needs to be made in principle between two different questions about the
possible relationship between theories H and L, which may easily be confused in practice:

1. Can H (indeed) be derived as a limiting case of L (i.e., some family L•, say LN )?

2. Do the theories LN for sufficiently large N approximately behave like H?

At first sight these questions appear to be virtually identical, and indeed they are very
closely related, but conceptually they are quite different: the first is a question about
the higher-level theory (and its possible origin in the lower-level one), whereas the second
concerns the lower-level theory (in which the higher-level theory plays an ancillary role).
For example, the examples of the rainbow and the wkb approximation in Batterman
(2002) deal with the second question, as does the research field of quantum chaos, whereas
the author’s (older) work on the relationship between classical and quantum mechanics
tries to answer the first (Landsman, 1998).8

The difference between these questions, as well as their sensitivity to the notions of
limit and approximation involved, may also be illustrated by Butterfield’s (2011) sequence
(gN ) of functions gN : R→ R, defined by

gN (x) = −1 (x ≤ −1/N); (1.1)

gN (x) = Nx (−1/N ≤ x ≤ 1/N); (1.2)

gN (x) = 1 (x ≥ 1/N). (1.3)

Each gN is continuous, but as N →∞ this sequence converges pointwise to the discontin-
uous function g∞ given by

g∞(x) = −1 (x < 0); (1.4)

g∞(0) = 0; (1.5)

g∞(x) = 1 (x > 0). (1.6)

• If we take the theories LN to be simply the functions gN themselves and the notions
of limit and approximation are pointwise, then the answer to both questions is “yes”.

• If, on the other hand, we define a new sequence of theories L′N by saying that:

1. L′N = 0 if gN is continuous;

2. L′N = 1 if it isn’t,

then with the same notion of limit etc. the answer to the first question remains “yes”,
yet the second answer is “no”.

In this case, a reductionist would prefer L, whereas an emergentist would probably go
for L′. It could be argued, however, that the latter is being unreasonably strict here,
since his/her predicate depends on the behaviour of some function at just one point,9 and
even within this limited scope, the discontinuity of the limit function g∞ at zero is well
approximated by the derivatives g′N (0) = N converging to infinity.

8The review Landsman (2007) covers both.
9More generally, by Lusin’s theorem from measure theory the difference between continuity and discon-

tinuity is just a matter of epsilonics; see e.g., Stein and Shakarchi (2005), p. 34.
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Another instructive mathematical example, moving from single functions to function
spaces but otherwise in the same spirit, is given by the following theory:10

1. LN = `(N) for N <∞, where N is the finite set {0, 1, 2, . . . , N−1} and `(N) consists
of all functions f : N → C;

2. H = `0(N), i.e., the space of all functions f : N→ C that vanish at infinity (in other
words, limn→∞ f(n) = 0), seen as a Banach space in the supremum-norm ‖ · ‖∞.11

Also, define maps ιM,N : `(M)→ `(N) (N ≥M) by

ιM,N (f)(n) = f(n) (n = 0, . . . ,M − 1); (1.7)

f(n) = 0 (n ≥M). (1.8)

Similarly, one has maps ιM,∞ : `(M)→ `0(N).
We now answer the first question in the affirmative (whilst also making it precise for

the case at hand), arguing that symbolically H = limN→∞ LN in the following sense. For
each f ∈ `0(N) the sequence (fN ), where fN ∈ `(N) is given by fN = f|N , has the property
that ιN,∞(fN ) uniformly converges to f as N →∞, i.e.,

lim
N→∞

‖f − ιN,∞(fN )‖∞ = 0. (1.9)

The second question also has an affirmative answer, which for later use we state in a
rather more abstract way than strictly needed at this point. We say that a sequence of
functions (fN ), where once again fN ∈ `(N),12 is local if there exists some M ∈ N such
that fN = ιM,N (fM ) for all N ≥ M (this implies fN (n) = 0 for all N ≥ M and n ≥ M).
If f ∈ `0(N) has finite support, then the restrictions fN = f|N form a local sequence. But
this is not necessarily the case for arbitrary f ∈ `0(N) (since the condition just given in
brackets is not satisfied if f has infinite support). Thus we say that a sequence (fN ) with
fN ∈ `(N) is quasi-local if for each ε > 0 there is some M = M(ε) and some local sequence
(f ′N ) such that ‖fN − f ′N‖∞ < ε for all N > M . As intended, sequences like (f|N ) are
indeed quasi-local for any f ∈ `0(N). Conversely, a quasi-local sequence (fN ) has a limit
f ∈ `0(N), given pointwise by f(n) = limN→∞ fN (n); an elementary ε/3 argument shows
that this limit exists and that the ensuing function f satisfies (1.9).

The precise sense, then, in which the LN approximately behave like H, is that any
f ∈ `0(N) may be approximated in the sense of (1.9) by the quasi-local sequence (fN )
with fN = f|N , and that such f may be reconstructed from the approximating sequence.

An asymptotic emergentist could challenge this reasoning by adding the following pred-
icate to H: any f ∈ `0(N) must have infinite support. This condition is ‘emergent’ in the
limit N →∞, since none of the approximants f|N satisfy it. However, the latter do satisfy
it ‘up to epsilon’, since up to arbitrary precision (in the supremum-norm, which is the
sharpest available) any f ∈ `0(N) can be approximated by functions with finite support.
Hence our emergentist should admit that for all practical purposes his/her limiting theory
is indistinguishable from H and hence is ‘almost’ obtained from the LN by reduction.

10As we shall see (cf. §3.1), the lower-level theories LN model certain primitive aspects of a theory with
N degrees of freedom, of which the higher-level H is the ‘thermodynamic limit’, which describes a theory
of quasi-local observables in the corresponding infinite system.

11This norm is defined by ‖f‖∞ = sup{‖f(n)‖, n ∈ N}.
12To avoid any confusion: this notation does not imply that fN = f|N for some f ∈ `0(N).
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1.3 Two principles

In examples from physics one would naturally expect our two questions to practically
coincide, or at least, to have the same answers. To be specific, let us move to the context
of the type of models from solid state physics considered by Anderson (1972) and others,
in which spontaneous symmetry breakdown (ssb) is the (alleged) ‘emergent’ property. In
that context, all systems in reality are finite, so that we regard mathematical models of
infinite systems as approximations or idealizations of finite ones.13 The above expectation
then corresponds to what Jones (2006) calls Earman’s Principle:14

“While idealizations are useful and, perhaps, even essential to progress in
physics, a sound principle of interpretation would seem to be that no effect
can be counted as a genuine physical effect if it disappears when the idealiza-
tions are removed.” (Earman, 2004, p. 191)

In Earman’s wake, Butterfield’s Principle is the claim that in this and similar situations,
where it has been argued (by other authors) that certain properties emerge strictly in
some idealization (and hence have no counterpart in any part of the lower-level theory),

“there is a weaker, yet still vivid, novel and robust behaviour [compared to
Butterfield’s own definition of emergence as ‘behaviour that is novel and robust
relative to some comparison class’, which removes the reduction-emergence
opposition] that occurs before we get to the limit, i.e. for finite N . And it is
this weaker behaviour which is physically real.” (Butterfield, 2011)

Both principles are undeniably reductionist in spirit, but they just appear to be common
sense and it would seem to be provocative to deny them. But the problem for reductionists,
and hence a potential trump card for asymptotic emergentists, is that both principles
appear to be violated in three important examples, namely the ones we mentioned at
the end of §1.1. In all cases, the (alleged) emergent property is ssb, as detailed below,
but the first two may also be considered in the light of the measurement problem (see
below). Moreover, in these examples the apparent violation of Earman’s and Butterfield’s
Principles is not a matter of mathematical epsilonics or philosophical hairsplitting, but
occurs rather dramatically, by a wide margin, and for essentially the same reason.

Namely, referring for concreteness’s sake to the three examples at hand, both ssb and
the measurement problem appear to pose what we call the asymptotic emergence paradox :

• Reality, in which measurements have outcomes and symmetries can be broken, ap-
proximately behaves like the higher-level theory H, in which N =∞ or ~ = 0;

• Since actually N < ∞ and ~ < 0, reality should be described by the lower-level
theory L (in some asymptotic regime, where N is very large and/or ~ is very small);

• But whatever its parameter values N or ~, L fails to describe measurements and ssb;

• So there is not only a lack of continuity between H and L, but even a complete
mismatch between reality and the theory L supposed to describe it.

We will now specify this in some more detail for the two cases of interest for us, which
in turn are the measurement problem (briefly) and ssb, our focus being the latter.

13See Norton (2012) for a fine distinction between approximations and idealizations, which does not
seem to matter here.

14Jones in fact quotes a slightly different version of the same idea from Earman (2003).
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1.4 Intermezzo: the measurement problem revisited

To see the measurement problem of quantum mechanics as a special case of the (alleged)
phenomenon of asymptotic emergence, one should define measurement in the first place.
We consider measurement undefined within quantum mechanics and hence have to con-
strue it externally. To do so, we follow Bohr (and experimental practice) in defining
measurement as the establishment of a correlation between a quantum object and some
other device that is necessarily quantum mechanical by nature as well, but which serves its
purpose as a measurement apparatus only if it is perceived and hence described classically
(we will see in detail how this is to be done in our examples). Briefly, measurement comes
down to ‘looking at the quantum object through classical glasses’ (Landsman, 2007, §3.1).

Now Bohr seems to have taken it as a raw fact that measurements have outcomes, in
that the post-measurement state of the measurement device (which by the above definition
is necessarily described as a classical state) is pure (or, in other words, is dispersion-free).
But the whole problem is that, at least at first sight, in many cases this does not seem
the be a prediction of quantum mechanics in its classical limit. Indeed, as we shall see in
our examples, according to naive theory typical post-measurement states are mixed, being
limits of Schrödinger Cat states of the apparatus described quantum-mechanically.

In the context of asymptotic emergence, the lower-level theory L is quantum mechanics
or quantum statistical mechanics (of a finite system, that is), whereas the higher-level
theory H is classical mechanics or thermodynamics, respectively. We never get tired of
quoting Landau & Lifshitz (1977, p. 3), asymptotic emergentists avant la lettre:

“Thus quantum mechanics occupies a very unusual place among physical the-
ories: it contains classical mechanics as a limiting case, yet at the same time
it requires this limiting case for its own formulation.”

So in this case, the ‘emergent’ property of H that (allegedly) fails to be induced by L is
the purity of its states, or, more conceptually, the fact that there are facts (in the sense of
sharply defined properties). But, in contrast to the case of ssb to be discussed next, this
immediately has to be qualified by saying that L contains many states that do converge
to pure states of H (such as coherent states): sometimes quantum theory does induce
facts in its classical limit. Nonetheless, the measurement problem is that, in measurement
situations as defined above, states of L that according to experiment (where measurements
have outcomes) should induce pure states on H, at least in (naive) theory fail to do so.

Another qualification is that the world is really quantum mechanical (or so we think):
the classical description of the measurement device called for by Bohr can never really be
successful. But unlike the previous qualification, this one goes to the heart of the matter:
if the measurement problem were to remain unsolved, it would lead to the asymptotic
emergence paradox describe at the end of the previous subsection.

In sum, the measurement problem of quantum theory is the following contradiction:

• The world behaves according to quantum theory, i.e., our lower-level theory L;

• Post-measurement states are described classically by our higher-level theory H;

• According to observation, post-measurement states of H are pure;

• Classical physics (H) should be some limit (N →∞, ~→ 0) of quantum theory (L);

• Yet in this limit, (pure) Schrödinger Cat states of L converge to mixed states of H.
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1.5 Spontaneous symmetry breaking

We now turn to our main topic, which is spontaneous symmetry breakdown in large
systems. Here the emergentist case seems much stronger in quantum physics than in
classical physics, which in the context of phase transitions has been adequately dealt with
(Butterfield & Bouatta, 2011; Melon & Callender, 2013). In quantum theory, the crucial
point is that for finite systems the ground state (or the equilibrium state at sufficiently low
temperature) of almost any physically relevant Hamiltonian is unique and hence invariant
under whatever symmetry group G it may have. Hence, mathematically speaking, the
possibility of ssb, in the sense of having a family of ground states (etc.) related by the
action of G, seems to be reserved for infinite systems (for which the arguments proving
uniqueness break down). This leads to two closely related puzzles, one devastating to the
formalism, the other casting serious doubt on the link between theory and reality:

• The formal problem is the discontinuity between a large system and a strictly infinite
one: with appropriate dynamics, the former has a unique and invariant ground state,
whereas the latter has a family of ground states, each asymmetric. Of course, this is
exactly the place where the asymptotic emergentist scores its goal in claiming that
the thermodynamic limit is ‘singular’ and hence ssb is an ‘emergent’ property.

• The physics problem seems even more serious: nature displays ssb in finite samples,
yet the theory is unable to reproduce this and seems to need the infinite idealization.

Thus at least in case of ssb, quantum theory appears to violate Earman’s and Butterfield’s
Principles. In other words, any description of a large quantum system (i.e., large enough so
that its physical manifestation displays ssb) that models such a system as a finite system
(which it is!) is empirically false (at least as far as ssb is concerned), whereas a description
that models it as an infinite system (which it is not!) is empirically adequate for ssb.

The situation involving the classical limit ~ → 0 of quantum mechanics is analogous
(Landsman & Reuvers, 2013). Take a particle moving in some G-invariant potential whose
absolute minima form a nontrivial G-space (in particular, each minimum fails to be G-
invariant); the simplest example is the symmetric double well in dimension one, where
G = Z2. For any ~ > 0 the quantum theory typically has a unique ground state, peaked
above the family of classical minima. In the limit ~ → 0 the probability distribution on
phase space canonically defined by this state does not converge to any one of the classical
ground states, but converges to a symmetric convex sum or integral thereof. Nature,
however, displays one of the localized classical states. Yet for any positive ~, however
small, the quantum ground state is delocalized and shows no tendency towards one peak
or the other. For G = Z2 this is the Schrödinger Cat problem in disguise, which therefore
seems to block any asymptotic derivation of classical physics from quantum physics.

A less familiar ‘intermediate’ case interpolates between local quantum statistical me-
chanics in infinite volume and the classical limit of quantum mechanics. To wit, there are
two very different different ways of taking the thermodynamic limit as far as the choice of
observables of the corresponding infinite system is concerned (Landsman, 2007, Ch. 6):

• the local observables describe finite (but arbitrarily large) subsystems;

• the global (or macroscopic) observables describe thermodynamic averages.

The former retain the quantum-mechanical (i.e., noncommutative) character of the lower-
level theory, whereas the latter form a commutative algebra, so that the higher-level theory
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acting as the limit of quantum statistical mechanics is classical. As we shall see, in this
case the problem of ssb is virtually the same as in the previous two.

Summarizing these three cases, the fundamental problem of ssb is as follows:

1. One has a lower-level theory formulated in terms of a parameter N <∞ (quantum
statistical mechanics) or ~ > 0 (quantum mechanics);

2. The ground state (or equilibrium state) of some Hamiltonian with symmetry group
G is unique and hence G-invariant for any value of N <∞ or ~ > 0;

3. The N →∞ or ~→ 0 limit of the ground state (etc.) exists, is still G-invariant, but
is now mixed (non-extremal i.e. not a pure thermodynamic phase);

4. The limit theories at N = ∞ (being either infinite-volume quantum statistical me-
chanics or classical thermodynamics) or ~ = 0 (classical mechanics) exist on their
own terms (i.e. without taking any limit) and are completely understood;

5. These limit theories may display ssb (depending on the model): they may have a
family of G-variant pure ground states (extremal kms states), forming a G-space;

6. Nature may display ssb, in which case physical samples modelled by such Hamilto-
nians behave like the limit theory (although in reality N <∞ or ~ > 0);

7. Thus for any N <∞ or ~ > 0, the theory neither approximates the limit theory nor
models reality correctly: indeed, it spectacularly fails to do so!

These and similar problems with the thermodynamic limit have been noted, though
perhaps not exactly in those terms. But as far as we know they have by no means been
resolved.15 For example, in response to Earman, Liu and Emch (2005, p. 155) first write
that it is a mistake to regard idealizations as acts of “neglecting the negligible”, which
already appears to deny both Earman’s and Butterfield’s Principles, and continue by:

“The broken symmetry in question is not reducible to the configurations of the
microscopic parts of any finite systems; but it should supervene on them in the
sense that for any two systems that have the exactly (sic) duplicates of parts
and configurations, both will have the same spontaneous symmetry breaking
in them because both will behave identically in the limit. In other words, the
result of the macroscopic limit is determined by the non-relational properties
of parts of the finite system in question.” Liu & Emch (2005, p. 156)

With due respect to especially our posthumous dedicatee, who was a master of mathemat-
ical aspects of infinite-volume idealizations, it would be hard to explain even to philoso-
phers (not to speak of physicists) how these comments solve the problem. Also in reply
to Earman (2004), Ruetsche (2011) proposes to revise Earman’s Principle as follows:16

No effect predicted by a non-final theory can be counted as a genuine physical
effect if it disappears from that theory’s successors.” Ruetsche (2011, p. 336)

Fortunately, both of these defensive manoeuvre are unnecessary.

15The problem of ssb in the thermodynamic limit is rarely if ever described in conjunction with the
analogous situation in the classical limit, not even in Landsman (2007), to which this paper is a successor.

16As Ruetsche’s notes herself, her Principle “has the pragmatic shortcoming that we can’t apply it until
we know what (all) successors to our present theories are.” (Ruetsche 2011, p. 336). A more pragmatic
suggestion she makes, which is by no means inconsistent with her revision of Earman’s Principle, is to
realize that even quantum statistical mechanics in finite volume has an infinite number of degrees of
freedom, as the underlying theory should ultimately be quantum field theory.
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1.6 Saving the principles

Namely, using the same idea in all cases, we shall establish the conceptual and mathemat-
ical continuity of ssb in both the thermodynamic limit and the classical limit, and hence
rescue Earman’s and Butterfield’s Principles. This idea will be presented in detail in some
models with a Z2-symmetry, viz. the quantum Ising chain in the thermodynamic limit
described using local observables, the closely related quantum Curie–Weisz model in the
same limit but now using global observables, and thirdly, the quantum particle moving in
a symmetric double-well potential in the classical limit. Although these models are some-
what special (we have adopted them because almost everything is known about them),
the conceptual lesson from these examples is clearly general, whilst the generalization to
different models and larger symmetry groups seems to be a matter of technique.17

Leaving the mathematical details to the main body of this paper, we now sketch
this idea, which in the restricted context of the classical limit of quantum mechanics has
already been proposed as a possible solution to the measurement problem (Landsman
& Reuvers, 2013). Our present work strengthens this proposal, which we now extend
from the traditional classical limit ~ → 0 to the thermodynamic limit N → ∞ and its
associated classical realm. The following scenario combines the technical work of Jona-
Lasinio, Martinelli, & Scoppola (1981a,b) and Koma & Tasaki (1994) on the classical limit
and the thermodynamic limit, respectively, also borrowing from Anderson (1952, 1984).

For any N < ∞, let Ψ
(0)
N be the unique and hence Z2-invariant ground state of the

quantum Ising chain with N sites. Seen as a wave-function over spin configuration space,
for large N this is a Schrödinger Cat state, doubly peaked above ‘all spins up’ and ‘all spins

down’. It defines an algebraic state ψ
(0)
N : BN → C by taking expectation values, where

BN = ⊗NM2(C) (i.e., the N -fold tensor product of the 2 × 2 matrices) is the pertinent
algebra of observables. For N → ∞, there is a satisfactory notion of convergence of the

sequence (ψ
(0)
N )N to a state ψ

(0)
∞ on Bl∞, the algebra of (quasi-) local observables of the

corresponding infinite system.18 The key point is that by Z2-invariance one obtains

ψ(0)
∞ = 1

2
(ψ+
∞ + ψ−∞), (1.10)

i.e., a symmetric mixture of the two degenerate ground states of the limiting dynamics in
infinite volume ψ+

∞ and ψ−∞ (having all spins up and down, respectively).
The situation for the Curie–Weisz model is analogous: the local algebras BN are the

same as for the quantum Ising chain, but the algebra of global observables Bg∞ is now
commutative: it is isomorphic to the algebra C(B3) of continuous functions on the three-
ball B3 in R3, playing the role of the state space of a quantum-mechanical two-level
system, so that its boundary is the familiar Bloch sphere. Once again, the quantum-
mechanical ground state for finite N is unique, and its limit as N → ∞ takes the form
(1.10), too. In this case the states ψ±∞ are points on the Bloch sphere, reinterpreted as
probability measures on B3, and the left-hand side is their symmetric convex sum, seen as
a probability measure on the same space. Thus the state (1.10) is again mixed.

Similarly, for ~ > 0, the unique and hence Z2-invariant ground state Ψ
(0)
~ of the

double-well potential (in one dimension) defines an algebraic state ψ
(0)
~ : A~ → C, where

17Thus we prophylactically plead not guilty to the ‘case-study gambit’ warned against by Butterfield
(2011): “trying to support a general conclusion by describing examples that have the required features,
though in fact the examples are not typical, so that the attempt fails, i.e. the general conclusion, that all
or most examples have the features, does not follow.” Our examples are the ‘hydrogen atom(s)’ of ssb.

18The quasi-local observables are local ‘up to ε’, see Landsman (2007, §6.2) or §3.1 below.
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A~ ∼= A1 = K(L2(R)) is the algebra of compact operators on the Hilbert space L2(R) of

square-integrable wave-functions, independent of ~ > 0. The family (ψ
(0)
~ )~ has a limit ψ

(0)
0

as ~ → 0, which is a state on the classical algebra A0 = C0(R2) of continuous functions
on phase space (taken to vanish at infinity for simplicity),19 i.e., a probability measure on
phase space. Once again, this limit is the (by now) familiar symmetric convex combination

ψ
(0)
0 = 1

2
(ψ+

0 + ψ−0 ), (1.11)

where the Dirac (or ‘point’) measure ψ
(±)
0 is concentrated at (p = 0, q = ±a).20

The key idea to get rid of the mixed limits (1.10) and (1.11) in H of pure Schrödinger
Cat states in L• is to go beyond the ground state and also take the first excited state

Ψ
(1)
• into account, where • is either N or ~ as appropriate.21 The essential point is that

in our models, the energy difference ∆E• = E
(1)
• − E(0)

• between Ψ
(1)
• and Ψ

(0)
• vanishes

exponentially as ∆EN ∼ exp(−C · N) for N → ∞, or as ∆E~ ∼ exp(−C ′/~) for ~ → 0,

respectively. This means that asymptotically any linear combination of Ψ
(0)
• and Ψ

(1)
• is

‘almost’ an energy eigenstate. For example, consider the two linear combinations

Ψ±• = (Ψ
(0)
• ±Ψ

(1)
• )/
√

2. (1.12)

These have the special virtue that in the pertinent limit N →∞ or ~→ 0 the associated
family of algebraic states ψ±• (weakly) converges to a pure ground state ψ±∞ (or ψ±0 ) of the
higher-level theory, as opposed to the (symmetric) mixture (1.10) or (1.11) of such states.

Now the exponential decay of ∆E• implies that almost any asymmetric perturbation
(that does not vanish as quickly in the limit as ∆E•, e.g., by being independent of N
or ~ or having at most a power-law decay) will eventually destabilize the ground state.
Moreover, it does so ever more effectively as N grows or ~ decreases (in other words, as
the higher-level theory is approached). The asymptotic behavior of the perturbed ground
state Ψ′• can be computed using the ‘interaction matrix’ of Helffer and Sjöstrand (1986),22

which reduces the computation in question to a 2 × 2 matrix problem. Lo and behold:
depending on the details of the perturbation, Ψ′• turns out to have the same asymptotic
behavior as either Ψ+

• or Ψ−• , and hence converges to a pure state ψ±∞ (or ψ±0 ).
At the same time, the stability properties of the (pure) ground states of the limit theory

guarantee that the perturbed ground states of the lower-level theory are asymptotically
insensitive to small perturbations.23 Indeed, it is this very combination of the instability
of Schrödinger Cat states of the lower-level theory with the stability of pure ground states
of the higher-level theory that, at least in principle, solves the problem of ssb.24

19In principle there would be a similar ambiguity about the choice of the algebra of observables in the
~ → 0 limit. We here take the (quasi-)local observables, but in this case the delocalized observables
Cb(R2)/C0(R2) would be irrelevant, because unlike the previous case the ssb problem here is local.

20Here ±a are the the minima of the double-well potential.
21For continuous symmetries, in which case one has an infinite number of low-lying states, this key idea

may already be found in Anderson (1952), which influenced later authors like Koma & Tasaki (1994).
22See also Helffer (1988) and Simon (1985). This formalism was originally developed for Schrödinger

operators, but it applies more generally; cf. §5 below.
23In the context of the measurement problem this means that measurements that already had outcomes

(i.e. ‘dead’ or ‘alive’) from the beginning retain these outcomes, absolutely so in the limiting classical
theory and at least approximately so in reality; cf. the next two subsections.

24As well as the measurement problem. In the context, see also Narnhofer & Thirring (1996, 1999) for
similar arguments (though adhering to the Copenhagen Interpretation with its associated incomprehensible
‘collapse of the wave-function’). There is no contradiction between this scenario and the linearity of the
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1.7 Discussion

For mathematics, our mechanism implies that the limit states are continuously approached.25

For physics, it means that the behaviour of real materials is well approximated by the
lower-level theory at very large N or very small ~. Our main claim in this respect has
been that in this regime one should not look at the ‘official’ ground state, which is unstable,
but rather at some stable version to it, which already breaks the symmetry for finite N
or positive ~. However, this comes at a price: strictly speaking, such symmetry-breaking
states in the lower-level theory are slightly unstable themselves (as opposed to their limits
in the corresponding idealized higher-level theory). Indeed, for N < ∞ or ~ > 0, the

symmetry-breaking states Ψ±• or Ψ
(±)
• are unstable even for the unperturbed Hamilto-

nian, but for large N or small ~ they move very slowly. For example, in our models with
Z2-symmetry the transition time from Ψ+

• to Ψ−• is approximately 2π/∆•, which goes like
exp(+CN) or exp(+C ′/~). This may seem enormous to theorists, who tend to think in
terms of N ∼ 1023, but in the lab N = 10 for a spin chain is already a large number!26

Either way, the job is done by the exponential instability of the ground state (etc.)
under asymmetric perturbations for large N or small ~, which should cause the system to
pick a specific symmetry-breaking state Ψ±• already for some finite value of N or positive
value of ~ (as opposed to their physically irrelevant limiting values ∞ or 0).

Such perturbations may be induced either by the environment of the system, as in
the ‘decoherence’ (non) solution to the measurement problem (see Landsman & Reuvers
(2013) for more on this), or possibly by material defects. In this sense, ssb does not
exist : for small systems reside in their naive symmetric ground state, large systems break
symmetry explicitly (i.e., through the Hamiltonian), and infinite systems are not there.

By the same token, in the real world totally isolated finite quantum systems (with
perfectly symmetric Hamiltonians) should display ssb, as the naive theory indeed predicts.
In other words, truly macroscopic Schrödinger Cat states are only possible if asymmetric
perturbations can be totally suppressed (so in theory Schrödinger’s Cat can indeed exist!).

Where does this leave us? What seems dubious now about the idea of emergence (at
least in the case at hand of ssb) is, in our view, its opposition to reduction. So although
for many this juxtaposition was the essence of the idea, it would seem wise to give it
up. Thus we largely side with Butterfield (2011) in rescuing the side of emergence that
talks about ‘novel and robust behaviour’, but taking this novelty (with reference to our
earlier quotation of Hempel and Oppenheim) solely in the psychological sense of being
unexpected, rather than in the theoretical sense of being unexplainable or unpredictable.

Schrödinger equation, because the algebraic states are quadratic in the state vectors, in combination with
the limiting operations in N or ~. Since confusion around this point has arisen, we paraphrase footnote
30 in Landsman & Reuvers (2013) here: the 2 × 2 matrix approximation is solely meant to compute the
asymptotic behavior of the perturbed ground state and hence to illustrate the instability of Schrödinger
Cat states. However, this approximation comes at the cost of obscuring the stability of the pure ground
states of the higher-level theory. We are indebted to Gijs Leegwater for discussions on this issue.

25We will make this precise using the formalism of continuous fields of C*-algebras (Dixmier, 1977) and
continuous fields of states thereon (Landsman, 2007, §§4.3,5.1).

26Corresponding estimates for the Lieb–Mattis model of antiferromagnetism, in which the ground state
breaks a continuous SU(2) symmetry, are given in van Wezel, van den Brink and Zaanen (2005). The work
of van Wezel (2007, 2008, 2010), which was brought to our attention only after the first version of this paper
appeared on the arXiv, analyzes the spontaneous breakdown of continuous symmetries in a way compatible
with (and indeed predating) our treatment the discrete case, including the fundamental observation about
the instability of the symmetric ground state of a finite system under ‘infinitesimal’ asymmetric perturba-
tions. Van Wezel (2010) also discusses the connection between ssb and the measurement problem, though
his proposed solution to this problem is quite different from ours.
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Even so, one aspect of the idea that the higher-level theory is ‘ineliminable’ survives,
namely the particular choice of observables within the lower-level theory that guarantees
the correct limiting behaviour. In quantum statistical mechanics, it is either the local or
the macroscopic observables, each with their very peculiar N -dependence, that survive
the limit N →∞. Analogously, in quantum mechanics it is the semiclassical observables
with their very peculiar ~-dependence that survive the limit h→ 0.

On the one hand, the choice of these observables is dictated by the limit theories
taken by themselves (which therefore have to be known in advance) and is not intrinsic
to the underlying lower-level theories. On the other hand, these specific observables are
defined within the latter, whose (mathematical) structure gives rise to the very possibility
of singling them out. In other words, it is in the nature of (quantum) statistical mechanics
that one is able to define the small family of observables that in the thermodynamic
limit behave according to the laws of thermodynamics, and it is quantum mechanics itself
that allows the selection of the observables with the ‘right’ ~-dependence (such as the
usual position operator x and the momentum operator −i~d/dx).27 Hence in our view
it merely seems a semantic issue whether the act of picking precisely the observables
with appropriate limiting behaviour (or just the possibility thereof, or even merely their
existence) falls within the scope of reduction, or instead is the hallmark of emergence.
Either way, novel and robust behaviour is predicated on this act of choice.

In the remainder of this paper we explain the technical details of this scenario.28

Section 2 gives a description of our models and their symmetries. Section 3 describes
some remarkable continuity properties of these models as ~ → 0 or N → ∞, putting the
folklore that such limits are ‘singular’ in perspective.29 In section 4 we describe the ground
states of our models, proving their discontinuity at ~ = 0 or N = ∞. But in the final
section 5 we put the record straight by invoking the first excited states, which save the
day and restore Earman’s Principle and Butterfield’s Principle, as outlined above.

Finally, it will be obvious (at least to experts) that although we concentrate on ground
states in this paper, the same scenario applies even more easily to equilibrium states at
low temperature.30 Indeed, if equilibrium states are formalized as kms states (as usual
in mathematical physics), then the role of pure ground states is played by primary kms
states. For finite systems the former enjoy even better uniqueness properties than ground
states, whilst for infinite systems the latter have even better stability properties.
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30At high temperatures T the issue of ssb does not arise, since equilibrium states at given T will typically

be unique in both the lower- and the higher-level theory (Bratteli & Robinson, 1997; Haag, 1992).
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2 Models

To make our point, it suffices to treat the quantum Ising chain in the thermodynamic
limit with (quasi-) local observables, the quantum Curie–Weisz model in the same limit
with global observables, and the symmetric double well potential in the classical limit.
For pedagogical reasons we start with the latter, which is much easier to understand; cf.
Landsman & Reuvers (2013) for a more detailed treatment from our current perspective.

2.1 Double well

The quantum double-well Hamiltonian on the real axis is given by

HDW
~ = − ~2

2m

d2

dx2
+ 1

4
λ(x2 − a2)2, (2.13)

defined as an unbounded operator on the Hilbert space

HDW~ = L2(R); (2.14)

more precisely, on a domain like Cc(R) or the Schwartz space of test functions S(R), where
it is essentially self-adjoint (Reed & Simon, 1978). We assume λ > 0, and a > 0.

Reflection in the origin of the position coordinate endows this model with a Z2 sym-
metry, which is implemented by the unitary operator u : L2(R)→ L2(R) defined by

uΨ(x) = Ψ(−x). (2.15)

The Z2-symmetry of the Hamiltonian then reads [HDW
~ , u] = 0, or, equivalently,

uHDW
~ u∗ = HDW

~ . (2.16)

Although this is not necessary for a mathematically correct treatment of this quantum
system, in order to better understand the classical limit ~→ 0 as well as to see the analogy
with our other two models from quantum statistical mechanics, it is convenient to model
the double-well system through the (admittedly idealized31) algebra of observables

A~ = K(L2(R)), ~ > 0, (2.17)

i.e., the C*-algebra of compact operators on L2(R). Algebraically, time-evolution is given
by a (strongly continuous) group homomorphism τ : R → Aut(A~) from the time-axis
R (as an additive group) to the group of all automorphism of A~,32 written t 7→ τt; we
sometimes abbreviate a(t) ≡ τt(a). In the model at hand, for any ~ > 0 we have

τ
(~)
t (a) = u

(~)
t a(u

(~)
t )∗, (2.18)

where the unitary operators u
(~)
t are given by

u
(~)
t = eitH

DW
~ /~. (2.19)

31Any bounded operator may be obtained as a weak or strong limit of some sequence of compact
operators, whereas any possibly unbounded self-adjoint operator resurfaces as a generator of some unitary
(hence bounded!) representation of R as an additive group, as in Stone’s Theorem. This sort of idealization
by mathematical convenience is unrelated to the problems involved in the idealizations ~ = 0 (i.e., classical
physics) or N =∞ (infinite systems) that form the main subject of this paper.

32An automorphism of a C*-algebra A is an invertible linear map α : A → A satisfying α(ab) = α(a)α(b)
and α(a∗) = α(a)∗. It is inner if there is unitary element u ∈ A such that α(a) = uau∗ for all a ∈ A.
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Similarly, the Z2-symmetry of the model is algebraically described by a group homo-
morphism γ̃ : Z2 → Aut(A~), where γ(1) = id, whilst the nontrivial element −1 of Z2 is
mapped to the automorphism γ ≡ γ̃(−1) defined in terms of the unitary u in (2.15) by

γ(a) = uau∗. (2.20)

For ~ > 0, the Z2-invariance of the model is then expressed algebraically by the property

τ
(~)
t ◦ γ = γ ◦ τ (~)t , t ∈ R. (2.21)

The classical limit of this system is a particle in phase space R2, with Hamiltonian

hDW (p, q) =
p2

2m
+ 1

4
λ(q2 − a2)2. (2.22)

The classical Z2-symmetry is given by the map γ∗ : (p, q) 7→ (p,−q) on phase space R2,
with pullback f 7→ γ∗∗f ≡ γ(0)f on functions f on R2, i.e., γ(0)f(p, q) = f(p,−q). Clearly,

γ(0)hDW = hDW . (2.23)

Algebraically, we take the (idealized) classical observables to be

A0 = C0(R2), (2.24)

i.e., the commutative C*-algebra of continuous functions f : R2 → C that vanish at infinity

(with pointwise multiplication). Time-evolution t 7→ τ
(0)
t on A0 is defined by

τ
(0)
t f(p, q) = f(p(t), q(t)), (2.25)

where (p(t), q(t)) is the solution of the Hamiltonian equations of motion following from
(2.22), with initial conditions (p(0), q(0)) = (p, q). Then Z2-invariance is expressed by

τ
(0)
t ◦ γ(0) = γ(0) ◦ τ (0)t , t ∈ R. (2.26)

2.2 Quantum Ising chain

For N <∞, the Hamiltonian of the quantum Ising chain (with J = 1 for simplicity) is

HI
N = −

1
2
N−1∑

i=− 1
2
N

σzi σ
z
i+1 −B

N∑
i=1

σxi , (2.27)

where N is even and and we adopt free boundary conditions. This operator is defined on

HN = ⊗NC2, (2.28)

i.e., the N -fold tensor product of C2, where we label the first copy with j = − 1
2
N , the

second with j = − 1
2
N + 1, . . . , and the last one with j = 1

2
N − 1.33 We assume B > 0.

This model describes a chain of N immobile spin- 1
2

particles with ferromagnetic coupling
in a transverse magnetic field (Pfeuty, 1970; Sachdev, 2011; Suzuki et al, 2013).34

33The Pauli matrix σµi ≡ ⊗
i−1

j=− 1
2
N

12 ⊗ σµ ⊗
1
2
N−1

k=i+1 12 (i = 1, . . . , N, µ = x, y, z) acts on the i’th C2.

34The quantum Ising model is a special case of the XY -model, to which the same conclusions apply.
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Although the physically relevant operators (like the above Hamiltonian) are most sim-
ply given if the Hilbert space is realized in the tensor product form (2.28), the physical
interpretation of states tends to be more transparent if we realize HN as `2(SN ),35 where
SN = 2N is the space of classical spin configurations s : N → 2. Here

2 = {−1, 1}; (2.29)

N = {− 1
2
N, 1

2
N − 1} (N ≥ 2). (2.30)

In terms of the standard basis |1〉 = (1, 0) and | − 1〉 = (0, 1) of C2, where the label |λ〉 is
the corresponding eigenvalue of σz, a suitable unitary equivalence vN : `2(SN ) → ⊗NC2

(each isomorphic to C2N ) is given by linear extension of

vNδs = ⊗
1
2
N−1

j=− 1
2
N
|s(j)〉, s, t ∈ SN , (2.31)

where δs is defined by δs(t) = δst; such functions form an orthonormal basis of `2(SN ).
For example, the state with all spins up, i.e., ⊗N |1〉, corresponds to δs↑ , where s↑(j) = 1

for all j, and analogously s↓(j) = −1 for all j is the state with all spins down. Thus
the advantage of this realization is that we may talk of localization of states in spin
configuration space, in the sense that some Ψ ∈ `2(SN ) may be peaked on just a few spins
configurations (whilst typically having small but nonzero values elsewhere).

For any B, the quantum Ising chain has a Z2-symmetry given by a 180-degree rotation
around the x-axis. This symmetry is implemented by the unitary operator

uN = ⊗i∈Nσxi (2.32)

on HN , which satisfies [HI
N , uN ] = 0, or, equivalently,36

uNH
I
Nu
∗
N = HI

N . (2.33)

As in the previous subsection, we could take a purely algebraic approach by defining
the C*-algebra of observables of the system for N <∞ to be

BN = ⊗NM2(C), (2.34)

i.e., the N -fold tensor product of the 2 × 2 matrices, labeled as described after (2.28).
Time-evolution is given by the analogue of (2.18), which explicitly reads

τ
(N)
t (a) = u

(N)
t a(u

(N)
t )∗; (2.35)

u
(N)
t = eitH

I
N . (2.36)

Furthermore, the Z2-symmetry is given by the automorphism γN of BN defined by

γN (a) = uNau
∗
N , a ∈ BN . (2.37)

In this language, Z2-invariance of the model is expressed as in (2.21), viz.

τ
(N)
t ◦ γN = γN ◦ τ (N)

t , t ∈ R. (2.38)

Without taking the dynamics into account, given (2.34) there are two (interesting)
possibilities for the limit algebra at N =∞ (Landsman, 2007, §6):

35For any countable set S, the Hilbert space `2(S) consists of all functions f : S → C that satisfy∑
s∈S |f(s)|2 <∞, with inner product 〈f, g〉 =

∑
s∈S f(s)g(s). Of course, for N <∞, SN is a finite set.

36Note that uNσ
x
i u
∗
N = σxi , uNσ

y
i u
∗
N = −σyi , uNσ

z
i u
∗
N = −σzi , which implies (2.33).



2 MODELS 18

• The C*-algebra of (quasi-)local observables is

Bl∞ = ⊗ZM2(C), (2.39)

the infinite tensor product of M2(C) as defined in Kadison & Ringrose (1986, §11.4);

• The C*-algebra of global observables is

Bg∞ = C(S(M2(C))), (2.40)

the C*-algebra of continuous functions on the state space S(M2(C)) of M2(C).

Thus Bl∞ is highly noncommutative, like each of the BN , which is embedded in Bl∞ by
tensoring with infinitely many unit matrices in the obvious way, whereas Bg∞ is obviously
commutative (under pointwise multiplication, that is). Which of these limit algebras is
the appropriate one depends on the Hamiltonian: for short-range interactions, as in (2.27),
it is the first, because the finite-N Hamiltonians induce a well-defined time-evolution on
Bl∞. For mean-field models like the quantum Curie–Weisz model, on the other hand, it is
the second, for the same reason; see below and the next subsection, respectively.

Indeed, in the first case, for Hamiltonians like (2.27), by Theorem 6.2.4 in Bratteli
& Robinson (1997) there exists a unique time-evolution τ on Bl∞, again in the sense of
a strongly continuous group homomorphism τ : R → Aut(Bl∞), that extends the local
dynamics given by the local Hamiltonians HI

N in that

τt(a) = lim
N→∞

τ
(N)
t (a), a ∈ Bl∞. (2.41)

Equivalently, for each a ∈ Bl∞ that is local in being contained in some BN ⊂ Bl∞,

da(t)

dt
= i lim

N→∞
[HI

N , a(t)], (2.42)

where a(t) ≡ τt(a). So the limit theory H is the pair (Bl∞, τ), in which the local Hamilto-
nians HI

N have been replaced by the single one-parameter automorphism group τ .
Finally, the infinite-volume relic of the Z2-symmetry uN is the automorphism γ of Bl∞

that is uniquely defined by the property γ(a) = uNau
∗
N for each a ∈ BN , cf. (2.33). The

invariance property (2.33) of the local Hamiltonians then becomes the Z2-symmetry of the
time-evolution τ , as expressed by (2.21) (mutatis mutandis).

2.3 Quantum Curie-Weisz model

For N <∞, the Hamiltonian of the quantum Curie-Weisz model is

HCW
N = − 1

2N

1
2
N−1∑

i,j=− 1
2
N

σzi σ
z
j −B

N∑
i=1

σxi , (2.43)

acting on the same Hilbert space HN as the Hamiltonian (2.27), i.e., (2.28), but differing
from it by the spin-spin interaction being nonlocal and even of arbitrary range.37

37The name Lipkin model may be found in the nuclear physics literature, and without the B-term, (2.43)
is sometimes called the Weisz model. It may be treated in any spatial dimension in much the same way.
In the context of the measurement problem, the quantum Curie-Weisz model has been extensively studied
by Allahverdyana, Balian, & Nieuwenhuizen (2013), with hardly any overlap with our analysis though.
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In terms of the marcoscopically averaged spin operators

Sµ =
1

2N

1
2
N−1∑

i=− 1
2
N

σµi , µ = 1, 2, 3, (2.44)

this Hamiltonian assumes the perhaps more transparent form

HCW
N = −2N(S2

z +BSx). (2.45)

This model has exactly the same Z2-symmetry as its local counterpart (2.27), and for
finite N one can simply copy all relevant formulae from the previous subsection.

What is markedly different for long-range forces (as opposed to local ones), however,
is the correct choice of the limit algebra, which (in the context of similar models, starting
from the bcs Hamiltonian for superconductivity) emerged from the work of Bogoliubov,
Haag, Thirring, Bona, Duffield, Raggio, Werner, and others; see Landsman (2007, Ch. 6)
for references, as well as for the reformulation in terms of continuous fields of C*-algebras
to be given in §3 below. To make a long story short, the local Hamiltonians (2.45) do not
induce a time-evolution on Bl∞, but they do so on the commutative algebra (2.40).

This limiting dynamics turns out to be of Hamiltonian form, as was to be expected
for a classical theory, albeit of a generalized form, where the underlying phase space is a
Poisson manifold that is not symplectic, see e.g. Landsman (1998). Specifically, we use
the fact that the state space S(M2(C)) of M2(C) appearing in (2.40) is isomorphic (as
a compact convex set) to the three-ball B3, which consists of all (x, y, z) ∈ R3 satisfying
x2 +y2 +z2 ≤ 1. The isomorphism in question is given by the well-known parametrization

ρ(x, y, z) = 1
2

(
1 + z x− iy
x+ iy 1− z

)
, (2.46)

of an arbitrary density matrix on C2. This parametrization is such that pure states (i.e.,
those for which ρ is a one-dimensional projection, so that ρ2 = ρ) are mapped to the
boundary S2 of B3, whose points satisfy x2 + y2 + z2 ≤ 1 (this is just the familiar Bloch
sphere from physics texts). Now R3 is equipped with (twice) the so-called Lie–Poisson
bracket,38 which on the coordinate functions (x1, x2, x3) ≡ (x, y, z) is given by

{xi, xj} = −2εijkxk, (2.47)

and is completely defined by this special case through the Leibniz rule. In terms of this
bracket, time-evolution is given by the familiar Hamiltonian formula

dxi
dt

= {hCW , xi}, (2.48)

where the Hamiltonian giving the limiting dynamics of (2.45) is given by

hCW (x, y, z) = −( 1
2
z2 +Bx). (2.49)

Thus the equations of motion (2.48) are given by

dx

dt
= 2yz;

dy

dt
= 2z(B − x);

dz

dt
= −2By. (2.50)

38See e.g. Marsden & Ratiu (1994); our phase space R3 is the dual of the Lie algebra of SO(3). The
factor 2 in (2.47) is caused by the fact that our model has basic spin one-half (or use x′i = 1

2
xi to avoid it).
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3 Continuity

It is often stated that limits like N → ∞ and ~ → 0 are ‘singular’, and indeed they are,
if one merely looks at the Hamiltonian: putting ~ = 0 in (2.13) yields an operator that
has practically nothing to do with the small ~-behaviour of its originator, letting ~ → 0
in (2.19) seems to make no sense, and the limit N → ∞ of (2.27) or (2.43) is simply
undefined. Nonetheless, the limits in question are continuous if treated in the right way.39

They key, which may be unexpected at first sight, is that in discussing the ~→ 0 limit
of quantum mechanics it turns out to be possible to “glue” the (highly noncommutative!)
algebras of quantum observables A~ in (2.17) continuously to the (commutative!) algebra
of classical observables A0 in (2.24), whereas for the N →∞ limit of quantum statistical
mechanics there are even two (relevant) possibilities: the (noncommutative) algebras BN
in (2.34) can be glued continuously to either the algebra of (quasi-) local observables Bl∞
in (2.39), which is noncommutative, too (and hence is the more obvious choice), or to
the commutative algebra of global observables Bg∞ in (2.40). The “glueing” is done using
the formalism of continuous fields of C*-algebras (of observables); we will just look at
the cases of interest for our three models, and refer the reader to Dixmier (1977) and
Kirchberg & Wassermann (1995) for the abstract theory.40 Continuity of the dynamics
in the various limits at hand will be a corollary, provided time-evolution is expressed in
terms of the one-parameter automorphism groups τ . Finally, the ensuing continuous fields
of states defined by the continuous fields of observables will provide the right language for
the technical elaboration of our solution of the problem of emergence, as described in the
Introduction (N.B.: the use of this formalism itself is not yet the solution!).

3.1 Continuous fields of C*-algebras

Each of our three continuous fields Ac, Al, and Ag of interest is defined over a (‘base’)
space Iα ⊆ [0, 1] defined for α = c, l, g as Ic = [0, 1] and Il = Ig = {0} ∪ 1/(2N∗),41 with
the topology inherited from [0, 1] (in which each Iα is compact). The fibers are as follows:

1. Ac~ = A~ = K(L2(R)) for h ∈ (0, 1] and Ac0 = A0 = C0(R2);

2. Al1/N = BN = ⊗NM2(C) for even N <∞ and Al0 = Bl∞ = ⊗ZM2(C);

3. Ag1/N = BN = ⊗NM2(C) for even N <∞ and Ag0 = Bg∞ = C(S(M2(C))).

The continuity structure is given by specifying a sufficiently large family of continuous
cross-sections, i.e., maps σ assigning some element a ∈ Aαx to each x ∈ Iα, as follows.42

39The following discussion amplifies our earlier treatments of the ~ → 0, N → ∞ limits in Landsman
(1998, 2007), respectively, by including dynamics and, in the next few sections, ground states and ssb.

40The idea of a continuous fields of C*-algebras goes back to Dixmier (1977), who gave a direct defi-
nition in terms of glueing conditions between the fibers, and was usefully reformulated by Kirchberg &
Wassermann (1995), who stressed the role of the continuous sections of the field already in its definition.
Both definitions are reviewed in Landsman (1998). Our informal discussion below uses elements of both.

41That is, x ∈ Il if either x = 0 or x = 1/N for some even N ∈ N\{0}.
42Lest this operation may appear to be circular: there are stringent and highly exclusive conditions on

admissible continuity structures, namely, for continuous cross-sections σ of a continuous field Aα over Iα:

1. The function x 7→ ‖σ(x)‖x, where ‖ · ‖x is the norm in Ax, is continuous (from Iα to R);

2. For any f ∈ C(Iα) and σ as above the cross-section x 7→ f(x)σ(x) for all x ∈ Iα is again continuous;

3. The totality of all σ form a C*-algebra in the norm ‖σ‖ = supx ‖σ(x)‖x and pointwise operations.
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1. Each f ∈ C0(R2 defines an operator Q~(f) ∈ K(L2(R)) by Berezin quantization,

Q~(f) =

∫
R2

dpdq

2π~
f(p, q)|Φ(p,q)

~ 〉〈Φ(p,q)
~ |, (3.51)

where, for any unit vector Ψ, the one-dimensional projection onto C · Ψ is denoted

by |Ψ〉〈Ψ|, and the coherent states Φ
(p,q)
~ ∈ L2(R), (p, q) ∈ R2, are defined by

Φ
(p,q)
~ (x) = (π~)−1/4e−ipq/2~eipx/~e−(x−q)

2/2~. (3.52)

Using this quantization map, for each f we then define a cross-section σf of Ac by

σf (0) = f ; (3.53)

σf (~) = Q~(f), ~ ∈ (0, 1]. (3.54)

Thus, although f and Q~(f) are completely different mathematical objects, for small
~ they are sufficiently close to each other to be able to say that lim~→0Q~(f) = f ,
in the sense that if one continuously follows the curve ~ 7→ σf (~) in the total space∐

~∈[0,1]A
c
~ of the bundle (equipped with the topology that makes this disjoint union

a continuous field of C*-algebras) all the way down to ~ = 0, one ends up with f .

2. In order to describe this case, we have to realize the infinite tensor product Bl∞ as
equivalence classes of quasi-local sequences (Raggio & Werner, 1989):

(a) A sequence (a) ≡ (aN )N∈2N∗ is local if there is an M such that aN = ιMN (aM )
for all N ≥ M , where ιMN : BM ↪→ BN is the inclusion map (which takes the
tensor product of aM ∈ BM with as many unit matrices as needed to make it
an element of BN ).

(b) A sequence (a) is quasi-local if for any ε > 0 there is an M and a local sequence
(a′) such that ‖aN − a′N‖ < ε for all N > M (cf. §1.2 around (1.9)).

(c) Introduce an equivalence relation on the quasi-local sequences by saying that
(a) ∼ (a′) if limN→∞ ‖aN − a′N‖ = 0.

(d) Bl∞ consists of equivalence classes [a] ≡ a∞ of quasi-local sequences; these form
a C*-algebra under pointwise operations (inN) and norm ‖a∞‖ = limN→∞ ‖aN‖.

Continuous cross-section of Al then correspond to quasi-local sequences (a) through

σ(1/N) = aN ; (3.55)

σ(0) = a∞. (3.56)

3. Here, the embedding maps ιMN are replaced by the obvious symmetrization maps
jMN : BM ↪→ BN , defined for N > M by jMN = SymN ◦ ιMN , where the usual sym-
metrization map SymN : BN → BN projects on the completely symmetric tensors.

(a) A sequence (a) is symmetric if there is an M such that aN = jMN (aM ) for all
N ≥M .

(b) A sequence (a) is quasi-symmetric if for any ε > 0 there is an M and a sym-
metric sequence (a′) such that ‖aN − a′N‖ < ε for all N > M .
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If (a) is a quasi-symmetric sequence, and ω is a state on M2(C), then the following
limit exists:

a0(ω) = lim
N→∞

ωN (aN ), (3.57)

where ωN is the N -fold tensor product of ω with itself, defining a state on BN . The
ensuing function a0 on the state space S(M2(C)) is continuous, so that a0 is an
element of the limit algebra Bg∞. If we identify S(M2(C)) with B3, then from (2.46),

a0(x, y, z) = lim
N→∞

Tr
(
ρ(x, y, x)⊗NaN

)
. (3.58)

The continuous cross-sections of Ag are then simply given by maps σ of the form

σ(1/N) = aN ; (3.59)

σ(0) = a0, (3.60)

the latter defined as in (3.57), where (a) is some quasi-symmetric sequence.

One may be surprised by the commutativity of Ag0, but a simple example may clarify this
(cf. Landsman (2007, §6.1) for the general argument). If we write the left-hand side of

(2.44) as S
(N)
µ for clarity, then aN = S

(N)
µ = 1

2
j1N (σµ) defines a symmetric sequence, and

[S(N)
µ , S(N)

ν ] =
i

N
εµνρS

(N)
ρ . (3.61)

This commutator evidently vanishes as N →∞. The limit functions a0 may be computed

from (3.58). Writing S̃µ for the limit of the sequence aN = S
(N)
µ , we obtain

S̃µ(x1, x2, x3) = 1
2
xµ. (3.62)

Similarly, the mean (i.e., averaged) Hamiltonians

hCWN = HCW
N /N = −2(S2

z +BSx) (3.63)

of the Curie-Weisz model,43 cf. (2.45), define a symmetric sequence, with limit (2.49), i.e.,

h̃CW = hCW . (3.64)

3.2 Continuous fields of states

Dually, one has continuous fields of states, which, given one of our continuous fields of
C*-algebras Aα, are simply defined as families (ω) = (ωx)x∈Iα , where ωx is a state on
Aαx , such that for each continuous cross-section σ of Aα, the function x 7→ ωx(σ(x)) is
continuous on Iα. The main purpose of this is to define limits (cf. §4). In our examples:

1. For the classical limit this reproduces the standard notion of convergence of quantum
states to classical ones, which is as follows.44 Let (ρ~) be a family of density matrices
on L2(R), ~ ∈ (0, 1]. Each ρ~ defines a probability measure µ~ on phase space R2 by∫

R2

dµ~ f = Tr (ρ~Q~(f)). (3.65)

43And similarly for general mean-field models, see Bona (1988) and Duffield & Werner (1992).
44Cf. Robert (1987), Paul & Uribe (1996), Landsman & Reuvers (2013), and many other sources.
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A state ρ0 on C0(R2) equally well defines an associated measure µ0 by Riesz–Markov,

ρ0(f) =

∫
R2

dµ0 f. (3.66)

The family (ρ~) then converges to ρ0 iff µ~ → µ0 weakly, in that for each f ∈ Cc(R2),

lim
~→0

∫
R2

dµ~ f =

∫
R2

dµ0 f. (3.67)

2. Any state ω0 on Al0 = Bl∞ defines a state ω1/N on Al1/N = BN by restriction (since

BN ⊂ Bl∞), and the ensuing field of states (ω) on Al is (tautologically) continuous.

Conversely, any continuous field of states (ω′) on Al is asymptotically equal to one
of the above kind, in that the field (ω) defined by ω0 = ω′0 has the property that
limN→∞ |ω1/N (aN )− ω′1/N (aN )| = 0 for any fixed quasi-local sequence (a).45

3. For Ag, no independent characterization of continuous fields of states seems avail-
able. A nice example, though, comes from permutation-invariant states ωl on Bl∞
(no typo), defined by the property that each restriction ωl1/N = ωl|BN to BN is

permutation-invariant. These ωl1/N define a continuous field of states on Ag, whose

limit state ωl0 on Ag0 = C(B3) yields a probability measure µl0, which even charac-
terizes the original state by the quantum De Finetti Theorem of Størmer (1969):

ωl =

∫
B3

dµl0(x, y, z) ρ(x, y, z)∞. (3.68)

Here we identify the density matrix (2.46) with the corresponding state on M2(C)
via the trace pairing, see (3.58), and ρ∞ = limN→∞ ρ

N , as in (3.57).

Of course, any continuous fields of states (ω) on Ag defines a probability measure
µ0 on B3 by applying the Riesz–Markov Theorem to the limit state ω0. We will see
various interesting examples of such measures in the remainder of this paper.46

3.3 Continuity of time-evolution

Using the continuous field picture developed above, we also obtain a satisfactory notion of
convergence of time-evolution in our various limits. We list our three cases of interest.47

For technical reasons the optimal result, where time-evolved continuous cross-section of
Aα are again continuous, applies only to α = l, g, but for α = c one still has a weaker
continuity result after pairing continuous cross-sections with continuous fields of states.

1. Let (ρ~)~∈[0,1] be a continuous family of states on Ac, where for ~ > 0 we identify the
state with the associated density matrix, with associated probability measures µ~,
defined by (3.65), so that lim~→0 µ~ = µ0 weakly. Each density matrix ρ~ evolves in
time according to the Liouville–von Neumann equation determined by the quantum
Hamiltonian (2.13). In other words, ρ~(t) satisfies

Tr (ρ~(t)a) = Tr (ρ~τ
(~)
t (a)), a ∈ K(L2(R)). (3.69)

45Indeed, for any ε > 0, there is an M such that |ω1/N (aN )− ω′1/N (aN )| < ε for all N > M .
46See also Landsman (2007, §6.2) for a number of abstract general results on such limit measures.
47Vast generalizations of the material are possible, but we restrict attention to our three guiding models.
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This induces a time-evolution on each µ~, in that µ~(t) is the probability measure
determined by ρ~(t) according to (3.65).

Likewise, µ0 evolves in time according to the classical Liouville equation given by
the classical Hamiltonian (2.22), which is measure-preserving and hence also maps
µ0 into some other probability measure µ0(t). For unbounded Hamiltonians of the
kind (2.13), the best continuity result is then given by the weak limit48

lim
~→0

(µ~(t)) = µ0(t), t ∈ R. (3.70)

2. The quasi-local case leads to stronger results, since the operator limit (2.41) implies

τt(a∞) = lim
N→∞

τ
(N)
t (aN ), t ∈ R, (3.71)

for any quasi-local sequence (a).49 In other words, if (a) is a quasi-local sequence
with limit a∞ , then the time-evolved quasi-local sequence (a(t)), where each aN

evolves with τ
(N)
t , is again quasi-local, with limit a∞(t), where a∞ evolves with

the time-evolution τt directly defined in infinite volume. Equivalently, time-evolved
continuous cross-section of Al are again continuous, where time-evolution is defined
separately in each fiber. For continuous fields of states (ω) this implies

lim
N→∞

(ω1/N (t)(aN )) = ω0(t)(a∞), (3.72)

for any quasi-local sequence (a) with limit a∞, where ω1/N (t) and ω0(t) are defined

by “Schrödinger-picturing” (that is, dualizing) τ
(N)
t and τt, respectively; cf. (3.70).

3. As in the previous case, time-evolved continuous cross-section of Ag are again con-
tinuous, but because of the vast difference between the fibers Agx at x = 1/N and at
x = 0, this result may be more unexpected. Let (a) be a quasi-symmetric sequence

with limit a0, let aN (t) = τ
(N)
t (aN ) be defined by the quantum Hamiltonian (2.45)

in the usual unitary way (i.e., by (2.35) and (2.36) with HCW
N instead of HI

N ), and fi-
nally let a0(t) be defined by the classical Hamiltonian (2.49) and the Poisson bracket
(2.47).50 Then the time-evolved sequence (a(t)) is again quasi-symmetric, with limit
a0(t); see Landsman (2007, §6.5), elaborating on Duffield & Werner (1992). Of
course, for continuous fields of states this implies a result analogous to (3.72).

In conclusion, as soon as it has been (re)formulated in the ‘right’ setting, time-evolution
as such turns out to be continuous throughout the limits N → ∞ or ~ → 0. The precise
kind of continuity is even quite strong in our two lattice models, but it is still acceptable
for the double well.51 Given this continuity, the extreme discontinuity in the behaviour
of the ground states if one passes from N < ∞ to N = ∞, or from ~ > 0 to ~ = 0, is
remarkable. Displaying this discontinuity in naked form and at the appropriate technical
level is the purpose of the next section; resolving it will be the goal of the one after.

48This follows from Egorov’s Theorem in the form of Theorem II.2.7.2 in Landsman (1998). In the
‘academic’ case that the quantum Hamiltonian is compact and is given by H~ = Q~(h), one has operator

convergence of the kind lim~→0 ‖Q~(τ
(0)
t (f))−τ (~)t (Q~(f))‖ = 0, see Prop. 2.7.1 in Landsman (1998). This

also implies that time-evolved continuous cross-section of Ac are again continuous, which unfortunately
does not seem to be the case for the unbounded Hamiltonian (2.13).

49This holds within Bl∞ in the operator norm, where each τ
(N)
t (aN ) is embedded in Bl∞.

50That is, if ~x(t) is the solution of (2.48) with initial condition ~x(0) = ~x, then a0(~x)(t) = a0(~x(t)).
51Note that because our three examples display exactly the same anomalies in their ground states (cf.

the Introduction as well as the next section), the technical differences between these kinds of continuity
seem irrelevant to our analysis of the emergence problem.
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4 Ground states

The definition of a ground state of a specific physical system depends on the setting (i.e.,
classical/quantum, finite/infinite), but is uncontroversial and well understood in all cases.

1. A ground state (in the usual sense) of a quantum Hamiltonian like (2.13) is a unit

eigenvector Ψ
(0)
~ ∈ L2(R) of HDW

~ for which the corresponding eigenvalue E
(0)
~ lies at

the bottom of the spectrum σ(HDW
~ ). Algebraically, such a unit vector Ψ

(0)
~ defines

a state ψ
(0)
~ on the C*-algebra of observables A~ given by (2.17), viz.52

ψ
(0)
~ (a) = 〈Ψ(0)

~ , aΨ
(0)
~ 〉, a ∈ K(L2(R)), (4.73)

where 〈·, ·〉 is the inner product in L2(R). This reformulation is useful already for
fixed ~, where it removes the phase ambiguity in unit vectors, but it is mandatory
if we wish to take the limit ~ → 0. The above definition of a ground state may be

reformulated directly in terms of the algebraic state ψ
(0)
~ , see point 2 below.

A ground state of the corresponding classical Hamiltonian (2.22) is just a point
z0 ∈ R2 in phase space where hDW takes an absolute minimum.

2. For N < ∞, an analogous discussion applies to the quantum Ising Hamiltonian

(2.27): a ground state is simply a unit eigenvector Ψ
(0)
N ∈ HN of HI

N whose eigenvalue

E
(0)
N is minimal, with the appropriate algebraic reformulation (luxurious for N <∞

but needed as N →∞) in terms of a state ψ
(0)
N on the C*-algebra BN .

At N = ∞, ground states of the system with C*-algebra Bl∞ of quasi-local observ-
ables and time-evolution τ , see (2.41), may be defined as pure states ω on Bl∞ such
that −iω(a∗δ(a)) ≥ 0 for each a ∈ Bl∞ for which δ(a) = limt→0((τt(a)−a)/t) exists.53

3. For N <∞, ground states of the quantum Curie–Weisz model (2.43) are defined as
in the previous case, whereas at N =∞ a ground state of the classical Hamiltonian
(2.49) is a point ~x0 in the ‘phase space’ B3 that minimizes hCW absolutely.

We now combine these definitions with the notion of a limit of a family of states (in the
algebraic sense) following from our discussion of continuous fields in the previous chapter.
That is, if Aα is our continuous field of C*-algebras, where α = c, j, g (see §3.1), and
(ωx)x∈Iα is a family of states on this field in that ωx is a state on Aαx , then we say that

ω0 = lim
x→0

ωx (4.74)

if the (ωx) form a continuous field of states. For α = c this reproduces the notion of
convergence ρ~ → ρ0 discussed after (3.65), whereas for α = g, l this gives meaning to

limits like limN→∞ ω1/N = ω0, where each ω1/N is a state on BN and ω0 is a state on Ag,l0 .

52A state on a C*-algebra A is a positive linear functional ω : A → C of norm one, where positivity of ω
means that ω(a∗a) ≥ 0 for each a ∈ A. If A has a unit 1A, then ‖ω‖ = 1 iff ω(1A) = 1 (given positivity).
We say that ω is pure if ω = pω1 + (1 − p)ω2 for some p ∈ (0, 1) and certain states ω1 and ω2 implies
ω1 = ω2 = ω, and mixed otherwise. If A = C0(X) is commutative, then by the Riesz–Markov Theorem
states on A bijectively correspond to probability measures on X, the pure states being the Dirac (point)
measures δx defined by δx(f) = f(x), x ∈ X. For A = K(L2(R)), the pure states are just the unit vectors.

53This the shortest among many equivalent definitions: see e.g. Bratteli & Robinson (1997, Definition
5.3.18) or Koma & Tasaki (1994, App. A). For finite systems this (nontrivially, see refs.) reproduces the
conventional definition of a ground state, and for infinite systems all known examples support its validity.
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1. The quantum double-well Hamiltonian (2.13) has a unique ground state Ψ
(0)
~ , which

(by a suitable choice of phase) may be chosen to be real and strictly positive.54 Since
the ground state is unique, it is Z2-invariant (for otherwise its image under u in (2.15)

would be another ground state). Seen as a wave-function, Ψ
(0)
~ has well-separated

peaks above a and −a, which, as ~→ 0, become increasingly pronounced.55

However, the classical double-well Hamiltonian (2.22) has two ground states

ψ±0 = (p = 0, q = ±a), (4.75)

which are mapped into each other by the Z2-symmetry (p, q) 7→ (p,−q). These states
may be visualized as the particle being at rest at location q = ±a. Now define

ψ
(0)
0 = 1

2
(ψ+

0 + ψ−0 ), (4.76)

where we identify ψ±0 ∈ R2 with the corresponding (pure) state on C0(R2), so that
the right-hand side is a convex sum of states (and hence a state itself).56 Then

the family (ψ
(0)
~ )~∈[0,1] forms a a continuous field of states on the continuous field of

C*-algebras Ac, and we have the central result announced in §1.6, namely

lim
~→0

ψ
(0)
~ = ψ

(0)
0 . (4.77)

2. Similarly, for any N < ∞ and any B > 0 the ground state Ψ
(0)
N of the quantum

Ising model (2.27) is unique and hence Z2-invariant.57 The corresponding model
at N = ∞ with small magnetic field 0 ≤ B < 1, on the other hand, has a doubly
degenerate ground state ψ±∞, in which all spins are either up (+) or down (-).58 If we

relabel the algebraic state corresponding to Ψ
(0)
N as ψ

(0)
1/N , and similarly relabel ψ±∞ as

ψ±0 , with corresponding mixture (4.76), then the states (ψx)x∈Il form a continuous
field of states on the continuous field of C*-algebras Al, and,59

lim
N→∞

ψ
(0)
1/N = ψ

(0)
0 . (4.78)

3. The situation for the quantum Curie–Weisz model is the same, mutatis mutandis:60

for N <∞ its ground state is unique and hence Z2-invariant,61 but for N =∞ and
0 ≤ B < 1 the classical Hamiltonian (2.49) has two distinct ground states ψ±0 , duly
related by Z2 (here realized by a 180-degree rotation around the x-axis, cf. §2.2).62

54See Reed & Simon (1978, §XIII.12). Uniqueness follows from an infinite-dimensional version of the
Perron–Frobenius Theorem of linear algebra, which also yields strict positivity of the wave-function.

55See Landsman & Reuvers (2013) for more details as well as some pictures.
56If in turn we identify states on C0(R2) with probability measures on R2, as in (3.66), then the right-hand

side of (4.76) is a convex sum of probability measures. Specifically, we have ψ
(0)
0 (f) = 1

2
(f(0, a)+f(0,−a)).

57This was first established in Pfeuty (1970) by explicit calculation, based on Lieb et al (1961). This
calculation, which is based on a Jordan–Wigner transformation to a fermonic model, cannot be generalized
to higher dimensions d, but uniqueness of the ground state holds in any d, as first shown by Campanino
et al (1991) on the basis of Perron–Frobenius type arguments similar to those for Schrödinger operators.
The singular case B = 0 leads to a violation of the strict positivity conditions necessary to apply the
Perron–Frobenius Theorem, and this case indeed features a degenerate ground state even when N <∞.

58See Araki & Matsui (1985). For B ≥ 1 all spins align in the x-direction and the ground state is unique.
59This a reformulation in our continuous field language of Corollary B.2 in Koma & Tasaki (1994).
60See Rieckers (1981) and Gerisch (1993) for the analogue of (4.78) in the quantum Curie–Weisz model.
61This seems well known, but the first rigorous proof we are aware of is very recent (Ioffe & Levit, 2013).
62As points of B3, for 0 ≤ B < 1 these are given by ψ±0 = (B, 0,± sin(arccos(B))). For B > 1 the unique

ground state is (1, 0, 0), which for B = 1 is a saddle point. These points all lie on the boundary S2 of B3.
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5 First excited states

In all three cases, the higher-level theories (i.e., classical mechanics for ~ = 0, local quan-
tum statistical mechanics at N = ∞, and classical thermodynamics) display ssb of the
Z2-symmetry of the Hamiltonian, whereas the corresponding lower-level theories (that
is, quantum mechanics and twice quantum statistical mechanics at N < ∞) do not.
Consequently, the (Z2-invariant) ground state of the lower-level theory in question cannot
possibly converge to the ground state of the corresponding higher-level theory, because the
latter fails to be Z2-invariant (and the limiting process preserves Z2-invariance). Instead,
one has (4.76), showing that the ‘lower-level’ ground state converges to the ‘Schrödinger
Cat’ state (4.76). This leads to the problems discussed at length in the Introduction.

As already mentioned, the solution is to take the first excited state Ψ
(1)
• into account.

1. For the double-well potential, the eigenvalue splitting ∆~ ≡ E
(1)
~ − E

(0)
~ for small ~

is well known, see the heuristics in Landau & Lifshitz (1977), backed up by rigor in
Simon (1985) and Hislop & Sigal (1996). The leading term as ~→ 0 is

∆~ ∼=
~ω√
1
2
eπ
· e−dV /~ (~→ 0), (5.79)

where the coefficient in the exponential decay in −1/~ is the wkb-factor

dV =

∫ a

−a
dx
√
V (x). (5.80)

On the basis of rigorous asymptotic estimates in Harrell (1980) and Simon (1985),
which were subsequently verified by numerical computations, Landsman & Reuvers
(2013) showed that the algebraic states ψ±~ defined by the linear combinations

Ψ±~ =
Ψ

(0)
~ ±Ψ

(1)
~√

2
, (5.81)

satisfy
lim
~→0

ψ±~ = ψ±0 . (5.82)

2. The eigenvalue splitting for the quantum Ising chain (with free boundary conditions)
can be determined on the basis of its exact solution by Pfeuty (1970). For the leading

term in ∆N ≡ E(1)
N − E

(0)
N as N →∞, for 0 < B < 1, we obtain63

∆N
∼= (1−B2)BN (N →∞), (5.83)

showing exponential decay ∆N ∼ exp(−CN) with positive coefficient C = − ln(B).

63The first steps in this calculation are given by Karevski (2006), to which we refer for notation and
details. To complete it, one has to solve his (1.51) for v also to subleading order as N →∞, noting first that
his leading order solution v = ln(h) (where his h is our B) has the wrong sign. To subleading order we find
v = − ln(B)− (1−B2)B2(N−1). Subsituting q0 = π+ iv in the expression for the single-fermion excitation

energy E
(1)
N = ε(q0) =

√
1 +B2 + 2B cos(q0), one finds ε(q0) = 0 to leading order and ε(q0) = (1−B2)BN

to subleasing order. But this is precisely ∆N , since in the picture of Lieb et al (1961) the ground state is

the fermonic Fock space vacuum, which has E
(0)
N = 0. The energy splitting in higher dimensions does not

seem to be known, but Koma & Tasaki (1994, eq. (1.5)) expect similar behaviour.
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Furthermore, the analogue of (5.82) holds (Koma & Tasaki, 1994, App. B),64 viz.

lim
N→∞

ψ±N = ψ±∞, (5.84)

where ψ±N are the algebraic states defined by the unit vectors

Ψ±N =
Ψ

(0)
N ±Ψ

(1)
N√

2
. (5.85)

3. For the quantum Curie–Weisz model, exponential decay of ∆N has only been estab-
lished numerically up to N ∼ 150 (Botet, Julien & Pfeuty, 1982; Botet & Julien,
1982).65 Eq. (5.84) may be proved in the same way as in the quantum Ising model.66

In summary, in each of our models we may define the unit vectors

Ψ±x =
Ψ

(0)
x ±Ψ

(1)
x√

2
, (5.86)

where x = ~ or x = 1/N . Given the exponential decay of the eigenvalue splitting, in the
asymptotic regime ~ → 0 or N → ∞ these are ‘almost’ energy eigenstates. Indeed, the
corresponding algebraic states converge to time-independent states of the limit theories:

lim
x→0

ψ±x = ψ±0 . (5.87)

As explained in the Introduction, this would remove the asymptotic emergence paradox,
and hence rescue Earman’s and Butterfield’s Principles, provided that two conditions hold:

1. The degenerate ground states ψ+
0 or ψ−0 of the higher-level theory H are stable, so

that for small x any approximant to either within Lx is at least approximately stable.

2. The unique ground states Ψ
(0)
x of the lower-level theories Lx, on the other hand,

become unstable as x decreases; when perturbed within Lx, they move to states Ψ′x
that, as x→ 0, converge to either one of the pure states ψ+

0 or ψ−0 of H;

The first point is standard, see e.g. Bratteli & Robinson (1997, p. 174) for large
systems, and any book on classical mechanics for our first example (intuitively, small
kicks to a ball at the bottom of a potential well leave the ball in that well).

The considerably more surprising second point was established for our first model, i.e.,
the double-well potential, in the fundamental work of Jona-Lasinio, Martinelli, & Scoppola
(1981a,b); see also Helffer & Sjöstrand (1986) and Simon (1985).

64See especially their Corollary B.2 and subsequent remark. This corollary is formulated in terms of the
state ΨN = ONΨ

(0)
N /‖ONΨ

(0)
N ‖, where for the quantum Ising model one has ON =

∑
i∈N σ

z
i , but since

‖Ψ(1)
N −ΨN‖ = O(1/N) as N →∞ by their Lemma B.4, our (5.84) follows. A similar comment applies to

the quantum Curie–Weisz model (taking into account the subtlety to be mentioned in the next footnote).
65Se also related simulations up to N = 1000 in Vidal et al (2004). In the worst case, where for whatever

reasons these simulations are misleading, ∆N would decay as 1/N , which does not jeopardize our scenario,
but would add some constraints on the perturbations destabilizing the ground state, see below. This decay
follows from Theorem 2.2 in Koma & Tasaki (1994), where it has to be noted that one of the assumptions
in their proof (namely that the support set of Hi, where HN =

∑
iHi, is bounded in N) is invalid in the

quantum Curie–Weisz model; nonetheless, their eq. (2.11) can be proved by direct computation.
66It would be interesting to apply the techniques of Ioffe & Levit (2013), designed for Ψ

(0)
N , to Ψ

(1)
N .
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This work was applied to the measurement problem in Landsman & Reuvers (2013); as
explained in the Introduction, their conclusions equally well apply to ssb.67 Our scenario
requires the system to be coupled to something like an environment (which may also be
internal to the system at hand),68 but the point is that the perturbations that are required
may be almost arbitrarily small: whatever their size, as long as they are asymmetric, they
do their destabilizing work increasingly well as ~→ 0 or N →∞.

To get a quick (though potentially misleading) feeling for what is going on here, as
in Landsman & Reuvers (2013), take a basis of the two-level Hilbert space C2 consisting

of e1 = Ψ+
x and e2 = Ψ−x (as opposed to Ψ

(0)
x and Ψ

(1)
x ). We write ∆x for the pertinent

eigenvalue splitting, where x is ~ or 1/N , and ∆1/N ≡ ∆N , and define the matrix

H(δ)
x = 1

2

(
δ+ −∆x

−∆x δ−

)
. (5.88)

For δ± = 0, H
(0)
x acts like an effective Hamiltonian that correctly reproduces the (unper-

turbed) ground state (e1 + e2)/
√

2 = Ψ
(0)
x . Now add perturbations δ±. Since ∆x vanishes

exponentially quickly as x → 0, almost any nonzero choice of the δ± has the effect that
as x → 0, the perturbed Hamiltonian (5.88) is dominated by its diagonal, as opposed to

the original Hamiltonian H
(0)
x . Hence with the exception of the unlikely symmetric case

δ+ = δ−, or the case where the δ± vanish as quickly as ∆x as x→ 0, the ground state of

H
(δ)
x will tend to either e1 or e2 as x→ 0. Consequently, the effect of arbitrary asymmetric

perturbations is to change the ground state of the system from a Schrödinger Cat one like

Ψ
(0)
x to a localized one like Ψ±x (either in physical space, as for the double well, or in spin

configuration space, as in our other two models).69

What remains to be done theoretically is to first model the perturbations achieving this
dynamically (i.e., in time), and subsequently to study also the dynamical transition from
the original, delocalized, unperturbed ground state to the perturbed, localized ground
state. For the double-well case this program has been started in Landsman & Reuvers
(2013), and for the spin systems this is a matter for future research.

Experimentally, the entire scenario should be put to the test (which will not be easy,
given the discrepancy between what is considered large N or small ~ in theory and in
laboratory practice); this will be done in the near future in the context of a larger project
Experimental Tests of Quantum Reality, led by Andrew Briggs at Oxford.

67Indeed, using the ‘interaction matrix’ formalism of Helffer & Sjöstrand (1986) and Simon (1985), an
analogous analysis can be given for the quantum statistical mechanics models. This works because in
these models (in which the energy spectrum is discrete for any N < ∞), as N → ∞, on the one hand all
energy levels merge into a continuum, but on the other, they split into pairs whose energy difference is
exponentially small. In addition, the instability of the ground state has been derived in a different way by
Narnhofer & Thirring (1996, 1999) for Z2, as well as by van Wezel (2007, 2008, 2010) for SU(2).

68As explained in Landsman & Reuvers (2013) in connection with the measurement problem, this is not
the decoherence scenario, which unlike ours fails to predict individual measurement outcomes and hence
fails to solve the the measurement problem (it rather reconfirms it). In our present context of ssb, mere

decoherence would achieve nothing either, leading to the mixtures ψ
(0)
0 rather than the pure states ψ±0 .

69The interaction matrix formalism makes this reasoning rigorous. As in footnote 24, we stress that the
quick argument given here is only meant to illustrate the instability of the ground state Ψ

(0)
x in Lx; it gives

the wrong picture of the asymptotic stability of the states Ψ±x . In particular, in the actual interaction
matrix formalism as presented in Simon (1985) the basis of C2 is not given by the vectors Ψ±x but by the
projections of the solutions of the cutoff Schrödinger equation (with double-well potential) localized in R±
with Dirichlet boundary conditions at 0 onto the linear subspace spanned by the lowest two eigenstates of
the perturbed Hamiltonian.
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Rueger, A. (2000). Physical emergence, diachronic and synchronic. Synthese 124, 297–322.

Rueger, A. (2006). Functional reduction and emergence in the physical sciences. Synthese 151,
335–346.

Ruetsche, L. (2011). Interpreting Quantum Theories. Oxford: Oxford University Press.

Sachdev, S. (2011). Quantum Phase Transitions, 2nd ed. Cambridge: Cambridge University Press.

Silberstein, M. (2002). Reduction, emergence and explanation. The Blackwell Guide to the Phi-
losophy of Science, eds. Machamer, P.K., & Silberstein, M., pp. 80–107. Oxford: Blackwell.

Simon, B. (1985). Semiclassical analysis of low lying eigenvalues. IV. The flea on the elephant, J.
Funct. Anal. 63, 123–136.

Stephan, A. (1992). Emergence - a systematic view of its historical facets. Emergence or Reduc-
tion?, ed. Beckermann, A., pp. 25–48. Berlin: De Gruyter.

Stein, E.M, & Shakarchi, R. (2005). Real Analysis: Measure Theory, Integration, and Hilbert
Spaces. Princeton: Princeton University Press.

Størmer, E. (1969). Symmetric states of infinite tensor products of C*-algebras. Jornal of Func-
tional Analysis 3, 48–68.

Suzuki, S., Inoue, J.-i., & Chakrabarti, B.K. (2013). Quantum Ising Phases and Transitions in
Transverse Ising Models, 2nd ed. Heidelberg: Springer.

Vidal, J., Palacios, G., & Mosseri, R. (2004). Entanglement in a second-order quantum phase
transition. Physical Review A69, 022107.

Wayne, A., & Arciszewski, M. (2009). Emergence in physics. Philosophy Compass 4/5, 846–858.

Wezel, J. van (2007). Quantum Mechanics and the Big World. PhD Thesis, Leiden University,
available at https://openaccess.leidenuniv.nl/handle/1887/11468.

Wezel, J. van (2008). Quantum dynamics in the thermodynamic limit. Physical Review B 78,
054301.

Wezel, J. van (2010). Broken time translation symmetry as a model for quantum state reduction.
Symmetry 2, 582–608.

Wezel, J. van, Brink, J. van den, & Zaanen, J. (2005). An intrinsic limit to quantum coherence
due to spontaneous symmetry breaking. Physical Review Letters 94, 230401.


