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Preface

There is a sense in which the notion of entanglement captures much of the essence of

quantum theory. In the first instance, it exposes the inherent nonlocality of the theory,

which so repulsed Einstein and led to his allegations of the incompleteness of the theory.

Secondly, entanglement is not merely an accidental feature of quantum theory, but is

generic and even intrinsic in a number of ways, which we shall attempt to make precise

in this essay.

The existence of quantum mechanical states of composite systems which maintain

correlations through arbitrarily large spatial separations reveals an unsettling tension

between quantum theory and special relativity. Einstein, among others, held his doctrine

of Trennungsprinzip in the highest regard, and produced the famous EPR-paradox in

defiance of quantum theory’s version of “reality”. The search for local hidden variable

models underlying quantum mechanics met a strong arbitrator in J. S. Bell’s Theorem,

with impressive experiments by A. Aspect et al. [2] ruling largely against local realism.

Quantum no-signaling theorems serve to ease the tension somewhat, but the question of

whether quantum theory and special relativity are formally compatible remains an open

one [27]. One might expect a resolution in relativistic quantum field theories, but as we

shall see, spacelike Bell-correlations become pervasive, and force a closer scrutiny of the

status of relativistic causality.

We will primarily be concerned with studying spacelike correlations in quantum field

theory, with occasional visits to non-relativistic quantum mechanics when the need arises.

Because the issues we hope to tackle are so subtle, we will find it useful to work within

the rigorous framework of algebraic quantum field theory (AQFT). The first chapter of

this essay will be a minimal summary of the requisite mathematical tools, along with a

brief outline of AQFT. In the second chapter, we review a number of results (mainly due

to Summers, Werner, Clifton and Halvorson) demonstrating that the violation of Bell

inequalities in AQFT is “generic”, vis-à-vis the choices of spacetime regions, observable

quantities, and states. We will then explore the suprising consequences of two mathe-

matical features of AQFT — the Reeh–Schlieder theorem, and the so-called Type III1

factors — which illustrate just how deeply entrenched entanglement is.

The third chapter will address the issue of coexistence between AQFT and special

relativity. We shall see that there are several inequivalent ways of formulating relativistic

causality in AQFT, and consequently, several different ways (due to Clifton, Halvorson,

Landsman and Butterfield) to address this question of coexistence. In these approaches,

the advantage of the algebraic framework becomes clear, in that the notions of events,

causal influences and probabilities can be made precise and so studied fruitfully.

This essay aims to be both expository and mathematically precise — two styles which
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are usually incompatible. The compromise will be an omission of the detailed proofs of

most theorems, which can often take up the content of an entire paper while delivering

a message that can be succinctly presented. Finally, the author should mention that

the overall presentation of this essay was inspired by a Philosophy of Physics seminar

delivered by Dr J. Butterfield in February 2011.
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Chapter 1

Operator algebras in AQFT

1.1 Mathematical preliminaries

There are a number of good references for the theory of operator algebras [1, 13, 15, 17],

and we merely summarize the important aspects required in AQFT and our discussion

of Bell correlations. There is a considerable amount of preliminary mathematics to be

developed, but the reward is a clear and rigorous framework of quantum field theory in

which we can analyse the surprising nature of entanglement.

1.1.1 Operators on Hilbert spaces

A Hilbert space is a complete complex inner product space. In any Hilbert space H,

one can find orthonormal bases, which are sets of vectors {eα}α∈A with the following

properties:

〈eα|eβ〉 = δαβ (orthonormality)(
v ∈ H : v =

NX
n=1

cαneαn , cαn ∈ C
)

is dense in H (completeness).

With respect to an orthonormal basis, one can write any vector v ∈ H as v =
P
α 〈eα|v〉 eα.

The cardinality of an orthonormal basis for H does not depend on the choice of basis,

and is called the dimension of H. Two Hilbert spaces are isometrically isomorphic iff

they have the same dimension. A separable Hilbert space is one with dimension of at

most ℵ0. Unless otherwise stated, the Hilbert spaces that we shall be considering will be

separable.

A closed (in the topological sense) linear subset of H is called a subspace. Given a

subspace K, K⊥ is called the orthogonal complement of K, and we can always uniquely

decompose any vector v ∈ H into v = v‖ + v⊥, v‖ ∈ K, v⊥ ∈ K⊥. One can then define
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the map PK : v 7→ v‖, which is a bounded linear operator that is idempotent (PK = P 2
K),

and self-adjoint (P ∗K = PK). In fact, any linear operator P satisfying P = P 2 = P ∗ is an

orthogonal projection operator onto a subspace corresponding to its range. Furthermore,

the operator 1−P is the projection operator onto the corresponding orthogonal subspace.

1.1.2 Algebras of operators

We begin our discussion of operator algebras by considering the set B(H) of bounded

linear operators on a Hilbert space. Here, the boundedness of A ∈ B(H) means that its

operator norm,

‖A‖ = sup
v∈H\{0}

‖Av‖
‖v‖

, (1.1)

is finite. Of interest are subalgebras of B(H), i.e., subsets of B(H) that are closed under

linear combination and taking products. If in addition, a subalgebra is closed under

taking adjoints, we call it a ∗-subalgebra.

There are several topologies on B(H) that we will consider in this essay. These can

all be built from a family of seminorms:

Norm or uniform topology This is the topology associated with the operator norm,

and is the strongest of the topologies listed here. We can also view it as the topology

of uniform convergence.

Strong operator topology This is defined by the family of seminorms ‖Av‖ for all

v ∈ H. A sequence of operators {An} converges strongly to A if the sequence of

vectors {Anv} converges to Av for all v ∈ H. Thus we can view this topology as

that of pointwise convergence.

Weak operator topology The family of seminorms is given by |〈u|A |v〉| for all choices

of u, v ∈ H. This is the topology of matrix element convergence, and is the weakest

topology in this list.

Weak ∗-topology The family of seminorms is given by |tr{%A}|, where % is a trace-class

operator onH. This is the topology induced by the set of normal states (see Section

1.1.3).

We can now define two types of ∗-subalgebras:

Definition 1.1.1. A (concrete) C∗-algebra is a uniformly closed ∗-subalgebra of B(H).

Definition 1.1.2. A von Neumann algebra is a weakly closed ∗-subalgebra of B(H)

which contains the identity operator 1.
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Note that a von Neumann algebra is automatically a C∗-algebra. The closures in

the strong operator, weak operator, and weak ∗-topologies coincide for ∗-subalgebras of

B(H), so that we shall only be concerned with the two types of ∗-subalgebras of B(H)

defined above.

A famous theorem by von Neumann himself characterises a von Neumann algebra as

a self-adjoint subset of B(H) which is its own double commutant. Here, the commutant

of a subset S ⊂ B(H) is the set of all bounded linear operators which commute with

every element of S, and is denoted by S ′. Commutants are closely linked to von Neumann

algebras, as the following theorem elucidates:

Theorem 1.1.3. (pp. 114 of [13]) For any self-adjoint subset S ⊂ B(H) (i.e. closed

under taking adjoints),

1. S ′ is a von Neumann algebra,

2. S ′′ is the smallest von Neumann algebra containing S (bicommutant theorem),

3. S ′′′ = S ′.

One should notice how this theorem relates a topological property (closure) with an

algebraic one (commutant). For any pair of von Neumann algebras M1,M2, we denote

the largest (smallest) von Neumann algebra contained in (containing) both M1 and M2

by M1 ∧M2 (M1 ∨M2). Then, we have

M1 ∨M2 = (M1 ∪M2)
′′, by (2) of Thm. 1.1.3, (1.2)

M ′
1 ∩M ′

2 = M ′
1 ∧M ′

2 = (M1 ∨M2)
′. (1.3)

The classification of von Neumann algebras was worked out by Francis J. Murray

and von Neumann. In general, a von Neumann algebra may be decomposed as a direct

integral of “irreducible” factors, which we will now define.

Definition 1.1.4. A factor is a von Neumann algebra M whose centre is trivial, i.e.,

M ∩M ′ = {λ1 : λ ∈ C}, or equivalently, M ∨M ′ = B(H). The last expression is called

a factorization of B(H).

An equivalence relation can be defined on the set of projection operators of a factor

M , with the projections P and Q being equivalent if there exists U ∈ M such that

P = U †U and Q = UU †. We can introduce an ordering on the equivalence classes {[P ]}
by imposing [P ] ≤ [Q] whenever P ≤ Q. This is in fact a total order, which may be

represented faithfully via a non-negative dimension function d(P ) (with d(P ) = d(Q) if



1.1. Mathematical preliminaries 8

[P ] = [Q] implicit) satisfying the property,

P ⊥ Q⇒ d(P +Q) = d(P ) + d(Q).

A factor is classified into one of the following types, depending on the nature of its

dimension function, which is uniquely determined up to a constant.

1. Type In: d(P ) ∈ {0, 1, . . . , n}, n ∈ N ∪ {∞}

2. Type II1: d(P ) ∈ [0, 1]

3. Type II∞: d(P ) ∈ [0,∞]

4. Type III: d(P ) ∈ {0,∞}, with d(P ) =∞ if P 6= 0.

A factor is called finite if the projection 1 is finite, and (properly) infinite otherwise. This

classification into Type In, Type II1 etc., and finite/infinite, can be generalized to von

Neumann algebras which are not themselves factors.

1.1.3 States

It is slightly unfortunate that the word “state” takes on different meanings in different

contexts. In the most general sense, a state ω on a C∗-algebra A is a normalized, positive

linear functional on A. Here, positivity of ω means that ω(A∗A) ≥ for all A ∈ A, and

normalization entails ‖ω‖ ≡ sup {|ω(A)| : A ∈ A, ‖A‖ ≤ 1} = 1.

The same definition applies for a von Neumann algebra M , where positivity of ω

corresponds to positive operators (in the usual sense) having a non-negative expectation

value in the state ω, and normalization simplifies to ω(1) = 1. We will have occasion

to refer to the finer notion of normal states1, which roughly speaking, correspond to

completely additive measures (or countably additive, for the case of separable Hilbert

spaces). More formally, we have the following definition:

Definition 1.1.5. A state ω on a von Neumann algebra M is normal if ω(sup Aν) =

sup ω(Aν) for all bounded increasing nets of positive operators Aν ∈M .

Given a normal state ω on M , there is a density operator ρ ∈ T (H) such that

ω(A) = tr{ρA} for all A ∈ M ; (T (H) refers to the trace-class operators on H). In

particular, when M = B(H), the completely additive measures and the normal states

are in one-to-one correspondence, and can each be represented by a density operator on

H.

1Chapter 2.1 of [1] provides a physical motivation for these definitions, as well as some technical
remarks.
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Every unit vector v ∈ H defines a state ωv on M ⊆ B(H), given by

ωv(A) = 〈v|Av〉 ∀A ∈M. (1.4)

We call ωv the induced vector state, and ωv is a normal state on M .

The notions of pure and mixed states are defined in the sense of convex geometry:

a state ω is pure if it cannot be expressed as a non-trivial convex combination of other

states, and is mixed otherwise.

1.1.4 GNS construction

A C∗-algebra may also be defined abstractly, as a Banach (i.e. norm-complete) ∗-algebra

A (where A 7→ A∗ is an involution), whose norm satisfies the C∗-condition ‖A∗A‖ = ‖A‖2

for all A ∈ A. The Gelfand–Naimark lemma [12] allows a concrete realization of such

an abstract C∗-algebra A via a faithful representation as a norm-closed ∗-subalgebra of

B(H) for some Hilbert space H, making contact with our earlier definition.

There is a broad dichotomy of C∗-algebras into commutative and non-commutative

algebras — a distinction which hints suggestively at a classical versus quantum divide

(more on this in Section 3.1.2). Furthermore, the (commutative) Gelfand–Naimark lemma

states that any commutative C∗-algebra is isomorphic to C0(X), i.e., the space of complex-

valued continuous functions on a locally compact Hausdorff space X which vanish at

infinity. The C∗-norm is given by the supremum norm ‖f‖∞ ≡ supx∈X{|f(x)|}, while

the involution is simply pointwise complex conjugation.

A state on a C∗-algebra plays an additional role in defining a distinguished represen-

tation of A via the Gelfand–Naimark–Segal (GNS) construction, which we state as the

following theorem:

Theorem 1.1.6. (pp. 34 of [1]) For each state ω on a C∗-algebra A, there exists a triple

— a Hilbert space Hω, a representation πω of A on Hω, and a unit vector Ωω ∈ Hω —

such that:

1. ω(A) = 〈Ωω|πω(A)Ωω〉 ∀A ∈ A,

2. Ωω is cyclic for the representation πω, that is, πω(A) ≡ {πω(A)Ωω : A ∈ A} is dense

in Hω.

The triple (Hω, πω,Ωω) is unique up to unitary equivalence, i.e., if (H′ω, π′ω,Ω′ω) is another

triple satisfying the above two conditions, then there is a unitary map U : Hω → H′ω
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satisfying

Uπω(A) = π′ω(A)U ∀A ∈ A,

UΩω = Ω′ω.

1.2 Algebraic quantum field theory

Already in ordinary quantum mechanics, one quickly realizes that a study of Bell’s the-

orem and its consequences would at least require a clear mathematical setting from the

outset. We will find the Haag–Kastler axiomatic framework for quantum field theory

fruitful for our investigations of spacelike correlations in relativistic quantum theory. Its

distinctive feature is the emphasis on algebraic relations among observables, which take

on fundamental roles in the description of a physical system. This approach, also called

algebraic quantum field theory (AQFT), will be discussed briefly in this section. A more

thorough treament can be found in the textbooks of Haag [13] and Araki [1], and an

excellent review can be found in [20].

A motivating idea behind AQFT is that measurements of a physical quantity can be

thought of as being performed in some specific limited spacetime domain. We denote

the C∗-algebra generated by all the observables by A. The basic mathematical object

in AQFT is then an assignment to each bounded open set O of Minkowski spacetime2,

of a C∗-subalgebra A(O) ⊆ A, which is interpreted as the C∗-algebra generated by the

observables measurable in O. The association O 7→ A(O) satisfies a number of axioms:

1. Isotony : If O1 ⊆ O2, then A(O1) ⊆ A(O∈).

2. Locality : If O1 ⊆ O′2, then A(O1) ⊆ A(O2)
′.

3. Covariance: αgA(O) = A(gO) ∀g ∈P↑
+.

4. Generating property :
S
OA(O) is dense in A (with respect to the norm topology).

A few explanatory remarks about these axioms are necessary. Isotony is hopefully a

natural assumption, given our interpretation of the algebras A(O). The locality axiom is

the statement of spacelike commutativity; (note the double-duty of the ‘ ′ ’ — O′ refers to

the causal complement of O, i.e., the set of all points spacelike to all of O, while A(O)′

refers to the commutant of A(O)). Relativistic symmetry is given by the (restricted)

2One may apply the formalism of AQFT on more general spacetimes (e.g., Chap. 4.5 of [36]), but for
most of this Essay, we will restrict ourselves to the basic case of Minkowski spacetime.
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Poincaré group P↑
+, with each symmetry g ∈P↑

+ represented by an automorphism αg of

A. The third axiom is then the statement that the automorphism αg brings the algebra

of observables associated to a spacetime region O, to the algebra associated with the

transformed spacetime region gO. Finally, the generating property is a reflection of our

emphasis on “local” observables, which axiom 4 declares to suffice to generate the entire

observable algebra. Correspondingly, we shall refer to A as a local C∗-system.

Concrete realizations of A as operators on Hilbert spaces can be recovered, for ex-

ample, via the GNS-construction. The class of physically relevant representations of

A is decided by certain desiderata, for instance, the existence of a P↑
+-invariant (or

translation-invariant) vacuum vector, a strongly continuous unitary representation of

P↑
+, and irreducibility3. We will often find it useful to take each local algebra A(O)

to be a von Neumann algebra. This can be obtained, for instance, by considering an

appropriate representation π of the local C∗-system, and taking M(O) = π(A(O))′′.

3For a more precise treatment on vacuum representations, see, for example, Chapter 4 of [1].



Chapter 2

Generic Bell Correlations between

Local Algebras

If we regard the violation of a Bell-type inequality as a manifestation of non-local correla-

tions, then non-locality can be said to be ubiquitous in algebraic quantum field theory. A

precise meaning of this statement was given by Halvorson and Clifton [14], and we shall

present their argument in Section 2.1. A different sense in which Bell-corrrelations can

be considered to be generic is also presented in Section 2.1.2, following Landau’s paper

[19].

2.1 Bell correlations are commonplace in AQFT

Let us first clarify what we mean by “Bell correlations” between von Neumann algebras.

Consider then, two commuting von Neumann algebras M1,M2 acting on a Hilbert space

H. We define the set of Bell operators T12 for M1 ∨ M2 =: M12 to be the following

combinations of self-adjoint contractions:

T12 :=
�

1

2
[A1(B1 +B2) + A2(B1 −B2)] : Ai = A†i ∈M1, Bi = B†i ∈M2,−1 ≤ Ai, Bi ≤ 1

�
.

(2.1)

This definition has, of course, been formulated with the celebrated CHSH-inequality [7]

in mind. To each state ω of M12, we associate a number, the maximal Bell correlation of

ω, defined by

β(ω) := sup {|ω(T )| : T ∈ T12} , (2.2)

which is a continuous map from the state space of M12 into the interval [1,
√

2] (Lemma

2.1 of [33]). Then Bell’s theorem says essentially that a local hidden variable model,

which accounts for the correlations between the observables in M1 and M2 in the state ω,
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exists only if β(ω) = 1. A state ω is said to violate Bell’s inequality (or is a Bell-correlated

state for M12), if β(ω) > 1, and maximally violates Bell’s inequality if β(ω) =
√

2.

We shall also assume that M1,M2 satisfy the Schlieder property — if A ∈M1, B ∈M2

and AB = 0, then either A = 0 or B = 0. If M1,M2 are of infinite type (which is typically

the case in quantum field theories, see the remark at the end of Sec. III.2.1 of [13]), then

the following proposition holds:

Proposition 2.1.1. [14] Let M1,M2 ⊆ B(H) be commuting infinite-type non-Abelian

von Neumann algebras satisfying the Schlieder property. Then there is an open dense

subset of vector states which are Bell-correlated for M12.

Here, we are referring to subsets of S where S is defined as the set of unit vectors in

H, and by “vector states”, we mean the states on B(H) induced by these unit vectors.

Also, to be precise, we should really speak about the restriction of these vector states

to the algebra M12. Note that this proposition also holds in any faithful representation

of M12. For example, in the universal normal representation (pp. 458 of [17]), normal

states and vector states coincide. It follows that the set of Bell-correlated states for M12

is (norm) dense in the normal state space of M12.

We should also clarify the link between Bell-correlations and entanglement. In the

quantum information literature, a separable, or classically correlated (mixed) state ρ on

B(Cn)⊗B(Cn) is defined as a density operator which can be approximated in the trace

norm by convex combinations of product density operators ρ1⊗ρ2. An entangled state is

then a non-separable state. Equivalently, one can take the set of separable states to be the

norm-closed convex hull of the product states on B(Cn)⊗B(Cn). This definition is due

surely to Werner [38], who also demonstrated that an entangled state does not necessarily

violate a Bell inequality, but nevertheless exhibits some form of non-locality. When we

pass to the case of commuting infinite-dimensional von Neumann algebras M1,M2, the

choice of topology becomes important. Specifically, we will define the separable states

of M12 to be the normal states in the weak ∗-closed convex hull of the normal product

states. Here, a normal product state refers to a normal state ω on M12, such that

ω(AB) = ω1(A)ω2(B) for all A ∈ M1, B ∈ M2, where ω1, ω2 are normal states on M1

and M2 respectively. There are physical grounds for this choice of topology1; but for our

purposes, it is pertinent that non-separability is necessary for Bell correlation under our

definitions, i.e., β(ω) > 1⇒ ω is entangled.

Given a von Neumann algebra M on H, a vector ξ ∈ H is said to be cyclic if Mξ :=

{Aξ : A ∈ M} is dense in H. A separating vector for M is a vector ξ ∈ H such

1This is related to the limited accuracy of experimental measurements and the finite number of times
one can perform an experiment. See pp. 125 of [13], or the discussion of “physical topology” on pp. 13
of [1], for instance.
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that for a pair of operators A,B ∈ M , the equation Aξ = Bξ implies that A = B.

Note that “separating” and “separable” are two distinct notions. One can show from

these definitions that if ξ is cyclic for M , then it is separating for M ′, and likewise, if ξ is

separating for M , then ξ is cyclic for M ′. Furthermore, if M has at least one cyclic vector

in S, it even has a set of cyclic vectors which is dense in S [10]. The next proposition

relates cyclic vectors to non-separability:

Proposition 2.1.2. [14] Let M1,M2 be two commuting, non-Abelian von Neumann al-

gebras acting on H. If ξ ∈ S is cyclic for M1, then the vector state induced by ξ is

non-separable across M12.

Consequently, provided that M1 has a cyclic vector, the set of vectors inducing non-

separable states across M12 is dense in S. Note, however, that we cannot make a similar

conclusion as we did after Proposition 2.1.1 for the normal state space of M12. For the ex-

istence of a cyclic vector required by Proposition 2.1.2 is not retained under isomorphisms

of M12; so that, for instance, the trick of utilizing the universal normal representation no

longer works (see remarks after Prop. 2 of [14]). The simplest illustration of this failure

is seen by considering M1 = B(C2)⊗ 12,M2 = 12 ⊗ B(C2), i.e., M1,M2 considered as

the algebras associated to each of the two subsystems of a two-qubit system. In this

example, any entangled (pure) unit vector in H = C2 ⊗ C2 is cyclic for M1, and indeed

the entangled pure states are dense in the set of vector states. To see this, one may use

the Schmidt decomposition to write any |ψ〉 =
P
i=1,2 ai |i〉1⊗|i〉2, where {|i〉1} and {|i〉2}

are orthonormal bases for the respective copy of C2 in H. However, the non-separable

normal states (density matrices in this case) are not dense in the normal state space (see

Sec. 2.1.1 below and [39]).

For quantum field theories, it is often the case that the M12 under consideration has

a separating vector (see the discussion on the Reeh–Schlieder theorem in Sec. 2.2.1).

All normal states of M12 are then vector states (Theorem 7.2.3 in [17]), i.e., they are

the restriction to M12 of the states on B(H) induced by some ξ ∈ S. Under such

circumstances, Proposition 2.1.2 tells us that the non-separable states are norm dense in

the normal state space of M12.

We now link these results to algebraic quantum field theory proper. We shall first

consider Minkowski spacetime, together with its local C∗-system. Then a third proposi-

tion by Halvorson and Clifton says that Bell-correlated states are generic in the following

sense2:

2Halvorson and Clifton use weaker assumptions (in place of axioms 3 and 4 in Chap. 1.2) on the local
C∗-system — translational covariance: αxA(O) = A(O + x) (i.e., a faithful representation x → αx of

the translation subgroup of P↑
+ in the automorphism group of A), and weak additivity: for any O, A is

the smallest C∗-algebra containing
S

xA(O + x).
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Proposition 2.1.3. [14] Let π be a physically relevant irreducible vacuum representation3

of the local C∗-system {A(O)} (or any other representation in the same local quasiequiv-

alence class4) over Minkowski space, with the Hilbert space Hπ. Let Sπ be the set of unit

vectors in Hπ, and Mπ(O) := π(A(O))′′ be the local von Neumann algebra associated with

A(O) on this representation space. Then for any two spacelike-separated open sets O1,O2

of Minkowski space, the set of vectors inducing Bell-correlated states between Mπ(O1) and

Mπ(O2) is an open, dense subset of Sπ.

The above result essentially follows from the fact that local von Neumann algebras

in an irreducible vacuum representation are of the infinite type (see Sec. 2.2.2), and that

the Schlieder property holds for the local algebras of appropriate subsets of O1 and O2.

That is, Proposition 2.1.1 applies to the local von Neumann algebras associated to any

pair of spacelike-separated open regions. In fact, Proposition 2.1.3 also holds for any

globally hyperbolic spacetime, for the local C∗-system associated with the free Klein–

Gordon field, realized on the GNS representation of some quasifree Hadamard state. For

further details, refer to Proposition 4 of [14].

2.1.1 The volume of separable states in quantum mechanics

It is interesting to also consider a similar question in quantum mechanics — are there

“more” separable states or entangled states? This question was pursued by Życzowski

et al. in [39], where they considered states on composite systems in ordinary quantum

mechanics, i.e. (unit trace) density operators on tensor products of finite-dimensional

Hilbert spaces. To compare volumes in this state space, it is necessary to first define a

natural measure on the space of density operators. The authors used a product measure

ν × L based on natural quantities appearing in the spectral decomposition of a density

operator. Roughly speaking, ν corresponds to the Haar measure on the unitary group

associated with the orthonormal eigenbasis of a density operator, while L corresponds to

the Lebesgue measure on the convex hull of the possible sets of eigenvalues of the density

operator.

They proved that the volume of the set of separable states is non-zero, regardless

of the (finite) dimension of the Hilbert space and the number of subsystems involved.

3With the group of translation automorphisms unitarily represented, and satisfying the spectrum
condition — see also Chapter 3.1.

4Two representations π1, π2 of a C∗-algebra A, on H1,H2 respectively, are unitarily equivalent if
there exists a unitary map U : H1 → H2 such that Uπ1(A) = π2(A)U for all A ∈ A. Let π̂1, π̂2 be
representations of A on H1 ⊗ H2, defined by π̂1(A) = π1(A) ⊗ 1, π̂2(A) = 1 ⊗ π2(A). We say that π1
and π2 are quasiequivalent if π̂1 and π̂2 are unitarily equivalent — this is equivalent to the existence of
an isomorphism of von Neumann algebras generated by the representations, π1(A)′′ ∼= π2(A)′′ (pp. 212
of [1]).
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That is, some significant semblance of classicality, as captured by (non-)entanglement,

always persists in the finite-dimensional case. On the other hand, one expects that

this finite volume, however small, approaches zero as the Hilbert space dimension tends

towards infinity, so as to make contact with our earlier remark that in AQFT, entangled

states are norm-dense in the normal state space of M12. While no analytic proof of this

conjecture was given by Życzowski et al., they provided strong numerical evidence that

the volume of the set of separable states decreases exponentially with the dimension of

the composite quantum system.

Another related study was carried out by Ferraro et al. [11], where the idea of quantum

discord was studied. While we will not need a precise definition of discord, it is pertinent

that zero discord is a necessary condition for purely classical correlations; (in a slightly

different sense from that which is used the definition of separable states). The authors

prove the the set of zero-discord states has measure zero, and is nowhere dense in the set

of quantum states, independently of the Hilbert space dimension. The point is that even

in the finite-dimensional case, there is already a sense in which states with classical-only

correlations are negligible.

2.1.2 Other aspects in which entanglement is generic

One might argue that not all choices of observables are “interesting”, and that maybe

certain relevant local observables, a set of “yes–no” questions perhaps, admit a classical

description in terms of a joint distribution for all states. This turns out to be a false

hope, as Landau demonstated in [19]. Consider, then, the local algebras A(O1),A(O2)

associated to a pair of spacelike separated regions. We also assume that the Schlieder

property holds for A(O1) and A(O2). Let P1, P2 ∈ A(O1), Q1, Q2 ∈ A(O2) be projection

operators, with [P1, P2] 6= 0 6= [Q1, Q2]. We form the usual combination

C :=
1

2
[P1(Q1 +Q2) + P2(Q1 −Q2)] , (2.3)

and study its expectation value in some state ω. We say that Bell’s inequality is violated5

if |ω(C)| > 1. Landau’s result (Prop. 3 of [19]) says that there is some state ω satisfying

|ω(C)| = β, where

β ≡
È

1 + 4‖[P1, P2]‖‖[Q1, Q2]‖ > 1. (2.4)

Therefore, we can be as picky as we wish about the “yes-no” questions that we ask in

either region (excepting the trivial case where P1 commutes with P2, or Q1 commutes

with Q2), and there will still be some state which violates the Bell inequality.

5This is a slight adaptation of our earlier definition in Sec. 2.1; nevertheless, “violation” retains the
same consequence of not admitting a local hidden variable description.
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Finally, we also mention the technical results obtained by Summers and Werner (re-

viewed in [32]), which describe various situations in which Bell-correlation is not only

generic, but “maximal”, in the sense that Bell’s inequalities are maximally violated in all

normal states of certain pairs of local algebras. A particularly strong result (Thm. 6.9 of

[32]) states that in a number of AQFTs, the pair A(O1),A(O2) is maximally correlated

in the above sense for any pair O1,O2 of tangent (i.e. intersecting closures) “diamonds”.

We will define a “diamond” region and return to this line of thought when we consider

the so-called “Type III factors” in Section 2.2.2.

2.2 Bell correlations are entrenched in AQFT

Already, the preceding Section suggests a radical shift in the way one describes physics

with respect to the cherished concepts of locality, causality, and “closed systems” em-

bodied by classical field theories. Indeed, Streater, Wightman (pp. 139 of [29]) and Haag

(pp. 298 of [13], 2nd edn) have all made claims that quantum field systems are unavoid-

ably and intrinsically open to entanglement. Clifton and Halvorson [8] pursue this even

further, revealing as a matter of principle, fundamental limitations on one’s ability to

isolate field systems from entanglement.

The situation is much less grim in non-relativistic quantum mechanics, where there

is a general way in which entanglement can be “brought under control” by the experi-

mentalist. Consider an entangled state between two Hilbert spaces HA and HB. Then

the measurement on subsystem A of any non-degenerate observable with a discrete spec-

trum serves precisely to turn any initial (pure or mixed) state of HA⊗HB into a convex

combination of product states, i.e., an unentangled state in Section 2.1’s sense (pp. 4 of

[8]). This example highlights the conceptual departure from AQFT, where entanglement

between spacelike-separated systems is “robust” against local operations — a point which

we will make more precise later.

To endow our experimentalist with as much power as possible, we consider the most

general transformation of a state of a quantum system with Hilbert space H [37]. These

are described via positive, weak ∗-continuous, linear maps6 T : B(H)→ B(H) such that

0 ≤ T (1) ≤ 1. Such a map T induces a transformation ω → ωT from the state space of

6In quantum information theory, a related notion is that of quantum operations, which are captured
by completely positive maps T : D(HA) → D(HB), where D(Hi) is the set of density operators on the
Hilbert space Hi. Stinespring’s dilation theorem [28] allows one to represent a completely positive map T

as a (Kraus) operator-sum T (ρ) =
P

iKiρK
†
i , where Ki : HA → HB and

P
iK
†
iKi ≤ 1 (see Sec. 8.2.4 of

[23]). Interestingly, the class of positive but not completely positive (PnCP) maps provides a separability
criterion for distinguishing entangled states from separable states — a state ρAB on HA⊗HB is separable
iff 1A ⊗ TB ≥ 0 for all PnCP maps TB [16].
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B(H) to itself (or 0), with the action of ωT on A ∈ A given by

ωT (A) =

8<
:

ω(T (A))
ω(T (1))

if ω(T (1)) 6= 0,

0 otherwise.
(2.5)

We call T a selective operation if T (1) < 1 and a non-selective operation if T (1) = 1.

By the Kraus representation theorem [18], any operation T : B(H) → B(H) can be

represented by a sequence {Ki} ⊆ B(H) of operators, as

T (A) =
X
i

K†iAKi ∀A ∈ B(H), (2.6)

with the Kraus operators {Ki} satisfying 0 ≤ P
iK
†
iKi ≤ 1, and with convergence of

infinite sums understood to be in the weak ∗-sense. A pure operation is one whose induced

map takes a normal pure state to another normal pure state, and is represented by a single

Kraus operator. The Kraus representation theorem thus allows us to understand a general

operation T as the result of mixing the effects of pure operations on various subensembles

in accordance with the Kraus operators appearing in the Kraus representation of T . We

also define a local operation on the local algebra represented by a von Neumann algebraM ,

to be one which satisfies T (B) = T (1)B for all B ∈M ′. These will have a representation

by Kraus operators belonging to the local algebra M (pp. 13-14 of [8]).

2.2.1 Implications of the Reeh–Schlieder theorem

In AQFT, the Reeh–Schlieder theorem, in its various guises, makes the surprising as-

sertion that the vacuum vector Ω is cyclic and separating for any local algebra A(O)

(with O′ 6= ∅). More generally, any state with bounded energy7 has these properties.

An immediate observation is that the local algebra associated to a bounded open region

cannot contain a number operator N , for we would have NΩ = 0 ⇒ N = 0 since Ω is

separating. In fact, there can be no non-zero, localized observable that annihilates the

vacuum (or indeed, any vector state with bounded energy).

Now, recall that in non-relativistic quantum mechanics, a tell-tale sign of entanglement

between two subsystems is the mixed nature of the local restriction of a state. More

precisely, a pure vector state in HA ⊗HB is entangled iff its reduced density matrix (on

either subsystem) is mixed8. Likewise, as a consequence of the Reeh–Schlieder theorem,

7Let E be the spectral measure for the global Hamiltonian of the field. A pure global state with
representative vector x is said to have bounded energy if E([r, s])x = x for some −∞ < r < s <∞, i.e.,
the field’s energy in the state x is confined to some bounded interval [r, s] with probability 1.

8In fact, the von Neumann entropy of the reduced state provides a measure of entanglement, so that
a highly mixed local state indicates a strong degree of entanglement.
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Clifton and Halvorson (Sec. 3 of [8]) have shown that the local restriction of a bounded

energy vector state ωx|A(O) is highly mixed, in the sense that ωx|A(O) has a norm-dense

set of components in the (normal) state space of A(O). Furthermore, bounded energy

states are typical — they form a norm-dense subset of the pure state space of B(H) (pp.

17 of [8]).

Recall the connection between cyclicity and entanglement given in Proposition 2.1.2,

which holds generally for commuting non-Abelian von Neumann algebras. Then, in

particular, we can apply the Reeh–Schlieder theorem, together with this proposition, to

the local algebras of any spacelike-separated regions O1 and O2. It follows that the dense

set of bounded-energy vector states are all entangled across O1 and O2. There is, on the

other hand, the general statement that for any non-trivial A ∈ A(O) and any bounded-

energy vector state ωx, any state of the field induced by a vector of the form Ax does

not have bounded energy (Cor. 7 of [4]), and is consequently outside the purview of the

Reeh–Schlieder theorem. Thus, it appears that an experimentalist could simply perform

a pure operation within O1 to circumvent the Reeh–Schlieder theorem, and the resulting

state will not necessarily be entangled across O1,O2. However, almost all pure operations

that the experimentalist at O may perform, do preserve cyclicity and thus entanglement

(pp. 20 of [8]).9

Furthermore, applying the observations after Proposition 2.1.2 to O1 and O2, we

obtain Clifton and Halvorson’s “Generic Result”, that the generic state of A(O12) ≡
A(O1)∨A(O2) will be entangled across O1 and O2; (the Reeh–Schlieder theorem provides

the requisite cyclic and separating vectors for this argument, provided (O1 ∪ O2)
′ 6= ∅).

The experimentalist at O1, having painstakingly worked out a disentangling scheme,

still has the mammoth task of ascertaining that he is not in possession of one of the

typical entangled states of A(O12). Thus, even if we allow him to perform any (pure or

mixed) local operation of his choosing, there remains the inherent practical impossibility

of distinguishing the resulting state of his operation from the overwhelming majority of

states on A(O12) which are entangled.

2.2.2 Type III factors, intrinsic entanglement, and intrinsically

mixed states

As we noted in passing before Prop. 2.1.1, the local algebras associated with bounded

open regions of Minkowski space in AQFT models are of the infinite type; more precisely,

they are Type III factors. These have some remarkable properties which have profound

9As remarked by the authors (pp. 12-13 of [8]), one can consider more general mixing operations in O,
but there is an ambiguity in interpreting the status of an apparently unentangled mixture of entangled
states.
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consequences. A useful fact about a Type III algebra (acting on a separable Hilbert

space) is that it possesses a cyclic and separating vector (Cor. 2.9.28 of [26], Ex. 14.4.12

of [17]). Consequently, it has a dense set of cyclic vectors in S, and all its normal states

are (the restrictions of) vector states. Despite this, Type III algebras have no pure

normal states at all.10 This strange property means that there is no way to understand a

state as a mixture of pure states, as is usual in the ignorance interpretation of mixtures

in ordinary quantum mechanics; so we shall call them intrinsically mixed (for a detailed

“appreciation”, see [25]).

Furthermore, a Type III factor M is non-abelian, so that its commutant M ′ in B(H)

is also a Type III non-abelian factor, because taking the commutant preserves type

(Thm. 9.1.3 in [17]). In this case, a pure state on B(H) = M ∨ M ′ restricts to an

intrinsically mixed state on each subalgebra M and M ′. This suggests the presence of

entanglement between the commuting algebras M and M ′, which is similarly “intrinsic”.

This is in fact correct, as there are no normal product states on M ∨M ′ (pp. 213 of [32]).

There are no unentangled states between M and M ′ to even speak of!

Pursuing this line of thought even further, one finds that the local algebras in known

models of AQFT are actually (hyperfinite) Type III1. The technical details of the sub-

classes of Type III factors are not important here; what is essential is that III1 factors

have further remarkable properties and implications for our study of Bell correlations.

Connes and Størmer have provided a useful characterization of Type III1 factors M as

follows [9]: for any two normal states ρ, ω of B(H) and any ε < 0, there exist unitary

operators U ∈ M,U ′ ∈ M ′ such that ‖ρ− ωUU ′‖ < ε. In quantum information the-

ory, one usually demands that a measure of entanglement remains invariant under local

unitary operations, and is norm-continuous [34]. Under these requirements, the Connes–

Størmer characterization essentially prevents us from defining a non-trivial measure of

entanglement across M and M ′.

In a series of remarkable papers, Summers and Werner showed that for a Type III1

factor M on a separable Hilbert space H, every normal state on M ∨ M ′ = B(H)

is maximally entangled ([30, 31, 33], Thm. 3.19 in [15])11. There are a large number

of technical results in these papers, which state various conditions under which this

phenomenon would occur. They go on to demonstrate that such conditions are typically

satisfied in a variety of AQFTs, so that entanglement there is not only endemic, but

10This in in stark contrast with Type I factors, which arise as B(H) for some Hilbert space H. There,
pure states are aplenty — they are simply the projectors onto one-dimensional subspaces of H.

11The authors appeared to have proved the more general statement that for a strongly stable von
Neumann algebra acting on a separable Hilbert space equipped with a cyclic and separating vector,
every normal state on B(H) is maximally entangled across M and M ′. The corresponding statement for
Type III1 algebras acting on a separable Hilbert space hold as well, since Cor. 2.9.28 of [26] guarantees
the existence of the required cyclic and separating vector.
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maximally so.

Although we have spoken of Type III1 factors, we have not yet described the nature

of the region from which the factor arises as a local algebra. Following Haag (pp. 111 of

[13]), we now consider the diamonds as our archetypal causally complete region.12. These

are defined, for a given pair of spacetime points p, q with p− q positive timelike, by

V p
q ≡ {x : p− x ∈ V+, x− q ∈ V+} , (2.7)

where V+ ≡ {x : ‖x‖ > 0, x0 > 0} is the set of positive timelike vectors. More intuitively,

V p
q is the intersection of the interior of the future light cone of q with the interior of

the past light cone of p. It turns out that many models of AQFT in Minkowski space

satisfy the duality relation, A((V q
p )′) = A(V p

q )′ for all diamond regions V p
q (also called

Haag duality, see pp. 145 of [13]). Consequently, we have intrinsic entanglement of every

global state of the field across V p
q and (V p

q )′. Thus one is forced to conclude that the field

system in a diamond region is entangled with its spacelike complement.

Clifton and Halvorson [8] suggest the more modest goal of disentangling a state across

a pair of strictly spacelike-separated regions O1,O2 (i.e., the two regions remain spacelike

when either region undergoes a small translation). In this case, there do exist normal

product states across A(O1) and A(O2) (see pp. 26 of [8] and pp. 239-240 of [32] for a

technical discussion), which our experimentalist in O1 could, in principle, hope to prepare

via local operations. However, as Clifton and Halvorson proceed to demonstrate, a norm-

dense set of entangled states of A(O12) may not be disentangled via pure local operations

carried out in O1.
13

We therefore see that in AQFT, there is a deep entrenchment of entanglement between

a spacetime region and its causal complement, or indeed, between a spacetime region

and any strictly spacelike-separated region. On the other hand, Clifton and Halvorson

offer a clever respite — they demonstrated that our experimentalist, if allowed to per-

form approximately local operations, can disentangle his field system from other strictly

spacelike-separated field systems, and can even prepare any local normal state ρ that

he desires (pp. 28-29 of [8]). More specifically, we allow operations which are local to a

“super-region” Õ1, whose interior contains the closure of O1. Choosing Õ1 to approx-

imate O1 sufficiently closely so that O2 ⊆ (Õ1)
′ (this is possible when O1 and O2 are

strictly spacelike-separated), the experimentalist can perform a non-selective operation

12The causal completion of a set of points S in Minkowski space is S′′ We say that S is causally
complete if S′′ = S.

13Halvorson and Clifton showed further that the same conclusion follows if we allow mixed projective
operations; but as remarked in footnote 9, ambiguity over the meaning of “disentangling” arises if we
consider mixing operations.
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T , local to Õ1, to turn any normal state ω on O12 into the product state,

ωT (AB) = ρ(A)ω(B) ∀A ∈ A(O1), B ∈ A(O2). (2.8)

In this manner, they suggest, the indelible nature of entanglement that we had pre-

viously attested to does not really pose a practical problem to the experimentalist.



Chapter 3

Coexistence between AQFT and

Special Relativity

Relativity’s adherence to the principle of local action and quantum theory’s non-local

nature appear to be at odds, and this tension is made explicit by Einstein’s own derisive

“spooky action-at-a-distance” remark about quantum mechanics. In light of the gener-

icity and indestructibility of entanglement described in the previous chapter, it is even

“. . . ironic, considering Einstein’s point of view, that such limits should be forced upon

us once we make the transition to a fully relativistic formulation of quantum theory. . . ”

(pp. 5 of [8]). Yet, there are subtle ways in which special relativity and AQFT can and

do coexist “peacefully”. In this chapter, we merely highlight a few interesting points of

view in the literature.

3.1 Relativistic causality in AQFT

In plain language, relativistic causality is the requirement that causal influences travel

subluminally. A precise definition, in quantum theories, is a far more tricky issue. Follow-

ing [5], we describe three notions of relativistic causality that arise in AQFT (in Minkowski

spacetime). The first is the notion of primitive causality (Axiom G, Sec. II.1.2 of [13]), or

introduced as an axiom for AQFT, the Diamond axiom: A(D(O)) = A(O). Here, D(O)

refers to the domain of dependence1 of the spacetime region O. This is motivated by the

hyperbolic equations of motion encountered in classical field theories (e.g. Maxwell’s elec-

tromagnetism) where the initial conditions on a spacelike patch determine the conditions

1For a region O, the future domain of dependence D+(O) is the set of spacetime points p such that
every past-inextendible causal curve through p intersects O. The past domain of dependence D−(O) is
similarly defined, and the total domain of dependence is D(O) = D+(O)∪D−(O). See also Chapter 8.3
of [35].
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on its domain of dependence. Thus for instance, for a region O1 ⊂ D+(O) and disjoint

from O, an observable A ∈ A(O1) could just as well be measured in O, although of course

by a different procedure from what one would have adopted in O1 so as to measure A.

The second notion of relativistic causality is spacelike commutativity, which we have

already encountered in the locality axiom of AQFT in Section 1.2. Explicitly, if O1 and

O2 are spacelike-separated, then [A1, A2] = 0 for all A1 ∈ A(O1), A2 ∈ A(O2). From

a physical viewpoint, this is the idea that observables at spacelike distances should be

co-measurable and therefore commute. Later on, we shall explore this notion in the light

of the Reeh–Schlieder theorem.

The final notion is the spectrum condition which we briefly alluded to in footnote

3 of Chapter 2 (see Sec. II.1.2 and pp. 110 of [13], and Axiom 4, pp. 104 of [1]). This

states that the energy-momentum operators (generators of the translation group unitarily

represented in an irreducible vacuum representation) have their spectra contained in the

(closed) forward light-cone,

V + ≡
¦
p : p2 ≥ 0, p0 ≥ 0

©
. (3.1)

It is important to note that these notions are logically independent [5]; the basic lesson

is that relativistic causality, carried over to the quantum case, is a subtle issue.

3.1.1 Reeh–Schlieder theorem revisited

A bizarre consequence of the cyclic nature of the vacuum vector Ω, is that one can apply

pure operations confined withinO on Ω, to prepare essentially any global state of the field.

This suggests a type of “action-at-a-distance” by procedures localized in an arbitrarily

small region, which appears to violate relativistic causality. This is reminiscent of the

analogous situation of “remote steering” in non-relativistic quantum mechanics. There,

the usual response to the bizarre (“spooky” in Einstein’s words) nature of remote steering

is to emphasize:

(a) the selective nature of the operation concerned (cf. Sec. 2.2); and

(b) a non-selective Lüders rule measurement of an observable A does not affect the

measurement probabilities of another observable B which commutes with A — this

is a statement of the no-signalling theorem.

Similarly in AQFT, the locality axiom entails spacelike commutativity, so that if O1 and

O2 are spacelike-separated, then [A(O1),A(O2)] = 0. And Clifton and Halvorson demon-

strate that the general A ∈ A(O) represents a selective operation, which “. . . involves per-

forming a physical operation on an ensemble followed by a purely conceptual operation
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in which one makes a selection of a subensemble based on the outcome of the physical

operation (assigning “state” 0 to the remainder). . . ”(Sec. 2 in [8]). From this point of

view, the remote steering of the field system at a spacelike separation is effected not by

a physical operation alone, but a conceptual one.

3.1.2 Landsman’s take on the Bohr–Einstein debate

One major advantage of the algebraic approach to quantum theory is that it provides a

common mathematical framework in which we can analyse both the classical and quan-

tum cases (covering both non-relativistic quantum mechanics and relativistic AQFT).

This feature is cleverly exploited by Landsman [21], who in one fell swoop, managed

a remarkable reconciliation between Bohr and Einstein. The following is an outline of

Landsman’s treatment.

We will first make a return to the more general setting of C∗-algebras. Recall Section

1.1.4, which tells us that any C∗-algebra is isomorphic to a norm-closed self-adjoint

subalgebra of the bounded operators on some Hilbert space H. Consider two C∗-algebras

A and B, which we interpret as the algebras of observables of two physical systems. A

product state on A⊗̂B2 is a state ω which satisfies, for some states ρ of A and σ of B, the

equation ω(A ⊗ B) = ρ(A)σ(B) for all A ∈ A, B ∈ B. As in the case of von Neumann

algebras, we say that a state ω on A⊗̂B is separable if it is in the weak ∗-closure of the

convex hull of the product states on A⊗̂B, and is entangled otherwise. Also, in analogy

to Eq. 2.1 and Eq. 2.2, we define the Bell operators T12 for A⊗̂B to be the combination

T12 :=
�

1

2
[A1(B1 +B2) + A2(B1 −B2)] : Ai = A∗i ∈ A, Bi = B∗i ∈ B, ‖Ai‖ ≤ 1, ‖Bi‖ ≤ 1

�
,

(3.2)

and the maximal Bell correlation of a state ω on A⊗̂B, by

β(ω) := sup {|ω(T )| : T ∈ T12} . (3.3)

We say that ω violates Bell’s inequality if β(ω) > 1 and satisfies it if β(ω) ≤ 1. With

these definitions, we can now state Raggio’s theorem [24].

Theorem 3.1.1. Let A and B be two C∗-algebras. The following are equivalent:

1. Each state on A⊗̂B is separable;

2A ‘hat’ has appeared subtly, because the tensor product of two C∗-algebras is not unique in general,
so we need to take the projective tensor product A⊗̂B, which is defined to be the completion in the
maximal C∗-cross-norm of the algebraic tensor product A ⊗ B. The technical reasons for choosing the
projective tensor product is explained in Landsman’s paper [21]. For our purposes, this choice ensures
that product states ρ⊗σ and mixtures

P
i piρi ⊗ σi are well-defined (by linearity and continuity) on the

projective tensor product.
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2. A or B is commutative;

3. Each state on A⊗̂B satisfies Bell’s inequality.

Now, let A and B be the algebra of observables of a quantum system and a measuring

instrument respectively. Recall Einstein’s Trennungsprinzip, which we will interpret as

the statement that each pure state of A⊗̂B restricts to a pure state on both A and

B. Adhering to this doctrine, Condition 1 is satisfied, and with A non-commutative

(since it describes a quantum system), we conclude that B is commutative à la Bohr. In

summary: Einstein’s position really implies Bohr’s! Conversely, based on Bohr’s doctrine

of classical concepts, we assume that B is commutative, and then Condition 1 is implied.

This in particular, means that a pure state of the joint system restricts to a pure state on

either subsystem. Each subsystem has its own “real state”, which is precisely Einstein’s

demand. So again, in the sense of Theorem 3.1.1: Bohr’s position implies Einstein’s!

3.1.3 Stochastic Einstein Locality and AQFT

There is another formulation of relativistic causality, which was introduced to address

concerns arising from EPR-Bell correlations, and is suited for the case of Minkowski

spacetime. This conception of relativistic causality is called “Stochastic Einstein Local-

ity” (SEL). For an event E occurring in a region O, it is natural to expect that the

probability at a time t (preceding O) that E does occur should be determined by the

events that occurred within that part of the past light cone of O that precedes t. To

formulate this intuition precisely, we follow the guidance of Butterfield in [6]. As well

shall see, there are a number of distinct ways to define SEL.

For a subset O of Minkowski space, we denote its past light cone3 by C−(O). For

convenience, we will use also E to denote the spacetime region in which event E occurs.

Since Minkowski space is globally hyperbolic, it can be foliated by a family of Cauchy

surfaces (“global instantaneous slices”), and one can define a global time function f on

Minkowski space so that each constant-f surface is a Cauchy surface (Chapter 8.3 of

[35]). Actually, we shall only be using hypersurfaces, labelled by t, which are spacelike

at least within C−(E), and which divide C−(E) into two disjoint parts, C+(t) ∩ C−(E)

(the “summit”) and C−(t)∩C−(E) (the “base”). It then makes sense to speak of “time-

dependent” probabilities Prt(E).

We also imagine a set of “possible worlds”W , where a “possible world” w is a dynam-

ically possible total history of the system under consideration. Because we are assuming

3As pointed out in [6], there is a slight distinction between chronological and causal pasts, which
thankfully, will not affect our discussion. Also, Butterfield defined his SEL for more general spacetimes
that exhibit stable causality. As we are mostly concerned with AQFT on Minkowski spacetime, we only
need the assurance that Minkowski space is stably causal.
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a fixed background Minkowski spaectime, we may identify times t between worlds in W
in the following manner. For two worlds which “match” in their respective histories up

to two hypersurfaces each in its world, we identify the hypersurfaces by labelling them

with t. By “matching”, we mean that all properties and relations intrinsic to the regions

concerned are isomorphic (i.e., there is a bijection of the regions that is an isomorphism

of the fields etc.). Consequently, we may speak of Prt,w(E) as the probability, at time t

in world w, that event E occurs.

The first version of SEL is called SELS, with the last ‘S’ standing, with the benefit of

hindsight, for ‘satisfied’. It is stated as follows:

Definition 3.1.2 (SELS). Suppose two worlds w,w′ ∈ W match in their history in

C−(E) ∩ C−(t). Then,

Prt,w(E) = Prt,w′(E). (3.4)

Thus, SELS says that the probability in either world at time t that E occurs is the

same.

We might equally well have formulated SEL with a statement along the lines of “the

probability of E occuring is independent of an event F that is far away”. It is not

immediately clear which events we want E to be stochastically independent of, since we

are dealing with probability functions Prt,w(E) that are both time-dependent and world-

dependent. We therefore define a different probability function, which is determined not

by all of a world’s history up to t, but by the world’s history lying both in the past of t

and within C−(E). We denote this truncated history by (H,w), and the corresponding

probability function by PrH,w(·). Then, we have the second formulation of SEL, called

SELD24:

Definition 3.1.3 (SELD2). For any world w ∈ W , any hypersurface t, and any event

F ⊂ C−(t)− C−(E) (i.e., before t and outside the past light cone of E),

PrH,w(E and F ) = PrH,w(E) · PrH,w(F ), (3.5)

where (H,w) is the history of w in the intersection C−(E) ∪ C−(t).

Our burden is now to transfer these notions of SEL to the arena of AQFT. Instead

of the “worlds” that we had considered previously, we now have models of a AQFT on

Minkowski spacetime, each given by the pair (A, ω), where A encodes the local algebra

assignment O 7→ A(O), and ω is a state on A. A (localized) event E now becomes a

projector (also called E) in a local algebra A(O), with the probability of E’s occurence

replaced by ω(E). The natural transcription of SELS is

4There is also a SELD1 [6]. The ‘D’ stands for ‘denied’, in hindsight.
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Proposition 3.1.4 (SELS for AQFT, Sec. 4.1 of [6]). Consider any two models (A1, ω1)

and (A2, ω2), any bounded open region O, and any projection E ∈ A1(O) ∩ A2(O). Let

t be any hypersurface preceding O. Suppose the two models match throughout the region

C−(t) ∩ C−(O)5. Then,

ω1(E) = ω2(E). (3.6)

It is then a trivial matter to demonstrate that SELS is satisfied in AQFT. The diamond

axiom tells us that ω1 and ω2 match on A(D(R)) = A(R) for each bounded open subset

R ⊂ C−(t) ∩ C−(O). The region O lies inside the future domain of dependence of some

suitably chosen R̃, i.e., O ⊂ D+(R̃), so by isotony, Ai(O) ⊂ A(D(R̃)). Therefore, ω1

and ω2 match on Ai(O) 3 E.

As for SELD2, we have the transcription,

Proposition 3.1.5 (SELD2 for AQFT, Sec. 4.1 of [6]). Consider any model (A, ω),

any bounded open region O1, and any projection E ∈ A(O1). Let t be any hypersurface

preceding O1, O2 be any bounded open subset of C−(t)−C−(O1), and F be any projection

in A(O2). Then,

ω(EF ) = ω(E) · ω(F ), (3.7)

or equivalently,

ω(E) = ω(E/F ). (3.8)

In Section 2.1, we showed how endemic Bell-correlated states (across two spacelike

separated regions) are in a AQFT on Minkowski space. In view of this, SELD2 in AQFT

is emphatically denied!

5This means that there is an isomorphism of the local algebras A1(R) ∼= A2(R) associated to each
bounded open subset R of C−(t) ∩ C−(O), which we denote simply by A(R), and that the expectation
values of ω1 and ω2 are equal on the elements of A(R).
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Conclusion

Broadly speaking, we have covered two issues in this essay. The first concerns the sur-

prising nature of Bell-correlations in algebraic quantum field theory — we have found

that they are generic, maximal, and even indestructible. What then, are the implications

of these superlatives for the status of special relativity in quantum field theory? The

former insists on ‘no action-at-a-distance’, but the latter is so flagrantly non-local that it

is difficult to see how the two can be consistently combined.

To a large extent, the answer depends on the notion of relativistic causality that one

wishes to maintain, and we have seen a few examples of the ways in which quantum non-

locality can coexist ‘peacefully’ with special relativity. Admittedly, there is a case for

the statement that AQFT is constructed precisely to preclude super-luminal signalling, a

point perhaps best illustrated by “micro-causality”: A(O′) ⊆ A(O)′. There is therefore

a real danger of postulating what we had set out to prove. However, as we have seen

with the example of SEL, not all natural notions of relativistic causality are satisfied by

AQFT. If nothing else, we have at least learnt to appreciate the subtlety of the issue.

In honesty, we are still far from a completely satisfactory resolution, and it would be

appropriate to close this essay with a telling quote from J. S. Bell [3].

“. . . we have an apparent incompatibility, at the deepest level, between

the two fundamental pillars of contemporary theory. . . It may be that a real

synthesis of quantum and relativity theories requires not just technical devel-

opments but radical conceptual renewal.”
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