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Abstract

Since the birth of mode-locking the temporal duration of optical pulses has radi-

cally diminished. In parallel to this, bandwidths have grown so large that almost entire

frequency octaves are present in today’s few-cycle pulses.

This thesis investigates the character of ultra-wideband pulses in nonlinear environ-

ments. Because of the growth in optical bandwidths, traditional definitions and prop-

agation models break down, requiring newer more accurate numerical techniques. A

novel approach capturing the uni-directionality of pulses is presented in the form of G-

variables by combining the electric and magnetic field descriptions. These G-variables

have the advantage of both an accurate spectral representation and a reduced compu-

tational overhead, making them significantly more efficient than existing direct Maxwell

solvers. Such approaches are particularly important where large propagation distances

and/or transverse dimensions are concerned.

Pseudo-spectral techniques play a key role in the success of these wideband mod-

els enabling sub-cycle dynamics to be studied. One such phenomenon is Carrier Wave

Shocking (CWS), where the optical carrier undergoes self-steepening in the presence of

third-order nonlinearity. This process is carefully studied, focussing on the effect of dis-

persion and the feasibility of its physical realisation. The process is then generalised to

arbitrary nonlinear order, where the quadratic form finds potential applications in High

Harmonic Generation (HHG). Shock detection schemes are also developed, and agree

with analytical solutions in the dispersionless regime.

To fully characterise few-cycle pulses, the absolute Carrier Envelope Phase (CEP)

must be known. A novel 0− f self-referencing scheme relying on wideband interference

is investigated. By applying robust frequency domain definitions a proposal is made to

convert this scheme into one that determines absolute CEP. The scheme maps the level

of spectral interference to absolute CEP using numerical simulations.



Acknowledgements

I would like to start by expressing my sincerest thanks to Professor Geoff New for his

ongoing support, guidance and assistance throughout this Ph.D. From my very first

day, beginning on Level 8 of Blackett until now, he has always had some positive and

encouraging words to say. This attitude has certainly kept me going through many a

difficult day, especially when one of my illusive ‘bugs’ could not be found.

Secondly, I would like to thank Dr Paul Kinsler for his constant effort and much

needed advice. Were it not for his time and patience, I would not be in this position

today. He has had a profound influence on my research over the past three years.

Of the big four, I am also indebted to John and Luke for much of their day to day

help. John helped me to find my feet during the first year, and Luke has taught me vast

amounts ever since taking over John’s old desk, significantly contributing to many of my

research ideas. I owe all of you months of your time, and can only re-iterate how grateful

I am.

Other former group members who I wish to acknowledge are Harris, Jesus and Lucien.

They were fortunate enough to leave before I started asking too many questions. I also

wish to thank Ara, Shash and Mark for some insightful chats in the union and beyond.

I would like to thank my coffee colleagues too; Rachele, Thomas, Jo, Bosanta, David,

Natty and Chris. The latest member of 6M07, ‘Little Firenze’ must also be added to

this list, though his arrival was late, his contribution has been crucial over the last few

months. Dr Bates deserves a special mention as we started as coffee colleagues and ended

up mates.

Much praise must be given to my fiancee Esther for putting up with the constant

drone of my thesis. Thanks also, to my flatmate Matt for enduring a messy flat over the

write-up period (not that it was ever tidy before). There are also many other people who

I wish to extend a more indirect thanks to.

Finally, I wish to thank my family for their love and support over the years and for

always encouraging me to walk on my own path.

Thanks!

5



Publications

• S. B. P. Radnor, P. Kinsler and G. H. C. New, Proposal for absolute CEP

measurement using 0-to-f self-referencing, In preparation (2008)

• S. B. P. Radnor, L. E. Chipperfield, P. Kinsler and G. H. C. New, Carrier-

wave steepened pulses and gradient-gated high-harmonic generation,

(Accepted) Phys. Rev. A, (2008)

• P. Kinsler, S. B. P. Radnor, J. C. A. Tyrrell and G. H. C. New, Optical carrier

wave shocking: Detection and dispersion, Phys. Rev. E, 75 (2007) 066603

• P. Kinsler, S. B. P. Radnor, and G. H. C. New, Directional Pulse Propagation,

Phys. Rev. A, 72 (2005) 063807

6



Contents

Abstract 4

Acknowledgements 5

Publications 6

1 Introduction 14

1.1 A brief history of the optical pulse . . . . . . . . . . . . . . . . . . . . . . 14

1.2 Mode-locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Frequency domain applications . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Describing and Modelling the Ultra-Wideband Pulse 24

2.1 Maxwell’s equations and the second-order wave equation . . . . . . . . . 25

2.2 First-order envelope equations . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.1 Envelope descriptions . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.2 The Nonlinear Envelope Equation (NEE) . . . . . . . . . . . . . . 32

2.3 Direct Maxwell solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.1 Yee’s algorithm-FDTD . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.2 Incorporating dispersion . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Directional G-variables 39

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.1 Brief history and motivation . . . . . . . . . . . . . . . . . . . . . 39

3.1.2 G±: Early definitions . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Generalising the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Dispersive references . . . . . . . . . . . . . . . . . . . . . . . . . 41

7



3.2.2 Energy density and Poynting vector . . . . . . . . . . . . . . . . . 43

3.3 ∗Re-deriving Maxwell’s equations . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Coupled G± . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.1 Vacuum reference . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.2 Partially matched reference . . . . . . . . . . . . . . . . . . . . . 47

3.4.3 Dispersive reference . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Numerical approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6.1 Propagation in fused silica: χ(3) . . . . . . . . . . . . . . . . . . . 55

3.6.2 SHG in lithium niobate: χ(2) . . . . . . . . . . . . . . . . . . . . . 56

3.7 Backward-propagating G− . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.7.1 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.7.2 Nonlinearly generated G− . . . . . . . . . . . . . . . . . . . . . . 60

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 The Forward-Only Approximation 64

4.1 Forward-only approximation . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1.1 Linear or nonlinear approximation . . . . . . . . . . . . . . . . . . 65

4.1.2 G-Maxwell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1.3 G-envelope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Numerical comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.1 Modelling diffraction . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.2 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Carrier Wave Shocking 80

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1.1 Basic theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1.2 Simulation parameters . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 CWS in dispersionless media . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.1 Method Of Characteristics (MOC) . . . . . . . . . . . . . . . . . 82

5.2.2 Numerical shock detection . . . . . . . . . . . . . . . . . . . . . . 84

5.2.3 Local Discontinuity Detection (LDD) . . . . . . . . . . . . . . . . 85

5.2.4 Factors affecting Lshock in the dispersionless regime . . . . . . . . 86

5.3 Designer dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

8



5.4 Practicalities of CWS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6 Carrier Shaping and Applications to HHG 99

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.3 Detection of χ(2) CWS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.4 Shocked waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.5 Wavelet representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.6 Practicalities of χ(2) self-steepening . . . . . . . . . . . . . . . . . . . . . 108

6.6.1 Real Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.6.2 Synthesised waveforms . . . . . . . . . . . . . . . . . . . . . . . . 111

6.7 HHG driven by χ(2) CWSS pulses . . . . . . . . . . . . . . . . . . . . . . 112

6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7 CEP Stabilisation and Measurement 116

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.1.1 Carrier Envelope Phase . . . . . . . . . . . . . . . . . . . . . . . . 116

7.1.2 Self-referencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.2 Numerical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.2.1 Calculation of peak intensity . . . . . . . . . . . . . . . . . . . . . 122

7.2.2 Effective nonlinear strengths: χ(2)E0 vs. χ(3)E2
0 . . . . . . . . . . 122

7.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.4 Self-stabilisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.5 Intensity fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.6 Measuring the absolute CEP . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.7 Robust CEP definitions and the net-force condition . . . . . . . . . . . . 133

7.8 The scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.9 Mapping φCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

8 General Conclusions 145

8.1 Modelling ultra-wideband pulses . . . . . . . . . . . . . . . . . . . . . . . 145

8.2 Characterising ultra-wideband pulses . . . . . . . . . . . . . . . . . . . . 147

8.3 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

References 149

9



List of Figures

1.1 Pulse duration and peak power of Ti:sapphire and Dye lasers since 1970. 18

2.1 Maximum change in peak intensity as a function of pulse length. . . . . . 29

2.2 Schematic diagram of an FDTD grid, staggered in both space and time . 36

3.1 Vacuum reference in fused silica. . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 αav =
√

εavε0 =
√

2.70ε0. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Sellmeier equation of fused silica. . . . . . . . . . . . . . . . . . . . . . . 50

3.4 αR =
√

ε0εr(ω0) for fused silica. . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 αR =
√

ε0εr(ω). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6 Flow diagram of the computational steps in a standard PSSD calculation. 53

3.7 Flow diagram of the computational steps involved in a coupled G± simu-

lation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.8 Initial pulse where αR =
√

ε0εr(ω). . . . . . . . . . . . . . . . . . . . . . 56

3.9 40 micron propagation through fused silica using different reference pa-

rameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.10 QPM in periodically poled lithium niobate. . . . . . . . . . . . . . . . . . 58

3.11 G± after 100 micron propagation in periodically poled lithium niobate

using different reference parameters. . . . . . . . . . . . . . . . . . . . . . 59

3.12 Sellmeier equation for lithium niobate (εr(ω)). . . . . . . . . . . . . . . . 60

3.13 Partial reflection produced by a pulse striking an interface. . . . . . . . . 61

3.14 Backward generated fields. . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1 Plot of type I approximation. . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 G-envelope representations of the forward-only approximation. . . . . . . 70

4.3 Reconstructed G+ field from envelope. . . . . . . . . . . . . . . . . . . . 71

4.4 Reconstructed E field using three different numerical methods for a 10

micron propagation: PSSD, G-Maxwell and G-envelope. . . . . . . . . . . 72

4.5 Spectra of different numerical methods. . . . . . . . . . . . . . . . . . . . 73

10



4.6 Schematic diagram describing nonlinear propagation techniques. . . . . . 74

4.7 Schematic diagram of the split-step method. . . . . . . . . . . . . . . . . 77

4.8 Wideband G-Maxwell simulation with added transverse dimension. . . . 78

4.9 Comparison of a diffracted beam on-axis, with a plane wave simulation. . 79

5.1 E field profile of a pulse at the point of shocking. . . . . . . . . . . . . . 82

5.2 Schematic diagram of the Method Of Characteristics. . . . . . . . . . . . 83

5.3 E field of a pulse at the point of shocking using the LDD method. . . . . 85

5.4 Sensitivity of Lshock to pulse length. . . . . . . . . . . . . . . . . . . . . . 86

5.5 Sensitivity of Lshock to CEP. . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.6 Lshock as a function of n0. . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.7 Schematic diagram of the single-step designer dispersion profile. . . . . . 89

5.8 Carrier wave shocking for the single refractive index step. . . . . . . . . . 90

5.9 Carrier wave shocking for the single refractive index step ∆n3,5. . . . . . 91

5.10 Schematic diagram of the multi-step, and refractive index gradient. . . . 92

5.11 Carrier wave shocking in the multi-stepped case. . . . . . . . . . . . . . . 93

5.12 Shocking distance vs refractive index gradients. . . . . . . . . . . . . . . 94

5.13 Maximum field gradient in fused silica. . . . . . . . . . . . . . . . . . . . 97

6.1 Electric field profile of a few-cycle pulse at the point of shocking: χ(2). . . 102

6.2 Log plot of |E(ω)|2 approaching Lshock. . . . . . . . . . . . . . . . . . . . 103

6.3 Comparison of shocking distance in χ(2) media with respect to initial pulse

length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.4 Comparison of shocking distance in χ(2) media with respect to CEP. . . . 105

6.5 CWS for different orders of nonlinearity. . . . . . . . . . . . . . . . . . . 106

6.6 Intensity spectra for different nonlinearities. . . . . . . . . . . . . . . . . 107

6.7 Wavelet transforms of χ(2) and χ(3) CWS. . . . . . . . . . . . . . . . . . 109

6.8 Maximum gradient at the damage threshhold of MgO:LN. . . . . . . . . 110

6.9 Synthesised CWSS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.10 Reduction of attosecond pulse duration for additional harmonics. . . . . 114

7.1 Electric field profile of a 2.8 cycle, 800 nm pulse. . . . . . . . . . . . . . . 117

7.2 Time and spectral domain representation of a train of pulses. . . . . . . . 119

7.3 Schematic diagram of the beat between the input pulse and the DFG signal.120

7.4 Log plot of the final intensity spectra. . . . . . . . . . . . . . . . . . . . . 124

7.5 Intensity of ωpm during propagation. . . . . . . . . . . . . . . . . . . . . 125

7.6 Intensity spectrum after a propagation of 250 microns. . . . . . . . . . . 126

7.7 Log plot of |E(ω)|2 at various distances inside the crystal. . . . . . . . . 127

11



7.8 Pulse-to-pulse phase change in the final spectrum. . . . . . . . . . . . . . 128

7.9 Integral of the power falling on the PD pulse-to-pulse. . . . . . . . . . . . 129

7.10 Pulse-to-pulse phase change over the entire spectrum. . . . . . . . . . . . 130

7.11 Variance of ∆φω over successive pulses. . . . . . . . . . . . . . . . . . . . 131

7.12 Plot of ∆φω for intensities ranging from 99% to 101%. . . . . . . . . . . 132

7.13 Maximum fractional change in central wavelength. . . . . . . . . . . . . . 134

7.14 Integral of E(t) for sine and cosine carriers. . . . . . . . . . . . . . . . . 135

7.15 Cosine pulse profile using a time domain definition. . . . . . . . . . . . . 136

7.16 Plot of the spectral window of the PD (plus filter) after a propagation

distance of 50 microns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.17 Re-constructed PD signal. . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.18 Re-constructed PD signal for different intensities. . . . . . . . . . . . . . 142

7.19 PD current during a 250 micron propagation through the crystal. . . . . 143

12



List of Tables

3.1 Comparison of reference parameters (αR) . . . . . . . . . . . . . . . . . . 52

13



Chapter 1

Introduction

1.1 A brief history of the optical pulse

The history of the LASER (Light Amplification by Stimulated Emission of Radiation)

is inextricably linked to the generation of coherent pulses of light. The very first laser

realised by Theodore H. Maiman [1] in 1960 (Hughes Research Laboratories), was a

pulsed system comprising of a helical xenon flashlamp surrounding a pink ruby rod, the

polished ends of which formed a Fabry-Perot cavity. The flashlamp driving the lasing

transition had a typical duration of ' 500µs. This system created the first ever laser

pulses, which were somewhere between micro and millisecond, and of variable intensity

due to relaxation oscillations. The finite temporal structure of any pulse requires a set of

frequencies for its description. In other words, the first laser also gave birth to the first

coherent pulse, albeit very narrowband. In fact, a millisecond pulse from a 694 nm ruby

laser contains within it ' 4× 1011 oscillations!

Rapid progress in generating shorter pulses followed with the development of Q-

switching, which enabled high intensity nanosecond pulses to be produced. The technique

involves reducing the quality factor or ‘Q’ of the laser cavity whilst pumping is taking

place, causing the population inversion to reach a very high level. This large population

inversion would not be possible if a high Q-value existed, as lasing would prevent the

population inversion from increasing to such an extent. The Q-value is then returned to

its naturally high value, prompting the emission of a giant pulse, accompanied by the

abrupt depletion of the inverted population. The high intensities of these giant pulses

paved the way to understanding many nonlinear optical phenomena.

Ultra-fast optics then evolved through laser mode-locking, a technique which revo-

lutionised laser physics. In mode-locking, a multitude of axial cavity modes are forced

into fixed relative phase relationships. This means that the EM field inside the cavity is

14



almost zero for most of the time, but for very short intervals, where constructive inter-

ference takes place, very high intensity pulses are produced [2], where almost the entire

energy of the radiation field is concentrated. The cumulative interference of the cavity

modes forms a pulse, and once every round trip the pulse is outcoupled from the cavity

via a partially transmitting mirror. In such cases, if the energy per mode is kept constant,

the pulse intensity becomes proportional to the number of modes present, whereas the

pulse duration is inversely proportional to the number of modes. Because mode-locking

is of such great importance to nonlinear optics, and is the only viable route to producing

few-cycle pulses, its history will be discussed in slightly more detail.

1.2 Mode-locking

The seeds of active mode-locking were being sown around the year 1964. Gurs and Muller

were working on ruby lasers [3, 4], while Statz and Tang were working on He-Ne systems

[5]. The literature identifying mode-locking first appeared in 1964 by DeDomenico [6],

Hargrove [7], Yariv [8] and Lamb [9]. It was Hargrove et al. who succeeded in demon-

strating mode-locking for the first time, using acoustic waves to periodically change the

refractive index of the active He-Ne lasing medium. The technique of directly modulat-

ing the EM field inside the cavity became known as active mode-locking. The periodic

modulation enforces the necessary phase relationship between the axial cavity modes.

Given the narrow gain bandwidth of the medium, the pulses in these systems remained

in excess of a nanosecond. Even a He-Ne pulse of nanosecond duration, contains up to

250 000 carrier oscillations.

For the duration of the pulse to fall under a nanosecond, passive mode-locking would

have to be developed. This was first achieved by Mocker and Collins in 1965 with

a ruby laser and a saturable absorber [10]. In passive mode-locking, the fixed phase

relationship between the cavity modes is induced by the self-action of the laser field inside

the cavity, a process not externally driven. In the case of saturable dye absorbers, the

dye preferentially transmits light of a higher intensity, producing a train of mode-locked

pulses. The advantage of passive mode-locking is that it far exceeds the time response

of any active modulation. In general, saturable absorbers can be further divided into

two subcategories; slow and fast. Initially fast saturable absorbers were used in the

form of organic dyes, where fast refers to the relaxation time of the absorber being fast

with respect to the pulse duration. The limiting factor in the temporal duration of the

first He-Ne lasers, was the net gain bandwidth available in the active medium. Lasing

over a greater bandwidth was necessary to reduce pulse duration further. This is a direct
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consequence of Fourier analysis, where greater bandwidths are needed to describe shorter

time intervals. In 1966 DeMaria et. al [11] succeeded in producing sub-nanosecond pulses

using Nd-glass as the active lasing medium. Their achievement relied on the medium’s

broader gain spectrum. By the end of the 1960’s, Nd-YAG and Nd-glass lasers were

consistently producing 10-ps pulses by means of passive mode-locking, making them

central to the investigations of nonlinear optics and time-resolved spectroscopy.

A very successful mode-locking technique that became popular in the early 1970s

was Mode-Locking by Synchronous Pumping (MLSP) [12]. This involves Amplitude

Modulation (AM) mode-locking of a slave laser by synchronously pumping it with a

master laser. Gain saturation is required to modulate the trailing edge of the pulse [13]

(making this technique different to loss modulation mechanisms). The gain of the slave

laser is controlled by the mode-locked pulses delivered by the master laser, and occurs

on a faster timescale than the slower rise time of the pump pulse. This provides a route

to shorten the pulses produced by the mode-locked master laser. The master laser that

was commonly used in these early systems was Ar+. The advantages of MLSP include

higher efficiencies compared with passive mode-locking, and operating wavelengths that

are not restricted by the saturable absorber bandwidth, thus presenting an element of

tunability. Their disadvantages however were, longer pulses than passive mode-locking

alone, and a pulse structure that is highly sensitive to mismatches and alignment between

the respective laser cavities [14].

The next generation of mode-locked lasers was heralded by sub-ps pulses made pos-

sible by the combination of tunable broad-gain bandwidth dye lasers and slow saturable

dye absorbers. The response time of the saturable absorber was not the limiting factor,

as originally thought. This was demonstrated by New in 1974 [15, 16], who showed that

the temporal duration of these systems was limited by the dynamic saturable gain. The

saturable absorber causes the leading edge of the pulse to experience a loss, whilst the

gain has saturated before the tail of the pulse has passed. This preferentially amplifies

the centre of the pulse, as long as the recovery time is shorter than the period of the

cavity [17]. Following improvements in the cavity and materials available, a new concept

was utilised in a ring dye laser system that involved counter propagating pulses being

amplified at the point of crossover; Colliding Pulse Mode-locking (CPM). CPM com-

bined with the other conceptual and material advancements of the generation, led to the

breaking of the 100 fs barrier [18]. Pulses of 10-100 fs thus became available during the

1980’s. For an excellent history of mode-locking the reader is referred to [19].

The final generation of mode-locked lasers and the one we are still currently enjoying

is that of Kerr-Lens Mode-locking (KLM) which was discovered in 1991 by Spence, Kean
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and Sibbett [20] (St. Andrews). The Ti:sapphire laser now forms the heart of most of

today’s femtosecond pulse systems, and has been popular from the 1990’s. The natural

properties of this material are remarkable, and underlie the dominance of Ti:sapphire as

an active medium for KLM. The two qualities that set it apart from other lasers are its

huge gain bandwidth, spanning almost an octave (680-1130 nm), and its dynamic self

mode-locking.

In KLM, the gain medium focuses the more intense regions of the pulse, which in

the general case of a transverse Gaussian profile, causes the medium to act like a lens.

The lensing effect is caused by the increased index of refraction in the centre of the

beam compared with the wings, resulting in self-focussing. If an aperture is correctly

placed, selection of the most intense region occurs and the remaining less intense regions

become attenuated. Since shorter pulses possess higher peak intensities, they undergo

less attenuation, making mode-locking favourable. KLM can be thought of as a special

case of a fast passive absorber. Improvements in intra-cavity dispersion compensation

and external pulse compression have led this laser to produce sub 3 fs pulses (after

SPM broadening) [21]. In fact, today it is possible to purchase commercial lasers that

can consistently produce sub 7 fs pulses. These pulses amount to ' 2.5 optical cycles

(Femtolasers produktions GmbH). In theory, if one could phase lock the entire Ti:sapphire

bandwidth with the correct spectral distribution, a pulse of ' 2.5 fs could be produced.

At a central wavelength of 800 nm, this represents a single-cycle pulse. In practice, higher

order dispersion along with the limited bandwidth of the mirrors prevents this limit from

being reached directly. However, externally broadening the pulse through SPM followed

by novel compression techniques, provides an indirect route to construct these single-

cycle pulses. It remains a humbling thought, that ' 10 orders of magnitude have been

traversed when comparing the first laser pulse durations, to those of today. Fig. 1.1 [22]

shows the temporal reduction of the laser pulse since the discovery of mode-locking.

1.3 Frequency domain applications

Frequency metrology is another field that has greatly benefited from today’s ultra-

wideband pulses, and its importance is evidenced by the award of the 2005 Nobel prize

to Roy J. Glauber, John L. Hall, and Theodor W. Hansch for their work on the subject.

The spectral gap between optical frequencies and the Cs standard is approximately 600

THz, which meant that until recently only low frequencies could be directly measured.

Higher e.g. optical frequencies had to be heterodyned, by means of complex frequency

chains, and thus optical frequencies themselves were subject to ambiguity as the stan-
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Figure 1.1: Pulse duration and peak power of Ti:sapphire and Dye lasers since 1970.

dard unit of time is the second. The ability of mode-locked lasers to produce octave wide

frequency combs provides the perfect bridge between optical and r.f. frequencies [23].

For the first time in 1999, Hansch et al. [24] measured the absolute frequency of the

Cesium D1 line, with the help of a mode-locked KLM Ti:S laser. The laser was used to

span a frequency range of nearly 20 THz, by connecting a 3.39 µm CH4 stabilised HeNe

laser to a laser locked onto the Cesium D1 line. This pioneering approach heralded an

improvement in accuracy of three orders of magnitude compared to previous measure-

ments [23]. The use of such broad bandwidths has also been fully exploited in Carrier

Envelope Phase (CEP) stabilisation, where self-referencing schemes have been used to

measure and stabilise CEP slip, the most common being f − 2f . f − 2f self-referencing

involves frequency doubling the fundamental spectrum comb (from a train of pulses),

and interfering this with the fundamental. A beat between the upper wing of the fun-

damental and the lower wing of the second harmonic takes place, creating an r.f. signal

that can be tracked for phase stabilisation and control (this is investigated in chapter

VII). The availability of such methods relies on ultra-wideband light being present in the

fundamental spectrum. Thus, new frequency domain techniques exploiting wider band-

widths are being developed in parallel to the temporal reductions of today’s few-cycle

pulses. Much emphasis is now being placed on pulse measurement and characterisation,

as few-cycle effects become much more important.
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1.4 Conclusion

The laser might only be 50 years old, but it has enabled remarkable and fundamental

breakthroughs within that time. In fact, in the past decade alone, 10 researchers have

been awarded the Nobel prize for work relating to laser physics. The temporal reduc-

tion of coherent light is not the only outstanding achievement of laser science within

this time. The increased intensity of laser pulses has been equally astounding and has

further accelerated the growth of new science from the combination of both ultrashort

and extremely intense laser light. The duration of laser pulses has gone from millisec-

onds to femtoseconds since 1964. Over that time, pulse intensities have soared from 102

W/cm2 to 1021 W/cm2 (see fig. 1.1). These fields are so intense that they far exceed the

coulomb field within an atom (typically 1015 W/cm2). Under such intensities, the electric

field experienced by the electrons is no longer perturbative but rather enters the strong

field regime. One such example of this is High Harmonic Generation (HHG), where the

intensity of the electric field is used to tunnel ionise the electrons from inside an atom or

molecule. The process involves distorting the potential well of the atom (or molecule) to

such an extent that the electrons can pass through the reduced potential barrier. Once

ionised, the electrons then follow the electric field profile, recolliding with the nucleus

every half-cycle (depending on the polarisation of the electric field), producing attosec-

ond bursts of coherent radiation on each recollision. For HHG, control of the CEP is

crucial as the ionised electrons are sensitive to the absolute phase of the laser field. Thus

by controlling the phase of the incoming laser field, isolated attosecond radiation can be

produced. The potential of controllable attosecond pulses is so far reaching that it affects

virtually every field and subfield of science, from chemical reactions, to metrology, and

biology, and paves the way to measuring many fundamental processes. For an excellent

detailed review of intense few-cycle laser fields, the reader is referred to [13], and [22] or

alternatively a summary is provided in [25].

1.5 Thesis overview

The work in this thesis is primarily concerned with accurately modelling and under-

standing the nature of ultra-wideband pulses. This takes the reader through some early

propagation techniques, before developing a new and efficient uni-directional pseudo-

spectral method. Pseudo-spectral methods are more suitable for dealing with few-cycle

pulses, providing a framework for the analysis of some ultrafast phenomenon, such as

CWS. Through detailed spectral analysis, CEP effects are studied along with other areas
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of coherent control.
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• Chapter II: Describing and Modelling the Ultra-Wideband Pulse

Chapter II begins with the standard application of Maxwell’s equations to the mod-

elling of laser pulses. This approach involves taking the second-order wave equation,

and substituting a carrier-envelope description for the electric field. By separating

the evolution of the field into transverse and longitudinal components, a first-order

propagation equation can be recovered after making appropriate approximations.

This commonly used technique is well documented and has formed the basis of

much analysis [26–29].

The general approach is demonstrated by deriving the Nonlinear Envelope Equa-

tion (NEE) [26]. This more sophisticated envelope technique is accurate down to

a single-cycle pulse. The historical reason for the popularity of envelope meth-

ods has been their ease of computation, and numerical accuracy. The advent of

Finite-Difference Time-Domain (FDTD) methods, coupled with the limitations of

standard envelope techniques, has led to the growth of direct Maxwell solvers in

recent years [30]. Comparisons of envelope methods to direct Maxwell solvers are

made, highlighting the advantages and disadvantages of both.

These differences are accentuated when dealing with few-cycle pulses in the presence

of dispersion and nonlinearity. Some alternative approaches to calculating linear

dispersion are discussed [30, 31] and the Pseudo-Spectral Spatial Domain (PSSD)

technique is also explained [32], focussing on its ability to handle arbitrary linear

dispersion.

• Chapter III: Directional G-variables

Chapter III introduces the directional G-variables. These variables allow the EM

field to be written in terms of forward (G+) and backward (G−) directed fluxes

by combining the electric and magnetic fields. They were first described in [33],

but unfortunately early definitions were rather primitive being valid only within a

dispersionless context.

These definitions are generalised to handle dispersion, leading to a full derivation

of Maxwell’s equations. The directional G-variables come in pairs, where a ref-

erence parameter determines the balance of forward G+ and backward G− fluxes

necessary to describe the EM field. Adjusting the reference parameter allows dif-

ferent combinations to be used, one of which fully represents the EM field with

just the forward going G+. Various G± combinations are used in this chapter to

simulate nonlinear pulse propagation in a number of environments. The magnitude

of backward-generated fields due to nonlinear propagation are also assessed. Work
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relating to this chapter was published in [34].

• Chapter IV: The Forward-Only Approximation

Chapter IV follows on from the results of the previous chapter. By selecting a

reference parameter that matches the linear dispersion of a medium, the G− field

can be minimised. In almost all cases, nonlinear media do not generate significant

backward propagating fields. This means that carefully chosen reference parameters

combining the electric and magnetic fields can accurately describe the forward

propagating G+ pulse. By discarding the negligible G− field, the forward-only

approximation is made, leading to a first-order PDE with all the advantages of a

uni-directional method (e.g. moving frame transformation).

A bandwidth unlimited envelope technique is then developed using the G+ uni-

directional propagation equation. This supports the notion that carrier-envelope

descriptions need not be bandwidth limited [35] as long as sufficient care is taken

to express all the frequency content. Finally, a transverse dimension is added to

the uni-directional model, using a split-step integration method.

• Chapter V: Carrier Wave Shocking

This chapter investigates the nature of Carrier Wave Shocking (CWS) and how it is

affected by dispersion. The phenomenon involves the self-steepening of the optical

carrier due to third-order nonlinearity, and has a long but largely overlooked history

[36]. The growth of FDTD techniques in recent years has led to renewed interest

in this area [37, 38], but many questions remain unanswered.

The chapter begins by explaining the process of CWS in dispersionless media. This

allows a shock detection mechanism to be developed, as analytic solutions exist

in the dispersionless regime. The shock detection schemes are then tested against

fundamental parameters, revealing sensitivity to pulse duration, CEP etc. Using

this knowledge, a step-by-step picture of CWS in the presence of dispersion is built

up with the help of designer dispersion profiles. These profiles help pinpoint the

region of parameter space where CWS may exist. Perhaps the most likely candidate

for observing CWS is fused-silica, and the feasibility of realising this is assessed.

Work relating to this chapter was published in [39].

• Chapter VI: Carrier Shaping and Applications to HHG

Having understood the fundamentals of CWS in χ(3) media, the phenomenon is

then generalised. A formula is derived using the Method Of Characteristics (MOC)

predicting shocking in any dispersionless arbitrary nonlinearity. The only other re-
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alistic materials with significant nonlinearity are quadratic media, although they

contain very different properties to χ(3) media. Their asymmetric polarisation re-

sponse, breaks the inversion symmetry of the incoming field, producing a novel type

of self-steepening, which depends on the electric field value and not its intensity.

Recently, two-colour fields have been applied to High Harmonic Generation, taking

advantage of the asymmetry of the electric field [40]. By making each adjacent

half-cycle different, the high harmonics produced during one half-cycle can have

a higher frequency content than the next. This helps isolate attosecond pulses,

whilst also reducing their duration. Carrier steepened waveforms from quadratic

media may improve on existing two-colour schemes, as the gradient of the incoming

electric field is vital to harmonic production. This may provide a new parameter

in coherent control that is capable of generating shorter attosecond pulses. Work

from this chapter has been submitted to Phy. Rev. A [41].

• Chapter VII: CEP Stabilisation and Measurement

Chapter VII begins by modelling a novel 0− f self-referencing technique described

in [42, 43]. The scheme utilises Difference Frequency Generation (DFG) to passively

stabilise the CEP slip of a few-cycle laser pulse. The spectral interference between

the self-stabilised DFG and the laser pulse (experiencing the CEP slip), can be

observed using a photodiode. The robustness of this technique to intensity and

CEP variations is studied and explained.

Absolute CEP must be known to fully characterise a few-cycle pulse. Loose time

domain definitions are no longer valid in such cases, and because of this, CEP

definitions in the frequency domain are developed. By understanding the phase

structure of a pulse in the frequency domain, extensions to the 0−f self-referencing

scheme are proposed for determining absolute CEP. The proposal is based on a

mapping of the spectral interference using numerical simulations to the absolute

CEP. Work from this chapter is in preparation [44].

• Chapter VII: General Conclusions

Finally, conclusions are presented along with suggestions for further work.
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Chapter 2

Describing and Modelling the

Ultra-Wideband Pulse

The delicate few-cycle pulses of light emerging from mode-locked lasers are also formidable

beasts. Because their intensities are so high, and their bandwidths so vast, a plethora

of nonlinear activity can take place in even the most basic materials. This means that

not only do the nonlinear interactions become very complicated, but also the description

and modelling of such objects becomes ever more challenging. As the temporal duration

and peak intensity of laser pulses have evolved, so have their description and numer-

ical solutions. This chapter begins by discussing traditional descriptions of few-cycle

pulses, starting with Maxwell’s equations. The chapter then continues with more recent

numerical methods highlighting their range of applicability. A full derivation of a sophis-

ticated envelope technique is included [26], with an adaptation to the famous Nonlinear

Schrodinger Equation (NLSE). The advantages and disadvantages of envelope methods

compared to direct Maxwell solvers are considered.
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2.1 Maxwell’s equations and the second-order wave

equation

Maxwell’s equations form the starting point for describing a laser pulse. The four source-

less Maxwell’s equations are:

∇ · ~D = 0 (2.1a)

∇ · ~B = 0 (2.1b)

∇× ~E = −∂ ~B
∂t

(2.1c)

∇× ~H = ∂ ~D
∂t

, (2.1d)

where ~E, ~D, ~H and ~B, represent the electric, electric displacement, magnetic and mag-

netic induction fields respectively. The electric fields discussed in this thesis, fall into

category of perturbative nonlinear optics, as their intensities are less than ' 50 TW/cm2

[22].1 This allows the polarisation (~P ) to be expanded as a perturbation series, where

the following constitutive relations apply:

~D = ε0
~E + ~P (2.2)

~B = µ ~H (2.3)

~P = ε0χ
(1) ∗ ~E + ε0

~PNL (2.4)

~PNL = χ(2) ~E2 + χ(3) ~E3... (2.5)

ε and µ are the permittivity and permeability of the medium; ε = ε0εr and µ = µ0µr. The

subscripts “0” and “r” refer to the vacuum, and “relative” permittivity and permeabil-

ity respectively. As this work will not deal with magneto-optic materials, only electric

dispersion will be considered (εr = 1 + χ(1)). χ(1) is the linear susceptibility and refers to

the temporal response of the linear polarisation to the incoming electric field. Though

χ(1) is a tensor, the media are assumed to be isotropic (the modelling of dispersion is

discussed later in section 2.3.2). Within this work, and in common with other approaches

[45], the nonlinear electric susceptibility (χ(n)) is assumed to be instantaneous. This as-

sumption is valid when dealing with pulse durations of several femtoseconds propagating

through relatively short bulk crystalline structures, as the nonlinear electronic response

is typically less than a femtosecond (in the visible and near infra-red) [22]. Over greater

1The only exception is a brief discussion at the end of chapter VI which looks at how the gradient of
carrier steepened pulses affects HHG.
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distances e.g. fibre optic cables, other terms describing a Raman contribution would

have to be added as in [28, 35], where the finite response of the nonlinearity is included.
~Pnl is also assumed to isotropic. Though this is not always the case, especially in χ(2)

media, situations where this condition is valid have been selected (e.g. e + e → e in LN

[46]). Taking the curl of eq(2.1c), and enforcing eq(2.1a), equations (2.1c) and (2.1d) are

combined, to arrive at the second order wave equation:

∇2 ~E = µ
∂2 ~D

∂t2
= µε

∂2 ~E

∂t2
+ µ

∂2 ~PNL

∂t2
. (2.6)

The above equation (2.6) forms the foundation of much nonlinear analysis, especially

when deriving various envelope propagation equations, and is valid for small transverse

inhomogeneities of ~P

2.2 First-order envelope equations

Looking back over the history of laser pulses, it is not surprising that an envelope descrip-

tion was frequently employed as the theoretical tool for nonlinear analysis. An envelope

description consists of three essential ingredients: a complex envelope function, an os-

cillating carrier, and a Carrier Envelope Phase (CEP). CEP is of little importance for

pulses longer than a few cycles. However, for few-cycle pulses CEP becomes important,

as light-matter interactions are phase sensitive. Discussions involving CEP stability and

measurement are left until chapter VII.

Envelope descriptions and numerical methods have dominated few-cycle pulse prop-

agation over recent decades because of their speed and accuracy. The key characteristics

underlying their computational speed-up are

1. Reduction of Order. The second-order Partial Differential Equation (PDE) (see

eq(2.6) can be reduced to a first-order derivative in the direction of propagation.

The fundamental assumption, is that the pulse envelope varies on a much slower

timescale than the carrier. This enables the simplification to be made, and is the

primary reason for the computational speed-up [26].

2. Directionality. Envelope equations generally separate the E field into forward and

backward propagating components. By neglecting the backward wave, a moving

frame can be incorporated into the forward propagating envelope. Larger com-

putational steps than those permitted in Finite Difference Time Domain methods

(FDTD), can thus be made. FDTD methods must satisfy the Courant-Friedrich-
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Levy (CFL) bound to guarantee numerical stability [30], placing an upper bound

on the propagation step, and making moving frames difficult to incorporate. Thus

an additional computational speed-up is possible when using an envelope with a

moving frame. [A moving frame has been applied to FDTD [47], but this requires

added sophistication, and other complicated stability criteria must then be adhered

to.]

3. Bandwidth constraints. Generally the very definition of a slowly varying enve-

lope, relies on the envelope not varying much over the period of the carrier. This

essentially limits the bandwidth of frequencies used in the pulse description. Nor-

mally dispersion can then be included in the model by expanding the permittivity

(or the wave vector), around the chosen central frequency (see section 2.2.1). Thus

dispersion is handled by adding coefficients to the desired order e.g. the second or-

der Group Velocity Dispersion (GVD). Given that envelope equations can be made

to propagate in time, computationally expensive Fourier Transforms (FTs) or time-

domain convolutions can be avoided, further increasing the speed of computation.

The successes of the Non-Linear Schrodinger Equation (NLSE) is one such exam-

ple of a time domain envelope model being used for nonlinear pulse propagation.

Recently, bandwidth unlimited envelope models have been developed [35], and one

such model is demonstrated in chapter IV; however these are not the norm. Fur-

thermore the unlimited bandwidth comes at a price, as the computational demand

becomes comparable to more explicit Maxwell solvers.

The accuracy of description coupled with the flexibility and speed of computation, has

greatly helped the success of envelope techniques, and are still being developed today

[35].

2.2.1 Envelope descriptions

It is essential to define a complex envelope when deriving an envelope propagation equa-

tion. This is because carrier-envelope descriptions are not unique [48]. The definitions

used in [26] are therefore adopted, where they were successfully used to describe nonlinear

pulse propagation down to a single-cycle. The electric field can be written as:

E(t) = Ẽ(t) + c.c. (2.7)

Ẽ(t) = A(t)ei(k0z−ω0t+φ0), (2.8)
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where A(t) is the complex envelope, k0 is the wave vector at the central frequency (k0 =
ω0

c
n0), and φ0 is the CEP. As carrier-envelope descriptions are not unique, it is therefore

possible to choose a carrier frequency, and from this fix the complex envelope. The

combination of the carrier and complex envelope, must then retrieve the E field. An

intuitive choice for the central frequency [26] is therefore:

ω0 =

∫∞
0

ω|E(ω)|2dω∫∞
0
|E(ω)|2dω

, (2.9)

i.e. the centre of gravity of the frequency spectrum (and this choice is discussed later in

chapter VII). In many-cycle pulses there is little difference between the central frequency

defined in the time domain (ω0 = ck0

n(ω0)
) and the centre of gravity of the frequency domain

eq(2.9). When the pulse duration approaches that of the carrier, a more robust definition

is needed, necessitating eq(2.9). Similarly φ0 (in eq(2.7)) only becomes significant with

few-cycle pulses, and is defined so that the imaginary part of the complex envelope (A(t))

is zero at t = 0. E(ω) is simply the FT of E(t). To demonstrate the effect of CEP, fig.

2.1 shows the change in peak intensity as a function of the number of cycles in the pulse

(FWHM).

CEP significantly affects few-cycle pulses, but to have a meaning the complex en-

velope must be invariant under a change of phase. This ensures that the carrier and

envelope remain fixed quantities and only their relative phase varies. Having an enve-

lope or carrier that changes with CEP is counterproductive and completely lacking in

any consistency. Another frequently neglected point when describing few-cycle pulses is

the net-force condition, stating that any EM pulse must have no dc component when

freely propagating [49]; a condition automatically satisfied if E is derived from the vector

potential. In most cases, it has also become common practice to define a pulse in the

time domain, from an envelope multiplied by the central carrier of choice (assumed to

be ω0). These loose definitions have virtually no effect on pulses containing more than a

single cycle and it is therefore not surprising that they are often overlooked. However, as

we are currently approaching single-cycle pulses in the visible and sub-cycle in the Tera-

hertz regime [50], it becomes necessary to review many of our previous descriptions and

models. Few and single-cycle nonlinear propagation introduce so many new effects and

complexities that alternative descriptions and numerical techniques are vital to achieve

accurate results. The remainder of this chapter reviews some of the more traditional

approaches to nonlinear pulse propagation. The CEP and other fundamental charac-

teristics of sub-cycle pulses are left to chapter VII, where a discussion of the net-force

condition and its ramifications on few/sub-cycle pulses is included.
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Figure 2.1: Maximum change in peak intensity as a function of pulse length ( Pmin

Pmax
). The

envelope used was a sech function, and the maximum and minimum peak values refer to
cosine and sine carriers respectively. CEP only significantly affects the peak intensity for
few-cycle pulses.

To arrive at the first order envelope propagation equation we begin with the following

Ansatz, and assume the pulse is linearly polarised and propagating in the z direction

E(r, t) = A(r⊥, z, t)ei(k0z−ω0t+φ0) + c.c. (2.10)

The E field is separated into transverse and longitudinal components, as is the ∇2 oper-

ator that is applied later. Because eq(2.6) is nonlinear, it is necessary to define another

complex envelope B(r, t) describing PNL in a similar fashion,

PNL = B(r⊥, z, t)ei(k0z−ω0t+φ0) + c.c. (2.11)

Given the number of terms that appear when substituting eq(2.10) and eq(2.11) into

eq(2.6), it is split up into three parts and rewritten, separating the second order equation
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into transverse and longitudinal components. ( ∂
∂a
→ ∂a is used as a shorthand for the

‘derivative with respect to a’ and ∇2
⊥ = ∂2

x + ∂2
y is the transverse Laplacian operator.)

(∂2
z +∇2

⊥)E(r, t) =
1

c2
∂2

t

∫ t

−∞
dt′ε(t− t′)E(r, t′) +

1

c2
∂2

t PNL(r, t) (2.12)

The terms on the left of eq(2.12) involve the spatial derivatives of the E field, and are

simply

(∂2
z +∇2

⊥)E(r, t) = ((∂z + ik0)
2 +∇2

⊥)Aei(k0z−ω0t+φ0) + c.c, (2.13)

where the arguments of A have been dropped for brevity. The integral term on the right

of eq(2.12) is the most complicated and involves linear dispersion. In the time domain

the linear dispersion represents a convolution, namely

∫ t

−∞
dt′ε(t− t′)E(r, t′) = ε(t) ∗ E. (2.14)

A variety of ways exist to calculate linear dispersion, but a common method that is

applied here, is to expand the dispersion around ω0. In this case a FT is applied to

eq(2.14), followed by the second-order time derivative

∫ +∞

−∞
dte−iωt 1

c2

∂2

∂t2

∫ t

−∞
dt′ε(t− t′)E(r, t′). (2.15)

The upper limit of the integral in eq(2.14) is extended to +∞ to allow a convolution in

the frequency domain. This is acceptable as t > t′ = 0 for the integral to be causal [51].

The time derivative ∂t → iω in the frequency domain. Eq(2.15) then becomes:

1

c2

∫ +∞

−∞
dt e−iωt∂2

t

∫ +∞

−∞
dt′ε(t− t′)E(r⊥, z, t′) (2.16)

=
(iω)2

c2

(∫ +∞

−∞
dt e−iωtε(t)

)(∫ +∞

−∞
dte−iωtE(r⊥, z, t)

)

= −ω2

c2
ε̃(ω)Ẽ(r⊥, z, ω).

Before the back FT (neglecting the 1
2π

prefactors as they cancel out on successive FTs),

the permittivity is rewritten in terms of the wave vector k(ω) =

√
ε(ω)ω

c
, which can be
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expressed as a Taylor expansion around ω0 (or any arbitrary carrier)

− ω2

c2
ε̃(ω)Ẽ(r⊥, z, t) = −k2(ω)Ẽ(r⊥, z, ω). (2.17)

k(ω) =
∞∑

n=0

γn(ω − ω0)
n

n!
; γn = ∂n

ωk(ω) |ω0= kn + iσn. (2.18)

where k and σ refer to the dispersion and absorption respectively. Eq(2.17) is now

expanded using eq(2.18). This allows the extraction of the lower order terms referring to

phase velocity, group velocity and absorption. Thus,

−k2(ω)E(r⊥, z, ω) = −(k0 + iσ0 + k1ω + D̂ω)2E(r⊥, z, ω) (2.19)

where

D̂ω =
∞∑

n=2

σ1 +
γn(ω − ω0)

n

n!
. (2.20)

A final FT returns us to the time domain, where the second term can now be written as:

1

c2
∂2

t

∫ t

−∞
dt′ε(t− t′)E(r, t′) = −(k0 + iσ0 + ik1∂t + D̂)2Aei(k0z−ω0t+φ0) (2.21)

+c.c.

Finally, the last term on the right hand side of eq(2.6) yields:

1

c2

∂2PNL

∂t2
=

1

c2
(∂t − iω0)

2Bei(k0z−ω0t+φ0) (2.22)

=
ω2

0

c2
(1 +

i

ω0

∂t)
2Bei(k0z−ω0t+φ0) + c.c.

Re-combining eqs.(2.13),(2.21) and (2.22), the second-order wave equation (2.12) can

be re-expressed as:

((∂z + ik0)
2 +∇2

⊥)A + (k0 + iσ0 + ik1∂t + D̂)2A =
ω2

0

c2
(1 +

i

ω0

∂t)
2B, (2.23)

where the equation has been separated into its conjugate parts and the common expo-

nential (relating to the carrier frequency) has been removed. If desired, the E field can be

retrieved by inserting the extracted carrier, followed by a summation with the conjugate

solution. This technique is very common in nonlinear optics, the most famous example

being the Non-Linear Schrodinger Equation (NLSE) [45]. In the following section (2.2.2)
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the Nonlinear Envelope Equation is derived, as is the NLSE.

2.2.2 The Nonlinear Envelope Equation (NEE)

In this section the Nonlinear Envelope Equation (NEE) (see [26]) is derived, to demon-

strate the assumptions and general approach taken when producing an envelope prop-

agation model. The Non-Linear Schrodinger Equation (NLSE) is also included, as it

describes one of the most famous equations of nonlinear optics. In general, envelope

methods discard any backward propagating components (assumed to be zero), before

transforming into a moving frame. These simple steps, along with the removal of the

carrier can be used to calculate nonlinear propagation, where an inherent uni-directional

assumption is present. The validity of the above assumption i.e. ‘no backward propagat-

ing pulse’ is discussed in chapter III when dealing with the directional G-variables.

The advantages of a moving frame transformation have already been stated. A variety

of different transformations are possible, but common choices are the phase velocity of ω0,

and the group velocity of the pulse. Moving at the phase velocity of the central frequency

‘freezes’ the carrier oscillations, but if GVD is present the pulse will walk across the frame

at the group velocity. In this case the following moving frame transformation is made

τ = t− k1z (2.24)

ζ = z

∂t → ∂τ

∂z → ∂ζ − k1∂τ ,

which is a transformation into the group velocity moving frame (τ and ζ are the moving

frame time and spatial coordinates respectively). Applying eq(2.24) to eq(2.23) yields

new terms wherever ∂z was present in the stationary frame:

(−k2
0 + 2ik0∂ζ − 2ik0k1∂τ + ∂2

ζ − 2k1∂ζ∂τ + k2
1∂

2
τ +∇2

⊥)A (2.25)

+ (k2
0 − σ2

0 − k2
1∂

2
τ + D̂2)A

+ (2ik0σ0 + 2ik0k1∂τ + 2k0D̂ − 2σ0k1∂τ + 2iσ0D̂ + 2ik1∂τD̂)A =
ω2

0

c2

(
1 +

i

ω0

∂τ

)2

B.
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The next step is to divide through by 2ik0, cancelling the relevent terms. This gives

(
∂ζ +

∂2
ζ

2ik0

+
ik1

k0

∂ζ∂τ +
∇2
⊥

2ik0

)
A +

1

2ik0

(−σ2
0 + D̂2)A (2.26)

+

(
σ0 − iD̂ +

iσ0k1

k0

∂τ +
σ0

k0

D̂ +
k1

k0

∂τD̂

)
A =

ω2
0

c2

(
1 +

i

ω0

∂τ

)2

B.

Eq(2.26) is now re-arranged into a form, facilitating a later approximation into the NEE:

(
1 +

i

ω0

∂τ

)[
(∂ζ + σ0 − iD̂)A +

k0

2in2
0

(1 +
i

ω0

∂τ )B

]
+

1

2ik0

∇2
⊥A (2.27)

=

(
k0 − ω0k1

k0

)
i

ω0

∂τ (∂ζ + σ0 − iD̂)A− 1

2ik0

(∂2
ζ + D̂2 − σ2

0 − 2iσ0D̂)A,

using

i
k1

k0

∂τ∂ζ =
i

ω0

∂τ∂ζ −
(

k0 − ω0k1

k0

)
i

ω0

∂τ∂ζ . (2.28)

[26] and [27] discuss the approximation of k1/k0 → 1/ω0, when the phase velocity is

similar to the group velocity. If the following condition (2.29a) and either (2.29b) or

(2.29c) are satisfied

| ∂ζA |<< k0 | A | (2.29a)

| ∂τA |<< ω0 | A | (2.29b)

| k0 − ω0k1

k0

|<< 1 (2.29c)

we arrive at the NEE of Brabec and Krausz [26]

∂ζA = −σ0A + iD̂A +
i

2k0

(
1 +

i

ω0

∂τ

)−1

∇2
⊥A +

ik0

2n2
0

(1 +
i

ω0

∂τ )B. (2.30)

Eq(2.30) is valid down to a single-cycle, and explains why envelope equations have been

the primary means for calculating long distance nonlinear propagation. Ignoring the

diffraction (∇2
⊥) and absorption term (σ0) and taking D̂ = −(k2/2)∂2

τ (i.e. dispersion up

to GVD is included), yields the famous nonlinear Schrodinger equation (NLSE)

∂ζA =
ik2

2
∂2

τA +
ik0

2n2
0

(
1 +

i

ω0

∂τ

)
B. (2.31)

The NLSE has been extensively used, especially in the case of nonlinear propaga-
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tion through optical fibers [45], as diffraction can be disregarded. Variants of the NLSE

(eq(2.31)) have appeared in the literature, including varying orders of disperion, non-

linearity and Stimulated Ramman Scattering [26–29]. The computational advantages of

envelope equations coupled with their simplicity and accuracy has led to their dominance

in many nonlinear pulse propagation models. Even today envelope techniques are being

developed [35]. However, as pulses become shorter with ever increasing bandwidths, en-

velope descriptions either break down or become increasingly computationally expensive

- involving bandwidths, and discretisations as demanding as direct Maxwell solvers.

2.3 Direct Maxwell solvers

Direct Maxwell solvers have been steadily evolving since World War II [30]. The growing

use of radar technology and the desire to understand the effects of an Electro-Magnetic

Pulse (EMP) triggered military defence programs into investing heavily in solving these

equations. The advent of the Finite-Difference Time-Domain method (FDTD) introduced

by Yee (though the name was later coined by Taflove) in 1966 [52] along with the growing

use of computers caused a surge in direct Maxwell solvers. Yee’s algorithm provided

a powerful and efficient framework in which to solve Maxwell’s curl equations. Since

then, FDTD has undergone continuous development. The accuracy of FDTD is solely

limited by volumetric sampling as no approximations are made. The initial and boundary

conditions are set-up, and the discretisation of space and time allows the evolution of

Maxwell’s equations in that region to proceed.

The fundamental difference between direct Maxwell solvers and envelope techniques

lies in the system of equations being solved. Envelope techniques assume an envelope

and develop a first-order wave equation with respect to that envelope, whereas FDTD

solves Maxwell’s coupled equations in order to evolve the EM field. Because FDTD is

only constrained by numerical resolution, it has become especially important with the

arrival of Terahertz sub-cycle pulses. The accuracy however comes at a cost; explicit

solutions are computationally very demanding, meaning that for long distances and mul-

tiple dimensions, direct Maxwell solvers are cumbersome and slow. The reason for the

slowness lies principally in the convergence criteria. The Courant-Friedrich-Levy (CFL)

bound must be obeyed to ensure stable integration, setting a bound on the time (or

marching) step, relative to the spatial grid (see [30] for a detailed analysis of the CFL

stability criterion).
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2.3.1 Yee’s algorithm-FDTD

To demonstrate Yee’s FDTD scheme, we begin from Maxwell’s curl equations. Though

a 3-dimensional FDTD algorithm is possible, the 1D version is sufficient here. Ex and

Hy are plane waves polarised in the x and y directions respectively, both propagating in

the z direction. Beginning from eq(2.1c) and (2.1d) in section 2.1, yields:

∂Dx

∂t
= −∂Hy

∂z
(2.32)

µ0
∂Hy

∂t
= −∂Ex

∂z
.

Yee’s discretisation scheme uses central differencing in time and space to calculate

new second order accurate field values [52]. This is achieved with both a staggered grid

and staggered initial conditions (e.g. E(t = 0) and H(t = 1/2∆t)). By offsetting the

E and H fields at half grid points in space and time, the following leap-frog scheme is

possible:

Hy|n+1/2
i+1/2 = Hy|n−1/2

i+1/2 −
∆t

µ∆z
(Ex|ni+1 − Ex|ni ) (2.33)

Dx|n+1
i = Dx|ni −

∆t

∆x
(Hy|n+1/2

i+1/2 −Hy|n+1/2
i−1/2 )

Ex|n+1
i = ε−1

i f(Dx|n+1
i , Dx|ni ...)

where ‘i’ and ‘n’ refer to space and time respectively, and f is a function to be determined

e.g. using recursive-convolution methods [31]. The simplest FDTD scheme (eq(2.33)

above) is second-order accurate in space and time. A schematic diagram of a staggered

FDTD grid can be seen in fig. 2.2.

In general, computationally demanding and relatively inflexible methods are needed

to calculate D. This is because there is no longer a simple relationship between D and

E but rather, D = ε ∗ E representing a convolution in time (of the permittivity with

E). This convolution is avoided using Tyrrell’s Pseudo-Spectral Spatial Domain (PSSD)

method [32] which is discussed in the next section.

2.3.2 Incorporating dispersion

Within the context of bulk crystalline materials, linear dispersion describes the finite

response time of the dielectric to the driving E field. Common models for this temporal
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Initial conditions (E)

Initial conditions (H)

t

z

Figure 2.2: Schematic diagram of an FDTD grid, staggered in both space and time. Note
the initial conditions are also offset in space and time by half grid points.

response are Debye and Lorentz dispersion [30]. For narrowband pulses being modelled

with an envelope technique, the dispersion calculation is simply an expansion around the

central frequency to the desired dispersive order (see eq(2.17)). A simple multiplication

of the coefficient(s) with the E field, thus obviates the need for a convolution. The

nonlinearity is then calculated, either with a single PDE (e.g. NLSE) or by coupling

two first order PDEs together. For example in the case of Second Harmonic Generation

(SHG), two coupled equations are simultaneously solved using a split-step method, where

each equation describes the evolution of a different envelope (ω0 and 2ω0).

Directly solving Maxwell’s equations for few-cycle pulses brings with it an additional

challenge. Few-cycle pulses contain huge bandwidths, potentially exposing the pulse to

a larger range of dispersion. To make matters worse, when the system is nonlinear e.g.

SHG, each frequency in the vast bandwidth undergoes frequency mixing. The abundance

of parametric processes simultaneously taking place in a relatively simple wideband non-

linear problem is staggering. For these reasons, the characteristics of wideband nonlinear

pulse propagation remain vastly different to their narrowband counterparts.

Since dispersion plays such a crucial role in nonlinear optics, it is of paramount

importance to accurately model it. As the linear response is much slower than the

nonlinear for the cases presented (see [22] for a discussion of the nonlinear response within

the perturbative limit), the finite response of the nonlinearity is ignored. In FDTD, the

two main methods to calculate linear dispersion are: recursive-convolution and direct time
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integration methods [31]. Both of these approaches use auxiliary equations to calculate

dispersion. The complication stems from dispersion being more natural to the frequency

domain and thus awkward convolutions must be calculated in the time domain. The

Pseudo-Spectral Spatial-Domain (PSSD) technique elegantly avoids these burdensome

convolutions by making use of the Fourier domain, but before describing this approach,

it is instructive to look at some related techniques.

The Pseudo-Spectral Time-Domain (PSTD) method is another direct Maxwell solver

founded on Yee’s FDTD scheme. In FDTD, time and space are staggered and the sim-

ulation proceeds from a spatially defined initial condition by marching forward in time

(see fig. 2.2). Any derivative is dealt with in the pre-defined domain (time in this case)

where, depending on the level of accuracy desired, a 2nd or higher order derivative (e.g.

4th order Runga-Kutta) can be calculated.

Like FDTD, the initial conditions in PSTD are specified in space, but the method of

calculating the derivative is different. Instead of calculating spatial derivatives through

central differencing schemes, a Fourier convolution theorem is used, where ∂Q(x,t)
∂x

→
F−1[−ikxQ(kx, t)]. These spatial derivatives are Nth order accurate (where N depends on

the number of grid points), significantly improving the efficiency of problems involving

wideband dispersion, or other nonlinear processes that demand a high level of spatial

resolution. The linear polarisation however is calculated in time and remains a challenging

part of the problem. If FDTD is a ‘tz’ method then PSTD is ‘tk’, where ‘t’ refers to the

direction the iteration marches forward, and ‘k’ refers to the domain of the derivative

(i.e. the spatial Fourier domain).

The PSSD technique is the natural progression from PSTD, but contains additional

advantages. The initial conditions are stored in time (as opposed to space) and the

algorithm iterates forward in space (z). Using a Fast Fourier Transform (FFT) the

derivatives in time are calculated using the Fourier convolution theorem, extending the

advantages of PSTD. Not only does it allow an Nth order accurate derivative (in time)

to be calculated but also simplifies dispersion. Because the derivative of the D vector

is with respect to time (∂tD), a simple multiplication of the permittivity ε0ε(ω) and an

Nth order accurate derivative (iω) can be applied simultaneously. The PSSD algorithm

is laid out as follows:

Ex(t)|ni = Ex(t)|ni−1 − µ0∆zF−1[iωF [Hy(t)|i−1/2]] (2.34)

Hy(t)|ni+1/2 = Hy(t)|ni−1/2 − ε04zF−1[iωDx(ω)|i]
Dx(ω)|i = ε0ε(ω)F [E(t)|i] + P nl,
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where the nonlinear polarisation is again assumed to be instantaneous, and can be added

linearly (in the frequency domain) after calculating the dispersive contribution namely

ε ∗ D = F−1 [ε0ε(ω)E(ω)] + P nl. A backwards FT is then applied to the sum of the

derivatives. In a similar manner to PSTD, and for identical reasons, PSSD’s E and H

are not staggered in time (but remain staggered in space). PSSD allows dispersion to be

handled in the frequency domain and run times are at least equivalent to FDTD models.

PSSD’s flexibility in dispersion management is the key to its success when modelling

ultra-wideband pulses. It is later used to understand the broadband dispersive char-

acteristics of Carrier Wave Shocking (CWS), and forms the backbone of the dispersion

management applied to directional G-variables [34] in the next chapter.

2.4 Conclusion

This chapter began with envelope descriptions based on Maxwell’s equations. When

envelopes are applied to the second-order wave equation, various propagation models

(describing the complex envelope), naturally arise. These equations have the advantage of

being both directional and first-order with respect to the direction of integration. Various

approximations lead to a variety of alternatives, all of which contain some underlying

assumptions. In this chapter, the NEE and the more famous NLSE were derived from

Maxwell’s equations, to demonstrate the more traditional approach to nonlinear pulse

propagation. The advantages of envelope equations lie in their simplicity and speed of

computation.

Shorter pulses require more robust descriptions, and have encouraged the development

of different Maxwell solvers. One of the challenges faced by few-cycle pulses, is how

to accurately model dispersion. An assortment of methods exist to meet this need,

but they are not always efficient, especially when the modelling of exotic dispersion is

required. PSSD is an efficient technique, which can be easily adapted into other numerical

approaches and forms an important part of G-variables in the following chapter.

The following dilemma exists when choosing a method to calculate nonlinear pulse

propagation: Is it better to improve faster envelope calculations, that are being pushed

to their effective limits, slowing them down in the process, or is it preferable to explicitly

solve Maxwell’s equations, paying the price of restrictively slow calculations?

As we shall see later, for most dielectric materials, envelope equations can be devel-

oped to be sufficiently accurate so as to handle a diverse range of nonlinear propagation.

38



Chapter 3

Directional G-variables

3.1 Introduction

3.1.1 Brief history and motivation

At the start of a paper titled ‘Ultrashort-Pulse Generation by Q-Switched Lasers’ (1970),

J. A. Fleck introduced a pair of directional field variables by re-arranging Maxwell’s

equations [33]. A brief analysis followed, where these variables were used to separate an

EM beam into forward and backward propagating components by combining the electric

and magnetic fields. The idea was not developed further. A similar concept did however

arise in [53, 54], where projection operators were used for directional pulse propagation.

Another construction involving spatially varying permittivities was developed in [55, 56],

describing propagation through gratings, where the fields in both forward and backward

directions were retained.

The need to accurately model few-cycle pulses is more pertinent now than ever. As

standard envelope techniques are stretched to their effective limits, the use of direct

Maxwell solvers is becoming more widespread [31, 32, 45]. Despite the increase in com-

putational power available, the resources necessary to solve large multi-dimensional non-

linear problems remains restrictive. This either limits the number of dimensions included,

or reduces the distance of propagation possible. The application of directional variables

to these problems may provide a solution.

The advantages, and the motivation for their development are as follows:

1. Computational speed-up. If the EM field can be separated into forward (G+)

and backward (G−) propagating components, it is usually possible to select a di-

rection in which most of the EM energy travels. In such cases, if the backward

propagating field is small enough to be ignored, Maxwell’s curl equations can be
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reduced to a single first order PDE. A moving frame can then be incorporated

providing further computational gains.

2. Measurement of backward reflected fields. It is common in nonlinear optics

to ignore small backward propagating components. Recently, claims of generating

backward-propagating second harmonic fields were made [57] (another example of

envelope equations breaking down). Directional G-variables enable the magnitude

of any backward propagating components to be calculated. Thus, the validity of

discarding the initial backward component can be assessed, or the magnitude of

any other subsequently generated field determined.

3. Additional insight. G-variables provide additional insight into nonlinear prob-

lems and simulations. Furthermore, their application does not demand their use

throughout a simulation, since they can be constructed at any stage from E and

H fields if desired.

In this chapter the G-variables are first introduced and the original definitions are

then generalised to parameterise dispersive media. A re-derivation of Maxwell’s equations

with G-variables is included to highlight the fidelity of these directional variables to EM

theory. As we shall show, the precise definition of the directional variables depends on

the choice of the so-called “reference parameters”. These reference parameters play a key

role, when considering the forward and backward field contributions.

The directional aspect of G-variables is rather subtle, as direction refers to the energy

flux, not necessarily the direction of propagation. Most cases in this chapter consider

forward propagating G− fields that arise from linear dispersion. There are however some

exceptional cases where, backward-propagating fields can be generated.

The chapter includes simulation results, to demonstrate the application of G-variables

to nonlinear pulse propagation and the effect different reference parameters have. Results

showing backward propagating pulses are also illustrated explaining their magnitude and

nature. By reducing the amount of backward waves present in a G± pair, the forward only

field can be exclusively used in the calculation. This chapter lays down the foundations

for the forward-only approximation; an approximation that is necessary to capitalise

on the uni-directional nature of typical pulse propagation problems. [Section ∗3.3 is a

re-derivation of Maxwell’s equations that can be skipped over at first reading.]
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3.1.2 G±: Early definitions

The original G± definitions introduced for a plane polarised pulse (Ex(t) and Hy(t)),

propagating in the +z direction of a non-dispersive medium [33] were:

G±(t) = ε1/2Ex(t) ± µ1/2Hy(t). (3.1)

The substitution of eq(3.1) into the coupled, sourceless Maxwell equations, enables the

EM field to be rewritten into forward (+z) and backward (−z) components. Maxwell’s

equations therefore appear as

√
εµ∂tG

+ + ∂zG
+ = 0 (3.2)

G− = 0,

where the permittivity ε and permeability µ are constants. The EM fields are now in

directional form, with no loss of generality for a simple non-dispersive case.

3.2 Generalising the model

3.2.1 Dispersive references

As mentioned in chapter II, modelling dispersion is essential in any realistic nonlinear

problem. The original definitions of G± are dispersionless and are therefore very limited

in their potential application. By incorporating dispersion into the permittivity (ε), and

permeability (µ) of eq(3.1) it is possible to generalise G± to include dispersion. The G±

definitions can be generalised in the time and frequency domains so that

~G(t)± = αR(t) ∗ ~E(t)± ~u× βR(t) ∗ ~H(t) (3.3)

Go(t) = ~u · [βR(t) ~H(t)] (3.4)

and

~G(ω)± = α̃R(ω) ~E(ω)± ~u× β̃R(ω) ~H(ω) (3.5)

Go(ω) = ~u · [β̃R(ω) ~H(ω)]. (3.6)

Here “ ˜ ” indicates the frequency domain, and the subscript “R” means Reference.

α̃R =
√

ε̃R, and β̃R =
√

µ̃R, are referred to as ‘reference parameters’, as are their Fourier

back transforms αR(t) and βR(t) (respectively). In all simulations βR = β0 =
√

µ0, and
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ε0 and µ0, are included in εR and µR respectively. ~u is a unit vector in the direction of

propagation, and “∗” denotes a convolution in time. The superscript “ o ” represents

the longitudinal part of the EM field that has not been picked out by the “×” term.

The choice of ε̃R(ω) in the construction of G± is completely arbitrary and can be

chosen to be a constant or a function of frequency, providing enormous flexibility in the

choice of reference. However, in general there are three common choices for the reference

parameters:

1. α̃R(ω) =
√

ε0. The most basic construction of G±, where the reference permittivity

is chosen from the vacuum permittivity.

2. α̃R(ω) = κ
√

ε0. In this case, a constant reference permittivity κ is chosen to par-

tially match the dispersive medium. For example, in a medium where the refractive

index ranges between 1.4-1.6, κ = 1.5 might be chosen as a compromise.

3. α̃R(ω) =
√

ε0ε̃(ω). In this case α̃R(ω) fully matches the permittivity of the medium

ε̃(ω).

The choice of reference permittivity (α̃R(ω)) has a large effect on the magnitude of

G−. An example (of case 2 above) that will be used later, is the average of ε̃r(ω) over

the pulse bandwidth, namely

εav =
1

N

N∑
i=1

ε̃r(ωi), (3.7)

which in the case of fused silica is ' 2.70 (αav =
√

εavε0).

These reference parameters represent the most practical choices, but in theory there

is an infinite number of G± pairs that can be used to construct the ~E and ~H fields. It is

possible to decompose ε̃ into correction (“C”) and reference(“R”) components, and this

is necessary for cases where α̃2
R does not match ε̃, namely

ε̃ = α̃2 = α̃2
R + α̃Rα̃C (3.8)

µ̃ = β̃2 = β̃2
R + β̃Rβ̃C . (3.9)

As we shall see later, the magnitude of G− is very important when considering a G+

only description. Inverting the G± definitions enables the reconstruction of ~E and ~H as
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follows:

~E(ω) =
1

2α̃R(ω)
[~G+(ω) + ~G−(ω)] (3.10)

~H(ω) =
1

2β̃R(ω)
~u× [~G+(ω)− ~G−(ω)] +

~uGo(ω)

β̃R(ω)
. (3.11)

3.2.2 Energy density and Poynting vector

The Poynting vector (~S) reveals some directional aspects of the G-variables. In the

general case, ~S takes on a complicated form (because the cross product in time turns

into a convolved cross product in frequency space):

~S = ~E × ~H (3.12)

~S =
1

4
{(F−1[α̃−1

R ] ∗ ~G+) · (F−1[β̃−1
R ] ∗ ~G+)

− (F−1[α̃−1
R ] ∗ ~G+) · (F−1[β̃−1

R ] ∗ ~G+)}~u,

but in the simpler case of dispersionless reference parameters, yields

~S =
1

4
√

αRβR

[(
~G+ · ~G+

)
−

(
~G− · ~G−

)]
~u. (3.13)

Eq.(3.13) highlights the directional flux of G±. The dot product ensures that
(

~G± · ~G±
)

is positive, and is therefore directed in either the positive or negative direction (±~u).

In general EM theory the energy density appears as:

U =
1

2
( ~D · ~E + ~B · ~H), (3.14)

but with G± a rather complicated form arises. For the special case of a non-dispersive

reference, the result is

U =
1

8

([
ε

εR

+
µ

µR

]
∗ ~G+

)
· ~G+ +

1

8

([
ε

εR

+
µ

µR

]
∗ ~G−

)
· ~G− (3.15)

+
1

8

([
ε

εR

− µ

µR

]
∗ ~G+

)
· ~G− +

1

8

([
ε

εR

+
µ

µR

]
∗ ~G+

)
· ~G−,

(a fuller description can be found in [51]).
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3.3 ∗Re-deriving Maxwell’s equations

1 In order to demonstrate the generality of G-variables, Maxwell’s equations are now

re-derived in terms of G± as presented in [34]. The two sourceless curl equations are

∇× ~E = −iωβ̃2 ~H (3.16)

∇× ~H = +iωα̃2 ~E, (3.17)

in frequency space. Multiplying eq(3.16) by “α̃r” and eq(3.17) by “β̃r~u×”, followed by

taking their sums and differences, yields

∇× α̃R
~E ± ~u× (∇× β̃R

~H) = −iωα̃Rβ̃2 ~H ± iωβ̃Rα̃2~u× ~E. (3.18)

The left hand side of eq(3.18) can be re-arranged to form the ~G± of eq(3.5) using ~u ×
(∇× ~H) = ∇× (~u× ~H) +∇(~u · ~H):

∇× ~G± = −iωα̃Rβ̃2 ~H ± iωβ̃Rα̃2~u× ~E ∓∇(~u · β̃R
~H). (3.19)

At this point it is useful to manipulate the right hand side of eq(3.19) so that all the

terms can be replaced by ~G±. Using the vector identity

~H = ~u× (~u× ~H)− (~u · ~H)~u (3.20)

eq(3.19) gives

∇× ~G± = −iω(α̃Rβ̃2~u× (~u× ~H)− α̃Rβ̃2(~u · ~H)~u∓ α̃2β̃R(~u× ~E))∓∇Go. (3.21)

Using eq(3.8) and eq(3.9), eq(3.21) can be re-written as

∇× ~G± = ∓iωα̃Rβ̃R~u× ~G± ∓ iωα̃C β̃R

2
~u× [~G+ + ~G−]− iωα̃Rβ̃C

2
~u× [~G+ − ~G−] (3.22)

where the following transverse components have been decoupled

∇Go = ±iωα̃Rβ̃R~uGo ± iωα̃Rβ̃C~uGo. (3.23)

To fully represent Maxwell’s equations the transverse part of the time evolution of ~E

must also be included, to correct for the cross-product“β̃ ~u×” applied to eq(3.17). For

1This re-derivation of Maxwell’s equations can be omitted at first reading. A fuller version can be
found in [51].
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this reason ∇ · (~u× ~H) = ~u · (∇× ~H) is added [34], where the correction term is

∇ · [~G+ − ~G−] = −iωα̃2β̃R~u · [~G+ + ~G−]. (3.24)

Thus eq(3.22), eq(3.23) and eq(3.24) are Maxwell’s equations (eq(3.16) and eq(3.17))

re-written in terms of G-variables.

Moving frame

As computational efficiency remains one of the key motivations for applying G-variables,

a moving frame transformation is now applied. A number of choices are possible

• Phase velocity of central frequency. This has the advantage of freezing the

carrier oscillations, allowing coarser sampling. The pulse will however walk away

from the centre of the time window because of the difference in group velocity.

• Group velocity. This choice has the advantage of retaining the pulse in the centre

of the window, but the carrier oscillations move in this frame of reference.

• Dispersive frame. This choice is composed of a set of reference frames, where

each frequency component has its own respective reference frame (moving at its

phase velocity).

The following represents a moving frame transformation:

t′ = t− γ/cf (3.25)

~r′ = ~r, (3.26)

where γ is the distance travelled in the direction of ~u, and cf = 1/αfβf is the speed of

the moving frame at a particular frequency. (αf and βf are the moving frame parameters

at a particular frequency which can be made to be dispersive.) The partial derivatives

now become

∂t = ∂t′ (3.27)

∇ = ∇′ − ~u

cf

∂t.
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Transforming eq(3.22) into a moving frame gives

∇′ × ~G± = (3.28)

∓ iωα̃Rβ̃R(1− ζ)~u× ~G± ∓ iωα̃C β̃R

2
~u× [~G+ + ~G−]− iωα̃Rβ̃C

2
~u× [~G+ − ~G−],

where

ζ =
αfβf

αRβR

. (3.29)

A particularly compact choice for the moving frame velocity is αRβR, as it removes

the first term on the right hand side of eq(3.28). However, making the moving frame

dispersive can be problematic in nonlinear environments because of nonlinear dispersion.

Dispersive moving frames are also less intuitive and less computationally stable than

simpler moving frames. It is important to note the trade off in efficiency here; though a

co-moving frame assists the integration of G+, it impedes it for a backward propagating

G−, as the field travels at twice the speed in the opposite direction. A speed-up is

therefore attainable if only G+ fields are used.

3.4 Coupled G±

Having re-derived Maxwell’s equations in the previous section, the use of G± as an

alternative direct Maxwell solver now forms the focus of the remainder of the chapter.

To begin, we consider the case of plane polarised fields travelling in the +z direction of

a non-magnetic material. Eq(3.22) can now be written as

∂zG
± = ∓iωα̃Rβ̃R(1− ζ)G± ∓ iωα̃C β̃R

2
[G+ + G−]. (3.30)

3.4.1 Vacuum reference

To illustrate the use of G±, a vacuum reference αR =
√

ε0 is chosen for a general case

of linear dispersion and arbitrary instantaneous nonlinearity. The choice of a vacuum

reference does not match the permittivity of the material, producing a significant co-

propagating G−. The correctional part of the permittivity can be separated into linear
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and nonlinear components. Thus

ε̃(ω) = ε̃R(ω) + ε̃L(ω) + ε̃NL(ω) (3.31)

= α̃2
R + α̃Rα̃L + α̃Rα̃NL,

results in the following nonlinear propagation terms

∂zG
± = ∓α0β0

(
∂tG

± +
χ(1)

2
[G+ + G−] +

χ(2)

4α0

[G+ + G−]2 +
χ(3)

8α2
0

[G+ + G−]3 + ...

)
.

(3.32)

The advantage of using dispersionless reference parameters lies in the simplicity of the

integration method. In order to calculate the nonlinearity, E must somehow be retrieved

from G±. If G± was constructed from dispersionless reference parameters, this is simply:

E(t) = G(t)++G(t)−
2αR

. On the other hand, if a dispersive reference was used, either some

approximation or a deconvolution becomes necessary. Unfortunately, the disadvantage

of using a dispersionless reference (especially a vacuum) is that the magnitude of the

co-propagating G− can be too large to ignore. To illustrate the effect of the reference,

assume the following pulse:

E(t) = E0cos(ω0t + φ)sech(0.15ω0t) (3.33)

where ω0 = 1.52 × 1015 rad s−1 (1240 nm wavelength). A vacuum reference αR =
√

ε0

produces the G± combination in fused silica and can be seen in fig 3.1, highlighting the

significance of the G− field.

A compromise for αR that substantially reduces G− without the complications of

dispersion, is the partially matched reference described in the next section.

3.4.2 Partially matched reference

Indeed a number of choices exist to partially match the material dispersion. One of

these is the average permittivity of the host medium over the spectral domain of interest

(see eq(3.7)). In order to ensure numerical stability in the simulations, the relative

permittivity εr(ω) was held in the range (1 6 εr < 7). Though in general the Kramers-

Kronig relationship describing the real and imaginary parts of the linear response should

enforce this, we found that a permittivity of more than ' 7 led to numerical instability

even when including the imaginary component. The real part of the permittivity was

thus bounded, and the imaginary component set to zero. The average εr(ω) over the
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Figure 3.1: αR =
√

ε0. Vacuum reference in fused silica. The blue and red pulses
represent G+ and G− respectively. The large G− can clearly be seen in the figure.

entire frequency domain was used to determine εav. For fused silica εav ≈ 2.7ε0. This

choice significantly reduced G−, but a noticeable co-propagating G− still remained. Fig

3.2 shows, G± for αR = αav =
√

εav

Though αav undoubtedly reduces the co-propagating G−, it does not adequately weigh

the contributions of the relative permittivity, because most of the pulse energy is con-

tained in the region closest to the central frequency. Fig 3.3 plots the Sellmeier equation

of fused silica εr(ω), across the pulse bandwidth.

An improved choice for αR, is αR =
√

ε0εr(ω0), reducing the magnitude of the co-

propagating G− further still. In such a case (fused silica), perhaps the size of G− is small

enough to be ignored? Later we discuss the contexts in which this assumption is valid.

Fig. 3.4 shows G± for αR =
√

ε0εr(ω0).

In this case, the terms arising during propagation from a dispersionless reference are

∂zG
± = ∓αRβ0

(
∂tG

± +

(
ε0εr

εR

− 1

)
[G+ + G−]

2
+

∑
n

ε0χ
(n)

2nαn+1
R

[G+ + G−]n

)
. (3.34)
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Figure 3.2: αav =
√

εavε0 =
√

2.70ε0. G− has been significantly reduced, but remains
visibly present. Note that the G− in this case is in phase with G+.

3.4.3 Dispersive reference

Though in some cases a well chosen dispersionless reference may suffice, to completely

match εr(ω), the full dispersion must be included. Fig 3.5 shows how a perfectly matched

reference permittivity completely removes the co-propagating G− field.

The result of using dispersion to construct G± is that the linear correction term in

eq(3.34) goes to zero, leaving only the nonlinear correction terms. Because G− is initially

zero, a forward only approximation can be justified as long as no significant amount of

G− is produced during a simulation. The forward-only approximation uses only G+ to

describe the nonlinear propagation.

There are however some disadvantages of using a dispersive reference. In the case

of a dispersionless reference, the nonlinearity can simply be calculated in time: En →
(G+(t)+G(t)−

2αR
)n. However, in the case of a dispersive reference, any time domain nonlin-

earity is no longer trivial as αR ∗E(t) is a convolution in time. An FT is then needed to

deconvolve αR(ω) from G̃(ω), before performing another FT: E(t)n → (F−1[F [G+(t)+

G(t)−] · 1
2α̃R(ω)

])n. This procedure adds an extra FT to the integration, which increases
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Figure 3.3: Sellmeier equation plotted for fused silica, as a function of frequency (blue).
The initial pulse bandwidth, and permittivity have also been plotted (red) for comparison.

the simulation run time by at least a third after making a forward-only approximation.

3.5 Numerical approach

The practicalities of using G-variables as a numerical method are now compared to the

PSSD method. In PSSD [32], initial conditions are stored in time and the simulation

marches forward in space. The two-fold advantage of PSSD lies in the combination of

both the natural application of linear dispersion and the Nth order accurate derivative

taking place within the same computational operation (namely ∂tP ). The nonlinear

response is assumed to be instantaneous, and is therefore calculated in time. Fig 3.6

describes the PSSD method with a flow diagram, where the standard PSSD simulation

requires five F.T.s.

The G-variables method shares many similarities with PSSD, since they exploit the

same time saving steps. Like PSSD, the initial conditions are defined in time and the sim-

ulation marches forward in space. The combination of a pseudo-spectral derivative with

the linear dispersion calculation also takes place. Unlike PSSD however, the simulation
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Figure 3.4: αR =
√

ε0εr(ω0) for fused silica. A very significant reduction of G− can be
seen, even with the application of a dispersionless reference parameter.

uses the co-located G+ and G− fields to integrate forward in space using a staggered leap

frog method. Fig 3.7 describes the computational steps involved in a coupled G-variables

simulation, where a dispersive reference has been used.

The PDE used to calculate the propagation of G± using dispersive references is the

same as eq(3.34), except that an extra FT is necessary to deconvolve the dispersive

reference. The choice of reference parameters greatly influences the approximations that

can be applied. Table 3.1 summarises the differences between various parameter choices,

and how they affect the computation.

No approximations have been made at this stage, meaning that the coupled G-

variables method is comparable in computational speed to PSSD. The forward only

approximation must be invoked in order to exercise any computational advantage, and

this is the topic of chapter IV.
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Figure 3.5: αR =
√

ε0εr(ω). G− is now zero (red) with a perfectly matched reference
permittivity. The G+ field (blue) fully describes the pulse in this case.

Table 3.1: Comparison of reference parameters (αR)

Reference Vacuum reference Partially matched reference Dispersive reference

αR =
√

ε0 αR = κ
√

ε0 αR =
√

ε0εr(ω)

G± Definitions Dispersionless Dispersionless Dispersive
G− : Significant Sometimes significant Negligible
Nonlinearity: No deconvolution req. No deconvolution req. Deconvolution req.
Number of FTs req.: 5 5 6
Possibility of G+ No Under certain conditions Yes

Initial conditions

Initial conditions play an important role in the definition and computation of G±. The

information present at the beginning of a simulation is E(t) and the material dispersion

ε̃(ω). For any EM pulse to propagate forward, E and H must be accurately matched to

each other. If not, a backward propagating pulse emerges, analogous to a reflection from
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Initial Conditions E(t) Η(ω) + ε (ω)

Initial Conditions H(t)
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NLr
ιωε   [Ε(ω)] ιω [      (ω)]

 r

Figure 3.6: Flow diagram of the computational steps in a standard PSSD calculation.
Starting from E(t) and εr(ω) (bottom), H(t) can be constructed. The initial conditions
are in the dashed box at the bottom of the figure. Note the square brackets ‘[ ]’, indicate
the number of Fourier Transforms used in the iteration step.

an interface. To avoid this, the following relationship is used

H(t) = F−1

[√
ε0ε̃r(ω)

µ0

F [E(t)]

]
, (3.35)

where ε̃r(ω) is the material dispersion [32], and the initial conditions have been chosen to

describe a forward only propagating pulse. Backward-propagating G− waves only arise

from mismatched initial conditions, interfaces or very strong nonlinearity. (This contrasts

to co-propagating G− waves that occur in cases where reference parameters are not well

suited to the linear dispersion.) After deriving H, the choice of reference (parameter)
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Figure 3.7: Flow diagram of the computational steps involved in a coupled G± simulation.
Starting from E(t), and εr(ω), G± can be constructed. The initial conditions are in the
dashed box at the bottom of the figure. Note the square brackets ‘[ ]’, indicate the
number of Fourier Transforms used.
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permittivity is made. A dispersionless reference is applied in time, as follows:

G(t)± =
√

εRE(t)±√µRH(t), (3.36)

whereas a dispersive reference is applied in the frequency domain

G(t)± = F−1
[√

ε̃R(ω)F [E(t)]±
√

µ̃R(ω)F [H(t)]
]
. (3.37)

3.6 Results

This section presents results from simulations involving G±. Two examples are included

to demonstrate the application of G-variables to nonlinear problems; nonlinear propaga-

tion in fused silica, and SHG in periodically poled lithium niobate. This emphasises the

importance of reference parameters, and their effect on the magnitude of G−. In these

cases the G− field that is produced is mostly co-propagating, and occurs from mismatches

between αR and the material dispersion.

3.6.1 Propagation in fused silica: χ(3)

The first example involves a ∼ 6 fs pulse propagating in fused silica over a distance of

40 microns (λ0 = 1240 nm) in the presence of a χ(3) nonlinearity (χ(3)E2
0 = 0.02). Fig.

3.8 shows the initial pulse where a perfectly matched reference has been used for clarity

(only G+ is present). It is useful to refer to the dispersion profile of fused silica (fig. 3.3),

when considering a choice for αR.

The various G± combinations at the end of the propagation can be seen in fig. 3.8,

where the following reference parameters were used: αR =
√

ε0, αR = 1.5
√

ε0, αR =√
ε0εr(ω0), and αR =

√
ε0εr(ω). αR =

√
ε0 produces the largest G−, due to it having the

largest difference with the material dispersion, especially at the central frequency (ω0).

αR = 1.5
√

ε0 reduces G− considerably, because its reference partially matches that of the

medium. αR =
√

ε0εr(ω0) almost completely removes G− as does αR =
√

ε0εr(ω).

Surprisingly there is little difference between αR =
√

ε0εr(ω0), and αR =
√

ε0εr(ω).

This is because most of the energy is present around the central frequency, and thus any

discrepancy between αR and
√

ε0εr(ω) corresponds to a very small energy contribution.

The minuscule G− in the case αR =
√

ε0εr(ω), arises during the propagation, and is

generated from the nonlinear driving term; the coupling of G+ with G−. Though it is

easy to factorise linear dispersion into αR, it is impossible to do so for nonlinear dispersion.

This is not generally a problem given the trivial size of G−.
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Figure 3.8: Initial pulse used in the propagation, where αR =
√

ε0εr(ω).

3.6.2 SHG in lithium niobate: χ(2)

Results from the propagation of G-variables in periodically poled lithium niobate are

now presented, where a plane polarised field is assumed. The polarisation of the second

harmonic is the same as the driving field, as lithium niobate supports e + e → e interac-

tions [46]. The initial pulse has a ∼10 fs duration at a central wavelength of λ0 = 1400

nm.

During the 100 micron propagation, a second harmonic field was generated through

Quasi-Phase Matching (QPM). Fig. 3.10 shows the growth of the second harmonic during

the propagation, and the final spectrum (αR =
√

ε0εr(ω) ensures no G− present).

The final pulse contains a significant amount of second harmonic and is illustrated in

fig. 3.11, where it has travelled slower than the fundamental because of normal dispersion.

The reference parameter choices used here were αR =
√

ε0, αR =
√

ε0εr(ω0), and αR =√
ε0εr(ω).

As expected, the results show that using a vacuum reference produces the largest

co-propagating G−, whilst using a partially or fully matched reference parameter reduces

it.
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Figure 3.9: 40 micron propagation through fused silica with different reference
parameters.(top-left) αR =

√
ε0 produces the largest G− field. (top-right) αR = 1.5

√
ε0

reduces G− significantly. (bottom-left) αR =
√

ε0εr(ω0) almost completely removes G−,

by matching the medium at the central frequency. (bottom-right) αR =
√

ε0εr(ω) almost
completely removes G−. The minuscule quantity remaining arises from the nonlinear
propagation itself, and is impossible to remove.

Like the case of fused silica, choosing αR =
√

ε0εr(ω0) almost completely removes

G−. This is surprising at first, because the dispersion profile of lithium niobate varies

more than fused silica. However, looking at εr(ω) in the vicinity of ω0 (see fig. 3.12),

suggests that choosing αR =
√

ε0εr(ω0) will provide a good match, as the profile there is

relatively flat.

These results demonstrate that G-variables can be as versatile as more traditional

direct Maxwell solvers (PSSD) when applied to nonlinear pulse propagation. They

also strongly suggest that well chosen dispersionless reference parameters reduce the

co-propagating G− almost as much as dispersive references. This leads to the potential

computational gains of applying a dispersionless reference to a forward-only approxima-
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Figure 3.10: QPM in periodically poled lithium niobate where the poling period is 12.2
microns (effective nonlinear strength bE0 = 0.01). (left) Generation of second harmonic
during propagation. (right) Final intensity spectrum for G+, where a significant amount
of second harmonic can be seen.

tion.

3.7 Backward-propagating G−

So far, the G− fields considered have been co-propagating. These fields move with the

forward going G+ pulse, and are present in order to describe the E and H fields. They are

G−, by virtue of their flux being directed in the−z direction. We have shown that through

a careful choice of reference parameters, the co-propagating G− fields can be almost

completely removed. It is also clear from section 3.6 that under normal conditions, no

significant backward propagating G− fields are generated over the course of a simulation.

There are however G− fields, that not only point, but also travel in the −z direction.

These fields are commonly discarded in simulations or removed with the assumptions

underlying a uni-directional model. By using G-variables it is possible to evaluate their

magnitude. There are two ways in which a backward travelling wave may be produced:

• Boundary conditions. If the E and H fields are not properly matched a back-

wards travelling wave will be generated. This commonly occurs in the first steps of

a simulation, or when a pulse strikes a boundary.

• Strong nonlinearity. Even if a pulse is well constructed (i.e. E and H are per-

fectly matched to the medium at the outset), a G− field can be generated through

the nonlinear coupling of G+ with G−. This is claimed in [57] where backward gen-

erated second harmonic fields are predicted under certain conditions (see section
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Figure 3.11: G± after 100 micron propagation in periodically poled lithium niobate.
(top) αR =

√
ε0 produces the largest G−. (middle) and (bottom) αR =

√
ε0εr(ω0) and

αR =
√

ε0εr(ω) (respectively), almost completely remove G−. The results qualitatively
agree with those from fused silica.
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Figure 3.12: Sellmeier equation for lithium niobate (εr(ω)). The bandwidth of the initial
pulse can be seen in the figure (red).

3.7.2 below).

3.7.1 Boundary conditions

To demonstrate the effects of backward propagating fields (from an interface), a pulse

striking a refractive index boundary (εr = 1.5) was modelled. Fig. 3.13 shows the G±

fields generated in this situation where a sudden change in εr, has produced a backward

propagating G− field.

Mis-matched initial E and H fields produce the same effect. By carefully deriving the

H field from the E field and avoiding interfaces, the production of this type of backward

propagating G− field can be avoided.

3.7.2 Nonlinearly generated G−

It was claimed in [57] that under certain conditions, Second Harmonic Generation (SHG)

in the backward direction is possible. These conditions attempt to quasi phase-match the

second harmonic in the backward direction. Following the parameters outlined in [57],
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Figure 3.13: Partial reflection produced by a pulse striking an interface (εr = 1.5).

simulations using PSSD were carried out. A pulse with a peak intensity of 1012 W/cm2

and a central wavelength of 800 nm was used for driving the backwards SHG. The χ(2)

medium was lithium niobate with a poling period of 0.19 µm. During the simulation, the

pulse propagated 6 microns experiencing QPM, followed by a further 30 microns without

any second-order nonlinearity. The latter part of the propagation was performed to

produce well separated G± fields. In this case, G± were artificially reconstructed at the

end of the simulation using dispersive references and can be seen in fig. 3.14.

The nonlinearity in any propagation drives both the G+ and G− fields, since it depends

on E, which contains both G+ and G−. Due to the lack of phase-matching in the

backward direction, the magnitude of backward propagating G− fields remain close to

zero (typically one part in 106). Only in exceptional cases such as [57], can any significant

field be generated.

The results of this chapter clearly indicate that in nearly all cases, G− can be forced to

play a small part. This applies to both backward propagating G− fields, and those that

are co-propagating. Backward-propagating fields can be avoided by matching E to H and

avoiding interfaces, whereas co-propagating G− fields can be eliminated by matching the

reference parameters to the linear dispersion of the medium. The only exception being
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Figure 3.14: Backward generated fields. The poling period (lithium niobate) was opti-
mised for QPM in the backwards direction, and has generated a backward propagating
G− field containing some second-harmonic.

the highly unusual case of QPM in the backward direction. As this is more of an anomaly

than a general result, a forward-only approximation appears possible, and is the topic of

the next chapter.

It is also worthwhile noting that the lack of backward propagating G− fields also

circumvents any problems arising from waves travelling in the ‘wrong’ temporal direction.

As the initial conditions of any ‘tk’ or ’tz’ simulations are stored in time, any backward

propagating wave appears to travel backwards in time [34]. This is merely the way the

simulation represents a wave travelling in the (−z) direction, but should nonetheless be

noted.

3.8 Conclusion

The directional G-variables have been introduced in this chapter. They allow an EM

field to be separated into forward and backward components, where forward and back-

ward refer to the direction of the EM flux. By generalising the G± definitions, Maxwell’s
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equations can be re-derived, and a variety of different reference parameters become possi-

ble, which can either be dispersive or dispersionless. These reference parameters control

the relative magnitudes of any co-propagating G± pair. The co-propagating G− field

can therefore be minimised by choosing appropriate reference parameters. Incorporating

the entire linear dispersion profile into the G± definitions is the surest way to reduce

the magnitude of any co-propagating G− field. On the other hand, results show that

well chosen dispersionless reference parameters are almost as efficient (at reducing G−),

where the phase-velocity at the central frequency is used to construct the G± fields.

The nature of counter-propagating G− fields has also been discussed. Unless some

contrived situation exists (e.g. QPM in the backwards direction), the lack of phase-

matching in the backwards direction ensures that there is no generation of G− fields. Of

course, interfaces are an exception, and may produce backward propagating G− fields

as expected. These results strongly suggest that under certain circumstances nonlinear

propagation can be modelled using only G+, making a forward-only approximation. The

validity of this assumption is discussed in the next chapter.
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Chapter 4

The Forward-Only Approximation

Chapter III showed how a direct Maxwell solver can be written in the form of G-variables.

The directionality of G-variables allows the flux of the EM field to be separated into

forward and backward components. In the vast majority of cases G− fields can be reduced

to insignificance through a careful choice of initial conditions and reference parameters;

moreover the amount of G− produced during the course of a simulation is minuscule unless

some exotic nonlinearity (QPM in the backwards direction), or interface is involved. As

these conditions rarely hold or can be avoided, a forward-only approximation can be

adopted yielding all the computational advantages offered by reducing a bi-directional

problem to a uni-directional one.

This chapter follows on from the last, examining the accuracy and feasibility of the

forward-only approximation. We now show how the G− field can be carefully factored

out of the propagation model under certain conditions. To achieve significant compu-

tational gains, the dispersion contained within the reference parameters must somehow

be approximated. By applying these ideas, a general approach using only the G+ field

is devised, that may be extended to a number of alternative propagation models. The

first model is simply the application of the forward-only G-variables, and is termed G-

Maxwell. The second model involves a bandwidth unlimited envelope method and is

termed G-envelope. Finally, a model based on G-Maxwell and a transverse dimension

is developed. These alternatives are discussed and compared to results from the PSSD

method [32].
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4.1 Forward-only approximation

4.1.1 Linear or nonlinear approximation

Any nonlinear term dependent on E, couples the forward and backward G± components

together. This is because the derivative of the polarisation drives both the G+ and

G− fields. If we assume that there is no (counter or co-propagating) G− initially, its

generation may only arise from the nonlinear polarisation (in the absence of interfaces).

Since the driving field is in phase with the nonlinear G+ field, it has the opportunity to

grow in the forward direction. In the backward direction however, the G− field generated

from the nonlinearity is out of phase with the G+ field, and is therefore cancelled out.

This is analogous to Huygens principle, where the forward propagating wavefront is a

consequence of constructive interference, and the absence of a backward wave is because

of the cancellation in phase of the secondary wavefronts in the reverse direction. This

explains why an insignificant amount of backward-propagating G− is generated. The

only exception being QPM in the backward direction, where phase-matching forces the

backward-propagating G− to be non-trivial.

Having shown that the backward-propagating G− field (generated) is trivially small,

and that carefully chosen reference parameters remove any co-propagating G− a forward-

only approximation is applied. In order to maximise the computational gains, there are

two dispersive approximations that can be made:

1. Type I: Approximating the nonlinearity. This approach uses a dispersive

reference to perfectly match any linear dispersion (αR =
√

ε0εr(ω)), reducing any

(initial) co-propagating G− field to zero. The approximation is then applied to

the nonlinear term, by dividing out the permittivity at the central frequency:

χ(n)(F−1[E(ω)/εr(ω)])n ≈ χ(n)(E(t)/εr(ω0))
n. This follows on from the results

demonstrated in chapter III, that a dispersionless reference parameter at the central

frequency almost perfectly matches the medium. Thus, to calculate the nonlinearity

a dispersive G+ field is used, with the central dispersion removed.

2. Type II: Approximating the dispersion. This approach approximates the lin-

ear dispersion by constructing G+ using αR =
√

ε0εr(ω0), namely: F−1[εr(ω)E(ω)] ≈
εr(ω0)E(t). The nonlinearity can then be simply calculated by dividing out αR as

it is dispersionless. Whereas the type I approximation uses a dispersionless refer-

ence to calculate the nonlinearity, here it is applied to the linear dispersion. This

can be justified following the results in chapter III, where a well chosen reference

parameter almost perfectly matches the material dispersion.
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Applying either type I or type II approximations to G-variables, produces models

requiring only three Fourier transforms, presenting a significant improvement over PSSD

[32] (in itself a very efficient technique when complicated dispersion is involved). The

benefits can be further enhanced by applying a moving frame transformation. Because

both the linear and nonlinear responses are derived from the perturbation expansion of

the polarisation, the linear dispersion is at least one order of magnitude greater than the

nonlinear polarisation. The quantum theory describing the ratio of successive suscepti-

bility terms within the polarisation expansion states

χ(m+1)Em+1

χ(m)Em
' eEaaB

~∆
= αbb, (4.1)

where ~ is Planck’s constant, aB is the Bohr radius, and ∆ = |ωik − ω0| describes the

transition frequency from the ground state i to some excited state k [22]. For the polari-

sation expansion to converge (see eq(2.4) Chapter II), the ratio αbb << 1. (For a detailed

quantum mechanical approach to calculating the linear and nonlinear susceptibilities see

[58].) For this reason, the type I approximation was made as it inherently approximates

a lesser term when considering perturbative nonlinear optics. More specifically, a type

I approximation represents a more reliable choice, since even the widest bandwidths

combined with the most exotic linear dispersion can be perfectly matched (linearly).

To evaluate the effect of a type I approximation, the pseudo-spectral derivative of the

nonlinearity of a fully deconvolved G+ was compared to a partially deconvolved G+. Fig.

4.1 compares the two cases for the derivative of χ(3)E(t)3 (across the pulse shown in fig.

3.8 of chapter III)

Fig. 4.1 shows the agreement between iωF [ G+(t)

2
√

ε0εr(ω0)
]3 (blue “+”), and iωF|F−1[ F [G(t)]

2
√

ε0εr(ω)
]|3

(red “·”). It is clear that the derivatives are almost identical in these cases justifying a

type I approximation.

4.1.2 G-Maxwell

Now that the dispersive type I approximation has been justified, the equation of motion

for the forward-only G+ field is derived. The coupled G± equation from chapter III was:

∂zG
± = ∓iωαRβ0(1∓ ζ)G± ∓

(
iωε0εr

εR

− 1

)
[G+ + G−]

2
∓ iωαNLβ0

2
[G+ + G−],
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Figure 4.1: The blue “+” represent the derivative of the partially deconvolved E(t)3,
whereas the red “·” represents the derivative of the fully deconvolved E(t)3. The differ-
ence is virtually indistinguishable, supporting the type I approximation.

making a forward-only approximation sets G− = 0, and leaves the following terms

∂zG
+ = −iωαRβ0(1− ζ)G+ − iωε0β0

∑
n>1

χ(n)

(
G+

2αR

)n

. (4.2)

Applying a type I approximation in the case of a third order nonlinearity, yields

∂zG
+ = −iωαRβ0(1− ζ)G+ − iωαRβ0

ε0χ
(3)(G+)3

8ε2
r(ω0)

. (4.3)

The following algorithm can now be used to discretise the integration of the propagation

equation

G+|n+1 = G+|n−1 − 2∆z

(
iωαRβ0(1− ζ)G+ − αRβ0

ε0χ
(3)(iωG+)3

8ε2
r(ω0)

)∣∣∣∣
n

. (4.4)

In the above model, the dispersive reference perfectly matches the linear dispersion, and

the deconvolution of the nonlinearity has been approximated by dividing out 2αR =
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√
ε0εr(ω0) from G+.

4.1.3 G-envelope

Though the bandwidth limitations of envelope techniques have been severely tested over

recent years, several attempts have been made by adding correction terms, to extend the

range of applicability of these models. Blow and Wood extended the bandwidth limita-

tions of the NLSE to a third of the underlying carrier [28]. Brabec and Krausz developed

the Nonlinear Envelope Equation (NEE), which was derived in chapter II and is valid

down to an impressive single cycle [26]. Porras [27] included transverse correction terms

to the NEE, arriving at the Slowly Evolving Envelope Approximation (SEEA). More

recently, Kinsler and New [29] developed the Generalised Few-cycle Envelope Approxi-

mation (GFEA), which is more general than all of the above, making no approximation

until the final step of the analysis.

A recent paper by Genty et al. [35] demonstrated that it is possible to extend a carrier

envelope description to any arbitrary bandwidth, using Green’s functions to factorise the

wave equation into forward and backward components. In their paper, comparative sim-

ulations between PSSD (direct Maxwell solver) and the Generalised Nonlinear Envelope

Equation (GNEE) revealed a near perfect agreement between the two models. Thus,

for the first time, a bandwidth unlimited envelope was successfully applied to the ultra-

wideband problem of Carrier Wave Shocking, a very sensitive process involving multiple

harmonics.

Motivated by the forward-only approximation described in section 4.1.1 and [35], a

bandwidth unlimited G+ envelope model was developed using G-variables. The model

can accurately handle ultra-wideband pulses, where multiple harmonics are involved (e.g.

Carrier Wave Shocking). In fact, solving the conjugate equation covers twice the com-

putational domain than if the equation was solved directly.

To begin, we apply the envelope representation of the electric field from chapter II to

the G+ field, separating it into a complex envelope (A(t, z)) and carrier:

G+
z,t(t) = A(t, z)ei(k0z−ω0t+φ0) + c.c. (4.5)

(definitions for ω0 can be found in chapter II, and are more extensively discussed in

chapter VII). Eq(4.5) is substituted into eq(4.3), leading to:

∂zAei(k0z−ω0t+φ0) = −iω(αRβ0)Aei(k0z−ω0t+φ0) (4.6)

− iω(αRβ0)Λ
(
A2e2i(k0z−ω0t+φ0) + 3AA∗) Aei(k0z−ω0t+φ0) + c.c.
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where Λ = ε0χ(3)

8ε2r(ω0)
, k0 = ω0n0

c
, and the arguments of A have been dropped for simplicity.

The conjugate equation can now be solved after factoring out the carrier oscillations.

Re-writing iωαRβ0 = ik, yields

∂zA = −i(k − k0 − ζ)A− iω(αRβ0)Λ
(
A2e2i(k0z−ω0t+φ0) + 3AA∗) A. (4.7)

The algorithm used to calculate eq(4.7) is similar to eq(4.4), involving the same second-

order accurate leap-frog method as G-Maxwell

A|n+1 = A|n−1 − 2∆z
(
i(k − k0 − ζ)A + αRβ0Λiω

(
A2e2i(k0z−ω0t+φ0) + 3AA∗) A

)∣∣∣∣
n

,

(4.8)

and was chosen here because it enabled easy comparisons to be made between other direct

Maxwell solvers, in particular PSSD. More accurate numerical integration schemes such

as the Runge-Kutta method [59], would however be generally recommended as they can

provide increased accuracy without compromising computational speed. It is common at

this point to apply further approximations to eq(4.8), but this constrains the bandwidth,

and is therefore not administered here. G-envelope and G-Maxwell are in fact almost

identical, except that one is solved using a complex envelope (G-envelope) and the other

(G-Maxwell), by explicitly using the field. Because the carrier has been removed (from

G-envelope), all the information e.g. chirp, harmonic content etc is contained within

the complex envelope. To fully appreciate the vast bandwidth that can be accurately

supported by the envelope, a study of Carrier Wave Shocking (CWS) is necessary. As

this remains the topic of chapters V and VI, its demonstration is left until then.

4.1.4 Simulations

The envelope simulations presented here involve pulse propagation through fused silica.

The distance of propagation is 20 microns, and the strength of the nonlinearity has been

increased to the damage threshold (50 TW/cm2 [38]). The initial (transform limited)

pulse, has the same characteristics as those in chapter III (fused silica). As the pulse

propagates and undergoes linear and nonlinear dispersion, it becomes chirped. In an

envelope picture, this information is stored on the complex envelope as phase. Fig. 4.2

shows the magnitude and phase of the complex envelope, after a 20 micron propagation

The nonlinear terms associated with the third-order nonlinearity are

(A2e2i(k0z−ω0t+φ0) + 3AA∗)A.
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Figure 4.2: G-envelope representations of the forward-only approximation. The blue
line represents the magnitude of the complex envelope, whilst the red line represents the
phase. The oscillations on the complex envelope describe the electric field profile.

A common approximation in many-cycle pulses, is to remove nonresonant terms, leav-

ing just 3AA∗A as the third order nonlinear term [45]. This approach is valid within a

narrowband limit, and describes Self-Phase Modulation (SPM), where an intensity de-

pendent phase is imparted onto the envelope. This approximation is no longer accurate

when non-resonant nonlinear effects are considered.

The frequency content of the complex envelope can be seen in fig. 4.3. In this case,

a large bandwidth is present, ‘tilting’ the carrier oscillations. Exclusion of non-resonant

terms would merely distort the envelope, having little effect on the carrier.

4.2 Numerical comparisons

Numerical comparisons using the forward-only approximation are now made, to demon-

strate the accuracy of the forward-only approximation with respect to direct Maxwell

solvers. The section also agrees with results in [35], suggesting that envelope techniques

can support arbitrary bandwidths. The simulation in fig. 4.3 (section 4.1.4) is now
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Figure 4.3: (left) Reconstructed G+ field from envelope. The carrier oscillations have
been affected by nonresonant terms. (right) Log plot of the envelope spectrum displaying
a significant amount of frequency content, which is necessary to distort the carrier. Note
the presence of the dc component on removal of the carrier.

reproduced using G-Maxwell and PSSD.

Fig. 4.4 reveals that the three methods are all in excellent agreement, especially

G-Maxwell and G-envelope, whose differences would not be visible had solid lines been

plotted. To fully appreciate the conformity of the different methods, a logarithmic plot

of the spectra from the three approaches is shown in fig. 4.5. All three spectra share

almost identical spectral features even on a log scale.

The agreement between PSSD, G-Maxwell and G-envelope highlights the following

properties:

• By carefully choosing reference parameters (and initial conditions) it is possible to

describe a forward propagating pulse using a combination of E and H fields.

• The nonlinear driving field produces negligible amounts of G− during propagation,

supporting the forward-only approximation where G−→ 0.

• Instead of a full deconvolution, the nonlinearity can be approximated using a ref-

erence parameter centred on εr(ω0).

• A wideband envelope can be developed in place of any uni-directional approxi-

mation, but care is needed to allocate sufficient bandwidth to describe the higher

frequencies.

• Directional G-variables converge with bandwidth unlimited envelope techniques. A

suite of propagation techniques span the gap between direct Maxwell solvers and

narrowband envelopes. A schematic of this spectrum can be seen in fig. 4.6.
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Figure 4.4: Reconstructed E field using three different numerical methods for a 10 micron
propagation: PSSD (blue-solid), G-Maxwell (red-dashed) and G-envelope (green-dots).
The black curve shows the magnitude of complex envelope, where high frequency oscil-
lations can be seen. All three methods are in excellent agreement.

4.3 Diffraction

To exploit the advantages of G-variables, a transverse dimension was added to G-Maxwell.

This section is included as ‘proof-of-principle’, of a transverse wideband propagation

model based on G-variables. Transverse beam effects are generally treated within the

quasi-monochromatic limit but here they can be included as part of a wideband prop-

agation model (G-Maxwell). Though in general two transverse dimensions are needed

to describe diffraction, Bessel functions can be used to reduce this to one transverse di-

mension, when there is some form of circular geometry. Unfortunately, using fast Fourier

transforms for these calculations produces a non-uniform mapping between the spatial

wave vector (kr) and the radius (r). To avoid this problem, and because the motivation

here is ‘proof-of-principle’ a Cartesian transverse dimension was added.

Diffraction is one of the most fundamental phenomena associated with waves. Any
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Figure 4.5: Spectra of the different numerical methods presented in fig. 4.4: PSSD (blue),
G-Maxwell (red) and G-envelope (green).

non-planar wave diffracts, where the wavefront can be decomposed into a set of plane

waves, all travelling at different angles (analogous to the decomposition of a temporal

pulse into its frequency constituents). The equation describing scalar diffraction of an

EM field in free space is

[∇2 + k2]Ẽ(x, y, z) = 0 (4.9)

where Ẽ is the complex amplitude of a field distribution consisting of monochromatic

waves. Making the substitution Ẽ = ã(x, y, z)e−ikz into eq(4.9), and factoring out the

exponential leaves:
∂2ã

∂x2
+

∂2ã

∂y2
+

∂2ã

∂z2
− 2ik

∂ã

∂z
= 0 (4.10)

Because ∂2ã
∂z2 varies much more slowly than the other terms, it can be discarded, leaving
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Figure 4.6: Schematic diagram describing nonlinear propagation techniques. A range
of methods span the gap between narrowband and ultra-wideband pulses. Bandwidth
unlimited envelopes converge with more explicit ‘uni-directional’ Maxwell solvers.

the paraxial wave equation

∂2ã

∂x2
+

∂2ã

∂y2
= ∇2

⊥ã = 2ik
∂ã

∂z
. (4.11)

This approximation is valid in nearly all cases of optical pulse propagation, and only

breaks down when a significant portion of the pulse travels at an angle of more than

π/6 (30o) [60] to the axis of propagation. As we are concerned with uni-directional pulse

propagation, these assumptions can be easily satisfied in a G-Maxwell model.

4.3.1 Modelling diffraction

The famous Huygens principle states:

“Every point on a primary wavefront serves as the source of a spherical secondary

wavelet, such that the primary wavefront at some later time is the envelope of these

wavelets. Moreover, the wavelets advance with a speed and frequency equal to that of

the primary wave at each point in space.”

Fresnel modified this principle to explain why no wave is observed travelling in the

backward direction. In fact, the explanation is very similar to the lack of backward-
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propagating wave in general nonlinear models. This is because constructive phase match-

ing takes place in the forward direction, as opposed to the backwards direction, where

the individual phase contributions cancel each other out.

Diffraction can either occur in the near or far field, and is described by the dimen-

sionless Fresnel number (F ). F describes the relationship between wavelength (λ), beam

waist (q) and propagation distance (L), in the following manner

F =
q2

Lλ
. (4.12)

F ≥ 1 is termed the near-field and is described by Fresnel diffraction, whereas F << 1

is classed as the far-field, where Fraunhofer diffraction applies. The type of diffraction

modelled here is near-field diffraction, based on the Fresnel approximation; λ = 1240 nm,

q = 15 and L = 100 microns.

Huygens integral in the near field can be thought of as a multiplication of the FT of

the wavefront with a spherical wavefront [60]. As the frequency domain is already being

used for the application of dispersion, this approach can be easily built into G-Maxwell.

Scalar diffraction can be understood with some simple geometry in k-space. It is possible

to represent an infinite set of plane waves (W (x, y, z)), as follows:

W (x, y, z) = e−ik·r = e−i(kxx+kyy+kzz). (4.13)

Making the paraxial approximation it is possible to rewrite the kz propagation vector in

terms of its longitudinal and transverse components. The longitudinal contribution can

now be written as:

kz = k cos(θ) =
√

k2 − k2
x − k2

y ' k

(
1− κ2

2k2

)
(4.14)

where κ2 = k2
x + k2

y, and θ is the off-axis angle. Using eq(4.14), the contribution of an

off-axis plane wave vector (k) arriving at a distance L from a previous wavefront position

can now be calculated. Diffracting the G+(x, y, z) field leads to

G+(x, y, z) = F−1[F [G+(x, y, z = 0)]e−ikL(1− κ2

2k2 )]. (4.15)

Thus eq(4.15) describes diffraction in free space of an arbitrary G+ wavefront over a

distance L. In our G-Maxwell model, diffraction is limited to one transverse dimension,

so that now κ2 = k2
x.

Eq(4.15) does not include nonlinearity, and therefore the entire diffraction process
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could be taken in a single step. Indeed it is also possible to incorporate dispersion into

the above argument and propagate the entire distance L in a single step. In a dispersive

medium, the wave-vector adopts a scaled length that is dependent on the refractive index.

For simplicity, the refractive index is assumed to be isotropic. Thus the longitudinal k-

vector component (kz), describing the evolution of a particular angular frequency (over

a distance L), with only one transverse dimension can be written in operator form as

Q̂ = e−ikzL = e−in(ω)kL(1− k2
x

k2 ). (4.16)

Applying Q̂ to each k-vector component, diffraction and dispersion can be simultaneously

calculated.

In the transverse G-Maxwell model, a split-step method is used in the nonlinear prop-

agation. The split-step method applies scalar diffraction and dispersion over a small z

step, followed by the nonlinear evolution of the field. The nonlinear step is calculated us-

ing a series of pseudo-spectral derivatives, applied to the recently diffracted and dispersed

G+ field; a schematic diagram of the process can be seen in fig. 4.7. The philosophy

of a split-step method is that the linear and nonlinear parts of the propagation can

be separately calculated over small steps. The Fourier split-step method was therefore

used with a moving frame transformation, providing an efficient, second-order accurate

solution. For a detailed analysis of the split-step method see [45].

4.3.2 Preliminary results

To demonstrate the scheme, transverse wideband nonlinear propagation was simulated in

fused silica, over a distance of 100 microns (w0 ' 20µm). Fig. 4.8 shows the transverse

profile of the pulse at the end of the propagation. The initially flat wavefronts have

become curved during the propagation because of diffraction. The intensity dependent

refractive index has also caused the on-axis wavefront in the more intense regions, to

move to higher times.

To understand the effect of diffraction, the on-axis G+ field is compared to a plane

wave simulation in fig. 4.9 revealing some interesting differences. The plane-wave (red)

profile has a higher peak intensity than the transverse pulse (blue) because of diffraction.

This does not significantly affect the leading edge of the pulse, but does influence the

central and trailing edges of it. The change in the peak intensity also appears to affect

the amount of third harmonic produced.

The transverse behaviour of ultra-wideband pulses is a vast topic that requires more

extensive investigation. Its introduction here is merely meant to demonstrate the feasibil-
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Figure 4.7: Schematic diagram of the split-step method, where ‘FT’ and ‘BT’ correspond
to Fourier Transform and Back Fourier Transform respectively.

ity of wideband, transverse propagation using G-variables. The approach offers a faster

alternative to FDTD, without enforcing bandwidth limitations. Though one might argue

that bandwidth unlimited envelope approaches afford the same speed-up, it is ultimately

the uni-directionality of both methods that is exploited. The more explicit G-Maxwell

method, makes the incorporation of a transverse dimension simpler because of the clarity

and mapping of the wavelengths involved.
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Figure 4.8: Wideband G-Maxwell simulation with added transverse dimension. The
initial pulse has propagated 100 microns at the damage threshold of fused silica. The
initially flat wavefronts have become curved from the intensity dependent refractive index
and diffraction.

4.4 Conclusion

• Careful choice of reference parameters and initial conditions can almost completely

eliminate G−.

• The nonlinear driving field produces negligible amounts of G− during propagation,

supporting the forward-only approximation where G−→ 0.

• A forward-only approximation can reduce a bi-directional problem into a uni-

directional one, making nonlinear propagation far less demanding in terms of com-

putational time.

• A bandwidth unlimited envelope is developed (G-envelope) from the forward-only
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Figure 4.9: Comparison of the diffracted beam on-axis (blue), with a plane wave simu-
lation (red). The difference between the two cases is apparent at the centre and trailing
edges of the pulse.

approximation, demonstrating convergence between more explicit uni-directional

approaches and carrier-envelope approaches. Excellent agreement is found between

G-Maxwell, G-envelope and PSSD, even when wide bandwidths are involved.

• The successes of G-Maxwell facilitate the addition of a transverse dimension, en-

abling ultra-wideband, transverse nonlinear problems to be investigated.
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Chapter 5

Carrier Wave Shocking

5.1 Introduction

The earliest discussion of electromagnetic shocks occurring on the optical carrier appeared

in a paper by Rosen in 1965 [36]. At the time, the notion was purely theoretical given the

intensity of the pulses then available. However the self-steepening of the pulse envelope

was discussed two years later by De-Martini et al. [61]. The idea of envelope self-

steepening soon became well known [61–64] but its application to the optical carrier

received little attention until Moloney et al. revisited the subject in the 1990s with the

help of FDTD simulations [37, 38]. Since then, Kinsler et al. [39] studied the role of

dispersion in Carrier Wave Shocking, with a range of numerical methods.

Not only is Carrier Wave Shocking (CWS) a remarkable nonlinear phenomenon with

possible applications to HHG [41], but it also offers the ideal test bed for ultra-wideband

numerical simulations. This is because a mathematical shock requires an infinite band-

width, for its description. This chapter discusses the nature of CWS from a mathematical,

numerical and physical point of view.

We start by developing a mathematical model based on the Method Of Characteris-

tics (MOC), to provide analytic solutions in the dispersionless regime. These solutions

then enable accurate and reliable shock detection techniques to be developed within the

contexts of the numerical model. The ideas are then extended to more general cases

involving designer dispersion, which is a crucial stage in understanding the interplay of

linear and nonlinear effects in CWS. The knowledge is then applied to the most gen-

eral case of CWS in real media, where the possibility of physically realising a shock is

discussed.
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5.1.1 Basic theory

The 1D plane polarised Maxwell equations form the starting point of our analysis:

∂Ex(t, z)

∂z
= −µ0

∂Hy(t, z)

∂t
(5.1)

−∂H(t, z)

∂x
=

∂

∂t

[
ε0εr(t) ∗ Ex(t, z) + χ(3)Ex(t, z)3

]
, (5.2)

where the polarisation includes linear dispersion (εr ∗ E), and third-order instantaneous

nonlinearity (χ(3)E3). Though the ultimate goal here is to understand the interplay of

dispersion in the process, we begin by studying CWS in dispersionless media, as this is the

only regime possessing analytical solutions. This enables the process to be understood

in its simplest sense, and provides a method to verify the numerics, and shock detection

schemes, before deploying them to more general dispersion profiles.

Fig. 5.1 illustrates the simplest case of CWS, occurring in a dispersionless medium

with a third-order nonlinearity. The profile shows the pulse at the point of shocking,

where near vertical gradients are visible.

5.1.2 Simulation parameters

The initial pulse profile used throughout this chapter was

E(t) = E0 sin(ω1t + φ)sech(d · ω1t), (5.3)

where ω1 = 2.356× 1015 rad s−1 (wavelength=800 nm), and “d” parameterises the width

of the sech envelope (standard d = 0.3). 1 The array size was set to N=16384 nodes, with

a time window dependent on the type of pulse being investigated. Simulations involving

fused silica (at the end of the chapter), use a central wavelength of 1240 nm, and d = 0.1.

In the cw case, a lower resolution of 1024 grid points was used, as one wavelength was

fitted to the entire period of the grid (i.e. 1024 points per carrier wavelength). The PSSD

technique [32] was primarily used for simulations in this chapter, because of its very high

level of energy conservation. Orzag’s 2/3 rule [59] was employed to filter the upper third

of the spectral domain, stopping aliasing and the buildup of ‘2h’ waves (waves of the

highest possible grid frequency). The default nonlinear strength was χ(3)E2
0 = 0.02,

comparable to 0.7× 1014W/cm2 in fused silica.

1Only in this chapter is ω1 defined as the central frequency, as it helps explain some of the later
figures. The notation is also chosen to be consistent with [39].
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Figure 5.1: E field profile of a pulse at the point of shocking. The most intense regions
of the pulse have been delayed by the intensity dependent refractive index, producing
a ‘leaning’ effect. This causes near vertical gradients to arise on the back of the most
intense carriers.

5.2 CWS in dispersionless media

5.2.1 Method Of Characteristics (MOC)

The analysis begins with the second order wave equation derived from eq(5.1) and eq(5.2)

c2∂2E

∂z2
= (1 + χ(1))

∂2E

∂t2
+ χ(3)∂

2E3

∂t2
. (5.4)

Here

D = ε0(E + χ(1)E + χ(3)E3), (5.5)
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and the subscripts have been dropped for brevity. Eq (5.4) can be factorised into two

first order PDEs,

(
v(E)

∂

∂z
+

∂

∂t

)(
v(E)

∂

∂z
− ∂

∂t

)
E = 0, (5.6)

describing fields travelling in the ±z direction. The velocity v(E) of the E field is given

by

v(E) =
c√

εr + 3χ(3)E2
. (5.7)

Taking the field travelling to the right in eq(5.6), presents us with a first order PDE

where the initial conditions travel on characteristics given by the velocity of eq(5.7).

A simple calculation using the construction in fig. 5.2, enables us to predict the

distance where two characteristics intersect, producing a shock at C. In fig. 5.2, A and

B correspond to two adjacent points on the initial pulse with slightly different E field

values.

v

C

B A

L

dt t

v − dv

Figure 5.2: Method Of Characteristics. The two adjacent field values produce a shock
at C after travelling a distance L.

The two characteristics AC and BC intersect at a distance L, the former travelling

slower than the latter. The small differences in time and velocity allow us to write a
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simple differential equation

dv

dt
=

v

t
=

v2

L
, (5.8)

where n0 = ε
1/2
r , and the derivative of (5.7) can be calculated, yielding

dv

dt
= − 3cχ(3)

2[n2
0 + 3χ(3)E2]3/2

d(E2)

dt
. (5.9)

Combining eq(5.8) and eq(5.9) then leads to a formula for L, namely

L =
2cn0

√
1 + 3χ(3)E2/n2

0

3χ(3)(−dE2/dt)
. (5.10)

Because a shock first develops at the minimum value of L, an upper boundary condition

can be imposed so the shocking distance becomes

Lshock =
2cn0

√
1 + 3χ(3)E2/n2

0

3χ(3)
min

[
1

−dE2/dt

]
. (5.11)

Lshock can now be used to develop shock detection methods, and verify their accuracy.

5.2.2 Numerical shock detection

So far we have developed a mathematical model for CWS that will predict Lshock in the

dispersionless case. The physical manifestation of a shock will undoubtedly differ from

any mathematical or numerical depiction, but this discussion is postponed until the end

of the chapter.

Any numerical model takes place within a finite computational domain, and thus

has a limited resolution. As a simulation proceeds towards a mathematical shock, the

field gradients become progressively steeper, eventually becoming so steep that numerical

breakdown begins. Increasing the number of grid points not only slows the simulation

down, but also fails to alleviate the problem, as the extra bandwidth available, is ex-

hausted after a few extra iterations. This has been tested with different resolutions and

convergence checks.

In a discrete system, numerical breakdown itself can be used to infer where a mathe-

matical shock is about to occur. The simplest way to monitor numerical integrity derives

from energy conservation. Because PSSD generally displays energy conservation to an

accuracy of one part in 1 × 1014, even the slightest numerical breakdown is detectable.
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However, the disadvantage of using energy conservation for shock detection, is that there

is no convergence to a specific distance. Thus, the breakdown of energy conservation

occurs over a range of distances close to where a shock might occur. For this reason it

was utilised as a complementary shock detection method, independently verifying the

more sophisticated Local Discontinuity Detection (LDD) method which we now discuss.

5.2.3 Local Discontinuity Detection (LDD)

The most accurate and reliable technique for shock detection was the Local Discontinuity

Detection (LDD) method, which has parallels in other fields [65]. Monitoring the profile

of a pulse approaching a shock, revealed points of inflection appearing in the vicinity of

the maximum gradient. These have been shown elsewhere, to be signatures of incipient

shock formation [65]. A scheme was therefore set up, to scan the profile of the E field

around the maximum gradient searching for such features. Various tolerances for the

distance between the maximum gradient and the point of inflection were tested, but were

found to have little effect on Lshock. Other sensitivities were also tested, but the default

parameters chosen for their reliability were: one point of inflection, over adjacent grid

points, within a range of five grid points from the maximum gradient.

Fig. 5.3 shows an example of an E field profile that has triggered the LDD scheme,

along with a close-up of the shock.
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Figure 5.3: (left) E field of a pulse at the point of shocking, where the LDD method has
been used as the detection measure. (right) Enlargement of the rectangle, displaying the
features that have triggered the LDD method.

Having developed a shock detection mechanism, it was then tested within the disper-

sionless regime, where analytical solutions allow direct comparisons to be made. These

tests also reveal some fundamental characteristics of CWS, including CEP sensitivity for

few-cycle pulses.
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5.2.4 Factors affecting Lshock in the dispersionless regime

In this section, the sensitivity of CWS to fundamental parameters appearing in eq(5.11)

are investigated using the LDD method. The basic parameters varied were: pulse length,

Carrier Envelope Phase (CEP), and bulk refractive index (parameterised by d, φ, and n0

respectively). The results were then compared to analytic solutions produced using the

MOC.

Fig. 5.4 demonstrates how Lshock changes for different pulse lengths (by varying d

in eq(5.3)). The results indicate that Lshock decreases for longer pulses. One proposed

reason for this [39], is that narrower bandwidths are more efficient at generating higher

harmonics.
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Figure 5.4: Sensitivity of Lshock to pulse length. The LDD method (red dots), and MOC
(blue solid) are in excellent agreement, showing that Lshock increases for shorter pulses.

In reality, the sub-cycle pulses that shock at greater distances, have experienced

changes to their peak intensity and central wavelength. This occurs, as the envelope

affects the central carrier [26], explaining the increase in Lshock. This effect is discussed
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in more detail, later in chapter VII. Fig. 5.4 also demonstrates the agreement between

the LDD method and the MOC, the former always shocking slightly earlier than the

latter. For pulses longer than one cycle, pulse length makes little difference to Lshock,

and is consistent with the notion that the carrier is shocking, as opposed to the envelope.

The sensitivity of Lshock to CEP was then tested. Fig. 5.5 reveals CEP sensitivity

using the LDD method (red dots), where a sharp peak occurs at φ ' 0.3 rad, and is also

supported by the MOC (solid blue). The peak marks a curve crossing, where the shock

location switches from one part of the carrier oscillation to another (−E dE
dt

can either

have a negative field value E or gradient dE
dt

). The location of the peak did not change

as the pulse width (d) was varied, however Lshock) did increase for shorter pulses. As

expected, CEP was found to play a much smaller role in longer pulses.
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Figure 5.5: Lshock as a function of CEP (φ), for LDD (red dots) and MOC (blue solid).
Lshock is greatest at φ ' 0.3 rad, where the shock location switches from one part of
the carrier oscillation to another. In this case, the default value of d = 0.3 was used in
eq(5.11) to highlight the CEP sensitivity.
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Finally Lshock was tested as a function of the bulk refractive index (n0). Fig. 5.6

shows how Lshock increases with n0, as predicted by eq(5.11). In all the above cases, the

LDD method and MOC were in excellent agreement.
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Figure 5.6: Lshock as a function of n0. Numerical simulations (red dots) indicate the
increase of Lshock with n0, and are clearly supported by the MOC (blue solid).

5.3 Designer dispersion

Any realistic material has a smoothly varying n(ω), with many different phase and group

velocities. Before attempting to understand the behaviour of CWS in such complex

environments, it is helpful to build up a picture using designer dispersion profiles. These

profiles help explain the interplay between dispersion and nonlinearity, and are easily

controlled using the PSSD technique.

The simplest designer dispersion profile can be seen in fig. 5.7, and consists of a single

refractive index step. The step, allows us to offset specific harmonics, by controlling its
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magnitude (∆n). Furthermore, it enables a unique coherence length (LC) to be defined

e.g. LC = π
k3−3k1

for a single refractive index step placed at ω2. We might therefore

expect a shock to develop when the SPM length (LSPM) is considerably less than LC , as

the effect of dispersion will then be slight. Because our objective is to understand CWS

in dispersive media, the size of the refractive index steps was chosen to be comparable to

fused silica, ∆n1,3 ≈ 0.06, and ∆n3,5 ≈ 0.12 [38] (where the indices refer to the frequencies

that have been off-set from each other).

ω ω ω

∆

2 4 6

2 n   n

Figure 5.7: Schematic diagram of the simplest designer dispersion profile used. In this
case, the dispersion profile consists of a single refractive index step placed either at ω2

(solid line), or ω4 (dashed line). In the former case, the step ∆n1,3 forces the first ω1,
and third ω3 harmonics to travel at different phase velocities. Similarly, ∆n3,5, creates a
phase velocity difference between frequencies ω1 and ω3, and anything higher.

Fig. 5.8 shows results from the simplest single-step profile, namely ∆n1,3 describing a

refractive index step placed between ω1 and ω3 (see fig. 5.7). Varying the magnitude of

the step led to well defined shocked regions, delineated by boundaries for large positive or

negative step values. A shocked region can clearly be seen for pulses that have triggered

the LDD method (red), and is also supported by the energy conservation method (blue)

where the value of ∆E/E signifies the level of energy conservation. To understand

whether pulse length plays a significant role in defining the shocked region, a cw case

was also investigated. This involved using the same dispersive profiles as the pulsed case,

89



but with a single wavelength fitted to the time window. In a discrete Fourier transform

this represents a monochromatic cw train. Results from this (black-dashed) indicate a

slightly wider shocking region than the pulsed case, but nonetheless agree that CWS does

not occur if the refractive index step becomes too large.
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Figure 5.8: Carrier wave shocking for the single refractive index step (∆n1,3). The solid
(red) line refers to the LDD method, indicating that CWS is resistant to small refractive
index steps. This result is supported by the energy conservation method (blue), plotted
against the right hand axis (log scale). When a shock occurs, the energy conservation
breaks down, supporting the LDD result. Failure to shock, results in the simulation prop-
agating to the end of the simulation (40 microns) and a high level of energy conservation
(∆E/E ' 10−14). The asymmetry in the shocking region is discussed at the end of the
section.

To investigate the tolerance of phase velocity mismatches at other parts of the spec-

trum, a refractive index step was then placed at ω4. As in the previous case, a single-step

was introduced (∆n3,5) in order to offset the first and third harmonics (ω1 and ω3), from

anything higher (see fig. 5.7). The results can be seen in fig. 5.9, and are in qualitative

agreement with the ∆n1,3 case. As CWS is highly sensitive to the alignment of all of

the harmonics, even offsetting the fifth (and higher) is enough to halt the process. Both

∆n1,3 and ∆n3,5 possess a unique LC . The only significant difference apparent when
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comparing the two cases (∆n1,3 and ∆n3,5), is a slightly narrower shocking region in the

∆n3,5 case, and a small shift in the cw shocked region (relative to the pulse’s shocked

region).
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Figure 5.9: Carrier wave shocking for the single refractive index step ∆n3,5. The solid
(red) line refers to the LDD method, and the (blue dots) refer to the energy conservation
method (∆E/E). Both methods are in excellent agreement, displaying a slightly narrower
shocking region than the ∆n1,3 step. The cw plot (dashed) appears slightly shifted to
the right.

The next designer dispersion profile developed extended the idea of a single-step to

multiple refractive index steps. Fig. 5.10 illustrates the steps placed between adjacent

harmonics, where each step is of the same magnitude. Within a particular harmonic,

there is a constant phase velocity. Offsetting adjacent harmonics more closely resembles

a real material, where there is no longer a single coherence length.

Fig. 5.11 shows the results from the multi-step case ∆n1,3,5.... It is clear that the

shocked region has become considerably narrower, because a small step now impacts on

all the odd harmonics, introducing many different phase velocities (note the change in

scale on the x-axis). There is however a well defined shock region as in the previous two

cases.
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Figure 5.10: Schematic diagram of the multi-step (solid), and refractive index gradient
(dashed) designer dispersion profiles. All steps are of the same size in the multi-step case.
The refractive index gradients consist of straight lines, where the size of the gradient was
scaled by the equivalent inter-harmonic step. In this case, group velocity dispersion
(GVD) is present.

As before, the cw case differs only slightly from the pulsed case. It is important to

note here that the cw case is approaching a realistic dispersion profile, as a flat refractive

index step (within a harmonic), makes little difference when considering such a narrow

bandwidth. It is only the phase-velocity at a particular frequency that is experienced

within a cw limit. This provides some clues, as to what might happen in the case of a

wideband pulse exposed to a refractive index gradient, as the difference between a pulse

and the cw case tends to make little difference in CWS

The final dispersion profile applied is illustrated in fig. 5.10, and consists of a refractive

index gradient. In this case, the size of the gradient was varied, to understand the effect

of GVD on CWS. The effective nonlinear strength (χ(3)E2
0) was also varied over the range

of gradients, to investigate how this might affect the shocking region.

Fig. 5.12 shows the results of these simulations. In an analogy to the previous cases,

shocking was found to be tolerant to shallow gradients, in the same way as it was for

small steps. As expected, increasing the effective nonlinear strength, widens the shocking
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Figure 5.11: Carrier wave shocking in the multi-stepped case ∆n1,3,5.... In this case a
much narrower shocking region occurs, as each harmonic is offset from its neighbour. This
reduces the likelihood of shocking, as a small step now impacts on the entire harmonic
cascade. The cw case (dashed) appears slightly more tolerant for anomalous dispersion
(steps). Note the change in scale on the x-axis.

region, as the dispersion has less of an influence over a shorter LSPM . Also evident from

fig. 5.12, is the added complexity of the anomalous dispersion boundary (negative gradi-

ents). This sharply contrasts with the normal dispersion boundary (positive gradients),

which always has a well defined cut-off.

The qualitative similarities in the above simulations indicate, that the dominant fac-

tor in the development of CWS is the inter-harmonic phase-velocity difference. CWS is

tolerant to small phase-velocity mismatches, that can be induced in a variety of ways:

single-step, multi-step, or refractive index gradient. Because CWS relies on the precise

alignment of multiple harmonics (in order to achieve a near-vertical gradient), imple-

menting even a small phase mismatch can be enough to halt the process. Though this

is possible using a single-step, a multi-step profile, or a refractive index gradient tends

to accentuate this effect. Once the phase-velocity mismatch is large enough, well de-

fined shocked boundaries are produced, and are independently supported by the energy
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Figure 5.12: Shocking distance vs refractive index gradients (i.e. mismatch) δ, for a range
of nonlinear strengths. An abrupt cut-off is visible at the normal dispersion boundary
(right hand side), as opposed to the rather ill-defined anomalous dispersion boundary
(left hand side). The complexity of the boundary appears to increase for higher effective
nonlinearities. No cw results are shown, as these would be identical to the multi-stepped
case of fig. 5.12.

conservation technique.

An important feature in all of the above dispersion profiles (section 5.3), is the asym-

metry between the ‘normal’ and ‘anomalous’ dispersion regimes. The terms are used

loosely here, to describe whether higher frequencies travel slower (normal), or faster

(anomalous) with respect to each other. The above results clearly indicate that CWS

is more tolerant to small amounts of anomalous dispersion, than normal dispersion, as

all the shocked regions are centred with a bias towards the anomalous region (left). The

explanation for this asymmetry lies in the intensity dependent refractive index of χ(3)

media. This predicts that the induced refractive index is greater at ω1 than at ω3. The

effect of normal dispersion is therefore to add to this ‘natural’ phase mismatch, whereas

anomalous dispersion cancels it out, thus promoting CWS. This is understood to be the

mechanism behind the asymmetry of the shocked region.

The final result that is highlighted in all of the above profiles, is that there is very
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little difference between CWS in the cw case, and in the pulsed case. This point has

already been mentioned in section 5.2.4 in the context of the dispersionless regime, and

is now apparent in the case of dispersion too.

5.4 Practicalities of CWS

So far the interplay between linear disperion and nonlinearity has been studied within

the context of designer media. It has been shown, that offsetting the harmonics by

a significant amount, is enough to arrest the CWS process. It is therefore reasonable

to expect, that most realistic materials would suppress the process entirely. Moreover,

the simulations so far have assumed an instantaneous nonlinear response, representing

a significant approximation if the timescale involved tends to infinity. Another physical

limitation to consider now, is the damage threshold of the material, which places an

upper bound on the scalability of the effective nonlinear strength.

To assess whether CWS might occur in reality, there are three important questions

to answer:

1. What constitutes a physical shock?

2. How would this be represented within a finite computational domain?

3. In what material might this be found?

In answer to the first question, it would be difficult to describe an infinite gradient

predicted by our mathematical model. This is because the damage threshold of the

materials we are considering would have long been surpassed before such gradients would

have been realised. Generally speaking, a ‘shock’ or ‘shock wave’ denotes an abrupt

change in the characteristics of the medium, e.g. a sonic boom, where a rapid change

in air pressure occurs across a shock front. In the contexts of other fluid shocks e.g.

water wave breaking, there is no physical reason to discount a multi-valued field as we

so readily see with everyday hydraulic instabilities (ocean waves). In our case of optical

polarisation, some other mechanism would have to exist in order to provide solutions to

Maxwell’s equations e.g. the sum of the linear and nonlinear polarisation components

remaining finite. It is interesting to note that Rosen [36] did contemplate the ramifications

of an optical carrier shock, concluding that it may act as a “source or sink for radiation

field energy”.

To answer the second question, we might continue to use the current LDD definition.

This reliably converges to analytical solutions, whilst still dealing with finite gradients.
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Thus by applying it to a real medium, we can investigate extreme Carrier-Wave Self-

Steepening (CWSS) as the gradient approaches a shock.

Finally, the results from section 5.3, provide us with answers to the third question.

The ideal material to probe would possess a weakly anomalous dispersion profile, with

a very high nonlinear coefficient and damage threshold. Fused silica possesses the latter

two qualities, and has been tested for CWS in [38, 39]. Most importantly, fused silica

has a very flat dispersion profile compared to other media (see chapter III: fig. 3.3 for

a plot of the Sellmeier equation), so that the phase velocity mismatch between adjacent

harmonics is small.

To investigate whether CWS could be physically realised using the LDD measure,

the intensity of the E field was increased to above the damage threshold (50 × 1012

W/cm2) of fused silica, without triggering a numerical shock. CWSS did occur, producing

visibly steepened pulse profiles. Fig. 5.13 shows the increasing gradient as a function

of distance and intensity, up to the damage threshold. The maximum gradient occurs

at L ' 7µm, where the various harmonics are most efficiently aligned. This alignment

does not persist for long, because decoherence then occurs, reducing the maximum field

gradient. Incorporating nonlinear dispersion into the model would moderate these effects

even more, further decreasing the gradients.

According to our definition of a shock (LDD), CWS would therefore not occur in

fused silica, and is unlikely to occur in any other real medium. On the other hand, CWSS

would take place and has been predicted in [38]. With advances in media with tailored

dispersion profiles, it might be possible to engineer a medium that can support extreme

self-steepening, approaching a shock. As more harmonic orders are necessary to increase

the field gradient, phase-matching over a progressively wider bandwidth becomes neces-

sary. Fortunately, only a narrow band at each harmonic is needed, to phase-match for

extreme CWSS in the cw case, but nonetheless this remains a formidable task. Materials

with weakly anomalous dispersion, and extremely high damage thresholds provide the

best route to achieving very steep field gradients, as LC plays a diminishingly important

role as LSPM dominates.

5.5 Conclusion

A mathematical model for Carrier Wave Shocking has been developed using the Method

of Characteristics. This has enabled the development of accurate numerical models and a

shock detection scheme (LDD) that converges to the predicted shocking distance. CWS

has also been shown to be weakly sensitive to CEP and pulse length for single-cycle
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Figure 5.13: Maximum field gradient in fused silica at 0.1 micron intervals for intensities
ranging from 1/10th of the damage threshold, to the damage threshold. The surface
indicates the maximum gradient at a particular distance for a given intensity. The
highest gradient achieved occurs when the harmonics are most efficiently aligned.

pulses, though in general there is little difference between few-cycle pulses and a cw field.

The interplay between linear and nonlinear dispersion has been investigated using a

variety of novel dispersion profiles. These profiles have enabled the CWS process to be

understood in terms of well defined coherence lengths and phase mismatches. They have

also helped explain the asymmetry between normal and anomalous dispersion, through

the intensity dependent refractive index. The results indicate well defined shocking re-

gions that are supported by the energy conservation measure. CWS has been shown to

be highly sensitive to inter-harmonic phase-velocity differences. These can be applied

through refractive index steps (single/multiple), or refractive index gradients.

Applying the LDD method to fused silica reveals that CWS would not occur. Even at

intensities equal to the damage threshold, and assuming an instantaneous nonlinearity,

only extreme CWSS is possible. The multiple coherence lengths present in real media,

prevent the development and alignment of higher harmonics necessary for a shock. In-
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cluding a finite response, would only moderate the field gradients further. CWSS may

prove useful in the field of High Harmonic Generation (HHG) and this is discussed in the

next chapter.
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Chapter 6

Carrier Shaping and Applications to

HHG

6.1 Introduction

The concept of Carrier Wave Shocking (CWS) in χ(3) media was discussed in chapter

V, and involves the self-steepening of the optical carrier due to third order nonlinearity.

In this chapter a novel carrier wave self-steepening mechanism is reported, involving

amplitude dependent self-steepening in quadratic media [41]. This phenomenon leads

to CWS in the dispersionless limit, and (as in the χ(3) case) can be predicted using

the method of characteristics (MOC). These predictions are supported by a variety of

numerical methods, including the bandwidth unlimited G-envelope developed in chapter

IV. In fact, it is shown that CWS can be generalised to any nonlinear order (within the

dispersionless limit).

The novel shocked waveforms produced at different nonlinear orders exhibit interest-

ing symmetry properties. For example, χ(2) CWS waveforms do not display inversion

symmetry. These atypical properties have useful applications in High Harmonic Genera-

tion (HHG), increasing the spectral cut-off, and potentially generating shorter attosecond

bursts. This work goes beyond current experimental schemes, where at most, two-colour

fields are used to drive the HHG process [66–68].

The chapter begins with the generalised formula for predicting the shocking distance

based on the MOC, for any arbitrary combination of nonlinearities. These results are then

compared with numerical simulations for the case of quadratic media. Quadratic media

have sparked a lot of recent interest because of the ability to control their nonlinearity

[69–71]. However, these models looked at envelope descriptions of the E field, and did

not involve shock solutions. Many of the possible nonlinear combinations are unrealistic,
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although those based on second- and/or third-order processes are reasonable.

In practice, there are many potential pitfalls when trying to achieve χ(2) CWS, in-

cluding dispersion, birefringence, and the possibility that the plane of polarisation of the

generated harmonic is different to that of the incoming field. Though CWS itself is not

expected to occur in a real medium, the Carrier-Wave Self-Steepening (CWSS) preceding

a shock, remains a viable option and could prove useful in HHG, where the carrier gra-

dient of the driving pulse plays an important role. The increase in carrier gradient with

pulse power, is tested up to the damage threshold in various media. CWSS pulses are

then used to drive a HHG model, in order to examine their effects in terms of harmonic

yield and cut-off.

6.2 Theory

Our starting point is the pair of 1D sourceless, plane polarised Maxwell’s equations for

a field propagating in the z direction, namely

∂Ex

∂z
= −µ0

∂Hy

∂t
(6.1)

−∂Hy

∂z
=

∂Dx

∂t
,

where Ex, Hy and Dx are the electric, magnetic and electrical displacement fields re-

spectively. Ignoring the tensor nature of the nonlinear coefficients, and assuming the

polarisation of the generated field is the same as that of the incoming field yields:

D = ε0

(
E + χ(1)E +

∑
m>1

χ(m)Em

)
, (6.2)

where χ(m) refers to the mth order nonlinear susceptibility, and the medium is assumed

to be dispersionless (the subscripts are now dropped for brevity). This leads to the

second-order wave equation

c2∂2E

∂x2
= n2

0

∂2E

∂t2
+

∑
m>1

χ(m)∂
2Em

∂t2
, (6.3)

which can be factorised, such that

(
∂

∂t
+ v(E)

∂

∂x

)(
∂

∂t
− v(E)

∂

∂x

)
E = 0, (6.4)
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and the characteristic velocity v(E) is,

v(E) =
c√

n2
0 +

∑
m>1

mχ(m)Em−1

. (6.5)

Using the same technique that was applied in chapter V, it is possible to obtain a gen-

eralised formula for the shock solutions, namely

L = −
2c

√
n2

0 +
∑
q>1

qχ(q)Eq−1

∑
m>1

mχ(m)dEm−1

dt

. (6.6)

The shocking distance (Lshock) is now the minimum value of L in eq(6.6), i.e. Lshock =

Min[L]. In the case of a χ(2) medium, the formula predicts CWS at a distance of

Lshock =
c
√

n2
0 + 2χ(2)E

χ(2)
Min

[
− 1

dE
dt

]
(6.7)

contrasting with the χ(3) case (chapter V), where Lshock ∝ Min[− 1
dE2/dt

]. An example of

the E field profile at Lshock can be seen in fig. 6.1, for the case of a dispersionless χ(2)

medium.

It is also instructive to think of how the self-steepening process manifests itself in

the frequency domain, where production of harmonics occurs during the reshaping and

steepening of the time domain profile. Let us consider the early stages of the process, in

a χ(2) medium, with a sinusoidal E field (E = E0 sin(ω0t)). We have from eq(6.2)

D = ε0(n
2
0E + χ(2)E2) (6.8)

= ε0(n
2
0E0 sin(ω0t) + χ(2)E2

0 sin2(ω0t))

= ε0(
χ(2)E2

0

2
+ n2

0E0 sin(ω0t)− χ(2)E2
0

2
cos(2ω0t)).

We know from eq(6.1) that H depends on the derivative of D, and therefore that the

new EM field contains both fundamental and second harmonic components. The mixing

of the fields on the next step (assuming a discrete process), produces frequencies ranging

from ω0 to 4ω0. The build-up of the harmonic cascade as the pulse approaches Lshock

can be seen in fig. 6.2. This spectrum differs from that of χ(3) self-steepening, where

only odd harmonics are present. It is the presence of even harmonics that always causes
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Figure 6.1: Electric field profile of a few-cycle pulse at the point of shocking: E(t) =
E0 sin(ω0t + φ)sech(0.3ω0t), (χ(2)E0 = 0.02). Note the skewed shape of the pulse and
the sawtooth profile. On either side of the central carrier oscillation the field gradient is
near vertical, causing a shock (LDD). The smallest unit of repetition here is 2π rads, as
opposed to π rads in the χ(3) case. This has consequences in driving HHG, and will be
discussed later.

asymmetry in the time domain profile.

6.3 Detection of χ(2) CWS

Using the LDD method [39] (chapter V section 5.2.3), CWS in χ(2) media was investigated

for different pulse lengths, and differing Carrier Envelope Phase (CEP) offsets (in the

few-cycle limit). This is because both of these attributes are crucial when driving HHG.

The results were in qualitative agreement with those of χ(3) CWS, and were confirmed at

the analytically predicted distance. As in the χ(3) case, Lshock was found to be sensitive

to both pulse length and CEP. Fig. 6.3 illustrates this feature, where Lshock is compared

to the prediction of eq(6.7), for different pulse lengths. The initial pulse profile was

E(t) = E0 sin(ω0t + φ)sech(0.3ω0t), where χ(2)E0 = 0.02.
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Figure 6.2: Log plot of E(ω)2 at half micron intervals, approaching Lshock in a χ(2)

material (taken from fig. 6.1). The curves flatten out as progressively more harmonics
are generated close to Lshock. The spectrum contrasts with χ(3) shocking, where only odd
harmonics are produced (see fig. 6.6).

CEP sensitivity can be seen in fig. 6.4, where Lshock decreases as the pulse approaches

a cosine (‘cosine’ refers to φ = π/2 in this case, where a maximum occurs at the envelope

peak). This is expected, as a cosine pulse has the highest peak intensity, producing

the smallest −dE/dt. This differs from χ(3) CWS where Lshock ∝ Min(−EdE/dt)−1,

producing a more complicated CEP dependence within the few-cycle regime.

6.4 Shocked waveforms

Following the predictions of eq(6.6), this section demonstrates some novel shocked wave-

forms. The waveforms have been generated in dispersionless media, and are included

to highlight the symmetry properties at different nonlinear orders. This helps us to

understand their benefits when applied to HHG.

The PSSD method [32] was used for this task, along with the G-envelope method (see
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Figure 6.3: Comparison of shocking distance in χ(2) media with respect to initial pulse
length (d) for the case E(t) = E0 sin(ω0t)sech(dω0t). The blue solid curve represents the
analytical result and the red dotted curve represents the numerical results (LDD). The
shocking distance approaches an asymptotic limit for the cw case.

chapter IV). CWS was found very close to the predicted distance for all nonlinear orders

tested. These simulations also emphasise the accuracy of bandwidth unlimited envelope

methods [35], where the E field is oscillating on a very fast timescale. A theoretical

χ(4) CWS waveform has been included to illustrate the generality of the formula and to

demonstrate the breaking of the inversion symmetry at even nonlinear orders. It should

be emphasised, that its inclusion is not meant as a realistic suggestion, but rather to

highlight the connection between E field symmetry/asymmetry and the nonlinear order.

The shocked waveforms in fig. 6.5 display some striking properties. In particular, figs.

6.5 (a) and (c) which both have an underlying sawtooth shape, where the smallest unit of

repetition is 2π rads. This is because even harmonics cause the pulse to be asymmetric

on inversion. In such cases, positive lobes lean to later times whilst negative lobes lean to

earlier times. The induced refractive index now affects positive and negative half-cycles
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Figure 6.4: Comparison of shocking distance in χ(2) media with respect to CEP (φ). The
solid curve (blue) represents the analytical result and the dotted curve (red) represents
the numerical results (LDD). The two curves are in excellent agreement, showing the
expected change in shocking distance due to CEP.

differently. (Both dE/dt and dE3/dt can take on positive and negative values.)

This contrasts with fig. 6.5 (b), where both positive and negative half-cycles lean to

later times, as the characteristic change in velocity depends on dE2/dt, affecting both

positive and negative E values equally. The smallest unit of repetition therefore becomes

π. Another noteworthy feature is that, for lower order nonlinearities, all the carrier

oscillations undergo noticeable change, whereas at higher orders, the majority of the

reshaping occurs on the most intense carrier(s).

The agreement between PSSD (blue) and G-envelope (red), over such a vast band-

width is remarkable. The curves in fig. 6.5 almost exactly overlay each other, testifying

to both the accuracy of a uni-directional method and, a bandwidth unlimited envelope.

For such consistency to occur, the uni-directional approximation (chapter IV), and a

wideband envelope calculation must both reproduce Maxwell’s equations to a very high
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Figure 6.5: CWS for different nonlinearities: PSSD (blue-dashed), G-envelope (red-
dashed), and complex envelope (black-dashed). (top) χ(2): The sawtooth shape is charac-
terised by near vertical gradients on either side of the carrier, as ±E move to higher/lower
times respectively. (middle) χ(3): All the carrier oscillations ‘lean’ in one direction, as
both ±E move to higher times. (bottom) χ(4): Like the χ(2) case, the inversion symmetry

is broken as dE(3)

dt
can be positive/negative.
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degree of accuracy. The magnitude of the complex envelope has also been plotted in fig.

6.5 (black-dashed), demonstrating CWS from another perspective. Because the carrier

has been removed from the picture, all the relevant information is contained in the com-

plex envelope, and is responsible for its complicated structure. The highest frequency

on the envelope is always just one harmonic less than it would be in a carrier picture.

The LDD method did not consistently work with the complex envelope representation,

therefore G-envelope was propagated to the same distance as PSSD where it was then

stopped.
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Figure 6.6: Intensity spectra for figs. 6.5, χ(2)E0 = χ(3)E2
0 = χ(4)E3

0 = 0.02. (top)
Harmonic distribution for χ(2) CWS. The presence of even harmonics is clearly visible.
(middle) Harmonic distribution for χ(3) CWS. In this case only odd harmonics are present.
(bottom) Harmonic distribution for χ(4) CWS. The intensity distribution here contains
features from both of the previous spectra.

Though all the profiles in fig. 6.5 have triggered a shock, they occurred at different

distances, underlining another important aspect of the CWS model. Lshock is reduced

at higher nonlinear orders for the same effective nonlinear strength χ(2)E0 = χ(3)E2
0 =
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χ(4)E3
0 = 0.02. The reason being, that at higher nonlinear orders, the steepest gradients

are approached faster. This can be seen from the frequency distribution at Lshock in fig.

6.6. The presence of only odd harmonics in the case of χ(3) is also re-emphasised.

The rate of steepening impacts on the practical applications of carrier-steepened wave-

forms. Because dispersion is present in real media, for maximum steepening, a higher

order nonlinearity would be beneficial. Unfortunately, the disadvantage of this is that

the effective nonlinear strength is generally diminished at higher orders. Thus, χ(2)E0

is generally larger than χ(3)E2
0 . The symmetry properties of the medium also play an

important part in the CWSS process, as we shall see in section 6.7.

6.5 Wavelet representation

Wavelets have been used elsewhere in nonlinear optics because of the clear and intuitive

picture they provide [72]. A wavelet cannot be exclusively defined in time or frequency

space, but rather exists is a mixed basis. The mother wavelet can be manipulated through

a series of either scaling or transformation operations, into various daughter wavelets.

These daughter wavelets can be used to decompose a function into the desired wavelet

basis. The higher frequency wavelets provide information on a faster timescale, and thus

allow high frequency regions of the pulse to be pinpointed. This would not be possible

using a Fourier basis, as all frequencies are present at all times.

Wavelets are particularly useful when describing very sharp profiles or shocked fea-

tures. In this case the Moorlet 5 wavelet was used to analyse the shocked waveforms from

fig. 6.5, displaying where the highest frequency content was present. The wavelet plot

also highlights the contrasting symmetry of χ(2) and χ(3) CWS (where the high frequency

content occurs once per cycle vs twice).

6.6 Practicalities of χ(2) self-steepening

6.6.1 Real Media

The theory discussed so far, has relied on an idealised dispersionless medium with in-

stantaneous nonlinear response. As in the previous chapter (chapter V: χ(3) CWS), we

would not expect a physical shock to occur, but instead consider how χ(2) CWSS pulses

might be generated, and the properties they would have. Chapter V dealt with the

interplay of linear and nonlinear effects [39], and because those considerations have al-

ready been covered, they are not repeated here. This section discusses some important
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(a) Wavelet transform of χ(2) CWS. The
breaking of the inversion symmetry using a
wavelet basis can clearly be seen, where each
half-cycle becomes distinct, contrasting to
χ(3) CWS. The highest frequency wavelets
are visible around the most intense carrier.

(b) Wavelet transform of χ(3) CWS. High fre-
quency wavelets can be seen on both half-
cycles of the carrier, emphasising the inver-
sion symmetry. The highest frequencies oc-
cur where the intensity is highest as in fig.
(a) above.

Figure 6.7: Wavelet transforms of χ(2) and χ(3) CWS using a log scale for the field, where
sgn was applied separately (±), to deal with the negative field values. The greatest
positive and negative values are red and blue respectively. The waveforms were taken
from fig. 6.5 (a) and (b).

consequences of χ(2) self-steepening, including results from real media where the degree

of carrier-steepening is considered at the damage threshold (power). The extent of the

carrier-steepening can then be compared to the χ(3) case from the previous chapter.

Linear dispersion generally makes phase-matching the entire harmonic cascade im-

possible, so it is necessary to consider the level of steepening that can be accomplished

in practice. Steepening will take place where there is phase-matching, but in general

linear dispersion will dominate after a short distance, stopping the exponential growth of

the field gradients as the harmonics become out of phase. Fig. 6.8 shows the maximum

gradient at the damage threshold of MgO:LN as a function of distance. In less than a

micron, dispersion has reduced the maximum gradient, making extreme CWSS unlikely.

Another important consideration for χ(2) interactions is the plane of polarisation of

the generated harmonics. This is generally different to that of the driving field, adding the

further complication of birefringence. Fortunately, materials exist where the nonlinear

plane of polarisation is the same as that of the driving field e.g. e + e → e in lithium

niobate [46]. This may help begin a harmonic cascade, and is one reason why MgO:LN

was chosen as a comparison to fused silica.

The maximum gradient achieved at the damage threshold of MgO:LN was ' 10%
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Figure 6.8: Comparison of the maximum gradient at the damage threshhold of MgO:LN
as a function of distance. The blue curve includes all the harmonic content available,
whereas the red curve contains only the fundamental and second harmonic. In this case,
frequencies where ω > 2ω0 have a minimal affect on the gradient because of the material
dispersion.

of fused silica. This is because of fused silica’s high damage threshold, high effective

nonlinear strength, and flat dispersion profile (see fig. 3.3). On the other hand, MgO:LN

has a higher nonlinear coefficient, but because the damage threshold is considerably lower

(approximately two orders of magnitude [73]) than fused silica (' 50×1012 W/cm2 [38]),

the maximum effective nonlinearity remains considerably less.

Lshock also depends on the frequency of the underlying carrier eq(6.7), where a higher

frequency has the effect of reducing Lshock. In the comparison here, an 800 nm carrier

was used with MgO:LN, whereas a 1240 nm carrier was used with fused silica. The

combined effect of the higher carrier frequency and larger nonlinear coefficient, was not

enough to achieve a steeper gradient, because of the flatter dispersion profile, and the

higher damage threshold in fused silica.

110



The results indicate that generating extreme CWSS pulses in χ(2) media is unlikely;

although some success might be expected if relatively weak self-steepening is sufficient.

An alternative route to achieving extreme CWSS waveforms might be through synthesis.

This is done by combining a set of harmonics and using the phase offsets and amplitudes

provided by our numerically generated CWSS profiles.

6.6.2 Synthesised waveforms

Another possible route to CWSS is through synthesised waveforms. This idea extends

current two-colour schemes, to many, and focuses on maximising the field gradient (as

opposed to the field value). To understand the process, individual harmonics were added

to the fundamental field, using the phase relationships present in CWSS. Each added

harmonic, increases the carrier gradient, and could perhaps be used to drive HHG if the

enhancement warranted it (see section 6.7 for harmonic related yields).
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Figure 6.9: Synthesised CWSS: (left) The pulse profile begins as a sinusoid, and ap-
proaches the sawtooth shape associated with χ(2) CWS as more harmonics are added.
(right) Increase in maximum gradient, where each data point corresponds to the addition
of an extra harmonic up to 10ω0. The increase in gradient is slightly less than linear.

Fig. 6.9 shows how the most intense carrier oscillation changes with each additional

harmonic. Depending on the yield that is required, a carrier with the necessary gradient

might be synthesised from the individual harmonics.
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6.7 HHG driven by χ(2) CWSS pulses

In HHG, the intensity maxima of a strong driving laser pulse tunnel ionise an atom or

molecule. Once in the continuum, the acceleration of the liberated electron is dominated

by the electric field profile E(t) of the pulse. Initially the electron is driven away from

the core, before the electric field reverses in direction and drives it back again for a high

energy recollision, approximately three-quarters of a cycle later [74]. This recollision

generates an eXtreme UltraViolet (XUV) burst of radiation, localised to within a few

hundred attoseconds. Since each half-cycle of the driving pulse initiates the process, a

train of these XUV bursts is generated. Due to their extremely short duration, they form

an ideal probe of ultrafast dynamics.

A typical HHG spectrum from an atomic gas consists of a plateau of harmonics ex-

tending to high orders, but falling off rapidly above a cut-off energy ε. For monochromatic

driving fields or sufficiently long pulses, with a maximum field strength of E0, the cut-off

(ε) is related to the ionisation potential (IP ), and ponderomotive potential (UP ) of the

laser field as follows: ε = IP + 3.17UP [74, 75], where UP = E2
0/(2meω0)

2. This equation

suggests that increasing ε requires either increasing E0, or using an atomic species with

a higher IP . However, increasing E0 causes extra ionisation of the gas, which can result

in the defocussing of the laser beam and depletion of the HHG spectrum.

Not all HHG experiments rely on monochromatic driving fields, indeed, two-colour

driving field schemes have already been used [66–68]. Here a second harmonic field (E1)

is added so that E(t) = E0 sin(ω0t) + E1 sin(2ω0t + φ); the inversion symmetry of the

driving field is thus removed. For φ = 0, this means that the positive lobes of E(t)

are increased (giving enhanced tunnel ionisation), whilst the negative lobes are reduced

(giving diminished tunnel ionisation). As a result, the XUV bursts produced have an

intensity and spectral cut-off which alternate each half-cycle. This makes it easier to

isolate a single XUV burst of high harmonic radiation from each cycle using a high

band pass filter. In fact, it is possible to improve on this simple two-colour method of

maximising the peak field. By changing the phase (φ), between a strong fundamental

and weak second harmonic, increased cut-offs have been found [76]. Setting φ = π/2

maximises the gradient, increasing the cut-off energy for every other half-cycle.

For non-monochromatic driving fields, the Strong Field Approximation (SFA) [77]

can be used to predict the spectral cut-off ε. This varies for each half-cycle of the driving

pulse as the maxima of the function [78]

ε(ti, tr) = IP +
1

2
[eV (tr) + p(ti, tr)]

2 (6.9)
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where ti and tr, are the ionisation and re collision times respectively. The asymptotic

momentum of the electron, p(ti, tr), is equal to minus the average value of the vector

potential V during the electron’s trajectory

p(ti, tr) = −e (tr − ti)
−1

∫ tr

ti

V (t)dt. (6.10)

Thus it is possible to increase ε by increasing the peak vector potential V (tr), rather than

increasing the peak driving field E0. Since the gradient of the field dE/dt is the second

derivative of the vector potential, a maximised gradient corresponds to a strongly peaked

vector potential, and indeed the maximum value of the cut-off ε is strongly correlated

to the maximum V (t). For two-colour schemes, setting the relative phase to φ = π/2

steepens the gradient by the maximum possible amount, and thus increases ε for every

second half-cycle. With CWSS pulses we can improve on this, and further increase ε

without suffering the disadvantages of a larger E0. Indeed, each extra correctly phased

and weighted harmonic used to build up a CWSS pulse increases the field gradient and

can be seen in fig. 6.9.

Any CWSS pulse can be used to increase the field gradient, but by using χ(2) CWSS

pulses (as opposed to e.g. χ(3) CWSS pulses), the added benefit of breaking the inversion

symmetry is also derived. Because the driving E field dominates the Coulomb potential,

electrons follow the form of the E field. Thus, breaking the inversion symmetry of the

driving field, breaks the inversion symmetry of the HHG. Referring to section 6.4, it is

clear that one half-cycle of a χ(2) CWSS pulse experiences a reduction in the E field

gradient. This then reduces the frequencies in the characteristic XUV burst (low ε),

which can then be easily removed with a high band-pass filter. The other half-cycle

of the E field, experiences an increase in maximum gradient (i.e. a maximised vector

potential), and can therefore pass the filter. The maximised gradient also occurs over a

shorter time period, producing a correspondingly shorter XUV burst with a smaller than

average chirp. These subtelties are very useful in the generation of isolated attosecond

bursts or when using attosecond pulse trains for stroboscopic imaging.

To understand the effect that additional harmonics (of the driving field) have on the

HHG spectrum, a synthesised χ(2) CWSS pulse was used to drive the HHG process (as in

fig. 6.9). The high harmonic spectrum was then filtered at the frequency that produced

the ‘cleanest’ attosecond pulse. This corresponds to selecting a region of the spectrum

consisting of radiation emitted from a single attosecond burst. In order to isolate such

an event it becomes necessary to sacrifice some of the energy in the pulse. Fig. 6.10

illustrates the reduction in FWHM and intensity of the attosecond pulses, for each extra
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harmonic added to the driving field.
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Figure 6.10: Reduction in attosecond pulse duration and intensity for additional har-
monics. The attosecond duration (blue) decreases with the addition of extra harmonics
to the driving field. A side effect of filtering the attosecond pulses, is a reduction in peak
intensity (red). Figure produced by L. E. Chipperfield for [41], with permission.

6.8 Conclusion

In this chapter, the analytical predictions for shocking distance have been generalised

to arbitrary nonlinear order, including combinations of the nonlinear terms. The previ-

ously neglected case of χ(2) carrier wave self-steepening and shocking has been examined,

and the theoretical predictions for the shocking distance are shown to be in excellent

agreement with a variety of numerical integration methods. The results demonstrate a

qualitative agreement with the more familiar χ(3) CWS, including CEP sensitivity, and

sensitivity to pulse length (in the single-cycle regime).

When generalising the theory of carrier wave shocking, an important feature emerges:

at odd nonlinear orders, the shocked waveforms possess inversion symmetry, but lack this
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symmetry at even orders. This lack of symmetry has great potential when used to drive

HHG pulses, as it helps isolate attosecond radiation, whilst also producing attosecond

events on a faster timescale. The faster timescale is a result of the rapid gradient changes

in the driving field.

It is clear that producing extreme χ(2) CWSS pulses in available nonlinear media

remains a significant challenge. The challenge is greater than in the χ(3) case, because

even though χ(2) nonlinear coefficients are typically greater, the damage threshold is

orders of magnitude lower. Nonetheless, the breaking of the inversion symmetry makes

χ(2) CWSS pulses a more attractive option. A more viable route to their production,

might be through synthesis. If synthesised, such pulse profiles would have some unique

and very useful properties. The lack of inversion symmetry could be exploited in HHG,

for stroboscopic imaging and isolation of attosecond radiation. Furthermore it would

provide us with an opportunity to maximise the HHG spectral cut-off without resorting

to stronger electric fields. Consequently, extending the idea of two-colour HHG driving

schemes to multi-colour χ(2) CWSS pulses may become an attractive option, despite its

complexity, as it could ultimately lead to shorter attosecond XUV bursts.
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Chapter 7

CEP Stabilisation and Measurement

7.1 Introduction

The Carrier Envelope Phase (CEP) of a few-cycle pulse has become a prominent feature of

nonlinear optics in recent years. Its heightened importance is a direct result of processes

becoming sensitive to the electric field of a pulse as opposed to the intensity envelope.

7.1.1 Carrier Envelope Phase

The CEP of a pulse φCE can be defined in the time domain as the phase between the

pulse envelope A(t), and the underlying carrier ω0

E(t) = A(t)cos(ω0t + φCE). (7.1)

Fig. 7.1 shows an example of a few-cycle pulse where φCE = −π/2. CEP sensitivity only

occurs in the few-cycle regime where changes in CEP significantly influence the pulse

structure, the difference becoming more pronounced the shorter the pulse duration. (Fig.

1 of chapter II illustrates this, with a plot of the ‘maximum change in peak intensity’

vs ‘pulse duration’, for fig. 7.1 this is ' 2.5%.) Other strong field effects such as High

Harmonic Generation (HHG) are also highly sensitive to CEP [78]. This is because, in

the strong field regime, the electric field intensity is sufficiently high, to suppress the

coulomb potential of an atom or molecule, producing optical ionisation. The tunnel

ionised electrons then follow the electric field profile, making them immensly responsive

to its structure. (The effect of the electric field gradient on HHG was discussed in chapter

VI.)

The method of CEP measurement is fundamentally connected to mode-locked lasers

and frequency combs. As discussed in chapter I, a mode-locked laser produces a train of
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Figure 7.1: Electric field profile (E(t), blue), and envelope (|A(t)|, red) of a 2.8 cycle, 800
nm pulse (' 7.5 fs) typical of a commercial Ti:sapphire laser system. In this example
the absolute CEP φCE = −π/2, and is referred to as a ‘sine’ pulse because of the phase
of the carrier at the centre of the envelope (a ‘cosine’ pulse would peak in the centre).
The maximum difference in peak power due to CEP corresponds to ' 2.5% in this case.

pulses, using the superposition of a multitude of cw (longitudinal) cavity modes. Once

every round trip time, the cavity modes constructively interfere producing a pulse, where

most of the energy of the EM field is present. A train of pulses in the time domain,

results in an intensity spectrum made up of a frequency comb in the spectral domain

(see fig. 7.2). These combs form the basis of all self-referencing techniques.

Before describing various self-referencing approaches, it is important to divide the

CEP into its various components. Absolute CEP is best described as

φCE = φ0 + ∆φCE, (7.2)

where φCE is the absolute CEP and φ0 is the unknown offset, which accumulates phase
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slip on successive round-trips. 1 In the phase stabilised case φ0 remains an unknown

constant. ∆φCE is the dynamic pulse-to-pulse slip adding a fixed phase to successive

pulses [23, 79]. The dynamic CEP slip arises in a mode-locked laser, because of the

differences in the phase vp and group vg velocity experienced by the circulating pulse,

namely

∆φCE =

(
1

vg

− 1

vp

)
lcω0 Mod[2π] (7.3)

where lc is the round-trip cavity length. ∆φCE is responsible for the carrier slipping

beneath the envelope from pulse-to-pulse (see fig. 7.2); the slip is always modulo 2π.

7.1.2 Self-referencing

Self-referencing is one of the most successful measurement techniques of recent years,

impacting on fields from coherent control to frequency metrology. The technique is best

understood in the frequency domain, where a train of pulses in time, produces a spectrum

consisting of an intensity comb. The tooth spacing of the intensity comb is equal to the

repetition-rate of the laser frep. The dynamic pulse-to pulse slip ∆φCE, produces a shift

in the frequency comb equal to the offset frequency fO [23, 79], through the equation

fO =
∆φCEfrep

2π
, (7.4)

which is highlighted in fig. 7.2.

All self-referencing techniques, be it 0−f , f−2f or 3.5f−4f , contain two fundamental

components. They all combine the effects of a χ(2) parametric interaction, with the

fixed pulse-to-pulse phase slip ∆φCE. The parametric processes create frequencies with

different multiples of ∆φCE, through Sum/Difference Frequency Generation (2∆φCE and

0 respectively), which when self-referenced to other parts of the initial spectrum display

a relative phase slip of ∆φCE. The relative CEP phase slip is then detected in the form

of a beat allowing a measurement of ∆φCE. (Fig. 7.10 later summarises how different

parts of the spectrum experience different multiples of CEP slip.)

f − 2ff − 2ff − 2f

The most widespread self-referencing technique is f − 2f . This takes place by frequency

doubling part of the initial pulse spectrum, and beating the lower wing of the second

harmonic, with the upper wing of the fundamental. An octave wide spectrum is required

1An alternative way of writing the absolute CEP is φ
(n)
CE = φ0 + n∆φCE , where n describes the

number of times the pulse has circulated in the cavity.
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Figure 7.2: Time and spectral domain representation, where a train of pulses in time
produces a frequency comb spectrum. The pulse-to-pulse CEP slip is responsible for a
comb shift of fO in the frequency domain.

for the spectral overlap, and can either be directly produced [80], or may be done with the

help of a photonic crystal fiber (or some other method of broadening the fundamental

spectrum to an octave). An alternative arrangement for pulses significantly less than

an octave involves self-referencing other parts of the spectrum e.g. 3.5ω0 − 4ω0 [81].

Interference then occurs in the spectral region where the teeth of the fundamental fn =
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nfrep + fO and second harmonic fs = sfrep + 2fO interfere creating a beat at a frequency

fbeat = ±|sfrep − nfrep + fO|. (7.5)

Here nfrep and sfrep correspond to the frequencies of the n/s teeth of the fundamen-

tal/second harmonic frequency combs respectively. If the photodiode response window

is wide enough to include nfrep and sfrep, a beat at fbeat can be detected.

0− f0− f0− f

In this chapter, a novel 0 − f self-referencing technique [42, 43], that relies on pas-

sive self-stabilisation occurring in a Periodically-Poled (PP) MgO:LN crystal, is nu-

merically investigated. In the scheme, Difference Frequency Generation (DFG) takes

place between two Quasi-Phase Matched (QPM) frequencies present in the upper (ω3),

and lower (ω2) wings of the fundamental frequency spectrum. Any phase slip expe-

rienced by the incoming pulse (∆φCE), is not transferred to the DFG signal, since

(ω3 + ∆φCE)− (ω2 + ∆φCE) = ωpm (where ‘pm’ refers to the quasi Phase-Matched differ-

ence frequency); see fig. 7.3. A beat between ω1 and ωpm, is then observed with the help

of a photodiode (PD).

ω3ω0ω2ω1

INPUT PULSE

DFG ω    = ω  −  ωpm         3           2

BEAT SIGNAL

Figure 7.3: Schematic diagram of the beat between the input pulse and the DFG signal.

The beat between the phase stable ωpm (in which ∆φCE has cancelled out), and the

dynamic pulse-to-pulse ω1 (in which it hasn’t), forms sidebands to the photodiode signal

in a similar way to f −2f . The sidebands are then used to determine fO, which can then

be incorporated in an electronic feedback loop, to change the phase and group velocity

difference of eq(7.3), e.g. adjusting the pump power of the laser.
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This chapter examines the nature of the 0 − f self-referencing scheme of [42, 43],

by mapping the evolution of the EM field through the crystal, and investigating the

nonlinear interactions taking place. The robustness of the scheme to phase and intensity

variations is also tested. On the basis of the numerical results and spectral structure

observed, a novel absolute CEP measurement scheme is proposed, where the level of

interference between ω1 and ωpm is used to determine φCE on a single-shot basis. The

limitations and necessary conditions for the scheme to succeed are discussed, along with

other suggestions to determine absolute CEP from the spectral domain.

7.2 Numerical model

In this section, an outline of the experiment performed in [42, 43] is provided along

with some simple calculations, giving a qualitative feel of the parameters used, and the

effective strength of the nonlinear interactions. This helps explain the experimental

results described in [42, 43], and enables us to propose an extension of this setup to the

measurement of absolute CEP.

The PSSD technique [32] was used to solve Maxwell’s equations for the nonlinear

propagation. Given the short interaction length, diffraction was ignored (an assumption

discussed later), and in MgO:LN where the χ(2) interaction is e + e → e, Maxwell’s

equations become

∂Ex

∂z
= −µ0

∂Hy

∂t
(7.6)

∂Hy

∂z
= −ε0

∂

∂t

[
E + χ(1) ∗ E + χ(2)E2 + χ(3)E3

]
. (7.7)

Here χ(1) contains linear dispersion, and any nonlinear response is assumed to be instanta-

neous. The crystal was periodically poled at 11.21µm, and so was optimised for DFG be-

tween the wings of the fundamental: ω3(3.04×1015)−ω2(1.885×1015) = ωpm(1.155×1015)

(rad s−1). The repetition-rate of the oscillator was 70 MHz with an average power of 420

mW, producing Gaussian pulses of ' 6 fs duration (λ0 = 830 nm). The initial pulse

was focused down to a spot size of w0 ' 15µm, before propagating 2mm through the

MgO:LN crystal. A mirror acting as a dichroic beam splitter was then used to reflect the

fundamental, and transmit the infrared frequencies (λ > 1250 nm, ω < 1.51 × 1015 rad

s−1), before the infrared part of the beam passed through a long-pass filter (λ > 1400nm,

ω = 1.35× 1015 rad s−1). The transmitted component was then detected by an InGaAs

photodiode, with a rise time of 3 ns. The photodiode’s spectral range was 900-1700 nm,

and the response was assumed to be linear for simplicity.
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For stability reasons, Orzag’s 2/3 rule was implemented [59], along with a moving

super-Gaussian filter to stop aliasing problems. The array size was N=16384 (214), and

the Sellmeier equation for MgO:LN in [73] was used.

7.2.1 Calculation of peak intensity

Assuming a Gaussian profile in space and time, the peak intensity (I0) can be calculated

from w0 (beam waist) and tFWHM (Full-Width Half-Maximum). The intensity of E at

z = 0, is

I(x, y, t) = I0e
−(2ax2+2by2+2ct2) (7.8)

where a, b and c describe the Gaussian profile and can be determined from tFWHM and

w0 respectively.

Energy[J] =

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
I0[W/m2]e−2αx2 · e−2βy2 · e−2γt2dx [m]dy [m]dt [s]. (7.9)

The peak intensity can then be calculated using the standard integral (
∫ +∞
−∞ e−ax2

dx =√
π/a)

I0[W/m2] =
Energy[J]√

π3

8αβγ

, (7.10)

where: average pulse energy (= average energy/rep rate) = 6 × 10−9 J, gives I0 '
4 × 1015 W/m2. Using an estimate of a cylinder with diameter w0 = 15µm and 6 fs

duration, produces I0 = 5.65 × 1015W/m2, and I0 = 5 × 1015W/m2 was therefore used

as the default value throughout.

7.2.2 Effective nonlinear strengths: χ(2)E0 vs. χ(3)E2
0

In order to appreciate the robustness of the scheme, it is instructive to consider the

relative nonlinear strengths acting throughout the crystal, by normalising them to E0.

The value of d33 in MgO:LN was taken to be d33 = 30.0 pm/V. Converting the units

to (W/m2) was done using

I[W/m2] =
1

2
ncε0|A[V/m]|2 (7.11)

where n ' 2 for bulk LN [82], and A is the intensity envelope, giving d33 = 5.82×−10
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m/
√

W. χijk = 2dijk [73], finally results in χ(2) = 1.16 × 10−9 m/
√

W. The value of n2

in MgO:LN, was approximated to that of LN ' 10× 10−16 cm2/W [82], where applying

the formula n2 = 3χ(3)

8n0
, yields χ(3) = 5.33× 10−19m2/W.

This produces the following normalised ratio of effective nonlinear strengths:

E0 : χ(2)E2
0 : χ(3)E3

0 =⇒ 1 : 0.082 : 0.0027. (7.12)

It is clear from the ratio in eq(7.12) that significant nonlinearities act throughout the

propagation. Though
χ(3)E2

0

χ(2)E0
' 0.03, the SPM length is LSPM = 0.26mm, constituting

a strong χ(3) effect over a 2mm crystal. The presence of χ(2) and χ(3) enables 3 and

4-wave mixing to take place, additionally complicating the frequency mixing. We might

therefore expect many frequencies to be redistributed at the end of the 2mm propagation.

Fig. 7.4 plots the final spectra (log scale) of the individual and combined nonlinearities

after a 2mm propagation. The initial spectrum (blue) has been distinctly changed over

the propagation, where the dominant nonlinearity is χ(2).

7.3 Simulation results

Analytical formulae for the conversion efficiency of a DFG signal can be found in most

standard texts, and usually ignore dispersive spreading, group-velocity mismatch, and

assume no field depletion [73]. When dealing with few-cycle pulses, the DFG process

becomes far more complex.

Firstly, the 6 fs pulse described in [42] has a bandwidth ranging from approximately

660 to 980 nm, at -10 dB below the peak (fig. 7.4 blue), making a DFG calculation

between two well defined frequencies impossible. Secondly, the assumption of no field

depletion is no longer valid as the intensity at the DFG frequencies change during the

propagation (fig. 7.6 shows depletion before 250 microns), due to the many 3 and 4-wave

mixing process taking place. Finally, the large bandwidth means that dispersion has a

much stronger effect causing pulse spreading etc.

To understand the DFG taking place and the interplay of the different nonlinearities,

numerical simulations (including feedback from the author of [42]) were carried out to

simulate the evolution of the EM field through the crystal. It was initially thought

that ωpm would steadily grow thoughout the crystal length because of QPM. However,

integrating the intensity at ωpm, revealed growth over the first few coherence lengths

only. This can be seen in fig. 7.5.

The lack of ωpm growth beyond the first 50 microns, can be explained by the relatively
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Figure 7.4: Log plot of the final intensity spectra for the following nonlinear combinations:
χ(2) and χ(3) (red), χ(2) only (green), and χ(3) only (black). The initial spectrum (blue)
is plotted for comparison. The results indicate that χ(2) effects dominate χ(3), which is
expected from the effective nonlinear strengths. The frequencies for which the crystal is
optimised/periodically poled (ω3 and ω2) are marked with dashed lines.

small intensity of ω3, and the depletion at ω2. Fig. 7.6 shows the intensity spectrum after

250 microns, where the upper wing of the fundamental (ω3) contains a relatively small

amount of energy (compared to the rest of the spectrum), whilst energy appears depleted

at ω2. The depletion of ω2 is generally associated with Sum Frequency Generation (SFG),

and indeed frequencies do appear around ω ' 4.3ω0. This however was not consistent

with the QPM period, which was setup to optimise DFG at ωpm. The presence of strong

χ(2) and χ(3) nonlinearities clearly makes the parametric processes taking place very

complicated, where DFG and SFG both seem to occur. Small changes to the poling

period (1/10th micron) did not significantly affect these results.

In the experiment described in [42, 43], the best beat signal detected by the PD

was found using a 1400 nm (ω = 1.35 × 1015) longpass filter, compared to other longer

pass filters e.g. 1600 nm (ω = 1.18 × 1015). This is because the optimum beat signal

arises when the two interfering frequencies produce the largest PD modulation, and
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Figure 7.5: Intensity of ωpm during propagation. The signal grows for approximately 50
microns before stabilising.

consequently the largest signal to noise ratio. 2 Having a disproportionate amount of

energy at frequencies above or below ωpm will reduce the modulation. For this reason,

a good signal was detected with only a small amount of DFG, as the intensity was then

comparable to ω1 (on the lower wing of the fundamental). It is important to emphasise

that a large DFG signal does not provide the best results, as a strong beat requires equally

intense contributions from ω1 and ωpm. These beats are therefore found in the tails of

the overlapping frequencies. A plane wave approximation can therefore be justified by

the interaction length, being only tens of microns, diffraction is negligible.

Now that we have a handle on the nonlinear processes taking place, there are two

fundamental requirements for the scheme to accurately work. The ωpm signal must be

insensitive to:

2Strictly speaking, the greatest PD modulation will depend on its frequency response and will gen-
erally be frequency dependent, but for the purposes of this study its response was considered frequency
independent.
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Figure 7.6: Intensity spectrum after a propagation distance of 250 microns (red). New
frequencies have appeared at ω ' 0.25ω0 and ω ' 4.25ω0. Depletion can be seen at ω2

compared to the initial spectrum (blue), suggesting SFG.

• ∆φCE: Pulse-to-Pulse phase slip of the input pulse.

• Intensity fluctuations of the order of ±1%, that might occur on the incoming pulse.

The stability of the scheme to these parameters is now tested.

7.4 Self-stabilisation

The phase stability of ωpm produced through DFG, to CEP slip (∆φCE) was numerically

tested. Starting from φCE = φ0 = 0 (cosine), a pulse-to-pulse change of ∆φCE = π/10

was applied at the beginning of the 2mm propagation, mimicking the CEP slip from a

mode-locked laser. Most of the final intensity spectrum showed little CEP sensitivity,

where production of frequencies in the dc and 2ω0 regions seemed unaffected. An example
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of the spectral evolution during a 2mm propagation (∆φCE = 0) can be seen in fig. 7.7.

Most of the defining nonlinear activity occurs in the early parts of the propagation (up

to 250 microns), creating new frequencies through parametric processes especially in the

2ω0 and dc regions of the spectrum.
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Figure 7.7: Log plot of |E(ω)|2 at various distances inside the crystal. blue=0, black=5,
cyan=10, green=100 and red=2000 microns respectively. Most of the energy redistribu-
tion occurs within the first few hundred microns.

To notice the effect of CEP slip, we must look closer at the phase structure of the

spectrum around ω1. This can be done by calculating the pulse-to-pulse phase change at

E(ω)

∆φω = φn+1 − φn, (7.13)

where φn+1 and φn are the phases at a particular frequency (ω) over successive shots.

The results are presented in fig. 7.8, where the self-stabilisation mechanism is clearly

visible. ∆φCE on the incoming pulse leaves the phase in the region ω < ωpm unaffected,

illustrating self-stabilisation. For ω > ωpm the expected ∆φω = π/10 phase change due

to the phase slip ∆φCE = π/10 is evident.

CEP slip represents a fixed pulse-to-pulse phase change that produces a frequency

comparable to the repetition-rate. In the above example where ∆φCE = π/10, an 80MHz
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Figure 7.8: Pulse-to-pulse phase change in the final spectrum at the end of a 2mm
propagation. Five plots overlay each other, representing ∆φω between successive pulses
1-2 (red), 3-4 (blue), 5-6 (blue), 7-8 (blue), and 9-10 (green). The right hand side of
the figure shows the expected π/10 phase change. The left hand side, corresponding
to ω < ωpm is phase stable ∆φω ' 0 because of the DFG process. The ‘noise’ in the
spectrum is the interference between ω1 and ωpm. The dashed lines, represent the spectral
range of the PD including the long-pass filter.

repetition-rate would produce an offset frequency of fO = 4MHz using eq(7.4). CEP

stabilisation could then be achieved by changing the round-trip phase and group delay

inside the laser [23], producing a train of identical pulses with an unknown offset frequency

φ0.

Starting from φCE = 0, the PD current in a typical experiment was simulated. This

can be seen in fig. 7.9, where the current has been calculated by integrating the intensity

transmitted by the long-pass filter, arriving at the PD. The figure clearly shows the

sinusoidal change that we would expect over a 0− 2π range.

0− f self-referencing shares many similarities with the more well known f − 2f self-

referencing. In f−2f schemes, intensity modulation arises between the upper wing of the

fundamental where the phase is (φ0+∆φCE), and the lower wing of the second harmonic,

where the phase is 2(φ0 +∆φCE). The two contributions are therefore always offset from
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Figure 7.9: Integral of the power falling on the PD pulse-to-pulse. The frequency of the
oscillation is fCEO = 4 MHz for an 80 MHz rep-rate. φCE has been varied over 0− 2π.

each other by (φ0 + ∆φCE) thereby constructively and destructively interfering. The

pulse-to-pulse phase change across the interference region ∆φω is therefore ∆φCE on the

upper wing of the fundamental, and 2∆φCE on the lower wing of the second harmonic.

In 0− f self-referencing, ωpm is passively self-stabilised to any CEP slip. This means

that the pulse-to-pulse phase change in the DFG region is zero, as we have already seen

in fig. 7.8. The lower wing of the fundamental (ω1) does however experience a phase

slip of ∆φCE. As in the case of f − 2f , a phase difference of ∆φCE forms the boundary

between these two regions.

This idea is elegantly summarised in fig. 7.10 where ∆φω is plotted across the entire

spectrum. Clearly marked ‘steps’ describing a relative phase offset between adjacent

regions can be seen for 0 − f , f − 2f , 3.5f − 4f etc. Placing a PD across any of these

interference regions could be used to determine ∆φCE. Fig. 7.11 plots the variance of

∆φω over successive shots, which characterises the phase stability of the spectrum. The
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largest variance occurs at the points where interference takes place, as ∆φω now contains

two competing phase components.
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Figure 7.10: Pulse-to-pulse phase change over the entire spectrum. Five plots are present,
representing ∆φω between pulses 1-2 (red), 3-4 (blue), 5-6 (blue), 7-8 (blue), and 9-10
(green). Fixed phase differences can clearly be seen between 0− f , f −2f , 3.5f −4f etc.
The dashed lines represent the spectral range of the PD used in the 0− f case.

Passive self-stabilisation has been successfully used in other areas of nonlinear optics

aside from self-referencing, including Optical Parametric Amplification (OPA) [83, 84],

and has even been demonstrated on a single-shot basis [85].

The above results indicate that only a small amount of DFG is needed to measure

∆φCE. In fact, to achieve maximum modulation, it is essential that the contributions

from ωpm and ω1 are of a similar magnitude. Though we have shown that multiple

nonlinear interactions are taking place, the numerical results support the success of the

scheme to CEP slip in the beat region. The sensitivity to intensity fluctuations is now

investigated.
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Figure 7.11: Variance of ∆φω over 10 successive pulses. The low variance values indicate
a high level of phase stability across the spectrum. The greatest values arise from the beat
regions where the competing phase contributions stop the pulse-to-pulse phase change
from being linear.

7.5 Intensity fluctuations

The second criterion required for accurate tracking of ∆φCE is that ∆φω (the pulse-

to-pulse phase change at ω) be stable to small intensity fluctuations, typically ±1%

(following private communication with the author of [42]). To model this, simulations

were run with peak intensities ranging from 99% to 101% of I0 = 5×1015W/m2. Changes

to ∆φω were calculated in a similar manner to the previous case (section 7.4), to see

whether intensity fluctuations would distort the phase. Fig. 7.12 below shows ∆φω for a

range of intensities (φCE = 0 in all cases).

Fig 7.12 illustrates how small intensity fluctuations have little effect on the phase

of the spectrum in the beat region. This is because ω3, ω2, ω1 and ωpm are all of low

intensity, therefore intensity induced phase changes are small. From the above results, it

is clear that 0−f self-referencing is a reliable and robust technique for measuring ∆φCE,
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Figure 7.12: Plot of ∆φω for intensities ranging from 99% to 101%. All pulses began
with φCE = 0. The red and green curves represents the lowest and highest intensities
respectively and the 2% range has been divided into 10 intervals (blue). The plot shows
that intensity variations of ±1% (incoming pulse), produce little phase distortion.

and has much in common with the other self-referencing methods.

7.6 Measuring the absolute CEP

Measurement of the absolute CEP has been demonstrated in a number of areas ranging

from photo-ionisation [86] to high harmonic generation [78], and plasma generation [87].

Some innovative methods for single-shot CEP measurement based on spectral interference

have also been suggested [88, 89]. These methods rely on CEP dependent interference

occurring between various harmonics. In the case of Mehendale et al. [88] this involves

interference between the second and third harmonics, whereas the work by Kakehata et al.

[89] relies on interference between a delayed fundamental and its second harmonic. Both

mechanisms work on the basis of a relative CEP dependent relationship being enforced

by the nonlinearity. Though the schemes are interesting, it is not clear how sensitive

their interference assumptions are to intensity fluctuations, propagation distance etc.
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A new method for absolute CEP measurement based on the self-stabilisation mech-

anism described in section 7.1 is now proposed. The technique enables absolute CEP

measurement by mapping the spectral region in the vicinity of ωpm. Interference in this

region is highly sensitive to φCE. At various distances through the crystal a clear CEP

dependent structure is evident. This structure can tolerate small intensity fluctuations

and may persist over distances of tens of microns. By combining a numerical model, with

the detected level of interference (at the PD), a mapping can be made to an absolute

CEP value. The map can be built using the crystal properties, and initial pulse charac-

teristics (relative phase, intensity and duration), to provide a range of CEP dependent

PD readings. If the map is sufficiently accurate, the PD reading can only be achieved

for a given φCE.

7.7 Robust CEP definitions and the net-force condi-

tion

Before embarking on a description of the scheme, it is useful to review some important

attributes of few-cycle pulses. Developments in ultrafast optical pulses have led to the

production of half-cycle terahertz pulses [50]. In these limits, robust definitions are

needed to fully characterise the pulse, as common descriptions break down or become

ambiguous. The best example of this ambiguity, is the representation of a pulse with a

carrier and envelope. As early as 1946 it was known that carrier envelope decompositions

were not unique, within the context of radar pulses [48]. Brabec and Krausz went some

way towards dealing with these issues, by suggesting a definition for the central frequency,

and stating that an envelope definition is only valid, if it remains invariant under a change

of phase [26].

The breakdown of many of these concepts arises from time domain definitions of the

E field

E(t) = A(t)cos(ω0t + φCE).

where it is often implied that a change of the CEP (φCE) in the time domain does not

affect the fundamental pulse characteristics. However, if an envelope contains only a

single-cycle, a change of phase can affect the central wavelength of the pulse, as was

shown in [26]. Fig. 7.13 demonstrates how the pulse energy and central wavelength

change, as the duration approaches the single-cycle limit. The fractional change in the

figure is achieved by comparing a sine to a cosine pulse (an example can be seen in fig.

7.1).
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Figure 7.13: Maximum fractional change in central wavelength ω0 (blue) and pulse energy
(red). The time domain descriptions evidently break down when considering single-cycle
pulses.

Another issue that is frequently neglected is that of the net-force condition. Laser

pulses always satisfy the net-force condition [49], which states

∫ +∞

−∞
dt E(t) = −V (∞) = 0 (7.14)

where V is the vector potential of the laser field. Put another way, no dc component

can freely propagate as part of a laser pulse. Strictly speaking, E(t) should be derived

from the vector potential, i.e. E(t) = −dV (t)
dt

, thereby removing any dc components in

the process for example eq(7.1) at the beginning of this chapter. Fortunately, the 6 fs

pulse described by [42, 43] is too long for the net-force condition to have an effect (see

fig. 7.14) but this would not be the case with a sub-cycle terahertz pulse. Analytical

expressions exist for describing some standard pulses. For the case of a sech pulse,
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V (t) = −V0(t)sech(B3t)sin(ω0t + φCE) (7.15)

goes to

E(t) = E0sech(B3t)cos(ω0t + φCE)− V0B3sech(B3t)tanh(B3t) sin(ω0t + φCE), (7.16)

where B3 = ω0cosh−1(2)
πR

, and R is the number of cycles (FWHM). Fig. 7.14 shows how

the net-force condition is violated when using a time domain definition of the electric

field which has not been derived from the vector potential. The blue curve represents

the cosine pulse, where a significant dc component exists in the single/sub-cycle regime.

The sine pulse automatically satisfies the net-force condition, as sine pulses contain no

dc component. (‘Cosine’ and ‘sine’ pulses refer to the phase of the carrier at the centre

of the envelope, see caption fig. 7.1.)

10
0

10
1

−0.05

0

0.05

0.1

0.15

0.2

No of cycles

In
t. 

E
(t

) 
[A

rb
.]

Figure 7.14: Integral of E(t) for sine and cosine carriers. The cosine carrier clearly breaks
the net-force condition as the pulse approaches the single-cycle regime.
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If analytical expressions do not exist for the pulse in question, an alternative route

begins from V (t), where performing a Fourier transform, followed by a pseudo-spectral

derivative, we arrive at E(ω). A central frequency can then be defined as the centre of

gravity of the frequency domain (which was introduced in chapter II and in [26])

ω0 =

∫∞
0

ω|E(ω)|2dω∫∞
0
|E(ω)|2dω

.

The CEP can then be unequivocally defined in the spectral domain, as the phase of

the central frequency component ω0. Any changes to CEP can then be performed in the

frequency domain, by adding a phase change to the spectrum. Fig. 7.15 compares the

profiles of a pulse that satisfies the net-force condition (red), where a CEP change has

been applied in the frequency domain, to one that violates it, where the phase change

has been applied in time (blue). The pulse described contains ' 0.56 cycles. The time

domain definition brings with it a maximum intensity difference of 4.58% (comparing a

cosine pulse to a sine), and a central frequency difference of 2.21%. It is clear that a time

domain description is inadequate under such circumstances.
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Figure 7.15: (left) Cosine pulse profile using a time domain definition (blue), and a spec-
tral domain definition (red). The time domain definition violates the net-force condition,
producing a more intense peak, and shorter wings. (right) Spectra of the above pulses
(same colours), showing how the net-force condition can be observed using a spectral
definition.

The advantage of deriving CEP using a spectral approach beginning from V (t), is

that it satisfies both the net-force condition, and the invariance of the complex envelope

under a change in φCE. A change of phase can then be simply applied in the frequency

domain, preserving the spectrum and energy of the pulse. These definitions for CEP are

easily extended to sub-cycle pulses, where the concepts of carrier, envelope and phase
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continue to hold.

7.8 The scheme

We now wish to determine the phase at the central frequency, using the definitions

developed in section 7.7. It is possible to determine the relative spectral phases of few-

cycle pulses [90] to an accuracy of 0.04 rads using the SPIDER technique [91]. The

relative spectral component (with respect to the phase at ω0) at a particular frequency is

denoted φω(ω). This means that the absolute phase of the entire pulse can be established

from the absolute frequency of any single component. Taking into account the possible

∆φCE, leads to the following absolute spectral phase

φCE(ω) = φ0 + φω(ω) + ∆φCE. (7.17)

The advantage of DFG over SFG is that any common unknown phases cancel each

other out. In the experiment (section 7.1) we consider the two frequency components

driving the DFG (ω3 and ω2) with the same φ0 and ∆φCE. This leads to the following

polarisation phase:

φP (ω) = φCE(ω3)− φCE(ω2) (7.18)

= (φ0 + φω(ω3) + ∆φCE)− (φ0 + φω(ω2) + ∆φCE)

= φω(ω3)− φω(ω2).

The DFG signal (ωpm) leaving the crystal is then

φ′CE(ωpm) = φP + δP , (7.19)

where δP is the added phase from the integral of the polarisation during propagation. In

the case of a transform limited pulse, where ω3 and ω2 are perfectly phase matched (or

over infinitesimal distances) φ′CE(ωpm) = π/2, but in general δP is complicated, because

of its evolution during propagation.

The phase of the pulse exiting the crystal at the DFG represents the interference be-

tween ω1 and ωpm. Assuming that the evolution of these two frequencies are independent,

the evolved ω1 component can be represented as

φ′CE(ω1) = φCE(ω1) + δD, (7.20)
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where δD represents the linear evolution of ω1 through the crystal. The difference be-

tween φ′CE(ω1) and φ′CE(ωpm) produces CEP dependent interference. Combining the final

relative phase of φ′CE(ω1) and φ′CE(ωpm), with knowledge of how they evolved, makes it

possible (in theory) to calculate the initial relative phase offset between ω1 and ωpm at

the crystal face. Because ωpm is passively self-stabilised, there is only one possible initial

φ0 that produces a specific interference level (given knowledge of the initial pulse and

crystal properties). This means that the absolute CEP of the incoming pulse can be

determined.

7.9 Mapping φCE

In reality, the phase evolution described in section 7.8 is very complicated, and to un-

derstand it requires numerical modelling. Thus, the computational stage is crucial in

determining the absolute CEP. By running a batch of simulations with different initial

φCE values it is possible to produce an interference map because certain distances exhibit

a well defined interference structure. The map then connects an initial absolute CEP,

to a specific PD current value. Fig. 7.16 shows the CEP dependent structure at 50

microns for 20 cases in the range 0 < φCE ≤ π. The upper (yellow) curve corresponds to

φCE = π/20, and the lower curve (bottom-right black +) corresponds to φCE = π. The

dotted vertical black line is the QPM frequency (ωpm).
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Figure 7.16: Plot of the spectral window of the PD (plus filter), after a propagation
distance of 50 microns. A CEP dependent structure can clearly be seen where the lowest
curve (black +) corresponds to φCE = π, and the upper (yellow) curve corresponds to
φCE = π/20. The range is divided into intervals of π/20. The black dashed line is ωpm,
and the red dashed line has been arbitrarily chosen to demonstrate a signal consisting of
only ω1. Integrating the area under the curves, allows a PD signal to be constructed, see
fig. 7.17.

The spectral window of fig. 7.16 represents the bandwidth of the PD. By integrating

the areas underneath the curves it is possible to map the PD reading to a specific φCE

value. Fig. 7.17 shows the PD reading for each of the curves (black dots). Integrat-

ing above the red-dotted line gives the expected sinusoidal form, but without any ωpm

contribution (red dots).
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Figure 7.17: PD signal constructed from fig. 7.16. The black curve has been constructed
using the entire PD spectrum, whereas the red curve has been constructed using frequen-
cies above the dashed red line of fig. 7.16.

Necessary conditions

To ascertain absolute CEP by mapping the spectral interference the following conditions

must be satisfied:

1. Very accurate phase information. For accurate determination of φCE, very

precise knowledge of the initial chirp/phase is required. This ensures that ωpm, ω1

and ω0 have a calculable phase. (SPIDER can measure the relative spectral phase

of few-cycle pulses to within 0.04 rads [91].)

2. Stable intensity. The intensity of ω1 and ωpm must be insensitive to intensity

fluctuations of the initial pulse (±1% is sufficient).
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3. Necessary bandwidth. For the process to accurately work, the pulse must have

the necessary bandwidth for ω1 to overlap with ωpm, and their intensities be similar

in magnitude.

4. Crystal properties. The crystal properties must be accurately known in order to

build a reliable map. This includes the Sellmeier equation, nonlinear coefficients,

crystal length etc.

5. Computational stage. A computational stage is needed to construct a map of

the interference level to a CEP value.

To test the accuracy of the scheme to intensity fluctuations, an interference map was

produced as in fig. 7.17, but for peak intensities in the range ±1%. The linear change in

intensity, produced a linear change in the intensity of ω1 and ωpm. More importantly, the

interference map retained its original structure. Fig. 7.18 shows the original PD signal

from fig. 7.17 (black) along with a similar reading for initial pulses ±1% (red 101%, green

99%). Differences due to intensity variations, are generally smaller than those produced

by changing φCE, which is promising, considering that typical intensities can vary within

that range.

Finally, the stability of the PD signal to propagation distance was measured. To

confidently determine φCE, the PD current cannot drastically fluctuate over short dis-

tances. This would make the mapping unreliable and inaccurate. For large parts of the

propagation, the change in the PD signal over distances ∼ 0.1 microns, is no more than

v 1% of its average value. On the other hand, changing φCE on the original pulse pro-

duced a far greater effect. Fig. 7.19 plots the variation of the PD signal with distance

for the following initial CEP values: φCE = 0 (blue), φCE = −π/2 (red), and φCE = −π

(green). A large CEP dependent modulation is clearly exhibited at some points during

the propagation (e.g. 50 microns). Thus, changes in the PD current due to propagation,

can clearly be made smaller, than those due to CEP changes. This implies that an ac-

curate map might be constructed in those regions. For maximum tolerance, a region of

the crystal with a well defined interference structure, that is insensitive to small changes

in intensity and propagation distance is optimum.

In theory, it is therefore possible to map a PD signal to φCE using numerical results.

An advantage of this method is that it is possible to merely extend the use of current

0− f self-referencing methods. The challenge is to fix the absolute CEP to the phase of

the oscillating PD signal. This technique is only accurate, if changes in the PD signal due

to CEP are significantly greater than other factors that might influence the phase. If the

relative phase information is available, along with accurate numerical simulations, the
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Figure 7.18: PD signal constructed for different intensities. Integrating the intensity
reaching the PD, leads to a CEP varying signal. The red, black, and green plots, represent
initial pulses of 101%I0, 100%I0 and 99%I0 respectively. For φCE > 0.7 rads, a change
in phase produces a larger modulation than a change in intensity (±1%).

mapping becomes trivial. Another advantage of this method, is that it does not require

strong field physics to operate, and can thus be applied to lower intensity pulses.

7.10 Conclusion

A novel 0 − f self-referencing scheme has been investigated. The scheme relies on a

phase stable signal being passively stabilised through DFG. The signal can then be used

to detect the CEP slip through self-referencing. Numerical simulations indicate that the

DFG signal is stable to both intensity fluctuations (±1%), and CEP slip on the input

pulse. A reconstructed PD signal supports the accuracy of the scheme, even when the

effective nonlinearities are large. This is because the interfering regions reside in the tails
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Figure 7.19: PD current during a 250 micron propagation through the crystal. The plots
represent different initial φCE values; φCE = 0 (blue), φCE = −π/2 (red), and φCE = −π
(green). At various distances during the propagation, large CEP dependent modulations
can be seen e.g. 50 microns.

of the frequency distribution, and are thus of low intensity.

Robust definitions for sub-cycle CEP, which also obey the net-force condition, have

been developed in this chapter. Deriving E from the vector potential (V ) automatically

satisfies the net-force condition, which is often overlooked. Powerful CEP definitions

naturally arise, when defining fundamental pulse characteristics in the spectral domain.

Understanding the spectral phase structure and CEP, is vital to the measurement of

absolute CEP.

By extending the 0−f self-referencing scheme, we show that in principle it is possible

to determine absolute CEP. This is because the spectral interference in the DFG region

possesses an ordered structure that is sensitive to absolute CEP. The CEP dependence is

considerably larger than other nonlinear effects, and crystal properties that might affect
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the phase structure. By implementing computational models it is possible to map the

level of interference (phase structure) to an absolute CEP value at the input crystal face.

The scheme is underpinned by passive self-stabilisation, ensuring that the original DFG

signal has a know phase structure produced by the relative phase of the initial pulse.
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Chapter 8

General Conclusions

8.1 Modelling ultra-wideband pulses

This work has focused on the character of the ultra-wideband pulse, ranging from its his-

tory and description, to its spectral representation. Understanding the behaviour of such

complex objects in nonlinear systems, requires the development of reliable and sophis-

ticated computational models. The advances made in few-cycle pulse generation have

demanded an equivalent progression in the parallel world of numerical methods, con-

trasting sharply with quasi-monochromatic approaches, whose underlying assumptions

are now obsolete.

As pulses rapidly approach single-cycle in the visible, the interest in understanding the

nature of these technological marvels is no longer a theoretical exercise, but a challenging

reality. This level of detail generally requires some method of explicitly solving Maxwell’s

equations, which is unfortunately very computationally demanding. Pseudo-spectral

methods can improve the functionality and efficiency of such calculations, but the speed-

up is hardly enough to cope with multiple transverse dimensions over significant distances.

The use of G-variables provides one potential route through these difficulties. In the

absence of interfaces, pulses tend to be uni-directional in nature. It is this aspect of

their behaviour that promotes the division of the EM field into forward and backward

components. By scaling the electric and magnetic fields, directional G-variables can be

constructed, enabling a pulse to be separated into forward and backward fluxes. Accurate

initial conditions combined with carefully chosen reference parameters, allow pulses to be

described by a single PDE, making the forward-only approximation. This not only halves

the number of equations solved, but also facilitates a moving frame transformation; it

therefore has much in common with traditional envelope techniques. In short, G-variables

provide a much needed bridge between direct Maxwell solvers and quasi-monochromatic
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envelope methods.

G-variables also shed light on the magnitude of backward-propagating waves gener-

ated during nonlinear interactions. This is an important matter to consider, as these

waves are routinely ignored in most numerical models because of the lack of phase-

matching in the counter-propagating direction. This work justifies these common as-

sumptions, showing that the only route to producing a noticeable backward-propagating

field is through some highly unusual geometry (e.g. QPM in the backward direction). In

the absence of such irregularities, backward-propagating waves can be comfortably ig-

nored. Following this, a bandwidth unlimited envelope technique was developed, further

supporting the idea that envelope techniques can describe arbitrarily large bandwidths.

Indeed ultra-wideband envelope descriptions can even cope with sub-cycle phenomena,

if the necessary bandwidth is allocated within the numerical model.

The phenomenon of Carrier Wave Shocking (CWS) has also been studied using a

variety of numerical techniques. The process requires a vast bandwidth for its descrip-

tion, as extreme self-steepening forms multiple octaves in the frequency domain. Chapter

V focused on understanding the CWS process, and the limitations that dispersion im-

poses. The distinctions between a mathematical, numerical and physical shock have been

discussed, and reliable definitions that converge to analytical solutions were developed.

Chapter VI showed how CWS can be generalised to any nonlinear dispersionless

medium, where the symmetry properties of the nonlinearity influence those of the prop-

agating carrier. Thus, quadratic media break the inversion symmetry of the electric

field because of their own asymmetry. Though CWS can be predicted mathematically,

it does not occur in practice, as dispersion arrests the process making Carrier Wave

Self-Steepening (CWSS) the closest one can approach to a shock. Applying these self-

steepened profiles to a gas of atoms or molecules, may drive High Harmonic Genera-

tion (HHG) on an even faster timescale than the fundamental electric field oscillations.

This is because, in HHG, the tunnel ionised electrons follow the profile of the electric

field. Thus, steepened carriers constitute a faster timescale (than the fundamental car-

rier oscillation), and if realised would produce higher harmonic cut-offs leading to shorter

attosecond pulses.

Unfortunately, the difficulty in CWSS proves to be the alignment of multiple har-

monics in the presence of dispersion. Even small differences in the inter-harmonic phase-

velocity significantly reduces CWSS. The only route to extreme CWSS appears to be

through some form of synthesis, or multi-colour scheme.
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8.2 Characterising ultra-wideband pulses

A crucial parameter in few-cycle pulses and coherent control is the Carrier Envelope Phase

(CEP). The need to accurately stabilise and measure this quantity is of paramount im-

portance, especially when probing fundamental physical processes or generating isolated

attosecond pulses. Utilising the spectral methodology developed in earlier chapters, a

novel 0 − f self-referencing scheme was studied. Like other self-referencing techniques,

spectral overlap can be used to measure CEP slip, and our numerical model clearly

describes the process, explaining its robustness to intensity fluctuations.

By fully characterising a pulse in the frequency domain, fundamental issues, such

as the net-force condition and sub-cycle CEP can be adequately addressed. To satisfy

the net-force condition, the electric field should be derived from the vector potential,

where the CEP can be unambiguously defined as the phase of the centre-of-gravity of the

intensity spectrum. These descriptions help to convert the existing 0− f self-referencing

method into one that can potentially determine absolute CEP.

The beat region describing the interference between the lower wing of fundamental

spectrum, and the upper wing of the phase stable DFG signal, is highly CEP sensitive. By

developing a numerical map based on the interefence structure of the region, it is possible

to connect a photodiode reading to a unique CEP. Because CEP sensitivity is more

significant than other linear and nonlinear processes taking place, the scheme appears to

be practical. A photodiode reading can then be used to determine the absolute CEP of

the initial pulse on entry to the crystal. Thus, low power absolute CEP measurements

of ultra-wideband pulses may be possible for the first time.

8.3 Further work

Further work is possible in a number of areas that have been covered.

• The transverse G+ model developed in chapter IV using the split-step operator

method was not extensively used. Given the computational gains available from

the forward-only approximation, this technique might be applied to wideband trans-

verse problems within the paraxial limit. One potential application is filamentation.

In filamentation, the self-focussing phenomenon that occurs within nonlinear op-

tics is balanced by diffraction, and/or laser-plasma instability such as stimulated

Raman or Brillouin scatter [92]. Because filamentation generally takes place over

a distance of metres (in fluids), some other dispersive considerations would also

need to be developed. This would further generalise the nonlinear response studied
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within this thesis, to include finite nonlinear response. This generalisation would

greatly increase the power and range of these numerical techniques as they could

be applied to a host of new materials, further exploiting their directional and com-

putational benefits.

• The application of carrier shaping/coherent control to HHG was investigated in

chapter VI using the strong field approximation. Though two-colour schemes cur-

rently exist for maximising the harmonic cut-off, much research is also being carried

out using polarisation gating techniques. Future work on light-matter interactions

using the carrier gradient as a new parameter in coherent control might be inves-

tigated, as this significantly affects the HHG spectrum.

• Finally, the extension of 0 − f self-referencing to the determination of absolute

CEP, requires more extensive work. Though some details of the model have been

addressed, e.g. sensitivity to intensity and crystal length, further analysis is neces-

sary including the response of the photodiode, and the effect of chirp on the initial

pulse. The temporal response of the nonlinearity might also be factored into the

model, along with the tolerance of the scheme to crystal variations (e.g. Sellmeier

equation, nonlinear coefficient). An important aspect of the model to consider is

that of the background noise level. Thus, the scheme would have to be robust to

background intensity variations in order to be feasible. Overall, such a potentially

useful technique surely warrants further study.
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[87] Kreß, M., Löffler, T., Thomson, M. D., Dörner, R., Gimpel, H., Zrost, K., Ergler, T.,
Moshammer, R., Morgner, U., Ullrich, J., and Roskos, H. G. Nature 2(5), 327–331
(2006).

[88] Mehendale, M., Mitchell, S. A., Likforman, J.-P., Vielleneuve, D. M., and Corkum,
P. B. Optics Lett. 25(22), 1672–1674 November (2000).

[89] Kakehata, M., Takada, H., Kobayashi, Y., Torizuka, K., Fujihira, Y., Homma, T.,
and Takahashi, H. Optics Lett. 26(18), 1463–1438 September (2001).

[90] Kobayashi, T., Shirakawa, A., and Fuji, T. IEEE Journal of Quantum Electronics
7(4), 525–538 (2001).

[91] Anderson, M. E., de Araujo, I. E. F., Kosik, E. M., and Walmsley, I. A. Appl. Phys.
B. 70, S85–S93 May (2000).

[92] Schmitt, A. J. Phys. Fluids B 3(1), 186–194 January (1991).

153


