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Abstract : Given its importance in modern physics, philosophers of science have paid
surprisingly little attention to the subject of symmetries and invariances, and they
have largely neglected the subtopic of symmetry breaking. I illustrate how the topic
of laws and symmetries brings into fruitful interaction technical issues in physics and
mathematics with both methodological issues in philosophy of science, such as the
status of laws of physics, and metaphysical issues, such as the nature of objectivity.

1 Introduction

The focus of this Address is on the web of connections that tie together laws, symme-
tries and invariances, and conservation principles. There are many ways to pursue this
topic. My line of pursuit will be somewhat unorthodox, but it has the virtue of con-
necting a number of fundamental issues in the foundations of physics. Reflecting on
these issues prompts a reevaluation of basic issues in metaphysics, such as the nature
of objectivity and the nature of change. Perhaps because of the formidable technical
challenges they pose, philosophers have tended to shy away from the foundations of
physics problems that I will identify. And perhaps because they are embarrassed to
be seen to be doing metaphysics, philosophers of science have been reluctant to take
up the philosophical issues. My message to both groups is the same: Have courage!
The nub of the issues in foundations of physics can be made accessible even to the
non-specialist. And there is no shame in doing metaphysics as long as the activity is
informed by scientific practice. I will be begin with a brief look at the philosophical
literature on laws.

2 Laws: the scandal in the philosophy of science

It is hard to imagine how there could be more disagreement about the fundamentals
of the concept of law of nature–or any other concept so basic to the philosophy of
science–than currently exists. A cursory survey of the recent literature reveals the
following oppositions (among others): there are no laws vs. there are/must be laws1;

1See van Fraassen (1989) and Giere (1999) for different versions of the “no-laws” view, and see
Carroll (1994) for the “there must be laws” view.
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laws express relations among universals vs. laws do not express such relations2; laws
are not/cannot be Humean supervenient vs. laws are/must be Humean supervenient3;
laws do not/cannot contain ceteris paribus clauses vs. laws do/must contain ceteris
paribus clauses4.

One might shrug off this situation with the remark that in philosophy disagreement
is par for the course. But the correct characterization of this situation seems to me
to be “disarray” rather than “disagreement.” Moreover, much of the philosophical
discussion of laws seems disconnected from the practice and substance of science:
scientists overhearing typical philosophical debates about laws would take away the
impression of scholasticism–and they would be right!5

There is, however, one place where the philosophical investigation of the concept
of laws can make solid contact with science, and that place is to be found in the
topic of laws and symmetries. Philosophers of science have done some good work on
this topic,6 but it is only a beginning. And the surface of many important subtopics,
such as gauge symmetries and symmetry breaking, has barely been scratched. I will
emphasize these neglected topics here.

3 Symmetries and laws: laws of nature vs. laws of
science

The topic of symmetries and invariances in physics provides no comfort for those
who hanker after laws of nature in the sense of critters that embody the goodies on
the wish list drawn up by philosophers: laws of nature are supposed to be objective
(independent of our interests and beliefs); they are supposed to express a strong form

2In favor of the former see Armstrong (1987), and for a skeptical reaction see van Fraassen (1989).
3For the former, see Armstrong (1987) and Carroll (1987), and for the latter see Earman and

Roberts (2002).
4See the articles in the special issue of Erkenntnis edited by Earman et al. (2002).
5For example, it seems to have been enshrined in philosophical consciousness–largely, as far as I

can tell, as a result of historical accidents–that a key feature separating laws from accidental gen-
eralizations is that the former but not the latter support counterfactual conditionals. This allows
philosophers to inject into the discussion of laws all of the controversy and dubious metaphysics
that surrounds counterfactuals. And following the venerable tradition of taking a dubious thing to
its extreme, some philosophers have based claims about nature of laws on the principle that the
lawhood, as well as the truth, of a proposition expressing a law is preserved under counterfactual
assumptions logically compatible with the proposition. Now we get to consider nested counterfac-
tuals and subjunctives (e.g. “If P were the case, then it would be the case that if Q were the case,
R would be the case.”) Not surprisingly, the subsequent debate takes the form of appeal to intu-
ition, authority (i.e., other articles written in a similiar vein), clever examples and counterexamples
involving possible worlds, etc.

6See, most notably, van Fraassen (1989).
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of non-logical necessity (“nomological necessity”); they are supposed to cut nature at
the joints by expressing truths about natural kinds; they are supposed to have the
power to explain the why of things; etc.7 Here I declare myself in sympathy with the
milder form of the “no-laws” view: if there are such critters, I see no good reason to
think that science can be counted on to corral them, or that we can tell the difference
between cases where science has succeeded in corralling them and cases where it has
failed to do so.

But by the same token the topic of symmetries and invariances does not support
the strong version of the no-laws view, which intimates that both the history of science
and its current practice can be understood without giving pride of place to the search
for laws of science. In the case of physics–which will be my focus–what physicists
mean by the laws of physics is, roughly, a set of true principles that form a strong
but simple and unified system that can be used to predict and explain. As Steven
Weinberg puts it

Our job as physicists is to see things simply, to understand a great many
complicated phenomena in a unified way, in terms of a few simple princi-
ples.8 (1980, 515)

Rather than coming at the topic of laws of physics with preconceptions of what these
laws must deliver if they are to support favored philosophical accounts of causation,
counterfactuals, explanation, etc., historians and philosophers of science would do
better to investigate how physicists use the concept of law. It would not be surprising
to find that there is nothing neat and precise that corresponds to Weinberg’s “few
simple principles.” But so what? To dismiss the notion of law of physics on the
grounds that it is messy and imprecise would be to miss important points not only
about the motivation of physicists but about the methodology and content of physics
as well. I will not offer here an argument for this claim in its full generality; rather, I
will be content to note how the relevant senses of symmetry and invariance in physics
presuppose a distinction between the nomological and the accidental in the sense of
a distinction between what holds as a consequence of the laws of physics and what is
compatible with but does not follow directly from these laws.

This is hardly a novel idea. It pervades Eugene Wigner’s writings on symmetries
and invariances. Consider, for instance:

7See van Fraassen (1989) for a wish-list of goodies that philosophers have wanted laws of nature
to deliver.

8The reader acquainted with the philosophical literature will notice a resemblance between Wein-
berg’s notion and David Lewis’ (1973) analysis of laws as the axioms or theorems that belong to
the best deductive system, where “best” means achieves the optimal balance between strength and
simplicity.
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The invariance principles apply only to the second category of our knowl-
edge of nature; to the so-called laws of nature ... [I]nvariance principles
can be formulated only if one admits the existence of two types of infor-
mation which correspond in present-day physics to initial [and boundary]
conditions and laws of nature. It would be very difficult to find a mean-
ing for invariance principles if the two categories of our knowledge of the
physical world [laws vs. initial/boundary conditions] could no longer be
sharply drawn. (Houtappel, Van Dam, and Wigner 1965, 596)9

My point–and Wigner’s point–is that, in the main, the symmetries physicists are
concerned with–e.g. Poincaré invariance, time reversal invariance, etc.–typically are
symmetries of lawlike connections among events and not symmetries of particular
histories (sequences of states) satisfying the laws or of particular states belonging to
these histories. If you like slogans, here are a couple:

The symmetries are in the laws of the phenomena, not in the phenomena
themselves.

The phenomena break the symmetries of laws.

“C’est la dissymétrie qui crée le phenomène” (Pierre Curie1894, 401).

If you are fond of the models view of theories, the point can be put in the following
way. A practitioner of mathematical physics is concerned with a certain mathematical
structure and an associated set M of models with this structure. The sought after laws
L of physics pick out a distinguished sub-class of models ML := mod(L) ⊂ M, the
models satisfying the laws L (or in more colorful, if misleading, language, the models
that “obey” the laws L). Abstractly, a symmetry operation is a map S : M → M.
S is a symmetry of the laws L just in case it preserves ML, i.e. for any m ∈ ML,
S(m) ∈ ML. At this level of abstraction the characterization of symmetries on offer
is not very informative; the following sections add content to the characterization by
supplying detailed examples. Nevertheless, even at this high level of abstraction the
characterization of symmetries is useful in making an elemenary but crucial point;
namely, the condition for S to be a symmetry of the laws L would be satisfied if
S(m) = m for each m ∈ ML, but the condition for S to be a symmetry of the laws L
can be satisfied even though this identity fails for some or all of the models obeying
L.10

9For additional expressions of this idea, see Wigner (1967). I would differ from Wigner only in
inserting “laws of physics” for “laws of nature.”

10Or more precisely, the condition for S to be a symmetry can hold even if m and S(m) are not
the same up to an isomorphism of the type relevant to the mathematical structure at issue.

4



But if the above slogans are accurate, one might ask why physicists should set
such store by symmetries broken by the phenomena. The obvious–and I think largely
correct–answer is that research in physics is guided by Weinberg’s injunction to un-
derstand complicated phenomena in terms of a few simple principles–that get dubbed
the laws of physics–and that physicists have, or think they have, reasons to believe
that the laws of physics do and, perhaps, must reflect the symmetry at issue. I will
have more to say about the second part of the answer in section 3.

The above remarks also help to explain an otherwise puzzling assertion from Her-
mann Weyl’s book Symmetry :

If Nature were all lawfulness then every phenomenon would share the full
symmetry of the universal laws of nature as formulated by the [special]
theory of relativity. (1952, 26)

Remove Weyl’s reference to the laws of the special theory of relativity and substitute
a variable L. If Nature were all the lawfulness of L, then ML would consist of a single
model or a single isomorphism type (i.e. any two models of ML would be related by
an isomorphism of the relevant mathematical structure.). And if S were a symmetry
of the laws L, then it would have to have to preserve this model or its isomorphism
type. Which is to say (in possible world talk) that the S-image of possible world
corresponding to the isomorphism type is the same world; which is to say that the
phenomena as described by ML “share the full symmetry of the universal laws of
nature.” So the very fact that actual phenomena do not share the symmetry of what
we take to be a symmetry of the laws of physics proves the existence of contingency!

I hasten to add that such talk does not represent a return to laws of nature in the
sense of principles that deliver non-Humean forms of necessity. For on the account
of scientific laws that I favor, these laws supervene on the Humean base and, thus,
carry with them no non-Humean powers. On the other hand, I want to underscore
again the point that one cannot even get started on the topic of symmetries and
invariances in physics without acknowledging the importance of what I am calling
laws of physics. And I want to emphasize that in using the models view of theories
I am not endorsing a non-statement view of theories in any interesting sense of that
term. Like van Fraassen (1980, 1989), I think that issues in the philosophy of language
are largely unimportant for the philosophy of science–in particular, I can’t see that
any important foundational issue about laws and symmetries turns on whether, say,
Newton’s laws of motion or Einstein’s laws of gravitation are formulated in this vs.
that language. What is important is the mathematical structure, and that is brought
out by the choice of the type of model in which the laws of the theory are to be
situated. But none of this is any comfort for a non-statement view: the relevant class
of models consists of those models satisfying some set of laws as expressed (largely,
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one hopes, non-linguistically) by a set of equations.11

4 The status of symmetry principles

The received wisdom about the status of symmetry principles has it that one must
confront a choice between the a posteriori approach (a.k.a. the bottom up approach)
vs. the a priori approach (a.k.a. the top down approach). The former approach
means that we subject candidate laws of physics to empirical checks and then derive
the symmetries from the candidates that have passed muster. The latter approach
means that symmetry principles are viewed as being more fundamental than the
laws they constrain or as being second order laws that dictate symmetries to first
order laws.The choice on offer is not an either-or one. That symmetry principles
have a meta-character follows from the characterization of symmetries of laws given
in section 2. But viewing symmetry principles as meta-laws doesn’t commit one to
treating them a priori in the sense of known to be true independently of experience.
For instance, that a symmetry principle functions as a valid meta-law can be known
a posteriori by a second level induction on the character of first-order law candidates
that have passed empirical muster. From the other direction, the a priori of the
top-down approach doesn’t have to be understood either in the sense of necessarily
true (or true for all times) or in the sense of knowable independently of experience;
rather it can be understood in the sense a revisable constitutive a priori.

The last remark applies to the symmetries of physical laws deriving from the
symmetries of spacetime in the pre-general relativistic era. During that innocent era
the favored spacetime–say, neo-Newtonian spacetime or Minkowski spacetime–was
supposed to be constitutive of physical possibility in that is was supposed to serve
as the fixed backdrop for any acceptable theory of physics.12 Then if the laws of
physics are formulated in terms of geometric object fields on spacetime and if laws
are to be “general” or “universal” in the minimal sense that they cannot use names or

11Much is made of the fact that the relevant set of models for a theory of physics may not be
an elementary class in the sense of being the set of models that satisfies some set of sentences of
some first order language. This hardly seems to me to undermine the spirit of the statement view of
theories. It would be hard to imagine how a class of models could perform the functions of scientific
theory unless that class is specified as a set of models as a elementary class in the informal sense of
a class of models satisfying some list of conditions that are given in an informal and yet sufficiently
precise manner to suit the purposes at hand–e.g. Einstein’s general theory of relativity consists of all
models of the form M, gab, Tab such that M is a differentiable manifold, gab and Tab are tensor fields
on M of such-and-such types, and the pair (gab, Tab) satisfies Einstein’s field equations everywhere
on M. What sauce for the goose is sauce for the gander here: if the proponent of the semantic view
can get away with informal specifications, so can the proponent of the statement view.

12Here I am borrowing from–and distorting–Reichenbach (1965, Ch. 5); see also Friedman (1999,
Ch. 3).
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designators for particular spacetime points or regions, it follows that any acceptable
candidate for a law of physics must share the symmetries of the spacetime.13

To illustrate the force of the above considerations, consider why Huygens and Leib-
niz were morally certain that Descartes’ candidates for laws of elastic impact cannot
be laws of physics, despite the fact that neither Huygens nor Leibniz had done the
relevant experiments. The answer does not lie in the facts that Huygens and Leib-
niz had performed thought experiments on colliding bodies (which they had) and
that thought experiments have some mysterious power to generate knowledge about
nature (which they don’t). Rather the answer is–to use admittedly anachronistic
terminology–that both Huygens and Leibniz thought that the symmetries of space-
time include mapping that transform a situation in which two bodies are in relative
motion into a situation in which either one of the bodies is in motion and the other
is at rest. It follows that Descartes was wrong in postulating that (i) when a moving
body collides with a less massive body initially at rest, the more massive body pushes
the less massive body along, but (ii) when a moving body collides with a more mas-
sive body initially at rest, the less massive body rebounds while the more massive
one remains at rest (see Fig. 1). For the before of (i) can be transformed into before
of (ii) and vice versa by the said symmetry operation, and since the laws of motion
must respect this symmetry, it follows that Descartes’ purported laws do not give a
consistent and unambiguous answer to what happens when bodies of unequal masses
collide.14

13To make the claim more specific, take the models of the theory to be of the form
〈M, A1, A2, ..., Am, D1, D2, ..., Dn〉 where M is the spacetime manifold and the A’s are geomet-
ric object fields on M that characterize the structure of spacetime. The first letter of the alphabet
is used for these object fields since the spacetime is supposed to be ‘absolute’: M and the A’s
are the same in all the models. The D’s are the geometric object fields on M that character-
ize the physical contents of the spacetime models. These objects are labeled with a ‘D’ since
they are supposed to be dynamical objects that can vary from model to model. The symme-
try group GST of the spacetime consists of diffeomorphisms G : M → M that leave invariant
the A’s, i.e. G∗Ai = Ai, i = 1, 2, ..., m, where G∗O denotes the drag along of the object field
O by the diffeomorphism G. There is an associated group of potential dynamical symmetries
DST where the action of an element DG ∈ DST corresponding to G ∈ GST is given by DG (
〈M, A1, A2, ..., Am, D1, D2, ..., Dn〉) = 〈M, A1, A2, ..., Am, G∗D1, G∗D2, ..., G∗Dn〉. With the given
spacetime forming the constitutive a priori and with the minimal requirement of “universality” in
place it follows that any candidate law L must be formulated in terms of the Ai that characterize the
spacetime structure and some set of Dj ’s. Then DST must be a symmetry group of any such candi-
date law L; for since such an L cannot distinguish between m = 〈M, A1, A2, ..., Am, D1, D2, ..., Dn〉
and DG (m) = 〈M, A1, A2, ..., Am, G∗D1, G∗D2, ..., G∗Dn〉, it cannot fail to be the case that if
m ∈ ML then DG (m) ∈ ML. Indeed, the indistinguishability provides some grounds for taking m
and DG (m) to describe the same physical situation. Below we will see that under some circum-
stances there are reasons to avail oneself of this move

14What makes the situation complicated is that–again to use admittedly anachronistic
terminology–neither Huygens nor Leibniz had a consistent account of the symmetries of space-
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The constitutive a priori in the sense under discussion is revisable. Pressure for
revision of the spacetime structure can come in the form of empirical evidence or
philosophical/theoretical considerations indicating that laws do or should exhibit a
group of symmetries either larger or small than what would result from the symmetries
of the spacetime currently in favor. Here is one example of how the issue of symmetries
of spacetime and laws interacted with the debate, that raged from the time of Leibniz
and Newton until the 20th century, over absolute vs. relational accounts of motion
and of space and time. Suppose that you reject a relational account of space and time
in favor of a container view of space: physical bodies are literally contained in space
in the sense that shifting them all, say, one mile to the east results in a new physical
state. Then it follows that if you want it to be possible that determinism is true, you
must attribute enough structure to spacetime that motion is absolute in the sense that
not all motion is relative motion of bodies. For example, in neo-Newtonian spacetime
with its inertial structure, the acceleration of a particle is a well-defined, non-relational
quantity. Stripping the inertial structure from the spacetime removes the basis for
absolute quantities of motion, but it also makes the spacetime symmetry group so
large that determinism for particle motion becomes impossible (if the container view
of space is maintained). For now there are symmetries that are the identity map on
that portion of spacetime on or below a given plane of Newtonian simultaneity but
non-identity above. Since such a symmetry must be a symmetry of the equations of
motion, it follows that for any solution to these equations (solid lines in Fig. 2) there is
another that agrees with the first on the particle positions in the container spacetime
for all past times but disagrees with it for future times (dashed lines of Fig. 2). On
the other hand, if you want to be a relationist about motion and you want to allow
for the possibility of determinism, then you must do a modus tollens move and reject
the container view of spacetime. This amounts to treating the said transformations
as gauge transformations in the sense of connecting different descriptions of the same
physical content. I will return to this theme below.

There are two limitations to the above thesis about the a priori status of sym-
metry principles. The first is that it does not apply to “internal” or non-spacetime
symmetries. Of course, one could try to tell a parallel story about how the structure
of internal spaces serve as the grounds a constitutive a priori for internal symmetries,
but such a story does not have the ring of plausibility. The second is that even for
spacetime symmetries it does not survive far into the 20th century. Both the notion
of spacetime as the grounds for a constitutive a priori and the above way of connect-
ing the symmetries of spacetime and the symmetries of laws disintegrate with the

time and of laws. Both speak as if uniform rectilinear motion is a well-defined physical quantity;
but to make it so requires that spacetime have something equivalent to inertial structure, which in
turn makes it possible to define absolute (i.e. non-relational) quantities of motion (such as absolute
acceleration) that would contradict their idea that all motion is the relative motion of bodies.
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advent of Einstein’s general theory of relativity (GTR). In GTR no one spacetime
serves as the fixed backdrop for physics since different spacetime structures belong
to different solutions to Einstein’s field equations. Moreover, most of these space-
times lack any non-trivial symmetries on either the global or local level. There is still
a sense in which Einstein’s gravitational field equations satisfy a strong symmetry
principle; but, contrary to what Einstein originally thought, this symmetry principle
is not a relativity principle that generalizes to arbitrary reference frames the special
principle of relativity that is implemented in Newtonian theories by Galilean invari-
ance and in special relativistic theories by Lorentz invariance. Rather the symmetry
principle satisfied by GTR is a gauge principle, about which I will have more to say
below in section 5. In general, the change that GTR necessitates in our conception
of symmetry principles is an underappreciated moral.

5 Symmetries and conservation principles: Noether’s
first theorem

Do symmetries of laws of motion15 entail conservation principles and conversely? The
answer is yes as shown by Emmy Noether, if the laws are in the form of differential
equations that are derivable from an action principle, if the symmetries are con-
tinuous, and if the symmetries are variational symmetries. But before turning to
Noether’s theorems, I want to comment on the first condition.

The first antecedent condition means that the allowable motions are the ones
that extremize an action A=

∫

Ω L(q,q(n),x)dpx, where q = (q1, q2, ..., qm) stands for
the dependent variables, x = (x1, ..., xp) stands for the independent variables, and
q(n) stands for the derivatives of the dependent variables up to order n with respect
to the independent variables.16 The type of equation of motion that results from
setting δA = 0 are known as Euler-Lagrange equations ELk = 0, k = 1, ..., m.
The vast majority of candidates for fundamental laws of motion in physics have this
form. But this fact may represent an artifact of scientific theorizing rather than
a fundamental feature of nature; for physicists choose equations of motion with an
eye to quantization, and the standard route to quantization is via a Hamiltonian
formulation, which can be produced once the a Lagrangian formulation is in hand.
So one would like to know: (a) what are the necessary and sufficient conditions
characterizing those systems of differential equations ∆k = 0, k = 1, 2, ..., q, that are
equivalent to a set of Euler-Lagrange equations ELk = 0 in the sense that there is

15By laws of motion I mean to include not just laws describing the motions of particles but also
laws that govern the time development of field quantities.

16The configuration variables q might describe positions of particles or values of fields. In many
applications the independent variables x are those of space and time.
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an invertible q x q matrix Aj
k of differentiable functions such that ∆k = Aj

kELj, and
(b) how hard is it to satisfy these conditions? For second-order Newtonian equations
of motion (say, q̈k = Fk(q, q̇, t), q̇k := dqk/dt and q̈k := dq̇k/dt) the problem is known
as the Helmholtz problem. Helmholtz found a set of necessary conditions that were
later proved to be sufficient for the existence of a Lagrangian formulation. In the
special case of one degree of freedom it is known that these conditions are always
satisfiable, but the general case of Helmholtz’s problem remains unsolved. And for
more general types of differential equations very little is known about the conditions
that are necessary and sufficient for the equations to arise from a variational principle.
In sum, we are in a state of ignorance about how hard, or easy, it is to satisfy the
first antecedent condition.

A variational symmetry is one that leaves L form invariant up to a divergence term.
Every such variational symmetry is a symmetry of the Euler-Lagrange equations that
follow from the action principle (i.e. a variational symmetry carries solutions of the
EL-equations to solutions), but in general the converse is not true.17 Noether’s first
theorem states that the action admits an r-parameter Lie group Gr as variational
symmetries iff there are r linearly independent combinations of the Euler-Lagrange
expressions ELk, k = 1, 2, ..., q, which are divergences. Thus, as a consequence of the
Euler-Lagrange equations, there are r proper conservation laws of the form

Div(Jj) = 0, j = 1, 2, ..., r. (1)

where Div(Jj) stands for
p

∑

i=1
DiJ i

j and Di is the total derivative with respect to

xi and where Js = (J1
s , ..., Jp

s ), s = 1, 2, ..., r, with theJ i
s being functions of the

independent and dependent variables. The Js are called the conserved currents. When
the independent variables are those of space and time, the time component of a
Noether current can be integrated over space to give a Noether charge, and under
appropriate boundary conditions this charge can be shown to be constant over time. It
is worth emphasizing that for laws of motion that do not satisfy the presuppositions of
Noether’s theorem, there is no guarantee that a symmetry of the equations of motion
will lead to a conserved quantity or vice versa.

A concrete application of Noether’s first theorem is provided by interacting point
masses in Newtonian mechanics where L = T − V , provided that T is the usual
expression for the kinetic energy of the particles and the potential V depends only
on the interparticle distances. The resulting action A =

∫

Ldt admits the inhomoge-
neous Galilean group as a variational symmetry, and the conservation principles that
follow via Noether’s first theorem are the conservation of energy, angular and linear
momentum, and the uniform motion of the center of mass. Conversely, the existence

17The case of scaling transformation is a classic counterexample.
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of these conservation laws entails that the action admits a 10-parameter Lie group of
variational symmetries.

6 Invariance and objectivity: Noether’s second the-
orem

The overarching theme of Nozick’s Invariances: The Structure of the Objective World
(2001) is that invariance is the root of objectivity: the familiar marks of objectivity–
accessibility from different angles, intersubjectivity, and independence from people’s
beliefs and desires–are all to be explained in terms of invariances. This is a potentially
powerful theme. But actual as opposed to potential power can only come from speci-
ficity: if objectivity is to be construed as invariance, we need to know what it is that
can be, or fail to be invariant, and under what transformations the said things must
be invariant if they are to capture objective features of nature. Naturally, Nozick has
a good deal to say about these questions, not all of which is successful.

For instance, I think Nozick reaches too hard in trying to make a connection
between objectivity and conservation principles:

Emmy Noether showed that for each symmetry/invariance that satisfies
a Lie group, there is some quantity that is conserved ... So [!] it is
not surprising that laws that are invariant under various transformations
are held to be more objective. Such laws correspond to a quantity that
is conserved, and something whose amount in this universe cannot be
altered, diminished, or augmented should count as (at least tied for being)
the most objective thing there actually is. (81)

Here I must take exception with my teacher. For I do not see that it makes much
sense to speak of gradations of objectivity of laws. And even if it did, I don’t see
how the invariances of laws could provide a means of assigning the gradations. If
the spacetime arena is, say, Minkowski spacetime, then all laws of physics must be
Poincaré invariant; if the arena is Minkowski spacetime equipped with a distinguished
orientation, then a law of physics may or may not be invariant under time reversal,
but I would not want to say that a law that is time reversal invariant is more objective
than one that is not. And while conserved quantities may play a special role in a
theory of motion, I do not see why a quantity that is conserved is any more objective
or real than one whose value changes with time.

Nevertheless, I think there is great merit in Nozick’s theme that objectivity =
invariance. I will not attempt any general implementation of this theme but will
settle for a more modest goal. In particular, I will concentrate on the question of
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when a theory of mathematical physics is committed to treating certain mathematical
quantities definable in the theory as representing genuine physical magnitudes as
opposed to mere mathematical artifice. If we had a criterion for sorting the quantities
of theories into these two categories, then we would have a theory-relative criterion
of objectivity: according to the theory, what is objective or real in the world is
described by the behavior of the values of the genuine physical magnitudes of the
theory. A non-theory relative criterion could then, presumably, be obtained by appeal
to considerations of truth and completeness of theories. But I will not venture into
these dark waters and will stay focused on the theory-relative criterion. Even so I
have no general theory-relative criterion in my pocket. However, I do have two things
to offer. The first is a theory-relative necessary condition; namely, to count as a
genuine physical magnitude (relative to the theory) the quantity must be invariant
under the gauge transformations of the theory, that is, the transformations that, from
the perspective of the theory, are taken to relate different descriptions of the same
physical situation. Of course, this condition is useless unless coupled with a means of
identifying the gauge freedom of the theory. This is where my second offering comes
into play. There is, I claim, a uniform apparatus which applies to all theories whose
equations of motion are derivable from an action principle and which identifies the
gauge freedom of such a theory. It is just here that Noether’s second theorem comes
into play. (Nozick was right that a Noether’s theorem is a key to objectivity; he just
picked up on the wrong Noether theorem!)

The second Noether theorem concerns the case where the action is invariant under
an infinite dimensional Lie group G∞r depending on r arbitrary functions of all of the
independent variables. It tells us that there are r linearly independent mathematical
identities constructed from the Euler-Lagrange expressions ELk and their derivatives.
Such a case is one of underdetermination, a case where there are more “unknowns”
(dependent variables) than there are independent Euler-Lagrange equations. When
the independent variables are those of space and time the underdeterminism amounts
to an apparent breakdown of Laplacian determinism. This can be seen more explicitly
by noting that in the cases at issue arbitrary functions of time appear in solutions
of the Euler-Lagrange equations so that a unique solution is not picked out by ini-
tial data. I say there is an apparent breakdown in determinism because the option
remains open to blame the appearance of a breakdown on a redundancy in the de-
scriptive apparatus of the theory in the sense that the correspondence between the
state descriptions given in the theory and the “real” or “objective” state of affairs
is many-one. In particular, one can take the elements of G∞r to be gauge transfor-
mations: the solutions of the Euler-Lagrange equations are divided into equivalence
classes, two solutions belonging to the same class just in case they are related by a
gauge transformation generated by an element of G∞r; and the objective facts about a
possible world (as described by the theory) are what are common to all the solutions
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belonging to a said equivalence class.
In the physics literature it is more usual to carry on the discussion of gauge

matters in the Hamiltonian formalism, where gauge transformations connect instan-
taneous state descriptions rather than entire histories. For sake of simplicity, consider
Lagrangians of the form L(q, q̇). In cases where Noether’s second theorem applies
the Hessian ∂2L(q, q̇)/∂q̇j∂q̇k will be singular, and as a result the Legendre transfor-
mation from the Lagrangian velocity phase space V(q, q̇) to the Hamiltonian phase
space Γ(q,p) implies that the canonical momenta pj := ∂L/∂q̇j are not independent
but must satisfy a family of identities φs(q,p) = 0, where s ≤ m. In order that
these primary constraints (which follow directly from the definitions of the canon-
ical momenta) be preserved by the motion, secondary constraints may have to be
satisfied. In order that the secondary constraints be preserved by the motion, ter-
tiary constraints may come into play, etc. The subspace C of the Hamiltonian phase
space Γ(q,p) where all the constraints are satisfied is called the constraint surface.
One then finds the first class constraints, i.e. the constraints whose Poisson bracket
with any constraint vanishes on C. The gauge transformations are taken to be those
transformations of the phase space that are generated by the first class constraints.18

The gauge independent quantities–a.k.a. the observables of the theory–are then those
phase functions F : Γ(q,p) → R that are constant along the gauge orbits. The re-
dundant structure of the original theory can be removed by passing to the reduced
phase space Γ̃ obtained by quotienting the constraint surface C by the gauge orbits.
If we are lucky, Γ̃ can be coordinatized by new variables (q̃, p̃) which makes Γ̃ the
cotangent space of a reduced configuration space coordinatized by q̃. Now any phase
function F̃ : Γ̃(q̃, p̃) → R is an observable in the reduced theory.

I want to emphasize a number of points here. First, the constrained Hamilto-
nian apparatus is incredibly powerful: it offers a uniform treatment of gauge for all
theories whose equations of motion/field equations can be derived from an action
principle, i.e. the vast majority of the theories of modern physics. Second, it yields
intuitively correct results in familiar cases. For instance, in Maxwellian electromag-
netic theory formulated in Minkowski spacetime, the electromagnetic potentials are
marked as gauge dependent quantities while the electric and magnetic fields (or more
properly the Maxwell tensor) count as observables. Third, the apparatus helps to
clarify the classic form of the dispute about the ontological status of spacetime and
to make precise the connection of this dispute with the fortunes of determinism. To
illustrate, return to the example from section 3 used to illustrate the moral that if
determinism is to have a fighting chance in a classical spacetime setting, then an
absolute or “container” view of spacetime requires that the structure of spacetime
be sufficiently rich as to support non-relational quantities of motion. For someone

18This approach to gauge was developed by P. A. M. Dirac. For an authoritative overview, see
Henneaux and Teitelboim (1989). For a more user friendly introduction, see my (2000b, 2000c).
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who wants to be a relationist about motion this entails an abandonment of the con-
tainer view. What that abandonment means can be made precise in terms of gauge
transformations. Suppose that the equations of particle motion are derivable from
an action principle A =

∫

L(q, q̇)dt. The resulting Euler-Largrange equations are
guaranteed to be invariant under the transformations that produce the threat to de-
terminism illustrated in Fig. 2 if they are variational symmetries of A. But since
these transformations induce transformations of the configuration variables q of the
form q → q + f(t) where f(t) is an arbitrary function of t, Noether’s second theorem
comes into play and we have a case of underdetermination for the Euler-Lagrange
equations, confirming the intuitive argument of section 3 for an apparent breakdown
of determinism. When one works through the Hamiltonian constraint formalism for
appropriate Lagrangians, one finds (as expected) that the gauge invariant quantities
are relative particle quantities, such as relative particle positions, relative particle
momenta, etc. (see my (2002c)). The apparent breakdown of determinism is ex-
plained away by saying that what the proponent of the container view took to be two
different particle histories is just a single history represented in two different ways in
terms of gauge dependent quantities. Of course, it is an empirical matter whether a
theory of this kind can save the phenomena involved in actual particle motions. The
proponents of relational accounts of space, time, and motion tended to assume that
a theory answering the bill was easy to construct. In fact, it wasn’t until relatively
recently that the details of the construction were worked out.19

7 Gauge, objectivity, and the general theory of rel-
ativity

Thus far the implementation of part of Nozick’s formula objectivity = invariance by
means of the recommended apparatus has gone swimmingly. But the application to
Einstein’s GTR yields some surprising and seemingly unpalatable consequences. One
is that in the Hamiltonian formulation of the theory the first class constraints generate
the motion, which is to say that the motion is pure gauge and that the observables are
constants of the motion. Some philosophers and physicists have found this “frozen
dynamics” so bizarre that they think it shows that the constraint apparatus, which is
otherwise so fruitful and successful in other domains, has gone haywire when applied
to GTR. But one lesson of 20th century physics is that results that initially shock our
intuitions often have to been accommodated in the scientific image. In keeping with
this lesson I want to suggest that much is to learned from trying to accommodate
rather than dismissing the result in question (see may 2002a).

19See Pooley and Brown (2002) for a discussion of the implications of the absolute-relational
controversy of various results due to Julian Barbour.
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The problem of time and change in GTR is one aspect of a more general interpre-
tation problem of a kind that philosophers of science claim to take to heart but have
shied away from in the case of GTR. Whatever else it means to interpret a scientific
theory, it means saying what the world would have to be like if the theory is true, and
this in turn means specifying which quantities the theory takes to be “observables” in
the sense of genuine physical magnitudes and under what circumstances these quan-
tities take on values. In ordinary QM it is assumed we know more or less how to
characterize the observables, and most of the interpretational angst is vested in the
problem of how to assign definite values to these quantities in such a way as not to
be so profligate as to run into impossibility results of the Kochen-Specker type or so
parsimonious as to be unable to account for the outcomes of measurements. In GTR
the situation is, so to speak, just the reverse. There is no problem about a value
assignment rule: all observables always take on definite values. The problem is rather
to construct the observables. Those who know a bit about GTR might guess that
we can make a beginning on the construction by starting with “scalar invariants,”
e.g. things like curvature scalars. But on the line I am pursuing these quantities can-
not count as observables since they are not gauge invariant (diffeomorphic invariant)
quantities. The gauge invariants constructible from the basic dynamical variables
of GTR include highly non-local quantities such as the four-volume integral of the
Ricci scalar curvature over all spacetime (assuming such an integral converges), but
obviously such quantities are not very useful in describing the outcomes of typical
measurements and observations. Another class of diffeomorphic invariants is com-
prised by what can be called coincidence quantities, a name chosen to reflect the fact
such quantities are the counterparts for fields of Einstein’s “point coincidences” for
material particles.20 To illustrate, consider a solution to Einstein’s field equations
with the generic property that the spacetime metric does not have non-trivial sym-
metries. In that case the spacetime manifold can be coordinatized by the values of
four scalar fields constructed from the metric and its derivatives. Then, for example,
the taking on of the electromagnetic field of such-and-such a value coincident with the
four scalar fields having values such-and-so is a diffeomorphic invariant. Note that
an ontology comprised of such coincidence events is rather strange. We are used to
thinking of an event as the taking on (or losing) of a property by a subject, whether
that subject is a concrete object or an immaterial spacetime point or region. But the
coincidence events in question are apparently subjectless. Note also that one doesn’t

20See Howard (1999) for a disussion of this notion. The idea that physical reality is exhausted by
such point coincidences was Einstein’s way of trying to overcome the apparent interpretation of GTR
due the fact that the diffeomorphism group is a gauge group of the theory. By modern lights Einstein
was on the right track in that the gauge invariant quantities of the theory do evolve deterministically.
Where Einstein went wrong was in giving a characterization of these gauge invariants that was too
crabbed and didn’t do justice to the field content of the theory.
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verify the occurrence of a coincidence event by first measuring the values of the elec-
tromagmetic and the scalar fields in question, and then verifying that the required
coincidence of the value of the former with the latter does indeed hold; for by them-
selves none of these fields are gauge invariant quantities and so cannot be measured.
The verifying measurement has to respond directly to the coincidence. What this
implication means for measurement and observation obviously requires spelling out,
a task I cannot undertake here.

These strange features may be an indication that the interpretational stance I
have suggested is on the wrong track. But it is surprising (and disappointing!) to me
that philosophers of science think they can know this a priori. I propose that one way
of testing an interpretational stance for classical GTR is to see how well the stance
lends itself to promoting a marriage of GTR and quantum physics that issues in a
successful quantum theory of gravity. And here I would like to correct the impression
conveyed by the popular media that string story (or M-theory, or whatever it is now
calling itself) is the only viable route to a quantum theory of gravity. In fact, the loop
formulation of quantum gravity–which uses the interpretational stance I have been
pushing–is a viable program. In particular, in contrast to M(ystery)-theory it is a
genuine theory rather than a wannabe theory, and it has enjoyed theoretical success
(e.g. explanation of black hole entropy).21 Furthermore, it may be technically feasible
to test its predictions in the near future. If this approach to quantum gravity falters
for reasons connected with the suggested interpretational stance, then that stance
is disconfirmed. But, to repeat, if philosophers think that they can prove a priori
that this will happen, they have an obligation to submit their results to the Physical
Review so as to kill off a non-viable program.

8 The cosmological constant, the fate of the uni-
verse, and change

The cosmological constant Λ has had a long and checkered history since its introduc-
tion into GTR in 1917, with periods where Λ plays an important role in cosmology
alternating with periods where it pushed off stage (see my (2001)). We are presently
in a period where Λ–or some surrogate for Λ–is holding center stage.

The cosmological solutions to Einstein’s gravitational field equations that are
thought to capture the large scale features of our cosmos are called the Friedmann-
Walker-Robertson (FRW) models. In these models the scale factor a obeys the equa-
tion

ä = −(ρ + 3p)a + Λa (2)
21For a review of loop quantum gravity, see Rovelli (1998).
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where ä := d2a/dt2, t is cosmic time, and ρ and p are respectively the density and
pressure of matter. Recent observations of Type Ia supernovae indicate that the rate
of expansion of the universe is increasing, i.e. ä > 0. From equation (2) it then follows
that either the cosmological constant must have a positive value or else the universe
is dominated by a strange form of matter-energy (commonly dubbed “quintessence”)
which exerts a sufficiently negative pressure that ρ + 3p < 0, in violation of the so-
called strong energy condition thought to be satisfied by all normal forms of matter.

For present purposes I will assume that Λ rather than quintessence is at work
and will note two consequences of this assumption. The first is that if a positive
cosmological constant is indeed responsible for the speeding up of the expansion
of the universe, then the universe will expand forever. This might seem attractive
since it means that in the future direction time stretches to infinity. However, if a
positive Λ is at work then it is doubtful that critters anything like us will be able to
take advantage of this eternity since in the distant future the universe will become
increasingly inhospitable to life as we know it (see Krauss and Starkman 2000) This
is a topic well worth exploring, but I now drop it since I want to emphasize the
connection to the issues discussed above.

The connection is forged by asking the seemingly naive question: In what sense
is the cosmological constant a constant? It must be a constant in the sense that it
has the same value throughout spacetime–this is necessary in order that Einstein’s
field equations with cosmological constant imply the local energy conservation law
in the form of the vanishing of the covariant divergence of the stress-energy tensor.
But there is a further sense in which Λ must be a constant, at least if the standard
derivation of Einstein’s field equations from a variational principle is followed. For
that derivation implies that, on pain of setting the volume of spacetime to 0, Λ is not
a dynamical variable in the sense that it does not vary from solution to solution.

However, there is nothing to prevent the cosmological constant as being treated
as a spacetime constant within each solution but having a value that varies from
solution to solution–in effect, the cosmological constant is treated as a constant of
integration rather than a fundamental constant of nature. I will use the lower case
λ to denote this sense. But recall that we are demanding that a candidate for a
fundamental law of motion must be derivable from an action principle. Applying
this demand to the λ version of Einstein’s field equations leads to some interesting
consequences. In particular, it is found that the derivation requires that spacetime
of standard GTR be enriched by the addition of new object fields, and when the
resulting action is run through the constrained Hamiltonian formalism it is found
that the first class constraints are weaker than those in standard GTR and, hence,
that the class of gauge invariant quantities is richer (see my (2002d) for details). In
fact, in the λ version of GTR the dynamics is “unfrozen” in that there are gauge
independent quantities that are not constants of the motion. This finding caused a
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flurry of excitement in the late 1980’s in the quantum gravity community because
it was thought that the λ version of GTR would overcome some of the obstacles
in the canonical quantization program for producing quantum gravity. But when
these hopes were dashed because of technical difficulties, physicists bent on finding
a quantum theory of gravity quickly lost interest. Nevertheless Λ vs. λ remains for
philosophers of science an interesting illustration of the interconnections among action
principles, constraints, gauge principles, observables, etc., and it illustrates the power
of the analaytical appatatus I have been touting to reveal these interconnections.

9 Spontaneous symmetry breaking

My final topic brings together several of the themes discussed above–the breaking of
a lawlike symmetry by particular states, conservation laws, the Noether’s theorems,
and gauge freedom. Examples of spontaneous symmetry breaking in classical physics
were discussed at this meeting by Chang Liu (2002). I don’t have the time to pause
to consider such cases. My focus will be on quantum field theory (QFT), and nothing
in either classical mechanics or ordinary non-relativistic QM prepares us for what
happens in cases of spontaneous symmetry breaking in QFT.

Consider a Lagrangian for a classical field admitting symmetries that form, say,
a one-parameter Lie group. We know by Noether’s first theorem that there is an
associated conserved current. Now suppose that the field is quantized by giving a
Fock space representation where there is a distinguished state (the “vacuum state”)
which gives the ground state of the quantum field and from which excited states
are built up by applying creation operators. One can ask whether the action of the
one-parameter symmetry group of the Lagrangian22 can be represented by a one-
parameter group of unitary operators on the Fock space.23 Under very mild and
reasonable assumptions the answer can be shown to be in the negative. If there were
such a unitary group its generator would be a self-adjoint operator Q̂ corresponding
to the global Noether charge Q obtained by integrating the time component of the
conserved Noether current over all space. But a simple reductio argument shows that
if the vacuum is translationally invariant and if Q̂ commutes with translations, then
the existence of Q̂ leads to contradiction.24 This is puzzling to intuitions trained
in ordinary QM where “symmetry transformation” and “unitary transformation”are

22From here on by “symmetry” I mean internal symmetry. For example, if the Lagrangian L(ϕ) for
a real-valued scalar field ϕ is ∂µϕ∂µϕ, then it admits the one-parameter group of internal symmetries
ϕ → ϕ′ = ϕ + β, β = const.

23A unitary transformation of Hilbert space can be thought of as a rotation that leaves invariant
the inner product of vectors.

24For a concrete example of this reductio argument at work and references to the literature see
my (2002e).
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virtually synonymous.25 The puzzle deepens when one realizes that the non-unitary
implementability of the symmetry leads to the “degeneracy” of the vacuum state, for
the vacuum state is supposed to be the unique Poincaré invariant state. Part of the
puzzle is resolved by noting that this uniqueness assertion is not contradicted by the
relevant sense of degeneracy, which means that there are many unitarily inequivalent
representations of the canonical commutation relations of the field, each with its own
unique vacuum state. But again, this information is unhelpful to someone operating
on intuitions trained on ordinary QM where no such phenomenon can arise.

The apparatus that illuminates the structural features of spontaneous symmetry
breaking is the algebraic formulation of QFT. Here the basic object is taken to be an
algebraA (usually a C∗-algebra) of observables. A state ω is a complex valued positive
linear functional of A. The more familiar Hilbert space formalism is viewed as a way
of representing this abstract algebraic structure. In more detail, a representation of
a C∗-algebra A is a structure-preserving mapping π : A → B(H) from the abstract
algebra into the concrete algebra B(H) of bounded linear operators on a Hilbert space
H. A fundamental theorem due to Gelfand, Naimark, and Segal (GNS) guarantees
that for any state ω on A there is a representation (πω,Hω) of A and a cyclic vector
|Ψω〉 ∈ Hω (i.e. πω(A)|Ψω〉 is dense in Hω) such that ω(A) = 〈Ψω|πω(A)|Ψω〉 for all
A ∈ A; moreover, this representation is the unique, up to unitary equivalence, cyclic
representation.

In the algebraic setting a symmetry transformation is realized by an automor-
phism θ of the algebra A, i.e. a structure preserving mapping of A onto itself. In
relativistic QFT one encounters cases of automorphisms θ and states ω where θ is
not unitarily implementable in the state ω in the sense that in the GNS represen-
tation (πω,Hω) determined by ω there is no unitary operator Û on Hω such that
πω(θ(A)) = Ûπω(A)Û−1 for all A ∈ A.

An automorphism θ of A can also be viewed as acting on states; viz., given a state
ω on A, θ produces a new state ̂θω := ω◦θ. Obviously, if ω is θ-invariant, i.e. ̂θω = ω,
then θ is unitarily implementable with respect to ω; but the converse is not necessarily
true. If θ is not unitarily implementable in the state ω, then ω and ̂θω determine
unitarily inequivalent representations in that their respective GNS representations
(Hω, πω) and (Hω′ , πω′) are such that there is no isomorphism E : Hω → Hω′ such
that πω′(A) = Eπω(A)E−1 for all A ∈ A. If the GNS representations of ω and
̂θω have natural Fock space structures, then the vacuum is “degenerate” but in a
sense wholly different from the degeneracy of ground states in ordinary QM: the
degenerate vacuum states in QFT belong to different, unitarily inequivalent Hilbert
space representations of the field algebra; or, if it is insisted that they occupy the

25I say “virtually” because some discrete symmetries, such as time reversal, are implemented by
anti-unitary operators.
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same Hilbert space, they belong to different superselection sectors.
Weyl algebras are C∗-algebras that capture the algebraic structure of the Weyl

form26 of the canonical commutation relations. Ordinary QM deals with finite dimen-
sional Weyl algebras. The (irreducible, weakly continuous) representation of such an
algebra is unique up to unitary equivalence.27 Furthermore, any automorphism θ of
such an A is inner, i.e. there is a unitary element U ∈ A such that θ(A) = UAU−1 for
all A ∈ A. Hence, when only a finite number of degrees of freedom are present, the
key features of spontaneous symmetry breaking of QFT–non-unitary implementable
symmetries and unitarily inequivalent representations–cannot arise. By contrast, the
algebraic formulation of QFT reveals that there features are mathematical common-
places when an infinite number of degrees of freedom are present. What is interesting
to the physicist is that there are physically important instantiations of these mathe-
matical commonplaces in condensed matter physics and elementary particle physics.

If this were all there was to the story it would still hold interesting morals for
the foundations of QFT. But there was much more to come. Before various ideas in
elementary particle physics could coalesce to form what became known as the Stan-
dard Model it was necessary to find a mechanism by which the particles could acquire
their mass. It turned out that the answer was suggested by a means of avoiding an
embarrassing consequence of spontaneous symmetry breaking. It was discovered that
the spontaneous breaking of a continuous symmetry subject to Noether’s first theo-
rem together with some standard assumptions of QFT–such as Poincaré invariance,
local commutativity, and the spectrum condition–implies the existence of “Goldstone
bosons”–massless scalar bosons. Since there was very good evidence that such parti-
cles do not exist, it seemed that either spontaneous symmetry breaking had to go or
else there has to be some radical modification in the way the business of QFT was
conducted. A way out of this uncomfortable situation was found by Peter Higgs, who
suggested, in effect, that the problem be changed. He showed that by introducing
additional fields the symmetry group of the Lagrangian could be enlarged to an infi-
nite dimensional Lie group whose parameters are arbitrary functions of the spacetime
variables. One now is in the domain of Noether’s second theorem and gauge transfor-
mations. Higgs further showed that the gauge could be chosen so that the Goldstone
bosons are suppressed and that in this “unitary gauge” the new field had acquired a
mass. As the semi-popular presentations put it, “Particles get their masses by eating
the Higgs field.”

Readers of Scientific American can be satisfied with these just-so stories. But
philosophers of science should not be. For a genuine property like mass cannot be
gained by eating descriptive fluff, which is just what gauge is. Philosophers of science

26This is a kind exponentiated form the CCRs that avoids complications about domains of defi-
nition for unbounded operators.

27This is a form of the Stone-von Neumann theorem.
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should be asking the Nozick question: What is the objective (i.e. gauge invariant)
structure of the world corresponding to the gauge theory presented in the Higgs mech-
anism? From the above discussion we know that there is in principle a way to answer
this question. The constraint apparatus I described above in section 6 is applica-
ble: when the shift is made from the Lagrangian to the Hamiltonian formulation,
constraints will appear; find all of he constraints and single out the first class con-
straints; quotient out the gauge orbits generated by the first class constraints to get
the reduced Hamiltonian phase space whose phase functions are gauge-invariant mag-
nitudes; finally, quantize the unconstrained system to get a quantum field theoretic
description stripped of surplus gauge structure. To my knowledge this program has
not been carried out. To indicate why it is important to carry it out, consider the
following three-tiered dilemma. First tier : Either the gauge invariant content of the
Higgs mechanism is described by local quantum fields satisfying the standard assump-
tions of Poincaré invariance, local commutativity, spectrum condition, etc. or not. If
not, then the implementation of the Higgs mechanism requires a major overhaul of
conventional QFT. If so, go to the second tier. Second tier : Either the gauge invariant
system admits a finite dimensional Lie group as an internal symmetry group or not.
If so, Noether’s first theorem applies again. But (since the other standard assump-
tions are in place) Goldstone’s theorem also applies and, hence, Goldstone bosons
have not been suppressed after all. If not, go to the third tier. Third tier : Either the
gauge invariant system admits no non-trivial symmetries at all or else it admits only
discrete symmetries. In either case Goldstone bosons are quashed. In the former case
spontaneous symmetry breaking is not an issue since there is no symmetry to break.
In the latter case it is possible that the discrete symmetry is spontaneously broken.
But the usual argument for symmetry breaking using the conserved Noether current
does not apply. And while it is possible that some completely different sort of con-
struction will demonstrate the spontaneous breakdown of the hypothesized discrete
symmetry there are no extant demonstrations that have more than a hand waving
force.

The list of unresolved issues about spontaneous symmetry breaking includes not
only these foundations of physics issues but more general methodological issues as
well. High up on the list for the latter category is the issue of the role of idealizations
of physics. I would propose as a condition of adequacy on any acceptable account
of the role of idealizations that it imply that no effect is to be deemed a genuine
physical effect if it is an artifact of idealizations in the sense that the effect disap-
pears when the idealizations are removed. Now add two facts: first, actual systems
exhibiting spontaneous symmetry breaking, e.g. ferromagnets and superconductors,
are finite in extent; second, all of the more-or-less rigorous demonstrations of the
features that make spontaneous symmetry breaking intriguing–namely, non-unitarily
implementable symmetries and unitarily inequivalent representations–involve taking
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an infinite volume limit. The upshot is to bring into question the reality of these
features.

10 Conclusion

Philosophers of science have barely scratched the surface of the topic of laws, sym-
metries, and symmetry breaking. What I find most attractive about this topic is
that it brings into fruitful interaction issues from metaphysics, from mathematics
and physics, from the philosophy of scientific methodology, and from foundations of
physics. By the same token, the fact that all these issues are put into play means that
the discussion is very difficult to control and that it is always in danger of getting lost
in thickets of technicalia or degenerating into mush. Successfully confronting these
dangers requires someone who understands and cares about the philosophy and who
not only has a command of the mathematics and physics but can use it to illuminate
and advance philosophical concerns. There are young people with these abilities. To
them I say: The road ahead will be filled with tribulations and obstacles (not the
least of which will be some of your colleagues), and it is uncertain what professional
reward, if any, you will earn from traveling this road. But the unless some of you
have the courage to make the journey, the discipline will be immeasurably poorer.
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∗ The ungainly title is due to the desire to do homage to my predecessor, Bas van
Fraassen, and my teacher, Robert Nozick.
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