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Abstract

This paper 1s the second in a two-part series in which we discuss
several notions of completeness for systems of mathematical axioms,
with special focus on their interrelations and historical origins in the
development of the axiomatic method. We argue that, both from his-
torical and logical points of view, higher-order logic is an appropriate
framework for considering such notions, and we consider some open
questions in higher-order axiomatics. In addition, we indicate how one
can fruitfully extend the usual set-theoretic semantics so as to shed
new light on the relevant strengths and limits of higher-order logic.

Introduction

This paper is the sequel to (Awodey and Reck 2002). In this two-part series
we discuss several notions of completeness for systems of mathematical ax-
ioms, including the notion of categoricity. In Part I, we first distinguished
these notions conceptually and then documented how each of them arose
historically. This developement occurred in connection with that of the ax-
iomatic method in late nineteenth and early twentieth century mathematics,
in the works of, among others, Dedekind, Peano, Hilbert, Huntington, and
Veblen. We also illustrated how the interrelations between these various no-
tions were first discussed, systematically and in some detail, in metalogical
and metamathematical works by Fraenkel and Carnap from the 1920s. Some



of these discussions were continued in more well-known works by Hilbert,
Godel, Tarski, and others in the late 1920s and 1930s.

A number of the questions first formulated in these early metatheoretic
investigations still remain mathematically interesting today. However, the
now-standard restriction to first-order logic in connection with notions such
as categoricity and completeness conflicts with how these topics were orig-
inally treated in the 1920s and 30s in the early works by Carnap, Hilbert,
Godel, and Tarski, as became clear in Part I. Indeed, some of the most inter-
esting remaining questions in this connection only acquire their real signifi-
cance in a broader framework, namely that of higher-order logic. Thus from
a historical point of view, the restriction to first-order logic is unwarranted
and inadequate. In the present paper, we intend to show further that this
restriction is also technically ill-advised, insofar as some aspects of these
questions are more naturally and fruitfully treated in higher-order logic.

For that purpose, we first present a concise review of this expanded log-
ical framework. We then give partial answers to some of questions that
were mentioned in Part I, but were left open since first being raised in the
1920s and 30s. Besides expanding the logical framework to that of higher-
order logic, we also take a wider view of semantics than is customary in
contemporary metalogic and metamathematics, or was even possible un-
til quite recently. Namely, we extend the range of semantic notions from
the standard set-theoretic ones to more general topological and category-
theoretic semantics. This might seem even more radical than the move to
higher-order logic, but we believe it is justified by the light it sheds on some
previously obscure topics. It also allows us to establish some strengthenings
of earlier results along lines hardly foreseeable by Carnap or Tarski, but not
incompatible with their point of view. We conclude by indicating what we
consider to be some promising directions for further work.

1 Higher-order axiomatics

1.1 Limitations of first-order logic

In what follows we are concerned with, among other things, the use of logic
as a tool in formal axiomatics, as discussed in Part 1. In this connection, we
occasionally find fault with the standard framework of first-order logic and
set-theoretic semantics, and we consider several alternatives. We wish to
firmly acknowledge here at the outset that first-order logic and set-theoretic
semantics are important and useful tools in formal axiomatics. Our proposal
is not to reject or replace them, but to augment them for the specific pur-



poses at hand. Moreover, it is clear that the proposed use of higher-order
logic, particularly its semantics, involves philosophical presuppositions be-
yond those of first-order logic which some thinkers find questionable.! Thus
let it also be clearly said that we do not intend this study as a contribu-
tion to the on-going discussion of the relative merits of higher-order logic
from a philosophical point of view; our interests are mainly historical and
mathematical.

That said, the evident difficulty involved in using first-order logic (here-
after FOL) in formal axiomatics is its inability to fully characterize struc-
tures with infinite models. The Léwenheim-Skolem theorems show that it
is impossible to fully axiomatize an infinite mathematical structure, even
up to isomorphism, using only FOL. It follows that FOL is not suitable for
characterizing the basic objects of mathematics, like the natural, real, and
complex numbers, and the Euclidean spaces.?

Moreover, many objects of mathematical study today are described gen-
erally by axioms that are not intended to be categorical, but are not of first
order either. For example, rings with conditions on ideals, like Noetherian or
principal ideal domain; structures on manifolds like vector bundles or tensor
fields; the various kinds of spaces used in functional analysis like Hilbert
and Banach spaces, and even classical mathematical objects like Euclidean
and projective spaces are all determined axiomatically. It is hardly an exag-
geration to say that the axiomatic method has succeeded, since its modern
beginnings around 1900, in taking over mathematics. But, as the examples
just mentioned illustrate, it is not only FOL that is being used in service of
this method.

Of course, one can describe the models of such non-first-order axiomatic
notions in terms of set theory. But this does not alter the fact that their ax-
iomatic presentation is essentially higher-order. Nor will it do, in such cases,
to treat higher-order logic as many-sorted first-order logic, as is occasion-
ally suggested. For in specifying structures such as those just mentioned
involving higher types of relations or functions, it is essential that these
types be interpreted as such, and not as additional first-order structure, if
the axiomatization is to serve its intended purpose. We thus believe that
higher-order axiomatic theories are best recognized and studied on their own
terms, rather than being converted into set theory or first-order logic.

'See (Jané 1993) and (Corcoran 2002) for discussion.
2See (Tennant 2000) for another interesting weakness of FOL



1.2 Higher-order logic

We first present a simple and fairly standard extension of FOL which has
the expressive capacity to formulate many of the axiomatic treatments of
modern mathematics. Logical languages of this general kind, which are
descendant from the type theory mentioned in Part I, Section 3.1, are usually
called higher-order logic or simple type theory.?

Higher-order systems of logic are those having variables and quantifi-
cation over “higher types” of relations or functions among the elements
of “lower type”. Thus, for example, one can extend the usual language
(A,4+,-,0,1) of ring theory by adding also variables X,Y,... ranging over
subsets of the basic domain A. This allows one to axiomatize e.g. principal
ideal domains by adding to the theory of commutative rings the familiar
condition:

VI C A(“I'is anideal” = 3z € A(I = (2))) (1)

where the expressions “I is an ideal” and the principle ideal (z) are defined
as usual. Of course, one also adds some logical vocabulary to express subset
formation and membership.

We now give an informal description of a particular language of higher-
order logic that is sufficient for the purposes of our further discussion. More
details of related systems can be found e.g. in (Lambek and Scott 1986).

The language of HOL

The language of higher order logic (HOL) consists of type symbols, terms,
and formulas. We write 7 : X to indicate that the term 7 has type X.

Types In addition to basic type symbols A, B, ..., and a type P of formu-
las, further types are built up inductively by the type-forming opera-
tions:

XxY, XY, P(X)

Terms In addition to variables of each type z1,z2,...: X, and possibly
some basic, typed constant symbols, further terms are built up induc-

*Type theory is currently experiencing a sort of renaissance because of its applications
in computer science. There are literally hundreds of different logical systems that can be
called “higher-order logic” or “type theory”.



tively by the term-forming operations:

<Uv T>7 pl(T)7 pQ(T)
a(r), Az : X.o

{z: X[}

Formulas In addition to equations ¢ = 7 and atomic formulas 7 € «, fur-
ther formulas are built up inductively by the usual logical operations:

o, AP, eV, o=, Vo X(p), Jz: X(¢)

The type of a term is determined in the expected way by the types of the
terms used in forming it, and these formations are subject to some obvious
conditions for significance; e.g. p1(7) : Aif 7 : A X B. We make use of the
usual conventions in writing formulas whenever convenient, such as writing
(z,y,z) for (z,(y,z)). Note that we have included the possibility of basic
type and constant symbols, to be used as the basic language of an axiomatic
theory. The theory of rings, for example, has one basic type symbol, say A,
and the following basic constant symbols indicated with their types:

0,1:A4
4+, tAXxA—> A

Generally, we define a theory to consist of a basic language of type sym-
bols and constants, together with a set of sentences in that language, called
the azioms. We shall assume here that a theory has finitely many basic sym-
bols and axioms, although there is no reason in principle why one cannot
consider infinite theories. In these terms, e.g. the theory of rings thus con-
sists of the language (A, +,,0,1) and the usual handful of axioms for rings
(with unit); and the theory of principal ideal domains results by adding the
further axiom (1) above.

We emphasize that this use of HOL for presenting axiomatic theories,
while familiar enough from everyday mathematical practice, is quite different
from the original use intended by logicists like Frege and Russell, and also
from that made of it by Carnap in his Untersuchungen zur allgemeinen
Aziomatik (Carnap 1928), mentioned in Part I, Section 3.2. These pioneers
had what has been called a “universal” conception of logic ((van Heijenoort
1967),(Goldfarb 1979)), according to which there is a single logical system
with a single, fixed domain of quantification (namely, “everything”), and
with fixed higher types consisting of “all” functions, concepts, propositional



functions, etc. By contrast, the conception in use here has (possibly several)
basic types, which can be interpreted in various ways, just as is common in
the semantics of first-order logic. Indeed, the clearest way to understand
the language of HOL presented here is as an extension of the usual language
of FOL by adding the higher types X — Y and P(X) and their associated
terms (o, 7), p1(7), p2(7), a(r), Az : X.0o, {z : X | ¢}, and then building
FOL formulas as usual from those terms and variables in equations and
basic formulas 7 € a. In particular, any conventional theory in FOL is also
a theory in HOL in the present sense.

When needed, a system of formal deduction can be specified in the usual
way, as a formal system with logical axioms and rules of inference. One such
system is outlined in the Appendix below, but we emphasize that there are
many equivalent formulations.

1.3 Semantics

The semantics for HOL is essentially an extension of that for FOL, adjusted
to take advantage of the simplifications resulting from the presence of addi-
tional types (see e.g. remark 1 below). We shall assume given a “semantic
universe” with suitable structure for interpreting the language of HOL. Here
we use sets and functions, but later we will generalize to other “universes”
(suitable categories) with the required structure.

Rather than stating the formal definition of a model of a theory, we shall
give a particular case of it which should be sufficient for the reader to infer
the general notion.* Suppose we have a theory of the form (A4, ¢, a), with
one basic type symbol A, one constant symbol ¢, and one axiom «. For
instance, it might be the theory of semi-groups, with ¢ being -: Ax A —+ A
and « being the associativity law:

Ve,y,z: A z-(y-2)=(2-y) -z

An interpretation assigns to each type X a non-empty® set [X], in such
a way that:

*See (Lambek and Scott 1986), (MacLane and Moerdijk 1992), (Awodey and Butz
2000) for details.
5This restriction merely simplifies the deductive calculus given in the Appendix.



[A x B] = [A] x [B]
[A — B] = [B]!

[P(A)] = P([AD
[P]=AT, L}

the Cartesian product)

the set of functions)

the power set)

o~~~ —

any two-element set)

A term 7(z) : Y containing a free variable z : X is interpreted as a
function [r] : [X] — [Y], in such a way that:

[e] € [X] for a basic constant ¢: X
[z] = 1gx7 : [X] — [X] (identity function)
for a variable z : X
[{o, )] = ([¢],[]) (the ordered pair)
[pi(m)] = m:([]) (the 7-th projection)
[a(r)] = [«]([~]) (functional application)

[Az : X.o] = the function z — [o]
[{z : X | #}] = the subset {ze[X] | [#] = T}
[T € a] =T iff [r]e]a]
[ A ] = [¢] A [¢] and similarly for -, vV, =
[Vz : X¢] = T iff for all ze[X], [¢] =T
[Fz : X¢] = T iff for some ze[X], [¢] = T

Note that we use the boolean operations A, etc., on {T, L} to interpret the
corresponding logical operations.
An interpretation [—] satisfies a sentence ¢ (“o is true under [—]”) just

if
[e]l=T

Of course, a model of a theory is an interpretation that satisfies the ax-
ioms. If M is a model, we also write [—]a when considering it as just an
interpretation, and we use the notation:

MEo for [o]ly=T

Although it may look a bit unfamiliar at first sight, this definition agrees
with the usual one for models of a first-order theory. For instance, in the



example above of semi-groups, an interpretation in the present sense consists
of a set [A] equipped with a binary operation [-] : [A] X[A] — [A]. A model
is such a structure for which

([ALLD F Ve, y,z: Az - (y - 2) = (2 - y) - 2),

which is easily seen to mean just that the operation [-] is associative.

According to our definition, the higher types of functions and relations
are interpreted by the corresponding sets (in the conventional terminology,
the models are “standard models” rather than “Henkin models”). Observe
that such an interpretation is fully determined by the interpretation of the
basic language. Thus in particular, an interpretation in this sense of a first-
order language is just a first-order structure.

Remark 1. The “internal” notion of satisfaction used here may be unfamil-
iar; it differs from the more customary, “external” notion from elementary
model theory in that ¢ruth is represented as an element of a set of truth
values {T, L}, and a formula ¢(z) where z : X is represented as a function,

[p(2)] - [XT — AT, L.

Of course, [¢(z)] is just the characteristic function of the subset:

[{z : Xlg(@)}] = {e € [XT [ [XT = #(a)} € [X]

A sentence (closed formula) is therefore interpreted as one of the truth values
T or L, with the “true” sentences (= T) being exactly those that hold under
the interpretation.

The reason for internalizing truth in this way is that, while it is equivalent
to the external approach for set-theoretic semantics, this internal notion
can easily be generalized to other semantic universes in a way that external
semantics cannot. A similar procedure is sometimes used in connection with
boolean-valued models.

We now use the semantics to define the notion of semantic consequence
¢ = 1 between sentences in the usual way:

¢ = 1 if for every interpretation, [¢] < [¢]

where the ordering of truth-values is the usual one, L < T. Semantic
consequence between formulas is defined analogously, using the pointwise
ordering of the interpreting functions. The notion of semantic consequence
with respect to a theory is defined in the expected way, by considering only
those interpretations that are models of the theory.



One sometimes hears it said that HOL is “stronger” than FOL, but this
is only so with respect to its expressive capacity, not its semantic conse-
quences. More precisely, the relation of higher-order semantic consequence
is conservative over first-order semantic consequence. For let T be a first-
order theory, regarded as a theory in HOL. The models of T in the HOL
sense are then exactly the models in the usual FOL sense. Thus if the first-
order sentence ¢ is true in every HOL model, then it is semantically valid
in the sense of FOL.

Semantic consequence for HOL differs from that for FOL in several im-
portant respects: it is not compact; the usual Lowenheim-Skolem theorems

do not hold; and its theorems are not recursively enumerable (see (Shapiro
1991) for further discussion).

1.4 Completeness and categoricity

We can now consider more precisely the question of how completeness and
categoricity for an axiomatic theory are related in the context of HOL. As
already mentioned in Part I, Section 3.2, the main early studies are no-
tably (Fraenkel 1928), (Carnap 1928), and (Lindenbaum and Tarski 1935).
Briefly, the main positive results are that categoricity implies semantic com-
pleteness (in the sense of Part I, Section 1, Definition 1) generally, as for
theories in FOL, while in certain cases the converse also holds, which is
perhaps more surprising.

Proposition 2. If a theory T is categorical, then it is semantically com-
plete.

Proof. (sketch) Given categorical T, it suffices to show that if M |= ¢ for
some model M and sentence o, then also N = o for any other model N.
But since T is categorical, there is an isomorphism of T-models 7 : M =
N, in the usual sense. Now it is easy to see that isomorphisms preserve
satisfaction, just as in the first-order case. In more detail, one shows by
structural induction that for any formula ¢, one has [¢]ar = [¢]n 07", as
maps M™ — {T, L}, where there are n free variables in ¢, and i" : M™ = N"
is the induced isomorphism on Cartesian products. Thus in particular, if
M = o for some sentence o, then T = [o]ar = [o]n, and soalso N = o. O

The more interesting question in this connection is, under what condi-
tions does the converse of proposition 2 hold? As already noted above, our

6Some recent authors who have also called attention to this topic are (Corcoran 1980),
(Corcoran 1981), (Read 1997), and(Awodey and Carus 2001). This section addresses a
question raised in (Corcoran 1981).



restriction to finite sets of axioms is essential here. Indeed, it is not hard to
find non-isomorphic models that are logically equivalent (since the number
of sets of sentences is bounded). The (infinite) “theory” of such a model
would then be semantically complete but not categorical.

For the finite theories under consideration here, however, the situation
is rather different. As already mentioned in Part I, Section 3.2, in (Carnap
1928) the implication from semantic completeness to categoricity was con-
jectured and an erroneous proof was offered. The following (correct) proof
of a special case is due to Dana Scott:”

Proposition 3. If a theory T has only one basic type and no basic constant
symbols, then T is categorical if it is semantically complete.

Proof. (sketch) Let o be the conjunction of the finitely many axioms, and
define the new sentence

o0 =47 o A (YU : P(X)) (0¥ = U = X)
= “X is the least subset of X that satisfies ¢”

in which X is the basic type, U is a variable of type P(X), U =2 X is
expressed by the usual definition of isomorphism, and oV is a new sentence
derived from o by relativizing all types and quantifiers occurring in ¢ from
X to U.

If o is satisfied, then so is o (by the axiom of choice for sets). But if o is
also complete, then we claim that ¢ < (. For if M |= o, then we can take
some M’ C M such that M’ |= oy; since then also M’ |= o, we also have
M = o, since o is complete. But oy is evidently categorical, so o must also
be categorical. O

While it is not difficult to extend this result to a few other cases, we do
not know the extent to which it holds in general. Some easy sufficient condi-
tions for the categoricity of a finite theory, given its semantic completeness,
are having a definable model (Lindenbaum and Tarski 1935), having a model
with no proper submodels, and being categorical in some power. The latter
follows from the fact—easily inferred from the foregoing theorem—that all
models of a semantically complete theory must have the same cardinality.
We know of no counter-examples to the conjecture that semantic complete-
ness of a finite theory implies categoricity in general.

"Scott produced this clever proof in response to a talk on Carnap’s failed work by the
first author. See also (Awodey and Carus 2001).
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In sum, it seems that Carnap’s conjecture remains undecided, with little
indication as to which way it will go. This is surely to be counted as one of
the leading open questions in higher-order axiomatics.

2 Topological semantics

In this section we consider an alternative to the usual set-theoretic semantics
for HOL.® This is drawn from category theory, and is a special case of so-
called “topos semantics”, which we won’t consider in general (see (Lambek
and Scott 1986),(MacLane and Moerdijk 1992), and (Awodey and Butz
2000)). The topological semantics outlined here should however suffice to
give the reader a general impression of what is involved in interpreting HOL
in semantic “universes” other than that of sets.

We first briefly review the motivation for considering alternate seman-
tics for HOL. The first and most obvious reason is that the set-theoretic
semantic consequence relation is not deductively axiomatizable in any rea-
sonable sense. Specifically, given a conventional deductive consequence re-
lation ¢ F 1, the Godel Incompleteness Theorem tells us that this relation
cannot be complete, in the sense of Part I, Section 1, Definition 1, with
respect to set-theoretic semantic consequence.

This does not necessarily mean that higher-order deduction is somehow
defective, however. It is at least sound for set-valued semantics, in the
sense that ¢ F ¢ implies ¢ = 1. Moreover, it is conservative over first-
order deduction, by a simple argument from the semantic conservativity
mentioned in section 1.3, above. And as we shall see below, it is in fact
complete with respect to the topological semantics to be considered here.

Another reason to broaden the scope of semantics for HOL is that, like
completeness, this also affects the notion of categoricity for axiomatic the-
ories, effectively making it a stronger condition. Indeed, since categoricity
is a semantic notion, restricting semantics to sets makes it dependent on
often nontrivial properties of sets, which can have peculiar, unwanted con-
sequences; in Example 4 below, for instance, we indicate a simple theory
that is categorical just in case the continuum hypothesis holds. The cate-
goricity of certain axiomatic theories like the natural and real numbers seems
to provide confirmation of their adequacy, independent of the more subtle
properties of sets. Generalizing the range of semantics conforms better to
this intention, as will be discussed further in section 3 below.

8This section draws on (Awodey 2000), which the reader can consult for more detail.
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Finally, one simple reason for considering alternate semantics is that one
is interested in the semantic objects themselves. The possibility of using
logic to reason about structures on objects other than sets (as happens
with e.g. topological groups) makes the systematic investigation of such
objects useful in itself. This is indeed the case with the topological semantics
considered below; the semantic objects employed (sheaves) are everyday
mathematical objects.? This is not the case for the most familiar alternate
semantics for HOL, the so-called “Henkin models”. These are used only
for proving deductive completeness, and have no independent mathematical
interest.

The objects used in topological semantics are “continuously varying
sets”, in a sense made precise in 2.2 below. We first motivate this idea in 2.1
by considering an analogy to the ring of continuous, real-valued functions
on a topological space. That example also shows how continuous variabil-
ity can be used to violate some properties of constants, which is essentially
what permits the completeness of higher-order deduction with respect to
topological semantics, discussed in 2.3 below.

2.1 Ring of continuous functions

The real numbers R form a topological space, an abelian group, a commu-
tative ring, a complete ordered field, and much more. Let us consider the
properties expressed in just the language of rings:

0,1,a+b,a-b,—a
and first-order logic. For example, R is a field:
REVe(z=0vdyz-y=1)
Now consider the product ring R x R, with elements of the form
r=(ry,rs)

and the product operations:

®See e.g. (Hartshorne 1977), (Iversen 1986).
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Since these operations are still associative, commutative, and distributive,
R x R is still a ring.

But the element (1,0) # 0 cannot have an inverse, since (1,0)~! would
have to be (17!,07"). Therefore R x R is not a field.

In a similar way, one can form the more general product rings R x ... X
R = R”, or R/ for any index-set I.

While not in general fields, product rings R’ are always (von Neumann)
reqular:

RI=Vedy (z-y-2=2).
For, given z, we can take y = (y;) with:
i = a7t ifz; £0
' 0, ifz;=0
One can produce rings that violate even more properties of R by pass-
ing to “continuously varying reals”. What is a “continuously varying real

number”? Let X be a topological space; then a “real number r, varying
continuously over X” is just a continuous function:

r: X —-R
We equip these functions with the pointwise operations:

(f+9)(z) = f(z) +g(2), etc.
The set C(X) of all such functions then forms a subring of the product ring
over the index set | X | of points of the space X, that is, as rings: C(X) C RIXI,
But unlike the product ring, C(X) is not regular:
C(X)EVf3g (f-9-T=1)

For take e.g. X = R and f(z) = 2%, then we must have:

1 .
g(iC) = Pv if 2 7£ 0
but of course:
) .1
0= npel) =g =

so there can be no continuous g satisfying f-g-f = f.

Thus the “continuously varying reals” C(X) have even fewer properties
of the field of “constant” reals R than do the product rings RY. In this
way, passing from constants to continuous variation “abstracts away” some
properties of the constants.

13



2.2 Continuously variable sets

Just as the real numbers could be generalized to the “continuously variable
reals” (continuous functions), we now generalize the notion of a set to that
of a “continuously variable set,” i.e. a sheaf.

As afirst step, observe that the type-forming operations of product, pow-
erset, equality, etc. can be interpreted in other “universes” of sets. Indeed,
consider the universe of “pairs of sets,” Sets x Sets. The objects have the
form:

A= (A1, Ag)
and the operations are defined componentwise:
(Al,AQ) X (B17BQ) = (Al X Bl,AQ X BQ)
P(A1, Az) = (P(A1), P(Az))
P=(PP)

Term-formation is similarly componentwise. Indeed, the logical operations
can also be defined componentwise:

(01702) S (A1,A2) = (611 € Aj,ay € Az)

(1, 02) A (1, %02) = (01 A1, 02 A 2)
etc.

This interpretation of the logical language models HOL in the sense that
the usual logical axioms and rules of inference (e.g. as given in the Appendix)
are all validated. On the other hand, it does not satisfy all the properties
of Sets. For example:

SetsEA=20Vvdzzec A

But in Setsx Sets we can take as A the object (1, 0), which is not isomorphic
to 0, and then @ € (1,0) means a = (ay, az) with a1 € 1 and ay € 0, which
is impossible.

Just as in the case of rings, we can also generalize to Sets X ...x Sets =
Sets”, and indeed to Sets’ for any index set I, to get the “universe” of
I-indexed families of sets.

All such “product universes” have some things in common, e.g. they all
satisfy the axiom of choice (which, by the way, can be seen to be formally
analogous to regularity for rings). To find even more general “universes” we
consider even more general families of sets,

(FI)IEX

14



varying continuously over an arbitrary topological space X . But what should
a “continuously varying set” be? The problem is that we cannot simply take
a “continuous set-valued function”

F: X — Sets

as we did for rings of real-valued functions, since Sets is not a topological
space.

In modern mathematics, one often encounters continuously varying struc-
tures; let us recall how this is typically done, in order to find the notion we
seek. A “continuously varying space” (Y).ecx over a space X is called a fiber
bundle. It consists of a space Y = »_ Y, and a continuous “indexing”
projection 7 : Y — X, with #71{z} = Y,, as indicated below.

Y:ZYQE

reX

/Y

A “continuously varying group” (A.)zex is a sheaf of groups. It consists
essentially of a fiber bundle 7 : A =" A, — X satisfying the additional
requirements:

reX

1. each A, is a group,
2. the operations in the fibers A, “fit together continuously”,

3. mis a local homeomorphism (see below).

We can then answer the question of what a “continuously varying set”
should be by saying it is a sheaf of sets, i.e. a fiber bundle,

F :ZFz

reX

X

such that 7 is a local homeomorphism, in the sense that each point y € F
has some neighborhood U on which 7 is a homeomorphism U — 7 (U).

15



This ensures in particular that each fiber I, = 77!(z) is discrete, and that
the variation across the fibers is continuous, in a suitable sense.

To define the semantics of HOL in sheaves, one needs to interpret the
basic type-forming and logical operations. Some of these can be defined
pointwise, (I'x ), = (F; x G). Others, however, cannot; for instance, the
exponential GF of sheaves F, G is the “sheaf-valued hom” hom(F,G), defined
in terms of germs of continuous maps F — G, for which (G¥), 2 GE=. This
is what makes topological semantics different from the product semantics of
indexed families.

Like the product universes Sets”, the universe sh(X) of all sheaves on
a given space X models HOL in the sense that the axioms are all true and
the rules of inference are all sound. But in general, sheaves violate e.g. the
axiom of choice. Indeed, one can find sheaf models of HOL that also violate
many other properties of sets.

2.3 Topological completeness

If we think of sheaves as sets varying continuously in a parameter, the con-
stant sets occur as the special case of no variation. The semantics given in
1.3 above then yield the topological semantics just outlined, with standard
set-theoretic semantics as a special case. Some logical statements that are
not true of variable sets in general are true of all constant sets, as a result of
their special properties. In this sense, the logic of the constant sets is quite
strong, while the logic of variable sets is much weaker. That is, fewer things
are true of all variable sets than are true of constant ones. This is just like
the difference between the field of real numbers and the ring of real-valued
functions. Now one can ask, what is the logic of continuously varying sets?
That is to say, which sentences of HOL are true in all sheaf models? The
answer is given by the following theorem from (Awodey and Butz 2000).°

Theorem. HOL is complete with respect to topological semantics.

The completeness referred to is deductive completeness in the sense of our
Definition 3, Part I, Section 1, with respect to the standard, classical deduc-
tive consequence relation, as specified in the Appendix. Thus if a sentence
is true in all topological models, then it is provable.

The reader may wonder how this result is to be reconciled with the
Godel incompleteness of deductive higher-order logic. Roughly speaking,
the situation is this: the sense in which a sentence is “true but unprovable”

10The proof uses recent results in topos theory (Butz and Moerdijk 1999) that are rooted
in geometry.
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in Goédel’s theorem involves only “true of all constant sets,” but not “true
of all variable sets.” Thus a “true but unprovable” Goédel-style sentence is
only true of the constant sets, but it is violated by some variable ones (else
it would be provable).

3 Notions of categoricity

Having now considered completeness and categoricity with respect to stan-
dard, set-theoretic semantics, and deductive completeness with respect to
alternate semantics, we turn to possible alternate notions of categoricity.
We have already mentioned that some axiomatic theories in higher-order
logic are categorical in the usual sense that any two (standard) models are
isomorphic just in case the sets used to model them are assumed to have
certain properties, such as satisfying the continuum hypothesis or the axiom
of choice. This is essentially because these properties of sets are expressible
in HOL. For example, the following simple theory is categorical just if the
continuum hypothesis holds.

FEzample 4. The theory T has one basic type symbol U, one relation symbol
R : PP(U), and two axioms expressing the conditions “U is countably
infinite” and “|U| < |R]|”.

But the idea of categoricity as a basic criterion of adequacy for a system
of axioms seems to presume that it is not sensitive to such questions as
whether the continuum hypothesis holds. Indeed such issues seem irrelevant
to the categoricity of descriptions of at least some classical mathematical
notions, like the natural numbers. As was seen in Part I above, some version
of categoricity was one of the main early conditions of adequacy for axiom
systems, quite independently of a precise specification of the theory of sets,
or any understanding of their more subtle properties.

In this section, we consider several strengthenings of the notion of cate-
goricity that are not sensitive in this way to special properties of the seman-
tics, although they do have their own peculiarities. The notions considered
are called unique, variable, and provable categoricity. Some of the classi-
cal theories of greatest interest do indeed have these stronger properties.
Finally, we consider the category-theoretic concept of universality and its
relation to axiomatic descriptions.
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3.1 Unique categoricity

This notion strengthens conventional categoricity by requiring that any two
models M and N be isomorphic via a unique isomorphism M = N. This
is clearly equivalent to saying that the theory at issue is categorical and,
furthermore, that its models have no non-trivial automorphisms.'!

The classical axiomatizations for the natural and real numbers do indeed
have this stronger property (the complex numbers do, too, if one eliminates
complex conjugation as an automorphism by adding a constant symbol for
i). As will become more clear below, axiomatizations are sometimes categor-
ical because there are some natural or canonical maps between models (as
opposed to ones gotten, say, by the axiom of choice), and the axioms then
suffice to make these canonical maps isomorphisms. The property of unique
categoricity also seems to accompany some of the other strengthenings to
be considered, and it is found in connection with the category theoretical
notion of universality.

3.2 Variable categoricity

We have already considered the notion of a continuously varying model M
over a space of parameters X, as made precise by the concept of a sheaf of
models, which is a model in the “universe” sh(X) of continuously variable
sets (cf. 2.2 above). The notion of variable categoricity is simply the obvious
generalization of categoricity to such variable models:

Definition 5. A theory T is called variably categorical if any two conti-
nuously variable models M, N over any space X are isomorphic.

This condition requires more than just that there is an isomorphism
hy: M, =5 N, for each z € X.

In addition, the various h, must fit together to form a single, continuous
isomorphism
h:M =5 N over X.

Thus, in effect, the h, must also vary continuously with the parameter z.

Note that this notion does generalize conventional categoricity, since
the conventional notion is the special case of variation over a one-point
parameter space. In this sense, conventional categoricity is the limiting or
trivial case of variable categoricity.

Y Cf. (Tarski 1983), p. 313.
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There is, of course, no sense to requiring that models over different spaces
be isomorphic, since there is no notion of a map between such models (at
least in the current situation).

There is an obvious unique version of this notion, obtained by requiring
unique isomorphisms between models. For example, the classical theories
of N and R have this property — they are uniquely variably categorical.
The contrived theory Ty above does not have it, however (even assuming
CH). The reason why is roughly that, in a given model M, a variable subset
Rar € P(Upr) might be pointwise isomorphic to P(Uas), just for cardinality
reasons, without there being a continuous isomorphism Ry —— P(Up)
over the space of parameters X.

As suggested by the previous remark, the basic idea behind variable cat-
egoricity is that the strong requirement that the isomorphisms must also be
continuously parametrized with the models tends to “break up” accidental
or arbitrary choices of maps, and restrict to those that are somehow intrin-
sic to, or canonically associated with, the structure at issue. The following
notion provides another, rather different, way of restricting the possible iso-
morphisms, namely by requiring them to be definable or provable.

3.3 Provable categoricity

We want to formulate the idea that the connecting isomorphism between
any two models of a categorical theory is definable from the language of the
theory, and is provably an isomorphism from the axioms of the theory.'? To
specify this notion, suppose our theory T is of the form:

U, f:T(U), o(U, f)

where U is a basic type symbol, f a basic constant symbol of type T'(U),
and (U, f) a sentence in the language U, f and higher-order logic. Here we
display U in the type symbol 7'(U) to remind ourselves that the type of f
may contain U as a parameter, e.g. if f represents a binary operation on U,
then T'(U) is U x U — U. Similarly, the axiom «(U, f) likely contains the
basic language U, f.

Now consider the new theory T2, which is essentially two copies of T
written side-by-side. It has:

e basic types: Uy, U,

e basic terms: f; : T'(Uy), fo:T(Us)
12Cf. (Tarski 1983), p. 310.
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e axioms: aq(Uy, f1), az2(Us, f2)

where T'(Uy) is built from Uy in the same way that T'(U) was built from U,
eg.if f: U XU — U, then f; : Uy x Uy — Uy, and similarly for T'(Uz). The
axioms are similarly just the axiom « of T with the respective substitutions
of (Uy, f1) and (Usy, fo) for (U, f).

Observe that a model of T? is just a pair of models of T,

Mod(T?) = Mod(T) x Mod(T).
Definition 6. T is called provably categorical if:
T2+ 3k : U, — Uy “h is a T-model isomorphism”

where the formula “h is a T-model isomorphism” is to be spelled out in
higher-order logic in the obvious way.

The idea behind provable categoricity is that the theory T has enough
“logical strength” on its own to ensure that any two T-models are isomor-
phic. This notion is plainly dependent on the logical consequence rela-
tion represented by . Here we are assuming the classical, syntactic conse-
quence relation in higher-order logic (as given in the Appendix). A different
(weaker) notion results if we take instead e.g. semantic consequence for clas-
sical Set-valued semantics. That notion is clearly equivalent to conventional
categoricity. Of course, any theory that is provably categorical is also cate-
gorical.

A stronger condition will result from a weaker notion of logical conse-
quence . For example, using intuitionistic provability instead of classical by
omitting the law of excluded middle makes it more difficult for a theory to
be provably categorical. It is not hard to make up theories that are provably
categorical classically, but not so intuitionistically.

The familiar theories of natural and real numbers are provably categori-
cal (even intuitionistically). The contrived theory T which depends on the
continuum hypothesis is evidently not (else one could prove CH in higher-
order logic).

As these remarks make clear, there is a connection between provable
categoricity and semantic considerations like completeness. Indeed the com-
pleteness of the higher-order deductive consequence relation with respect to
topological semantics is used in the proof of the following:

Theorem 7. A theory is provably categorical if and only if it is variably
categorical.
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The even stronger notion of intuitionistically provable categoricity men-
tioned above is equivalent to a certain semantic notion that is phrased in
terms of arbitrary toposes, but we have chosen not to go into that here.

3.4 Universality

Category theory provides a notion of “unique specification” that is related
to categoricity in an interesting way, which remains to be clarified. Although
this is not the place for a thorough discussion, it seems at least worth men-
tioning the basic connection and a couple of examples.

The basic concept we have in mind is that of a universal mapping prop-
erty, which can be used to characterize a particular mathematical structure.
The connection with the present topic results from the fact that universal
mapping properties are unique characterizations up to isomorphism; any two
structures that satisfy a universal mapping property are necessarily isomor-
phic. Indeed, such structures are uniquely isomorphic; so universal mapping
properties may be compared with uniquely categorical theories.

The two notions do not seem to be equivalent, however. While some
concepts can be formulated both in terms of a categorical, axiomatic theory
and a universal mapping property, some concepts seem to be given most
naturally in one way or the other, as the following examples illustrate.

Framples. 1. The natural numbers are characterized by the universal
mapping property called “natural numbers object”, due to Lawvere
(Lawvere 1969). In any category with a terminal object 1, consider
arbitrary structures of the form:

v gt Ly

(no conditions on f). A natural numbers object is a universal structure
of this type. That is, one (N, o0, s) such that given any such (U, a, f)
there is a unique homomorphism A : (N, o0,s) = (U, a, f), i.e. a map
h : N — U such that ho = a and hs = fh, as indicated in the

commutative diagram below.

(o] S

1 N N
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This characterization is equivalent to the familiar Peano axioms when
both are interpreted in categories like Sets. It is worth mentioning
that it also applies in much more general categories than Sets, where
the Peano axioms cannot be interpreted.

2. A notion that can be given by a universal mapping property, but not
by any familiar axioms, is that of the free group on a set of generators.
Consider the case of two generators: the free group F(z,y) on the
elements z,y has the property that for any group G and elements
g,9' € G, there is a unique homomorphism h : F(z,y) — G with
h(z) = g and h(y) = ¢’. The concept of a polynomial ring is defined
by a similar universal mapping property.

3. The real numbers R provide an example of a structure characterized by
a (uniquely) categorical theory that is not determined by any known
universal mapping property.

Of course, it may well be that one can find higher-order axioms for free
groups, polynomial rings, etc., or even for any particular universal mapping
property. Conversely, the real numbers can perhaps be characterized by a
suitable universal mapping property.'> We don’t know whether either of
these is the case, but simply mention the connection between categoricity
and universality as a direction for possible further research. Indeed, this line
of thought seems to be quite closely related to Carnap’s work on extremal
axioms and Hilbert’s Axiom of Line Completeness, mentioned in Part I,
Section 3.2.

Appendix: Deduction for higher-order logic

The deductive consequence relation ¢ = 1) between formulas is specified by a
deductive calculus in the usual way. The following rules of inference could be
reduced considerably by defining some logical operations in terms of others.
See (Lambek and Scott 1986) for some alternatives.

1. Order

(a) k¢
(b) oy and ¥ F 9 implies @9
() pF v implies g[r/a]F ¥[r/a]

133ee (Pavlovic and Pratt 1999), (Escardo and Simpson 2001) for some recent attempts.
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[\

4.

. Fquality

(a)
(b) =71t g[r/z] = o[r' /2]

(c) k=1 and 91 = ¢ implies IF =1
(d) Vz.(a(z) =B(z)) Fa=p
Products

(@) THE(pim,por) =17

(b) TEpi(r,m)=m, t=1,2
Fzrponents

() TH(Az.m)(z)=1

(b) THAz.a(z) =a (z not free in )

. Elementary logic

(a) LFg

(b) pET

() et

(d) dF—¢ iff dApkL

(e) YFpand It iff dIF@AY

(f) d9very iff dF¢ and k9

(g) INpkFy iff dFg=19

(h) 9F p(z) iff IFVze(z) (2 notfree in o)
(i) Jze(z) 9 iff @(z)F9 (z not free in V)

The 7’s are any terms; ¢, 1, ¥ are any formulas; «, 3 are any terms of the
same exponential type. Substitution ¢[r/y] must include a convention to
avoid binding free variables in 7. The type P(X) and the associated terms
7 € a and {z : X|p} are treated as alternate notation for X — P, a(1),
and Az : X.p, respectively.
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