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ABSTRACT 

 

In drinking water treatment, there is growing interest in the application 

of natural cationic polymers that provide an alternate means to achieve enhanced 

coagulation. A review of the relevant literature concerning the coagulation 

mechanisms and action of polymer is presented with particular reference to the 

polymer character, such as polymer type, charge density and molecular weight. In 

addition, basic knowledge of a novel coagulant, a tannin-based modified polymer, 

is described. 

 

A full characterization of the tannin-based polymer (TBP) has been 

undertaken to provide an unambiguous description of the polymer, or monomer, 

structure. Some specialised newer analytical techniques in combination with 

several old classical techniques for polymer examination have been used to 

determine the chemical nature of the TBP, including its dissociation and 

precipitation behaviour, molecular weight, charge density, charge variability with 

pH, elemental content, functional group and chemical bonding, etc. The overall 

assessment of TBP indicated that it can be classified as a medium molecular 

weight polymer with a non-quaternized amine group and a charge density that 

varies with pH and time. 

 

The fundamental coagulation mechanisms and stoichiometry of 

suspended solid/dissolved organic matter with TBP have been investigated 

through laboratory experiments. Suspensions of kaolin clay and humic acid have 

been flocculated in a Gator jar using TBP as a sole primary coagulant. Using 

online analysis by Photometric Dispersion Analyzer (PDA), the relative floc size 

was indicated by a Flocculation Index (FI) during the coagulation process and the 

optimal concentration of coagulants was determined in overall terms by NPDOC, 

turbidity, colour, UV/Vis absorbance and Floc volume. Under given conditions 

the optimum dose of TBP corresponded to that required for maximum a 
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Flocculation Index (FI). The optimum dose of TBP was found to depend on the 

charge density of TBP and hence on the pH values of the solution. At neutral and 

acid condition, quantitative evidence of a stoichiometric relationship between 

TBP dosages with the concentrations of model impurity was illustrated. 

Complicating effects were present at higher pH values. The coagulation 

behaviour of TBP was generally in agreement with the coagulation mechanisms 

widely observed, and typical, of cationic polymers. It was evident that the 

coagulation performance and kinetics of TBP was also influenced by other factors, 

such as the velocity gradient, ageing of polyelectrolyte and reactor design. For 

comparative purposes, alum and a commonly used synthetic cationic polymer 

(polyDADMAC) were also assessed in this study as coagulants.  

 

The potential benefits to improving coagulation performance through the 

combination of TBP with alum as a dual primary coagulant have been 

investigated. Coagulation experiments using different model waters were carried 

out under conditions designed to optimize the maximization of flocculation. A 

full matrix of coagulation tests demonstrated that a unique optimal dosage of 

combined alum and cationic TBP exists at a given pH and component 

concentration. In this case, a significant reduction of alum with an improvement 

of coagulation efficiency was achieved. An approach to minimize the residual 

soluble TBP in treated waters and increase the floc settling by attaching the TBP 

to an inert solid (fine sand) has been attempted. The coagulation performance 

using this particle suspension (‘solid bound TBP’) as coagulant was found to be 

inferior with a high shear rate in accordance with the floc strength interpretations 

of TBP. Additional tests with raw waters were carried out to confirm the validity 

of the findings from the model water experiments using TBP and the alum/TBP 

combinations as primary coagulants.  

 

In the light of these studies, the relative importance of TBP’s chemical 

properties, especially molecular weight, charge density and solubility, as crucial 
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parameters of coagulation mechanism is discussed. Furthermore, approaches to 

improve flocculation performance with either partial replacement of inorganic 

coagulant or the combination with microsand are suggested and analysed. 
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LIST OF PRINCIPAL SYMBOLS AND ABBREVIATIONS 

 

A               Titrant volume for sample 
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g                Gram 
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m               Metre 
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mV              Millivolt 
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mg              Milligram 
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1. OVERVIEW 

 

Water production normally involves physicochemical procedures, which 

include processes such as the coagulation and flocculation of suspended solids 

and colloids, the adsorption of soluble materials on solid substrates and 

ion-exchange resins, oxidation to destroy organic impurities and membrane 

technologies (1). The primary method for the coagulation/flocculation of 

suspension particles and dissolved organic matter is commonly carried out with a 

metal salt such as alum (aluminium sulphate), or a synthetic polymer such as 

polyDADMAC, and much has already been done in water and wastewater 

treatment to optimize this process. 

 

Employing hydrolysable metal salts (aluminium or iron salts) for 

coagulation is a long-standing technology, because the high valency metal ions 

undergoing hydrolysis reactions in aqueous solution have a higher positive charge 

that interacts specifically with negative colloids (clay particles and natural 

organic materials) and neutralize their charge, giving destabilization and 

coagulation. In most practical water treatment operations, metal coagulants are 

added at high dosages and extensive precipitation occurs. The enmeshment of 

particles by the precipitate is generally thought of as “sweep coagulation”. 

However, this method of coagulation produces large amounts of sludge (2). 

Organic polymers can be used as primary coagulants in the more traditional 

flocculation step of binding already formed small flocs into larger and stronger 

flocs which can tolerate the high shear forces encountered in the filtration stages 

(3). The larger particles formed in this way also give accelerated rates of 

sedimentation because the volume of sludge produced is more than halved (1). 

However, the long-term effects of these polymers on human health are not well 

understood (4). 

 

In water treatment, cationic polymers and inorganic metal salts appear to 
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have complementary roles as coagulants (5). The combined use of hydrolysable 

metal salts (aluminium or iron salts) with polyelectrolytes is intended to 

maximize the benefits of both coagulants through the reduction of the inorganic 

coagulant dosage and the production of larger and stronger flocs. The increased 

use of synthetic cationic polymers (polyamine and polyDADMAC) as 

coagulation aids has led to a few studies (6, 7) on the effectiveness of dual 

coagulants. However, there is relatively little published information on 

coagulation performance using optimal combinations of metal salts with natural 

polymers in water treatment, or further on the relationship between the character 

of natural polymers and treatment effectiveness. Thus, there is much opportunity 

for improved dual coagulants that are tailor made for particular processes. 

 

To date, the use of natural tannin-based polymers (TBP) as coagulants in 

water and wastewater treatment is assumed to be commercially attractive; taking 

into account their proven low cost and basic information of their chemistry 

properties from their modification process, which includes Mannich reaction and 

polymerization (8). However, adequate investigation has not yet been undertaken 

on the characterization of TBP. As a result of the incomplete understanding of the 

chemical structure and functional group of this polymer, classic coagulation 

theories may not allow prediction of the mechanism and behaviour of the TBP in 

either model water or raw water, hence failure to achieving improved flocculation 

performance.   

 

The emphasis here is on the application of a soluble tannin-based polymer 

in coagulation/flocculation processes, which are followed by a separation step in 

the form of sedimentation or flotation, with a final polishing by filtration. Due to 

a lack of available information, the characterization of the modified tannin 

polymer has to be assessed. The originality of this thesis is to design a broad 

scheme for undertaking a full characterization of TBP by qualitative or/and 

quantitative analysis using some modern analytical techniques and older classical 
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techniques, hence providing an unambiguous description of the polymer, 

monomer, structure and other chemical properties. 

 

The other ambition in this research is to evaluate the coagulation 

performance of the TBP based on clearly unveiling the relationship between the 

chemical properties and coagulation mechanisms of the TBP. This should yield a 

much clearer understanding of the reaction action between this polymer and the 

particle suspensions or/and dissolved organic matter during the water treatment 

process. When the TBP is used as a primary coagulant to partially replace alum, it 

is desirable to be able to determine a unique optimal dosage combination of the 

metal salt and the polymer. But, achieving improved performance with the 

reduced alum dosage and a low concentration of the residual tannin in final water 

is a challenge in its practical application.   

In summary, this study has attempted, through laboratory investigations, 

to provide the basic chemistry properties of the TBP, to evaluate their relative 

contribution to the various coagulation mechanisms and to improve its 

coagulation performance in model water and surface real water. 
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2. INTRODUCTION 

 

2.1 Introduction 

 

In water purification and wastewater treatment, coagulation/flocculation is 

the most conventional technique in conjunction with sedimentation and filtration 

to remove dissolved organic matter (DOM) and suspended particles. The primary 

method for making colloids aggregate, coagulation, is normally carried out with 

metal salts such as aluminum and iron salts, and much has already been done to 

optimize this process. The interest in the use of polymers to partially or 

completely replace inorganic coagulants as primary coagulants in water industry 

arises from the significant inherent advantages of polymers. This is mainly based 

on their high treatment efficiency, small coagulant dosage requirements, the 

reduced voluminous sludge, facilitation of filtration, and reduced level of 

aluminum in treated water (1, 9). In colloid chemistry, it is common to restrict the 

term ‘coagulation’ to cases where the aggregates tend to be small and dense; 

‘flocculation’ is then restricted to the cases where aggregates tend to be larger and 

more open in structure. However, in the water industry, ‘coagulation’ is used to 

describe the chemical destabilizing process instigated by the addition of some 

reagent to the colloidal system, whilst ‘flocculation’ describes the process 

whereby the destabilized particles join together to form large agglomerates (10).  

 

Polymers are broadly divided into three categories based on their ionic 

nature: cationic, anionic and non-ionic. Principally cationic polymers are used as 

primary coagulants for water treatment; anionic and nonionic polymers have 

gained wide acceptance as flocculant aids. The water-soluble polymers with 

many repeating units (or monomers), usually referred to as polyelectrolytes, are 

either synthetic organic compounds, meaning man-made and starting from small 

molecules, or natural organic materials as original extracts from certain plants or 

animal life, or as modified derivatives by subsequent reactions. 
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It is well documented that both natural and synthetic cationic polymers 

can be used as primary coagulants in water treatment (3, 11). A number of 

published studies on the chemical characterization, coagulation mechanism and 

flocculation performance of synthetic cationic polyelectrolytes for water 

treatment have been carried out over the years. However, health and 

environmental issues of synthetic polymers still require attention (4). Possible 

negative consequences could arise from the reaction of synthetic polymers with 

other water treatment chemicals such as chlorine for example, increasing the level 

of disinfection by-products (1). In marked contrast, although some investigations 

related to the coagulation kinetics of natural polymers in model water and the use 

of natural polymers in the wastewater industry have been carried out, very little is 

currently clearly known of the fundamental mechanism of natural polymers in the 

coagulation process and their application in drinking water treatment. The focus 

in this review is on the use of cationic polyelectrolytes in the coagulation and 

flocculation processes. Most of classic coagulation theories are found from the 

studies of synthetic polyelectrolytes as coagulants. These theories provide a 

reference for the mechanisms of coagulation with the tannin-based polymer in 

later research. 

 

2.2 Characterisation of Cationic Polymer as Coagulant 

 

Knowledge about a polymer’s molecular weight and charge density, the 

chemical structure of the monomer, and the active groups in the product would be 

a significant step toward developing a scientific method for polymer selection in 

water treatment. However, the chemistry of cationic polymers is more complex 

than that of anionic species, because there are more variable reactions for the 

preparation of cationic polymers, which involve free-radical addition 

polymerization, epoxide addition reaction, condensation reaction, and a variety of 

reactions on existing polymer backbones, including Mannich reactions, Hofman 

degradations and nucleophilic displacements (12). Cationic polymers, as 
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coagulants in water treatment, must be water soluble and can vary in structure 

(linear versus branched), composition, molecular weight and amount of charge.  

 

2.2.1 Molecular Weight and Charge Density of Cationic Polymer 

 

A polymer’s molecular weight (MW) and charge density (CD) are the 

crucial parameters governing its coagulation performance. Both of these 

properties can be quantified and are believed to readily relate with the two 

well-known coagulation mechanisms, charge neutralisation and polymer bridging. 

Both of these will be discussed later. 

 

The molecular weight of the polymer ranges from a few thousands to 

millions of grams per mole. It is widely understood that if the polymer molecular 

weight is sufficient, the “polymer bridging” model should apply during the 

flocculation process (12). By virtue of their different uses, polymers can be 

conveniently divided into three classes: low (<105), medium (105-106) and high 

molecular weight (>106) (12). It has previously been stated that polymers in 

aqueous solution always present a random coil configuration. Generally, for 

polymers, the size of the coil is nearly proportional to the square root of the MW 

(13). The molecular weight is considered to be closely associated with 

rheological, osmotic, and light scattering properties by some straightforward 

equations (14). Both light scattering and viscosity are most commonly used to 

determine the molecular weight based on measuring the intensity of scattering 

light and intrinsic viscosity of polymers in solution. However, unlike small 

molecules, the molecular weight of a polymer is not unique. Rather, a given 

polymer will have a distribution of molecular weights. The MW distribution will 

depend on the way that the polymer is produced. It is more proper to use the term 

“average molecular weight” to indicate the polymer mass. Dentel et al.(15) cited 

a simple viscosimetric method to determine the average molecular weight of 

acrylamide-based polymers for water treatment. Light-scattering technology has 
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been also undertaken by Ghosh et al. (16) to measure the average molecular 

weight of various commercial polymers used as flocculants. 

 

The charge density of a polyelectrolyte is another important polymer 

property, and should be indicative of the amount of polymer charge available to 

affect particle destabilization via the “charge neutralisation” mechanism, hence 

greatly influencing the effectiveness of the coagulant. The charge density of the 

polymer is dependent upon the degree of ionization of the functional groups, the 

degree of copolymerization and the amount of substituted groups in the polymer 

structure (17). It is usually found that the polymer coil can be significantly 

expanded for polymers with high CD values, due to the appreciable repulsion 

between polymer segments. The CD of a polymer in solution can be determined 

by a procedure known as colloid titration (18), which has been presented in a 

procedure manual (15). Charge density can be expressed in terms of 

milliequivalents per gram (meq g-1) if the homogeneous segments of polymers are 

strongly ionic and fully charged. However, for a copolymer of non-ionic and 

cationic monomeric species, the charge density is commonly expressed as mole 

per cent of charge groups. In this case, polyelectrolytes can be regarded as having, 

low, medium or high CD values, corresponding to the mol% of ionic groups 

around: 10%, 25%, and 50-100%, respectively (19). The charge density of some 

cationic polyelectrolytes has been determined and summarized in Table 2.1.  
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TABLE 2.1 Charge density of some cationic polyelectrolytes (after Bolto and 

Gregory (19))  

Polymer Molecular 

formula 

CD 

( mol%) 

CD 

( meq g
-1
) 

PDADMAC 

Poly (Diallyldimethyl 

ammonium Chloride) 

C8H16N Cl 100 6.2 

ECH/DMA 

(Epichlorohydrin/Dimethylamine)
C5H12ON Cl 100 7.3 

CPAM 

(cationic polyacrylamide) 
C8H16O2N Cl 100 5.2 

CPAM 
(C8H16O2NCl)0.5 

(C3H5ON)0.5 
50 3.8 

CPAM 
(C8H16O2NCl)0.25 

(C3H5ON)0.75 
25 2.5 

CPAM 
(C8H16O2NCl)0.1 

(C3H5ON)0.9 
10 1.2 

Chitosan C6H11O4N·HCl 100 5.2 

 

 

 

 

 

 

 



 33 

2.2.2 Types and Structure of Cationic Polymer 

 

2.2.2.1 Synthetic Polymer 

 

There are typically two routes for the synthesis of cationic polymers, in 

water treatment practice, by homopolymerization with a single repeating cationic 

unit, and by copolymerization with a proportion of non-ionic and cationic 

monomers. In general, the most prominent of synthetic cationic polymers 

available for water treatment contains quaternary ammonium groups that have a 

formal positive charge irrespective of pH (19). However, there have also been 

commercial polyelectrolytes which consist of polyamines containing primary, 

secondary or tertiary amino groups, or mixtures of them. The charge density of 

these non-quaternary amine groups varies with pH values of solution (20). Table 

2.2 details these different forms of polymers (21). The properties of polymers are 

obviously affected by their synthesis processes. For example, in the preparation 

of polyacrylamide, heterogeneous polymers are typically formed by 

co-polymerizing nonionic acrylamide with a particular cationic monomer, giving 

cationic polymers of high molecular weight (105-107 g mol-1). However, the 

nonionic polyacrylamide can be post-reacted with formaldehyde and 

dimethylamine, a secondary amine, to give the aminomethylated polyacrylamide 

as a flocculant via the Mannich reaction (22). In this case, the corresponding 

unquaternized amine is only cationic at low or moderate pH values due to its 

deprotonation at increasing pH. The preparation of cationic polyamine has been 

thoroughly reviewed by Chio et al. (23). They found that the reaction of 

epichlorohydrin with a secondary amine such as dimethylamine produces either 

linear polyamine or branched polyamine with a modifier. The synthesis process is 

shown in Figure 2.1. 

 

In general, quaternary ammonium polymers have a widely commercial 

application as flocculants, in the protonated form after the quaternization of 

tertiary nitrogen. Polyamine, polyacrylamide and polyDADMAC are commonly 
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used as primary coagulants in the total/partial replacement of conventional 

inorganic coagulants such as FeCl3 and Al2 (SO4)3 (24). Mangravite (25) stated 

that both polyDADMAC and polyamine which contain quarternary amine groups 

are pH-independent in their charge density. Mangravite also found that the typical 

polymer dose of primary coagulants for most applications is 0.5 to 10 mg l-1 and 

0.1 to 1.0 mg l-1 when applied as coagulant aids. In the UK, polyamines are more 

frequently used in potable water treatment than poly DADMAC (19). 

 

 

 

Figure 2.1 The synthesis of (a) linear polyamine and (b) branched polyamine 

(after Choi et al. (23)) 
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TABLE 2.2 Nature and examples of typical cationic polymers (after Graham (21)) 

Structure Type    Functional Group       Example              CD 

1. Tertiary Amine                       

           

N

H

R 2

R 1

n

 

C H
2

C H
2

N H
2

n

 

P o l y e t h y l e n e  i m i n e

V a r i a b l e  w i t h  p H

+
+

 

2. Quaternary Amine  

          

N

R 3

R 2

R 1

n

 

N

C H
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C H
2

C CC H
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C H
2

H

C H
3

C H
3

H

n

 

P o l y d i a l l y l d i m e t h y l - a m m o n i u m

c h l o r i d e  ( P o l y D A D M A C )
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+

6 .2 m e q /g

 

3. Co-Polymerized Acrylamide/Cationic Monomer 
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H
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C H
3
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+
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2 .8
C o p o lym e r  o f a c ry la m id e  a n d  d im e th y la m in o e th y l
 a c ry la te  w i th  3 0  m o l%  o f  th e  c a tio n ic  c o m p o n e n e t m e q /g

 

R1, R2, R3 — Organic groups 
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2.2.2.2 Natural Polymer 

 

There are several natural cationic polymers, which can either be extracted 

from certain kinds of plants and animals and have inherent cationic properties, or 

can be modified to yield cationic polyelectrolytes. Since natural polymers are 

potentially low cost and believed to be biodegradable and non-toxic, they are 

workable alternatives to synthetic polyelectrolytes in water and wastewater 

treatment (26). The most prominent of them is chitosan, a high molecular-weight 

linear cationic polymer with a MW value of up to 106 g mol-1. The 

physico-chemical properties of chitosan are related to the presence of amine 

functions (acid-base properties and cationicity) which make chitosan very 

efficient for interacting with anionic elements in acidic solutions (4).  

 

Chitosan is a deacetylated chitin which is considered as a 1:4 random 

copolymer of N-acetyl-α-D-glucosamine and α-D-glucosamine (27). Chitin with 

a deacetylation degree (DD) more than 50% is usually referred as chitosan. 

Figure 2.2 shows the composition and structure of chitosan. The molecular 

weight of chitosan samples is correlated with the preparative condition adopted. 

Table 2.3 shows the properties of chitosan samples after deacetylation (28). An 

important feature of chitosan is that the charge density and solubility of this 

material are pH-dependent. For chitosan with a degree of deacetylation above 

70%, the dissociation constant pKa can be approximately fixed to 6.3-6.4. Hence, 

at pH of below 5, most of the amine groups are protonated, therefore having 

increased charge density and can more easily attract particle anions (29). At pH6, 

the charge density of chitosan is found to be about 4.5 meq g-1 (30). 

 

Very good coagulation effectiveness of chitosan for high-alkalinity water 

at high turbidity was reported by Kawamura (3). Bolto et al. (31) also found that 

it is quite effective at natural organic matter (NOM) removal using chitosan as a 

coagulant, even though it would be slightly charged (17 mol %) at neutral pH 
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levels. In this case, Bolto believed that hydrogen bonding is dominant through the 

free amino groups on the polymer and hydroxyl groups on the NOM. Divakaran 

and Pillai (32) have studied the mechanism of kaolinite and titanium dioxide 

flocculation using chitosan, and observed that chitosan solution started to 

precipitate at pH values close to neutral. 

O

O

NH
2

OH
O

O

NH
2

OH

CH OH
2

CH OH
2

n

 

 

Figure 2.2 Basic structure of chitosan (DD 100%, after Bolto and Gregory (19)) 

 

TABLE 2.3 Characteristics of chitosan after deacetylation (after Huang et al. (28)) 

Sample No. Concentration of NaOH (%) Reaction  time (min) DD (%) MW (106) 

1 45 20 48 -- 

2 45 60 68 1.7 

3 45 120 73 1.6 

4 45 300 77 1.6 

5 45 720 78 1.7 

6 60 300 86 4.7 

* DD—Deacetylation Degree 

 

Natural starch is composed of α-D-glucose units. Cationic starch derivates 

with potential use as flocculants in wastewater treatment are made from the 

primary OH group in alkali treated starch with N-(3-chloro-2-hydroxypropyl) 

trimethylammonium chloride to form the polymer, where the cationic site is 

attached via an ether link to the polymer chain (19). It has reported that starch 

derivate has a medium MW and the CD can be low or medium (1). There are two 

other routes to modify starch, which are the copolymerization of starch with 
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either 2-hydroxy-3-methacryloyloxypropyltrimethylammonium chloride or the 

mixture of acrylamide and the nitric acid salt of dimethylaminoethyl methacrylate 

(DMAEMA·HNO3) (33), but whose products have seen limited use for water 

treatment, probably because of economic reasons(12). Cationically modified 

starch has been tested for clarifying particles (34). In the majority of systems the 

degrees of substitution (DS) for cationic starches are very low (< 0.1), and the 

aggregation of solid particles with cationic starches is believed to be a result of 

polymer adsorption (35). Sableviciene et al. (36) have concluded that the 

flocculation efficiency of cationic starch derivatives was dependent on the amino 

group types and followed the order: quarternary > tertiary > secondary > primary. 

Further observation has found that the flocculation efficiency increased on 

increasing the nitrogen content and decreasing the molecular weight of cationic 

starches. 

 

Other natural polymers with cationic charge have also been studied in 

wastewater treatment. These include the modified natural polysaccharides, for 

example, grafting synthetic polymers onto amylopectin, guar gum and glycogen 

(37), and the modified lignin based polymer prepared by the Mannich reaction 

(38). The aqueous extract from macerated seeds of the horseradish tree Moringa 

oleifera has proved to be effective at removing suspended materials and generate 

reduced sludge volumes in comparison to alum (39). However, all of these 

technologies have not yet been adopted on treatment plants for sustained use. 

 

2.3 Coagulation Action of Cationic Polymer 

 

In addition to a fundamental understanding of the chemical properties of 

cationic polymers as coagulants, the other key factor to optimizing the 

coagulation and flocculation process is an understanding of how the individual 

colloids interact with each other, along with the coagulants. Therefore, in this 

section, the aspects of colloidal stability and destabilization, and coagulation 
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mechanisms of cationic polymers are reviewed. 

 

2.3.1 Colloid Stability 

 

The small turbidity particles in the size range from 0.01 to 5 microns 

present the real challenge to settle or filter since their stability or resistance to 

coagulation is quite strong (1). The charge carried by these colloidal particles, 

which are always anionic at the natural water pH, causes adjacent particles to 

repel each other and prevents effective agglomeration and flocculation. As a 

result, charged colloids tend to remain discrete and dispersed in suspension. 

According to the classic DLVO Theory (40, 41), the stability of colloidal particles 

is dominated by the balance between two opposing forces: electrostatic repulsion 

and van der Waals attraction when particles approach each other. The DLVO 

theory quantifies particle stability in terms of energy change when particles 

approach one other. The net interaction energy is determined by the summation of 

the van der Waals attraction and the electrostatic repulsion energies in terms of 

interparticle distance, and is shown in Figure 2.3. In order for aggregation to 

occur, two particles on a collision course must have sufficient kinetic energy (due 

to their speed and mass) to overcome the energy barrier.  

 

Figure 2.3 The net interaction energy curve (after Ravina (42)) 
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For really effective coagulation, the energy barrier can be lowered or 

completely removed by either increasing the ionic strength, which compresses the 

double layer of particles, or reducing the surface charge of the particles hence 

reducing the repulsive energy. The destabilization and stabilization of negative 

particles by cationic polymers occur when the electrophoretic mobility of 

particles at the optimum flocculant concentration is close to zero (43). Therefore, 

the energy barrier is lowered to the point where the particle velocity from mixing 

allows the colloids to overwhelm it. 

 

2.3.2 Coagulation Mechanisms of Cationic Polymer  

 

The removal of colloidal and dissolved impurities during water treatment 

involves interacting with impurities and forming a stabilized dispersion. Bolto (1) 

stated that for the adsorption of polymers on the particle surface there must be 

some favourable interactions between the polymer segments and the particle 

surface. If the particles and the polymer have opposite charge, i.e., negative 

colloidal particles and a cationic polymer, then strong interaction and complete 

adsorption of the polymer will occur as a result of an electrostatic interaction. 

However, if the particles and polymer are of the same charge or if the polymer is 

non-ionic then there needs to be some specific interactions responsible for 

binding of polymer segments to the particle surfaces. These interactions can 

include hydrophobic bonding, hydrogen bonding or as a result of dipole crystal 

field effects.  

 

Cationic polymers have been widely reported as significantly influencing 

the aggregation of anionic suspensions. Three principal mechanisms of cationic 

polymer-induced colloidal aggregation have been proposed: charge neutralization, 

polymer bridging and depletion flocculation. In comparison with polymer 

bridging and charge neutralization, which depend on the adsorption of polymer 

on particle surfaces, depletion flocculation occurs in systems where the polymer 
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has a very low adsorption affinity and a fairly high concentration. Due to the high 

operating and capital costs, depletion flocculation is not recommended in water 

treatment practice (12) and will not be considered here. However, in very many 

practical cases, it is generally difficult to distinguish between charge 

neutralization and polymer bridging, particularly, in a system containing colloids 

and cationic polyelectrolytes with high MW, where both mechanisms may lead to 

destabilization (19).  

 

2.3.2.1 Charge Neutralization 

 

Charge neutralization by the adsorption of the destabilizing chemical to 

the colloid is a key mechanism for optimizing removal of suspension particles 

from water. Inorganic coagulants (such as alum) and cationic polymers often 

work through charge neutralization due to the negative charge of impurity 

particles in natural water. Gregory (45) found that cationic polymers always 

interact strongly with surfaces of negative charge and are quantitatively adsorbed. 

From the results of coagulation for aqueous silica suspension, he has indicated 

that the destabilization and restabilization of negative particles by cationic 

polymers of moderate molecular weight occurred primarily by charge 

neutralisation and charge reversal (43). There is the possibility that flocculation 

could occur as a result of the reduced surface charge of the particles and hence a 

decreased electrical repulsion between them. Thus, it is practical to lower the 

DLVO energy barrier and form flocs (46). Gregory’s findings have been 

supported by the results of Zhang et al (47). They reported that rapid aggregation 

of hematite particles induced by polyacrylic acid (PAA) occurred only in the 

particle region with low surface charge. In other studies (43), polyelectrolytes 

with high CD have been found to be more effective for charge neutralisation due 

to more charge delivered to the particle surfaces. It is believed that a 

stoichiometry exists between the dose of the coagulant and the surface area of the 

colloidal phase where charge neutralisation is the dominant aggregation 
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mechanism (48). Nevertheless, restabilization of particles can occur by 

overdosing the cationic polymer. In this case, the charge of colloid changes from 

negative to positive. The stoichiometric relationship between an optimal polymer 

dose and a solid concentration has been studied by determining the amount of 

opposite charge needed to neutralize the negative charge of particles. For design 

purposes, in order to estimate the optimum polymer dosage, different techniques 

have been undertaken to measure the surface potential and charge of particles, 

which include the measurement of zeta potential (or electrophoretic mobility) 

(46), colloid titration (18) and streaming current (49) techniques. Recently, an 

on-line photometric dispersion analysis technique has been developed and used 

successfully for sensitive monitoring of the state of aggregation (50). A brief 

description, application and comparison of each method are discussed later in 

Section 2.4.4. 

 

The concept of “electrostatic patch” was first introduced by Gregory (51) 

for the coagulation of low charge density latex particles by polyelectrolytes with 

high charge density. In his later study on the flocculation of clay with cationic 

polymers, Gregory (52) stated that the positively charged adsorbed species might 

form small positively charged patches on the negatively charged surfaces of the 

particle. As a result, attractive forces could develop between positive patches and 

oppositely charged surface areas as particles collide during coagulation. In the 

electrostatic patch model, it is assumed that the cationic polymer has a high 

charge density and the particles have a relatively low surface charge density. Even 

though the polymer adsorbs where there are domains of opposite charge, there are 

still areas of negative charge on the surface of the particles as well as excess 

positive charge on the polymer. The simple reason for this is that the average 

distance between charged polymer segments is smaller than that between surface 

sites of particles. The “patchwise” model is shown schematically in Fig. 2.4.  
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Figure 2.4 “Electrostatic patch” model for flocculation of negative particles by 

cationic polyelectrolytes (after Bolto and Gregory, (19)) 

 

For application in practice, the effectiveness of “electrostatic patch” 

mechanism probably depends on the ability of the polymer to form an uneven 

charge distribution on the surface of the particle. Ghosh (16) believed that for a 

given mass dosage of a polymer, the number of macromolecules adsorbed per 

colloid was lower for a high MW polymer than for a low MW polymer, therefore, 

the high MW polymer would form a more uneven charge distribution, 

encouraging better flocculation. Kozlova and Santore (53) using cationic 

polyDMAEMA of low MW (around 31,000), with silica particles, proved that 

only a few patches might be involved in the attachment of individual particles 

from adsorption experiments.  

 

2.3.2.2 Polymer Bridging  

 

“Polymer bridging” in flocculation by polyelectrolytes describes the 

destabilization mechanism by which the molecules of the added polymer attach 

onto two or more particles, causing aggregation. This concept was first proposed 

by Ruehrwein and Ward (54) from an experiment on the formation of clay 

aggregate. Graham (21) speculated the process of polymer bridging as follows: as 

a long-chain polymer comes into contact with a colloidal particle, some of its 

active groups adsorb onto the particle surface, while the rest of the segment of the 
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macromolecule stretches out from the surface into the solution phase as “loops” 

and “tails”. The widely accepted model of an adsorbed polymer chain is shown in 

Figure 2.5. If a second particle with vacant adsorption sites comes into contact 

with these extended segments a particle-polymer-particle arrangement may occur 

with the polymer acting as a bridge. In order for the bridging to work, the 

distance between the particles must be small enough for the loops and tails to 

connect two particles together (20). 

 

 

Figure 2.5 Model of an adsorbed polymer chain (after Bolto and Gregory (19)) 

 

It is generally found (55) that polymer bridging is favoured when linear 

chain polymers of high MW (up to several million), which do not have a high 

level of charge, are used in the flocculation process. Bolto and Gregory (19) 

reported that some degree of charge is beneficial since repulsion between charged 

segments gives expansion of the chain, thus enhancing the bridging effect. In 

contrast, the situation becomes more complex in the systems containing colloids 

and polyelectrolytes of highly opposite charge. In some studies (56), electron 

paramagnetic resonance has been applied to high cationic polymer-clay particle 

systems to determine the polyelectrolyte configuration on colloidal surfaces. It 

was found that segments of polymer adsorbed primarily in trains, rather than in 

the loop configuration. However, it is impossible for particle attachment to occur 

without a sufficient number of loops extending into the solution phase so that 

encounters with other particles can take place, based on polymer bridging. In this 

case, the positive polymer is assumed to be a flat configuration on the colloidal 
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surface, rather than a configuration with many segments extending into the 

solution. It can be well explained by the charge neutralization mechanism that 

when the polyelectrolyte has a high concentration of positive charge, it will 

adsorb onto the negatively charged particles in a rather flat configuration because 

of the strong ionic interaction, leading to high-intensity patches, then the direct 

electrostatic attraction between the particles results in agglomeration. The work 

of Yu et al. (57) appears to support this view by their study of the aggregation 

kinetics of kaolin particles using one high cationic polyDADMAC with low 

molecular weight, and one low cationic polyacrylamide with high molecular 

weight, although some of their assumptions are questionable. However, Ferretti et 

al. (58) noticed that the simple charge neutralization mechanism can not readily 

explain the following phenomena: (a) the breadth of flocculation zone with 

greater polymer molecular weight; (b) the higher flocculation rate than that with 

metal salts; (c) the zeta potential differing from zero at the optimal dosage; (d) the 

optimum dosage occurring at a lower concentration for larger polymers. The 

implication of these results is that charge neutralisation by cationic polymers may 

not be of great practical significance only. Gregory (51) studied the flocculation 

of latex particles by cationic polymers and recognized that both bridging and 

charge neutralization play important roles simultaneously for a high molecular 

weight polymer but a polymer of lower molecular weight appears effective 

entirely by virtue of its positive charge.  

 

There are very few research publications concerned with the coagulation 

mechanisms of natural polymers. Some evidence has been found by Chen et al. 

(59) to support a bridging mechanism for coagulation of particles by chitosan. 

They observed an increasing removal of bentonite with increasing MW of 

chitosan. In contrast, Roussy et al. (60) have found that when a chitosan with 

MW exceeded 100,000 g mol-1 was used as a primary coagulant for bentonite 

suspensions at pH5, the effective concentration of chitosan (0.17 meq l-1) was 

much lower than that required for complete neutralization of the negative charge 
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on the bentonite particles (1-2 meq l-1), indicating that both charge neutralization 

and bridging mechanisms have been involved with the destabilization of 

bentonite. 

 

For the case in which the amount of polymer and adsorption sites of the 

particle are in equilibrium, there should be an optimum dosage of the polymer for 

bridging flocculation, since bridging can no longer take place if the particle 

surface is highly covered by an overdosed polymer; so that there are insufficient 

adsorption sites available, and the suspension is re-stabilized by steric repulsion 

between adsorbed polymer chains. La Mer and Healy (61) found for bridging 

flocculation, the optimum dosage occurs at the “half surface coverage”. For 

practical design purposes, it is unfeasible to quantitatively define “surface 

coverage”. It is postulated by Bolto and Gregory (19) that the optimum dosage is 

directly proportional to the total particle surface area and hence to the particle 

concentration. However, Runkana et al. (62) found that theories of bridging 

flocculation assuming equilibrium conditions were of limited use in practice. 

Therefore, bridging interactions gave the possibility of non-equilibrium 

flocculation. Typical optimum results found by Bolto and Gregory (19) in 

practical systems, are of the order of 1 mg polymer g-1 of suspended solids or less.  

 

Generally, it is well known that high MW cationic polymers have diverse 

effects on the stability of a colloidal suspension. At certain concentrations, the 

adsorbed polymer reduces the inter-particle repulsion and provides attractive 

forces though bridging, “charge patch” or charge neutralization mechanisms. 

Although high molecular weight is often mentioned as a requirement for bridging 

flocculation, controversies still exist between the bridging and neutralization 

mechanisms, which concern their relative importance in the systems containing 

colloids and polymers of opposite charge. Very little is currently known about the 

quantitative comparison of these effects in flocculation processes. 
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2.4 Flocculation Behaviour of Cationic Polymer 

 

2.4.1 Polymer Selection  
 

      As so many different types of cationic polymers are now used for water 

treatment, it is indicated that, apart from charge density and molecular weight, the 

monomer type used and other aspects of polymer product should be taken into 

account for the flocculation performance. There is a complex interrelationship 

involving monomer type, polymer structure, functional group, CD, MW and dose 

of polymer, and the amount and type of impurity in water (52, 63). The varieties 

available offer great flexibility in solving specific coagulation problems, but 

make selecting the right polymer more complicated. It has been reviewed 

previously that the mechanisms of coagulation are strongly correlated with the 

CD and MW of polymers. Thus, the coagulation performance is undoubtedly 

influenced by these properties. It is well known that when a charge neutralisation 

mechanism is dominant, the optimum dose of a polyelectrolyte depends on the 

CD. The study by Graham (64), who investigated the orthokinetic flocculation 

rates for amorphous silica microspheres with cationic polyelectrolytes, found that 

the rate of polymer flocculation and the optimal dosage depend on the polymer 

charge density and molecular weight. In general, ‘screening’ the optimal polymer 

type and determining the optimum dose of the polymer are commonly undertaken 

by jar tests, as is done for alum or ferric salts (15).  

 

As discussed in section. 2.2.1.1, the chemical properties, e.g. the 

chemical structure of the polymer and the polymer chain, varies according to the 

polymer preparation. Basic acrylamide monomer yields varying polyacrylamides 

with different amines through co-polymerisation or Mannich reaction. For the 

polyacrylamides containing quaternary ammonium groups, the charge density is 

irrespective of pH, and hence more popularly used in water treatment, in 

comparison with the polyacrylamides with un-quaternary amine groups. 

Incidentally, linear polyamines or branched polyamines can be synthesized with 
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or without additives. It has been indicated previously that the polymer 

configuration is important in the flocculation process, particularly for cationic 

polymers. Ideally, this information should be supplied by the polymer 

manufacturer. Considering the complexity of natural polymers, the identification 

of these unknown polymers is necessary. A broad scheme for the examination of 

polymers involves qualitative and possibly quantitative elemental analysis and 

functional group analysis. Very useful information is often provided by running 

an infra-red or NMR spectrum on the sample and comparing the output with 

outputs obtained from a library of standard polymers under the same or similar 

experimental conditions. Other polymer physical properties and polymer 

microstructure can be an additional means of identifying the polymer (65).  

 

2.4.2 Coagulation Performance 

 

One of the present studies of particle aggregation in the flocculation 

process is based on the flocculation rate. Fleer (66) has used a stopped-flow 

technique to measure the flocculation rate of a silver iodide sol by a polyvinyl 

alcohol with MW of 15,000, and found that the flocculation rate of the polymer 

appeared to be about twice that with a metal salt. However, Gregory (51) reported 

that in practice the method of mixing and the influence of different metal ions on 

the flocculation rate made the interpretation of this view difficult. At the moment 

of addition of the polymer into a suspension of particles, several rate processes 

are initiated: (a) mixing of polymer molecules among the particles; (b) attachment 

of polymer chains to particles (adsorption); (c) rearrangement of adsorbed chain 

to give an equilibrium configuration; (d) collisions between coated particles to 

flocculation (19). Rapid mixing is an important process in which the polymer 

becomes evenly distributed throughout the suspension, and hence giving uniform 

adsorption. Gregory (67) observed that the polymer adsorption rate under certain 

conditions can be considerably slower than the particle collision rate in this 

process. In the process of adsorption, according to Smoluchowski kinetics (68), 
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Gregory (69) found that the adsorption rate of polymer chains attaching to 

particles depended on their concentrations. An increasing particle concentration, 

generally corresponding with a higher optimum polymer dosage, would increase 

the adsorption rate remarkably due to a second-order adsorption rate process. 

Bolto and Gregory (19) have suggested that with a low particle concentration, as 

in low turbidity water, the time required for adsorption of polymer may be of the 

order of minutes, whereas for a high solid concentration the adsorption time can 

be less than a second. Although the time required for rearrangement (or 

reconformation) of adsorbed chains is not well understood, Pelssers et al. (70) 

have studied the degree of flocculation in polystyrene dispersions by high 

molecular weight polyethylene oxide (PEO) and reported that for these high MW 

polymers, several seconds may be needed. When the adsorbed polymer is in an 

equilibrium conformation, collision step (d) results in the formation of aggregates, 

either by bridging or for electrostatic reasons. The flocculation is thought of as a 

second order rate process, so that the rate depends on the square of the particle 

concentration (19). At high solid concentrations, flocculation rates become very 

high. Schwoyer (12) suggested that the greater the particle concentration, the 

shorter the inter-particle distance, which leads to increased collision frequency. 

Although there is very little information available about the influence of pH 

values on suspension flocculation by cationic polyelectrolytes of high MW, Gill 

and Herrington (71) concluded that the effect of pH on the chain length of 

cationic polyacrylamides correlated with the largest flocs occurring at pH 5 to 9, 

since the configuration of the polymer molecule may depend on pH, and the 

viscosity data in their study showed polyacrylamides were in the most uncoiled 

state between pH 5-7. 

 

Apart from the particle concentration and pH, the kinetic aspects of 

polymer adsorption and flocculation are considered partly in the optimal design 

of the mixing processes. The type and intensity of agitation are very important 

parameters for collision efficiency. In practice, turbulent mixing, characterized by 
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high velocity gradients (G), is desirable in order to provide sufficient energy for 

inter-particle collisions. It is well established that when a cationic polyelectrolyte 

is used as a primary coagulant, a G-value range of 300 s-1-700 s-1 is more 

appropriate. Nevertheless, Graham (21) indicated that the conventional rapid mix 

design parameters, G=300 s-1, T=10 to 30 s, may not complete particle 

destabilisation. Morrow and Rausch (72) have suggested that satisfactory 

performances of polymers as primary coagulants were obtained using velocity 

gradients in excess of 400 s-1. By increasing the mean velocity gradient, they 

observed that the polymer dose and time of agitation could be decreased. 

However, there is an upper limit for the mixing intensity because high shear 

conditions can break up microflocs and delay or prevent visible floc formation. 

They concluded that rapid mixing must be completed within 2 min at G = 400 s-1 

to prevent aggregate shearing. 

 

It is evident from many studies that with polyelectrolytes, larger flocs 

often grow to full size significantly more rapidly and are less fragile than flocs of 

inorganic coagulants. However, at the end of its growth phase, flocs do not 

continue growing and reach a uniform size for a given shear condition. A 

comparative investigation has been undertaken by Li et al. (73), of the size, 

strength and structure of flocs formed by alum and cationic polyacrylamide with 

kaolin suspension using light scattering. They found that the floc strength varied 

with coagulation mechanisms and followed the hierarchy: bridging particle flocs 

> charge neutralized particle flocs > complexation flocs (charge sweep). 

Therefore, aggregates formed by polymer flocculants appeared to be significantly 

more resistant to breakage (74). Theoretically, floc strength is dependent on the 

inter-particle bonds between the components of the aggregate. An individual floc 

will break if the stress applied at its surface is larger than the bonding strength 

within the floc (75). Parker et al. (76) treated the rate of aggregation as a balance 

between floc formation and floc breakage. Based on the relationship between the 

velocity gradient in the flocculating vessel and aggregates size, they suggested an 
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empirical expression (2.1) for the stable floc size as:  

d = CG
-r
                                        --------------- (2.1) 

Where d is the floc diameter, C is the floc strength co-efficent that strongly 

depends on the method used for particle size measurement; G is the average 

velocity gradient and γ is the stable floc size exponent. Furthermore, the 

correlation between floc size with the average velocity gradient, in log-log form, 

is given as: 

log d =logC-γ logG                                ---------------- (2.2) 

Therefore, from equation 2.2, the steeper the slope, γ, the greater the reduction in 

the floc size with increasing G. 

 

There are no straightforward techniques to experimentally characterize 

floc strength without destroying the flocs. However, a very important 

consequence of the nature of aggregates is that their density increases appreciably 

as the size decreases. Gregory (77) stated that a greater floc compaction by a 

higher velocity gradient, G, may increase the number of bonds holding the 

aggregate together, thus, leading to greater floc strength. According to equation 

2.2, a decreased floc size is associated with the increasing average velocity 

gradient G. In this case, flocs at higher G value were smaller but with higher 

strength (78). As can be seen, in order to compare different flocs, the floc strength 

may be observed by following changes in floc size over a range of shear rates.  

 

In comparison to the small number of studies of the coagulation 

mechanism by chitosan, relatively comprehensive investigations of the 

coagulation performance of chitosan have been carried out in suspension waters. 

It is well known that the characteristics of chitosan are dependent on the 

preparative conditions such as concentrations of acetic acid and hydrochloric acid 

and the degree of alkali treatment. Therefore, Huang (28) evaluated the 

coagulation efficiency of modified chitosan prepared under different conditions, 

and recommended that the optimal pre-treatment condition is deacetylation by 
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45% alkali for 60min and dissolution by 0.1% hydrochloric acid. Chitosan that 

was initially dissolved in acid media can precipitate when diluted into alkaline 

solutions. Guibal and Roussy (29) found for a given initial pH value the optimum 

dosage of chitosan correlated well with the initial concentration of colloidal 

particles. Decreasing in initial pH values resulted in a decrease of the dosage 

required for efficient coagulation. It has been stated (60) that the molecular 

weight of chitosan presented an important effect on its coagulation performance. 

Ten chitosan preparations with different MW have been tested for the coagulation 

of bentonite suspensions at pH5 and pH7 in the study by Roussy et al. (60), and 

the results showed that the removal of turbidity was best for the highest MW 

chitosans at both pH values.  Pan et al. (79) have demonstrated how the mixing 

speed can affect the coagulation performance of bentonite, kaolinite and clay by 

chitosan in the settling rate, floc diameter and residual turbidity. He concluded 

that the increased speed during rapid mixing can reduce the amount of optimum 

dosage. 

 

In summary, both experimental and theoretical analysis show that the 

flocculation rate and the size and strength of flocs are dependent on the molecular 

weight and charge density of polyelectrolytes, particle concentrations, pH and 

mixing conditions (velocity gradient). There is much opportunity for improved 

polymer flocculation performances by selecting the right polymer and optimizing 

the design of the mixing process. 

 

2.4.3 Interaction with Dissolved Organic Matter 

 

All of the above reviews involving coagulation mechanism and 

performance of the polyelectrolytes are in terms of particle removal processes. 

Actually, in water treatment, coagulation with cationic polymers is also important 

in removing natural organic matter (NOM). 
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In natural water, humic substances are by far the largest constituent of 

natural organic matter, which can cause odour, taste, colour, and bacterial 

re-growth problems, and furthermore, lead to the formation of disinfection 

by-products (DBPs) as well as increasing the chlorine demand in the disinfection 

process. Thurman and Morgan (80) have reported that dissolved humic 

substances generally comprise of approximately 30-50% of the dissolved organic 

carbon (DOC) in surface water. Studies to provide comprehensive insights into 

humic substance characterisation have been carried out by some researchers. 

Newcombe (81) has defined humic substances (humic and fulvic acid) as organic 

molecules with an approximate size of 500-250,000 Daltons, with heterogeneous 

structures composed of aromatic and aliphatic units and various functional groups. 

It is commonly recognized that humic substances are anionic in character at 

natural water pH values, which is partly responsible for their solubility in water. 

Thus, humic substances can be precipitated from water, if the charge is reduced 

by lowering the pH value (82). 

 

The removal of NOM from drinking water is necessary to meet the 

quality regulations of drinking water. When using cationic polyelectrolytes as 

coagulants in water treatment, charge neutralisation of aquatic humic substances 

is thought to be the predominant mechanism of coagulation (83). These 

conclusions have been confirmed by Kvinnesland and Odegaard (30), who used 

different cationic polymers, including polyDADMAC, polyacrylamide and 

polyamine as coagulants to remove humic matter. In this case they found that the 

optimum dose corresponded closely with charge neutralisation and there was a 

clear stoichiometry between anionic charge of the humic substances and cationic 

charge carried by the added polyelectrolytes. Their recommendation is in 

agreement with the results from Bolto et al (63). In Bolto and co-worker’s study, 

they compared the efficiencies of cationic polyacrylamide copolymer (CPAAM), 

polyDADMAC, polyethyleneimine (PEI) and chitosan in experiments on 

reconstituted humic water at pH6, and found that the effectiveness of 
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polyelectrolytes as coagulants for NOM increased with increasing charge 

densities. Incidentally, the coagulation behaviour using the natural polymer, 

chitosan, to treat natural organic materials seemed to be consistent with a charge 

neutralization mechanism, since a stoichiometry was observed between the 

concentration of humic materials and the required dose of chitosan (84). 

 

Unless the raw water has a low total organic carbon (TOC) concentration, 

the coagulant dosages of polymers are determined by the content of NOM in raw 

water rather than by turbidity (85). Generally, the NOM removal performance by 

polymers was less pH dependent and there was a lower level of dissolved ions in 

the product water, in comparison to metal coagulants (86). The effect of polymer 

molecular weight on the removal of humic substances by cationic 

polyelectrolytes has also been investigated by Kam and Gregory (18), who 

compared a range of cationic polyacrylamide copolymers with MW from 0.05 to 

15 million, and found that MW had no effect on coagulation kinetics or colour 

removal, indicating that ‘polymer bridging’ was not a pronounced mechanism. 

However, observations by Bolto et al. (63) recently concluded that higher MW 

polymers were more effective for NOM removing from water, and the effect of 

increasing MW was more important for colour removal than increasing charge 

density. 

 

2.4.4 Monitoring System 

 

There are a number of different methods to determine the optimum 

dosage and flocculation performance of polyelectrolytes. The most familiar and 

widely used coagulation test employed by those acquainted with water and 

wastewater treatment is the ‘jar test’. Essentially, a jar test is a series of equal 

volume, identical samples that are exposed to a controlled variety of treatment 

conditions. Observation of the degree of clarification can be obtained by a 

complete laboratory analysis of resulting sample quality. The protocol of jar tests 
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has been commonly accepted to confirm the optimum type and dose of inorganic 

coagulants such as alum or iron salts (87). Recently, Bolto et al. (6) found a good 

result from jar test in NOM removal using comparative primary coagulants of 

synthetic cationic polyelectrolytes and alum. In bench-scale tests, the jar test was 

also employed to evaluate the effectiveness of natural chitosan as a coagulant by 

Kawamura (3). Although jar tests are particularly useful and remain popular for 

controlling coagulation-sedimentation and precipitation-sedimentation processes, 

these methods are limited in terms of their sensitivity and practical convenience 

since they are less suited to the control of direct filtration or in-line coagulation 

processes. Yeh (88) has demonstrated that alum and polymer doses required for 

direct filtration were lower than found from jar test results.  

 

Zeta potential (ZP) is a measure of the electrostatic charge on the surface 

of particles suspended in water and is commonly related to the stability of the 

colloidal materials under any given set of water characteristics. The technique of 

measuring zeta potential has been successfully used to optimize the coagulant 

dose for metal salts (89). In natural water, colloidal suspensions are commonly 

found to possess ZPs of 20-30mV and are negatively charged (12). In order to 

achieve coagulation in suspension systems, the ZP must be reduced in value to 

less than 10mV (preferably to less than 5mV) (90). It has been reported that in a 

bentonite particle system, the optimum doses of natural chitosan resulted in a 

very negative zeta potential (~-15mV) (28). Previous attempts (91) to link the 

coagulation of NOM to ZP have found that optimum doses of alum occurred at a 

range of zeta potentials between -8 and +8 mV depending on the water source 

and pH values of coagulation. Theoretically, an optimum dose of the 

polyelectrolyte can be found to occur at or near the point of zero ZP. Graham (21) 

observed that the applicability of ZP measurement was largely dependent on 

whether the coagulation and flocculation mechanisms are predominantly due to 

Coulombic interactions. Therefore ZP dose not necessarily provide a proportional 

indication of the amount of coagulants required for destabilization. Many 
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researchers (92, 47) have used ZP measurement technique to evaluate the 

coagulation mechanism and flocculation rate of high MW cationic 

polyelectrolytes. However, the results from these studies cannot provide data for 

estimating the optimal dose in the flocculation process due to a complexity of 

interaction mechanisms of polymers. Although this method has several 

advantages such as its speed, relative ease of operation and on-line control, there 

is still a concern that in practice, the measurement of ZP is normally based on a 

small number of particles, and may not always be representative of the 

suspension at actual conditions (93).  

 

The streaming current measurement has been recognized as an on-line, 

reliable way to monitor the coagulation state by charge neutralization. The 

streaming current is caused by the movement of counter ions beyond the shear 

plane of surfaces within a detector (94). Unlike the zeta potential measurement, 

this method does not directly measure the surface potential on individual particles. 

Rather, it measures a flow of electrical current that is statistically proportional to 

the average surface charge on the particles. Hence, it is possible to select the 

optimum dose of a coagulant, according to the reduction of the negative surface 

charge on the particles in the water. The mechanism of charge neutralization of 

clay particles has been examined by Barron et al. (95), who used a streaming 

current director to automatically control the coagulation performance of 

electrolytes for a drinking water product. Furthermore, Kam and Gregory (18) 

compared the streaming current detection with other monitoring methods in the 

interaction of humic substances with cationic polyelectrolytes (over a range from  

0.05 to 15 million), and found that the non-stoichiometric interaction between the 

anionic sites of humic substances and the cationic charge of polyelectrolytes was 

indicated by the streaming current technique. In general, the literature suggests 

that most of the investigations related to the use of these methods are carried out 

to study the electrokinetic properties of polymers using model water (49). Very 

little attention has been given to both zeta potential and streaming current 
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techniques in selecting a particular polymer type or determining the polymer dose 

in practical water treatment. Of particular concern for streaming current detection 

is either sample pre-treatment such as large dilution of the sample in order to 

avoid coincidence effects of particles, or metal ions in water such as calcium ions, 

which affect the current and the coagulation process (96). 

 

The laser light diffraction method has been advocated to measure the 

floc size distribution, thus optimising flocculation (97). However, Gregory and 

Nelson (50) found that light scattering is difficult to interpret unambiguously in 

terms of the aggregate size distribution, except under special conditions. In 

addition, detailed particle size distributions are not really necessary for 

monitoring of industrial suspensions and the control of process conditions. 

 

The photometric dispersion analysis (PDA) instrument provides a 

valuable and convenient technique of assessing coagulation by means of a 

sensitive and rapid response to fluctuations in the intensity of light transmitted 

through a flowing suspension. Gregory and Nelson (50) proposed that a simple 

index by this technique, which is in correspondence with the state of aggregation 

of the particles, would be sufficient to give an insight to fit many experimental 

and industrial observations, since this could be conveniently derived from on-line 

measurements. By a photometric dispersion analysis monitor, the aggregation or 

disaggregation in the suspension can be quantified with respect to the ratio of 

Vrms to dc by measuring the root mean square (rms) values of the fluctuation 

signal (Vrms) and the average transmitted light intensity (dc). In this case, the ratio 

of Vrms to dc is called the Flocculation Index (FI). This ratio can give immediate 

information on the state of aggregation of particle suspension over the entire 

period of coagulation. Huang and Liu (98) demonstrated that the PDA monitor 

with a designed control system could be successfully applied to the on-line 

control of coagulation dosing, by studying the coagulation of bentonite powder 

with alum. More definitely, Kam and Gregory (18) have shown that the optimum 
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dose for humic substance removal was easily achievable by the observation of the 

Flocculation Index when polymers are used as primary coagulants. In the 

flocculation process, FI is regarded as a representation of floc size, which is 

closely associated with floc strength, the other important parameter of the 

flocculation performance. Some researchers (99, 100) proposed that the FI values 

might be considered as a way of quantifying floc strength by changing the 

velocity gradient after the floc has formed. The effect of shear on the formation 

and break-up of flocs generated using alum and two cationic polyelectrolytes has 

been thoroughly investigated using a PDA by Yukselen and Gregory (101). 

  

In summary, the ideal monitoring technique should be suited to on-line 

application and require no sample pre-treatment (such as dilution). Few available 

techniques satisfy these requirements in specific applications. The difficulties 

encountered in using either visual (semi-quantitative) or electrical technologies in 

practice to predict coagulant dose are that the actual treatment situation can vary 

outside the set of parameters for which dose relationships were established in 

routine experimentation. Thus, the use of the photometric dispersion analysis 

method in monitoring polymer feed during operation of a water treatment process 

has been found in many respects to be advantageous. This novel method has been 

successfully applied to study the dynamics and mechanisms of coagulation in 

dilute and concentrated suspensions with polymeric coagulants. 

 

2.5 Application of Cationic Polymer in Water Treatment 

 

All of the above discussions about the mechanisms and action of 

polymeric coagulants have been in terms of model water processes, involving 

either particles or dissolved organic matter. Actually, cationic polyelectrolytes 

have been widely used as the sole primary coagulants instead of conventional 

inorganic salts (alum, iron salts or lime), or flocculation aids in the drinking water 

industry.  



 59 

2.5.1 Primary Coagulant Used in Drinking Water Treatment 

  

In surface water, the principal contaminants include particulate matter, 

color, hardness, toxic organic, metal element (iron and manganese) and water 

borne pathogens. The typical purifying process consisting of 

coagulation/flocculation followed by settling or flotation, filtration and 

disinfection is used to produce water that is biologically and chemically safe for 

human consumption and also aesthetically pleasing in terms of odour, appearance 

and taste. Recently, increasing attention has been paid by the water industry to 

removal of natural organic matter in light of the potential for carcinogenic 

disinfection-by-product (DBP) to form during the disinfection process if organic 

carbon is insufficiently removed in the coagulation process. 

 

Aluminium and iron salts are the most frequently used coagulants in 

drinking water treatment and their proven efficacy in the removal of turbidity, 

color, NOM and algae is achieved through their pH-dependent mechanisms, 

which are either the adsorption of soluble hydrolysis products or/and the 

reduction in particle charge. Under certain conditions, the hydroxide precipitate is 

formed and hence “sweep coagulation” could be regarded as “bridging” and 

enmeshing particles together. Amirtharajah (2) stated that the coagulation 

performance of humic substances, which are correlated to NOM and color, was 

best at pH values of about 5 to 6 with alum, and at pH values of 4.5 to 5.5 with 

iron. Previous studies have pointed out several serious drawbacks of using metal 

salts, for example, the coagulation performance is pH dependent; a higher dose of 

coagulant is applied, in proportion to the turbidity; and extra solids in the form of 

metal hydroxide arise adding to the burden of the separation process.  

 

In the production of drinking water, cationic polyelectrolytes with high 

MW can be added as either primary coagulants or coagulant aids to partially 

replace inorganic coagulants (e.g., alum). In the last twenty years a world-wide 

major emphasis has been given to enhance the coagulation technique by 
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polyelectrolytes in removing turbidity and organic matter from surface water. A 

low dosage requirement of polyelectrolytes used as primary coagulants for raw 

water from river “Ganga”, India, has been proved in the study of Rout et al (102). 

In their study, with the maximum turbidity level of 1200NTU, the alum dose 

requirement was 75 mg l-1 against the polyDADMAC dose of 1.5 mg l-1. As 

compared to alum, the sludge generated during the polyelectrolyte treatment was 

40-60% less in volume than that formed by alum. The coagulation properties of 

different synthetic polyelectrolytes combined with metal salts or polyelectrolytes 

alone used in surface water treatment to remove DOC have been investigated by 

Lindqvist (103). For comparison, cationic polyDADMAC, aluminium and ferric 

salts were included as coagulants in his study. Lindqvist observed from laboratory 

scale jar tests that as a primary coagulant, polyDADMAC achieved an inferior 

DOM removal (33%) from Lake Roine, Finland, in comparison to that of 

aluminium salt (55%) and ferric salt (65%). Moreover, when polyDADMAC was 

applied as a coagulant aid, which is added to raw water with a metal coagulant 

simultaneously, an increasing removal of DOC was found of about 70%, 

indicating cationic polyelectrolytes with high CD may be used to reduce the 

amount of metal salts in the coagulation process. In contrast, Bolto and 

co-workers (6) studied the removal of NOM with cationic polyDADMAC and 

polyacrylamide, by means of jar tests on reconstituted waters containing aquatic 

NOM obtained by reverse osmosis treatment of water from Moorabool River, 

Australia. It was found that organic polymers were as effective as alum for colour 

removal, and took out up to 85% of the UV absorbance removed by alum. 

However, an alum/polymer combination was the most attractive treatment option 

for natural organic matter. When they used a series of polyDADMAC polymers 

with different molecular weight and charge density as coagulants in jar tests, 

Bolto and co-workers observed that the performance of cationic polymers used as 

sole coagulants improved significantly with increasing charge density and 

molecular weight. Their results were confirmed by other studies. Chang et al. 

(104) found an effective removal of UV absorbance when they used 
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polyDADMAC as a coagulant for drinking water treatment. They also observed 

that a polymer with higher CD was more effective in reducing UV absorbance 

than that with low CD.  

 

It is evident that the application of a polymer in conjunction with a metal 

salt as a primary coagulant has become increasingly of interest for the treatment 

of natural organic matter in surface water. Apart from the evidence from 

Lindqvist (103) and Bolto (6), experimental results obtained from bench-scale, 

pilot-scale and real scale tests by Filho et al. (105) have also shown that algae 

removal and turbidity removal were much better when a cationic polymer was 

added with ferric sulphate (compared to ferric sulphate alone) to treat raw water 

from Guarapiranga Reservoir, Brazil. Lee et al. (106) has also demonstrated that 

both cationic polyamine and polyDADMAC combined with metal salts were 

effective as coagulants to treat Nak-dong river water, Korea, and the addition of 1 

mg l-1 of organic polymers enabled a reduction of 50% of the consumption of 

inorganic coagulants. 

 

As a natural polymer, chitosan has been applied as a primary coagulant 

to replace or partially replace alum in water treatment. In 1981, the United States 

Environmental Protection Agency (USEPA) approved chitosan’s use in a drinking 

water treatment application up to a 10mg l-1 dose. The effectiveness of turbidity 

removal by chitosan appeared to involve the alkalinity of different surface waters 

in Kawamura’s study (3). When chitosan was used as filtration aid in the direct 

filtration process at pH 8.4 and temperature 14 ºC, for raw waters with high 

alkalinity (200 mg l-1 as CaCO3), it was demonstrated that about 0.2 mg l-1 

chitosan improved the flocculation and sedimentation performance. In contrast, as 

sole coagulants, for low alkalinity water (~30-40 mg l-1 as CaCO3), chitosan 

presented a greater effectiveness in producing a settled-water turbidity of about 1 

NTU with approximately 5 mg l-1 of dosage compared to approximately 30 mg l-1 

of alum at pH 7.1 and temperature 10 ºC. Even though the coagulation 
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mechanism of chitosan is still not fully understood, Kawamura indicated that the 

effectiveness of chitosan was especially significant for the high-turbidity water. 

This observation has also been shown in another study (107). Divakaran and 

Sivasankara (108) reported that chitosan as a primary coagulant at a dosage of 0.5 

mg l-1 achieved over 80% turbidity removal from an initial raw water of 10NTU. 

The combination of chitosan and alum as a primary coagulant has been 

considered for water treatment. A pilot filter investigation by Kawamura (3) has 

shown that the combination of chitosan and alum is more effective than the 

synthetic polymer-alum combination tested for turbidity removal from Colorado 

water, USA. The effectiveness of chitosan as a primary coagulant and a coagulant 

aid for different turbidity raw waters has been summarised in Table 2.4. However, 

the typical formula of alum in this study was not mentioned. 

 

TABLE 2.4 Coagulation performance using chitosan and alum (after Kawamura (3)) 

Raw Water 

Turbidity  

(NTU) 

Alum 

(mg l-1) 

Residual 

Turbidity 

(NTU) 

Chitosan as 

Primary 

Coagulant  

(mg l-1) 

Residual 

Turbidity 

(NTU) 

Chitosan as 

Coagulant   

Aid (mg l-1) 

Residual 

Turbidity 

(NTU) 

3200 300 90 1.00 10 0.15 + 20 mg l-1

alum 

4 

1400 100 10 1.00 10 0.1 + 20 mg l-1 

alum 

3 

500 30 5 0.25 25 0.1 + 5 mg l-1

alum 

5 

70 10 14 0.25 18 0.05 + 8 mg l-1

alum 

10 

 

Moreover, chitosan has been shown to be an effective coagulant for the 

removal of humic substances from drinking water. From comparative 
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experiments using chitosan as a sole coagulant or combined with ferric salts to 

treat the river water from Glomma, Norway, Vogelsang et al. (109) found that 2 

mg l-1 chitosan and 2 mg l-1 as Fe3+ at pH 5 led to 96% colour removal and 60% 

TOC removal, with an improvement from respectively 93% and 47% for chitosan 

alone. In contrast, iron salt used as a primary coagulant alone gave no significant 

removal of organic matter. A fractionation based on the molecular size of humic 

substances was measured by high-performance size exclusion chromatography 

(HPSEC) in this study, and the results indicated that by adding small amounts of 

iron salt together with chitosan, a substantially improved removal of the medium 

molecular weight fraction of the humic substances was obtained with a 

significantly reduced addition of chitosan. 

 

Cationic polyelectrolytes have a distinct advantage over metal salts used 

in the direct filtration process due to an absence of the formation of additional 

solids in the form of a metal hydroxide precipitate. The uses of direct filtration 

preceded by polymeric coagulants to remove humic substances have been 

investigated by some researchers. An effective performance of colour removal 

from synthetic (humic acid solution) and natural colored waters using a 

bench-scale pilot filter with a 14-cm filter bed has been reported by Scheuch and 

Edzwald, (110) who used a chlorine-resistant cationic polymer (polyquaternary 

amine) with molecular weight about 50,000 as a coagulant. Furthermore, 

Edzwald  et al. (111) employed a large-scale pilot dual-media filter and two 

natural colored waters to study the coagulation performance of three cationic 

polyelectrolytes (polyquaternary amine), and found an effective improvement in 

treatment and water quality were obtained in all cases. To minimize some of the 

drawbacks arising from the accumulation of polymers in the equipment of 

filtration and limited permissible-dosage range, Graham (112) used a 

low-to-moderate MW polymer based on polyamine to investigate the possibility 

of improved treatment by partially replacing alum with the polymer and noticed 

that there was less color removal using the combination of a polymer with alum 
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than alum alone by direct filtration; this study employed a pilot filter with 50-cm 

filter bed and humic extract from colored, upland water in the United Kingdom. 

 

2.5.2 Polymer Toxicity and Residual Polymer  

 

Although any relationship between aluminum and Alzheimer's disease is 

too tentative to justify changes in the use of aluminum compounds in water 

treatment, there is still a strict regulatory limit on the residual aluminum 

concentration of 0.2 mg l-1 in drinking water in the UK (113). The application of 

synthetic organic polymeric coagulants such as polyacrylamide or polyamine is 

also potentially problematic since there may be toxicity concerns under certain 

circumstances. These concerns have led to a ban on the use of polyelectrolytes in 

drinking water treatment in Switzerland and Japan (114), while other counties 

such as the United Kingdom, Germany and France have established stringent 

limits on the doses of polymeric coagulants. 

 

For drinking water production, the maximum allowable dosage of 

commercial polymers in the source water at the treatment plant is recommended 

in the USA by the National Sanitation Foundation (115), the limits are generally 

<50 mg l-1 for polyDADMAC, <20 mg l-1 for ECH/DMA polymers and <1 mg l-1 

for PAAs. The maximum authorised dose of polyacrylamide used as the 

coagulant in drinking water treatment is 1 mg l-1. National Sanitation Foundation 

further restricts the application of polyDADMAC to not exceed 25 mg l-1, which 

is based on a maximum carryover of the polymer into the product water of 50 ug 

l-1 (116). 

 

In fact, even though cationic polymers are of high toxicity generally, it is 

well known that a monomer is likely to be more toxic than a polymer in drinking 

water (117). Some frequently used polymer coagulants such as polyDADMAC, 

polyacrylamide and epichlorohydrin-based polymers may release the unreacted 
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monomers acrylamide and epichlorohydrin in drinking water. Accordingly, limits 

on the level of monomer are strictly controlled. Especially, in the UK, for 

polyDADMAC the maximum allowed monomer content is 0.5% , and maximum 

residue in reservoirs is 500 µg l-1 (118); for polyacrylamide, as a general rule,  

the monomer content limit of free acrylamide is 0.025%, and the residual in 

drinking water is 0.1 µg l-1 (113);  polyethyleneimines are generally not used in 

potable water treatment (119).  

 

It is essential to determine the ultimate fate of polymers used in the 

coagulation process to see what quantities are present in the final water. A number 

of promising approaches have been explored for measuring polymer residuals in 

the last thirty years. Parazak et al. (120) were able to analyse residual polymers 

by colloid titration against a polyelectrolyte of opposite charge, using dyes as 

indicators. The method is not especially sensitive since the results (0.5 -1 mg l-1) 

were found to be near the limits of detection. Other researchers have used 

fluorescence spectroscopy (121), size exclusion chromatography (122), 14C-mark 

polymer (123), NMR spectroscopy (124) and fluorescent tagged polymer (125). 

Detection limits below 1mg l-1 have been claimed for methods based on colloid 

titration (500-1000 µg l-1); fluorescence spectroscopy (<50 µg l-1); size exclusion 

chromatography (10-20 µg l-1); fluorescent tagged polymer (10-40 µg l-1) and 

NMR spectroscopy (<500 µg l-1). However, the more extreme of these claims has 

been disputed or simply not reproduced by other researchers (126).  

 

In summary, published methods for determining residual polymers 

generally have low sensitivities and may require a pre-concentration process. To 

date, there is still no accepted method to effectively measure the accurate amount 

of residual polymers in treated water. Consequently, the regulation of these 

published methods is arbitrary and inconsistent. It is felt that there should be 

more effort by polymer manufacturers to develop suitable methods.  
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2.5.3 Costs 

 

Apart from the significant treatment effectiveness, economics should be 

considered as another merit of the complete or partial replacement of metal salts 

by polyelectrolytes as primary coagulants. The estimated costs of $2-4 per kg 

(£1-2 per kg) for the polymer is consistent with the current market value in USA 

for organic flocculants in water treatment of approximately $130 million per year 

(124). The market price of aluminium coagulant (8% w/w Al2O3) is 

approximately £80 per tonne, which is equal to £ 1.89 per kg Al. Accordingly, an 

approximate alum (9.1% w/w) cost can be estimated as £171 per tonne (£0.171 

per kg). Mangravite (25) has found that the typical dose of primary coagulants for 

most polymers is 0.5 to 10 mg l-1. From the previous reviews, the dose of alum 

for the surface water treatment is in the range of 30 mg l-1 to 75 mg l-1. Therefore, 

the cost of polymers varied from £0.00075/m3 to £0.015/m3, and the cost of alum 

is speculated as £0.00513/m3 to £0.0128/m3. It was found that ferric chloride, 

ferric sulphate and aluminum sulphate are very similar in cost. In addition, there 

is a major upward pressure on metal coagulant prices due to heavy usage of 

phosphate. Considering the reduced filter loading and volume of backwash water, 

and further convenient sludge deposit due to a lower amount of solids production, 

organic polymers give a greater cost benefit than inorganic coagulants. One 

experience from a water plant in South Africa on changing the coagulant from 

alum to a polymer demonstrated a 30% decrease in the cost over a three-year 

period (127).  

 

Chitosan works well over a large pH and dosage range. However, a 

major drawback is its price, which is about $18-20 per kg (£9-10 per kg) dry 

weight (109). Hence, dosage optimisation is of high priority. In Kawamura’s 

study of different surface waters (3), the optimum dose of chitosan varied from 

0.2 mg l-1 to 5 mg l-1, therefore, the cost of chitosan in water treatment was 

estimated from £0.002/m3 to £ 0.05/m3. This unrealistically high cost of chitosan 
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presents an opportunity to find cheaper natural polyelectrolytes to produce 

cleaner and safer water. 

 

2.6 Modified Tannin-based Polymer (TBP) as Coagulant 

 

One of the modified natural products, the tannin-base polymer (TBP), 

has been proposed as a flocculant for use in wastewater treatment in certain parts 

of the world due to its reasonable cost and biodegradability. In the USA, the 

National Sanitation Foundation (116) has restricted the maximum dose of 

tannin-based products as 3 mg l-1 in raw water. 

 

Tannin is a plant extract mainly from bark and wood which can be 

subdivided into two groups, hydrolysable and condensed, based on their 

structures (128). In this study, the natural tannin extract is obtained from a tree 

called Black Wattle, which grows in Brazil. The type of tannin present in wattle 

extract is condensed tannin which consists of a molecular gradation of 

poly-flavinoids. Before the application of a Mannich type reaction and 

polymerisation, the original aqueous extract is composed of approximately 

67-77% polyphenolic tannins and 25% non-tannins, which are mostly simple 

sugars and polymeric carbohydrates (hydrocolloid gums); the latter constitute 2% 

of the extract and heavily contribute to the extract viscosity (information from the 

supplier). The average molecular weight of tannin can range typically from about 

300 to about 3000, dependent on the number of flavinoids (129). The structure of 

the main flavinoid unit present in condensed tannin has been published by 

Hemingway (130) (see Figure 2.6). 
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Figure 2.6 Chemical structure of condensed-tannin: flavan-3-ol unit of 

condensed-tannins (to A-ring: R1=OH, R2=H, phloroglucinolic; R1=R2=H, resorcinolic; 

R1=H, R2=OH, pyrogallolic; to B-ring: R3=H, catecholic; R3=OH, pyrogallolic) (after 

Hemingway (130)) 

 

The preparation process of the modified tannin-based polymer (TBP) is 

proprietary information, but is believed to involve two chemical steps: Mannich 

reaction and polymerization. In the Mannich reaction an aldehyde is condensed 

with an amino compound and an active hydrogen is supplied by the polyphenolic 

tannin. The common reaction procedure is: Aqueous formaldehyde and 

ammonium chloride solid are mixed and heated to give a mixture of (mainly) 

primary and secondary amines. Then the amine mixture reacts with the aromatic 

tannin chains (also under acid catalysis). The nitrogen in the resultant 

non-polymerized product protonates under acidic pH conditions to give an 

“ammonium tannate monomer” with positive charge. Consequently, the monomer 

polymerizes while the viscosity of the reacting mixture is monitored at low pH. 

 

Some investigations related to the use of natural condensed anionic 

tannin as a coagulant aid for particle removal have been carried out by Özacar 

and co-workers (131). In their studies, jar tests were performed at pH 6 to 11, 

using kaolin clay to adjust the turbidity of the synthetic water. When tannin was 

used as a flocculant aid combined with alum, a very low tannin concentration of 1 
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mg l-1 was found to effectively reduce the residual turbidity and the amount of 

required alum. However, the literature suggests that more attention has been 

given to the use of the modified cationic tannin polyelectrolyte instead of anionic 

natural tannin as a coagulant or flocculant aid in the waste water treatment field 

and its preparation method has been explored. In 1962, Fife (132) first disclosed 

the new application of the reaction product between tannin, formaldehyde and an 

amino compound for the flocculation of suspensions such as sewage and 

industrial waste. He found that clear supernatant water was obtained using 12 mg 

l-1 Mannich reaction product as a coagulant, for an artificially turbid water of 100 

mg l-1 solid. The disclosed advantage of using this flocculant is believed that it 

does not affect the pH of the suspension solution and also the flocculant does not 

affect the dissolved inorganic contents of the final water. On the basis of this 

previous invention, Reed et al. (8) synthesized an alkylated Mannich polymer, 

which is prepared from a condensed tannin, amine, and formaldehyde, with an 

alkylating agent within a wide range of pH between 5 and 14. This polymer was 

proved to effectively remove color from waste water effluent streams. 

 

A comprehensive study of the application of TBP in drinking water 

treatment and the relative merits of partial or complete replacement of alum by 

TBP as a primary coagulant in water treatment has not been undertaken so far; 

previous work with TBP has been related to wastewater treatment. The early 

work has been done on the assumed chemical structure of condensed-tannin. To 

date, there is little information available of the structure or functional groups of 

TBP, or how these vary with the preparation conditions (pH, viscosity). Thus it is 

not possible to predict the chemical properties of the final TBP product, and in 

particular the nature of the “ammonium tannate monomer”. There is virtually  

no prior literature about the fundamental mechanisms of coagulation using TBP 

as a primary coagulant for aqueous suspensions or/and dissolved organic matter, 

and therefore no clear understanding of the interrelationship between polymer 

chemical structure, polymer molecular weight and charge density with the 
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coagulation mechanism of TBP. Some information is available concerning the 

various manufacturing methods and basic flocculation performance of the 

tannin-based polymer in wastewater treatment, from published patents (8,129). 

Knowledge of the polymer’s characterisation would be a significant step towards 

understanding the mechanisms, and hence flocculation ability when using TBP as 

a coagulant.  

 

Since adequate attention has not yet been given to the use of TBP as a 

primary coagulant in surface water treatment, there is much opportunity to 

validate the coagulation effectiveness of TBP in this field of application and 

investigate ways of improving its performance by optimizing the mixing process 

and selecting the right combination with metal salts or mico-sands to either 

reduce the dose of inorganic coagulants or lower the residual TBP in final water. 

In addition, this investigation presents a broad challenge on the optimal 

monitoring of coagulation process and the accurate measurement of residual 

tannin in treated water. 

 

2.7 Summary 

 

The application of synthetic or natural cationic polymers in the 

production of drinking water has been reviewed, with emphasis on the type and 

characterisation of polymers commonly available, dominant mechanisms of 

coagulation, the coagulation behaviour of model waters, and the application in 

practical treatment with particular attention of residual polymers, and polymer 

cost assessment. A preliminary introduction of a novel and potential modified 

natural coagulant--- tannin-based polymer (TBP) has been included here. 

 

The main concepts detailed in this chapter of the thesis can be summarized as 

follows: 
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a) The role of polymeric coagulants in water treatment is well established, with 

examples of benefits in conventional sedimentation and filtration, or in direct 

filtration, mostly due to the low solid volume production, and in particular the 

low cost of using a natural polymer. 

 

b). Polymer bridging and charge neutralization have been recognized as the two 

most important mechanisms of coagulation by polymers. Theoretically, high MW, 

linear polymers are more preferable in bridging flocculation. In contrast, 

polymers with high CD are more effective in charge neutralisation. In fact, it is a 

matter of controversy and speculation between these two mechanisms, 

concerning their relative importance, when cationic polymers with high MW are 

used as primary coagulants. 

 

c) It is often assumed that the polymer’s type, molecular weight and charge 

density are the crucial parameters governing the mechanism and performance of 

coagulation in terms of the removal of particles or dissolved organic matter. The 

coagulation behaviour of polymers also depends on the particle concentrations in 

solution, the pH, and the mixing conditions. In practice, the presence of residual 

polymers and monomers in the product water are of particular health and 

environmental concern in drinking water treatment. To date, there is not yet a 

sufficiently sensitive and practical analytical technique available to determine the 

residual polymer concentration in treated water. 

 

d). In comparison to synthetic cationic polymers, the number of investigations 

concerned with natural cationic polymers for drinking water treatment are 

relatively small and most of them were of the use of chitosan in water and 

wastewater treatment. Very little is currently known of the fundamental 

coagulation behaviour by natural polymers, and in particular, of the importance of 

the nature of these polymers. 
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e). A modified tannin-based polymer (TBP) is proposed as an alternative to 

synthetic organic polymers because of its availability from a renewable source 

material, giving rise to environmental benefits and potential cost advantages. 

Given its preparation via the Mannich reaction and polymerization, it is believed 

that TBP is a high molecular weight polymer possessing positive charge. While 

there has been some use of TBP in wastewater treatment, very little attention has 

been given to characterizing its fundamental properties and investigating in detail 

the use of TBP as a primary coagulant in surface water treatment.  
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3. OBJECTIVES OF STUDY 

 

From the previous discussion it is clear that the chemical structure of 

TBP and the interrelationship between the chemical properties of TBP and 

coagulation mechanisms have not yet been investigated. Furthermore, the 

understanding of the coagulation performance using TBP as a primary coagulant 

to partially or completely replace metal salts in water treatment is still very poorly 

developed. To illustrate the potential in this regard, this study of its significance 

set out to achieve three broad aims: 

 

(1) to provide a description of the polymer structure and physical properties , by 

qualitative functional group analysis in conjunction with quantitative methods, 

thereby characterizing the tannin-based polymer (TBP). 

 

(2) to qualitatively assess the existence, significance and relative appropriateness 

of two well established coagulation mechanisms using TBP as a primary 

coagulant alone. 

 

(3) to evaluate the coagulation performance of TBP alone and TBP combined 

with metal salts, and microsand, in both model water and raw water systems, in 

comparison with the effectiveness of inorganic and synthetic organic coagulants. 

 

Considering the possibility of differences in the coagulation action of 

TBP using model systems containing either particle suspensions or dissolved 

organic matter, both of the systems were included in this study. Furthermore, the 

performance of TBP with raw surface water samples is investigated. It is 

emphasized that the objectives of this research fall into particular sections of the 

thesis. In the following discussion, section 5 is relative to objective (1), section 6 

to objective (2), part of section 6 and sections 7, 8 and 9 to objective (3). The 

structure of the thesis is as follows: 
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Section 4: describes all experimental materials and the analysis methods used 

throughout this research. Although the research purposes of Sections 6, 7, 8 and 9 

are different, the coagulants and equipment used in these sections are mostly the 

same. By concentrating the materials and methods in one section simplifies the 

structure of this thesis.  

 

Section 5: outlines the experimental characterisation of the TBP using different 

techniques. A variety of quantitative analysis methods, including charge density, 

molecular weight and elemental identification, were undertaken, in conjunction 

with a number of qualitative analysis methods on functional groups and chemical 

bonds. 

 

Section 6: evaluates the fundamental coagulation mechanisms of TBP in particle 

suspension and dissolved organic matter systems through an on-line measurement 

of Flocculation Index. The variation of optimum dosage of TBP and final floc 

size and strength were studied as indicators to determine the preference between 

polymer bridging and charge neutralisation. The preliminary coagulation 

stoichiometry and the influences of coagulation conditions on coagulation 

performance of TBP were considered.  

 

Section 7: describes an experimental investigation of the coagulation performance 

and mechanisms using alum and cationic TBP as combined primary coagulants 

(partial alum replacement). Under a given set of conditions, coagulation matrix 

tests were studied for a full range of alum-TBP combinations to determine 

whether or not there is a unique optimal dosage combination of alum and TBP. 

 

Section 8: The tentative application of TBP bonded to microsand was investigated 

in order to reduce the residual tannin in final water. Preliminary adsorption tests 

were carried out to determine the ratio of surface attachment between TBP and 

sand. 
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Section 9: to confirm the coagulation behaviour of TBP observed in tests with 

model waters, raw water from an organic-rich river source located in the UK was 

tested using TBP alone and TBP-alum as primary coagulants. Subsequently, the 

coagulation efficiency was compared experimentally with other coagulants under 

equivalent operational conditions. 
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4. MATERIALS AND METHODS 

 

4.1 Introduction 

 

All the materials and methods of analysis described here were used in 

either the characterisation or coagulation experiments through the whole 

investigation. Consequently, all the details are described in this section only. 

 

In order to evaluate and compare the coagulant behaviour, four different 

coagulant chemicals were employed in this study. These can be classified as: 

modified natural polymer -- TBP, synthetic organic polymer -- polyDADMAC, 

inorganic metal coagulant – alum, and commercial product – TSL. The adsorption 

of polyelectrolyte on solid/liquid interface (clays, oxides and silica) has been 

largely investigated because significant modifications of surface properties within 

the adsorbed layer were observed (133), however, it is believed that the 

coagulation action by polymer in the dissolved organic matter system may be 

relatively complex since hydrophobic and hydrophilic fractions of NOM play 

different roles, which affect the coagulation mechanism (63). Therefore, two 

kinds of model water including kaolin particles and humic substances, 

respectively, were applied in assessing the coagulation performance in this 

research. 

 

The methods used for TBP in this research fall into two categories: 

characterization experiments and coagulation experiments. In the TBP 

characterization experiments, some standard methods, such as Argentometric 

titration for element determination, and a number of new or modified techniques, 

such as size exclusion chromatography for MW measurement, were used. 

Accordingly, the details of the methods and apparatus/equipments are included in 

this section. In the coagulation experiments, a specially built reactor to control the 

velocity gradient, G, and on-line monitoring system were employed. In order to 

determine the quality of final water, a variety of measurements in terms of TOC, 
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turbidity, colour, UV, floc strength, residual Al and residual tannin were 

undertaken. 

 

4.2 Cogulants 

 

4.2.1 Tannin-based Polymer  

 

Tannin based polymer (TBP) in this study was obtained from TANAC 

Ltd, Brazil. The TBP was supplied as a brown solid and was prepared in high 

purity water (de-ionised, 18.2mΩ) as a 0.3% w/v (3g l-1), which was used as the 

stock solution for subsequent tests. The preparation involved agitating the 

solution (by magnetic stirrer) for one hour and then filtering through Whatman 

No.42 filter paper (pore size ~2.5µm). Considering the aging effect, all TBP 

solutions were used within 3 hours, except the samples used for ageing tests. 

After further filtering by a Gelman 0.45µM membrane filter, the Non-purgeable 

dissolved organic content (NPDOC) of working TBP solutions at different 

concentrations was measured by a TOC analyzer (discussed in Section 4.4.2.3). 

Colour and UV absorbance values were measured in terms of absorbance at 400 

nm and 254 nm respectively, using a scanning UV-visible spectrophotometer 

(discussed in Section 4.4.2.6). The analysis results are shown in Table 4.1.  

 

           The results in Table 4.1 indicate that there a linear relationship between 

NPDOC /absorbance values at 254nm with TBP concentrations in accordance 

with Beer’s Law theory. Although there is a linear relationship between 

absorbance values at 400nm (indication of colour) and TBP concentrations, the 

relationship does not go through origin, which was not expected. Although the 

reason for this is unclear, it may be caused by the complex nature of the raw 

tannin material. 
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TABLE 4.1 Variation of NPDOC and UV/Vis-absorbance (254nm and 400nm) 

with TBP solution concentration 

TBP concentration         

(mg l-1) 

NPDOC 

(mg l-1) 

Abs (254nm) 

(cm-1) 

Abs (400nm) 

(cm-1) 

25 11.73 0.25 0.030 

30 16.41 0.299 0.033 

35 18.04 0.343 0.035 

40 22.41 0.386 0.037 

45 24.65 0.429 0.039 

50 27.14 0.472 0.041 

55 29.79 0.508 0.043 

58 30.99 0.532 0.044 

60 32.50 0.547 0.045 

65 35.53 0.592 0.046 

70 38.36 0.634 0.048 

 
4.2.2 PolyDADMAC 

 

Quantities of a commercial cationic polyDADMAC, Flobeads DB 45 SH, 

with 90% active content in weight, were kindly provided by SNF Ltd (UK). This 

synthetic polyDADMAC (poly diallyldimethylammonium chloride) has a 

molecular weight of approximately 6101× g mol-1, which is quoted by the 

manufacturer. Information concerning charge density of this product was not 

available by the manufacturer but a previous study (19) strongly supported the 

assumption that polyDADMAC has a high CD of about 6.2 meq g-1, which was 

believed to be insensitive to pH due to the quaternary ammonium,R1R2R3R4N
+ 

cationic group. The product was supplied in solid form and diluted in high purity 

water (de-ionised, 18.2mΩ) to give a stock solution of 2g l-1. Continuous gentle 

stirring was required to achieve complete solution of the granular polymers in the 

preparation of stock solutions. 
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4.2.3 Alum 

 

Aluminium and iron salts are still widely used as coagulants in the water 

and wastewater industry. For comparative purposes, aluminum sulphate hydrate 

(Al2 (SO4)3·14H2O; Aldrich, UK), ‘alum’, was applied as a primary coagulant in 

this study. Several mechanisms such as charge neutralisation or sweep 

flocculation have been postulated for the coagulation of humic substances and 

turbidity particles by aluminium ions. The relative importance of these 

mechanisms depends on factors such as pH and coagulant dosage (134). It is well 

established that the optimal pH level is about 5.5 ~6 for aluminium sulphate and 

slightly lower for ferric salts, in the coagulation process (2). Stock alum solutions 

were prepared at a concentration of 0.1 mol l-1. These were prepared weekly and 

kept at 4ºC in the refrigerator. 

 

4.2.4 Tanfloc SL  

 

Tanfloc SL (TANAC Ltd, Brazil) is a solid mixture of TBP and Alum. 

Tanfloc SL solution does not jellify within the stated 3 month shelf-life. The 

composition of Tanfloc SL was given by the manufacturer, as solids (w/w): 8.4% 

aluminium sulphate and the rest as TBP. However, 1 g l-1 TSL solution was 

measured by an ICP Analyser (FISONS ARL 3580B), and gave a result of 8.8 

310−
× g l-1 as Al3+, which is equal to 5.6% Al2 (SO4)3 without water of hydration 

in TSL mixtures. This lower figure of Al content was used in comparative 

coagulation tests, because the higher weight value of aluminium sulphate salt 

(8.4%) given by the manufacturer is likely to be based on inclusion of some water 

of hydration.  

 

4.3 Reagents and Chemicals 

 

The other reagents or chemicals in preparation of the working buffer or 
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titration solution, except noted otherwise, were supplied by BDH (BDH, 

Dagenham, Essex, UK) and were all analytical reagent grade. They were used 

without further purification. High purity water (de-ionised, 18.2mΩ) was used in 

all experiments. To investigate the effect of pH values, two distinct buffer 

systems in the measurement of charge density and coagulation performance were 

adopted respectively. These categories can be described under the following 

headings: 

 

( i ) Characterisation tests: 1 mmol l-1 buffer solutions were used to control the pH 

value of solution directly. The buffers that were used were: CH3COOH/ 

CH3COONa for pH 3-5, NaH2PO4/Na2HPO4 for pH 6-7 and NH4OH/NH4Cl for 

pH 8-10. 

 

( ii ) Coagulation tests: 0.1 mol l-1 NaHCO3 solution was used as a buffer and the 

pH of model waters was maintained by adding 0.1mol l-1 NaOH or HCl solution. 

 

There were two types of standard titration analysis used in this study. 

These were colloid titration to measure the CD values and Argentometric titration 

(135) to determine the chloride content. The preparation of titration solutions are 

discussed below: 

 

( i ) Colloid titration: PPVS was obtained from Aldrich Chemicals, UK. The 

solution was prepared by dissolving 180 mg PPVS chemical in 1L of water. The 

charge density of PPVS solution used as anionic titrant was standardized with the 

cationic surfactant, cetyltrimethylammonium bromide (CTAB) which was 

prepared as a 1 meq l-1 solution. Ortho-toluidine blue (o-Tb) was prepared as a 

0.01% (v/v) aqueous solution, which was used as colour indicator in the colloid 

titration process. 

 

( ii ) Argentometric titration: Potassium chromate K2CrO4 (Aldrich Chemicals, 
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UK) was prepared as 50 g l-1 to indicate the end point of the silver nitrate titration 

of chloride in a neutral or slightly alkaline solution. Standard silver nitrate, 

AgNO3 was obtained from Aldrich Chemicals, UK, and prepared as 0.0141 mol 

l-1 titrant as the standard method defined. Silver chloride is precipitated 

quantitatively before silver chromate is formed. Sample pH was adjusted by 0.1 

mol l-1 H2SO4 or NaOH to the range from 7 to 10. 

 

4.4 Model Water and Surface Water Sample 

 

4.4.1 Model Water with Kaolin Suspension 
 

Kaolin clay (Fisher Chemical, UK) was prepared as a model suspension. 

The particle size was analysed by Laser Diffraction Particle Size Analyser 

(Coulter LS Series, Beckman coulter Ltd., UK) and the geometric mean size of 

the particles in the suspension was 4.85µm. A working solution, normally 50 mg 

l-1 of concentration, was prepared by dispersing 100mg of kaolin clay in 2L of 

de-ionised water. To obtain full dispersion it was necessary to raise the pH of the 

suspension to about 7.5 (136), and blend at high rotational speed, which was 

achieved by adding 5 ml of 0.1 mol l-1 NaOH and vigorously stirring at 2000 rpm 

for 2 hours to obtain a solution with a turbidity value of 40 NTU±1%, determined 

by HACH turbidimeter (discussed in Section 4.4.2.4). It was observed that the 

light kaolin clay showed good dispersion and stability in the solution. Surface 

potentials were not determined but previous study indicated that kaolin has a net 

negative charge in natural water. Duan and Gregory (136) determined that the 

Electrophoretic Mobility values of kaolin particles range from about -0.8 at pH 3 

to -2.5 at pH10 (µm s-1 v-1 cm). In this case several pH values were investigated, 

using 0.1 mol l-1 NaHCO3 as an appropriate buffer solution. 
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4.4.2 Model Water with Humic Acid 
 

Humic acid (Aldrich Chemical Company, UK. Sodium salts, 42.2% 

Carbon content) was obtained as a commercial reagent grade solid. Stock 

solutions were prepared from 5g of dry humic acid product dissolved into 1L 

de-ionised water to give a HA concentration of approximately 5g l-1, after 

filtering by Whatman No.42 filter paper (pore size ~2.5µm). Working solutions of 

10mg l-1 and 30 mg l-1 concentration were prepared by diluting the HA stock 

solution with de-ionized water and adjusting the pH using 0.1 mol l-1 NaOH or 

HCl solution. 0.1 mol l-1 NaHCO3 was used as the buffer solution to allow 

convenient adjustment of pH. The solution was then further filtered under 

vacuum through a 0.45µM membrane filter (Gelman Sciences). The 

Non-purgeable dissolved organic carbon (NPDOC) and UV/Vis-absorbance 

values of HA in pure de-ionised water at 10 mg l-1 and 30 mg l-1 concentrations 

were measured by TOC analyser and the UV Probe Ultraviolet 

Spectrophotometer. These are shown in Table 4.2. 

 

TABLE 4.2 Variation of NPDOC and UV/Vis-absorbance (at 254nm and 400nm) 

with HA solution concentration 

Concentration 

(mg l-1) 

pH NPDOC 

(mg l-1) 

Abs (254nm) 

(cm-1) 

Abs (400nm) 

(cm-1) 

SUVA* 

m-1/mg l-1 

10 8.45 2.672 0.285 0.090 10.7 

30 8.60 9.957 0.748 0.227 7.5 

*SUVA=UV 254/NPDOC; indicative of aromaticity 

 

It has been shown that the UV/Vis-absorbance values of humic solution 

increased with increasing pH (89). This was confirmed by measuring the 

UV/Vis-absorbance values of 30mg l-1 HA solution at different pH values (after 

filtration) and the results are shown in Table 4.3. The UV/Vis- absorbance values 
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of 10mg l-1 HA solution at pH 9 are 0.293 and 0.096.  

 

TABLE 4.3 Variation of UV/Vis-absorbance (at 254nm and 400nm) of HA 

solutions with pH (HA concentration 30mg l-1)  

pH Abs  (254nm) 

(cm-1) 

Abs  (400nm) 

(cm-1) 

3 0.653 0.160 

4 0.685 0.172 

5 0.709 0.188 

6 0.719 0.197 

7 0.737 0.210 

8 0.743 0.212 

9 0.752 0.232 

10 0.770 0.250 

 

Considering the complications caused by the very rapid interaction of 

humic acid with TBP, especially at a high pH value, it was infeasible to determine 

the initial UV-visible absorbance of the combined HA and TBP at the beginning 

of the coagulation process. Hence, it is assumed that the initial absorbance value 

(at 254nm and 400nm) was the sum of the individual absorbance values of TBP 

and HA (values shown in Tables 4.1 and 4.3). 

 

4.4.3 Simulated Water with Kaolin Suspension and Humic Acid 

 

The tests involving model waters containing both suspended material 

and humic substances were undertaken to compare the TBP performance with 

that investigated previously by WRc using real water (River Thames water, 

Egham (137)). The model water was 2L de-ionised water (18.2mΩ) with 70mg of 
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kaolin clay and 2ml of humic acid solution (2g l-1); to achieve the same pH (7.9) 

10ml of 0.1mol l-1 HCl was added. The relevant quality parameters of the model 

water and real river water are shown in Table 4.4. 

 

TABLE 4.4 Analysis of simulated water and real water used by WRc (137) 

 Colour 

(Hazen) 

NPDOC 

( mg l-1 ) 

Turbidity 

   (NTU) 

pH 

Model water 32.0 (8.51)* 27 7.9 

River water  

(WRc study) 

32.8 5.73 27 7.9 

* This value is unexpectedly high (see Table 4.2) and therefore believed to be incorrect 

4.4.4 Raw Surface Water 

 

Raw water samples were received from an organic-rich river source at 

Bamford, UK (located in the north of England). A preliminary analysis of the 

water quality was undertaken before commencing the coagulation experiments. 

The results of the tests are given in Table 4.5. All parameters were measured after 

filtration by 0.45 µm paper, apart from the Turbidity. To achieve the pH value at 6 

in the samples, 0.1 mol l-1 HCl solution was pre-determined and added to 2L raw 

water in these coagulation tests. The high colour and SUVA values indicate a 

highly aromatic, humic type organic content. 

 

TABLE 4.5 Analysis of an organic-rich river water at Bamford, UK 

 pH NPDOC  

(mg l-1) 

Colour  

(H°) 

UV254nm
* 

   (cm-1) 

UV400nm
* 

  (cm-1) 

Turbidity** 

(NTU) 

Raw 

water 

7.9 3.66 70 0.248 0.039 1.5  

* 1cm cell **No filtration 
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4.5 Analysis Methods 

 

4.5.1 Polymer Characterisation  

 

4.5.1.1 Dissociation, Precipitation and UV Absorbance Analysis 

 

Simple chemistry analysis falls into three categories: 
 

(1) pH Titration Analysis 

A pH titration was performed by adding standard base (0.001 mol l-1 

NaOH solution) to 100ml TBP solution (0.03g l-1). For comparison, the titration 

of the distilled water was also carried out with the standard base (0.001 mol l-1 

NaOH solution). To avoid the influence of air effects, the solutions were 

contained within a desiccator and soda lime was used in the desiccator to absorb 

carbon dioxide and water during the titration. The beaker with TBP solution was 

placed in the desiccator, then 1ml of 0.001 mol l-1 NaOH was added carefully, 

until the pH value was stable. The pH was measured by pH electrode (Hydrus 

300, Fisher, UK). Based on the TBP—base titration curve, the dissociation 

constant pKa of TBP was estimated.     

                                        

(2) Solubility Analysis 

Using 1m mol l-1 pH buffers to dilute the 1g l-1 stock (initially filtered) 

TBP solution, a series of solutions with concentrations from 0.02g l-1 to 0.1g l-1 

over the pH range of 3-9 were prepared. All of these solutions after standing for 6 

hours in the bench were subsequently filtered through Whatman No.42 filter 

paper (pore size ~2.5µm) to determine the TBP solubility. In each case, clean 

filter paper was transferred to a crucible and dried at 50-55ºC for 12 hours, then 

placed in a desiccator to cool and equilibrate to ambient temperature before 

weighing the paper. This cycle of drying, cooling, desiccating and weighing was 

repeated until a constant weight was obtained or until the weight change was less 

than 4%. After filtration, the filter paper was dried and weighed using the same 
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procedure, and the final weight of filter paper was taken to calculate the m/v 

concentration of the polymer. It should be noted that the (un-buffered) solutions 

had a pH<6.       

  

(3) UV/visible Light Absorbance Analysis 

The UV-visible light absorbance of the TBP was determined 

spectrophotometrically. TBP water solution with different concentrations in the 

range of 0.02g l-1---0.1g l-1 were firstly scanned using the UV Probe Ultraviolet 

Spectrophotometer (Shimadzo, Japan; wavelength range from 190nm to 800nm, 

10 mm quartz cell path) to determine the maximum absorbance wavelength. At 

this maximum wavelength, TBP solutions with different concentrations (from 

0.02g l-1 to 0.1g l-1) were analyzed over a range of pH from 4 to 9 by employing a 

10mm quartz cell path. All tannin solutions were allowed to stand for 6 hours and 

then filtered to test. Blank buffer solutions were used as the reference solution in 

the instrument to exclude absorbance due to the buffer alone.  

 

4.5.1.2 Charge Density Analysis 

 

The charge density of the TBP was evaluated by colloid titration using 

PPVS (poly-potassium vinyl sulphate) as anionic titrant (18). The method is 

based on the stoichiometric reaction in the sense of 1:1 charge compensation 

between oppositely charged polyelectrolytes. The end point is determined by the 

interaction of the cationic indicator, o-toluidine blue (o-Tb, 

3-amino-7-dimethylamino-2-methyl-phenothiazin-5-ium chloride) with anionic 

PPVS, which leads to a hypsochromic shift in the absorption spectrum of o-Tb 

and thus to a visible colour change. The charge density of PPVS solution was 

preliminary standardised with the cationic surfactant, cetyltrimethylammonium 

bromide (CTAB). Both visual titration and spectrophotometry were used to 
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determine the titration end point in order to compare the methods. The charge 

densities of the TBP and the polyDADMAC were evaluated for a range of 

solution pH values from 3 to 9 in this study. Results are expressed as the mean 

value of three replicate samples. To determine the TBP charge density at pH≥6, 

the titrant (PPVS) concentration was diluted to 1×10-5 mol l-1. 

 

(1) Visual titration (procedure 1) 

To determine the charge density of the cationic polymer by titration with 

the anionic polyelectrolyte PPVS, the charge density of PPVS should be 

determined. The PPVS solution was firstly standardised with CTAB; this 

involved 3 ml of CTAB (1 meq l-1) solution with three drops of o-Tb solution 

titrated with PPVS until the colour of the solution changed from blue to red-violet. 

Then, the titration procedure was repeated for the filtered solutions of TBP (10 ml 

of 0.08 g l-1) and polyDADMAC (10 ml of 0.05 g l-1) at various pH values, using 

PPVS of a pre-determined charge density according to the above procedure. 

 

(2) Spectrophotometry (procedure 2) 

The titration procedure was the same as indicated for procedure 1. 

However, at the end point, the solution was tested by spectrophotometry, where 

the binding of o-Tb blue to PPVS produces a distinct colour shift from blue 

(absorption maximum at 635 nm) to red-violet (530 nm).  

 

4.5.1.3 Functional Group and Chemical Bond Analysis 

 

(1) FT-IR Analysis 

One common method for investigating the chemical structure of organic 

molecules is by the use of FT-IR (Fourier Transform Infrared) Spectroscopy. In 

this case, a preliminary assessment of the chemical structure of the TBP was 
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determined by the use of a Magna-IR 560 Spectrometer (Nicolet Instrument 

Corporation, USA). The spectrometer was equipped with a Globar IR source CsI 

beam splitter, and a DTGS CsI detector. For comparative purposes, study was 

made of tannin extract (gel, non-Mannich reaction and non-polymerization) after 

freeze drying. Approximately 35g tannin extract (gel) was weighed and then 

placed in a conical flask in a low temperature refrigerator at -18ºC. Freeze drying 

was carried out overnight in a laboratory freeze dryer (Birchover Instruments Ltd, 

UK) with a vacuum of 100 mT or less. With great care, the solid powder of TBP 

or solid tannin extract was further dehydrated at 60°C in an oven, was blended 

with dried KBr (1/40 w/w) and then studied by FTIR spectroscopy. For each 

spectrum 200 scans were taken in the range from 400 to 4000 cm-1 with the 

resolution of 8 cm-1.The resulting FTIR spectral patterns were analyzed and the 

results were compared with known signatures of identified materials in the FTIR 

library. 

 

(2) 1H NMR Analysis 

The arrangement of functional groups in TBP was measured by 1H NMR 

(Nuclear Magnetic Resonance) Spectroscopy. A TBP sample was placed in a 

strong magnetic field of 5,000 to 23,000 gauss and irradiated by the radio 

frequency (RF), the value of which is dependent on the nuclei of interest. 

Absorption of the radio frequency occurs, corresponding to the energy required to 

bring the nuclear magnets (1H) into specific orientations with respect to the 

magnetic field. The 1H NMR analysis of the TBP samples was undertaken using a 

600MHz instrument (Bruker Spectrospin AV600, USA). The TBP solid was 

dissolved in the solvent comprising 95% water: 5% D2O, and water suppression 

was used to remove the water effects to the spectra generated. It had been the 

intention to use 13C NMR, but due to the low solubility of the tannin and the low 

sensitivity of carbon to NMR, no signals were observed, hence the use of 1H as 

the atomic species to study. 
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4.5.1.4 Element Content Analysis 

 

(1) ICP Analysis 

A polymer will contain several elements in addition to carbon, which 

need to be identified during a characterization process. A metal elemental analysis 

test was carried out by use of an ICP Analyser (FISONS ARL 3580B, UK). 100 

mg l-1 TBP solution and certified standard solutions (Merck, UK) were acidified 

with 1% (w/w) HNO3 solution to the same pH. Results are expressed as the mean 

value of three replicate samples. Using ICP, the percentage content of prominent 

trace (mainly metal) elements of TBP (with dissolution in strong acid solution) 

was analysed.  

 

   (2) CHN Analysis 

An elemental analysis test for carbon, hydrogen and nitrogen was carried 

out by a CHN elemental analyzer (Perkin-Elmer, USA) involving the catalysed 

combustion of a 10 mg accurately weighted TBP solid sample at high temperature 

(above 1800°C) in a stream of oxygen. After combustion, the generated CO2, 

NOx and H2O flowed through a series of thermal conductivity cells (the detector) 

and then were measured to determine the C, N and H percentages, respectively. 

 

(3) TOC Analysis 

The organic carbon content analysis was carried out by a total organic 

carbon analyser, TOC-Vws (Shimadzo, Japan). Organic carbon in highly pure 

water (de-ionised, 18.2mΩ), and in 100 mg l-1 TBP solution were measured to 

determine the organic carbon content of the TBP sample. For the TBP solution, 

samples were initially filtered by 0.45 µM membrane filter (Whatman,UK). The 

filtered solution was acidified with ortho-phosphoric acid and sparged with high 

purity (zero-grade) oxygen in a TOC analyzer prior to analysis. The solution was 
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then analyzed three times with mean results being quoted. 

 

(4) Kjeldahl Nitrogen Analysis 

The Kjeldahl method can be undertaken to determine ammonia nitrogen 

and organic nitrogen (138). In this study, a Skalar’s SANplus analyzer (Skalar 

Analytical Ltd., Netherlands) was used for the nitrogen analysis in 1g l-1 liquid 

TBP samples after digesting the sample with concentred sulphuric acid, H2SO4, 

5% (w/w) and a Kjeldahl catalyst. This result was adopted to validate the data 

from the CHN analysis.  

 

(5) Argentometric Titration Analysis 

An Argentometric titration method (135) was used to measure the 

chloride content of the TBP (counterion to the cationic charge). In a neutral or 

slightly alkaline solution, potassium chromate can indicate the end point of the 

silver nitrate titration of chloride. Silver chloride is precipitated quantitatively 

before red silver chromate is formed. To get the concentration of chloride in a 

sample, the following formula was used: 

nncentratioChlorideCo
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----------------- (4.1) 

Where: 

         A = mL titrant used for sample 

         B = mL titrant used for blank 

         M =molarity of silver nitrate 
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4.5.1.5 Molecular Weight Analysis 

 

(1) Size Exclusion Chromatography (SEC) Analysis 

SEC has been used to determine the molecular mass distribution of both 

natural and synthetic polymers (139). In SEC, elution time data of samples can be 

conveniently translated into molecular mass through a calibration curve. In this 

study, information concerning the molecular mass distribution of TBP was 

obtained by size exclusion chromatography with 1-methyl-2-pyrrolidinone (NMP) 

as the polymer solvent and chromatographic eluent (139). This work was carried 

out by colleagues in the Department of Chemical Engineering. Two appropriate 

SEC columns (300mm; 7.5mm i.d. packed with polystyrene/polydivinylbenzene 

beads) were selected in this study to fractionate the TBP sample at a temperature 

of 85°C and flow rate of 2ml min-1. The SEC columns of different porosity 

ranges (Mixed-D and Mixed-A; Polymer Labs,UK) were used with detection by 

an evaporative light scattering detector (ELS) as well as Perkin-Elmer LC 290 

UV-absorbance detector set at 280, 300 and 350nm. The method involves the use 

of a calibration curve obtained by plotting the logarithms of known molecular 

masses of standard polystyrenes or polysaccharides against their elution time. 

TBP concentrations at 1g l-1 were used in this study. Although the solubility of 

polymer samples in NMP solvent was assumed, this needs to be confirmed in any 

future studies.  

 

(2) Light Scattering Analysis 

The amount of light scattered is directly proportional to the product of 

the weight-average molar mass and the macromolecule (solute) concentration 

(140). Light scattering method is widely used but it is valid only when the 

refractive index (specifically the refractive index—concentration gradient, dn/dc) 

of solution is known. In this study, the average molecular weight, <M>w, of the 

TBP was determined by a Wyatt DAWN EOS Light Scattering Photometer 



 92 

(Wyatt Technology Ltd. UK) at 633 nm and 25ºC.  A known molar mass 

polystyrene (200,000 g mol-1) dissolved in toluene was used as a standard sample. 

The stock solution with TBP concentration of 1 g l-1 was prepared in 0.05 M 

NaCl solution and filtered through a 0.2 µm syringe filter to remove fine dust 

particles. To construct a Zimm plot, five dilutions at relative concentrations of 

approximately 80%, 60%, 40%, 20% and 10% of the stock concentration were 

introduced to the DAWN photometer in a batch mode by a syringe pump and the 

scattered light was measured as a function of angle for each concentration. From 

a single Zimm plot the molar mass M, rms radius rg and the second virial 

coefficient A2 can be determined (140).  The refractive index of TBP solution 

was determined by Wyatt Technology UK Ltd. 

 

4.5.2 Coagulation Experiments 

 

4.5.2.1 Photometric Dispersion Analyser  

 

Conventional jar test methods are limited in terms of their sensitivity and 

practical convenience, although they sometimes do provide a useful visual and 

semi-quantitative simulation of full-scale performance. In this study a 

photometric dispersion analyser (PDA 2000, Rank Brothers, Cambridge, UK) 

was used in a modified jar test procedure. This is a relatively new approach to 

evaluating coagulation performance which has been found to provide a sensitive 

and rapid response to the state of aggregation of colloidal suspensions. In the tests 

a constant flow from the stirred reactor to the PDA optical sensor was maintained 

by the use of tubing and a peristaltic pump (Matson 505S, UK) operating at about 

25ml min-1; the flow passes through the optical sensor where it is illuminated by a 

narrow light beam (850nm wavelength). In regard to the output of the PDA, the 

ratio of the root mean square (rms) value of the fluctuating component to the 

average transmitted light intensity (dc value) is called as the Flocculation Index 

(FI).The optical data was recorded every second and the results were logged by 

computer for subsequent spreadsheet analysis. Although inherently qualitative, it 



 93 

is believed that the FI value is correlated with floc size and always increases as 

flocs grow larger (141). Therefore, this ratio can give immediate information on 

the state of aggregation of particle suspension over the entire period of 

coagulation. 

 

The principle of this optical technique has been described by Gregory 

(142). A briefly description of this technique is illustrated as follows: a flowing 

suspension through the transparent tube is illuminated by a narrow light beam 

from a luminous light source. The transmitted light intensity passing through the 

suspension fluctuates randomly about some mean value, which can be converted 

to an electrical signal by a photometric detector. The output from detector 

consists of a steady (dc) signal and a fluctuating (ac) component. The dc value is 

a measure of the average transmitted light intensity and depends on the turbidity 

of the suspension. The fluctuating (ac) component is a result of random variation 

in the number of particles in the illuminated volume. Gregory concluded that the 

root mean square (RMS) value of the fluctuating (ac) signal is related to the 

average number concentration and the size of the suspended particles. In practice, 

it is convenient to divide the RMS value by the steady dc value to give a 

dimensionless term R= RMS/ dc. Although the ratio R is qualitative information 

on aggregate size in nature, the relative change in the R value is a useful indicator 

of the degree of coagulation. 

 

4.5.2.2 Gator Jar 

 

A 2L square, acrylic reactor vessel of 21cm height and 11.5cm width was 

used in the coagulation tests as an alternative to standard glass beakers. This was 

partly because the glass beakers created a large amount of vortexing, which 

limited the attainable power input to the water, and partly to carry out tests where 

it is useful to quantify the prevailing mean velocity gradient (commonly referred 
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to as G). By assessing the coagulation performance at a known value of velocity 

gradient allows for direct comparison with other published studies and to 

full-scale practice. A ‘Gator jar’ reactor and a 7.6 cm flat paddle were fabricated 

from clear acrylic sheets in a form based directly on a standard design 

recommended by the AWWA (143). The flat paddle was driven by a standard 

top-mounting, variable speed stirrer (Heidolph, RZR2020, Germany).The AWWA 

design provides a linear log (paddle speed) versus log (velocity gradient) 

calibration curve that can be applied directly. The mean velocity gradient for the 

tests were pre-calculated as , 950 s-1, 800 s-1, 600 s-1, 480 s-1, 350 s-1 and 48 s-1 , 

corresponding to the following paddle speeds: 400rpm, 350rpm, 300rpm, 250rpm, 

200rpm and 50rpm (Appendix I: Laboratory G Curve for Flat Paddle in 2L Gator 

Jar). All the coagulation experiments have involved pumping a sample flow from 

the stirred reactor to the PDA sensor and returning it to the reactor (see Figure 4.1 

– clockwise direction).  

  

 

 

 

 

 
 

Figure 4.1 Schematic of coagulation apparatus 

 

4.5.2.3 Coagulation Process 

 

(1) Standard Coagulation Procedure 

The optimum dosages of coagulants for the model waters and the raw 

surface water under different coagulation conditions were determined by the PDA 

at a temperature of approximately 23ºC (laboratory room temperature). The 
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dynamic coagulation tests followed a standard approach: solution samples were 

pumped from a 2L gator jar at about 25 ml min-1 through the tubing and the 

average (dc) and fluctuating (rms) components of the transmitted light intensity 

were monitored by the PDA instrument. After allowing 1 minute for steady state 

readings to be established, coagulants at the required dosage were pipetted into 

the suspension and the suspension was stirred at a high mixing speed, generally 

with a G-value range of 300 s-1-700 s-1, for 30 seconds. It was observed that alum 

and TBP were acidic and lowered the pH of model water. Therefore, to reach the 

desired pH, a pre-determined amount of 0.1 mol l-1 NaOH or HCl solution was 

added. The basic function of rapid mixing was to achieve complete mixing of the 

polymer in the water in as short a time as possible, thereby causing efficient 

destabilization. The stirring speed was subsequently reduced to a lower speed of 

50 rpm (48 s-1) and held at this value for a chosen time period (10-60 mins), 

which was determined as that required to obtain a steady FI, indicating flocs do 

not continue growing and have reached a stead-state size. The fundamental 

purpose of slow mixing was to promote collisions between destabilized particles 

so that flocs were formed. The speed of 50 rpm is believed to be the optimal 

stirring speed, which maintained the aggregates in suspension but without 

excessive breakage in solution. However, in some cases there was still fluctuation 

of the FI index at this speed in the stable phase of flocs, since large flocs were 

observed to accumulate on the bottom of the jar and were intermittently 

re-suspended.   

 

(2) Procedure for the Study of Floc Strength  

The formation, breakage and re-formation of flocs using TBP as 

coagulant were investigated by studying the FI response to different values in 

mean velocity gradient. Using a 2L gator jar, an indication of relative floc 

strength can be obtained by applying a sudden increase in shear rate to the formed 

aggregates and relating velocity gradient applied to the maximum ‘floc size’ (FI) 
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resulting. The procedure used is described as follows: after the coagulant at the 

required dosage was pipetted into the suspension, the suspension was stirred at 

200 rpm (350 s-1) for 30s, followed by slow stirring at 50 rpm for 10-30min (to 

achieve steady state with no significant change in the FI value and so no further 

floc growth). In order to study the floc strength, a series of tests were carried out 

in which the stirring speed was increased suddenly to either 200 rpm (350 s-1), 

250 rpm (480 s-1), 300 rpm (600 s-1), 350 rpm (800 s-1), and 400 rpm (950 s-1) for 

60 seconds and then reducing the stirring speed back to 50rpm. A second series of 

tests of floc breakage and re-formation was carried out in which a sudden 

increase in stirring speed to 300 rpm was maintained for different time periods, 

ranging from 5 to 300 seconds, and then the speed was reduced back to 50 rpm. 

For each coagulant the flocculation indexes before floc breakage, and before and 

after the floc re-formation due to increasing mixing speeds, were measured. 

 

(3) Procedure for the Study of Coagulation Performance of Dual 

Coagulant  

A coagulation performance matrix was produced for a full range of 

alum-polymer combinations at different pH values. Initially, a series of 

coagulation tests using alum as the sole coagulant were carried out to determine 

the optimal alum dosage. From this specific value the alum dosage was 

systematically reduced, and at each dosage coagulation tests were carried out 

with a range of polymer dosages. The dynamic coagulation tests for this study 

were conducted in a 2 L gator jar and measured by the PDA, using a standard 

approach as described previously; in summary this was: after allowing 1 minute 

for steady state readings to be established, the required dosages of alum and TBP 

were pipetted into the solution simultaneously and the solution was stirred at 200 

rpm (350 s-1) for 30 seconds. The stirring speed was then reduced to a speed of 50 

rpm ( 48 s-1) and held at this value for the required time (30min).  
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(4) Procedure for the Study of Coagulation Performance of Solid Bound 

TBP 

The sand used in this study was supplied by Universal Mineral Supplies 

Ltd, UK. Considering the organic contaminant on the surface of microsand, the 

received sand was first washed by either 20% (v/v) H2O2 or 5 % (v/v) Decon 

solution (Decon Laboratories Ltd, UK), then rinsed by de-ionised water for three 

times and finally dried in an oven at an appropriate temperature (105ºC). After 

this pre-washing of the sand, the adsorption tests at pH4 were undertaken. Initial 

adsorption tests were carried out at pH 4 using 30 mg l-1 TBP with different 

amounts of sand. A 2L gator jar with a high mixing speed of 300 rpm (600 s-1) for 

2 minutes was used in this test, and the final solution was filtered by 0.45µM 

filter paper. It was found that the maximum UV absorbance wavelength for TBP 

solution is 210nm, therefore the UV210 absorbance of filtered solutions was 

measured to indicate the residual TBP in solution. Further, the absorption ratio of 

TBP and sand can be determined. 

 

The modified method of applying TBP/sand mixture as a coagulant for 

HA solution treatment was investigated. In this case, the pH of solution was kept 

at a value of 4 and the coagulation test procedure of solid bound TBP was as 

follows: the solid bound TBP was prepared as described previously during 2 

minutes rapid mixing of washed sand and soluble TBP in the correct 

concentrations; the suspension was settled for 15 minutes; as much supernatant 

solution was carefully decanted away without disturbing or losing the settled sand 

from the bottom of the gator jar; approximately 2 L humic acid solution at 30mg 

l-1 was poured to the jar, with an amount of pre-determined HCl/NaOH solution 

to keep pH at 4; the contents of the gator jar were then rapidly mixed at 260 rpm 

(500 s-1) to resuspend the sand and maintain uniform conditions for flocculation. 

 

In general, all the bench-scale coagulation experiments have involved 
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pumping a sample flow from the stirred reactor to the PDA sensor and returning it 

to the reactor. Figure 4.1 shows the PDA and Gator jar equipped with a peristaltic 

pump and motorized stirrer for the coagulation tests. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Apparatus of coagulation tests 

 

 

4.5.2.4 Analysis of Water Quality 

 

Following a 30 min settling period after stirring, supernatant liquid was 

withdrawn by pipette in order to measure the quality parameters in terms of 

NPDOC, turbidity, colour, UV absorbance, floc volume and residual Al 
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concentration. All the analyses were carried out in accordance with standard 

methods (135). 

 

The concentrations of non-purgeable dissolved organic carbon (NPDOC) 

in water were determined by a total organic carbon analyser, TOC-Vws 

(Shimadzo, Japan). The treated water was initially filtered by 0.45µM membrane 

filter (Whatman,UK) and then the filtered solution was acidified with 

ortho-phosphoricacid and sparged with high purity (zero-grade) oxygen in a TOC 

analyzer prior to analysis. The solution was analyzed three times with mean 

results being quoted. 

 

Turbidity was measured by a turbidity meter (Model 2100A, Hach, UK), 

which was calibrated with standard solutions of 1 NTU, 10NTU or 100NTU. 

50ml supernatant of final water was measured without filtration. 

 

The Hazen colour values of the final water were measured by a 

Lovibond Nessleriser (BDH Chemicals Ltd, UK) after filtering through a 

Whatman 0.45 µM membrane filter. The color was determined by visually 

matching a column of sample in a Nessler cylinder with pre-calibrated colored 

glass standards, which are stable-colored and not affected by UV light or extreme 

environmental conditions.  

 

The absorption of light at ultra-violet wavelengths, such as 254nm, is 

believed to be caused by aromatic compounds and other organic substances with 

conjugated double bonds. Specific visible light absorbance at 400nm was used to 

represent true colour in the solution. In this case, UV-Vis measurements were 

recorded for filtered water by 0.45µM membrane filter (Whatman,UK) at 254nm 

(UV) and 400nm (colour), using the UV Probe Ultraviolet Spectrophotometer 

(Shimadzo, Japan; 10 mm quartz cell path). 
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Floc volume was measured by Imhoff cones after 1 hour settling. 2 L 

treated water is added to a pair of one-liter cone-shaped plastic containers. After 

settling for 45 min, the sample solution was gently agitated near the sides of the 

cone with a rod. Following a further 15 min settling period, the floc volume was 

recorded in milliliters, from graduations marked near the bottom of the cone. 

 

The solution was further centrifuged at 2000 rpm for 30 min by 

centrifuge (Gallenkamp, UK), and then 20 ml of the solution was filtered through 

a 0.45 µM membrane filter (Whatman, UK). In order to determine the residual 

aluminum concentration, the filtrate was acidified with 2 ml of concentrated 

HNO3 solution (0.2% w/w), and measured by a graphite furnace atomic 

absorption spectrometer (Perkin-elmer AAnalyst 800, USA).  

 

4.5.3 Residual Tannin Measurement  

 

(1) Determination Limit of Standard Method for Tannin Measurement 

A standard method (144) was undertaken to determine the concentration 

of free tannin in final water. This colorimetric method measures the light 

absorbance at 700nm using the UV Probe Ultraviolet Spectrophotometer 

(Shimadzo, Japan; 10 mm quartz cell path) following progressive additions of a 

standard solution of Folin phenol reagent (tungstophosphoric and 

molybdophosphoric acids) and carbonate-tartrate reagent that participate in an 

association reaction with tannin in solution to form a blue color. According to the 

procedure describe in Section 5550B of Standard Methods (144), the minimum 

detectable concentration is approximately 0.025 mg l-1 for phenol and tannin acid 

with as 1-cm-path-length spectrophotometer. However, the detection limit of this 

method was determined in a preliminary study.  For this purpose, seven 

replicates of 0.025 mg l-1 standard tannin acid solution were analyzed with a 
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1-cm-path length spectrophotometer. The Detection Limit (DL) for tannin acid 

and phenol was evaluated by use of the equation: DL=S t (n-1, 1-α=0.99)  , where S = 

standard deviation of the replicate analyses, and t (n-1, 1-α=0.99) =3.143, where 3.14 

is the Student’s t value for 7 degrees of freedom at 99% confidence level. Using a 

set of seven tannin samples in aqueous solution, and quantifying the light 

absorbance at 700nm, the DL in this method was found to be 0.018 mg l-1 for 

tannin acid. The method illustrated that in a single laboratory analyzing seven 

replicates for phenol at 0.1mg l-1 the precision was ± 7% and recovery was 107%. 

 

(2) Standard Calibration Curve for Colorimetric Method 

A calibration curve has been established by measuring the absorbance of 

Folin phenol reagent with different concentrations of standard tannin at 700nm. 

The calibration curves for low concentrations (0.025 mg l-1 to 0.5 mg l-1) and 

relatively high concentrations (0.4 mg l-1 to 10 mg l-1) of tannin acid are given in 

Figure 4.2 and Figure 4.3. It can be seen that although the linear relationship 

between absorbance and reagent concentration is less consistent at low 

concentration, compared with high concentration of reagent, the trend is still 

sufficiently linear for both concentration ranges. Figure 4.4 shows the calibration 

curve with the combined reagent concentration (i.e. from 0.025 mg l-1 to 10 mg l-1; 

the combination of the Figures 4.2 and 4.3), and the resulting overall equation:  

0043.00943.0 −= XY ------- (4.2), was used subsequently for the final 

calculation of residual TBP concentration. Having derived the calibration curve 

for tannin acid, it was used to estimate the concentration of residual TBP in 

various coagulation tests.  
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Figure 4.3 Absorbance at 700nm with low tannin acid concentration 
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Figure 4.4 Absorbance at 700nm with high tannin acid concentration  
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Figure 4.5 Absorbance at 700nm (10mm cell path) with whole range of tannin 

acid concentration 
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5. RESULTS: CHARACTERISATION OF TBP 

 

5.1 Introduction 

 

It is generally accepted that the molecular weight and charge density of 

polymers play important roles in coagulation mechanisms and should be taken 

into account for the coagulation performance. Dentel et al. (22) proposed that the 

monomer types and actual chemical structures of polymers were evidently related 

to their coagulation behaviors in water and wastewater treatment processes. 

However, sufficient attention has not been given to the improvement of the 

coagulation performance by optimizing the polymer structure for particular 

applications. To date, the theories on the coagulation mechanism of natural 

polymers are still at the broad and exploring stage, with, unfortunately, much of 

the early work having been done on poorly characterized natural polymers. 

Studies (27, 146) on the characterisation of modified chitosan by different 

techniques have been undertaken in some areas, for example, biomedicine, food 

packaging, and the cosmetics industry, but no attempt has been made to link the 

structure of these natural polymers with the coagulation mechanism and their 

application in water treatment.  

 

The principal aim of this study was to determine the important 

parameters such as charge density and molecular weight, which is believed to 

affect the coagulation mechanism of TBP. Furthermore, working on an assumed 

tannin structure, shown in Figure 2.6, the other objective of this phase of the 

experimental work was to identify more clearly the chemical structure and 

functional group of TBP through the application of different techniques. 

Identification of TBP was carried out by a series of standard and modified 

analysis methods. The experimental steps are described briefly below: 

(a) Some preliminary tests were carried out, for example, on the polymer 

solubility, UV absorbance and pH titration. These simple tests do not provide 

conclusive information about the polymer structure, but provide useful 
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supporting information.  

 

(b) The charge density of TBP was determined under varying conditions. The 

results provide an assumption of the amine type in the TBP monomer and 

information concerning the structure of condensed-tannin and the 

modification process. 

 

(c) Identification of TBP functional groups was attempted by involving FTIR and 

NMR methods. The useful output is compared with outputs obtained for a 

library of standard polymers obtained under similar experimental conditions. 

 

(d) Qualitative and quantitative elemental analysis was employed to provide 

confirmatory evidence regarding the assumption by previous steps, and 

further information about the structure of the monomer of TBP. 

 

(e) Examination of the molecular weight of TBP was obtained in the final set of 

tests. 

 

Overall, the intention was to assess the monomer type and functional 

groups of TBP, and to estimate two important parameters, charge density and 

molecular weight. It was considered therefore that by employing standard or 

modified test methods would advance the possibility to describe the chemical 

properties and structure of TBP. 

 

5.2 Characterisations of TBP 

 

5.2.1 Dissociation, Precipitation and UV Absorbance of TBP 
 

In order to fully identify the polymer, it is first necessary to be familiar 

with the basic chemical properties of TBP in solution, such as its dissociation 

behaviour, solubility and UV/Vis absorbance.  
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5.2.1.1 Dissociation of TBP in Solution 

 

Modified tannin-based polymer was observed to be water soluble and 

present a low initial pH value in de-ionised water. Since the relative strength of 

weak acids can be found by comparing their acid dissociation constant pKa, a pH 

titration was initially carried out by adding standard base (NaOH solution) to TBP 

solution. A titration curve contains a relatively vertical section which represents a 

change of pH with a small volume of standard solution. The midpoint of the 

titration curve corresponds to the equivalence point for the reaction. Based on the 

TBP—base titration curve (Figure 5.1), the value of an approximate dissociation 

constant (pKa) was determined.  

 

Figure 5.1 TBP solution titration curve: 100ml Tannin (0.03g l-1) titrated with 

0.001mol l-1 NaOH 

 

From the pH titration curve, it can be seen that the titration curve of TBP 

solution is different from a strong acid- strong base titration curve. For a strong 

acid-strong base titration curve, the change in pH near the equilibrium point is 

sharper, so it is easier to locate the equivalence point with good precision. 

However, as can be seen from Figure 5.1, the pH titration curve is not indicative 

of the end point, which occurs when the acid and base in solution are 

stoichiometrically equivalent. Therefore, assuming the equivalence point is 
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around 12-14 ml NaOH, the pKa value is equal to the pH halfway to 

neutralization (equivalence point), around 5.6-6. This standard method only gave 

a rough pKa value of TBP, due to the different dissociation constants of multi 

function groups of TBP. Some researchers have reported the pKa value of the 

amine group on the polymer in the range of 5.5 to 6.5, depending on the source of 

the polymer (147). 

 

5.2.1.2 Solubility of TBP in Solution 

 

The influence of pH was observed on the solubility of TBP in solution by 

diluting the filtered 1g l-1 stock solution with pH buffers to produce a series of 

solutions with concentration from 0.02 g l-1 to 0.1 g l-1 over the pH range from 3 

to 9. No precipitation was evident for pH<6 at any TBP concentration solution 

after 6 hours. The results shown in Table 5.1 to 5.4 indicate that the precipitation 

of TBP is pH-dependent. At pH≥6 some insoluble products were produced in 

solution during 6 hours deposition. It was found that the insolubility of TBP is 

about 25-35% at pH 6; these evidences from precipitation tests supported the 

belief that the relatively low value of the intrinsic pKa of TBP, which was 

determined in previous section, is associated with tannin insolubility in water 

above pH 6. However, the insolubility of TBP at the pH range of 7-9 is very high 

(~45-55%), but does not change much with TBP concentration increasing. This 

unexpected pattern of insolubility indicated that TBP may be a mixture of 

hydrophilic and hydrophobic fractions.  

 

 TABLE 5.1 Insoluble materials for a range of TBP solutions with pH 6 
 

Concentration 

of TBP (g l-1) Pre-weight 

Final 

Weight1 

Final 

Weight2 

Final 

Weight3 Precipitate  Percentage 

at pH=6 paper (g) after dry(g) after dry(g) after dry(g) (g)  % 

0.04  0.5764 0.5899 0.5872 0.5875 0.0111 27.75 

0.06 0.5744 0.5992 0.5897 0.5901 0.0157 26.16 

0.08 0.5754 0.6024 0.6018 0.6016 0.0262 32.75 

0.1 0.583 0.6153 0.6196 0.6195 0.0365 36.5 
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TABLE 5.2 Insoluble materials for a range of TBP solutions with pH 7 
 

Concentration 

of TBP (g l-1) Pre-weight Weight1 Weight2 Weight3 Precipitate  Percentage 

at pH=7 paper (g) after dry(g) after dry(g) after dry(g)  (g) % 

0.04 0.5762 0.5962 0.5944 0.5944 0.0182 45.50 

0.06 0.5761 0.6094 0.6055 0.6052 0.0291 48.50 

0.08 0.5767 0.6162 0.6133 0.613 0.0363 45.37 

0.1 0.5704 0.6162 0.614 0.6138 0.0434 43.40 

 

TABLE 5.3 Insoluble materials for a range of TBP solutions with pH 8 
Concentration 

of TBP (g l-1) Pre-weight Weight1 Weight2 Weight3 Precipitate Percentage 

at pH=8 paper (g) after dry(g) after dry(g) after dry(g) (g) %  

0.02 0.5647 0.5754 0.5742 0.5738 0.0091 45.50 

0.04 0.5678 0.5856 0.5838 0.5839 0.0161 40.25 

0.06 0.5644 0.5983 0.5957 0.5954 0.031 51.60 

0.08 0.5768 0.6199 0.619 0.6189 0.0421 52.60 

0.1 0.5619 0.6091 0.6083 0.6078 0.0459 45.90 

 

TABLE 5.4 Insoluble materials for a range of TBP solutions with pH 9 
Concentration 

of TBP (g l-1) Pre-weight Weight1 Weight2 Weight3 Precipitate Percentage 

at pH=9 paper (g) after dry(g) after dry(g) after dry(g) (g)  % 

0.02 0.5667 0.5791 0.5766 0.5765 0.0098 49 

0.04 0.5843 0.6064 0.604 0.6036 0.0193 48.25 

0.06 0.5696 0.6049 0.603 0.6028 0.0332 55.34 

0.08 0.5864 0.6478 0.6299 0.6295 0.0431 53.85 

0.1 0.5722 0.6294 0.6218 0.6215 0.0493 49.30 

  

5.2.1.3 UV/visible Light Absorbance 

 

UV/visible light absorbance tests were carried out using an Ultraviolet 

Spectrophotometer (10mm quartz cell path; wavelength range from 190nm to 

800nm) for 0.02g l-1, 0.05g l-1 and 0.1g l-1 TBP solutions (no buffer). Figure 5.2 

shows two absorbance peaks at wavelengths of 210±2nm and 280±5nm were 

found for TBP solutions with a range of concentrations, and the maximum 

absorption occurred at 210nm. These two distinct absorbance peaks at two 

wavelengths indicated the complex nature of TBP. 
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Figure 5.2 UV-Vis scan of TBP solution with a series of TBP concentrations  

 

The results in Figure 5.3 clearly demonstrate the influence of pH upon 

the UV absorbance of TBP solution. For the TBP solutions at pH 4, 6 and 8, after 

6 hours and filtration, there is an approximate linear relationship between UV 

absorbance (at 210nm) and TBP concentration in accordance with Beer’s Law; 

that is, UV absorbance of solution increased directly with TBP concentration 

(148). However, the values of absorbance at 210nm decreased with the pH 

increasing, indicating the loss of precipitated polymer at pH≥6. It was observed 

that at pH 9, there was a non-linear relationship between UV absorption and TBP 

concentration, indicating a significant change in the chemical properties of the 

TBP. Therefore, UV absorbance measurement is infeasible to give a quantitative 

analysis for the content of TBP solution at different pH values. 
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Figure 5.3 Variation of absorbance at 210nm (10mm cell path) with TBP 

concentrations (pH = 4, 6 and 8) 

 

5.2.2 Variation of Charge Density with pH and Time 

 

Colloid titrations with TBP solutions at a constant concentration of 0.05 

g l-1 were carried out to determine the variation of charge density with pH using 

PPVS of pre-determined charge density (0. 512×10-3 meq l-1). The titration 

end-point was measured by visual and spectrophotometric methods. For 

comparative purposes, a study was made of a quaternary ammonium polymer, 

polyDADMAC (DB 45 SH). In this case, the charge density is expressed as the 

milliequivalents of positive charge per gram of polymer. Through confirming the 

charge density of polyDADMAC, it was found that the spectrophotometric 

method (procedure 2) was more accurate than the visual method because the 

repeatability error was much smaller. Figure 5.4 shows the charge densities of 

TBP and polyDADMAC prepared in buffer solutions for 3 hours in the pH range 

from 4 to 9 and measured by spectrophotometry. It is clearly seen that the charge 

density values of polyDADMAC are in the range of 6.1 to 6.2 meq g-1, and the 

value is not pH sensitive over a wide range of solution pH. This result agrees with 

the observations of Bolto and Gregory (19), that the charge density of 
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polyDADMAC is generally about 6.2 meq g-1 and unaffected by changes in pH. 

In contrast, the charge density of TBP was found to be pH–dependent as indicated 

in Figure 5.4. The results show that the charge density decreased from 3.07 meq 

g-1 to 0.2 meq g-1 with increasing pH values from 4 to 9. 
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Figure 5.4 Charge density of TBP as a function of pH 

 

 

In addition to the influence of pH, the charge density of TBP is also 

observed to be subject to an ‘ageing’ effect. Figure 5.5 represents the temporal 

variation of charge density of TBP at different pH. In this case, the initial charge 

density of 0.05 g l-1 TBP solution was colloid titrated within 2 standing hours, 

which give a higher value, compared with the results in Figure 5.4. Inspection of 

the varied curves of charge density revealed that with TBP storage time 

increasing, the charge density significantly decreased at all pH values. However, 

it is evident that even after 48 hours, the charge density was still significant at pH 

< 7. These phenomena are clearly related to the previous observations concerning 

the TBP solubility, and dissociation chemistry.  
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Figure 5.5 Temporal variation of charge density of TBP at different pH 

 
5.2.3 Elemental Content Analysis 

 

The elemental content of TBP was measured by several methods, namely: 

ICP for the metal elements; CHN for carbon, hydrogen and oxygen; and 

Argentometric titration for chlorine. The carbon content was validated by TOC 

analysis, and the nitrogen was validated by the Kjeldahl method. The results are 

shown in Table 5.5. These provide useful information in interpreting the repeating 

structure of TBP by considering the ratio of the elements. It is reasonable to 

assume that remaining content (~ 29%) of the polymer is oxygen. 

 

TABLE 5.5 Results of elemental analysis of TBP product (mass %) 

TBP 

Element 

C H N Metal 

(Sum) 

Cl Total  

Mass % 42.77 5.88 7.16 1.6 13.4 70.81 

 

5.2.4 Chemical Functional Group/Bond Analysis 
 

Two major spectroscopic methods, Fourier Transform Infrared (FTIR) 
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and Nuclear magnetic resonance (NMR), were used to qualitatively study the 

chemical groups and bond types of TBP in this study. 

 

5.2.4.1 Analysis of FT-IR Spectra 

 

The absorbance of infrared rays plotted separately against wave number 

for TBP and tannin extract is displayed in Figure 5.6 and Figure 5.7. Based on the 

region of the absorption peaks and the notional structure of the TBP it is possible 

to speculate on the nature of some of the functional groups. Comparing the 

spectra in Figure 5.6 and 5.7, it can be seen that most of the functional groups in 

TBP are present in the spectra of tannin extract. In both spectra, the 1040-1150 

cm –1 absorption band is attributed to C-O stretching; the 1370-1470 cm–1 

absorption band belongs to the –CH3 group; and the 700-900 cm –1 absorption 

band is characterised by adjacent or isolated H and aromatic H. The 2360 cm–1 

absorption band is from the small CO2 doublets, which appears in many spectra 

due to inequalities in path length. The 3600-3850 cm –1 absorption band is caused 

by sharp O-H stretching. It is also clear that the similar appearances of absorption 

peaks in Figure 5.6 and Figure 5.7 indicated that the absorbance bond between 

1550 and 1600 cm-1 belonged to a benzene group rather than an amine group 

(148). 

 

The distinct absorbance peak between 3300 and 3600 cm-1 in the FTIR 

spectrum of TBP is thought to be attributable to amine groups, for example, 

>N-H, -NH2 and –NH +

3
. This absorbance peak is not shown in Figure 5.7 by the 

FTIR analysis of tannin extract, which was assumed not to have any significant 

nitrogen in the structure. This conclusion is consistent with the results of the 

Kjeldahl method which showed that for TBP, the organic-N content was found to 

be approximately 6.5% and inorganic ammonia-N content was approximately 1%, 

compared with a neglectable N content in tannin extract by the Kjeldahl method.  
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Figure 5.6 FT-IR spectra of TBP 

 

 

 

 

 

 

 

 

 

Figure 5.7 FT-IR spectra of tannin extract  

 

5.2.4.2 Analysis of 1H NMR Spectra 

 

The resulting spectrum from the 1H NMR analysis of the TBP solution is 

presented in Figure 5.8. Although 1H NMR is a very versatile structural 

elucidation technique for hydrogen-containing compounds, the interaction 

between neighbouring hydrogens makes the resulting spectrum very complex, as 

can be observed from inspection of Figure 5.8 in the 2.5-4.4 ppm region. An 
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initial analysis of the spectrum has resulted in the breakdown of the data into 

three distinct regions: signals due to alkane protons (2.5-4.4 ppm); alkene protons 

(4.5-5.5 ppm) and aromatic protons (6.5-8.5 ppm). Several of the signals in the 

1-4 ppm region could also be attributed to the numerous magnetically different 

O-H groups around the basic TBP structure.  In addition, one of the signals in 

the 6.5-8.5 ppm region may also be tentatively attributable to the presence of an 

amine salt.  

 

 

Figure 5.8 1H NMR spectra of TBP 
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5.2.5 Analysis of Molecular Weight  

 

5.2.5.1 Molecular Weight Determined by SEC  

 

The molecular weight of TBP can be defined experimentally by size 

exclusion chromatography (SEC). However, the precision is dependent upon the 

adequacy of reference polymers for calibration. The results from the SEC in 

Figure 5.9 show a narrow range of MW distribution for the TBP, with a mean 

MW differing widely from a possible 15 million (from calibration with 

polystyrenes) to 800,000 (from calibration with polysaccharides). Since the 

oxygen content deduced by the element analysis is approximately 30% by weight, 

the standard polysaccharides (highly oxygenated polysaccharides) were 

considered more appropriate to create the calibration curve to measure MWs in 

this case (139). The elution time for TBP was lower than 14 min, which is beyond 

the standard calibration curve (elution time range: 14min to 20min for standard 

polysaccharides). This indicated that the molecular weight was greater than 

800,000 in comparisons with polysaccharide. Some additional information was 

provided by SEC, which is that another peak occurred at the elution time of 24 

min, with a mean MW of 2-300. Even though the elution time is out of the 

standard calibration range, the result from the SEC showed that the TBP sample 

is a mixture of high molecular weight polymers (>800,000) and some low 

molecular weight components (<200-300), probably non-polymerized monomer. 

 

Through the SEC study, the full dissolubility of TBP in NMP solvent 

was concerned. Therefore, further MW measurement by light scattering was 

taken. 
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Figure 5.9 Elution curve of TBP by size exclusion chromatography 

Note: ELS is the absorbance by evaporative light scattering detection. 

 

5.2.5.2 Molecular Weight Determined by Light Scattering  

 

Light scattering is alternatively used to determine the molecular weight 

of polymers in solution. In order to calculate the molecular weight by the Zimm 

plot technique, it is necessary to know the refractive index/polymer concentration 

ratio (dn/dc) (149). The dn/dc value of TBP at 633nm and 25ºc was determined to 

be 0.1846 ml g -1 (Determined by Wyatt Technology UK Ltd, see Appendix II). 

The construction of the Zimm plot of TBP was carried out by a Wyatt DAWN 

EOS Light Scattering Photometer and the plot is shown in Appendix III. In the 

Zimm plot, each combination of TBP concentration and scattering angle is 

represented by a solid circle, therefore, the molecular mass for tannin based 

polymer was determined as 5.7× (±2.8)105 g mol-1, and the root mean square (rms) 

radius, or “radius of gyration” was 78.4 (±19.3) nm.   
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5.3 Discussion 

 

A series of analytical methods have been undertaken to fully understand 

the character and properties of TBP. A preliminary investigation by some standard 

methods showed that TBP solution exhibits a buffer behaviour and gives a 

dissociation constant pKa of 5.6-6. This assertion is further supported by the 

range of general pKa values for an amine group on the polymer, which is from 

5.5 to 6.5 (150). The relatively low value of the intrinsic pKa of its amino 

functions may be linked to TBP’s relative insolubility in water above pH 6. It was 

found that at pH≥6 the degree of insolubility increased dramatically with pH 

value (insolubility: ~25-35% at pH 6; ~40-55% at pH 7, 8 and 9). This strongly 

favours the conclusion that the solubility of amines increases with decreasing pH, 

as long as the solubility product of the protonated amine and the particular 

counter ion are not yet reached (151). These results point out the competition 

between protonation and complexation of the amino groups in relation with their 

pKa, around 6.0. The weak interactions observed at pH>6 reflected the small 

percentage of free amino groups available under these conditions. The 

comparable UV spectroscopic results of TBP solution at acid and alkali 

conditions showed the maximum absorbance value at high pH is inferior and 

unstable, probably due to a change in the chemical properties of the TBP. 

Incidentally, the existence of two prominent UV/vis absorbance peaks indicated 

the complex form of components, probably, related to the polymeric TBP and 

non-polymerization monomer, when TBP solid dissolved in water. 

 

Although TBP is classed as a cationic polymer, the charge density 

appeared to be strongly pH-dependent and subject to “ageing” effects. Increasing 

the pH value from 4 to 9 decreased the charge density from 3.07 meq g-1 to 0.2 

meq g-1 for a 3 hours TBP solution sample. The sharp change of charge density 

occurred at pH7, where the net charge on TBP was less than 1 meq g-1. The 

reason for this is that as a Mannich-reaction polymer, the cationic monomer of 
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TBP is non-quaternized. Thus, the cationic TBP is likely to be associated with a 

tertiary amine group, R3NH
+, which deprotonates at high pH, so variations in 

solution pH will affect the charge density. The mechanism of solubility and 

charge density can be described as: 
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More specifically, phenolic hydroxyl groups present on TBP have weak 

tendencies to lose the H+ ion, thereby increasing the anionicity. This slow process 

of deprotonation at the hydroxide sites of TBP could be used to explain the 

diminished trend of charge density with time (at pH4, the charge density 

decreased from 3.07 meq g-1 to 2.04 meq g-1 after 24h). 

 

The amine group on the TBP was further characterized by 1H NMR and 

FT-IR measurement in comparison with the results of tannin extract in this study. 

Both the NMR and FTIR analyses qualitatively and consistently identified the 

presence of the main functional groups, for example, aromatic rings; NH stretch; 

C-O stretching; O-H stretching; –CH3 and amine salts, therefore aiding the 

evaluation of the structure of TBP. 

 

The proposed monomer structure of TBP outlined in Figure 5.11 was 

derived from the experimental results and the information from the Mannich 

reaction of condensed tannin.   
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Figure 5.10 The proposed basic repeating unit of TBP 

 

In Figure 5.11 it is believed that the CHR is the remainder of the aldehyde 

compound after the carbonyl oxygen has left. R1 and R2 are hydrogen or other 

organic moieties that were part of the original amino compound. 

 

From the mass proportions, an approximate elemental ratio for the 

polymer can be deduced as:  N: O: C: H = 1: 3.6: 7: 11.5. Clearly, there are some 

inconsistencies between the experimental results and the structure hypothesised. 

With the assumption that there are 16 carbon atoms per monomer group, there 

appear to be more nitrogen atoms present to account for the observed atomic ratio 

of 1:7 (N:C). From theory, in the Mannich reaction the molar ratio of the primary 

amine to the tannin monomer (assumed to contain 16 carbon atoms) is about 

2.3:1. However, some studies (129) indicated that the preferred molar ratio of the 

primary amine, which was generated from the first reaction of an aldehyde and an 

amino compound, to the tannin repeating unit is in the range of about 1.5:1 to 

3.0:1, which is consistent with the above theory. The less active secondary and 

tertiary amines were formed following the first reaction. In view of this, it can be 
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speculated that the solid TBP product contains additional nitrogen/amine mass 

which is not bound within the TBP monomer. Therefore a high amount of 

nitrogen was over estimated in the element content of TBP.  

 

The molecular weight of TBP (5.7 (±2.8) × 105 g mol-1) determined by 

light scattering indicated that TBP is a medium-to- high MW polymer in the 

range of 105-106 g mol-1 and with a radius of gyration of 78.4 (±19.3) nm. In 

solution, polymers adopt a random coil configuration with much smaller 

dimensions (usually less than 1 µm (145). It is evident that the molecular weight 

of TBP determined in this study is broadly consistent with the US Patent (152), 

which disclosed that the average molecular weight of the tannin derived product 

after polymerization is generally within the range of 5,000 to 500,000. 
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6. RESULTS: COAGULATION ACTION OF TBP IN MODEL WATER  

 

6.1 Introduction 

 

The coagulation mechanisms of cationic polymers are believed to be a 

combination of charge neutralisation and polymer bridging. Even though it is still 

not clear which of these two mechanisms is predominant in the flocculation 

process, some investigations (153,154) have found that, for a given polymer, 

there was an optimum concentration, beyond which poorer flocculation 

performance was found. When charge neutralisation played the main role in the 

coagulation process, the optimal polymer concentration corresponded to the 

concentration required for zero particle surface charge. In the same way, when 

polymer bridging was the principal mechanism of coagulation, the optimum 

dosages should be directly proportional to the total particle surface area and 

hence to the particle concentration (19). Charge neutralisation of dissolved humic 

substances is thought to be the dominant mechanism of coagulation, specifically 

with cationic polyelectrolytes. There is a lot of evidence that the optimum dosage 

corresponds closely with charge neutralisation and that a stoichiometric 

relationship exists between the anionic charge carried by the humics and the 

cationic charge of the added polyelectrolyte (30). 

 

In considering the kinetic processes of polymer flocculation for 

suspension particles, various types of interaction condition can be envisaged. It 

was well established that the rate of flocculation process depended on the 

concentration of polymer molecules and suspended particles, the intensity of 

agitation and the pH value of solution (145). These parameters are believed to 

greatly influence the flocculation effectiveness. In addition, ageing of polymer 

solutions is considered to have an important effect on their flocculation 

performance (19, 21). This is supported by the results of Owen et al. (155) who 

showed that polyacrylamide stock solutions, aged between 1 and 6 days, gave 

optimal flocculation after 72 h. Several ‘screening’ researches using different 
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polymers (16) to account for the influence of molecular weight on the 

flocculation effectiveness have been carried out, and there are some experimental 

results which can be cited as giving qualitative or quantitative evidence of their 

relationship (6, 31). 

 

The strength of flocs formed during coagulation depends on many 

factors, such as the type and amount of coagulants, the nature and quantity of 

interacting contaminants and the hydrodynamic conditions prevailing during floc 

formation. An individual floc will break if the stress applied at its surface is larger 

than the bonding strength within the floc. Thus, increased floc compaction is 

believed to increase floc strength due to an increase in the number of bonds 

holding the aggregate together (78). The aggregates (flocs) formed by polymer 

bridging are considered to be much stronger than those formed by metal salts (19). 

Gregory (156) has stated that when comparing different flocs formed by the same 

coagulant, the size of the floc (or indirectly, the flocculation index) for a given 

shear rate indicates floc strength. It is believed that the density of aggregates 

increases as their size decreases (157), and increased floc density leads to greater 

floc strength (77). Floc size in a sheared suspension is limited by floc strength. 

 

In general, the literature suggests that the coagulation performance of 

TBP has as yet only been investigated superficially, and very little attention has 

been given to the coagulation mechanism, stoichiometry, influences on 

performance and floc strength. A much clearer understanding of the reaction 

mechanism is required to optimize the application of TBP. In this study, to fully 

evaluate the fundamental mechanism of coagulation with the TBP, the 

coagulation performance of TBP was conducted by laboratory tests using, 

separately, clay suspensions (kaolin powder) and humic acid (HA) solutions as 

model water. Through the use of a 2 L Gator jar test reactor and PDA 

measurements, the optimal dosages of TBP in the pH range of 4-9 were 
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determined; this was to assess the relative importance of different coagulation 

mechanisms of TBP. Furthermore, the stoichiometry and the effect of TBP ageing 

phenomena and initial mixing speed were investigated. The results collected from 

the measurement of the turbidity reduction in clay suspensions, and the removal 

of UV-Visible absorbance and non-purgeable dissolved organic carbon (NPDOC) 

in HA solutions, in conjunction with the observation of floc strength formed by 

TBP were compared with the data obtained from the study of polyDADMAC and 

alum as coagulants.  

 

6.2 Coagulation Mechanisms Using TBP as Sole Coagulant 

 

6.2.1 Coagulation of Kaolin Suspensions  

 

Using the PDA test method, the coagulation of 50 mg l-1 kaolin 

suspension for a given pH in the range of 4-9, was conducted to determine the 

optimum dosage of TBP. In addition, at the end of the PDA monitoring period, 

the residual turbidity after settling for 30 mins was measured to further confirm 

the performance of the TBP. The results of flocculation tests in terms of the FI 

response and residual turbidity with different TBP dosages at pH4, 7 and 9 are 

shown in Figures 6.1-6.6. 
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Figure 6.1 Flocculation index response with TBP dose at pH4 (50 mg l-1 kaolin 

suspension)  

 

 

Figure 6.2 Flocculation index response with TBP dose at pH7 (50 mg l-1 kaolin 

suspension) 
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Figure 6.3 Flocculation index response with TBP dose at pH9 (50 mg l-1 kaolin 

suspension) 
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Figure 6.4 Residual turbidities before and after coagulation using TBP at pH 4 

(50 mg l-1 kaolin suspension)  
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Figure 6.5 Residual turbidities before and after coagulation using TBP at pH 7  

(50 mg l-1 kaolin suspension)  
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Figure 6.6 Residual turbidities before and after coagulation using TBP at pH 9 

(50 mg l-1 kaolin suspension)  
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The results given in Figures 6.1, 6.2, and 6.3 show that, near the 

optimum TBP dosage, the flocculation index rises rapidly with time and reaches a 

steady maximum value. At lower and higher dosages, less steep rises and lower 

maximum values are found, which indicate a poorer flocculation. At excess TBP 

concentrations, the negative particle (clay particle) surfaces become saturated 

with adsorbed polymer and the particles are re-stabilized. The optimum dosages 

are taken as those giving the steepest increase in FI value and agree well with 

those obtained by the measurement of residual turbidity, which can be seen in 

Figures 6.4, 6.5 and 6.6. The optimum dosage for TBP in the pH range from 4 to 

9 was determined, and the results of the flocculation index and residual turbidity 

and residual tannin are summarised in Table 6.1. The reason for the declining FI 

values after the maximum value is reached, at pH 9 (Fig 6.3), is that the large 

sized flocs can not be kept uniformly dispersed in solution at the slow speed 

(50rpm; 48 s-1), since large flocs were observed to accumulate on the bottom of 

the jar and are intermittently re-suspended.   

 

TABLE 6.1 Comparison of coagulation performances of TBP (50 mg l-1 kaolin 

suspension) with different charge density at different pH 

pH 

Charge Density  

(meq g-1) 

Optimum Dosage 

(mg l-1) FI  

Residual Turbidity 

(NTU) 

Residual Tannin 

(mg l-1) 

4 3.07 0.15 0.25 14.5 0.088 

5 2.66 0.25 0.32 18.5 0.090 

6 2.05 0.25 0.35 17 0.097 

7 0.67 0.3 0.52 13 0.099 

8 0.26 12.5 1.6-1.8 12 0.421 

9 0.21 14 2.3-2.5 11 0.449 

 

From Table 6.1, it can be seen that with pH increasing from 4 to 9, the 

optimum dosage of TBP increased from 0.15 mg l-1 to 14 mg l-1, with an 



 129 

increasing residual tannin matter in final water. The most significant increase of 

the optimum dose occurred at pH 8 and 9. In addition, the residual tannin matter 

in the final treated water was very low (less than 1 mg l-1), due to the very small 

amount of initial TBP used as coagulant at low pH, and the good coagulation 

effectiveness at high pH. Also, at pH 8 and pH 9, the size of flocs (indicated by 

the FI) was distinctly larger than the size of flocs at pH 7 and below. These results 

seemed to be consistent with the observation that with increasing pH value, the 

charge density of TBP decreased, thus more TBP was needed to neutralize the 

negative particles in the model water. At high pH (8 and 9), the charge density of 

TBP was very low, close to zero, and precipitation occurred, therefore, the 

performance of flocculation suggested that polymer bridging and/or adsorption on 

to precipitating TBP (“sweep” coagulation) is considered as the dominant 

aggregation mechanism.  

 

6.2.2 TBP Precipitation Measured by PDA 

 

The previously observed TBP precipitation phenomenon in blank water 

at pH 7 and 9 was investigated using the PDA in order to get quantitative 

information of the precipitation kinetics. Using the optimum dose of TBP for each 

pH condition (0.3 mg l-1 at pH7; 14 mg l-1 at pH9), the precipitation response was 

determined and the results can be used as a reference for the coagulation tests. 

From the results shown in Figure 6.7 it is clear that at pH 9 the TBP precipitation 

was detectable by the PDA, giving a FI value about 0.25, but this response was 

small and unimportant compared to the FI value of kaolin coagulation with TBP 

at pH9. In contrast, the precipitation of TBP at pH 7 was not detectable by the 

PDA, probably because of the very small TBP dose (0.3mg l-1) that was added; 

clearly, under these conditions TBP precipitation is completely unimportant as a 

complicating factor in the coagulation measurements. 
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Figure 6.7 Comparison of the FI response between TBP precipitation in blank 

water and coagulation in kaolin suspension at pH 7 and pH 9  

 

 6.2.3 Coagulation of Humic Acid Solutions 

 

At pH9, the model water had a lower humic acid concentration, 10 mg l-1, 

compared to 30 mg l-1 at pH4 and 7; this was necessary for experimental 

convenience bearing in mind the much higher dosage of TBP needed at pH9. The 

optimum TBP dosages for the selected pH conditions were determined by the FI 

response of PDA and the changes in the solution NPDOC and UV-Vis 

absorbance. 

 

It is commonly believed that the absorption of light at ultra-violet 

wavelengths is caused by aromatic compounds and other organic substances with 

conjugated double bonds. Although UV absorbance is a good measure of the 

required dose of metal coagulants, the complications caused by the very rapid 
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interaction of humic acid with TBP, especially at a high pH value, made it 

infeasible to determine the initial UV-visible absorbance (combined HA and TBP) 

at the beginning of the coagulation process. Hence, the initial absorbance value at 

254nm and 400nm (Section 4.2.1 and 4.4.2) was assumed as the sum of the 

individual absorbance values of TBP and HA. By this means it was possible to 

evaluate approximately the coagulation performance of TBP by comparing the 

final absorbance value with the calculated initial value. 

 

From the results shown in Figure 6.8, Table 6.2 and Table 6.3, the 

optimum dose of TBP at pH 4 appeared to be 30 mg l-1 ( equivalent to a TBP:HA 

ratio of 1:1), which gave a maximum NPDOC reduction of 83.5%. 

 

 

 

Figure 6.8 Flocculation index response with TBP dose at pH 4 (30 mg l-1 HA) 
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TABLE 6.2 NPDOC before and after coagulation with TBP dosage at pH 4  

(30 mg l-1 HA) 

TBP 

dosage 

NPDOC 

30mg l-1 HA 

NPDOC-TBP SUM NPDOC  

before coagulation 

NPDOC  

after coagulation 

NPDOC 

Reduction 

(mg l-1) (mg l-1) (mg l-1) (mg l-1)  (mg l-1)  % 

25 9.957 11.73 21.687 5.914 72.7 

27 9.957 14.60 24.557 4.675 81.0 

30 9.957 16.41 26.367 4.353 83.5 

32 9.957 17.45 27.407 6.626 75.8 

 

TABLE 6.3 Absorbance at 254nm and 400nm before and after coagulation with 

TBP dosage at pH 4 (30 mg l-1 HA) 

 

TBP 

dosage 

(mg l-1) 

Abs 254nm 

Before  

coagulation 

Abs 254nm 

After 

coagulation 

Abs 254 nm 

Reduction  

% 

Abs 400nm 

Before 

coagulation 

Abs 400nm 

After   

coagulation 

Abs 400 nm 

Reduction 

% 

25 0.935 0.059 93.7 0.202 0.009 95.5 

27 0.958 0.051 94.7 0.203 0.006 97.0 

30 0.984 0.076 92.3 0.205 0.016 92.2 

32 0.9997 0.097 90.3 0.206 0.016 92.2 

 

From the results shown in Figure 6.9, Table 6.4 and Table 6.5, the 

optimum dose of TBP at pH 7 appeared to be 58 mg l-1 (equivalent to a TBP:HA 

ratio of ~2:1), which gave a maximum NPDOC reduction of 83.3%. 
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Figure 6.9 Flocculation index response with TBP dose at pH 7 (30 mg l-1 HA) 

 

TABLE 6.4 NPDOC before and after coagulation with TBP dosage at pH 7  

(30 mg l-1 HA) 

TBP 

dosage 

NPDOC- 

30 mg l-1 HA NPDOC-TBP 

SUM NPDOC 

before coagulation 

NPDOC 

after 

coagulation 

NPDOC 

Reduction 

(mg l-1) (mg l-1) (mg l-1) (mg l-1) (mg l-1) % 

48 9.957 26.36 36.317 16.12 55.6 

50 9.957 27.14 37.097 12.67 65.8 

52.5 9.957 28.68 38.637 10.06 74.0 

55 9.957 29.79 39.747 15.04 62.2 

58 9.957 30.99 40.947 6.853 83.3 

60 9.957 32.5 42.457 9.195 78.3 
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TABLE 6.5 Absorbance at 254nm and 400nm before and after coagulation with 

TBP dosage at pH7 (30 mg l-1 HA) 

TBP 

dosage 

(mg l-1) 

Abs 254nm 

Before  

coagulation 

Abs 254nm 

After 

coagulation 

Abs 254 nm 

Reduction  

% 

Abs 400nm 

Before 

coagulation 

Abs 400nm 

After   

coagulation 

Abs 400 nm 

Reduction 

% 

48 1.186 0.097 91.8 0.250 0.012 95.2 

50 1.209 0.092 92.4 0.251 0.012 95.2 

52.5 1.224 0.083 93.2 0.251 0.011 95.6 

55 1.245 0.077 93.8 0.253 0.010 96.0 

58 1.270 0.073 94.3 0.254 0.008 96.9 

60 1.284 0.062 95.2 0.255 0.008 96.9 

 

From the results shown in Figure 6.10, Table 6.6 and Table 6.7 gave the 

optimum dose of TBP at pH 9 is approximately 60 mg l-1 (equivalent to a 

TBP:HA ratio of ~6:1), which gave a maximum NPDOC reduction of 80.5%. 

 

 

Figure 6.10 Flocculation index response with TBP dose at pH 9 (10 mg l-1 HA) 
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TABLE 6.6 NPDOC before and after coagulation with TBP dosage at pH 9  

(10 mg l-1 HA) 

TBP 

dosage 

NPDOC- 

10 mg l-1 HA NPDOC-TBP 

SUM NPDOC 

before coagulation 

NPDOC 

after 

coagulation 

NPDOC 

Reduction 

(mg l-1) (mg l-1) (mg l-1) (mg l-1) (mg l-1) % 

45 2.672 24.65 27.322 16.97 37.9 

50 2.672 27.14 29.812 15.47 48.1 

55 2.672 29.79 32.462 15.04 53.7 

60 2.672 32.50 35.172 6.853 80.5 

65 2.672 35.53 38.202 9.195 75.9 

70 2.672 38.36 41.032 8.564 79.1 

 

 

 

TABLE 6.7 Absorbance at 254nm and 400nm before and after coagulation with 

TBP dosage at pH 9 (10 mg l-1 HA) 

TBP 

dosage 

(mg l-1) 

Abs 254nm 

Before  

coagulation 

Abs 254nm 

After 

coagulation 

Abs 254 nm 

Reduction  

% 

Abs 400nm 

Before 

coagulation 

Abs 400nm 

After   

coagulation 

Abs 400 nm 

Reduction 

% 

45 0.722 0.070 90.3 0.135 0.011 91.9 

50 0.765 0.060 92.2 0.137 0.009 93.4 

55 0.801 0.067 91.6 0.139 0.009 93.5 

60 0.840 0.070 91.7 0.141 0.009 93.6 

65 0.885 0.078 91.2 0.142 0.010 92.9 

70 0.927 0.083 91.0 0.144 0.011 92.4 
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In these experiments with HA, the onset of flocculation occurred rapidly 

and a very short time (~6 min) was needed to attain the maximum FI value at pH 

4 and 7. It was noted that at higher pH, say pH 9, the floc size was much smaller 

(as indicated by a small FI value) than the corresponding flocs (at optimum TBP 

dose) made by flocculation of the clay suspension. As with the clay suspension, 

there was a clear trend of increasing optimal TBP dose with increasing pH value 

for HA solution (Table 6.8). This may be explained by both the loss of TBP 

charge density, and increasing deprotonation of the humic acid (thus, increasing 

electronegativity), with pH increasing. Form Table 6.8, it can be seen that for the 

model water with humic acid solution at low pH (≤7), the residual tannin matter 

was still lower than 1mg l-1, indicated by a high removal of NPDOC. It is also 

noted that at pH9 the residual tannin matter in final water was higher than that at 

lower pH. It is mostly caused by a higher amount of TBP used as a coagulant at 

pH9. 

 

TABLE 6.8 Variation in optimum TBP dose and coagulation performance (HA 

solutions) with pH 

Optimum Dosage 

 

NPDOC 

Reduction  

% 

Residual  

Tannin 

(mg l-1) 
pH 

Charge Density 

(meq g-1) 

mg l-1 (TBP:HA) 

FI 

  

4 3.07 30 1 0.33 83.50 0.396 

7 0.67 58 2 0.34 83.26 0.618 

9 0.20 60 6 0.32 80.51 1.318 

 

The slight lack of agreement in the value of the optimal TBP indicated 

by the UV-Visible absorbance measurements, compared to that indicated by the 

FI and NPDOC, is probably the consequence of the complex interaction between 



 137 

the various organic fractions of the TBP and HA. Clearly, the simple approach of 

summing the individual UV-Visible absorbance values for TBP and HA is not 

scientifically rigorous and inevitably leads to inaccuracies. It is also noted that in 

these tests the residual NPDOC after coagulation was still at a relatively high 

level, despite a high degree of overall NPDOC (>80%), mainly due to the large 

TBP dose added.  

 

6.3 Coagulation Stoichiometry using TBP as Sole Coagulant 

 

Model waters with kaolin suspension were obtained by dispersing 25mg, 

50mg, 100mg and 200mg of kaolin clay in 2L of de-ionised water to give mass 

concentrations of 25 mg l-1, 50 mg l-1and 100 mg l-1, respectively. A series of 

working solutions with different clay concentrations were used for the TBP 

dose-stoichiometry tests. 50 mg l-1 kaolin suspensions were chosen as standard 

kaolin mixtures (turbidity ~ 40 NTU) to investigate the floc strength (floc 

break-up and re-formation) under controlled conditions. For comparison purposes, 

model waters with different concentrations of humic acid were also used to 

investigate the existence of a TBP dose-stoichiometry. Working solutions with 

concentration of 15 mg l-1, 30 mg l-1 and 50 mg l-1 were prepared by diluting HA 

stock solution with de-ionized water.  

 

6.3.1 Coagulation Stoichiometry in Kaolin Suspension  

 

The results of the flocculation tests using a series of concentrations of 

kaolin suspension in terms of the FI response with different TBP dosages at pH4 

are shown in Figures 6.11 to 6.12. 
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Figure 6.11 Flocculation index response with TBP dose at pH4 (25 mg l-1 kaolin 

suspension)  

 

Figure 6.12 Flocculation index response with TBP dose at pH4 (100 mg l-1 kaolin 

suspension) 
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Table 6.9 summarises the results of the tests by giving the TBP optimum 

dosage and turbidity reduction for the different kaolin concentrations at 25 mg l-1, 

50 mg l-1 and 100 mg l-1, at pH 4. 

 

TABLE 6.9 Optimum dosage of TBP with different kaolin concentrations at pH 4, 

and the corresponding peak flocculation index and turbidity reduction 

Kaolin Concentration  

(mg l-1) 

TBP optimum Dosage  

(mg l-1) Peak FI 

Turbidity Reduction

% 

25  0.05 0.18 40 

50 0.1 0.25 63.8 

100 0.2 0.54 75 

 

The corresponding results of the flocculation tests at pH 7 are shown in Figures 

6.13 to 6.14. 

 

Figure 6.13 Flocculation index response with TBP dose at pH7 (25 mg l-1 kaolin 

suspension) 
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Figure 6.14 Flocculation index response with TBP dose at pH7 (100 mg l-1 kaolin 

suspension) 

 

Table 6.10 summarises the results of the tests by giving the TBP optimum 

dosage and turbidity reduction for different kaolin concentration at 25 mg l-1, 50 

mg l-1 and 100 mg l-1, at pH 7. 

 

TABLE 6.10 Optimum dosage of TBP with different Kaolin concentrations at pH 

7, and the corresponding peak flocculation index and turbidity reduction 

Kaolin Concentration  

(mg l-1) 

TBP optimum Dosage 

(mg l-1) Peak FI 

Turbidity Reduction

% 

25 0.15 0.34 50 

50 0.3 0.52 67.5 

100 0.6 0.83 84.8 
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It is clear from Tables 6.9 and 6.10 that the optimum TBP dosage 

increased linearly with increasing kaolin concentration, suggesting that a 

stoichiometric relationship exists between TBP and kaolin clay. This confirms 

that at pH 4 and 7, where the TBP has a significant cationic charge, the charge 

neutralisation is the dominant coagulation mechanism; since the counterions with 

a very high affinity are quantitative. Furthermore, it can be seen that the 

flocculation rate, peak flocculation index and turbidity reduction are also 

dependent on the concentration. From Figures 6.11 to 6.14, and Figure 6.1 and 

6.2, a distinct trend was evident, which is that the onset of flocculation occurred 

more rapidly, and the time needed to attain the maximum FI reduced, with 

increasing concentration of kaolin clay, from 25 mg l-1 to 100 mg l-1, at both pH 4 

and 7. It is reasonable to assume that the kinetics of TBP flocculation (indicated 

by the floc growth rate) at low pH are dependent on the concentration of particles 

and polymer molecules (as indicated by Smoluchowski flocculation theory (67)). 

 

Using model waters with different concentrations of kaolin clay, the 

optimum dosages of TBP at pH 9 were determined. The results summarised in 

Figures 6.15, 6.16 and 6.17 show the flocculation performance of TBP at pH 9 for 

different concentrations of kaolin clay. It can be seen that at 50 mg l-1 kaolin clay, 

the optimum dosage of TBP was in the range of 14-25 mg l-1. At the lower kaolin 

concentration of 25 mg l-1, the optimum dosage of TBP was in the range of 20-25 

mg l-1, and at the lowest clay concentration of 12.5 mg l-1, the optimum dosage of 

TBP was 20 mg l-1.  A relatively constant dose of TBP (say around 20 mg l-1) 

could be chosen as the optimum dose for all of the kaolin concentrations tested at 

pH 9. Thus, there appears to be no clear TBP dose stoichiometry at pH 9. This 

behaviour is consistent with previous findings that TBP polymer has little cationic 

charge at pH 9. Yukselen and Gregory (101) proposed that the mechanism of 

polymer bridging is considered to be more important for long-chain polymers that 

are not highly charged. Therefore, in this case, the principal coagulation 

mechanism is likely be polymer bridging rather than charge interaction. However, 
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the obviously large amount of dosage indicated that at higher pH, TBP 

precipitation occurs and this might play a part in the process, leading to the 

“sweep coagulation”. 

 

Figure 6.15 Flocculation index response with TBP dose at pH9 (50 mg l-1 kaolin 

suspension) 
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Figure 6.16 Flocculation index response with TBP dose at pH9 (25 mg l-1 kaolin 

suspension)  

 

Figure 6.17 Flocculation index response with TBP dose at pH9 (12.5 mg l-1 

kaolin suspension) 
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6.3.2 Coagulation Stoichiometry with Humic Acid Solution 

 

The results of flocculation tests using a series of concentrations of humic 

acid in terms of the FI response with different TBP dosages at pH 4 are shown in 

Figures 6.18 to 6.19. 

 

Figure 6.18 Flocculation index response with TBP dose at pH4 (15 mg l-1 HA)  

 

From Figure 6.18 and Figure 6.19, it is observed that at low FI values there is a 

spiky or discontinuous variation in the FI response curve. The precise reason for 

this is unclear but it seems that small size flocs at low concentration present a 

more sensitive and intermittent fluctuation in the intensity of light transmitted 

through a flowing suspension. Secondly, this may be the result of the resolution 

of the data acquisition. 
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Figure 6.19 Flocculation index response with TBP dose at pH4 (50 mg l-1 HA) 

 

Table 6.11 summarises the results of the tests by giving the TBP optimum dosage 

for the different HA concentrations of 15 mg l-1, 30 mg l-1 and 50 mg l-1, at pH 4. 

 

TABLE 6.11 Optimum dosage of TBP with different HA concentration at pH 4, 

and the corresponding peak FI and reduction in NPDOC and colour 

Optimum Dosage 

HA concentration 

(mg l-1) mg l-1 (TBP:HA) FI 

NPDOC 

Reduction 

% 

Colour Reduction 

% 

15 15 1 0.1 68.6 96.80 

30 30 1 0.33 83.5 97.02 

50 50 1 0.24 89.9 97.14 

 

The corresponding results of the flocculation tests at pH 7 are shown in Figures 

6.20 to 6.21. 
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Figure 6. 20  Flocculation index response with TBP dose at pH7 (15 mg l-1 HA)  

 

Figure 6.21 Flocculation index response with TBP dose at pH7 (50 mg l-1 HA) 
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Table 6.12 summarises the results of the tests by giving the TBP optimum dosage 

for the different HA concentrations of 15 mg l-1, 30 mg l-1 and 50 mg l-1, at pH 7. 

 

TABLE 6.12 Optimum dosage of TBP with different HA concentration at pH 7, 

and the corresponding peak FI and reduction in NPDOC and colour 

Optimum Dosage 

HA concentration 

(mg l-1) mg l-1 (TBP:HA) FI 

NPDOC 

Reduction 

% 

Colour Reduction 

% 

15 30 2 0.13 64.9 92 

30 58 2 0.34 83.26      93.8 

50 100 2 0.22 85.5 97.6 

 

For HA flocculation, it is clear that there is a strong agreement in the 

concentration ratio of TBP: HA, confirming that the TBP optimum dosages were 

proportional with the HA concentration at low and neutral pH (≤ 7). This result is 

consistent with the tests using kaolin suspension. 

 

      The previous study (in Figure 5.4) showed that the charge density of TBP 

at pH 4 is 4-5 fold greater compared to the charge density at pH 7. Due to the 

deprotonation of HA with pH decreasing, if the charge neutralisation is the only 

coagulation mechanism, the optimum dosage of TBP at pH 7 should be much 

more than double the optimum dosage at pH4. The results from table 6.11 and 

6.12 indicated that other mechanisms were involved, such as ‘polymer bridging’, 

which reduced the optimum dosage at pH 7, although stiochiometry exists at pH4 

and 7 respectively.  

     

6.4 Influence of Conditions on Coagulation Performance  

 

6.4.1 Variation of Coagulation with Ageing Time of TBP 
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The results in Figures 6.22, 6.23 and 6.24 show the flocculation 

performance of TBP at pH4, 7 and 9 for different polymer aging times used for 

50 mg l-1 kaolin suspension. It can be seen that with increasing aging time the 

flocculation index decreased, possibly due to the reduction of charge density with 

time. At pH4, although the charge density of TBP decreased from 3.07 meq g-1 to 

2.04 meq g-1 with the ageing time increasing from 3 hours to 24 hours, the charge 

density was still sufficient to achieve charge neutralisation (small flocs were 

observed) and the resulting FI response was only slightly inferior. At pH7, 

because the charge density has substantially decreased from 1.2 meq g-1 to 0.1 

meq g-1 at 3 hours to 24 hours of ageing, there was a more marked reduction in 

the FI response. For pH9, the onset of flocculation was delayed as a consequence 

of the aging (72hrs compared to 3hrs) but the peak flocculation index was 

unchanged. Since at this pH value the polymer has very little cationic charge, it 

seems likely that the flocculation effect is the result of other phenomena, such as 

the extent of precipitation and polymer bridging effects. 

 

Figure 6.22 Flocculation index response for different aging periods at pH 4 

(50mg l-1 kaolin suspension) 
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Figure 6.23 Flocculation index response for different aging periods at pH 7 

(50mg l-1 kaolin suspension) 

 

Figure 6.24 Flocculation index response for different aging periods at pH 9 

(50mg l-1 kaolin suspension) 
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The coagulation performance of the TBP at the previously determined 

optimum dose was studied for the following TBP aging times: 3 hrs, 24hrs and 

48hrs, used in humic acid solution. Figures 6.25, 6.26 and 6.27 present the 

coagulation results of 30 mg l-1 and 10 mg l-1 humic acid solutions at pH 4, 7 and 

9; these display a very similar behaviour to that observed with the clay 

suspensions. At pH 4 and 7, the charge density of TBP decreased with aging, and 

therefore the coagulation performance decreased. However, at pH 9, the charge 

density of TBP, even fresh, is very low (close to zero), and thus aging effects on 

charge are not important. In these conditions the coagulation is likely to be 

influenced by the relative extent of TBP precipitation and polymer bridging 

effects; thus, Figure 6.27 shows that TBP aging had little effect on performance. 

 

 

Figure 6.25 Flocculation index response for different aging periods at pH 4  

(30 mg l-1 HA) 



 151 

Figure 6.26 Flocculation index response for different aging periods at pH 7 

 (30 mg l-1 HA) 

 

Figure 6.27 Flocculation index response for different aging periods at pH 9 

(10 mg l-1 HA) 
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6.4.2 Variation of Coagulation with Mixing Speed 

 

According to the paddle speed-velocity gradient calibration line for the 

Gator reactor (Appendix I ), a series of velocity gradients, 950 s-1, 800 s-1, 600 s-1 , 

350 s-1  and 48 s-1 can be obtained with the following paddle speeds: 400 rpm, 

350 rpm, 300 rpm, 200 rpm and 50 rpm. Using these conditions for the rapid 

mixing phase of the coagulation experiments, and a set mixing time of 30 s, 

followed by a constant slow coagulation phase at 50 rpm, the influence of the 

mixing rate was studied. The coagulation results of 50 mg l-1 kaolin suspension in 

Figure 6.28 show that at pH 4, with an optimal TBP dose of about 0.15 mg l-1, the 

FI response was very similar for all mixing conditions and any differences 

probably within experimental error, suggesting that the conventional rapid mix 

design parameter, G = 350 s-1 may complete particle coagulation when TBP was 

used as primary coagulant. However, at the highest velocity gradient of 950 s-1, 

the peak FI value was discernibly lower than for the other conditions, suggesting 

the possibility of floc break-up. 

 

Figure 6.28 Flocculation index response for different mixing intensities at pH 4 

 (50mg l-1 kaolin suspension) 
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6.4.3 Variation of Coagulation with Reactor 

 

Coagulation tests for 50mg l-1 kaolin suspension were carried out under 

nominally similar mixing conditions (~50 rpm), but under optimal chemical 

conditions for pH9 and 7 (ie. 14 mg l-1 TBP at pH9, and 0.3 mg l-1 TBP at pH7) 

using two different jar test reactors (viz. glass beaker and Gator). The results 

indicated no significance difference at pH 9, but a better performance by the gator 

jar at pH 7 (see Figures 6.29 and 6.30). As noted previously the power transfer 

seemed less efficient for the glass beaker as indicated by a large amount of 

vortexing, and this effect may have been more influential for charge 

neutralisation process under the slower coagulation conditions at pH 7. It seems 

likely that in the case of “sweep coagulation”/polymer bridging, the initial mixing 

conditions are not so important. 

 

Figure 6.29 Flocculation index response for different reactors at pH 9  

(50mg l-1 kaolin suspension) 
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Figure 6.30 Flocculation index response for different reactors at pH 7 

(50mg l-1 kaolin suspension) 

 

6.5 Coagulation Effectiveness in Comparison with Other Coagulant  

 

Alum and polyDADMAC were chosen as reference chemicals for 

comparing the coagulation performance of TBP with 50 mg l-1 kaolin clay 

suspension. The optimal dosage for alum was found to be 3.4 mg l-1 (as Al3+) at 

pH 7, and for polyDADMAC (Flobeads DB 45 SH) the optimal dose was about 

0.12 mg l-1, and independent of pH. The comparable results are summarised in 

Figures 6.31 and 6.32. 
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Figure 6.31 Flocculation index response with different coagulants at pH 7, 

and TBP at pH 9 (50 mg l-1 kaolin suspension) 
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Figure 6.32 Residual turbidity before and after coagulation with different 

coagulants at pH 7 (50 mg l-1 kaolin suspension) 
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From Figure 6.31, it can be seen that at pH 7, the onset of flocculation 

using TBP and polyDADMAC occurred rather later than for alum, and longer 

times were needed to attain the maximum flocculation index (FI) value. The use 

of polyDADMAC promoted the growth of very large flocs, with FI values about 

twice as high as those with alum and four times as those with TBP. At pH 9, using 

a higher optimal dosage of TBP, the time to attain the maximum value was 

reduced significantly, and large flocs were formed. The peak value of the FI is 

similar to that using the polyDADMAC as coagulant. Figure 6.32 shows that the 

residual turbidity in solution after coagulation using alum was lowest, 3.5 NTU, 

followed in performance by polyDADMAC where the residual tubidity was 10 

NTU. At pH 9, the performance of TBP was virtually identical to the 

polyDADMAC, although the mechanism of coagulation is believed to be 

different. 

 

The optimum dose for alum in the coagulation of 30 mg l-1 HA at pH 7 

was found to be 6.75 mg l-1 (as Al3+), and for polyDADMAC (Flobeads DB 45 

SH) the optimum dose was about 14 mg l-1. It was also found that a higher alum 

dosage was required at higher pH because of increasing HA deprotonation 

(increasing electronegativity of HA) and the decreasing cationic nature of the Al 

coagulant species. For PolyDADMAC, being a quaternary ammonium cationic 

polymer, the cationic charge does not vary with pH. Thus, its performance in 

removing the HA only reflects the change in HA deprotonation with pH. At pH 4, 

the optimum polyDADMAC dose was 10 mg l-1, compared with the optimum 

dose of 14 mg l-1 at pH 7. 

 

Figure 6.33 summarises the coagulation performance of 30 mg l-1 HA 

solution for the different chemicals at their optimum doses and at pH 7. It can be 

seen that both cationic polymers promoted the growth of large flocs, with the FI 

values about 1.5 times higher than those with alum. Significant differences in the 
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reduction of NPDOC were observed (Table 6.13); viz. alum 88.1%, TBP, 83.3%, 

and polyDADMAC 63.3%. However, the residual NPDOC in filtered water using 

58 mg l-1 TBP was about 7 mg l-1, which is higher than that with the other two 

coagulants. 

 

Figure 6.33 Flocculation index response with different coagulants at pH 7  

(30 mg l-1 HA) 

 

TABLE 6.13 Optimum dose of coagulants at pH 7, and NPDOC reduction  

(30 mg l-1 HA) 

Coagulants 

NPDOC-- 

30mg l-1

HA  

NPDOC-- 

Coagulant  

SUM NPDOC 

before 

coagulation 

NPDOC    

after  

coagulation 

 

Reduction 

 (mg l-1) (mg l-1) (mg l-1) (mg l-1) % 

6.75 mg l-1Al3+ 9.957 0.05 10.007 1.189 88.1 

14 mg l-1 PolyDADMAC 9.957 3.926 13.883 5.097 63.3 

58 mg l-1 TBP 9.957 30.99 40.947 6.853 83.3 
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6.6 Floc Strength of TBP 

 

Using a 2L gator jar, an indication of the relative floc strength can be 

obtained by applying a sudden increase in shear rate to the formed aggregates and 

relating velocity gradient applied to the maximum floc size resulting. In this study, 

simple indices of floc strength have been applied based on the FI response, which 

allows the relative floc strength with different coagulants to be compared. 

 

6.6.1 The Effect of Rapid Mixing on Floc Re-formation  

 

The formation, breakage and re-formation of flocs using TBP as 

coagulant were investigated by studying the FI response to a sudden increase in 

mean velocity gradient within the Gator reactor. In this experiment, the optimum 

dose of 0.3 mg l-1 TBP was pipetted into 50 mg l-1 of kaolin suspension at pH 7, 

and an initial period of 25 minutes for the slow stirring at 50 rpm (48 s-1) was 

chosen since no significant changes were observed in the FI after this. Floc 

breakage was brought about by suddenly increasing the stirring speed after the 

initial period, and maintaining this for 60 seconds. Thus, a series of tests were 

carried out whereby the stirring speed was varied from 200 rpm ( 350 s-1 )to 400 

rpm ( 950 s-1 ), and the floc formation conditions were otherwise the same in all 

cases. Figure 6.34 shows the results of dynamic monitoring for the optimum 

dosage of TBP at pH 7. The initial parts of the flocculation curves show the 

reproducibility of the process. 
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Figure 6.34 Monitoring of floc formation at 50 rpm (48 s-1) with varying 

breakage speed (200 rpm (350 s-1) to 400 rpm (950 s-1)) and re-formation at 50 

rpm (48 s-1) (50 mg l-1 kaolin suspension at pH7) 

 

From Figure 6.34, it can be seen that by increasing the stirring rate from 

50 rpm (48 s-1) to a higher rate (≥350 s-1), there is an immediate and rapid 

decrease in FI, corresponding to a rapid breakage of flocs. The minimum FI value 

was found to decrease from 0.18 to 0.08 with increasing stirring rate from 200 

rpm (350 s-1) to 400 rpm (950 s-1). After the stirring speed was reduced back to 50 

rpm (48 s-1) there was a clear but limited re-growth of flocs, to about the same FI 

value for all the previous stirring speeds, with the exception of 400 rpm which 

gave a lower FI. Clearly, when flocs formed by TBP are subjected to an increased 

velocity gradient (≥350 s-1 ), irreversible floc breakage can occur, since the FI 

value recovers to only a fraction of its value than that for the original flocs. 

 

The differences in the dynamic monitoring results are reflected in the 
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residual turbidity values. The residual turbidity after settling for 30 minutes was 

measured to compare the potential removal after sedimentation. The values 

shown in Figure 6.35 are for samples taken before breakage and after 

re-formation. There is an apparent increasing of residual turbidity after 

re-formation of the flocs at 400 rpm (950 s-1). This residual turbidity is 

discernibly higher than for the other conditions, suggesting the lower recovery of 

flocs after breakage. 
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Figure 6.35 Variation of residual turbidity before breakage and after re-formation, 

with velocity gradient at pH7 (50 mg l-1 kaolin suspension) 

 

The influence of the duration of the fast stirring rate was investigated at a 

constant rate of 300 rpm (600 s-1); the results are shown in Figure 6.36. It can be 

seen that with increasing duration from 10 s to 300 s at 300rpm (600 s-1), there is 

evidence of: 

• a greater severity of floc breakup (lower minimum FI); 

• a more delayed re-growth phase; 



 161 

• a more limited final floc growth (steady state FI). 

 

 

Figure 6.36 Monitoring of floc formation at 50 rpm (48 s-1), breakage at 300 rpm 

(600 s-1)for different periods and re-formation at 50 rpm (48 s-1) at pH7 (50 mg l-1 

kaolin suspension) 

 

A general trend was found that the floc strength decreased with 

increasing floc size. In Figure 6.36, the original flocs formed at the slow stirring 

speed (at 50 rpm; with a high FI value of 0.5) were believed to have lower floc 

strength than re-formed final flocs with a lower FI value of 0.4. Furthermore, the 

results of residual turbidity before breakage and after re-formation with different 

breakage periods are shown in Figure 6.37. It is apparent that floc breakage for 

the longer period (300s) gives the highest residual turbidity. 
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Figure 6.37 Variation of residual turbidity before breakage and after re-formation, 

with breakage period at pH 7 (50 mg l-1 kaolin suspension) 

 

6.6.2 Floc Strength of TBP in Comparison with Other Coagulants 

 

A comparison of floc strength tests with alum and polyDADMAC, as 

coagulants, was investigated. For the test conditions used in this study (50 mg l-1 

kaolin suspension, pH 7), previous work had found that the optimum dosage for 

alum was about 3.4 mg l-1 as Al3+, and 0.125 mg l-1 for polyDADMAC. Some 

researchers (99, 100) have used ‘strength factor’ and ‘recovery factor’ to quantify 

floc strength. The Flocculation Index values for initial (FI1), broken (FI2) and 

reformed (FI3) flocs are used as a surrogate for floc size in the strength equations, 

which are defined by Gregory (101,158) as: 

Strength factor = (FI2/ FI1) ·100    ---------- (6.1) 

Recovery factor = [(FI3- FI2) / (FI1- FI2)] ·100   -------- (6.2) 
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However, the strength factor only represents the breakage factor, which may not 

the best representative measure of the strength of flocs.  

At pH 7, the formation, breakage and re-formation of flocs formed by 

alum, polyDADMAC and TBP under two different conditions of breakage (300 

rpm for 60 s; and 300 rpm for 300 s) were measured by PDA using the 2L Gator 

jar. The results in terms of the FI response are shown in Figures 6.38 and 6.39. 

Strength and recovery factors obtained for flocs obtained using the different 

coagulants under the two different conditions of breakage (300 rpm for 60 s; and 

300 rpm for 300 s) are given in Tables 6.14 and 6.15.  

 

Figure 6.38 Monitoring of floc formation at 50 rpm, breakage at 300 rpm for 60 s 

and re-formation at 50 rpm using different coagulants at pH 7 (50 mg l-1 kaolin 

suspension) 
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Figure 6.39 Monitoring of floc formation at 50 rpm, breakage at 300 rpm for 300 

s and re-formation at 50 rpm using different coagulants at pH 7 (50 mg l-1 kaolin 

suspension) 

 

TABLE 6.14 Strength and recovery factors obtained for different coagulants (floc 

breakage at 300 rpm and 60 s) at pH 7 (50 mg l-1 kaolin suspension) 

  Alum  polyDADMAC TBP 

Strength factor 26.8 27.8 25.0 

Recovery factor 42.3 96.2 61.5 

 

TABLE 6.15 Strength and recovery factors obtained for different coagulants (floc 

breakage at 300 rpm and 300 s) at pH 7 (50 mg l-1 kaolin suspension) 

  Alum  polyDADMAC TBP 

Strength factor 20.3 22.3 19.2 

Recovery factor 30.7 70.1 47.6 
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The results given in Table 6.14 and 6.15 show that for both breakage 

conditions, the strength factor for the three coagulants were very similar, with 

polyDADMAC producing marginally the greatest floc strength, and TBP 

marginally the lowest floc strength. However, the recovery factor for the two 

polymer coagulants was significantly greater than that with alum. This is 

consistent with other studies, for example, Yukselen and Gregory (101) found 

that alum gave lower floc strength and recovery values than cationic 

polyelectrolytes (including polyDADMAC). However, the recovery factor with 

TBP was substantially lower than that obtained with polyDADMAC. It is 

relevant to note that under the test conditions (ie. pH 7), polyDADMAC retains a 

high cationic charge (~6 meq g-1), in sharp contrast to the TBP which has a 

greatly reduced cationic charge (<0.7 meq g-1); this may be a key factor 

influencing the capability for floc re-formation. 

 

The formation, breakage and re-formation of flocs formed by TBP at pH 

9 were also investigated since previous studies have shown rapid coagulation at 

this elevated pH (at the optimal TBP dose), and the results are shown in Figure 

6.40. At pH 9, for floc breakage times of 60 s and 300 s (at 300 rpm), the strength 

factors of TBP were 35.3 and 29.6, respectively, and the recovery factors were 

71.5 and 54.6, respectively. Comparing with the TBP performance at pH 7, the 

strength and recovery factor of TBP at pH 9 were significantly increased. It is 

also interesting to note that the TBP floc strength at pH 9 was superior to alum at 

pH 7. 
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Figure 6.40 Monitoring of floc formation, and re-formation at pH9 using TBP 

 (50 mg l-1 kaolin suspension) 

 

6.7 Discussion 

 

It was well established and demonstrated in this study that the optimum 

dose and coagulant mechanisms of TBP are pH dependent. Under acidic and 

neutral conditions, the charge density of TBP decreases with increasing pH value, 

thus, more TBP is needed to interact with the negative particles in the model 

water. This is quite consistent with the charge neutralization hypothesis, which 

requires that the optimal polymer concentrations correspond to the opposite 

charge on the surface of particles and are quantitatively adsorbed to the point of 

charge neutralization. This is supported by the previous evidence that the optimal 

polymer dose occurs at the point of zero particle mobility (159). In this case, the 

restabilization effect may be simply a result of charge reversal. With higher 

charge density, the ionisable group may lead to significant repulsion between 

segments of the polymer chain and hence an expansion from the typical random 
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coil configuration. Because of the strong electrostatic interaction, polyelectrolyte 

chains should adopt a rather flat configuration on oppositely charged surfaces, 

which would reduce the possibility of bridging (45). In contrast, at high pH, the 

remarkable distinction was observed from the change in flocculation kinetics, floc 

size and the amount of the flocculant. With regard to the low or non-charge of 

TBP at alkali conditions, ‘polymer bridging’ was able to provide an adequate 

explanation. Graham (21) indicated that for the optimal bridging effect, the 

number of bound polymer segments available for interparticle adsorption should 

equal the number of vacant sites of particles. Increasing the amount of the 

polymer with non-charge would increase the number of adsorbed segment loops 

thereby enhancing the possibility of interparticle bridging. At excess coagulant 

concentrations, surfaces of particles become saturated with the adsorbed polymer 

and the particles are re-stabilized. 

 

During charge neutralisation, counterions are adsorbed on colloidal 

particles and the particle charge is reduced. The concentration of 

specifically-adsorbing counterions required to cause flocculation is called the 

critical flocculation concentration (cfc) (160). Stumm and O’Melia (161) 

employed the term ‘stoichiometric’ to describe the linear dependence of cfc on 

particle concentration. At acid and neutral pH values, the optimum dosage of TBP 

is directly proportional to the particle or humic substance concentrations, strongly 

suggesting the existence of charge neutralization. In theory, when polymer 

bridging is the principal mechanism of coagulation, the optimum dosages should 

be also directly proportional to the total particle surface area and hence to the 

particle concentration (19). However, Runkana et al. (62) found that theories of 

bridging flocculation assuming equilibrium conditions were of limited use in 

practice. In this case, evidence of non-stoichiometry between particle suspension 

and a higher dosage of TBP at pH 9 implied that complications may arise from 

the possible effects of ‘polymer bridging’ and the relative extent of TBP 

precipitation at higher pH values.  
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It was clearly found that the flocculation kinetics and the effectiveness of 

TBP are strongly dependent on pH and the concentrations of the particles and 

the polymer. Furthermore, the flocculation performance at the optimal TBP 

dosage was also found to be considerably influenced by some other factors, 

namely the polymer age, mixing speed and the type of reactor. The apparent 

diminution of the peak flocculation index at low pH for ‘ageing’ TBP is thought 

to be the consequence of changes in the deprotonation of the charge group with 

time.   

 

Further evidence from the PDA results shows that, for all coagulants, 

there is a variation in coagulation effectiveness with model waters of suspensions 

and humic substances. In terms of Flocculation Index, a synthetic polymeric 

coagulant, polyDADMAC, presented a consistently high performance in both 

model waters at different pH values. In contrast, TBP only exhibited a superior 

performance in humic solution or particle suspension with higher pH, compared 

to the traditional metal coagulant, alum. Once more, aggregates formed by 

‘polymer bridging’ using TBP at pH 9 or polyDADMAC (independent of pH) 

appeared to be significantly more resistant to breakage (hence higher strength 

factor) in comparison to the flocs produced by charge neutralization using alum 

as the primary coagulant. The effectiveness of polymeric coagulants was largely 

the result of the forming of strong flocs. This result is consistent with the 

observation of Yukselen and Gregory (101), who proposed that the flocs produced 

by cationic polymers can be much stronger than those formed when particles are 

destabilized by simple salts. But, from the other parameters of treated water, for 

the model water containing kaolin suspension, the treatment performance 

(turbidity reduction) of the alternative coagulants decreased in the following 

order (pH 7): alum, polyDADMAC, TBP; for the model water containing HA, the 

treatment performance (DOC reduction) of the alternative coagulants decreased 

in the following order (pH 7): alum, TBP and polyDADMAC. 
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7. RESULTS: IMPROVEMENT OF TBP COAGULATION 

PERFORMANCE USING DUAL COAGULANTS OF TBP WITH ALUM IN 

MODEL WATER 

 

7.1 Introduction 

 

The use of a high molecular weight, long-chain polymer in conjunction 

with a metal salt as a primary coagulant has become the most attractive treatment 

option for water treatment. It is logical to combine inorganic coagulants with 

some cationic organic polymers that should strengthen both the aggregating and 

charge neutralizing capabilities (5). This is supported by the results of Bolto et al. 

(6), who, using jar tests on reconstituted waters with alum and cationic 

polyDADMAC, indicated synergistic benefits from the combination of the two. 

The use of polymers in this way resulted in a substantial lowering of the alum 

dose required, a 40-60% reduction being possible (92). In addition, the work of 

Edzwald et al. (7) showed that for water containing 5 mg l-1 humic acid, adding a 

polymer in conjunction with 10 mg l-1 of alum gave a 95% reduction in DOC, in 

comparison with only 20% removal when 75 mg l-1 of alum was used as the sole 

coagulant. Yu et al. (162) has observed that the most effective removal of humic 

substances prior to reverse osmosis treatment was achieved by the combination of 

an inorganic coagulant with a cationic polymer such as polyDADMAC.  

 

As a novel natural modified polymer, the application of TBP in water 

treatment is still in the tentative and superficial stage. At the start of this work, the 

relative merits of partial or complete replacement of alum by TBP as primary 

coagulant in water treatment were still not determined. This chapter is concerned 

with the coagulation performance in model waters using alum and cationic TBP 

as combined primary coagulants (partial alum replacement). Other reported 

studies (112, 134) have concluded that particles / color coagulation and removal 

with alum are pH-dependent. Although the optimal pH for particles / color 
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removal is less than 6, some research evidence (163) has shown with natural 

water samples that the optimum pH for minimum residual aluminium is between 

6 and 7. Thus, in order to investigate the coagulation mechanism and the 

effectiveness of alum-TBP combination in model water with particle suspension, 

two pH values of 5 and 7 were chosen in this study. Furthermore, using humic 

substances as model water, the study also summarized the results of extensive 

laboratory experiments designed to investigate whether a unique optimal dosage 

of combined alum and cationic TBP exists at a given pH value of 6, at which the 

coagulation performance was believed to be maximized. 

 

7.2 Coagulation Action of Dual Coagulant in 50 mg l
-1 Kaolin Suspension 

 

The primary aim of the laboratory tests in this stage is to assess the 

coagulation performance of TBP/alum with a model water (50 mg l-1 kaolin 

suspension) using the PDA coagulation system. Initial tests were undertaken at 

pH 5.0 and 7.0 with a view to reduce the aluminium dose in the usual pH range 

where aluminium is used as the sole coagulant. To select the optimum conditions 

for the alum/TBP dose matrix and provide more insight into the nature of the 

coagulation mechanism of TBP combined with aluminium, floc volume and 

turbidity were measured. Efforts to employ Graphite furnace AAS have been 

undertaken in order to measure the residual aluminium concentration after 

filtration by 0.45µM filter paper.  

 

7.2.1 Effect of Solution pH and Optimum Dosage of Alum 

In order to investigate the effectiveness of partial replacement of alum by 

TBP in the coagulation processes, it was necessary to determine initially, as a 

reference, the optimum performance of the coagulation using alum as the sole 

coagulant at different pH values. Prior to this, a preliminary assessment was made 

of the influence of solution pH and alum dosage on particle coagulation using 
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PDA. The laboratory experiments have been undertaken over a wide range of 

aluminium concentrations (0.05 mg l-1 -200 mg l-1 as Al3+) to determine the 

optimum dose at pH4, 5, 7 and 9.  

 

At pH4, very fine floc was observed using three broad aluminium 

concentration ranges—low (0.5 mg l-1 -8 mg l-1 as Al3+), medium (10 mg l-1-100 

mg l-1 as Al3+) and high (greater than 100 mg l3+ as Al3+). The wide concentration 

ranges of Al3+ considered here were based on some previous research studies 

(89,164-169). The PDA results are summarised in Figure 7.1. 

 

 

Figure 7.1 Dynamic monitoring of kaolin coagulation (50 mg l-1) at pH4 using 

different dosages of alum  

 

It can be seen that at pH 4, for the 50 mg l3+ kaolin clay suspensions, the 

maximum Flocculation Index, 0.15, was found when using 150 mg l-1 Al3+ as 

coagulant. However, most of other dosages also gave similar FI values around 
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0.13 to 0.15, and the values of final turbidity were all close to 37 to 39 NTU, 

compared with the initial turbidity of model water, 40 NTU. This indicates that 

there was a poor coagulation performance over a wide range of alum doses at 

pH4. 

 

At pH5, there was a clear optimal Al3+ dose of 0.2 mg l-1, which gave a 

maximum FI of around 0.3. The results are shown in Figure 7.2. Lower alum 

concentrations (0.02 mg l-1 as Al3+) gave a poorer coagulation performance, 

suggesting insufficient coagulant for destabilisation. At the highest alum dosage 

(0.4 mg l-1 Al3+), the FI was less than at lower dosages, most likely indicating that 

charge restabilisation was occurring. 

 

Figure 7.2 Dynamic monitoring of kaolin coagulation (50 mg l-1) at pH5 using 

different dosage of alum  

 

At pH 7, the optimal Al dose, 3.4 mg l-1 as Al3+, has been determined as 

reported in section 6.5. Figure 7.3 shows the PDA results using different doses of 

alum as coagulant at pH 7. 
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Figure 7.3 Dynamic monitoring of kaolin coagulation (50 mg l-1) at pH7 using 

different dosage of alum  

 

At pH 9, there was no FI response observed by the PDA using different 

doses of alum, indicating that the coagulation dose not occur at such high pH 

values; this is believed to be because the soluble anionic form Al(OH)4
- becomes 

the dominant Al species at high pH (~ 9). 

 

In general, it is well-known that the coagulation mechanism of alum is 

pH dependent. At pH 5.0 and below, the dominant Al soluble species are 

monomeric and dimeric cations (eg. Al3+, Al(OH)2+, Al(OH)2
+) and the 

mechanism involves aggregation of particles by charge neutralisation. At pH 6 

(minimum Al solubility) and above, the dominant mechanism is believed to be 

adsorption of particle species on precipitated Al(OH)3, known as ‘sweep 

flocculation’. At high pH 9, the soluble anionic form Al(OH)4
- occurs, thus, no 

coagulation is observed (134). In view of these results, pH 5 and 7 were chosen as 
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the solution pH values for investigating the coagulation performance and 

mechanism of combined alum/TBP as coagulants. 

 

7.2.2 Optimum Alum-TBP Combination at pH 7 

 

The optimal dosage of TBP for 50 mg l-1 kaolin suspension at pH7 is 

about 0.3 mg l-1, giving a maximum FI around 0.52, and the lowest residual 

turbidity about 13 NTU, compared with other dosages of TBP. The optimal dose 

of alum is about 3.4 mg l-1 as Al3+, with an FI value of 1.39 and residual turbidity 

of 3.5 NTU. These results were reported in section 6.5. Based on the optimum 

dose of Al3+ at pH7, a series of tests have been undertaken by reducing the dosage 

of aluminium from 3.4 mg l-1 to 1.0 mg l-1. At each dosage coagulation tests were 

carried out with a range of polymer dosage from 0.05 mg l-1 to 0.4 mg l-1. The 

dynamic monitoring results are shown in Figures 7.4 to 7.9.  

Figure 7.4 Flocculation index response with TBP dose and 3.4 mg l-1 Al3+ at pH7                    

(50 mg l-1 Kaolin suspension)  
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Figure 7.5 Flocculation index response with TBP dose and 3.0 mg l-1 Al3+ at pH7 

(50 mg l-1 kaolin suspension) 

 

Figure 7. 6 Flocculation index response with TBP dose and 2.5 mg l-1 Al3+ at pH7 

(50 mg l-1 kaolin suspension) 
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Figure 7.7 Flocculation index response with TBP dose and 2.0 mg l-1 Al3+ at pH7 

(50 mg l-1 kaolin suspension) 

 

Figure 7.8 Flocculation index response with TBP dose and 1.5 mg l-1 Al3+ at pH7 

(50 mg l-1 kaolin suspension) 



 177 

 

 

Figure 7.9 Flocculation index response with TBP dose and 1.0 mg l-1 Al3+ at pH7 

(50 mg l-1 kaolin suspension) 

 

The variation of Flocculation Index with the doses of alum and TBP is 

summarised in Figure 7.10, where it is noted that in most cases the maximum 

Flocculation Index values were found when 0.3 mg l-1 TBP was used in 

combination with different doses of alum. Previous work has provided evidence 

that for the flocculation of kaolin suspension at pH ≤ 7, a stoichiometric 

relationship exists between TBP and kaolin clay, indicating that charge interaction 

and neutralisation was the dominant mechanism for the flocculation using TBP. 

However, in this series of tests there was no clear evidence of a need for 

increasing TBP dosage to achieve a large Flocculation Index as the alum dosage 

decreased. Consequently, it seems likely that the flocculation effect is influenced 

by other phenomena (than simply charge interaction), such as the extent of 

Al(OH)3 precipitation. 
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Figure 7.10 Variation of Flocculation index with alum (as Al) and TBP doses at 

pH7 (50 mg l-1 kaolin suspension) 

 

The optimum dosage for TBP at each alum dose (as Al, at pH 7) was 

determined, and the results for the flocculation index, residual turbidity and floc 

volume are summarised in Table 7.1. From Table 7.1, it can be seen that at pH 7, 

the optimal dose of TBP was insensitive to the alum dose and in most cases equal 

to the maximum TBP dose applied. Compared with the use of alum or TBP as 

sole coagulant, the use of dual coagulants with a TBP/Al mass ratio of 0.3/2.0 

improved the coagulation performance in terms of the highest FI (1.80) and floc 

volume. It can be seen that compared to alum alone, the performance was not as 

good in terms of the residual turbidity. However, compared to the use of TBP 

alone, the TBP/Al combination was better in terms of a lower residual turbidity. 

Subsequent analysis of the residual aluminium concentration was carried out by 

Graphite furnace AAS after filtration. Even though there was no obvious 

relationship between residual aluminium with the dose combinations of 
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TBP/alum, very low concentrations of aluminium in the final water indicated a 

good coagulation performance using the dual coagulant. 

 

TABLE 7.1 Coagulation performance for the optimum dosage of TBP at each 
alum dose (in terms of maximum flocculation index, residual turbidity and 
aluminium, and Floc volume) at pH7 (50 mg l-1 kaolin suspension) 
 

Al dosage 

(mg l-1) 

TBP dosage 

(mg l-1) FI 

Residual Turbidity 

(NTU) 

Floc Volume 

(ml) 

Residual [Al3+] 

(µg l-1) 

3.4 0.0 1.39 3.5 5.0 10.1 

3.4 0.2 1.39 16.0 4.5 11.9 

3.0 0.3 1.50 14.0 6.5 3.4 

2.5 0.3 1.76 12.5 6.5 8.6 

2.0 0.3 1.80 9.0 6.5 8.1 

1.5 0.25 1.65 10.0 3.5 7.2 

1.0 0.3 1.62 15.0 3.5 6.7 

0.0 0.3 0.52 13.0 4.0 - - 

Note: “--” indicated the value is out of the calibration range of Graphite furnace AAS. 

 

7.2.3 Optimum Alum-TBP Combination at pH 5 

 

The optimum dosage of TBP for 50 mg l-1 kaolin suspension at pH 5 is 

about 0.25 mg l-1, giving a maximum FI of about 0.32, and the lowest residual 

turbidity about 18.5 NTU; these results were reported previously in Section 6.2.1. 

As noted in Section 7.2.1, at pH 5, the optimal Al3+ dose for 50 mg l-1 kaolin 

suspension is 0.2 mg l-1, which gave a maximum FI of approximately 0.3. Based 

on the optimum dose of Al3+ at pH5, a series of tests have been undertaken by 

reducing the dosage of alum from 0.2 mg l-1 to 0.05 mg l-1 as Al3+. At each dosage 

coagulation tests were carried out with a range of polymer dosages from 0.01 mg 

l-1 to 0.25 mg l-1. The dynamic monitoring results are shown in Figures 7.11 to 

7.14.  
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Figure 7.11 Flocculation index response with TBP dose and 0.05 mg l-1 Al3+ at 

pH5 (50 mg l-1 kaolin suspension) 

 

Figure 7.12 Flocculation index response with TBP dose and 0.1 mg l-1 Al3+ at 

pH5 (50 mg l-1 kaolin suspension) 
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Figure 7.13 Flocculation index response with TBP dose and 0.15 mg l-1 Al3+ at 

pH5 (50 mg l-1 kaolin suspension) 

 

Figure 7.14 Flocculation index response with TBP dose and 0.2 mg l-1 Al3+ at 

pH5 (50 mg l-1 kaolin suspension) 
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The variation of Flocculation index with the doses of alum and TBP is 

summarised in Figure 7.15, where it is noted that at each alum dose, from 0.2 mg 

l-1 to 0.05 mg l-1 as Al3+, there is an optimal TBP dose corresponding to the 

maximum FI. This can be seen clearer in Table 7.2, which gives the coagulation 

performance at each alum-TBP dosage combination in terms of FI, residual 

turbidity and floc volume. 

 

Figure 7.15 Flocculation index with alum (as Al) and TBP doses at pH 5 (50 mg 

l-1 kaolin suspension) 

 

From Table 7.2, it is clear that the optimum TBP dosage increased with 

decreasing Al concentration. Although nonlinear, the two coagulants are clearly 

complementary, and this is consistent with a coagulation mechanism based on 

charge neutralization between the TBP/Al cationic species and the kaolin 

suspension at pH 5. The locus of the optimal alum-polymer dosage combinations 

for the 50 mg l-1 kaolin suspension at pH 5 is shown in Figure 7.16. 
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TABLE 7.2 Coagulation performances for the optimum dosage of TBP at each 

alum dose (in terms of maximum flocculation index, residual turbidity and 

aluminium, and Floc volume) at pH 5 (50 mg l-1 kaolin suspension) 

Al dose 

(mg l1) 

TBP dosage 

(mg l-1) FI 

Residual Turbidity  

(NTU) 

Floc Volume 

  (ml) 

Residual 

[Al3+] 

(µg l-1) 

0.05 0.06 0.34 32.0 1.2 4.4 

0.10 0.05 0.29 32.0 0.8 5.8 

0.15 0.04 0.28 32.0 0.8 5.9 

0.20 0.01 0.32 34.0 1.0 5.6 

0.20 0.00 0.30 34.5 0.8 4.8 

0.00 0.25 0.32 18.5 0.7 -- 

Note: “--” indicated that the value is out of the calibration range of Graphite furnace AAS. 
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Figure 7.16 Locus of alum-polymer dosage combinations for 50 mg l-1 kaolin at 

pH5 
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Compared to the use of the optimum dose of alum (0.2 mg l-1 as Al3+) or 

TBP (0.25 mg l-1) as sole coagulant, the use of the combined coagulants in the 

Al/TBP dose ratio of 0.05/0.06 gave the best coagulation performance in terms of 

the FI (0.34); however, it is noted that the FI values were very similar for all of 

the alum/TBP combinations and for the sole coagulants. This dual coagulant gave 

a minor improvement to the residual turbidity compared to Alum alone, but a 

much higher floc volume (1.2 ml). Nevertheless, the use of 0.25 mg l-1 TBP as the 

sole coagulant was substantially better than the use of dual coagulants or alum 

alone for the removal of turbidity, whilst giving a high FI and low floc volume.  

 

7.3 Coagulation Action of Dual Coagulant in Humic Acid Solution at pH6 

 

In order to investigate the dosage stoichiometry with respect to 

coagulation performance at pH 6, the locii of the optimal alum-TBP dosage 

combinations were established at two different HA concentrations of 15 mg l-1 

(NPDOC approximately 4.01 mg l-1) and 30 mg l-1 (NPDOC approximately 9.96 

mg l-1). Prior to studying the effect of partial replacement of alum by TBP, a 

series of laboratory experiments were undertaken to determine the optimum 

performances of the coagulation using alum and TBP, respectively, each as sole 

coagulant. Based on these optimum dosages, further coagulation tests were 

carried out by systematically reducing the alum dose with a range of TBP dosages. 

The coagulation performance by the optimal alum-TBP dose was subsequently 

compared with the result from a new commercial product TSL, which is a 

mixture of TBP and Alum. 

 

7.3.1 Optimum Alum-TBP Combinations in 15 mg l-1 HA Solution  

Using the PDA test method, the flocculation of 15 mg l-1 HA solution at 

pH6 was conducted to determine the optimum dose of different coagulants. In 

addition, at the end of the PDA (flocculation index) monitoring period, the floc 
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volume and the colour removal were measured to further describe the 

performance of the coagulation. Although the use of UV-visible absorbance for 

monitoring the performance of the coagulation is complicated because of the 

interaction between the organic fractions of the TBP and HA, and infeasible for 

determining the optimum dose of TBP (see Section 6.2.3), the measurement of 

light absorbance at 254nm and 400nm was carried out nevertheless, since it was 

considered that the parameters may provide some further insight into the effect of 

different alum-TBP combinations. 

 

Figure 7.17 shows the variation of Flocculation Index with the 

flocculation time using a range of alum concentrations (1.35 mg l-1 as Al3+ to 4.86 

mg l-1 as Al3+) for 15 mg l-1 HA solution at pH6. The results indicate clearly the 

existence of an optimal dose of 2.03 mg l-1 as Al3+, corresponding to a maximum 

FI of approximately 0.27.  

 

Figure 7.17 Dynamic monitoring of 15 mg l-1 HA at pH 6 using different dosages 

of alum 

 

In the range of 1.35 mg l-1-2.7 mg l-1 Al3+ using alum as coagulant, very 
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small floc volumes of about 0.25 ml to 0.5 ml were measured, while the decrease 

in colour and UV-absorbance was high; the results are shown in the Table 7.3. 

 

TABLE 7.3 Coagulation performance for the different dosage of alum at pH6 (15 

mg l-1 HA) 

Alum 

(mg l-1 

as Al3+) 

Residual 

Colour 

(Hazen) 

Colour  

Removal % 

Abs(254nm)         

(cm-1) 

Abs 254nm 

Reduction % 

Abs(400nm) 

(cm-1) 

Abs 400nm 

Reduction % 

1.76  10 92 0.019 95.2 0.004 96.3 

2.03 7.5 94 0.014 96.5 0.004 96.3 

2.43 15 88 0.049 87.7 0.007 93.5 

2.70 10 92 0.021 94.7 0.007 93.5 

3.24 15 88 0.052 87 0.012 88.9 

* 15 mg l-1 HA solution pH 6.   Initial colour: 125 Hazen; Initial Abs (254nm): 0.4; Initial Abs 

(400nm): 0.108 

 

The results obtained here, indicating an optimum alum dose of about 2.03 mg l-1 

as Al3+ at pH6 with model water containing 15 mg l-1 HA (NPDOC 

approximately 4.011 mg l-1), can be compared with previous studies (85) of the 

coagulation of natural organic matter (TOC approximately 10 mg l-1) at pH 5-6.5, 

which have indicated a maximum reduction of UV-absorbance at an alum dose of 

about 2.7 mg l-1 as Al3+ (100 µM as Al3+). The higher dose of alum is consistent 

with a dose stoichiometry, as originally reported by Hall and Packham (170) in 

which an increasing presence of humic substances at pH > 5 leads to an increase 

in the alum dosage required. 

 

Figure 7.18 and Figure 7.19 give the coagulation monitoring results 

using TBP and Tanfloc SL as sole coagulants for 15 mg l-1 HA, respectively.  
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Figure 7.18 Flocculation index response with TBP dose at pH 6 (15 mg l-1 HA) 

 

 

Figure 7.19 Flocculation index response with Tanfloc SL dose at pH 6 (15 mg l-1 

HA) 
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It was found that at pH6, the optimum TBP dosage was around 22.5 mg l-1, 

which produced a maximum floc volume (10ml) and colour removal percentage 

(92%). In a previous report (Section 6.3.2 ), the optimum dosages of TBP for 15 

mg l-1 HA at pH4 and 7 were determined as 15 mg l-1 and 30 mg l-1. Clearly, there 

is a consistent trend of increasing optimal TBP dose with increasing pH. From 

Figure 7.19, the optimum dose of TSL at pH6 appeared to be 27.5 mg l-1, which 

gave a maximum FI value of 0.92. 

 

Based on the optimum dose of Al at pH6, a series of tests have been 

undertaken with a reducing dosage of aluminium from 2.03 mg l-1 to 0.027 mg l-1. 

At each dosage coagulation tests were carried out with a range of TBP dosage.  

A coagulation performance matrix was produced for a full range of alum-TBP 

combinations. Figures 7.20, 7.21 and 7.22 are examples of the dynamic 

monitoring results obtained for the coagulation tests. 

 

Figure 7.20 Flocculation index response with 1.35 mg l-1 as Al3+ and different 

TBP dosages at pH 6 (15 mg l-1 HA) 
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Figure 7.21 Flocculation index response with 0.81 mg l-1 as Al3+ and different 

TBP dosages at pH 6 (15 mg l-1 HA) 

 

Figure 7.22 Flocculation index response with 0.135 mg l-1 as Al3+ and different 

TBP dosages at pH 6 (15 mg l-1 HA) 
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For each alum dose, the optimum dose of TBP was determined by 

measurement of the maximum value of FI, floc volume, and colour removal in 

each case. A summary of all the results for the range of alum doses and 

corresponding optimal TBP doses is given in Table 7.4; the performance of each 

coagulant combination is given in terms of FI, floc volume, colour removal and 

UV-visible absorbance. The variation of FI with flocculation time for each 

alum-optimal TBP dose is shown graphically in Figure 7.23. 

Fi

Figure 7.23 Flocculation index response with TBP dose and different Al 

concentrations at pH 6 (15 mg l-1 HA) 

 

From Table 7.4, it can be seen that at low alum doses (0.027 mg l-1 to 

0.27 mg l-1 as Al3+) the maximum Flocculation Index value corresponded to the 

combination of 25 mg l-1 TBP with 0.135 mg l-1 as Al3+. This TBP dose is very 

close to the optimum dose of TBP when used as the sole coagulant (22.5 mg l-1). 

However, compared with the coagulation performances using alum and TBP as 

sole coagulants, the small addition of the alum (0.135 mg l-1 as Al3+) significantly 

improved the coagulation efficiency in terms of the FI (1.15), floc volume 
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(12.5ml), and colour removal (98%). Although UV absorbance is not a good 

measurement of the required optimum dose of organic coagulants, in this case it 

appears that the optimal alum-TBP combination (0.135 mg l-1 as Al3+ with 25 mg 

l-1 TBP) gave a high UV absorbance reduction (94%) and visible absorbance 

reduction (98.1%). At higher alum dosages, it is evident from the results shown in 

Table 7.4 that the corresponding polymer dosage for optimal coagulation 

performance decreases.  

 

Tanfloc SL, TBP and Alum were chosen as reference chemicals for 

comparing the coagulation performance with the overall optimal alum-TBP 

combination (0.135 mg l-1 as Al3+ with 25 mg l-1 TBP). This latter combination is 

of considerable interest in terms of achieving low residual Al in treated waters 

since the initial aluminium dose of 0.135 mg l-1 is well below the UK water 

quality standard for aluminium of 0.2 mg l-1. From Table 7.4, it is noted that the 

alum-TBP combination of 1.08 mg l-1 as Al3+ with 10 mg l-1 TBP, also provided a 

good coagulation performance. In view of a possible dose limitation for 

tannin-based products, where the current DWI guideline (171) defines a 

maximum dose of 10 mg l-1 of active material, the alum-TBP combination of 1.08 

mg l-1 as Al3+ with 10 mg l-1 TBP, is particularly of interest since it meets this 

regulatory guideline. The results of the coagulation by the different coagulants are 

summarised in Figure 7.24. 
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TABLE 7.4 Coagulation performance for the optimum TBP dosage with different 

alum doses at pH6 (15 mg l-1 HA) 

Al3+ 

dosage 

(mg l-1) 

TBP 

dosage 

(mg l-1) 

Peak 

FI 

Floc 

Volume 

(ml) 

Colour 

(Hazen) 

Colour  

Removal 

% 

Abs 

254nm 

Reductio 

% 

Abs 

400nm 

Reductio 

% 

Residual 

[Al3+]   

(µg l-1) 

2.03  3 0.34 6.5 10 92 81.5 82.4 8.1 

1.35 10 0.69 7 5 96 94 96.3 5.8 

1.08 10 0.89 8.5 5 96 94 95.4 8.5 

0.81 15 0.77 8 12.5 90 88.8 88.9 9.1 

0.68 15 0.8 12 10 92 88.5 90.7 8.4 

0.41 20 0.96 10 10 92 91.3 92.6 9.1 

0.27 25 1.07 10 5 96 93.5 95.4 13.2 

0.135 25 1.15 12.5 2.5 98 94 98.1 - - 

0.081   25 0.75 10 7.5 94 85.5 94.4 - - 

0.027   25 0.3 ---- 80 96 89.3 62.9 - - 

2.03  0.27 6.5 7.5 94 94.8 93.5 6.9 

 22.5 0.41 10 10 92 91.5 92.6 - - 

 27.5 

mgl
-1
 

TSL 

0.92 15 10 92 88.75 91.7 4.5 

* 15 mg l-1 HA solution pH 6.   Initial colour: 125 Hazen; Initial Abs (254nm): 0.4; Initial Abs 

(400nm): 0.108 

Note: All residual Al concentrations were < 14 µg l-1; “--” indicated the value is out of the 

calibration range of Graphite furnace AAS. 
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Figure 7.24 Flocculation index response with different optimum coagulants at 

pH6 (15 mg l-1 HA) 

 

From Figure 7.24 it can be seen that at pH 6 both the alum-TBP 

combinations of 0.135 mg l-1 Al3+ with 25 mg l-1 TBP, and 0.27 mg l-1 Al3+ with 

25 mg l-1 TBP, presented good coagulation performances with a rapid response 

and high FI values, compared with the use of alum or TBP as sole coagulant. In 

terms of maximum FI achieved, these combinations outperformed the TSL, 

although TSL still performed well. It is interesting to note that for the alum-TBP 

combinations the 0.135 mg l-1 Al3+ dose corresponds to a percentage of 

aluminium sulphate (assuming no water of hydration) of 3.3%, which is less than 

the corresponding figure for TSL (5.6% aluminium sulphate). However, the 0.27 

mg l-1 Al3+ dose corresponding to a percentage of aluminium sulphate (assuming 

no water of hydration) of 6.4%, is higher than the corresponding figure for TSL 

(5.6% aluminium sulphate). For the alum-TBP combination of 1.08 mg l-1 Al3+ 

with 10 mg l-1 TBP, the coagulation response was much slower than for the other 

combinations, but the maximum FI was only slightly inferior (see Figure 7.24) 
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and significantly superior to the TSL. 

 

7.3.2 Optimum Alum-TBP Combinations in 30 mg l-1 HA Solution 

 

Figure 7.25 shows the variation of Flocculation Index with the 

flocculation time using a range of alum concentrations (1.35 mg l-1 Al3+ to 4.86 

mg l-1 Al3+) for 30 mg l-1 HA solution at pH6. It can be seen that the maximum FI 

of around 0.36 was obtained by using 4.05 mg l-1 Al3+. This performance at this 

dose also corresponded to a maximum floc volume (15.5ml), colour removal 

(89.6%), and reduction in light absorbance at 254nm (74.1%) and at 400nm 

(84.8%). Since the optimal dosage of alum with 15 mg l-1 HA was 2.03 mg l-1 as 

Al3+ (Section 7.3.1), it is clear that the optimal dosage of alum is proportional to 

the HA concentration, indicating a charge stoichiometry. This suggests that the 

range of alum doses used,  ≤4.05 mg l-1  as Al3+, are not sufficient at pH 6 to 

cause rapid precipitation of aluminium hydroxide, and thus coagulation occurs 

principally by charge neutralization of the HA by cationic aluminium hydrolysis 

species. 

 

Figure 7.26 and Figure 7.27 give the coagulation results using TBP and 

Tanfloc SL as sole coagulants for 30 mg l-1 HA, respectively. The optimum dose 

of TBP and Tanfloc SL were determined as 45 mg l-1 and 50 mg l-1, respectively. 

The results were also confirmed by the measurement of floc volume, colour 

removal and UV-visible absorbance reduction, and these are summarised in Table 

7.5. 
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Figure 7.25 Dynamic monitoring of 30 mg l-1 HA at pH 6 using different dosages 

of alum 

 

 

Figure 7.26 Flocculation index response with TBP dose at pH 6 (30 mg l-1 HA) 
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Figure 7.27 Flocculation index response with TSL dose at pH 6 (30 mg l-1 HA) 

 

It is clear that at pH6, the TBP optimum dosage is proportional to the HA 

concentration and therefore it is assumed that charge neutralisation is the 

dominant mechanism of coagulation. This assumption is consistent with previous 

tests using HA at pH4 and 7 (see Section 6.3.2). With TSL there is a slight 

departure in a strict dose stoichiometry at the two HA concentrations (viz: 15 mg 

l-1 HA and 27.5 mg l-1 TSL; 30 mg l-1 HA and 50 mg l-1 TSL), which may indicate 

a more complicated mechanism of coagulation than charge interaction. 

 

Based on the optimum dose of alum (4.05 mg l-1 as Al3+) at pH6, a series 

of tests have been undertaken by systematically reducing the dosage of 

aluminium from 4.59 mg l-1 to 0.027 mg l-1. At each dosage coagulation tests 

were carried out with a range of TBP dosages.  Thus, a coagulation performance 

matrix was produced for a full range of alum-TBP combinations. Figure 7.28, 

7.29, 7.30 and 7.31 are examples of the dynamic monitoring results obtained for 

the coagulation tests. 
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Figure 7.28 Flocculation index response with 2.7 mg l-1 as Al3+ and different TBP 

doses at pH 6 (30 mg l-1 HA) 

 

Figure 7.29 Flocculation index response with 1.35 mg l-1 as Al3+ and different 

TBP doses at pH6 (30 mg l-1 HA) 
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Figure 7.30 Flocculation index response with 0.81 mg l-1 as Al3+ and different 

TBP doses at pH6 (30 mg l-1 HA) 

 

Figure 7.31 Flocculation index response with 0.405 mg l-1 as Al3+ and different 

TBP doses at pH6 (30 mg l-1 HA) 
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Figure 7.32 Flocculation index response with TBP dose and different Al              

concentrations at pH6 (30 mg l-1 HA) 

 

The maximum variation of Flocculation Index with flocculation time 

using different doses of alum with TBP is summarised in Figure 7.32, and the 

overall optimum coagulation results of flocculation index, floc volume, colour 

removal and UV-visible absorbance are summarised in Table 7.5. From Table 7.5, 

it is clearly seen that the alum-TBP combination of 1.35 mg l-1 Al3+ with 30 mg l-1 

TBP gave the best coagulation performance in term of the maximum FI (1.98), 

floc volume (45ml), and colour removal (97.9%). In this case, the residual tannin 

matter in final water was still very low, 0.311 mg l-1, and less than that for 45 mg 

l-1 TBP as the sole coagulant, which gave a residual tannin of about 0.459 mg l-1. 

Table 7.5 also shows that when the alum dose increased from 0.14 mg l-1 as Al3+ 

to 0.81 mg l-1 as Al3+, the optimal TBP dosage decreased from 50 mg l-1 to 30 mg 

l-1, confirming that the two coagulants are complementary. 
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TABLE 7.5 Coagulation performance for the optimum dosage of TBP with 

different alum dose at pH6 (30 mg l-1 HA) 

Al3+ 

dosage 

(mg l-1) 

TBP 

dosage 

(mg l-1) 

Peak  

FI 

Floc 

Volume 

(ml) 

Colour 

(Hazen) 

Colour 

Removal 

% 

Abs 

254nm 

Reduction 

% 

Abs 

400nm 

Reduction 

% 

Residual 

[Al3+] 

(µg l-1) 

4.59 30 0.97 25                                                                             30 87.5 95.8 74.6 11.3 

4.05 30 1.18 28 10 95.8 94.9 94.9 8.4 

  3.38 30 1.85 28 15 93.7 86.1 92.9 6.0 

2.70 30 1.87 30 5 97.9 91.4 98.5 8.1 

2.03 30 1.76 25 15 93.7 90.4 90.9 5.7 

1.35 30 1.98 45 5 97.9 93.7 95.4 6.5 

0.81 30 1.16 40 15 93.7 89.1 92.9 7.1 

0.41 40 1.44 33 25 89.6 73.9 82.2 4.5 

0.14 50 0.98 30 20 91.7 86.1 90.4 - - 

4.05 - 0.36 15.5 25 89.6 74.1 84.8 13.0 

- 45 0.31 38 30 87.5 76.5 82.2 - - 

- 50mg l-1

TSL 

1.81 40 10 95.8 90.9 94.9 6.2 

* 30 mg l-1 HA solution pH 6   Initial colour: 240 Hazen; Initial Abs (254nm): 0.742; Initial 

Abs (400nm): 0.197 

Note: All residual Al concentrations were < 12µg l-1; and “--” indicated the value is out of the 

calibration range of Graphite furnace AAS. 

 

However, with increasing alum doses from 0.81 mg l-1 as Al3+ to 4.59 mg 

l-1 as Al3+, there was no substantial further reduction in the optimal dose of TBP. 

It is speculated that under these conditions of much higher humic and alum 

concentrations, the coagulation mechanism is probably caused both by charge 

neutralisation and adsorption on to solid phase aluminium hydrolysis species. 
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The comparative coagulation performances (in terms of FI) of alum, TBP, 

TSL and alum-TBP combination (1.35 mg l-1 as Al3+ with 30 mg l-1 as TBP) at 

their optimal doses are summarised in Figure 7.33. It is clear that compared with 

alum and TBP alone, the TSL (5.6% aluminium sulphate) and alum-TBP 

combination, which has a percentage of aluminium sulphate (assuming no water 

of hydration) of about 22%, produced a dramatically better coagulation 

performance; this was also the case in terms of colour and UV-absorbance 

removal. Comparing specifically the performance of the TSL with that of the 

alum-TBP combination showed a slight superiority of the alum-TBP 

combination. 

 

Figure 7.33 Flocculation index response with different optimum coagulants at 

pH6 (30 mg l-1 HA) 

 

 



 202 

7.3.3 Locii of the Optimal Alum-TBP Dosage Combinations  

 

From the optimal alum-TBP combinations summarised in Tables 7.4 and 

7.5, the locus lines of the optimal alum-TBP dosage combination for 15 mg l-1 

and 30 mg l-1 HA are shown in Figure 7.34. 

 

Figure 7.34 Locii of alum-TBP dosage combinations for optimal coagulation 

performance at pH6 at two HA concentrations 

 

It can be seen that at relatively low Al3+ doses (≤ 0.81 mg l-1), the alum 

and TBP are complementary, as discussed before, and the two locii show a close 

dose stoichiometry with respect to humic acid concentration. Thus, the coagulant 

dosages at point H, I and J are approximately twice those at point B, C, and D. 

 

At higher Al3+ doses (>0.81 mg l-1) and for the lower HA concentration 
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(15 mg l-1), although the locus line is strictly nonlinear, it continues to follow an 

approximately linear inverse form (i.e., ,cmxy +−=  in very general terms) 

demonstrating the complementary relationship between the two coagulants. In 

contrast, for the higher HA concentration (30 mg l-1), the locus line levels off, and 

the TBP dose has a constant value (30 mg l-1) as the alum dose increases. The 

precise reason for the constant trend of the TBP dose with increasing alum is not 

obvious, but clearly this represents a departure from a mechanism of simple 

charge neutralisation. The corresponding values for FI and colour removal at each 

point along the locus lines are shown in Figures 7.35 and 7.36. The results show 

that while colour removal is fairly insensitive to the alum-TBP dose combination 

over the full range considered, the FI is strongly influenced by the dose 

combination. Thus, for case of 15 mg l-1 HA, point B is clearly the optimal dose 

combination, while for 30 mg l-1 HA, the optimal dose combination is 

approximately point K. 

 

Figure 7.35 Variation of Flocculation Index and colour removal along coagulant 

dosage locus for 15 mg l-1 HA at pH6 
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Figure 7.36 Variation of Flocculation Index and colour removal along coagulant 

dosage locus for 30 mg l-1 HA at pH6 

 

7.4 Discussion 

 

When a cationic polymer has been used to partially replace alum as the 

primary coagulant in water treatment, coagulation/flocculation was observed to 

occur over a wide concentration range and reduced the dosages of the reagents 

(163). The results of the coagulation performance by the combination of TBP 

with alum in this investigation have confirmed this phenomenon.  

 

From the results collected from the first set of flocculation tests using 

particle suspensions as model water at two different pH values, it can be 

concluded that at pH 5 (and below), the dominant coagulant species are cationic 

aluminium hydrolysis species and cationically charged TBP polymer, and this 

gives rise to coagulation of the kaolin particles by charge neutralisation. This 

mechanism was supported by the observed inverse relationship between the alum 

and TBP dosages required for optimal coagulation which suggested a 
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quasi-charge stoichiometry between the coagulant and the suspension. In contrast, 

at pH 7, the dominant mechanism of flocculation was believed to be adsorption of 

kaolin particles onto and within precipitated Al(OH)3, known generally as ‘sweep 

flocculation’(136). However, the influence of charge neutralisation from the 

TBP-cationic charge may still be significant under these conditions. Thus, the Al 

dose can be reduced from the optimum dose of 3.4 mg l-1 as sole coagulant, to 2.0 

mg l-1 with the complementary presence of approximately 0.3 mg l-1 of TBP, 

which thereby contributes to the neutralisation of negative surface charge on the 

kaolin particles before and during sweep flocculation.   

 

It is believed that at pH6, depending on the colour (humic) concentration 

and alum dosage, the dominant coagulation mechanisms are partly ‘humate’ 

precipitation by polymeric aluminium hydrolysis species (charge neutralisation) 

and partly adsorption of organic species onto aluminium hydroxide precipitate 

(‘sweep flocculation’), leading to a maximum removal of the humic substances 

(172). However, at the lower colour and humic substance concentration (15 mg 

l-1), the small alum dose (< 2.03 mg l-1 as Al3+) may not be sufficient for a rapid 

precipitation of aluminium hydroxide, and coagulation occured principally by 

charge neutralization of the humic substances with the cationic TBP and 

aluminium hydrolysis species. In support of this, there is the observed increase in 

optimal polymer dose with decreasing alum dose, indicating an overall charge 

stoichiometry in order to achieve charge neutralization. In contrast, from the 

results obtained under the conditions of much higher humic concentrations (30 

mg l-1), it is speculated that the coagulation mechanism is probably caused both 

by charge neutralisation and adsorption on to solid phase aluminium hydrolysis 

species. The general shape of the alum-polymer dosage locus for optimal 

coagulation performance at the low concentration of HA is in accordance with the 

mechanism of cation charge stoichiometry. However, the nonlinear nature of the 

locus at high concentration of HA reflects the complex interaction between humic 

substances with coagulants. 
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For all model waters, it has been established that the reduction of the 

alum coagulant with a distinct improvement of coagulation efficiency are 

possible by a combination of TBP with alum used as a primary coagulant. The 

optimal dosages of combined alum and TBP that maximizes the coagulation 

performance and the reduction of alum at different conditions are summarized as: 

 

For 50 mg l-1 kaolin suspension at pH 5, the optimum Al/TBP dose ratio 

was identified as 0.05/0.06 mg/mg, suggesting that the addition of TBP at the 

same time as alum would allow a 75 % reduction of aluminium coagulant for a 

similar coagulation performance (in terms of FI and residual turbidity).  

 

For 50mg l-1 kaolin suspension at pH 7, the optimum Al/TBP dose ratio 

was 2.0/0.3 mg/mg, indicating that the addition of TBP at the same time as alum 

would allow a 41% reduction of aluminium coagulant with an improvement of 

coagulation efficiency (in terms of FI, but not with residual turbidity). 

 

For the lower concentration of HA (15 mg l-1) at pH6, the optimum 

Al/TBP dose ratio was identified as 0.135/25 mg/mg, suggesting that the addition 

of TBP at the same time as alum would allow a 93.4 % reduction of aluminium 

coagulant (as sole coagulant) with an improvement of coagulation efficiency (in 

terms of FI and colour removal). 

 

For the higher concentration of HA (30 mg l-1) at pH6, the optimum 

Al/TBP dose ratio was 1.35/30 mg/mg, indicating that the addition of TBP at the 

same time as alum would allow a 67 % reduction of aluminium coagulant with a 

distinct improvement of coagulation efficiency (in terms of FI and colour 

removal). 
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8. RESULTS: IMPROVEMENT OF TBP COAGULATION 

PERFORMANCE USING SOLID BOUND TBP WITH MICROSAND IN 

MODEL WATER 

 

8.1 Introduction 

 

In this part of the research, a novel approach of applying TBP as a 

TBP/microsand mixture (sand-TBP) for water treatment has been investigated. 

Preliminary work has been undertaken on the feasibility of attaching the TBP to 

an inert solid (fine sand), with the aim of being able to dose the polymer as a 

particle suspension (‘solid bound TBP’) coagulant. The potential benefits of this 

approach instead of simply dosing TBP as a solution are more rapid floc settling 

(due to the weight of the sand) and minimising residual soluble polymer in treated 

waters; the latter is important given the difficulties of measuring low 

concentrations of TBP (say, by the titration method) in the presence of other high 

molecular weight organic substances (e.g. humic substances). In practice, the use 

of one specific ballasted flocculation method, trade-name ACTIFLO®, was 

introduced in the 1990s (173). Although the use of a microsand and a polymer 

together increases the weight of flocs and the settlement rate in this 

coagulation-flocculation-settling methodology, the polymer used in the applied 

ACTIFLO process is only to help the microsand attach to the flocs, which are 

chiefly formed by metal coagulants (e.g., alum).  

 

The method of preparing the sand-TBP mixture was based on the 

adsorption of the cationic-charged TBP (at low pH) by the negatively charged 

sand grains; this was carried out in a simple mixed reactor with high speed 

mixing at 300 rpm (600 s-1) for 2 min contact time with TBP solution and sand 

introduced simultaneously (this time is based on the ACTIFLO process design). 

The sand (Micro Sand Grade 90') used in this study was supplied by Universal 

Mineral Supplies Ltd, UK (via WRc, UK). The size of the sand was in the range 
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from 63 microns to 250 microns. It has a specific gravity of 2.65 and a bulk 

density of about 1450 kg m-1, and is used by Yorkshire Water for the ACTIFLO 

process. After discarding the un-adsorbed TBP retaining in the solution, the 

resulting sand-TBP solid can be applied (dosed as a suspension) for coagulation. 

 

To quantitatively determine the ‘active’ TBP attached on the surface of 

sand, which can be further used to aggregate the fine particles in model water, it 

was necessary to primarily measure the ratio of adsorption between TBP and sand.  

Based on previous studies (see Section 5.2.1.3), the absorbance of UV at 210 nm 

provides a satisfactory measure of the concentration of TBP in pure water. 

Therefore, in the preparation of the sand-TBP, the degree of TBP adsorption by a 

given mass of sand can be determined by the change in soluble TBP (measured 

by UV210 absorbance) over a given time period of exposure.  In summary, the 

aim of this study was: 

• To evaluate the maximum adsorption of TBP by sand at pH 4.  

• To determine the optimum coagulation dose of the sand-TBP at pH 4 and 6 

using a model water containing 30 mg l-1 humic acid. The coagulation 

performance was evaluated by PDA monitoring and changes in solution 

NPDOC, and UV-Visible absorbance at 254 nm and 400 nm. 

 

8.2 Adsorption of TBP on Sand 

 

8.2.1 Preparation of a Solid Bound TBP 

 

Initial adsorption tests were carried out at pH 4 (maximum TBP charge 

density) using 30 mg l-1 TBP with different amounts of sand, with the sand used 

as received. A 2L gator jar with a high mixing speed of 300 rpm (600 s-1) for 2 

minutes was used in this test, and the final solution was filtered by 0.45µM filter 

paper. The results for the filtered water gave erratic UV210 absorbance values, 

with some absorbance higher than that corresponding to the initial 30 mg l-1 

standard TBP solution, indicating some organic contamination on the surface of 
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microsand was present. 

 

The method was modified to employ washing of the sand by either 20% 

(v/v) H2O2 or 5 % (v/v) decon solution (Decon Laboratories Ltd, UK), and drying 

of the washed sand in an oven at an appropriate temperature. After this 

pre-washing of the sand, the adsorption tests at pH4 were undertaken, and the 

UV210 absorbance of filtered solutions is shown in Tables 8.1 and 8.2, for each 

washing method. From Tables 8.1 and 8.2, it can be seen that after the 2 min rapid 

mixing at 300 rpm (600 s-1), a partial and systematic adsorption of TBP by the 

washed sand was observed. It was also observed that the optimum adsorption of 

TBP occurred at a sand concentration of 50 mg l-1, and that the degree of 

adsorption was greater with the sand washed by Decon solution compared to that 

washed by hydrogen peroxide solution. Although the quantification of residual 

TBP by measurement of NPDOC is not believed to be as accurate as UV 

absorbance, the optimal ratio of TBP/sand (30mg l-1/50mg l-1) was confirmed, as 

shown in Table 8.3. At the optimal TBP/sand ratio, the residual TBP 

concentration in filtered water was 14.29 mg l-1 (Table 8.2), which corresponded 

to nearly half of the original TBP dose (30 mg l-1-14.29 mg l-1=15.71 mg l-1), 

indicating a polymer adsorption of 52%. The amount of TBP adsorbed in 1mg 

sand surface was shown in Table 8.1, the reason for the unstable change is 

unknown, and need to further studied. 

TABLE 8.1 Residual TBP in solution after 2 min mixing with sand (20% H2O2 

solution washed, 30 mg l-1 TBP) 

TBP 
(mg l-1) 

Sand 
(mg l-1) 

UV210 Residual TBP concentration 
(mg l-1) 

The amount of TBP/sand 

        (mg/mg) 

 15 1.815 29.50 0.03 

30 25 1.658 26.86 0.13 

 50 1.273 20.39 0.19 
 100 1.595 25.81 0.04 

 150 1.766 28.69 0.008 

 250 1.802 29.28 0.003 



 210 

TABLE 8.2 Residual TBP in solution after 2 min mixing with sand (5% Decon 

solution washed, 30 mg l-1 TBP) 

TBP  

(mg l-1) 

Sand 

(mg l-1) 

UV210 Residual TBP concentration 

(mg l-1) 

The amount of TBP/sand 

           (mg/mg) 

 15 1.633 26.44 0.24 

30 25 1.589 25.70  0.29 

 40 1.324 21.25 0.22 

 45 1.204 19.23 0.24 

 50 0.910 14.29  0.31 

 55  1.421 22.88 0.13 

 60 1.512 24.41 0.09 

 100 1.602 25.92  0.04 

 150 1.611 26.07  0.03 

 250 1.672 27.10 0.01 

 

TABLE 8.3 Residual NPDOC in solution after 2 min mixing with sand 
(5%Decon solution washed, 30mg l-1 TBP) 

 TBP 

30 mg l-1

       

TBP 30 mg l-1 

With  

Sand 15mg l-1 

    

TBP 30 mg l-1 

With  

Sand 25mg l-1 

     

TBP30 mg l-1 

With 

Sand 50mg l-1 

TBP30mg l-1 

With 

Sand100mg 

l-1 

TBP30 mg l-1 

With 

Sand150mg l-1 

Residual 

NPDOC 

(mg l-1) 

11.76 8.81 9.76 7.079 10.90 10.86 

 

To check the uniqueness of the optimal TBP/sand ratio, a further test at 

pH 4 was carried out at double the previous TBP concentration used, 60mg l-1, 

with different amounts of sand washed by Decon; the results are shown in Table 

8.4. 
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TABLE 8.4 Residual TBP in solution after 2 min mixing with sand (5% Decon 

solution washed; 60mg l-1 TBP) 

TBP Sand 

(mg l-1) 

UV210 Residual TBP concentration 

(mg l-1) 

The amount of TBP/ sand 

        (mg/mg) 

 80 3.194 52.68 0.09 

60mg l-1 90 2.782 45.75 0.16 

 100 2.321 38.01 0.219 

 110 3.061 50.44 0.09 

 120 3.202 52.81 0.06 

 150 3.495 57.73 0.02 

 

It is clear that the minimum residual TBP, 38.01 mg l -1, was found at the 

optimum ratio of 60 mg l-1 TBP/100 mg l-1 Sand. This optimal ratio is virtually 

identical to that found for 30 mg l-1 TBP solutions, but the degree of TBP 

adsorption was lower at 37%. The overall results are shown graphically in Figure 

8.1. No further tests were carried out at higher concentrations of TBP (> 60mg l-1) 

since the absorbance of UV210 was out of the spectrophotometer’s limit, 

indicating that the TBP-UV210 calibration relationship was unreliable. 

 

Figure 8.1 Variation of the residual TBP with TBP/Sand Ratio 
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8.2.2 The Effect of Mixing Time to Solid Bound TBP 

 

The mixing time for the interaction of TBP and sand has been 

investigated by changing the time from 2 min to 45 min at high mixing speed 

(300rpm). Bearing in mind that the subsequent coagulation experiments would be 

carried out with 30 mg l-1 HA at pH6, which previously required an optimal dose 

of 45 mg l-1 TBP as coagulant alone, a series of tests using 60 mg l-1 TBP with 

100 mg l-1 sand was undertaken to see whether an increased mixing time 

improves the adsorption effectiveness or causes desorption between TBP and 

sand. The results in Table 8.5 showed that with increasing mixing time, the 

solution absorbance at 210nm increased systematically, suggesting an increased 

quantity of TBP remaining in the solution. The results of UV absorbance with 

different mixing time were consistent with the NPDOC results, which showed the 

minimum NPDOC in the final solution was 15.42 mg l-1 for the 2 min mixing, 

compared to the highest NPDOC, 22.96 mg l-1 for 45 min mixing. It is clearly 

seen that the optimum adsorption of TBP with sand occurred with the shortest 

mixing time (2 min), and that further mixing leads to polymer desorption from 

the sand. Further test results showed that mixing times less than 2 min gave 

higher UV absorbance values compared to that with 2 min mixing. 

 

TABLE 8.5 Residual TBP in solution with different mixing time (5% Decon 

solution washed; 60 mg l-1 TBP) 

TBP& Sand  Mixing time 

(min) 

UV210 

(cm-1) 

Residual TBP concentration 

(mg l-1) 

NPDOC 

 (mg l-1) 

 2 2.321 38.01 15.41 

60mg l-1 TBP 5 2.475 40.59 17.29 

and  10 2.962 48.78 18.85 

100mg l-1 sand 15 3.385 55.89 20.42 

 30 3.475 57.40 22.22 

 45 3.475 57.40 22.96 
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8.3 Coagulation Action of Solid Bound TBP in HA Solution 

 

8.3.1 Coagulation Performance of Solid Bound TBP at pH 4 

 

The coagulation performance of solid bound TBP was studied and 

compared with the optimum dose of solution phase TBP at pH 4 for 30 mg l-1 

humic acid solution; the latter was determined as 30 mg l-1, giving a maximum FI 

of 0.34 (see Section 6.2.3). Different doses of TBP have been used in the 

coagulation tests while maintaining the optimum TBP/Sand ratio, determined in 

Section 8.2.1. In this case, the TBP doses were chosen in the range of 50 mg l-1 to 

1.5 g l-1. The HA model water with the solid bound TBP were rapidly mixed in 

the 2L gator jar at 260 rpm (500 s-1) and held at this value for the required time 

(20-25 min). This rather high speed was found to be the optimum speed to 

uniformly suspend the solid bound TBP in water. The results of the coagulation 

tests with the solid bound TBP, in terms of the PDA Flocculation index for the 

different amounts of TBP (optimum TBP/sand ratio), are shown in Figure 8.2. 

 

Figure 8.2 Flocculation index response with the solid bound TBP at pH4 (30 mg 

l-1 HA)  
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In Figure 8.2, it can be seen that the solid bound TBP was capable of 

achieving some degree of HA coagulation. However, the maximum FI (0.14-0.17) 

observed, corresponding to the solid bound TBP produced from 70 mg TBP with 

116 mg sand, was substantially less than that produced by solution phase TBP (30 

mg l-1 TBP). With the increasing or decreasing TBP mixed with sand at the 

optimum ratio, the FI value clearly decreased. It is speculated that the charge 

density of TBP adsorbed on the surface of sand after mixing at the optimal ratio 

(70 mg l-1  TBP/116 mg l-1 sand) is similar to that of the optimum dose of 

solution phase TBP (30 mg l-1), which interacts and neutralises the negative 

charge of the humic acid at pH 4. The relatively smaller FI value, in comparison 

with that using the 30 mg l-1 solution phase TBP, is possibly explained by the 

high mixing speed required to maintain the sand in suspension, which may be 

sufficient to shear weak flocs and prevent significant floc formation. For example, 

in the previous studies with solution phase TBP, the maximum FI was reduced 

from 0.34 to 0.14, when the stirring rate was increased suddenly from 50 rpm to 

300 rpm (Section 6.6). The much greater fluctuation in FI in this study was 

possibly caused by the variation of sand size and the presence of air bubbles in 

solution produced by the extended period of high speed mixing. The quality of 

the treated water after settling and filtering was measured in terms of NPDOC 

and UV-visible light absorbance at 254nm and 400nm. The results are shown in 

Table 8.6. From Table 8.6, it is clear that the sand/TBP combination of 116 mg l-1 

sand/70 mg l-1 TBP, gave the best coagulation performance compared with the 

performances of the other sand/TBP combinations; this is consistent with the 

observed FI results. Assuming that no residual TBP remains in the filtered water, 

the removal of NPDOC and UV254 absorbance by the solid bound TBP are 

29.25% and 7.21%, which are much lower compared to the corresponding values 

for 30mg l-1 solution phase TBP (30 mg l-1 HA solution at pH4) of NPDOC 

83.5% and 92.3%, respectively. Thus, the corresponding values for the residual 

NPDOC in the final water were 5.906 mg l-1 for solid bound TBP and 4.353 mg l-1 

for the solution phase TBP. 
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TABLE 8.6 NPDOC and UV-visible light absorbance at 254nm and 400nm in 

filtered water at pH4 (30 mg l-1 HA) 

Sand 

(mg l-1) 

TBP  

(mg l-1) 

Abs at 254nm 

  (cm-1) 

Abs at 400nm 

   (cm-1) 

NPDOC  

(mg l-1) 

0 0 0.707 0.176 8.348 

85 50 0.705 0.175 7.247 

100 60 0.702 0.173 6.997 

116 70 0.656 0.153 5.906 

133 80 0.684 0.161 6.644 

150 90 0.700 0.174 6.892 

2500 1500 0.678 0.146 7.171 

 

8.3.2 Coagulation Performance of Solid Bound TBP at pH 6 

 

A further series of tests were carried out to measure the coagulation 

performance of solid bound TBP with 30 mg l-1 HA at pH 6, involving the prior 

preparation of sand with TBP for 2 min fast mixing at 300 rpm under pH 4. The 

results of the coagulation tests with the solid bound TBP, in terms of the PDA 

Flocculation index for the different amounts of TBP (optimum TBP/sand ratio), 

are shown in Figure 8.3. As found previously at pH4, it can be seen that the solid 

bound TBP was capable of achieving some degree of HA coagulation. However, 

the maximum FI of 0.15 observed, corresponding to the solid bound TBP 

produced from 160 mg TBP with 266 mg sand, was substantially less than that 

produced by solution phase TBP (45 mg l-1 TBP). It also can be seen that the 

coagulation performance by 160 mgTBP/266 mg sand is close to the performance 

by 180 mgTBP/313 mg sand, suggesting that charge neutralization is not the 

dominant mechanism in this case at pH6. However, it is possible in these tests 

that the high speed mixing may have caused floc breakage. 
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Figure 8.3 Flocculation index response with the solid bound TBP at pH6 (30mg 

l-1 HA) 

 

TABLE 8.7 NPDOC and UV-visible light absorbance at 254nm and 400nm in 

filtered water at pH6 (30mg l-1 HA) 

Sand  

(mg l-1) 

TBP  

(mg l-1) 

Abs at 254nm 

  (cm-1) 

Abs at 400nm 

  (cm-1) 

NPDOC  

(mg l-1) 

0 0 0.707 0.176 8.348 

116 70 0.704 0.129 8.375 

133 90 0.702 0.129 8.420 

200 120 0.707 0.129 7.05 

233 140 0.701 0.128 6.501 

266 160 0.700 0.127 6.427 

313 180 0.707 0.127 6.331 
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8.4 Discussion 

       

      When polymeric coagulants are used in the treatment of potable waters, 

attention must be paid to their possible toxicity. Generally speaking, the presence 

of residual polymer or/and residual monomer can present a hazard. However, a 

practical problem with high molecular weight polymers is that they are difficult 

to measure in solution at low concentrations (eg. < 1 mg l-1)(44). To date, a 

standard colorimetric method is still considered a feasible means to measure the 

phenol and tannin acid in water treatment. However, although the Determination 

limit (DL) of this standard method has been determined by UV 

spectrophotometry as a very low value (0.018 mg l-1 as tannin acid, Section 4.5.3), 

there is still concern whether in real waters the TBP product or monomer could be 

determined accurately at sufficiently low concentrations. Unfortunately, no 

published work has considered the determination of residual TBP concentration, 

possibly due to the complex nature of this polymer. 

 

Under the circumstances of a certain optimal adsorption ratio of 

TBP/sand, the combination of TBP and sand as ‘solid bound TBP’ was 

encouraging with respect to the use of the coagulant whilst minimizing residual 

TBP in the final water (following conventional filtration). This novel approach is 

based on the theory that if there is some affinity between polymer segments and 

particle surfaces, then adsorption of polymer chains may occur (19). In this case, 

for sands carrying a net negative surface charge and cationic TBP, the bound ratio 

of TBP/sand was found to be influenced by mixing time. It was observed that an 

equilibrium arrangement was achieved within 2 min of interaction between the 

TBP and the sand. The optimal bound ratio obtained in this mixing system was 

found to be consistently of the order of 0.6 mg TBP/mg micro sand. Beyond this 

optimal value, the adsorption effectiveness between sand with polymer was 

worse.  
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According to a widely accepted model of an adsorbed polymer chain (7), 

the tails and loops of TBP which is un-attached to the surface of sand and 

projecting into the solution are able to interact with the humic substances in the 

model water. Notwithstanding the evidence of coagulation between the solid 

bound TBP and the humic solution in this study, the effectiveness (the removal of 

NPDOC and UV254 absorbance) was inferior at pH 4 and 6, in comparison with 

the performance by solution phase TBP. It is speculated that in practice, the 

quantitative adsorption between TBP and sand is difficult to achieve at a very 

high mixing speed. The overdose of sand possibly depleted too much cationic 

charge of TBP, hence restricting the further interaction with humic acid to 

aggregate in solution. On the other hand, the vigorous agitation may cause the 

scission of polymer chains into small units and affect the coagulation 

effectiveness of TBP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 219 

9. RESULTS: COAGULATION EXPERIMENTS OF RAW WATER 

 

9.1 Introduction  

 

In the treatment of surface water, a cationic polyelectrolyte with high CD 

and medium or high MW such as polyDADMAC or polyamine can be used to 

replace a metal salt as the primary coagulant. However, there are fewer examples 

of polymer-only coagulation in conventional coagulation/sedimentation/filtration 

plants, compared to the use of polymer in conjunction with a metal salt, due to the 

high polymer dose that would be required. A number of workers (102-105) have 

found that the most effective removal of either turbidity or humic substances 

from natural waters was achieved by the combination of an inorganic coagulant 

and a cationic polymer such as polyDADMAC. In addition, Bolto(1) has also 

indicated that for high turbidity waters, the alum dose required for effective 

coagulation and filtration could be the limiting factor, with 12-15 mg l-1 as Al3+ 

suggested as the upper limit. In fact, the strategy of partial replacement of alum 

with a polymer has been applied in treatment practice for years (105, 106). In 

recent years, the combination of a natural polymer chitosan with alum as a 

primary coagulant has been considered for raw water treatment. Very good 

removal of turbidity and TOC from natural water by the combination of chitosan 

with metal salts has been reported by Kawamura (3) and Vogelsang et al. (109), 

respectively.  Although these results indicated that chitosan was a potential 

alternative flocculant for synthetic polymers, its economic aspect must be 

considered in practice. 

 

This chapter considers the coagulation effectiveness of TBP in 

‘synthetic’ real waters using bench-scale tests with a photometric dispersion 

analyzer to investigate whether TBP would be a workable substitute for alum and 

polyDADMAC. Based on the previous results of model water tests, samples of a 

real water from an organic-rich river source at Bamford, UK, were also included 

for the bench-scale coagulation tests to raise the possibility of maximizing and 
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optimizing the performance using certain doses of TBP alone and dual coagulants 

(alum/TBP) as primary coagulants.  

 

9.2 Coagulation Performance of TBP in Simulated Water 

 

A simulation test using a mixture of kaolin clay and humic acid as model 

water was undertaken to simulate the performance of TBP with a real water and 

to compare the results with those reported previously for real waters by WRc 

(137). Details of the two waters and test methods were given in Section 4.4.3. 

The results of the coagulation performance with the artificial model water are 

shown in Figure 9.1. 

 

Figure 9.1 Flocculation index response with TBP dose for artificial water  

 

The coagulation tests indicated that a relatively high dose (15-20 mg l-1) 

of TBP gave a good performance of colour, turbidity and NPDOC removal, 

although at a lower dose, the onset of flocculation seemed to occur earlier. The 

delayed flocculation phenomena at high dosage are difficult to explain by 

Smoluchowski flocculation theory. It is likely affected by the precipitation of TBP 

at high pH, however, the details need to be further studied. Even though the 
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nature of the organic matter in the real water is different to the HA used in the 

model water, the optimum dose of around 15-20 mg l-1 for the model water is 

consistent with the results of the WRc study, in which a similar dose of 15-20 mg 

l-1 of TBP was required to produce the minimum residual turbidity. A comparison 

of the results of the two types of water at a common TBP dose of 15 mg l-1 tests 

are given in Tables 9.1 and 9.2. 

 

TABLE 9.1 Coagulation results for the artificial water using 15 mg l-1 TBP 

 pH NPDOC* 

(mg l-1) 

NPDOC 

Reduction 

Colour 

(Hazen) 

Colour 

Reduction 

Turbidity 

(NTU) 

Turbidity 

Reduction 

Initial artifical 

water 

7.9 (15.26)** 32 27 

Final filtered 

water 

7.1 (12.55)** 

17.8% 

8 

75% 

8 

70.37% 

* Initial NPDOC value is the sum of NPDOC values of TBP and artifical water. 

** As indicated in Table 4.4, these values are believed to be incorrect.  

 

TABLE 9.2 Coagulation results for the real water using 15 mg l-1 TBP (137)   

 pH NPDOC 

(mg l-1) 

NPDOC 

Reduction 

Colour 

(Hazen) 

Colour 

Reduction 

Turbidity 

(NTU) 

Turbidity 

Reduction 

Initial River 

water 

7.9 5.73 32.8 27 

Final filtered 

water 

6.9 4.68 

18.32% 

10.5 

67.98% 

0.14 

99.48% 

 

9.3 Coagulation Performance of Different Coagulants with Raw Water  

 

9.3.1 Coagulation Tests of Raw Water without pH Adjustment  
 

In this study, TBP was dosed to samples of raw water from Bamford, UK 

(see Section 4.4.4) without adjustment of pH and the coagulation performance 

was investigated. The PDA results are shown graphically in Figure 9.2. From 
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these and the values of the other water quality parameters, shown in Table 9.3, it 

is clear that a TBP dose of 30 mg l-1 gave the maximum FI, around 0.2, and the 

optimal coagulation performance overall. The corresponding pH was 7.6. 

Figure 9.2 Dynamic monitoring of raw water (Bamford, UK) using different 

dosages of TBP without pH adjustment  

 

TABLE 9.3 Variation of coagulation performance with TBP dosage for raw water 

(Bamford, UK) without pH adjustment 

TBP dose 

(mg l-1) 

Final pH NPDOC 

(mg l-1) 

Colour 

Hazen 

UV 254nm UV400nm Floc Vol 

(ml) 

FI 

15 7.8 4.062 12.5 0.084 0.004 3.5 0.13 

20 7.8 4.244 15 0.084 0.008 3.5 0.15 

25 7.6 3.936 12.5 0.089 0.004 -- 0.08 

30 7.6 3.096 10 0.073 0.004 5 0.2 

35 7.2 4.513 15 0.081 0.004 -- 0.08 

40 6.6 6.093 20 0.083 0.009 -- 0.07 
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9.3.2 Coagulation Tests of Raw Water with pH Adjustment at pH 6 

 

9.3.2.1 Coagulation Performance of Alum  
 

In these laboratory tests, 0.1 mol l-1 HCl solution was used to adjust the 

pH value to 6.0. The optimum dose of alum used as coagulant alone was 

measured by PDA and the results are shown in Figure 9.3. It is clear that 4.1 mg 

l-1 as Al3+ gave the maximum FI as 0.17. The other water quality parameters were 

also measured and are summarised in Table 9.4. Clearly, the optimal results of 

final water qualities were in agreement with the PDA findings. 

 

 

Figure 9.3 Dynamic monitoring of raw water at pH 6 using different doses of 

alum (Bamford raw water) 
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TABLE 9.4 Variation of coagulation performance with alum dosage at pH6 

(Bamford raw water) 

Al3+ 

dosage 

(mg l-1) 

NPDOC 

(mg l-1) 

Colour 

Hazen 

UV 254nm 

 (cm-1) 

UV400nm 

  (cm-1) 

Floc Vol 

(ml) 

FI 

3.4 1.090 10 0.022 0.002 3.5 0.11 

4.1 1.003 5 0.019 0.001 4.5 0.17 

4.5 1.026 7.5 0.024 0.002 3.5 0.13 

5.0 1.052 15 0.024 0.003 2.0 0.14 

 

9.3.2.2 Coagulation Performance of TBP  

 

The optimum dose of TBP used as the sole coagulant was measured at 

pH 6. From Figure 9.4, it is clear that 25 mg l-1 TBP gave a maximum FI value of 

around 0.35. This optimal dose was confirmed by the other water quality 

parameters shown in Table 9.5. However, the NPDOC value of the final water 

using 10 mg l-1 TBP as the sole coagulant was smaller than that using 25 mg l-1 

TBP, owing to the lower dose of TBP added to the initial water. 

 

Compared to the previous results with model water containing 15 mg l-1 

HA (NPDOC approximately 4.01 mg l-1), the dosages of alum and TBP for real 

water (NPDOC approximately 3.662 mg l-1) are higher. However, it is reasonable 

to expect significant differences between the real and model waters owing to the 

different water qualities.  
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Figure 9.4 Dynamic monitoring of raw water at pH 6 using different doses of 

TBP (Bamford raw water) 

 

TABLE 9.5 Variation of coagulation performance with TBP dosage at pH6 

(Bamford raw water) 

TBP dose 

(mg l-1) 

NPDOC 

(mg l-1) 

Colour 

Hazen 

UV 254nm 

 (cm-1) 

UV400nm 

  (cm-1) 

Floc Vol 

(ml) 

FI 

10 2.064 15 0.046 0.007 3 0.12 

20 2.927 15 0.060 0.004 5 0.20 

22.5 2.858 7.5 0.057 0.004 8 0.23 

25    2.809 5      0.049 0.003 10 0.35 

30 3.240 10 0.056 0.003 8 0.31 
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9.3.2.3 Coagulation Performance of Alum/TBP Combination  

 

A narrow matrix test of the TBP/Alum dose combination for real water 

at pH 6 was undertaken, based on the optimum dose of alum and TBP for real 

water and the combination of TBP/Alum with the model water. The PDA results 

are shown in Figures 9.5, 9.6 and 9.7 for different doses of TBP and alum. 

 

Figure 9.5 Flocculation index response with 25 mg l-1 TBP and different Alum 

doses at pH6 (Bamford raw water) 
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Figure 9.6 Flocculation index response with 20 mg l-1 TBP and different Alum 

doses at pH6 (Bamford raw water) 

 

Figure 9.7 Flocculation index response with 30 mg l-1 TBP and different Alum 

doses at pH6 (Bamford raw water) 
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It is clearly seen that the combination of TBP/Alum remarkably 

improved the coagulation performance (FI value). The optimal combination of 

TBP/Alum (25 mg l-1 TBP and 0.27 mg l-1as Al3+) gave the maximum FI value of 

about 1.1. With an increase or decrease in the amount of TBP (30 mg l-1 or 20 mg 

l-1), the coagulation performances were inferior. However, the complementary 

relationship between TBP and alum was evident in this study. The locus of 

alum-TBP doses is shown in Figure 9.8.  
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Figure 9.8 Locus of alum-TBP dosage combinations for optimal coagulation 

performance at pH6 (Bamford raw water) 

 

The corresponding values for FI and colour removal at each point along 

the locus line are shown in Figure 9.9. The results showed that while colour 

removal is fairly insensitive to the alum-TBP dose combination over the full 

range considered, the FI is strongly influenced by the dose combination. Thus, 

point C is clearly the optimal dose combination. 
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Figure 9.9 Variation of Flocculation Index and colour removal along locus line of 

coagulant dosage at pH6 (Bamford raw water)  

 

In general, the locus line of doses for the real water is very close to that 

found for the model water with 15 mg l-1 HA. The coagulation performance in 

terms of other water quality parameters is summarized in Table 9.6. From Table 

9.6, it is seen that 25 mg l-1 TBP with 0.27 mg l-1 as Al3+ significantly improved 

the coagulation performance and reduced the amount of alum compared to using 

alum alone. However, the addition of TBP as coagulant increased the value of 

final NPDOC, in comparison with alum as sole coagulant. It is also observed that 

the values of NPDOC in the final treated water are very close for the different 

TBP/alum combinations. It is likely that this was caused by the presence of 

residual TBP concentrations remaining in the final water, since the high removal 

of UV absorbance at 254nm indicated the absence of humic matter. Using the 

standard method for measurement of residual tannin, the absorbance at 700nm is 

about 0.132. From the calibration curve equation: 0043.00943.0 −= XY ------- 

(4.2), the corresponding residual TBP concentration in the final water is about 

1.445 mg l-1 (the calibration curve is described in Section 4.5.3). 
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TABLE 9.6 Coagulation performance for the combination of TBP/Alum at pH6 

(Bamford raw water) 

TBP dose 

( mg l-1) 

Al3+ 

(mg l-1) 

NPDOC 

( mg l-1) 

Colour 

Hazen 

UV 254nm 

(cm-1) 

UV400nm 

(cm-1) 

Floc Vol 

(ml) 

FI 

0.135 2.687 7.5 0.033 0.002 10 0.95 

0.27 2.791 10 0.038 0.002 8 0.85 

30 

0.41 2.783 12.5 0.037 0.002 6 0.6 

0.135 2.777 7.5 0.039 0.003 10 0.9 

0.27 2.432 5 0.031 0.002 14.5 1.1 

25 

0.41 2.566 7.5 0.042 0.003 12 1.0 

0.135 2.843 17.5 0.049 0.004 2 0.45 

0.27 2.828 15 0.046 0.004 4 0.55 

20 

0.41 2.602 12.5 0.037 0.002 5.5 0.63 

25 0 2.809 5 0.049 0.003 10 0.35 

0 4.1 1.003 5 0.019 0.001 4.5 0.17 

 

 

In the previous tests for model water with 15 mg l-1 HA, the results 

indicated that a small amount of TBP with rather higher dose of alum improved 

the coagulation performance. In this case, 10 mg l-1 TBP was chosen to combine 

with a range of alum (from 1.08 mg l-1 to 3.24 mg l-1 as Al3+) to see whether the 

coagulation performance is improved. The results are shown in Figure 9.10 and 

Table 9.7. It is clearly seen that in comparison with the performances using TBP 

or alum as coagulant alone, 10 mg l-1 TBP with 2.16 mg l-1 as Al3+ gave a modest 

performance. 
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Figure 9.10 Flocculation index response with 10 mg l-1 TBP and different Alum 

doses at pH6 (Bamford raw water) 

 

TABLE 9.7 Variation of coagulation performance with TBP and alum doses at 

pH6 (Bamford raw water) 

TBP dose 

(mg l-1) 

Al3+ 

(mg l-1) 

NPDOC  

(mg l-1) 

Colour 

Hazen 

UV 254nm 

(cm-1) 

UV400nm 

(cm-1) 

Floc Vol 

(ml) 

FI 

1.62 1.834 15 0.045 0.005 1.5 0.22 

2.16 1.464 12.5 0.026 0.003 5.5 0.40 

2.7 1.474 15 0.030 0.008 1.5 0.32 

10 

3.24 1.773 25 0.033 0.010 0.5 0.24 

25 0 2.809 5 0.049 0.003 10 0.35 

0 4.05 1.003 5 0.019 0.001 4.5 0.17 
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9.3.2.4 Floc Strength of Alum-TBP Combination 

 

In this experiment, the optimum dose of alum, TBP and the combinations 

of TBP/alum were pipetted into real water at pH 6, and an initial period of 25 

minutes for the slow stirring at 50 rpm (48 s-1) was chosen since no significant 

changes were observed in the FI value after this. Floc breakage was brought 

about by suddenly increasing the stirring speed to 300 rpm (600 s-1) after the 

initial period, and maintaining this for 60 seconds. Then, the stirring speed was 

reduced back to 50 rpm (48 s-1). The PDA results are shown in Figure 9.11. The 

behaviour of the flocs during these hydrodynamic changes can be described by 

the following semi-quantitative parameters (Section 6.6.2) based on the FI 

response: 

Strength factor = (FI2/ FI1) ·100                           ------------- (6.1) 

Recovery factor = [(FI3- FI2) / (FI1- FI2)] ·100                ------------ (6.2) 

 

Figure 9.11 Monitoring of floc formation at 50 rpm, breakage at 300 rpm for 60s 

and re-formation at 50 rpm using different coagulants at pH6 (Bamford raw 

water) 
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TABLE 9.8 Strength and recovery factors obtained for different coagulants (floc 

breakage at 300rpm for 60s) at pH6 (Bamford raw water) 

  Alum  TBP 

10 mg l-1 TBP and  

2.16 mg l-1 as Al3+ 

25 mg l-1 TBP and 

0.27 mg l-1 as Al3+ 

Strength factor (%) 23.5 14.3 20.0 18.2 

Recovery factor (%) 38.5 50 40.6 44.4 

 

It is believed that the higher the value of the strength factor, the stronger 

the flocs, since they are less sensitive to breakage as a result of the increased 

shear rate. Compared with TBP, a stronger floc and lower recovery factor was 

found with alum for model waters containing kaolin suspensions at low pH in our 

previous studies (Section 6.6.2). In these experiments, from table 9.8 the strength 

and recovery factors of the TBP/alum combinations at the optimum ration (10/ 

2.16 mg/mg) were similar to those with alum, and the strength factor was greater 

than TBP alone. However, with the increasing dose of TBP in the combination, 

the floc strength decreased slightly. 

 

9.4 Discussion 

 

The coagulation of a simulated river water showed that a relatively high 

dose (15 mg l-1- 20 mg l-1) of TBP gave a good performance of colour and 

turbidity removal, but less so with NPDOC removal. The results were consistent 

with those reported by WRc for real river water under equivalent conditions. 

Evidence that when particles are present, as would normally occur in natural 

waters, the coagulation performance is improved (31) was supported by the 

observed behaviour of a quaternary ammonium polymer with high CD and MW 

in the study of Bolto et al. (31). The examination of the addition of kaolinite 

when polyDADMAC was used as a primary coagulant suggests a 16% better 

removal of colour, but there was little change in the removal of NOM, as 
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measured by UV absorbance. In this case, at pH 7, comparing the “synthetic” 

water, in the presence of particles, with the HA model water, it is clearly observed 

that kaolinite has a great effect on coagulation performance. Although an 

adequate explanation is not possible, it seems likely that on addition of kaolinite 

to humic acid solutions, the organic material is partly adsorbed on to the clay 

surface, due to a strong affinity for humic acid (174). Therefore the enhanced 

polymer coagulation could be explained by bridging, probably by hydrophobic 

interaction between polymer molecules adsorbed onto adjacent particles (31). 

 

The observed locus line (Figure.9.8) of TBP-alum combination dose for 

the Bamford real water, an organic-rich river source, at pH 6 is totally consistent 

with the previous results for the model water with 15 mg l-1 HA at the same pH. 

The results of the Gator jar investigation showed that for the real water, at pH 6.0, 

the optimum Al/TBP dose ratio was identified as 0.27/25 mg/mg, suggesting that 

the addition of TBP at the same time as alum would enable a 93.25% reduction of 

aluminium coagulant (as sole coagulant) with an improvement of coagulation 

efficiency (FI is about 1.1), in comparison with the coagulation effectiveness by 

TBP or alum alone. A rather high dose of alum with a low dose of TBP at a 

Al/TBP ratio of 2.16mg/10mg also improved the coagulation performance and 

reduced the alum usage. The strong complementary relationship between TBP 

and alum favours the conclusion from the model water that at pH 6, the 

mechanism of the flocculation action of the combination is predominantly charge 

neutralization. The floc strength of the alum/TBP combination at the optimum 

ratio (0.27/25 mg/mg) was found to be clearly greater than the strength of TBP 

alone, and slightly lower than that of alum alone, as expressed in terms of 

strength factor. This trend is in agreement with the findings for model waters 

containing kaolin suspensions. There is still concern that as the amount of alum 

was reduced significantly by the use of the dual coagulant, the NPDOC value in 

the final treated water increases and is higher, compared to that with alum as a 

sole coagulant. 
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 10. GENERAL DISCUSSION 

 

Cationic polymers are used in water and wastewater treatment primarily 

as coagulants/flocculants to aid in solid-liquid separation. The majority of such 

applications are treated with synthetic polymers mainly due to their high charge 

densities and high molecular weights. However, synthetic products are likely to 

have toxicity problems and their long-term effects on human health are not well 

understood. To minimize these drawbacks, natural polymers and their derivatives 

have gained popularity in water and waste water treatment. The selection of 

natural polymers as primary coagulants is mainly on the basis of their cost, 

coagulation effectiveness, biodegradability and safety to human health. The exact 

coagulation mechanisms involved with these natural polymers are likely to vary 

with the nature of the coagulant chemical. To select a suitable natural polymer for 

a given application and evaluate its coagulation performance, it is necessary to 

fully understand its properties, particularly its molecular weight, charge density, 

chemical structure and functional groups. In general, naturally occurring products 

used for coagulation are medium or high molecular weight polymers with high 

cationic charge, such as chitosan. Although the relative importance of “charge 

neutralisation” and “polymer bridging” during the coagulation process is still 

unclear, it is evident from previous observations that highly positive CD polymers 

tend to adsorb in a rather flat configuration, thus there is more opportunity for 

neutralising the negative charges on the surface of particles (43); and the most 

effective polymers for bridging are linear chains with high molecular weight (55). 

For a high MW polymer with high CD, the ‘charge neutralisation’ is the dominant 

coagulation mechanism for humic acid removal, and the absence of any effect of 

molecular weight on the degree of removal indicated that a ‘bridging’ mechanism 

is unlikely to play a major part in the process (18). Whilst natural polymers, such 

as chitosan, have been used as primary coagulants to treat particles or organic 

matter, it is difficult to determine a predominant mechanism due to their 

complicated properties (175-177). Therefore, some workers (16) have strongly 
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proposed that a detailed knowledge of the character and properties of natural 

polymers would be a significant step toward developing the study of coagulation 

mechanisms and further polymer selection. 

 

In agreement with the general information supplied by the TBP 

manufacturer, the characterisation results described in Section 5, indicate that the 

TBP is a moderate-to-high molecular weight polymer (~600,000 g mol-1), with 

approximately 1000-2000 repeating units, and a reasonably narrow molecular 

weight distribution. Thus, the cationic tannin based polymer is assumed to be as 

shown in Figure 10.1; the condensation polymerization is believed to occur at the 

4- and 8-positions of the "A" and "C" ring, respectively (129).  
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CHR: the remainder of the aldehyde compound after the carbonyl oxygen has left.  

R1 and R2: hydrogen or other organic moieties that were part of the original amino compound. 

Figure.10.1 Proposed model structure for TBP 

 

According to this model, the molecular weight of a repeating TBP unit is 

estimated to be approximately 300, and the cationic charge is represented by the 

amino group of the TBP.  
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From the literature review, it is understood that condensed tannins 

comprise a group of polyhydroxylflavan-3-ol oligomers and polymers linked by 

carbon-carbon bonds between flavanol subunits. Analysis of TBP is complicated 

by the diversity of structures found within the group of condensed tannins. 

According to the accepted principles of colloid science, systems are considered 

to exhibit colloidal properties when the dimensions of the dissolved or dispersed 

components (in hydrophilic or hydrophobic colloids, respectively) are in the 

range of 1 to 1000nm (178). As we have measured the “radius of gyration” of 

TBP to be around 78.4 (±19.3) nm, a colloidal system containing TBP could be 

formed, depending on the chemical composition of the dissolved or dispersed 

components and on the molecular interactions with the solvent molecules. 

 

It is well understood that the dissociation of acidic HA functional groups, 

such as carboxyl and phenolic groups, in aqueous media leads to the spontaneous 

formation of an electric double layer. Therefore, electrostatic interactions play the 

determining role in the conformational changes of humic macroions as well as in 

the colloidal stability of humic solutions and in the aggregation of the individual 

humic macroions (178). At high pH the functional groups are fully ionized, 

resulting in the highly water-soluble anion. These chemically linked charges 

endeavour to situate themselves as far apart as possible. In contrast, at low pH, 

humic molecules can accumulate in interfacial layers, without any repulsion from 

the charges. However, the explanation of HA precipitation is likely to be different 

to the behavior of TBP, which also includes phenolic groups. In this case a 

macromolecular solution is formed if TBP is dissolved in water at low pH and 

precipitation occurred at higher pH (>6). It is assumed that the charges in the 

electric double layer, caused by cationic amino groups, are mutually repelling at 

low pH values. The dissociation of the cationic group with increasing pH leads to 

TBP molecule accumulation. Further study of the chemistry of natural tannin 

found that tannin may offer the potential to reconstruct by nucleophilic reactions 

(179, 180). This is certainly true under basic conditions in the presence of oxygen, 
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both the extender unit and terminal unit of tannin (dependent on R group in 

Figure 2.6) are subject to rearrangement (180), which can then possibly undergo 

cross-link reactions between TBP molecules. Therefore, a higher degree of 

polymerization corresponds to lower solubility and greater resistance to 

degradation (181). These aspects supply some possible explanation for TBP 

precipitation, but the precise mechanisms linking TBP precipitation to pH are still 

considered to be far from straightforward. 

 

The explanation of the ‘ageing effect’ by Shyluk and Stow (182), who 

proposed that the diminishing flocculation ability of polymers with time was 

associated with the disentangling of polymer chains, do not support the 

observation of TBP precipitation with time in this study. A reasonable assumption 

is that with an increasing time of exposure, a slow deprotonation process of the 

phenolic hydroxyl group present on TBP might cause an increase in anionicity of 

TBP, giving an inferior coagulation performance only by charge neutralization. 

However, this effect may not contribute to the observed flocculation extent with 

polymer bridging or precipitation of TBP. In overall terms, it can be concluded 

that TBP is substantially affected by hydrolysis/hydration processes which lead to 

changes in its charge density and solubility with solution time and pH. 

 

Strong evidence of a non-quaternized amine group, possibly a tertiary 

amine group, was found from different characterization tests (Section 5). The 

positive charge density of TBP at low pH is believed to be due to the N+ ion of its 

amine groups. However, by the deprotonation effect, the cationic TBP loses its 

positive charge with increasing pH values. The results of the coagulation 

experiments using TBP as a sole primary coagulant in this study (section 6) have 

clearly illustrated that the variation in positive charge density with pH is the 

major reason for the difference in optimum dosages of TBP. The greater the 

positive charge density of TBP, the less the dose required to neutralize the 

negative charge of the colloid. In contrast, a considerably greater dose was found 
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for TBP at relatively high pH corresponding to the polymer having weak or non- 

positive charge, indicating flocculation caused by ‘bridging’(58) or other 

mechanisms. In addition, it is clear from this work (Section 5) that at pH≥6, the 

degree of insolubility of TBP increased dramatically with increasing pH values, 

possibly caused by a low dissociation constant value (pKa) of its amino functions. 

A relatively fast precipitation process of TBP, observed at higher pH (≥7), 

appeared to influence the coagulation process and performance by the 

enmeshment of precipitation. 

 

It is well known that electrostatic interaction gives strong adsorption 

between negatively charged particles and cationic polyelectrolytes. Coagulation 

could occur by “charge neutralization” simply as a result of the reduced surface 

charge of the particles and hence a decreased electrical repulsion between them 

(19). From the results of the optimum TBP dosages for different concentrations of 

kaolin, there seemed to be a simple one-to-one charge interaction between 

negatively charged particles and the cationic TBP with a charge density of around 

3 meq g-1 to 0.7 meq g-1 at low pH values (4 ~ 7). This is consistent with the 

conclusions of Gregory (45) and Narkis and Rebhun (83), that if charge 

neutralization is not a significant contribution to coagulation process then the 

stoichiometric interaction between the anionic sites of particles/ humic substances 

and the cationic charge of the polyelectrolytes might not exist. In contrast, the 

theoretical optimum dosage for polymer bridging corresponds to “half-surface 

coverage” of particles (61). However, Gregory (45) proposed that for adsorbed 

polymers, it is difficult to precisely define “surface coverage” and optimum 

flocculation usually occurs at well below monolayer coverage. Runkana et al. (62) 

found that theories of bridging flocculation assuming equilibrium conditions were 

of limited use in practice. Therefore, bridging interactions are likely to present a 

non-equilibrium flocculation. The observed behaviour of non-stoichiometry by 

TBP at high pH indicated that ‘bridging’ or the precipitate enmeshment 

mechanism was only likely to play a major part in the process when the TBP has 
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a low positive charge or non-charge under higher pH conditions. Higher 

aggregation rates and relatively larger flocs were found to occur under conditions 

corresponding to ‘bridging’ or ‘sweep flocculation’ rather than charge 

neutralization in this case. These observations could be explained by the fact that 

the production of Al(OH)3 precipitate increased the effective particle 

concentration and hence increased the collision rate; hydroxide precipitates are 

quickly formed from large numbers of colloidal particles, and the aggregation of 

these small particles gives low-density flocs, with a relatively large volume (145). 

By understanding the chemical properties and structure of TBP, the 

interrelationship between charge density, solution pH and polymer dosage with its 

mechanism/performance of coagulation can be hypothesized. The loss of cationic 

charge (amine de-protonation) and solubility with pH in the typical pH range for 

water treatment (ie. pH 6-9) makes the behaviour of TBP similar to that of 

conventional aluminium salt coagulants. A description of the aluminium 

hydrolysis species and the solid precipitate domain as a function of pH can be 

found from the well-established aluminium solubility diagram (134). At pH 5.0 - 

6.0, the dominant Al species has been identified as doubly-and singly-charged 

cationic species, leading to aggregation of particles by charge neutralization. At 

pH 6 and above, due mainly to the uncharged (weakly charged) metal hydroxide, 

Al(OH)3, the dominant coagulation mechanism is believed to be adsorption of 

particles on, and enmeshment, by precipitates (“sweep flocculation”). In the same 

way, at low pH (≤6) TBP is present as a moderate-to-high molecular weight, 

soluble cationic polyelectrolyte with a charge density of approximately 3 meq g-1, 

which is able to destabilise kaolin suspensions by charge neutralisation. Under 

higher pH conditions (pH>6), increasing degrees of polymer precipitation occurs 

leading to a decrease in soluble polymer concentration, a loss of cationic charge 

and probable changes in polymer configuration. The impact of these changes on 

coagulation performance is complex and likely to involve the well-established 

mechanisms of charge interactions (including “electrostatic patch” effects), 

polymer bridging, and colloid adsorption/enmeshment by solid phase TBP 
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hydrolysis products. Of importance to the first two mechanisms is the dependence 

of the polymer configuration (ie. chain length, cross-linkage and chain stiffness) 

on the solution chemistry. A summary of the proposed mechanisms with solution 

pH is given in Table 10.1. 

 

TABLE 10.1 Characteristics and coagulation behaviour of TBP with kaolin 

pH 

Charge 

Density  

(meq g-1) 

Optimum 

Dosage  

(mg l-1) 

Flocculation 

Index (FI) 

Turbidity 

Removal  

Possible Mechanism  

4 3.072 0.15 0.25 63.7% Charge Neutralisation 

5 2.662 0.25 0.32 53.7% Charge Neutralisation 

6 2.048 0.25 0.35 57.5% Charge Neutralisation 

7 0.666 0.3 0.52 67.5% 

Charge Neutralisation

and/or Polymer Bridging 

8 0.256 12.5 1.6-1.8 70% 

Polymer Bridging and/or 

Precipitate Enmeshment 

9 0.205 14 2.3-2.5 72.5% 

Polymer Bridging and /or 

Precipitate Enmeshment 

 

To study the optimal coagulation performances of individual coagulants, 

the maximum Flocculation Index (as a surrogate for floc size) and strength factor 

(as a surrogate for floc strength) at the optimum dose were compared by the 

results determined from a Photometric Dispersion Analyser (PDA). At pH9, using 

both model waters containing particles (kaolin) and soluble organic matter (HA), 

considerably increased values of FI and strength factor were found, for polymer 

bridging, in comparison with the lower values of these two parameters as 

expected, for charge neutralisation with TBP at pH4 and 7. In comparison with 

two alternative coagulant chemicals, alum and polyDADMAC, the performance 

of the TBP in treating a kaolin suspension was inferior at neutral pH. For 
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polyDADMAC this is because it is a larger (1×106 g mol -1) and more highly 

charged (6 meq g-1) polymer, and its solubility is unaffected by solution time and 

pH. Thus, it is capable of producing large flocs through efficient charge 

neutralisation and polymer bridging. For alum at pH 7, the coagulation is 

effective through rapid adsorption/enmeshment by aluminium hydrolysis species 

and Al(OH)3 precipitates. Although the slow precipitation of TBP occurred at pH 

7, the small amount of optimum dose may not produce enough enmeshment to 

effectively “sweep” all the particles in the solution. Therefore, the main 

coagulation mechanism of TBP at pH 7 is believed to be charge neutralization 

and/or polymer bridging. However, in higher solution pH conditions the 

coagulation performance of TBP appears to improve substantially, albeit with a 

greater dose required, and at pH 9 it was arguably superior to the other 

coagulants.  

 

It is clear that “polymer bridging” is dependent on the adsorption of 

polymer segments on to colloidal particles. When a long-chain polymer comes 

into contact with a colloid particle, some of its active groups adsorb on to the 

particle surface, while the rest of the segment of the macromolecule stretches out 

from the surface into the solution as “loops” and “tails” to adsorb the other 

particle. In general, the types of adsorption interaction between the polymer and 

particle include electrostatic interaction, hydrogen bonding, hydrophobic bonding 

and ion binding. In practice, the possibilities of these interactions are dependent 

on the properties of the polymer and particle. In this case, at pH 9, a fair 

proportion of TBP segments are believed to remain unattached and are available 

for adsorption on other kaolin or HA particles. These particles then aggregate to 

form flocs. “Bridging” will occur when the adsorbed chains interact with another 

floc in the same way. Since TBP has a very weak charge at pH 9, hydrophobic 

bonding and hydrogen bonding are believed to be important in considering the 

affinity of segments for particle surfaces. The observation of stronger flocs by the 

TBP at pH9 and by polyDADMAC in comparison with alum is matched by the 
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conclusion of Yukselen and Gregory (101), who proposed that the flocs produced 

by bridging flocculation can be much larger and stronger than those formed when 

particles are ionically destabilized by the charge neutralization of salts. Unlike 

polyDADMAC which is a quaternary ammonium polymer and produces 

destabilization of colloids as a result of charge neutralization and polymer 

bridging, the action of TBP partially relies on its relative insolubility at pH values 

higher than its isoelectric point (where the net charge on the polymer is close to 

zero), which causes TBP to self-flocculate and sweep up other suspended 

particles into the floc volume. This phenomenon is thought to be similar to the 

precipitate enmeshment or ‘sweep flocculation’ mechanism of hydroxide 

precipitate when alum is used as primary coagulant. The cross-linkage by TBP 

precipitate probably enhances the strength of bonds between particles.  

 

The main advantage of combining polymers with inorganic coagulants is 

a consequent decrease in the inorganic coagulant dosage, leading to a decrease in 

the generation of dry sludge, while achieving either an equivalent coagulation 

performance or better performance. This has been clearly demonstrated by the 

works of Filho et al. (105) for ferric sulphate with a cationic polymer. The results 

from different model waters in this study (Section 6) have consistently shown a 

substantial reduction in the dose of alum with a significant improvement of 

coagulation effectiveness by the combination of alum/TBP. In mechanistic terms, 

charge neutralisation appears to be a more important factor than polymer bridging 

for the combination of coagulants at low pH for particle suspensions. This would 

be expected to lead to an inversely quantitative relationship between alum and 

TBP dosages (Figure 7.16). Notwithstanding a similar complementary 

relationship between alum and TBP dosages at pH>6, the values in this case were 

found to be non proportional. This is not surprising, since the dominant 

flocculation mechanism of alum at pH>6 was believed to be adsorption of 

particles on to and within precipitated Al(OH)3, known generally as ‘sweep 

flocculation’(134). For model water with a turbidity of 70 NTU, Kawamura (3) 
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found that the addition of chitosan with alum would allow a 20% reduction of 

alum as a coagulant alone with a small improvement of turbidity removal. The 

optimum Al/chitosan dose ratio was suggested as 0.70/0.05mg (assumed the alum 

as Al2 (SO4)3·14H2O). In our study, for a turbidity water at 40 NTU, the optimum 

Al/TBP dose ratio was identified as 0.05/0.06 mg/mg, suggesting that the addition 

of TBP with alum allowed a 75% reduction of aluminium coagulant (as sole 

coagulant) with a small change of turbidity removal. It is seemed that TBP was 

more efficient to replace alum when used as dual coagulant, compared with 

chitosan. For HA solutions at pH 6, a superior performance and less dose were 

achieved with the dual coagulant (alum-TBP combination), compared to the 

commercial product TSL; however, both of them presented a higher floc volume 

compared with alum as coagulant alone. The findings from this investigation 

indicated that the precipitation of TBP at neutral and high pH produced a 

significant amount of sludge, which may remove the advantage of alum 

replacement by polymer in terms of sludge reduction. 

 

In the results presented in this study, there is some doubt about the locus 

of optimal alum/TBP combinations (Figure 7.34) at a relatively high 

concentration of humic substances (30 mg l-1 HA). The precise reason for the 

constant trend of the TBP dose with increasing alum is not obvious. The most 

likely explanation for this trend was that for a high concentration of humic acids, 

a large dosage of TBP combined with a small dose of alum gave charge 

neutralisation and restabilisation at pH 6; further increasing the dose of alum only 

gave an opportunity to produce a large amount of hydroxide precipitate. 

Therefore, sweep flocculation played a predominant role in the flocculation 

process, and reduced the impact of charge neutralisation effects by TBP. Thus, the 

locus line levels off, and the TBP dose has a constant value (30 mg l-1) as the 

alum dose increases. In practice, due to the precipitation of alum and/or TBP, a 

rather wide range of alum/TBP dose combinations gave a coagulation 

performance close to the optimum (indicated by the similar FI values). In Figure 
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10.2, the original Figure 7.34 has been modified to include the locii of dose 

combinations corresponding to 75% of FImax, for the two levels of HA; this is 

taken to be a range of good coagulation. The purpose of this is to show the 

sensitivity of the peak coagulation performance to the coagulant dose 

combinations. 

 

At the lower level of HA, the locii are consistent and cover a narrow 

range of dose variation corresponding to good coagulation. At the higher level of 

HA, there is a wide range of dose combinations between the “upper limit” and 

“lower limit” locii. It is interesting to note that while the optimum dose locus 

(FImax) indicated a constant TBP dose for Al > 0.5 mg l-1, the upper limit and 

lower limit locii displayed an inverse trend, or dose complementarity, as might be 

expected for a coagulation mechanism based on charge neutralisation. The 

departure from a simple inverse dose trend for the optimum dose locus may be a 

consequence of the broad range of alum-TBP dose combinations giving good 

coagulation and the imprecision in defining the optimum dose. 

 

Figure 10.2 Locii of alum-TBP dose combinations for FImax (optimum) and 0.75 

FImax with HA at two concentrations at pH 6 
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The distinct improvement of coagulation efficiency by the combination 

of alum and TBP using as the primary coagulant (Section 7) is consistent with 

that reported by Bolto et al. (6) and Edzwald et al. (7). Compared with a sole 

coagulant, the combination of coagulants gave the benefits of more rapid kinetics 

of floc growth and larger floc size (indicated by Flocculation Index) suggesting 

an advantage in the use of the two coagulants. However, the presence of residual 

polymer as a consequence of the use of TBP inevitably increases the value of the 

final NPDOC in treated water, which may not be desirable. 

 

            Polyelectrolytes are known to produce stronger flocs than inorganic 

coagulants (101). Some researchers (183) have indicated that polyelectrolytes of a 

medium charge density and very high molecular weight were the optimum for the 

production of strong flocs. Leentvaar and Rebhun (184) using ferric chloride for 

water treatment found that a coagulant aid lead to stronger floc than 

coagulation-flocculation without polymer addition. In this study, the combination 

of TBP with alum caused a considerable increase in floc strength as indicated by 

the calculated strength factor, compared to TBP as sole coagulant. The effect of 

addition sequence on TBP/alum performance was not investigated in this research. 

However, a previous study (185) using a cationic polymer with ferric inorganic 

coagulant to coagulate clay suspensions, indicated that simultaneous addition of 

coagulants produced higher flocculation index values, as well as higher strength 

of flocs than the flocs formed when other addition sequences were used. There 

have been previous reports of the irreversible nature of floc breakage in the case 

of hydrolyzing coagulants and polymeric flocculants, due to “sweep flocculation” 

and “bridging interactions”, respectively (101). For TBP and the TBP-alum 

combination used as coagulants at pH6 or 7, it was noticeable that only limited 

re-growth of flocs occurred indicating a significant irreversibility of the floc 

break-up process. It was supposed that high shear rates may cause scission of 

TBP cross-linkage chains, and adsorbed polymer could adopt a more flat 

configuration during the breakage phase, and the reformed flocs may have a more 
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compact structure than that before breakage (101). 

 

Whilst in general agreement with the performance observed in model 

waters, the improvement of coagulation effectiveness of alum combined with 

cationic TBP appeared to be substantially greater in real water (Section 9). The 

real water test with an initial NPDOC of approximately 3.7 mg l-1 (Section 9) 

presented a similar trend in the locus line of alum/TBP doses as the result from 

the model water containing an equivalent NPDOC concentration of 

approximately 4.0 mg l-1 (Section 7). The strong complementary relationship 

between TBP and alum dose for the real water supports the conclusion from the 

model water that at pH6, the coagulation mechanism of the alum-TBP 

combination is predominantly charge neutralization. The results of the 

coagulation experiments using both waters with similar NPDOC content can be 

compared by considering the optimum dose of coagulants and the removal of 

NPDOC; these are summarized in Table 10.2. 

 

TABLE 10.2 Optimum dose of coagulants and treatment effectiveness from real 

water and model water 

 NPDOC 

(mg l-1) 

TBP dose 

(mg l-1) 

Al3+ 

dosage  

(mg l-1) 

Ratio of  

Al/TBP  

(mg l-1/mg l-1) 

Al 

Reduction 

   % 

Colour 

Removal 

% 

Model 

water 

4.0 22.5 2.03 0.14/25 93.35 96 

Real water 3.7 25 4.1 0.27/25 93.41 93 

        

Using the optimal combination of TBP and alum as coagulants, the good 

coagulation efficiency observed for the real water is in agreement with other 

reported findings. Lee et al. (106) and Filho (105) have all demonstrated that both 

cationic polyamine and polyDADMAC combined with metal salts were effective 

as coagulants to treat river water; and enabled a reduction of the consumption of 
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inorganic coagulants. In this study, the results of the model water tests agreed 

very well with the coagulation behaviour observed with the real water using the 

dual coagulant of alum/TBP.  However, it is worth noting that the values of 

NPDOC in the final treated real water do not vary substantially for the different 

TBP/alum combinations. Thus the removal of natural organic matter (NOM) by 

coagulation alone was largely insensitive to the dose. Although total NOM is 

similar in the final water, there may be differences in NOM fractions, and some 

NOM fractions are probably unable to be coagulated by TBP. This is consistent 

with the observation by Bolto et al. (6) that high MW polymers were effective to 

remove NOM from water and the more hydrophobic NOM fractions were more 

easily removed. 

 

A preliminary two-stage (sedimentation/filtration) pilot scale investigation 

of the performance of TBP has been undertaken by WRc (Swindon, UK) using a 

“hard” (high alkalinity), lowland surface water (River Thames) (186). The 

results of the pilot-scale tests were contradictory to the coagulation effectiveness 

at bench scale when the TBP was observed in comparison with PACl. The 

inferior performance of TBP in pilot scale tests, in contrast to that in bench-scale 

tests, was speculated to be due to a slower floc formation with TBP preventing a 

floc blanket to form in the clarifier during the plant run; this causes either the 

TBP-dosed water to be inadequately flocculated or small flocs to pass through 

the clarifier without separation. Thus, from a practical standpoint, TBP may not 

be an appropriate coagulant for floc blanket clarification (FBC). However, TBP 

may be effective for dissolved air flotation (DAF) or could be applied to direct 

filtration processes. 

 

The use of a “solid bound TBP” method (in Section 8) permits the 

attachment of appropriate quantities of TBP on the surface of inert sands in order 

to minimize the residual soluble polymer in the final water, and may enhance the 

coagulation performance. Such a method which pre-determines the adsorption 
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ratio of cationic-charged TBP (at low pH) by negatively charged sand grains has 

been found in this study to be moderately successful for the coagulation of a 

given concentration of humic substances, and to the reduction of the residual TBP 

in the treated water. A significantly faster settlement within several seconds, as 

the other benefit of “solid bound TBP”, has been observed in the coagulation 

processes. However, more research effort is required for this application in order 

to avoid the breakage of forming flocs from a rather high mixing speed, which 

was applied to keep the “solid bound TBP” suspended in water. The mechanism 

of this method is based on the interaction between the polymer and particles 

whereby some of the polymer’s segments are attached to the sand surfaces and 

the “loops” and “tails” of the polymer are available to adsorb the particles in 

solution. In contrast, polyDADMAC, which has a high charge density at pH6, is 

believed to adsorb via a rather flat configuration which leads to little opportunity 

for bridging interaction with sand. It is hypothesized that a polymer with low or 

non charge density, such as TBP, is the optimum for this application. 

 

       In overall terms, as a primary coagulant for water treatment, TBP has been 

found to be capable of effectively removing turbidity, colour and DOC. The large 

flocs formed by this medium to high molecular weight polymer under optimal 

conditions could give an accelerated rate of floc sedimentation prior to the 

subsequent filtration process. Even though pre-adjustment of the pH is still 

required, it can be concluded that TBP can be used over a wide range of pH. 

Unlike synthetic polymers, the coagulation performance of TBP has been shown 

to improve with the pH, although greater optimal doses are required. In 

considering the usual range of natural water pH (say, 5-9), the TBP would be a 

workable substitute for synthetic polymer or metal coagulants in the pH 8-9 range, 

partly as a result of its diminishing solubility with pH. At pH ≤ 7, the results 

suggested that the performance of TBP was inferior to other coagulants. To 

minimize these drawbacks, TBP combined with alum has been investigated 

extensively in this study. It is clear that the application of the dual coagulant 
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dramatically improves the coagulation performance at pH ≥ 6 in both model 

water and real water. However, at pH 5, the coagulation performance is still 

similar to that of using alum as coagulant alone. There are still two aspects of 

concern, which will need to be evaluated further; these are any potential toxicity 

and increased sludge volumes, which may affect the practical application of this 

novel polymer. With the latter, it is generally recognised that alum forms rather 

weak flocs and produces significant amounts of sludge. However, the results 

from this study show that less strong and larger floc volumes were produced by 

TBP alone and TBP/alum combinations in real surface water at pH6, compared 

with alum as a sole coagulant. These effects may complicate the subsequent 

filtration (eg. more rapid clogging) and disposal procedures after coagulation. It 

is important to determine the residual TBP in the product water, and thus the 

presence of any impurities in the TBP (and chlorinated TBP) that may reach the 

consumers. To date, there is still no satisfactory method to effectively measure 

the amount of residual polymers in treated water. A toxicological evaluation of 

TBP and TBP coagulation sludge has been undertaken by São Paulo University 

(187). The results of an autopsy accomplished with a test animal did not reveal 

any signs of alteration in the viscera, and the tested sludge sample did not present 

acute toxicity for Hialella azteca. The toxicity of TBP needs to be studied further 

to meet the stringent limits of drinking water before it can be use as coagulant in 

the UK.  

 

The UK is probably the largest user of coagulants for water treatment in 

the European Community because of the proportion of the supply that is derived 

from surface water (137). The increasing price and demand for inorganic 

coagulants and the growing interest in polymers presents a potential opportunity 

for TBP in the water and wastewater treatment field, particular because of its 

value as a naturally-derived product. For example, the greater bio-degradability 

of the resultant sludge from TBP (187) could improve the acceptability of waste 

sludge for disposal to agriculture. 
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11. CONCLUSIONS 

 

(1)  This study has investigated extensively the nature and performance of a new, 

natural cationic polymer for use in water treatment. 

 

(2)  TBP (a tannin-based polymer), as a ‘Mannich’ polymer, can be classified as a 

medium-to high molecular weight polymer with a mean molecular weight of 

5.7 (±2.8)*105 g mol-1, based on the light scattering method; the charge 

density of cationic TBP varied with pH and time (max ~3.1 meq g-1), based 

on colloid titration method. 

 

(3)  A semi-quantitative identification of TBP predicted that the cationic function 

group of monomer was a non-quaternized amine, believed to be the tertiary 

amine group, R3NH
+, as suggested by infra-red and NMR spectra. The 

presence of the tertiary amine gave a variable charge density and possibly 

was a cause of precipitation in solution due to the deprotonation of amine 

groups, with pH. 

 

(4)  A consistent trend of increased TBP optimum dose with increase of pH 

values was found for both model waters involving suspension particles and 

humic substances. This phenomenon was directly linked to the observation 

of the diminishing charge density with increasing pH. 

 

(5)  The mechanism of coagulation by TBP is closely related to the chemistry of 

TBP in aqueous solution and depends strongly on pH values. 
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(6)  Two important coagulation mechanisms of cationic synthetic polymers, 

charge neutralisation and polymer bridging, were believed to be important in 

the coagulation actions of TBP. However, the precipitation of TBP was also 

proposed to cause “sweep coagulation”. The predominance of these different 

mechanisms was considered to be strongly dependent upon pH values. A 

dose stoichiometry can be appreciable at an acid or neutral pH, and hence 

the predominance of charge interaction as the mechanism of coagulation was 

proposed under these conditions. In contrast, there was no dose 

stoichiometry under alkali pH conditions, suggesting polymer bridging or 

precipitation enmeshment to be the dominant mechanism at this elevated pH 

value.   

 

(7)  The comparative coagulation effectiveness of alum, polyDADMAC and TBP 

were measured in terms of Flocculation Index, the turbidity reduction for 

particle suspensions, the NPDOC removal in HA water and floc strength, 

under certain similar conditions. A larger and stronger floc was achieved by 

the effect of ‘polymer bridging’ or precipitation enmeshment of TBP at high 

pH value. 

 

(8)  Evidence from coagulation experiments with kaolin suspensions suggested 

that the coagulation performance and kinetics at optimal TBP dosages were 

considerably influenced by factors such as the polymer age, mixing speed 

and reactor design, apart from pH and the concentration of particles. The 

apparent diminution of the peak flocculation index at low pH for ‘ageing’ 

TBP was thought to be the consequence of changes in the deprotonation of 

the charge group with time.   
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(9)  By studying the coagulation of kaolin suspension with combinations of alum 

and TBP at different pH values, the interrelationship between coagulation 

effectiveness and the ratio of optimum alum/TBP dosages represented 

different coagulation mechanisms (charge neutralization and/or sweep 

flocculation), which influence the amount of coagulants used. However, the 

reduction of alum and the improvement in coagulation performance through 

the combination of alum with TBP were consistently significant.  

 

(10) The locii of the alum-polymer dosages for optimal coagulation performance 

were achieved with two model waters at different concentrations of humic 

acid. A unique optimal dosage of combined alum and TBP that maximizes 

the coagulation performance can be easily determined by these locii with the 

colour removal. The results from these experiments validated the benefit of 

the dual coagulants in the reduction of alum requirement and the 

improvement of coagulation effectiveness. 

 

(11) A moderate adsorption was found by attaching the TBP to an inert solid (fine 

sand) at low pH. The optimal adsorption ratio was determined by 

determining the residual polymer indirectly by UV absorbance at the 

maximum absorption wavelength of TBP solution (210nm). Through this 

modified ‘solid bound TBP’ method, it was assumed to be possible to 

achieve a low residual TBP in final water. Experimental evidence suggested 

that some degree of coagulation performance (HA removal) was achieved, 

but this was significantly lower than that achieved with an optimal dose of 

solution phase TBP.  

 

(12) Good agreement was found in the coagulation performance of cationic TBP, 

for the simulated water and samples of lowland coloured real water under 
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equivalent conditions. A relatively high dose (15 mg l-1-20 mg l-1) of TBP 

gave a good performance of colour and turbidity removal, but less so in 

terms of NPDOC removal.  

 

(13) The use of the PDA instrument was found to be a sensitive and reliable 

method to monitor coagulation performance. The optimum dosage of alum 

for a wide range of pH values were determined by the PDA method, and 

found to be consistent with previous findings by other methods. 

 

(14) It is suggested that the observed locus line of the optimum TBP-alum dose 

combinations for real water from an organic-rich river source was broadly 

consistent with the experimental results for the model water with the similar 

concentration of NPDOC at the same pH. The results indicate that significant 

opportunities exist for making a substantial reduction of alum and the 

improvement of coagulation performance by using the combination of 

alum/TBP as a primary coagulant in real water. 

 

(15)  The results of the tests indicated that the floc strength of TBP under “charge 

neutralization” conditions was weaker than under “bridging” conditions. The 

aggregates formed by the combined alum/TBP under “charge neutralization” 

conditions appeared to be more resistant to breakage than those formed by 

TBP alone.  

 

(16)  The colorimetric method, 5550B (18th Edition 1992), was approved to be 

feasible for the determination of tannin acid in solution, but its suitability for 

determining residual TBP remains in doubt. With the (uncertain) assumption 

that it can be applied to the measurement of TBP, the results in this study 
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suggested that low concentrations of TBP (<1.5 mg l-1) remained in the final 

water using optimal doses of TBP or TBP/alum as coagulants for the model 

water and real water. 
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12. SUGGESTED FUTURE WORK 

 

Topics for further investigation and development towards achieving a better 

understanding and the improved use of TBP are as follows: 

 

1. It is the case that all the characterisation data obtained so far have not been 

able to provide an unambiguous description of the polymer, or monomer, 

structure. This remains an important objective and an opportunity arises in the 

future to apply new techniques to achieve this. A MALDI-TOF mass spectrum 

method could be considered to give valuable information about molecular 

weight distribution, end groups, and the oligomer repeating unit. 

 

2. The nature of the coagulation mechanism of TBP (and cationic polymers in 

general) with humic substances is still uncertain; particularly, the effect of 

polymer molecular weight on the removal of NOM fractions. Further insight 

could be obtained by analysing the coagulation performance and fundamental 

behaviour of the hydrophobic and /or hydrophilic fractions of humic acid with 

TBP. To do this, NOM can be fractionated by resin adsorption and coagulation 

tests can be carried out using different fractions. 

 

3. Attention has been given principally to the coagulation mechanism and 

behaviour of TBP as a primary coagulant in this study. Further investigation is 

necessary to evaluate in detail the nature of the flocs produced from the optimal 

coagulant combinations (eg. size, density, charge and settling velocity) to 

understand the fundamental mechanisms giving rise to good treatment 

performance and the specific contribution of the polymer. 

 

4. There is still no adequate method to effectively measure accurately the 

concentration of residual polymer in treated water. In this work, the application of 
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a colorimetric method, which proved to be feasible for the determination of 

tannin acid in solution, is not suitable or accurate for the measurement of TBP. 

The possibility of chemically labeling the polymer (eg. by fluorescence) could be 

undertaken for determining residual TBP in the future. The potential formation of 

disinfection by-product (DBPs) from chlorine reactions with residual TBP would 

also be a valuable topic of further work. 

 

5. One potential application for TBP is as a filter aid applied to direct filtration 

processes, due to a slow and less voluminous floc formation process, compared to 

inorganic metal salts. This remains an important objective and a future 

investigation might consider whether direct filtration could be improved by 

partially or totally replacing alum with cationic TBP. A full matrix of coagulant 

doses could be examined in order to identify optimal combinations of coagulant 

doses giving the best filter performance and least volume of sludge solids in both 

bench-and pilot-scale filter tests. 

 

6. The role and use of TBP for sewage or waste water treatment have not been 

studied adequately elsewhere in applications where it can be compared with 

traditional metal coagulant and synthetic polymeric coagulant. For example, TBP 

might be effective in the removal of phosphorus – this is an important subject 

worthy of future investigation. 
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14. APPENDIX 

APPENDIX I: Laboratory G Curve for Flat Paddle in 2L Gator Jar (143) 
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APPENDIX II: The specific refractive index increment (dn/dc) of TBP 
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APPENDIX III: Laser Scattering Zimm Plot for TBP  
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MM       :  (5 .686 ±  2.809)e+5   g /mol
A2      :  (5 .387 ±  3.455)e-4       mol  mL/g²  

Figure Zimm Plot of TBP solution 

Basic light scattering equation (Rayleigh-Gans-Debye equation): 

R(θ) = [ ])(21)( 2
* θθ MCPAMCPK −  

The Rayleigh-Gans-Debye (RGD) approximation is a powerful generalization of 

light scattering theory that is applicable for particles much small than the 

wavelength of the light. The Rayleigh-Gans-Debye (RGD) equations can be 

recast to facilitate data analysis using the Zimm formalism: 
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In their new form, the light scattering equations offer a simple means to retrieve 

the quantities of interest from linear relationships at low angle and concentration 

limits (140). 


