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Abstract 

Objective. To investigate the ability of statistical techniques to detect systematic changes in 

rowing technique during a rowing session and to discriminate between rowers of different 

abilities with and without back pain. 

Design. Statistical techniques were applied to kinematic datasets of elite level rowers, in 

order to construct an empirical model of the rowing stroke. 

Background. The size and complexity of datasets generated by biomechanical kinematics 

evaluations has led to opportunities for analysing pathology whilst introducing substantial 

challenges for statistical analysis. 

Methods. Spinal motion and load output of 18 International and national standard competitive 

rowers were monitored during ergometer rowing sessions. International rower data were used 

to construct an empirical model of this activity. Linear stroke models were derived using 

principal components and a generalised cross-validation procedure. Performance 

characteristics of the identified models were calculated for all rowing groups. The stroke 

model was applied to distinguishing pattern variations within and between rowers. A 

multivariate logistic regression analysis was carried out to examine the relationship between 

stroke model parameters on the incidence of low back pain. 

Results. 90% of the variability in the data was explained by the first three principal 

component variables. Stroke models with three basis functions were selected for each 

variable. The models performed well on the national rowers, providing validation of the 

models. A 2-variable model showed a significant difference between the rowing stroke 

characteristics of rowers with and without low back pain (P < 0.01). 

Conclusions. A parsimonious collection of empirical models effectively describes  motion 

and load characteristics of ergometer rowing. Patterns in rowing technique are found to be 

strongly associated  with the incidence lower back pain. 
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Relevance 

Empirical statistical models can be used to track changes in rowing technique, and 

discriminate between different rowing groups. This may impact rowing training, and 

rehabilitation. 

 

Keywords: cross-validation, kinematics, principal component analysis, growth curve 

modeling, analysis of variance, low back pain, risk analysis. 
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Introduction 

The aim of this work was (i) to create an empirical model which parametrically described the 

biomechanics of a repetitive activity and to test the validity of that model on a set of data that 

was not used in the construction of the form of the model, and (ii) to use the model to test the 

hypothesis that rowing stroke technique is associated with the incidence of low back pain. 

Methods 

A data acquisition and measurement system was used to quantify the movement of the lower 

back during exercise on a rowing ergometer in terms of absolute position (y – vertical in the 

sagittal plane of the rowing machine and z – horizontal in the sagittal plane of the rowing 

machine) and absolute orientation (three angles, roll azimuth and elevation) of two sites on 

the lower spine (the twelfth thoracic spinous process overlying the thoraco-lumbar junction 

and the sacrum just below the lumbo-sacral junction) and one site on the thigh (Bull and 

McGregor, 2000). This was extended to include force data at the handle of the ergometer. 

 

A database of information on 18 International and national elite rowers was created. The data 

were sampled from ergometer sessions lasting between 20 to 60 minutes. In each session 

rowers maintained a steady stroke rate of between 17 and 19 strokes per minute. The raw data 

acquisition times were re-formatted according to individual strokes with a fixed number 

( 100=T ) of measurement times per stroke (Bull and McGregor, 2000). Thus the data can be 

represented as an array { }NjSsTtX j
j

ts ,...,2,1;,...,2,1;,...,2,1,)( ===  where X
j

ts
)(  is the 16-

dimensional multivariate measurement made at time t in the s’th stroke of the j’th rower. The 

first N o  rowers are the International rowers and the remaining NNN or −=  are the national 

rowers. The components of the multivariate measurement are divided into a 15-dimensional 
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position vector P
j

ts
)(  and a 1-dimensional load value L

j
ts

)( , thus ),( )()()(
LPX

j
ts

j
ts

j
ts = . The s’th 

stroke is approximated as 

εθ )()( )|( j
ts

j

s

j
ts tmX +=  

where )|( θtm
j

s
 is an appropriate model form and θ

j
s  is a set of stroke parameters - specific to 

the particular stroke under consideration. The error term, ε
)( j

ts , represents negligible 

deviations from the model. If a suitable model can be developed then the analysis of 

experiments could be reduced to the study of the behaviour of the derived parameters θ
j
s  - as 

in the growth curve analysis of repeated measures (Loslever, 1993; Mardia et al., 1979).  

 

This analysis separately considers the position and load portions of the data and focuses on 

linear forms for the model. Principal components analysis (PCA) is used. The statistical 

model is restricted to the data obtained from the International rowers. The other data are used 

to evaluate the performance of the identified model. First, the model construction for the load 

variable is described. After this the approach is generalized to derive an analogous model for 

the position data.  

 

Stroke Model for Load 

The load is normalized by dividing by the cumulative exerted force, ∑ =
=

T

t

j
ts

j
s LL

1

)()(
. , 

producing z
j

ts
)(  where 

L

L
z j

s

j
tsj

ts )(
.

)(
)( = . The model form, )|( θtmz , for z

j
ts

)(  is linear i.e.  

)(...)()()()|(
2211 tttttm KKz γθγθγθµθ ++++=   Equation 1 

Given the data { }NjSsTtz oj
j

ts ,...,2,1;,...,2,1;,...,2,1,)( === , values for the vectors 

),...,2,1),(),...,(),(),((
21

Tttttt
K

=γγγµ  are chosen to minimize the residual sum of squares 

deviation ( RSS )  between the available International rowers’ data and the model, i.e. 



 6 

[ ]∑∑ ∑
= = = 











−−−−−=
N S T

ttttzRSS
j s t

KK
j

tsK

j0

1 1 1
2211

)(
2

21 )(...)()()(min),...,,,( γθγθγθµγγγµ
θ

 

The solution is given by the mean, ∑=
js

j
tsz

S
t

,

)(

*

1
)(µ̂  with )(

0

1

* ∑ =
=

N

j jSS  and )ˆ,...,ˆ,ˆ(
21

γγγ
K

 

first TK ≤  eigenvectors of the covariance matrix [ ][ ]∑∑ −−=
js

j
ts

j
tstt

tztz
S

,

)()(

*'
)'(ˆ)(ˆ

1
µµ  

(Mardia et al., 1979). A generalized cross-validation (GCV) criterion (Wahba, 1990) is 

applied to evaluate how the predictive error of the model varies as a function of the number 

of terms )(K  included. The criterion used is: 

[ ]
[ ]
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Here { }Kkj
ks ,...,2,1)( =θ  are the minimum least squares set of model coefficients for 

representation of the s'th stroke of the j'th subject. A value TT ≤
~

 is used in the denominator 

of the GCV criterion to adjust for the fact that the T measurements on a given stroke cannot 

be considered as statistically independent. The data have strong positive auto-correlation 

because the raw data are sampled and then interpolated to produce equi-spaced values at T 

fixed points throughout the stroke.T
~

 is selected so that TK
~

=  explains 99% of the variance 

in the data. Thus the GCV criterion will focus on models that have no more than T
~

 terms. 

 

Generalization to Spine Position Modeling 

The position data { }NjSsTtlP j
j

lts ,...,2,1;,...,2,1;,...,2,1;15,...,2,1,)( ====  are standardized, 

separately for each rower. Thus PP
j

ts

j
ts

~ )()( →  where: 

sd

PP
P j

l

j

l
j

ltsj

lts )(

)(

..
)(

)(~ −
=  
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Here P
j

l
)(

..  and sd
j

l
)(  

are the mean and standard deviation of the l’th component of the j’th 

rowers position values i.e. ∑=
ts

j
lts

j

j
l P

TS
P ,

)()(
..

1
 and [ ]∑ −=

ts

j

l
j

ts
j

j
l PP

TS
sd

,

)(
..

)(
2

)( 1
. This 

standardized position data could be analyzed to produce separate stroke models for each of its 

15 components. Given that the different items of position data are highly correlated it may be 

reasonable to focus on a reduced set of variables for analysis. By principal component 

analysis (PCA) how well the system can be represented in terms of M < 15 derived variables 

(degrees of freedom) can be examined. Using data from the 6 International rowers, 90% of 

the variability in the data is explained by the first 3 principal components and 98% by the 

first 6 components. There is a dramatic fall in the amount variability explained after the first 

2 or perhaps 3 principal components. Therefore, the analysis is restricted to the first 3 

principal components of the position data for modeling. The reduced variables are given by 

V
j

ts
)(  with PV

j

ts

j
ts

~ )()( ∆=  and 
153×∆  is a rotation or loading matrix. The derived variables are 

labelled as Forward Motion, Torsion Contrast and Roll Contrast. These arbitrary labels were 

used, because they reflect the relative loading of the derived position variables. Separate 

stroke models were developed for each of these derived position variables. Thus models of 

the form below are obtained for each of the three derived position variables. 

)(...)()()()|(
2211 tttttm KKv γθγθγθµθ ++++=   Equation 2 

The values of ),...,,,(
21

γγγµ
K

 and the number of terms )(K are selected using the same 

techniques as described by the load analysis above.  

Results 

The statistical behaviour of the load and derived principal components are presented in 

Figure 1. Models with varying numbers of terms )(K  were evaluated for each of the four 

variables under consideration. Two terms )2( =K  are optimal for Load, Forward Motion and 
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Roll Contrast, while three terms )3( =K  are optimal for description of the Torsion Contrast. 

The GCV performance characteristics substantially deteriorate with larger values of K . 

 

Models with 3=K  terms were selected for each variable. The parameters ),,(
321

γγγ  of the 

respective models are presented in Figure 2. The load parameters are focused on the drive 

phase of the stroke, whereas the position parameters have important structures in both the 

drive and recovery phases of the stroke. The first parameters )(
1

γ  in each model provides for 

a complementary adjustment to two distinct parts of the stroke - a positive adjustment in one 

area is associated with a negative adjustment in another. This may allow the stroke model to 

adjust to variations in the phase of mean profile. For example, the γ
1
 pattern for load 

provides the ability to model strokes in which the load peaks before or after the peak in the 

average load. This scenario is shown in Figure 1a. There is some similarity between the 

parameters arising in the models of Forward Motion, Torsion and Roll Contrast. In each case 

the second parameter, γ
2
, is relatively flat so that relative position of the stroke can be moved 

forwards or backwards. The third parameter for position variable models and the second 

parameter of the load allows the model to capture strokes profiles which are more or less 

sharp than the mean profile. The third parameter of the load model is the most complex but 

would allow the model to capture load profiles which are sharper/broader at the beginning 

and broader/sharper at the end of the drive.  

 

Performance characteristics (R
2
 statistics) of the identified models for International and 

national rowers are reported in Table 1. Although the model development was carried out 

only using data from the International rowers, the models identified perform very well on the 

national rowers. This is a strong validation of the models identified.  
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Factors Associated with a History of Low Back Pain 

Nine out of the 18 rowers had suffered low back pain (LBP) previously. The statistical 

behaviour of the ergometer session stroke model parameters were examined for differences 

between rowers with and without a history of LBP. The mean and standard deviation of the 

stroke model parameters over the ergometer session were determined and a 2-sample 2-sided 

Student’s t-tests carried out to to compare the values of these variables in these two groups. 

The most notable differences between the groups are obtained for the mean of the third load 

parameter (P = 0.036) and the standard deviation of the first parameter of forward motion (P  

= 0.052). The group with a history of LBP has higher values for both these variables. 

 

A logistic regression analysis was carried out to obtain a more comprehensive picture of the 

relationship between the model parameters and the history of LBP. This analysis evaluates 

the relationship between the odds (ψ ) of a history of LBP (the odds of a history of LBP is 

defined as 
π

π
ψ

−
=

1
 where π  is the probability or risk of a history of LBP).  After dropping 

variables showing the weakest association with a history of LBP, a two-variable model was 

developed: 

)1()38.1(28.23)04.1(97.1)76.(32.0)log( FL σψ ±+±+±=   Equation 3 

where 3L  is the mean for a given rower over strokes of the third parameter in the stroke 

model for load and )1(Fσ  is the standard deviation for a given rower over stokes of the first 

parameter in the stroke model for the forward motion variable. Both variables were 

standardized to have mean zero and unit variance across the 18 rowers in the dataset. While 

neither variable has reached formal statistical significance at the 0.05 level (the relevant 2-

sided P-values are 0.059 and 0.098 respectively), the sample size of 18 involved here is very 

modest. It should be noted that the estimated effects are substantial and by even doubling the 
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number of rowers there would be ample power to statistically validate the above relation. The 

separation between the rowers with and without a history of LBP in terms of these variables 

is shown in Figure 3. The optimal linear separation associated with the logistic model (dotted 

line) is also shown. The linear combination of variables in equation 3 defines a potential risk 

factor for a history of LBP. The average value of this variable differs significantly between 

rowers with and without a history of LBP (p = 0.0028).   

Using  the dotted line in Figure 3 to separate rowers with a history of LBP (above the line) 

from rowers without a history of LBP (below the line), we see that six of the nine rowers with 

a history of LBP are correctly classified, as are 8 of the 9 rowers without a history of LBP. 

This is an overall success rate of 78% which is excellent given that a history of LBP is a 

largely a self-reported variable. In clinical terms it may be important to identify rowers whose 

technique indicates a potential to develop LBP, although these statistics do not prove a 

causative link. Better classification of individuals with a history of LBP at a cost of 

misclassifying individuals without a history of LBP could be desirable. By moving the line 

slightly (dashed line in Figure 3)  it is possible to classify eight of the nine rowers with a 

history of LBP correctly at the cost of misclassifying 2 of the rowers without a history of 

LBP. The overall misclassification rate remains the same but this classifier is better able to 

pick out the rowers with a history of LBP. 

 

Discussion 

Improvements in technology have facilitated detailed kinematics analysis of specific complex 

tasks such as rowing. The output from such analysis is vast and complex, making clinical 

interpretation almost impossible. In this example, our goal was to construct a parametric 

model of the rowing stroke to describe how the displacements and force characteristics 

behave during this stroke. Ultimately this would mean that the stroke could be characterised 
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by a reduced set of parameters making a clinical interpretation possible and the identification 

of rowing trends feasible. Statistical analysis in an experimental setting would then be 

performed in terms of these configurations. For example, it may be possible to relate an 

injury such as LBP to specific configurations of the biomechanical parameters and provide 

interactive user feedback on desired refinements. 

 

The model parameters used to discriminate between rowers with and without a history of 

LBP are not immediately related to clinical variables but are related to technical errors 

identified by rowing coaches. It is possible to deduce some clinical significance from these. 

The two parameters used are shown in equation 3. 3L  is related to the skewness of the load 

profile. This suggests that rowers with a very sharp, or heavy, catch tend to have a higher 

probability of LBP. A sharp catch is related to the onset of force applied at the handle. It is 

conceivable that a rower who applies force very quickly may not have the postural control in 

the trunk to control the transfer of that force from the hands through the kinematic chain to 

the trunk and then the feet and thus may develop LBP.  This is interesting, because there are 

distinctly different rowing techniques, where coaches focus on either achieving a very rapid 

force production at the catch, or a slower rate of force production. Further work needs to be 

conducted to assess the effect of this variable.  

 

)1(Fσ  assesses variability in the forward motion position variable. To the extent that 

variability here is a measure of the rower’s ability to control the motion and achieve the 

appropriate stroke length, it is reasonable to suggest that rowers with a history of LBP would 

show less control. The slope of the line in Figure 3 suggests that both variables are almost 

equally important. Alternative modelling techniques may be applied to discern if these two 

variables are not more closely related. This could be done by, for example, not separating the 
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load variable from the position variables in the stroke model principal component analysis. 

However, by doing this the model would be further removed from direct clinical measures, 

and would thus be less clinically-relevant.  

 

This preliminary statistical analysis has shown that it is possible to reduce a complex set of 

biomechanical parameters to identify rowing trends. The reduction in the set of variables has 

introduced the problem of understanding the clinical signficance of these variables which are 

combinations of direct measures of position and load. It is our intention to use different 

statistical tools to create an ‘expert’ set of reduced variables which are more clearly related to 

the direct measures. The relationship to LBP is an important one and we envisage the 

development of this tool to include activities other than rowing. 
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Figure Legends 

Figure 1 Statistical behaviour of the ergometer strokes of the 6 International (left) and 

12 non-international rowers (right). The mean (solid), 25
th

 and 75
th

 percentiles 

(dashed) of normalised load (a), forward motion (b), torsion contrast (c) and 

roll contrast (d) are shown. 

Figure 2 Estimated components of the Stroke Models identified for (a) load, (b) 

forward motion, (c) torsion contrast and (d) roll contrast. ),,(
321

γγγ  are in 

columns one, two and three – see equations (1) and (2). 

Figure 3 Standardised values of the low back pain risk variables according to equation 

3. The lines of separation associated with this model are shown. Rowers with a 

history of low back pain are labelled (P), those without are labelled (N). 
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Table 1. Performance statistics for stroke models. 

 

 Fit(R
2
) 

  Variable International Non-International 

  Load      .94      .88  

  Forward Motion      .69      .73  

  Torsion Contrast      .77      .77  

  Roll Contrast      .88      .70  
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Figure 1 
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Figure 2 
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Figure 3 
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