
Survey on Automated LEGO Assembly Construction

Jae Woo Kim

ETRI
218 Gajeong-ro

Yuseong-gu
 Daejeon 305-700, Korea

jae_kim@etri.re.kr

Kyung Kyu Kang

ETRI
218 Gajeong-ro

Yuseong-gu
Daejeon 305-700, Korea

kangk2@etri.re.kr

Ji Hyoung Lee

ETRI
218 Gajeong-ro

Yuseong-gu
Daejeon 305-700, Korea

ijihyung@etri.re.kr

ABSTRACT
LEGO has been very popular toy in the world because it is attractive and fun to play with and stimulates one's

creativity by providing means to conveniently assemble a variety of interesting shapes using the limited types of

given bricks. However, it is hard for the beginners to design and assemble complex models they desire to make

without instructions. Building a LEGO assembly manually usually requires a significant amount of trial-and-

error. LEGO company therefore presented the LEGO construction problem in 1998 and in 2001. The problem

statement is "Given any 3D body, how can it be built from LEGO bricks?" In this paper we will investigate the

current research efforts to address the LEGO construction problem. We will review the problem definition,

formulation, and a variety of approaches to solve the problem. We will discuss the data representations for input

3D polygonal models and the LEGO assembly structures, cost functions that will guide the search for the

optimal solution, and various solution methods.

Keywords
Engineering, Design, LEGO, Construction, Optimization, Evolutionary, Algorithms

1. INTRODUCTION
In the 1940s in Denmark, LEGO was designed,

developed, and produced by the LEGO company, the

most successful toy manufacturer [Sma08, Sil09].

LEGO has been very popular toy in the world

because it is attractive and fun to play with and

stimulates one's creativity by providing means to

conveniently assemble a variety of interesting shapes

using the limited types of given bricks(Fig. 1) [Tes13,

Ono13].

However, it is hard for the beginners to design and

assemble complex models without instructions

[Ono13]. Building a LEGO assembly manually

requires a significant amount of trials-and-errors

[Tes13]. LEGO company therefore presented the

LEGO construction problem in 1998 and in 2001.

The problem statement is "Given any 3D body, how

can it be built from LEGO bricks [Tim98]?"

Researchers tried to develop softwares that can

automatically generate LEGO assemblies and

assembly instructions from the geometric

specifications of the desired object. In most research

efforts, 3D polygonal model data were used as

specifications of the objects.

LEGO construction problem is simple and easy to

understand. It is however hard to solve using

mathematical or algorithmic approaches on computer

because there exist a number of different ways to

construct a LEGO model for an object specified by

users [Sma08].

Figure 1. Computer generated LEGO

representation(left) and real LEGO

assembly(right) [Tes13]

Other than the applications for entertainment

purposes described above, study on LEGO

construction problem will have great practical value

and contribute to other areas such as engineering

design or engineering education because the process

of LEGO assembly generation is similar to the

generation of real engineering artifacts [Pey03].

Campbell et al. showed that how various physical

and chemical principles related to nanoscale science

and technology can be demonstrated using LEGO

models [Cam12]; Wang et al. designed and

developed a digital LEGO system that provide a

generic representation of security protocols and used

it in teaching students. The digital LEGO system

helps the students conveniently understand these

abstract concepts [Wan08]; Yip-Hoi and Newcomer

used LEGO to teach CAD modeling techniques to

engineers [Yip11].

Solution methods developed to solve the LEGO

construction problem are related to other interesting

WSCG 2014 Conference on Computer Graphics, Visualization and Computer Vision

Poster Proceedings 89 ISBN 978-80-86943-72-5

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at University of West Bohemia

https://core.ac.uk/display/295560271?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

problems: Mitani et al. proposed a method to produce

unfolded papercraft patterns of toy figures from 3D

polygonal mesh data using strip-based approximation

[Mit04]; Igarashi and Suzuki proposed a method to

create close-fitting customized covers for three-

dimensional objects [Iga11]; Xin et al. proposed a

method to design and model burr puzzles from 3D

geometric models [Xin11]; Lo et al. proposed a

method to generate 3D Polyomino puzzle that

constructs 3D surface model using Polyomino pieces

[Lo09].

In this paper, we investigated a variety of approaches

to solve the LEGO construction problem. In the next

chapter, the problem definitions and formulations

will be covered. In chapter 3, we will discuss the data

representations for both of the input 3D polygonal

models and the LEGO assembly structures. In

chapter 4, we will introduce the cost functions that

will guide the search for the optimal solution and in

chapter 5 we will discuss various solution methods

that have been used to solve the LEGO construction

problem.

2. Automated LEGO Assembly

Construction Problem
When a user has a design of an arbitrary object in

mind, she will try to build an LEGO assembly with a

significant amount of trials and errors. LEGO

construction problem is to find the optimal way of

converting 3D polygonal mesh data to LEGO

representation given the number of LEGO bricks.

Smal defined the LEGO construction problem as the

development of a software application that generates

the LEGO building instructions for the given

arbitrary real-world object [Sma08]. Here, the real

world object is represented by 3D polygonal mesh

models. The output of the LEGO construction

software applications include LEGO model

representations, 3D renderings of the LEGO model,

and assembly instructions for building the LEGO

models.

We need to simplify the problem by applying several

restrictions that can reduce the search space for the

solution [Gow980][Sma08][Tim98]. Real-world

object that users desire to build must be firstly

converted to an appropriate representation such as

"legolised" representation. The legolised

representation is a matrix whose elements can only

have ones and zeros. The value one for an element

denotes that the space is covered with a brick or a

part of a brick, the value zero denotes an empty space

[Sma08].

Bricks available in building a LEGO representation

must be restricted to a limited number of types to

save processing time for optimization by reducing the

search space. Usually, "family" LEGO bricks and

DUPLO bricks were used in previous research to

address the problem [Pet01]. To save time and reduce

the number of bricks, the inside of the sculpture must

be kept hollow as far as the connectivity and stability

are kept. Colors can be ignored to save processing

time because incorporating color information into the

problem can increase another dimension of search

space resulting in drastic increase in search space

[Sil09].

There are two major performance criteria that the

solution of the LEGO construction problem must

satisfy. The first criterion is that the created LEGO

sculpture must be connected and stable. Another

criterion is that the conversion from an object model

to a corresponding LEGO representation must be

complete in a reasonable time period [Sma08].

The automated LEGO construction problem can be

formulated as an optimization problem to find the

optimal LEGO structure that best represent the input

real-world object. In general, optimization techniques

can be divided into two categories: one is a

deterministic technique and the other is a stochastic

technique. Deterministic approaches are used to find

the globally optimal solution and they are appropriate

to the problems whose solution space is relatively

small. Efficient state space search methods such as

branch-and-bound methods, or algebraic methods are

usually used to find the globally optimal solution.

When the solution space is extremely large and it is

therefore not feasible to find global optimal solution,

Stochastic technique can be used. Stochastic

technique finds good solutions in a reasonable time

period by using heuristics and probability theories

that guides the search [Sma08].

The automated LEGO construction problem cannot

be solved using deterministic optimization techniques

because the solution space is extremely large. We

therefore discuss stochastic optimization techniques

to solve the LEGO construction problem [Sma08].

There are a variety of solution methods to address the

optimization problems and greedy methods, local

search, beam search, cellular automata and

evolutionary algorithms were used to solve the

LEGO optimization problem. From next chapter, we

will discuss the approaches used to solve the

automated LEGO construction problems.

3. DATA REPRESENTATIONS
The real-world object that the users desire to create

are usually given as a 3D polygonal mesh models.

Users can create the 3D mesh models using modeling

softwares or can easily download them from the

internet [Lam06]. The first step in solving the LEGO

construction problem therefore is to convert a given

3D polygonal mesh models to a data representation

that is appropriate for the process of LEGO assembly

generation. A typical data representation for the real-

WSCG 2014 Conference on Computer Graphics, Visualization and Computer Vision

Poster Proceedings 90 ISBN 978-80-86943-72-5

world object is a "legolised" model proposed by

[Gow98].

Figure 2. A 3D polygonal model and its legolised

representation for a horizontal cut [Sam08]

Voxelization
Voxel representation is naturally employed by

researchers to represent the real-world objects

because basic LEGO bricks has the rectangular

shapes that matches well with voxels. LamBrecht

used ray casting technique in voxelizing the input 3D

mesh models. Their approach casted a ray in a axis-

aligned direction from the each column of voxels.

The algorithm conducts voxelization by iterating

through all the faces of the model in the cube and

testing for intersection between the face and the ray

[Lam06].

Silva et al. proposed a novel voxelization algorithm

that uses point samples of the surface to determine

which voxels each point belong to. Their algorithm

assumes a uniform sampling of the surface. In

general, it is however not guaranteed for most of the

triangular meshes due to their shape irregularity with

varying edge sizes. They therefore conducted a

subdivision algorithm to transform the given mesh

model into a uniformly sampled model where all

lengths of all the edges are smaller than the user-

specified resolution. They implemented their

algorithms on the GPU to achieve the real-time

performance [Sil09].

After or during the voxelization process current

approaches hollowed the model to decrease the

processing time by hollowing the model. This

process is conducted by removing unnecessary bricks

while stability is not damaged [Tes13][Lam06].

We have to consider the trade-off of the voxel

resolution when we perform the voxelization process

and specify appropriate resolution depending on the

application purposes. If the resolution is high, we can

represent the more detailed shapes of the model but it

increases the processing time drastically. If the

resolution is low, the voxelization algorithm runs fast

but the quality of the model is not convincing. [Tes13]

LEGO Model Representation

Figure 3. Examples of basic LEGO bricks 1x1,

1x2, 1x3, 1x4, 1x6, 1x8, 2x2, 2x3, 2x4, 2x6, 2x8

[Ono13]

The simplest way of representing LEGO model is

using the voxel representation. In this approach, each

voxel can be identical to the unit LEGO brick of the

size 1x1 or a part of a larger brick (Fig. 3) [Ono13].

In this approach, the voxel representation is

converted to the LEGO representation within the

voxel space.

Figure 4. A legograph that represent the

connectivity among the bricks in voxel space

In the beginning of the process, each voxel that the

object covers is occupied by an unit brick and then

replaced later by the larger bricks by merging the unit

bricks considering connectivity among the bricks

[Ono13].

Figure 5. An example of a LEGO assembly

structure and a corresponding assembly graph

[Pey03]

Peysakhov and Regli used assembly graphs to

represent feature-based connectivity of LEGO

assemblies. An assembly graph is very expressive

and can represent a variety of LEGO assembly

WSCG 2014 Conference on Computer Graphics, Visualization and Computer Vision

Poster Proceedings 91 ISBN 978-80-86943-72-5

structures comparing other representations. In

assembly graphs, the nodes represent LEGO

elements and the edges represent connections among

the elements. They also proposed a graph grammar

that can be used to evaluate the validity of the LEGO

assembly structure [Pey03].

Figure 6. LEGO brick layouts (left) and

corresponding graph representation [Tes13]

Testuz et al. proposed another graph representation

for the LEGO structure. Fig. 6 shows the LEGO

brick layouts and corresponding graph

representations used to evaluate connectivity and

stability of the construction. In their graph

representation, a node denotes a LEGO brick and an

edge denotes the connection between the bricks. The

solidity optimization to improve the stability of the

construction was conducted based on the assumption

that the more LEGO bricks are connected, the

stronger the connectivity will be [Tes13].

Figure 7 A brick layout and corresponding NTP

representation in two--dimensional space [Fun98]

Funes and Pollack proposed a network of torque

propagation structure to represent a LEGO assembly

to evaluate the stability of the structure. A network of

torque propagation (NTP) consists of: (1) a list of

bodies, (2) a list of joints, (3) a list of forces, and a

symbol G that denotes the "ground". Here a joint is

defined as a the center position of the area of contact

between a pair of bricks [Fun01].

When using evolutionary algorithms to solve the

problem, the solution itself of the problem must be

encoded as genotype representations. There are two

approaches to represent genotype: one is direct and

the other is indirect representation. Direct genotype

representation is conceptually identical to the

phenotype or the solution of the problem. In indirect

representation phenotype can be constructed from the

transformations of its genotype [Pey03].

The advantage of the indirect representation is that it

can focus the search process through the feasible

search space by significantly reducing the space. The

disadvantage of the indirect representation however

is that the standard genetic operators cannot be

directly used [Pet01]

4. Cost Functions
The cost function for the optimization problem must

be designed based on the performance criteria of the

problem described in chapter 2. The most important

factors to consider for cost function design are

stability of the created LEGO assembly and the

processing time to create it. Gower et al. introduced a

set of heuristics that are useful in designing the cost

function for the problem based on their rigorous

research [Gow98][Sma08].

Gower et al. proposed six heuristics that are

necessary to guarantee the stability of the created

LEGO assembly. The first three heuristics are as

follows: (1) A high percentage of the area of each

brick should be covered by other bricks from above

and below; (2) Larger bricks must be preferred over

small bricks; (3) Bricks in consecutive layers should

have alternating directionality [Gow98][Sma08].

Figure 8 The boundary defined by the

neighboring bricks (left) and the vertical

boundary (right) [Sma08]

We need to be more careful at the boundaries of the

whole model and vertical boundaries of each brick

where connectivity is more vulnerable. The other

three heuristics addressed the connectivity and

stability problem at the boundaries: (1) A high

percentage of the vertical boundaries of each brick

should be covered by bricks in the consecutive layers;

(2) A brick must be placed such that the middle of

the side should be at the boundary defined by the

neighboring bricks; (3) If a brick covers a vertical

boundary in the previous layer, the middle of the

brick must be aligned to the boundary

[Gow98][Sma08].

WSCG 2014 Conference on Computer Graphics, Visualization and Computer Vision

Poster Proceedings 92 ISBN 978-80-86943-72-5

Based on the heuristics Gower et al. defined a cost

function as follows:

where, relates to the alternating directionality,

corresponds to coverage of the vertical boundaries,

relates to the coverage of the boundary defined by the

neighboring bricks, and encourages the use of

larger bricks. 's represent the weights for each term.

Peysakhov and Regli 03 proposed a more advanced

and flexible form of the cost function to evaluate the

ability of an LEGO assembly relative to its

performance and function. Their cost function use the

attributes of the LEGO structure including weight,

number of nodes, and size of the structure. Their cost

function is as follows:

Here, is the weight function that represents the

importance of the parameter. They set the weight

value as the equal value to the parameter itself for

the most important parameters. They set the weight

value to the square root of the parameter for less

important ones. For the least important parameters,

they used square root of square root of the parameter.

 denotes the properties that will be maximized such

as reliability. denotes the properties that will be

minimized such as manufacturing cost, and
denotes the properties that will be as close as to the

specific constant value [Pey03].

5. Solution Methods
A variety of approaches have been proposed to solve

the LEGO construction problem. In this section we

will describe and discuss those solution methods

including greedy algorithms, local search, beam

search, cellular automata, and evolutionary

algorithms

Greedy Algorithms
Ono and Alexis 13 proposed a method to convert a

3D mesh model into a corresponding LEGO model

by using their replacement strategy. The input to the

system is the 3D model and user-specified level-of-

detail. The system. The system converts the input 3D

model into a voxel model based on the level-of-detail,

and then converts it to the LEGO model [Ono13].

The system places the unit LEGO brick of the size

1x1 to each voxel. It then merges the unit bricks to

replace each voxel with larger bricks so that the

resulting LEGO structure would be more stable.

They represent the LEGO structure as a legograph

shown in chapter 3 with three different types of links

they defined. The replacement is conducted layer-by-

layer, from bottom to top and the replacement is

performed in each layer using a greedy method. In

the replacement procedure, for each position the

brick type with the highest score is chosen to be

replaced. The strategy for the scoring is designed to

guarantee the stability of the resulting LEGO

structure and it is similar to the cost function

described in chapter 4. When the LEGO structure is

built, their system automatically generates the

assembly instructions [Ono13].

Figure 9. The result of greedy method by [Ono13]

Testuz et al. proposed a similar method to [Ono13] in

that they fill the unit bricks into each voxel first and

then merge and split the bricks sequentially to obtain

the optimal layout using greedy method. Their merge

algorithm randomly select a brick and find a legal set

of neighbors. It then repeat choosing the neighbor

with the lowest cost and select the neighbor with the

lowest cost value until there are no more mergeable

neighbors. This process repeats until there is no more

brick to merge [Tes13].

In building the LEGO model Testuz et al. evaluate

the stability of the model as other approaches do. To

achieve this, they used the graph representation

described in chapter 3. In the stability evaluation,

they assumed that the stability will be stronger if the

more bricks are connected to each other [Tes13].

Local search
In each step of the procedure, local search approach

considers only a small subregion and attempt to find

the best brick placement to fill the subregion

[Gow98][Sma08]. Only a few bricks are permanently

placed in each step considering the effect of the local

placement for the global solution. Then the subregion

slightly moves so that a new subregion overlaps the

previous one as a sliding window [Sma08].

In this approach, the important issue is the size of the

subregion. If the size of the subregion is too small, it

is hard for the local placement contribute to the

global optimization. On the other hand, if the size of

the subregion is too large, the search space would be

larger resulting in increase in processing time. The

optimal size for the subregion therefore must be

determined based on the size and characteristics of

the input real-world object. [Sma08]

WSCG 2014 Conference on Computer Graphics, Visualization and Computer Vision

Poster Proceedings 93 ISBN 978-80-86943-72-5

To apply simulated annealing to the LEGO

construction problem, we can firstly divide each

layer into subregions of smaller size. Then the

subregions will be randomly filled with arbitrary

placements of LEGO bricks resulting in the initial

state. For each subregion a set of successor states are

generated by replacing a small number of bricks with

new bricks. New successor states are generated until

we find a new state that decreases the energy. The

search process will stop after the number of iterations

specified by a user is complete or when an acceptable

solution is found [Sma08].

Simulated Annealing
Simulated annealing is a variant of the hill-climbing

technique that computes all possible successor states

from the current state and then selects the best

successor. The well-know limitation of the approach

is that it can easily converges to the local minimum

instead of the global optimum [Sma08].

At each iteration, simulated annealing algorithm

considers a set of neighboring states from the current

state. It probabilistically compares between moving

to new states and staying in the current state and then

decide the new state that minimizes the energy. This

process repeats until it finds a satisfactory solution

[Sma08].

Beam Search
A beam search is conceptually similar to the

simulated annealing approach in which successor

states are generated and evaluated to find a new state

with better quality. A beam search approach a best-

first search algorithm and it is different from the

simulated annealing approach in that all the possible

successor states are generated and evaluated using a

cost function to find the new state with the best cost.

The algorithm therefore searches for the best local

solution at each step [Sma08].

Figure 10. Beam search tree to a fill 3x3 layer

using the standard LEGO bricks [Sma08]

At each step a beam search algorithm finds best k

successors and they are added to their parent states.

Then the search process continues while pruning the

states that cannot generate any successor states of

better quality from the search tree. The problem

however is that it can focus on a too narrow search

space resulting in not convincing solutions. An

improvement for this problem is to select the k

successors probabilistically with a higher probability

of selecting the lower cost successors to create a

broader search space [Sma08].

Cellular Automata
van Zijl and Smal proposed an approach using

cellular automata based on the cost function proposed

by [Gow98][Van08]. Their approach is conceptually

similar to the merge/split approach using several

heuristics that guides the search [Tes13]. The

approach virtually cuts the given 3D object into

horizontal two-dimensional layers. It finds the

optimal 2D layout first and then join them to

construct final 3D model. If we solve a 2D layout

optimization problem separately, the stability of the

resulting model cannot be guaranteed. They therefore

used the Gower et al.'s heuristics during each step to

solve the 2D problem to guarantee the solidity of the

model [Gow98][Van08].

Figure 11. An example of cellular automata

representation (a) the 2D grid, (b) potential merge

neighbors, (c) potential new clusters, (d) the final

three clusters [Sma08]

This approach used a legolised representation

described in chapter 3. In initial stage, each cluster of

unit size 1x1 that contains value one represent a unit

LEGO brick. For each cluster the algorithm checks if

it can be merged with any of its Von Neumann

neighborhood. Two clusters can be merged if the

merge can result in a new cluster that represent a

larger valid LEGO brick. This merge operation is

conducted for all the clusters in the layout. The order

of merges can be random, front-to-back, or any other

orders chosen by a user [Van08].

WSCG 2014 Conference on Computer Graphics, Visualization and Computer Vision

Poster Proceedings 94 ISBN 978-80-86943-72-5

Evolutionary Algorithms
Evolutionary algorithms are very effective

optimization technique for the problems whose

optimal solution is hard to formalize. LEGO

construction problem is a hard combinatorial

optimization problems in which it is infeasible to find

the optimal solution and the "good" solutions of

reasonable quality are enough. Evolutionary

algorithms could be a proper approach to solve the

problems that have such features and nature

[Pey03][Pet01].

To solve an optimization problem using evolutionary

algorithms, we have to encode the solution of the

problem as chromosomes, define the evaluation

function, and develop mutation and recombination

operators depending on the characteristics of the

given problem. We have discussed about the

genotype representation for LEGO construction

problems in chapter 3 and we will therefore discuss

about evaluation functions and operators developed

to solve the problem using evolutionary algorithms

[Pey03][Pet01].

There are two approaches to genotype

representations: one is direct representation, and the

other is indirect representation. In direct

representation the genotype is conceptually identical

to the corresponding phenotype. On the other hand,

in indirect representation, the genotype is

transformed to construct the corresponding

phenotype. Indirect representation usually have more

information about the phenotype and it therefore can

focus the search space by reducing the space. The

problem of indirect representation is that the standard

operators such as mutation and crossover do not

directly work. We therefore have to redefine the

operators according to the structure of genotype

[Pey03][Pet01].

Figure 12. An example of genotype representation

by [Pes03]

Peysakhov and Regli developed their chromosomes

using a combination of two data structures: one is an

array of all nodes, and the other is the adjacency hash

table containing all edges as shown in fig 12. The key

value of the hash table represents the position and

direction of edges. For example, the key "1>3"

means that the edge connects from the node 1 to the

node 3. Hash table also describe how the LEGO

elements are connected [Pey03].

The mutation operator of [Pey03] is applied with

constant and low probability to provide the balance

between the exploration and exploitation. When a

mutation arises for a node, a LEGO brick is simply

replaced by the same type brick with different size

[Pey03].

Figure 13. An example assembly graph for the

LEGO car [Pey03]

Crossover is conducted by two operators: cut and

splice. It selects two chromosomes for crossover and

random points are selected respectively for the two

chromosomes by cut operator. The tail parts of the

parent chromosomes are then spliced with the head

parts of them [Pey03].

Petrovic proposed more advanced and complicated

operators as follows. His crossover operator firstly

selects a rectangular region at random. Then a part of

LEGO bricks are copied from one parent and other

bricks that do not conflict with already placed bricks

are copied from another parent [Pet01].

Petrovic suggested the following mutation operators

because random mutation operator can generate

overlaps.

 A brick is replaced by other random brick.
 A brick is added to an empty location randomly.
 A brick is shifted by one unit in one of the four

possible directions.
 A brick is eliminated from the layout
 A brick is extended by one unit in one of the

four possible directions.
 All bricks that are in a random rectangle are

replaced by random bricks
 The whole layout is initialized again

In his mutation operators, larger bricks are always

preferred to be replaced to increase stability of the

structure [Pet01].

6. CONCLUSIONS
In this paper, we reviewed a variety of research

efforts to address the automated LEGO construction

problem. We investigated the problem definition and

formulation, various data representations for 3D

polygonal mesh models and LEGO assembly

structures, cost functions to solve the optimization

problem for LEGO construction and solution

WSCG 2014 Conference on Computer Graphics, Visualization and Computer Vision

Poster Proceedings 95 ISBN 978-80-86943-72-5

methods a number of researchers proposed. To date,

graph representations have been widely used to

represent the LEGO structure and as solution

methods, greedy algorithms, simulated annealing,

beam search, cellular automata, and evolutionary

algorithms have been used to automatically construct

LEGO structure minimizing the number of bricks

used and guaranteeing the stability of the built

structure. Those approaches are useful to create a

LEGO structure design for given 3D polygonal

models for entertainment purposes and also can be

useful for engineering education.

7. REFERENCES
[Cam12] Campbell D., Freidinger E., Querns M.,

Swanson S., Ellis A., Kuech T., Payne A., Socie

B., Condren S. M., Lisensky G., Rasmussen R.,

Hollis T., Villarreal R., Campbell K., Exploring

the Nanoworld with LEGO Bricks, A Free Book,

Materials Research Science and Engineering

Center, University of Wisconsin-Madison, 2012.

http://education.mrsec.wisc.edu/LEGO/PDFfiles/

nanobook.PDF

[Fun01] Funes P. J., Pollack J. B. Componential

Structural Simulator. Technical Report, Brandeis

University, 1998.

[Gow98] Gower R., Heydtmann A., Petersen H.

LEGO: Automated Model Construction. Jens

Gravesen and Poul Hjorth, pp. 81-94, 1998.

[Iga11] Igarashi Y., Suzuki H. Cover geometry

design using convex hulls. Computer-Aided

Design, 43, 9, pp. 1154-1162, 2011.

[Lam06] Lambrecht, B. Voxelization of boundary

representations using oriented LEGO plates.

University of California, Berkeley, 2006.

http://lego.bldesign.org/LSculpt/lambrecht_legov

oxels.pdf

[Lo09] Lo K. Y., Fu C. W., Li H. 3D polyomino

puzzle. ACM Transactions on Graphics, 28, 5,

Article No. 157, 2009.

[Mit04] Mitani J., Suzuki H. Making papercraft toys

from meshes using strip-based approximate

unfolding. ACM Transactions on Graphics, 23, 3,

pp. 259-263, 2004.

[Ono13] Ono S., Alexis A. Automatic generation of

LEGO from the polygonal data. International

Workshop on Advanced Image Technology, pp.

262-267, 2013.

[Pet01] Petrovic P. Solving the LEGO brick layout

problem using evolutionary algorithms. Technical

Report, Norwegian University of Science and

Technology, 2001.

[Pey03] Peysakhov M., Regli W. Using Assembly

Representations to Enable Evolutionary Design of

Lego Structures. Artificial Intelligence for

Engineering Design, Analysis and Manufacturing,

17:155-68, 2003.

[Sil09] Silva L., Pamplona V., Comba J. Legolizer: A

real time system for modeling and rendering

LEGO representations of boundary models. XXII

Brazilian Symposium on Computer Graphics and

Image Processing (SIBGRAPI), pp. 17-23, 2009.

[Sma08] Smal E. Automated Brick Sculpture

Construction. MS. Thesis, The University of

Stellenbosch, 2008.

[Tes13] Testuz R., Schwartzburg Y., Pauly M.

Automatic generation of constructable brick

sculptures. Eurographics 2013 Short Papers, pp.

81-84, 2013.

[Tim98] Timcenko O. LEGO: How to build with

LEGO. 32nd European Study Group with

Industry Final Report, pp. 81-94, 1998.

http://www.maths-in-industry.org/past/ESGI/32/

Report/ESGI32.ps

[Van08] van Zijl L., Smal E. Cellular automata with

cell clustering. Proceedings of Automata 2008

Workshop, Bristol, UK, pp. 425-440, 2008.

[Wan08] Wang W., Lu A., Yu Li., Li Z. A digital

lego set and exercises for teaching security

protocols. the 12th Colloquium for Information

Systems Security Education, University of Texas,

Dallas, TX, June 2-4, 2008.

[Win05] Winkler D. Automated brick layout.

BrickFest, 2005. http://www.brickshelf.com/

gallery/happyfrosh/BrickFest2005/automatedbric

klayout.pdf

[Xin11] Xin S., Lai C. F., Fu C. W., Wong T.T., He

Y., Cohen-Or D. Making Burr Puzzles from 3D

models. ACM Transactions on Graphics, 30, 4,

Article No. 97, 2011.

[Yip11] Yip-Hoi D. M., Newcomer J. L. Teaching

CAD modeling using LEGO. American Society

for Engineering Education, 2011.

http://www.asee.org/public/conferences/1/papers/

152/download

WSCG 2014 Conference on Computer Graphics, Visualization and Computer Vision

Poster Proceedings 96 ISBN 978-80-86943-72-5

	N31-full.pdf

