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ABSTRACT 
LEGO has been very popular toy in the world because it is attractive and fun to play with and stimulates one's 

creativity by providing means to conveniently assemble a variety of interesting shapes using the limited types of 

given bricks. However, it is hard for the beginners to design and assemble complex models they desire to make 

without instructions. Building a LEGO assembly manually usually requires a significant amount of trial-and-

error. LEGO company therefore presented the LEGO construction problem in 1998 and in 2001. The problem 

statement is "Given any 3D body, how can it be built from LEGO bricks?" In this paper we will investigate the 

current research efforts to address the LEGO construction problem. We will review the problem definition, 

formulation, and a variety of approaches to solve the problem. We will discuss the data representations for input 

3D polygonal models and the LEGO assembly structures, cost functions that will guide the search for the 

optimal solution, and various solution methods.  
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1. INTRODUCTION 
In the 1940s in Denmark, LEGO was designed, 

developed, and produced by the LEGO company, the 

most successful toy manufacturer [Sma08, Sil09]. 

LEGO has been very popular toy in the world 

because it is attractive and fun to play with and 

stimulates one's creativity by providing means to 

conveniently assemble a variety of interesting shapes 

using the limited types of given bricks(Fig. 1) [Tes13, 

Ono13].   

However, it is hard for the beginners to design and 

assemble complex models without instructions  

[Ono13]. Building a LEGO assembly manually 

requires a significant amount of trials-and-errors 

[Tes13]. LEGO company therefore presented the 

LEGO construction problem in 1998 and in 2001. 

The problem statement is "Given any 3D body, how 

can it be built from LEGO bricks [Tim98]?"  

Researchers tried to develop softwares that can 

automatically generate LEGO assemblies and 

assembly instructions from the geometric 

specifications of the desired object. In most research 

efforts, 3D polygonal model data were used as 

specifications of the objects.  

LEGO construction problem is simple and easy to 

understand. It is however hard to solve using 

mathematical or algorithmic approaches on computer 

because there exist a number of different ways to 

construct a LEGO model for an object specified by 

users [Sma08].  

 

Figure 1. Computer generated LEGO 

representation(left) and real LEGO 

assembly(right) [Tes13] 

Other than the applications for entertainment 

purposes described above, study on LEGO 

construction problem will have great practical value 

and contribute to other areas such as engineering 

design or engineering education because the process 

of LEGO assembly generation is similar to the 

generation of real engineering artifacts [Pey03]. 

Campbell et al. showed that how various physical 

and chemical principles related to nanoscale science 

and technology can be demonstrated using LEGO 

models [Cam12]; Wang et al. designed and 

developed a digital LEGO system that provide a 

generic representation of security protocols and used 

it in teaching students. The digital LEGO system 

helps the students conveniently understand these 

abstract concepts [Wan08]; Yip-Hoi and Newcomer 

used LEGO to teach CAD modeling techniques to 

engineers [Yip11].  

Solution methods developed to solve the LEGO 

construction problem are related to other interesting 

WSCG 2014 Conference on Computer Graphics, Visualization and Computer Vision

Poster Proceedings 89 ISBN 978-80-86943-72-5

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at University of West Bohemia

https://core.ac.uk/display/295560271?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


problems: Mitani et al. proposed a method to produce 

unfolded papercraft patterns of toy figures from 3D 

polygonal mesh data using strip-based approximation 

[Mit04]; Igarashi and Suzuki proposed a method to 

create close-fitting customized covers for three-

dimensional objects [Iga11]; Xin et al. proposed a 

method to design and model burr puzzles from 3D 

geometric models [Xin11]; Lo et al. proposed a 

method to generate 3D Polyomino puzzle that 

constructs 3D surface model using Polyomino pieces 

[Lo09].  

In this paper, we investigated a variety of approaches 

to solve the LEGO construction problem. In the next 

chapter, the problem definitions and formulations 

will be covered. In chapter 3, we will discuss the data 

representations for both of the input 3D polygonal 

models and the LEGO assembly structures. In 

chapter 4, we will introduce the cost functions that 

will guide the search for the optimal solution and in 

chapter 5 we will discuss various solution methods 

that have been used to solve the LEGO construction 

problem.  

2. Automated LEGO Assembly 

Construction Problem 
When a user has a design of an arbitrary object in 

mind, she will try to build an LEGO assembly with a 

significant amount of trials and errors. LEGO 

construction problem is to find the optimal way of 

converting 3D polygonal mesh data to LEGO 

representation given the number of LEGO bricks.  

Smal defined the LEGO construction problem as the 

development of a software application that generates 

the LEGO building instructions for the given 

arbitrary real-world object [Sma08]. Here, the real 

world object is represented by 3D polygonal mesh 

models. The output of the LEGO construction 

software applications include LEGO model 

representations, 3D renderings of the LEGO model, 

and assembly instructions for building the LEGO 

models.  

We need to simplify the problem by applying several 

restrictions that can reduce the search space for the 

solution [Gow980][Sma08][Tim98]. Real-world 

object that users desire to build must be firstly 

converted to an appropriate representation such as 

"legolised" representation. The legolised 

representation is a matrix whose elements can only 

have ones and zeros. The value one for an element 

denotes that the space is covered with a brick or a 

part of a brick, the value zero denotes an empty space 

[Sma08].  

Bricks available in building a LEGO representation 

must be restricted to a limited number of types to 

save processing time for optimization by reducing the 

search space. Usually, "family" LEGO bricks and 

DUPLO bricks were used in previous research to 

address the problem [Pet01]. To save time and reduce 

the number of bricks, the inside of the sculpture must 

be kept hollow as far as the connectivity and stability 

are kept. Colors can be ignored to save processing 

time because incorporating color information into the 

problem can increase another dimension of search 

space resulting in drastic increase in search space 

[Sil09].  

There are two major performance criteria that the 

solution of the LEGO construction problem must 

satisfy. The first criterion is that the created LEGO 

sculpture must be connected and stable. Another 

criterion is that the conversion from an object model 

to a corresponding LEGO representation must be 

complete in a reasonable time period [Sma08].  

The automated LEGO construction problem can be 

formulated as an optimization problem to find the 

optimal LEGO structure that best represent the input 

real-world object. In general, optimization techniques 

can be divided into two categories: one is a 

deterministic technique and the other is a stochastic 

technique. Deterministic approaches are used to find 

the globally optimal solution and they are appropriate 

to the problems whose solution space is relatively 

small. Efficient state space search methods such as 

branch-and-bound methods, or algebraic methods are 

usually used to find the globally optimal solution. 

When the solution space is extremely large and it is 

therefore not feasible to find global optimal solution, 

Stochastic technique can be used. Stochastic 

technique finds good solutions in a reasonable time 

period by using heuristics and probability theories 

that guides the search [Sma08].  

The automated LEGO construction problem cannot 

be solved using deterministic optimization techniques 

because the solution space is extremely large. We 

therefore discuss stochastic optimization techniques 

to solve the LEGO construction problem [Sma08].  

There are a variety of solution methods to address the 

optimization problems and greedy methods, local 

search, beam search, cellular automata and 

evolutionary algorithms were used to solve the 

LEGO optimization problem. From next chapter, we 

will discuss the approaches used to solve the 

automated LEGO construction problems.  

3. DATA REPRESENTATIONS  
The real-world object that the users desire to create 

are usually given as a 3D polygonal mesh models. 

Users can create the 3D mesh models using modeling 

softwares or can easily download them from the 

internet [Lam06]. The first step in solving the LEGO 

construction problem therefore is to convert a given 

3D polygonal mesh models to a data representation 

that is appropriate for the process of LEGO assembly 

generation. A typical data representation for the real-
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world object is a "legolised" model proposed by 

[Gow98].  

 

Figure 2. A 3D polygonal model and its legolised 

representation for a horizontal cut [Sam08] 

Voxelization  
Voxel representation is naturally employed by 

researchers to represent the real-world objects 

because basic LEGO bricks has the rectangular 

shapes that matches well with voxels. LamBrecht  

used ray casting technique in voxelizing the input 3D 

mesh models. Their approach casted a ray in a axis-

aligned direction from the each column of voxels. 

The algorithm conducts voxelization by iterating 

through all the faces of the model in the cube and 

testing for intersection between the face and the ray 

[Lam06].  

Silva et al. proposed a novel voxelization algorithm 

that uses point samples of the surface to determine 

which voxels each point belong to. Their algorithm 

assumes a uniform sampling of the surface. In 

general, it is however not guaranteed for most of the 

triangular meshes due to their shape irregularity with 

varying edge sizes. They therefore conducted a 

subdivision algorithm to transform the given mesh 

model into a uniformly sampled model where all 

lengths of all the edges are smaller than the user-

specified resolution. They implemented their 

algorithms on the GPU to achieve the real-time 

performance [Sil09].  

After or during the voxelization process current 

approaches hollowed the model to decrease the 

processing time by hollowing the model. This 

process is conducted by removing unnecessary bricks 

while stability is not damaged [Tes13][Lam06].  

We have to consider the trade-off of the voxel 

resolution when we perform the voxelization process 

and specify appropriate resolution depending on the 

application purposes. If the resolution is high, we can 

represent the more detailed shapes of the model but it 

increases the processing time drastically. If the 

resolution is low, the voxelization algorithm runs fast 

but the quality of the model is not convincing. [Tes13]  

LEGO Model Representation 
 

 

Figure 3. Examples of basic LEGO bricks 1x1, 

1x2, 1x3, 1x4, 1x6, 1x8, 2x2, 2x3, 2x4, 2x6, 2x8 

[Ono13] 

The simplest way of representing LEGO model is 

using the voxel representation. In this approach, each 

voxel can be identical to the unit LEGO brick of the 

size 1x1 or a part of a larger brick (Fig. 3) [Ono13].  

In this approach, the voxel representation is 

converted to the LEGO representation within the 

voxel space.   

 

Figure 4. A legograph that represent the 

connectivity among the bricks in voxel space 

In the beginning of the process, each voxel that the 

object covers is occupied by an unit brick and then 

replaced later by the larger bricks by merging the unit 

bricks considering connectivity among the bricks 

[Ono13].  

 

Figure 5. An example of a LEGO assembly 

structure and a corresponding assembly graph 

[Pey03] 

Peysakhov and Regli used assembly graphs to 

represent feature-based connectivity of LEGO 

assemblies. An assembly graph is very expressive 

and can represent a variety of LEGO assembly 
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structures comparing other representations. In 

assembly graphs, the nodes represent LEGO 

elements and the edges represent connections among 

the elements. They also proposed a graph grammar 

that can be used to evaluate the validity of the LEGO 

assembly structure [Pey03].  

 

Figure 6. LEGO brick layouts (left) and 

corresponding graph representation [Tes13] 

Testuz et al. proposed another graph representation 

for the LEGO structure. Fig. 6 shows the LEGO 

brick layouts and corresponding graph 

representations used to evaluate connectivity and 

stability of the construction. In their graph 

representation, a node denotes a LEGO brick and an 

edge denotes the connection between the bricks. The 

solidity optimization to improve the stability of the 

construction was conducted based on the assumption 

that the more LEGO bricks are connected, the 

stronger the connectivity will be [Tes13].  

 

Figure 7 A brick layout and corresponding NTP 

representation in two--dimensional space [Fun98] 

Funes and Pollack proposed a network of torque 

propagation structure to represent a LEGO assembly 

to evaluate the stability of the structure. A network of 

torque propagation (NTP) consists of: (1) a list of 

bodies, (2) a list of joints, (3) a list of forces, and a 

symbol G that denotes the "ground". Here a joint is 

defined as a the center position of the area of contact 

between a pair of bricks [Fun01].  

When using evolutionary algorithms to solve the 

problem, the solution itself of the problem must be 

encoded as genotype representations. There are two 

approaches to represent genotype: one is direct and 

the other is indirect representation. Direct genotype 

representation is conceptually identical to the 

phenotype or the solution of the problem. In indirect 

representation phenotype can be constructed from the 

transformations of its genotype [Pey03].  

The advantage of the indirect representation is that it 

can focus the search process through the feasible 

search space by significantly reducing the space.  The 

disadvantage of the indirect representation however 

is that the standard genetic operators cannot be 

directly used [Pet01]  

4. Cost Functions  
The cost function for the optimization problem must 

be designed based on the performance criteria of the 

problem described in chapter 2. The most important 

factors to consider for cost function design are 

stability of the created LEGO assembly and the 

processing time to create it. Gower et al. introduced a 

set of heuristics that are useful in designing the cost 

function for the problem based on their rigorous 

research [Gow98][Sma08].  

Gower et al. proposed six heuristics that are 

necessary to guarantee the stability of the created 

LEGO assembly. The first three heuristics are as 

follows: (1) A high percentage of the area of each 

brick should be covered by other bricks from above 

and below; (2) Larger bricks must be preferred over 

small bricks; (3) Bricks in consecutive layers should 

have alternating directionality [Gow98][Sma08].  

 

Figure 8 The boundary defined by the 

neighboring bricks (left) and the vertical 

boundary (right) [Sma08] 

We need to be more careful at the boundaries of the 

whole model and vertical boundaries of each brick 

where connectivity is more vulnerable. The other 

three heuristics addressed the connectivity and 

stability problem at the boundaries: (1) A high 

percentage of the vertical boundaries of each brick 

should be covered by bricks in the consecutive layers; 

(2) A brick must be placed such that the middle of 

the side should be at the boundary defined by the 

neighboring bricks; (3) If a brick covers a vertical 

boundary in the previous layer, the middle of the 

brick must be aligned to the boundary 

[Gow98][Sma08]. 
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Based on the heuristics Gower et al. defined a cost 

function as follows:  

                      

where,    relates to the alternating directionality,    

corresponds to coverage of the vertical boundaries,    

relates to the coverage of the boundary defined by the 

neighboring bricks, and    encourages the use of 

larger bricks.   's represent the weights for each term.  

Peysakhov and Regli 03 proposed a more advanced 

and flexible form of the cost function to evaluate the 

ability of an LEGO assembly relative to its 

performance and function. Their cost function use the 

attributes of the LEGO structure including weight, 

number of nodes, and size of the structure. Their cost 

function is as follows:  

         

                      
 

Here,    is the weight function that represents the 

importance of the parameter. They set the weight 

value as the equal value to the parameter  itself for 

the most important parameters. They set the weight 

value to the square root of the parameter for less 

important ones. For the least important parameters, 

they used square root of square root of the parameter.  

                      

   denotes the properties that will be maximized such 

as reliability.    denotes the properties that will be 

minimized such as manufacturing cost, and    
denotes the properties that will be as close as to the 

specific constant value    [Pey03].  

5. Solution Methods 
A variety of approaches have been proposed to solve 

the LEGO construction problem. In this section we 

will describe and discuss those solution methods 

including greedy algorithms, local search, beam 

search, cellular automata, and evolutionary 

algorithms 

Greedy Algorithms  
Ono and Alexis 13 proposed a method to convert a 

3D mesh model into a corresponding LEGO model 

by using their replacement strategy. The input to the 

system is the 3D model and user-specified level-of-

detail. The system. The system converts the input 3D 

model into a voxel model based on the level-of-detail, 

and then converts it to the LEGO model [Ono13].  

The system places the unit LEGO brick of the size 

1x1 to each voxel. It then merges the unit bricks to 

replace each voxel with larger bricks so that the 

resulting LEGO structure would be more stable. 

They represent the LEGO structure as a legograph 

shown in chapter 3 with three different types of links 

they defined. The replacement is conducted layer-by-

layer, from bottom to top and the replacement is 

performed in each layer using a greedy method. In 

the replacement procedure, for each position the 

brick type with the highest score is chosen to be 

replaced. The strategy for the scoring is designed to 

guarantee the stability of the resulting LEGO 

structure and it is similar to the cost function 

described in chapter 4. When the LEGO structure is 

built, their system automatically generates the 

assembly instructions [Ono13].  

 

Figure 9. The result of greedy method by [Ono13] 

Testuz et al. proposed a similar method to [Ono13] in 

that they fill the unit bricks into each voxel first and 

then merge and split the bricks sequentially to obtain 

the optimal layout using greedy method. Their merge 

algorithm randomly select a brick and find a legal set 

of neighbors. It then repeat choosing the neighbor 

with the lowest cost and select the neighbor with the 

lowest cost value until there are no more mergeable 

neighbors. This process repeats until there is no more 

brick to merge [Tes13].  

In building the LEGO model Testuz et al. evaluate 

the stability of the model as other approaches do. To 

achieve this, they used the graph representation 

described in chapter 3. In the stability evaluation, 

they assumed that the stability will be stronger if the 

more bricks are connected to each other [Tes13].  

Local search 
In each step of the procedure, local search approach 

considers only a small subregion and attempt to find 

the best brick placement to fill the subregion 

[Gow98][Sma08]. Only a few bricks are permanently 

placed in each step considering the effect of the local 

placement for the global solution. Then the subregion 

slightly moves so that a new subregion overlaps the 

previous one as a sliding window [Sma08].  

In this approach, the important issue is the size of the 

subregion. If the size of the subregion is too small, it 

is hard for the local placement contribute to the 

global optimization. On the other hand, if the size of 

the subregion is too large, the search space would be 

larger resulting in increase in processing time. The 

optimal size for the subregion therefore must be 

determined based on the size and characteristics of 

the input real-world object. [Sma08]  
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To apply simulated annealing to the LEGO 

construction problem, we can firstly divide each 

layer into subregions of smaller size. Then the 

subregions will be randomly filled with arbitrary 

placements of LEGO bricks resulting in the initial 

state. For each subregion a set of successor states are 

generated by replacing a small number of bricks with 

new bricks. New successor states are generated until 

we find a new state that decreases the energy. The 

search process will stop after the number of iterations 

specified by a user is complete or when an acceptable 

solution is found [Sma08].  

Simulated Annealing 
Simulated annealing is a variant of the hill-climbing 

technique that computes all possible successor states 

from the current state and then selects the best 

successor. The well-know limitation of the approach 

is that it can easily converges to the local minimum 

instead of the global optimum [Sma08].  

At each iteration, simulated annealing algorithm 

considers a set of neighboring states from the current 

state. It probabilistically compares between moving 

to new states and staying in the current state and then 

decide the new state that minimizes the energy. This 

process repeats until it finds a satisfactory solution 

[Sma08].  

Beam Search  
A beam search is conceptually similar to the 

simulated annealing approach in which successor 

states are generated and evaluated to find a new state 

with better quality. A beam search approach a best-

first search algorithm and it is different from the 

simulated annealing approach in that all the possible 

successor states are generated and evaluated using a 

cost function to find the new state with the best cost. 

The algorithm therefore searches for the best local 

solution at each step [Sma08].  

 

Figure 10. Beam search tree to a fill 3x3 layer 

using the standard LEGO bricks [Sma08]  

At each step a beam search algorithm finds best k 

successors and they are added to their parent states. 

Then the search process continues while pruning the 

states that cannot generate any successor states of 

better quality from the search tree. The problem 

however is that it can focus on a too narrow search 

space resulting in not convincing solutions. An 

improvement for this problem is to select the k 

successors probabilistically with a higher probability 

of selecting the lower cost successors to create a 

broader search space [Sma08].  

Cellular Automata  
van Zijl and Smal proposed an approach using 

cellular automata based on the cost function proposed 

by [Gow98][Van08]. Their approach is conceptually 

similar to the merge/split approach using several 

heuristics that guides the search [Tes13]. The 

approach virtually cuts the given 3D object into 

horizontal two-dimensional layers. It finds the 

optimal 2D layout first and then join them to 

construct final 3D model.  If we solve a 2D layout 

optimization problem separately, the stability of the 

resulting model cannot be guaranteed. They therefore 

used the Gower et al.'s heuristics during each step to 

solve the 2D problem to guarantee the solidity of the 

model [Gow98][Van08].  

 

Figure 11. An example of cellular automata 

representation (a) the 2D grid, (b) potential merge 

neighbors, (c) potential new clusters, (d) the final 

three clusters [Sma08]  

This approach used a legolised representation 

described in chapter 3. In initial stage, each cluster of 

unit size 1x1 that contains value one represent a unit 

LEGO brick. For each cluster the algorithm checks if 

it can be merged with any of its Von Neumann 

neighborhood. Two clusters can be merged if the 

merge can result in a new cluster that represent a 

larger valid LEGO brick. This merge operation is 

conducted for all the clusters in the layout. The order 

of merges can be random, front-to-back, or any other 

orders chosen by a user [Van08].   
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Evolutionary Algorithms 
Evolutionary algorithms are very effective 

optimization technique for the problems whose 

optimal solution is hard to formalize. LEGO 

construction problem is a hard combinatorial 

optimization problems in which it is infeasible to find 

the optimal solution and the "good" solutions of 

reasonable quality are enough. Evolutionary 

algorithms could be a proper approach to solve the 

problems that have such features and nature 

[Pey03][Pet01].   

To solve an optimization problem using evolutionary 

algorithms, we have to encode the solution of the 

problem as chromosomes, define the evaluation 

function, and develop mutation and recombination 

operators depending on the characteristics of the 

given problem. We have discussed about the 

genotype representation for LEGO construction 

problems in chapter 3 and we will therefore discuss 

about evaluation functions and operators developed 

to solve the problem using evolutionary algorithms 

[Pey03][Pet01].  

There are two approaches to genotype 

representations: one is direct representation, and the 

other is indirect representation. In direct 

representation the genotype is conceptually identical 

to the corresponding phenotype. On the other hand, 

in indirect representation, the genotype is 

transformed to construct the corresponding 

phenotype. Indirect representation usually have more 

information about the phenotype and it therefore can 

focus the search space by reducing the space. The 

problem of indirect representation is that the standard 

operators such as mutation and crossover do not 

directly work. We therefore have to redefine the 

operators according to the structure of genotype 

[Pey03][Pet01].   

 

Figure 12. An example of genotype representation 

by [Pes03] 

Peysakhov and Regli developed their chromosomes 

using a combination of two data structures: one is an 

array of all nodes, and the other is the adjacency hash 

table containing all edges as shown in fig 12. The key 

value of the hash table represents the position and 

direction of edges. For example, the key "1>3" 

means that the edge connects from the node 1 to the 

node 3. Hash table also describe how the LEGO 

elements are connected [Pey03].  

The mutation operator of [Pey03] is applied with 

constant and low probability to provide the balance 

between the exploration and exploitation. When a 

mutation arises for a node, a LEGO brick is simply 

replaced by the same type brick with different size 

[Pey03].  

 

Figure 13. An example assembly graph for the 

LEGO car [Pey03] 

Crossover is conducted by two operators: cut and 

splice. It selects two chromosomes for crossover and 

random points are selected respectively for the two 

chromosomes by cut operator. The tail parts of the 

parent chromosomes are then spliced with the head 

parts of them [Pey03].  

Petrovic proposed more advanced and complicated 

operators as follows. His crossover operator firstly 

selects a rectangular region at random. Then a part of 

LEGO bricks are copied from one parent and other 

bricks that do not conflict with already placed bricks 

are copied from another parent [Pet01].  

Petrovic suggested the following mutation operators 

because random mutation operator can generate 

overlaps.  

 A brick is replaced by other random brick.  
 A brick is added to an empty location randomly.  
 A brick is shifted by one unit in one of the four 

possible directions.  
 A brick is eliminated from the layout  
 A brick is extended by one unit in one of the 

four possible directions.  
 All bricks that are in a random rectangle are 

replaced by random bricks 
 The whole layout is initialized again 

In his mutation operators, larger bricks are always 

preferred to be replaced to increase stability of the 

structure [Pet01]. 

6. CONCLUSIONS 
In this paper, we reviewed a variety of research 

efforts to address the automated LEGO construction 

problem. We investigated the problem definition and 

formulation, various data representations for 3D 

polygonal mesh models and LEGO assembly 

structures, cost functions to solve the optimization 

problem for LEGO construction and solution 
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methods a number of researchers proposed. To date, 

graph representations have been widely used to 

represent the LEGO structure and as solution 

methods, greedy algorithms, simulated annealing, 

beam search, cellular automata, and evolutionary 

algorithms have been used to automatically construct 

LEGO structure minimizing the number of bricks 

used and guaranteeing the stability of the built 

structure. Those approaches are useful to create a 

LEGO structure design for given 3D polygonal 

models for entertainment purposes and also can be 

useful for engineering education.  
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