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Abstract—Inductive development of EM theory overlooked 
some aspects or details of this complex physical discipline. The 
reverse deductive exposition would further explain the former 
results. Starting from the founded supposition of a compressi-
ble, super-fluidic and inert medium, as the sufficient starting 
view, EM theory is here exposed deductively. The three men-
tioned fluid features enable static, kinetic and dynamic phe-
nomena, respectively. All the physical quantities and their rela-
tions are convincingly interpreted aerodynamically.  
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I. STATIC RELATIONS 

Let a subtle fluid be taken as the substantial essence of 
4D space, including particles, as its disturbances. Say that 
this medium is denser around positive, and sparser around 
negative particles. Tending to the fluid homogeneity, two 
equipolar particles repel, and opposite ones attract each 
other. The first and last fluid features, as its elasticity (ε) and 
mass density (µ), are the bases of the static and dynamic ef-
fects, dependent on a distance or acceleration, respectively, 
of the disturbances. As such, these two features determine 
the speed of EM wave propagation: c2 = 1/εµ. 

Internal pressure of the compressible fluid equals to the 
energy density, and each its disturbance, as the elementary 
static potential, provides the energy for all other such distur-
bances, as the objects. This quantity determines the static 
field, and this field itself – carrying charge: 

sΦ∇ = −E ,                     Q∇⋅ =D .                (2) 

Each new quantity in this sequence is the formal feature of 
the preceding one. The static field is the gradient of respec-
tive potential. The beginnings of the field lines represent the 
positive, and their terminals – negative charges. Static field 
thus mediates the relation of electric charge and respective 
potential. Thus introduced, the static quantities are the bases 
for following definition of kinetic ones. 

II. K INETIC RELATIONS 

The medium super-fluidity enables continual fluid flows. 
In parallel to the current field definition (3b), the motion of 
a static, as the pressure disturbance, forms kinetic potential, 
as the linear momentum density (3a): 

εµΦ=A V ,                     Q=J V .                   (3) 

The product of the compressibility (ε), regular density (µ) 
and pressure disturbance (Φ) gives the density disturbance 
(εµΦ). The charges are inseparable from their potentials, 
and so the two kinetic quantities are collinear. At motion of 
negative static quantities, these two are opposite. 

The equation (3a) defines the kinetic, by motion of static 
potentials. Let us now examine their mutual differential re-
lation. Namely, div-operator applied directly to (3a) gives so 
called Lorentz’ condition, as the continuity equation differ-
entially relating the two EM potentials: 

 εµ ( ) εµ tΦ Φ Φ∇⋅ = ∇⋅ + ⋅∇ = − ∂A V V .           (4) 

Dilatation and convection of the static, determine the kinetic 
potentials. Following its carrying charge, the static potential 
behaves as a rigid structure, of the homogeneous speed. The 
former middle term thus annuls, with the convective deriva-
tive, V⋅∇Φ = – ∂tΦ, in the latter term. This derivative is op-
posite to the gradient of a moving potential. 

Two parallel fluid flows interact by mutual forces, and 
crosswise ones – by respective torque. These kinetic interac-
tions, determined by transverse gradient or curl of the linear 
momentum density (4), are represented in EM theory by the 
magnetic field, defined by (5a). In the similar manner, its 
own curl will soon be identified as the current field, in all 
the three electric structural layers (5b): 

∇× =A B ,                   tot∇× =H J .                (5) 

Here Jtot = J + ∂tD is the total current field consisting of the 
convection and conduction components – in the former, and 
displacement one – in latter terms, – at vacuum, conductors 
and dielectrics, respectively. Magnetic field is perpendicular 
to the other two (collinear) vectors. 

In accord to the relations (3) of the two potentials or car-
riers, the fields, as their intermediate quantities, are similarly 
related. The substitution of (3a) into (5a) gives: 

εµ( )Φ Φ= ∇× − ×∇B V V ,           = ×H V D .         (6) 

In the case of rectilinear motion of the rigid static potential, 
the former term in (6a) annuls, and (2a) substituted into the 
latter term gives the convective kinetic relation (6b). A mov-
ing electric, produces the magnetic field, representing trans-
verse kinetic forces. Curl applied to (6b), excluding spatial 
derivatives of the field speed, gives (5b): 

 t∇× = ∇⋅ − ⋅∇ = + ∂H V D V D J D  .               (5b') 

Here Q∇ ⋅ = =V D V J , and t⋅∇ = − ∂V D D  – the convective 
derivative of the moving electric field. 

Instead of the kinetic potential and magnetic field, the 
kinetic interactions of respective quantities are expressed in 
EM theory by the equivalent static quantities, determined at 
least in the case of the parallel motion: 

kΦ = − ⋅v A ,                   k  εµQ = − ⋅v J .             (7) 
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These equations are formally inverse to the definitions (3), 
with the product εµ – consequently replaced. The negative 
signs point to the attractive (or repulsive) interactions. Grad 
applied to (7a), after missing of the spatial derivatives of the 
object speed, gives respective ‘electric’ field: 

k   = ⋅∇ + ×∇ × = ×E v A v A v B .                   (8) 

By dot product in (7a), the motion is directed along the po-
tential A, and thus, the former middle term usually annuls. 
Finally, div applied to (8) gives (7b), as the kinetic interac-
tion of two parallel currents. However, (8) is generalized to 
the transverse direction too, as the torque tending to the 
same courses of two crosswise currents. 

III.  DYNAMIC RELATIONS 

With respect to the massive omnipresent quantum fluid, 
temporal derivative of the kinetic potential, as the linear 
momentum density, gives the reactive dynamic forces, rep-
resented by respective electric field: 

d t∂ = −A E  ,                     t∇× = −∂E B  .          (9) 

Curl applied to (9a), with respect to (5a), gives the dynamic 
equation (9b). Similarly, div applied to (5a), via mixed vec-
tor product, gives the trivial Maxwell’s equation: 0∇ ⋅ =B . 
It only speaks against the existence of free magnetic poles, 
being possibly predicted in advance. 

The kinetic potential and magnetic field are the two per-
pendicular vortical fields, and their gradient, perpendicular 
to the common surface, is a non-vortical field. The motion 
in this direction convectively varies the potential, and – with 
respect to (9a), induces the dynamic field: 

d   't= − ∂ = ⋅∇ = ×E A U A B U  .                 (10) 

U is transverse speed of the field and potential, in the plains 
of the field lines, and so: |∇A| = |∇×A| = |B|. Therefore, curl 
applied to (10) directly gives (9b): 

d  t∇× = ⋅∇ − ∇⋅ = − ∂E U B U B B  .              (9b') 

As before, the speed derivatives are missed. Magnetic field 
motion in the planes of its lines induces the dynamic forces, 
represented by respective electric field. 

With respect to (7), a punctual charge, moving in direc-
tion of a carrying current, suffers the transverse kinetic force 
(8). However, with respect to (10), the current carrying con-
ductor, moving in the same direction (of the zero gradient), 
would not cause any inductive effect. This direction does 
not obey the principle of relativity. Unlike apparent charge 
(7b), any real charge cannot be obtained by axial motion of 
a current, at least in the frames of 3D space. 

The dynamic convective relation (10), together with ki-
netic one (6b), forms the convective pair introduced by J. J. 
Thomson. With respect to the above procedures, neglecting 
all the spatial derivatives of the field speeds, this pair is re-
stricted to the uniform rectilinear motion. In addition of the 
above restriction of the direction of motion, these two rela-
tions were seeming to be problematic. This was the reason 
of their missing from the standard EM theory. 

IV.  MOVING FIELDS 

Instead of the field variation – in Maxwell’s equations, 
the algebraic relations treat their motion. Moving electric, 
produces magnetic field (6), affecting kinetically the charges 
moving in parallel – by respective force (8): 

k s t εµ sin  E Vv θ= −E i .                         (19) 

Here θ is the polar angle between the direction of motion 
and the moving field itself. The obtained kinetic field just 
depends on the speed product. Possible transverse compo-
nent of the object speed, with respect to the carrier’s speed, 
would produce the axial force component. 

With respect to Lorentz’ condition (4), a moving kinetic 
potential causes some dynamic induction: 

2
d s l εµ cos t E V θ= −∂ = ⋅∇ = ∇⋅ = −E A V A V A i .     (20) 

The longitudinal grad equals to div. Thus obtained dynamic 
field, independent of the object speed, is directed axially, 
towards the carrier. It points to some acceleration of the me-
dium in the front, and its deceleration behind a moving 
charge. Subtracted from the moving static field, it causes the 
ellipsoidal field deformation. SRT ascribed this effect to the 
increased transverse field components. 

The vector sum of the two components – kinetic (19) 
and dynamic (20) – affects all the present electric charges, 
including the causing charge itself: 

k d s t lεµ ( sin cos )E V v Vθ θ+ = − +E E i i .          (21) 

In the resting frame (v = 0), this is reduced to the letter term. 
In the moving frame (V = v), vector sum of the two compo-
nents represents the central field. Its subtraction from the 
moving static field as if scales this field: 

   2 2
s s' (1 εµ )v g= − =E E E .                     (22) 

The transverse components, acting on the object charges, are 
scaled by the factor: 1 εµh Vv= − .  With some formal incon-
sistencies and fantastic interpretations, the two factors play 
the crucial roles in foundation of SRT. 

V. CONCLUSION 

Introduced in fluid dynamics of an omnipresent medium, 
all the basic laws of EM theory, as the former phenomeno-
logical postulates – in differential or algebraic forms, define 
and mutually relate all EM quantities. The three mentioned 
fluid features enable and logically determine all the static, 
kinetic & dynamic effects, respectively. The three EM fields 
are introduced by respective differential equations, and their 
mutual algebraic relations are thus consequently established. 
EM theory is finally presented as the central physical disci-
pline, between other such disciplines, from the classical, up 
to the quantum mechanics. The ability of the full unification 
of the physics in general is thus pointed at. 

REFERENCES 
[1]  B. Mišković, Inductive Elaboration of EM Theory, ISTET 2013 

[2]     B. Mišković, Electrodynamics..., http://solair.eunet.rs/~brami/ 


