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RCD Snubber Revisited 
Stephen J. Finney, Barry W. Williams, and Tim C. Green, Member, IEEE 

Abstruct- The use of the polarized RCD turn-off snubber 
configuration across switching devices is popular because of its 
simplicity and use of only passive components. This configuration 
is limited by the fact that all capacitor-stored energy is dissipated 
in the discharge resistor. 

In this paper it is shown that with the addition of a ferrite 
transformer to the standard RCD arrangement, in excess of 70% 
of the energy stored on the snubber capacitor may be passively 
recovered into the dc supply. Performance of this passive recovery 
snubber is supported by theoretical, simulated and practical 
results. 

I. INTRODUCTION 
TURN-OFF snubber capacitor is frequently used in A power switching applications to limit the rate of rise 

of voltage across the switching device at turn off; thereby 
controlling the switching loss and voltage overshoot. A 
commonly used configuration is the passive polarized RCD 
snubber shown in Fig. 1. The principal disadvantage of this 
arrangement is that, usually, all the energy stored on the 
capacitor is dissipated in the resistor after the switch turns 
on. If the circuit is operating at a switching frequency f s ,  

then the power dissipation (I‘d) in the snubber resistor will 
be 

This energy is fixed and independent of load current. For high 
frequency or high voltage operation this loss can prove to be 
a limit on the size of snubber capacitor that may be employed. 

Various methods exist for the passive recovery of snubber 
energy [1]-[3]. The energy is usually recovered into the 
load, thereby affecting the load voltage regulation and makes 
recovery, load current-dependent. The circuit proposed in this 
paper is a simple modification to the RCD turn-off snubber 
arrangement that will allow a significant proportion (>70%) 
of the stored capacitor energy to be returned to the supply rail. 
This is achieved by the use of a transformer catch winding 
[41-[61. 
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Fig. 1. The RCD snubber. 
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Fig. 2. The catch winding energy recovery circuit with resistor rest: (a) 
circuit and (b) equivalent circuit. 

11. CIRCUIT DESCRIPTION 

A. Basic Circuit 
In the circuit shown in Fig. 2(a) a ferrite step-up transformer 

is added into the discharge path. The turns ratio (m) is chosen 
such that when the switch turns on the secondary voltage is 
sufficient to cause D2 to conduct, thereby transferring energy 
back to the supply, The equivalent circuit for this operation 
is shown in Fig. 2(b). For ideal circuit elements and a turns 
ratio of less than one (m < l), the governing equation for 
the circuit is 
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Given the initial conditions v,(O) = V, and Z,(O) = K(l  - 
m)/R,, the solutions to this differential equation are given by 

From these equations it may be shown that the recovered 
energy (ER)  is related to the turns ratio by the formula 

where EO is the initial capacitor stored energy (1/2CV:). 
Inspection of this formula shows that in theory 50% recovery 
could be obtained with m = l / 2 .  The basic circuit described 
here has two principal draw backs: i) because of the expo- 
nential shape of the discharge current flow, the on-time of 
the switch must be significantly greater than the R,C time 
constant and this imposes a restriction on the minimum on- 
time for the switch; ii) at the end of the energy recovery phase 
a residual voltage of mV, remains on the capacitor and is 
dissipated relatively slowly. This restricts the energy that may 
be recovered. These two restrictions may readily be overcome. 

B. Improved Circuit 
Fig. 3(a) shows a circuit with an improved energy recovery 

characteristic, over that in Fig. 2(a). Inductance is added to 
the capacitor discharge path. The effect is to cause the energy 
recovery phase to occur as a half sinusoidal pulse, the duration 
of which is essentially defined by the period of the resonant 
components C and L,. The governing equation for the circuit 
during this resonant period is given as 

d2uc Rs dv, U, 
-+- . -+-  = m.V,. 
d t2  L, d t  L,.C 

Given the initial conditions ~ ~ ( 0 )  = Vs and i ,(O) = 0, the 
solutions to this differential equation are 

where 

Fig. 3. 
reset: (a) circuit and (b) equivalent circuit. 

The improved catch winding energy recovery circuit with resistor 

Mode I: Equations (7) and (8) hold for U, > 0 and i, > 0. 
For the case when v, > 0 when w t  = T in (8), energy recovery 
will cease when the current reaches zero. The recovered 
energy, for this case, may be calculated analytically and is 
given by 

E, = 2 E 4  1 - m) [ 1 + e-(" " /w) ]  . (10) 

In this mode of operation charge will be left on the capacitor 
at the end of the energy recovery phase, and this portion 
of the stored energy is not recovered. Some of this energy 
will discharge through the path provided by the magnetizing 
inductance (Lmag), L,, R,, and the switch, and this energy 
will be lost as heat in the resistor R,. Any energy not recovered 
or dissipated in the resistor will be seen as a residual voltage 
on the capacitor (C) when the switch next turns off. In this 
case a soft voltage clamp suitable for IGBT's results. 

Mode 11: A second mode of operation, and that which is 
desirable for GTO's, occurs when the capacitor voltage reaches 
zero while there is still resonant current flowing. The stored 
energy in L, causes the current to divert into the path provided 
by the diode D,. In this case, transformer action continues and 
the energy stored in the inductor is recovered. If the time at 
which the capacitor voltage reaches zero is tl and the current 
flowing at this time is it,, the current in the resonant inductor 
will decay exponentially according to (ll), which holds until 
the resonant inductor current reaches zero. Even though energy 
recovery is incomplete at t l ,  the capacitor is fully discharged 
and the switch may be turned off, if desired. The governing 
equation for the current during this period is derived from 

If the origin is shifted to t = tl and the initial current condition 
is i ~ ,  = it,, the solution to this differential equation is given 
by 

If the current in the inductor falls to zero at time t z ,  then the 
energy recovered by this mode of operation will be defined by 
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A further modification that may be made to the circuit is 
that shown in Fig. 5.  In this circuit the transformer secondary 
is connected to the positive side of the snubber capacitor. The 

i36 
F 32 
6 28 

behavior of the circuit is now governed by i 24 
i = :  

Energy Recovery 

No Induct o nce( Q=O) /Y 
o o ~ " " " " " " " ' ' " "  
00 0 5  10 1 5  20 2 5  3 0  3 5  4 0  4 5  50 

1 /m 

Fig. 4. Curves of the energy recovery ratio E1/E, for varying Q factor 
and turns ratio. The dashed line shows the boundary between mode 1 and 
mode 2 recovery. 

vs, 

The curves in Fig. 4 show the theoretical recovered energy 
for varying values of Q factor (Q = Zo/R,) and transformer 
turns ratio (m). These plots show that the peak energy transfer 
occurs for m = 1/2 and that the maximum recovery ap- 
proaches 100% as the Q factor becomes large. For low values 
of Q factor the recovery rate approaches that for the basic 

resistance added as part of the RCD network in the original 
circuit, shown in Fig. 1. 

I T  ii t "il (Vs -Vch  

:= t vc 
(b) 

circuit in Fig' 2' A high Q is achieved by removing circuit Fig, 5,  The modified catch winding energy recovery circuit with resistor 
reset: circuit and (b) equivalent circuit. 

C. Modified Improved Circuit 40 I 

U, =m.(V, - w,) + L, - d i l  + il.Rs (14) i ; . l ,  , , , , J ,  , , . , , , 
$12 

dt  
.- 

(15) Q=IO/ / 

1 .  

. Q = 5  ..- 

8,. 21 = ___ 
l S m  

z o 4  Q = 3 - - -  
0 Again these equations may be solved to give the energy 

In this case it is found that the recovered energy is given by 
returned to the supply as the snubber capacitor discharges. 0 0 0.1 0.2 0 3  0.4 0.5 0 6 , 0.7 0.8 0.9 1 .O 

Energy Recovery Rotio 

Fig 6 Normalized reset time constant (woL,,,/2~rR,) against energy 
m (16) recovery ratio (m  = 1/21 Ezr = 2Eo. ~ 

This gives rise to a similar set of curves to those shown in 
Fig. 4 except displaced one unit to the left on the l /m axis. 

The principal difference between this and the arrangement 
shown in Fig. 3 is that the maximum energy transfer now 
occurs for m equal to one. This means that the potential reverse 
voltage seen by the secondary diode Dz is halved. 

D p  

111. PRACTICAL LIMITATIONS 
In practice, the theoretical behavior will be degraded by a 

number of factors. A real transformer will posses a finite mag- 
netizing inductance; during energy recovery the magnetizing 

- 

Fig, 7. The catch winding energy recovery 
reset: (a) circuit and (b) equivalent circuit. 

:ircuit with Zener diode ( L I Z )  
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Pspice simulations for Zener diode reset, m = 0.5 (a) Capacitor voltage v(13) and pnmary current z(Zs1). (b) Secondary voltage v(30) and 

current will ramp linearly according to 

mV,t 
%mag ~ 

Lmag 

For a real transformer, transformer action is lost when the 
magnetizing current imag rises to the circuit current given by 
(8) or (11) (depending on the operating mode). 

For circuits operating in mode 1; once transformer action 
ceases, any voltage remaining on the capacitor will tend to 
discharge resonantly through the magnetizing inductance of 

the transfonner. This gives rise to a low frequency (relative 
to w )  resonant increase in magnetizing current. This increase 
ends when the capacitor voltage reaches zero and diode D ,  
conducts. For circuits operating in mode 2 transformer action 
is lost after the capacitor voltage has reached zero and the 
magnetizing current is defined by (17). For the circuit to 
operate correctly the transformer core must reset before the 
next energy recovery operation and, in particular, before the 
next switch turn-on. During the reset phase the reset voltage is 
provided by the potential drop across R, in Fig. 3(a) and the 
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(a) (b) 
Fig. 10. Experimental waveforms for resistor reset, time base 5 psldivision. (a) Upper trace, capacitor voltage (SO V/division); lower trace, primary current 
(2.5 A/division). (b) Upper trace, secondary voltage (50 V/division); lower trace, secondary current (2.5 A/division). 

Fig. 11. 
current (2.5 Aldivision). (b) Upper trace, secondary voltage (50 V/division); lower trace, secondary current (2.5 Ndivision). 

Experimental waveforms for Zener diode reset, time base 5 pddivision. (a) Upper trace, capacitor voltage (SO V/division); lower trace, primary 

magnetizing current decays according to the ( L ,  + Lmag)/Rs 
time constant. The time for the magnetizing current to decay 
to a negligible level will limit the switching frequency that 
may be employed. It may be seen that there is a conflict here 
between the need to use a high Q circuit for high energy 
recovery and the need for a low Q for a short magnetizing 

current reset time constant. The curves shown in Fig. 6 show 
the effect of the trade off between reset time and energy 
recovery for a turns ratio of m = 0.5. 

The problem of transformer core reset may be resolved, 
in many cases and particularly at low powers, by replacing 
the resistor with a Zener diode as shown in Fig. 7. This 
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allows a very high Q circuit to be employed while the Zener 
diode provides a constant voltage source (V,) for reset. The 
consequence of this is a well defined reset time but with 
losses occurring in the Zener diode; both during reset and 
during the energy recovery phase when it will appear as a 

by a ferrite transformer and a secondary diode. Theoretical, 
simulated and practical results substantiate the viability of this 
simple but effective turn-off snubber. 
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V,, and approximately V, + V,/m when Zener diode reset is 
used 

The results for the proposed passive turn-off snubber energy 
recovery circuits show that a relatively simple modification to 
the commonly used RCD snubber may result in excess of 70% 
Of the snubber capac1tor stored energy being recovered into 
the d.c rail. In practice the RCD snubber resistor is replaced 


