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Abstract 

 

The obligate intracellular parasite Toxoplasma gondii, a member of the phylum 

Apicomplexa that includes Plasmodium spp., is one of the most widespread parasites 

and the causative agent of toxoplasmosis.  Micronemal proteins (MICs) are released 

onto the parasite surface just prior to invasion of host cells and play important roles in 

host-cell recognition, attachment and penetration.  Here we report the atomic 

structure for a key micronemal protein, TgMIC1, and reveal a novel cell-binding motif 

called the Microneme Adhesive Repeat (MAR).  Using glycoarray analyses, we identify 

a novel interaction with sialylated oligosaccharides that resolves several prevailing 

misconceptions concerning TgMIC1.   Structural studies of various complexes 

between TgMIC1 and sialylated oligosaccharides provide high-resolution insights into 

the recognition of sialylated oligosaccharides by a parasite surface protein.   We 

observe that MAR domains exist in tandem repeats which provide a highly specialized 

structure for glycan discrimination.  Our work uncovers new features of parasite-

receptor interactions at the early stages of host cell invasion, which will assist the 

design of new therapeutic strategies. 

 

Introduction 

 

Toxoplasma gondii is a protozoan parasite that is uniquely adapted to infect a wide 

range of hosts, including virtually all warm-blooded animals and up to 50% of the world’s 

human population.  The primary transmission route in humans is via contact with feces from 

infected domestic cats or ingestion of undercooked contaminated meat, particularly lamb.  

Toxoplasmosis causes a variety of disease states in humans, including severe disseminated 

disease in immunosuppressed individuals due to reactivation of encysted parasites and birth 

defects in infants where mothers are exposed during pregnancy (Hill and Dubey, 2002).  
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Infection is rapidly established in the host by the fast-replicating form of the parasite, 

the tachyzoite, which can invade an extremely broad range of cell types.  Unlike other 

pathogens that hijack existing host cell uptake pathways, Toxoplasma and other 

apicomplexan parasites including Plasmodium actively force entry into host cells.  The 

process is initiated by contact with the host-cell plasma membrane, followed by reorientation 

and then the generation of a motive force, which drives penetration into a novel, parasite-

induced structure called the parasitophorous vacuole (Carruthers and Boothroyd, 2006).  The 

rapid and smooth transition through these stages requires a highly regulated release of 

proteins from several parasite organelles, namely micronemes, rhoptries and dense granules 

(Carruthers and Sibley, 1997).  Microneme discharge occurs first and their contents 

participate in the attachment of parasites to the host cell surface (Carruthers et al., 1999) and 

the formation of a connection with the parasite actinomyosin system (Jewett and Sibley, 

2003), thereby providing the platform from which to drive motility and invasion (Soldati and 

Meissner, 2004).     

One of the first micronemal proteins to be discovered in T. gondii was MIC1 

(TgMIC1), which functions in cell adhesion (Fourmaux et al., 1996).   TgMIC1 is a 

remarkable, multifunctional protein that in addition to binding host cell receptors, interacts 

with two other microneme proteins (TgMIC4, TgMIC6) (Brecht et al., 2001; Reiss et al., 2001) 

and is essential for transport of the whole complex through the early secretory pathways 

(Huynh et al., 2004; Reiss et al., 2001; Saouros et al., 2005).  Deletion of the mic1 gene in T. 

gondii has also confirmed the specific and critical role played by TgMIC1 in host cell 

attachment and invasion in vitro and has provided evidence for its role in virulence in vivo 

(Cerede et al., 2005). Recent studies have shown that a purified TgMIC1 sub-complex is a 

potent antigen and acts as an effective vaccine in the mouse model (Lourenco et al., 2006).   

Unlike the battery of other micronemal proteins, the sequence of TgMIC1 does not exhibit an 

obvious likeness to vertebrate adhesive motifs.  However, a recent nuclear magnetic 

resonance (NMR) structure revealed a previously unidentified and novel galectin-like domain 

within the C-terminus of TgMIC1 that promotes proper folding of TgMIC6 and contributes to 

complex formation (Saouros et al., 2005).    
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Although studies have clearly highlighted the importance of micronemal proteins in 

apicomplexan invasion, the finer structural details of host cell recognition remain largely 

unknown. So far, two main studies have addressed this issue in Plasmodium falciparum: 

erythrocyte binding antigen (EBA-175) binds sialic acid (Tolia et al., 2005) and TRAP binds 

to heparin (Tossavainen et al., 2006), although high resolution information regarding 

carbohydrate recognition was not forthcoming. Combining atomic resolution studies with 

data from carbohydrate microarrays we reveal a novel interaction between T. gondii and a 

variety of sialylated oligosaccharides.  The binding mode is attributed to a new family of 

domains — named the Micronemal Adhesive Repeat (MAR) — that exists in tandem repeats 

and provides a highly specialized structure for glycan recognition.  Our work presented here 

addresses many long standing issues and uncovers new features regarding parasite-

receptor interactions in the early stages of host cell invasion.  Furthermore, an 

understanding of the atomic-resolution details of how T. gondii invades host cells opens the 

way to the design of therapeutic strategies. 

 

Results and Discussion 

The overall structure of cell-binding region of TgMIC1 

To resolve the atomic structure of the host-cell binding region from TgMIC1 we 

expressed the N-terminal 246 amino acids (residues 17 to 262 hereafter termed TgMIC1-

NT) in Escherichia coli fused with thioredoxin to aid disulphide bond formation and solubility.  

Binding assays revealed that our bacterially and Pichia-produced TgMIC1-NT bound 

independently to host-cells (Figure 1A).  The high binding efficiency observed for E. coli-

derived material is likely due to the higher purity of this reagent (Figure 1A).  Our earlier 

experiments on the C-terminal domain from TgMIC1 (TgMIC1-CT) had excluded a role in 

cell binding for this region, (Saouros et al., 2005), therefore we can conclude that TgMIC1-

NT possesses the cell-binding properties of the full-length TgMIC1. 

After subsequent removal of the purification tag, we crystallized the recombinant 

protein and a selenomethionine (SeMet)-substituted form of TgMIC1-NT, and resolved the 

structure using MAD (multiple-wavelength anomalous dispersion) methods.  The atomic 
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structure for residues 29-259 was solved at a resolution of 1.9 Å (Figure 2A, Supplementary 

Figure 1 and Table 1). Residues 17-28 and 262 likely exhibit a degree of flexibility and 

therefore could not be observed in the crystal structure. The new structure reveals a 

repeated domain consisting of a distorted barrel arrangement of five β-strands, which is 

flanked on one side by an anti-parallel helical bundle, comprising one helix from each 

terminus.  Two disulphide bonds, C1-C4 and C5-C7 (namely C45-C85 and C103-C113 in 

repeat 1 and C154-C179 and C193-C203 in repeat 2; Figure 3A), are absolutely conserved 

between the repeats and stabilize the core structure, one tying helix α1 to the β-barrel and 

the second between strands β3 and β4.  Although the two repeats (amino acid residues 16-

144 and 145-237) have a sequence identity of 27% and superimpose with a backbone 

RMSD of 2.2 Å over 89 residues (Figure 2B), some notable differences are apparent.  The 

first helix and the subsequent loop to strand β1 is significantly longer in the first repeat and is 

stabilized by an additional disulphide bond, C53-C61 (Figure 3A).  Most strikingly, the 

second repeat is elaborated at its C-terminus by a short “β-finger” (amino acid residues 238-

256), which is pinned to the main body of the domain by a new arrangement of two 

disulphide bonds (C6-C9 and C8-C10; Figures 2C and 3A) replacing the single connection 

observed in repeat 1 (C6-C8; Figures 2C and 3A).  A further intriguing aspect of this region 

is the presence of a cis-proline within the 248NPPL251 motif (Supplementary Figure 1), which 

enables unusual positioning of both backbone and side-chain elements that may correspond 

to an interaction site, possibly for its partner in the complex MIC4 (Saouros et al., 2005).  

 

The MAR domain—a new fold unrelated to thrombospondin type1 repeats 

 

In the initial characterization of TgMIC1 it was postulated that a tandem arrangement 

of degenerate Thrombospondin type I repeats (TSR1s) was present at the N terminus 

(Fourmaux et al., 1996). TRS1s adopt an antiparallel, three-stranded fold comprising 

alternating stacked layers of tryptophan and arginine residues.   Our structure of TgMIC1-NT 

now enables us to reassess this domain classification and reveals a fold that bears no 

resemblance to the TSR1s.  Moreover, it is unrelated to the classical β-sandwich structure of 
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the prototypic surface antigen, SAG1 from Toxoplasma (He et al., 2002) and to the dimeric 

arrangement of EBA-175 (Tolia et al., 2005).  A search of the DALI database reporting no 

structural hits confirms this and that the structure of TgMIC1-NT presents a previously 

unknown protein fold (Holm and Sander, 1995).  Based on these observations we have 

named this repeat domain the “MAR domain”, after Micronemal Adhesive Repeat.   

A search against other apicomplexan genomes identify tandem MAR domains in 

MIC1 from Neospora caninum (Keller et al., 2002) and in three other MIC1-like proteins in T. 

gondii (Figure 3A), which may help to endow this parasite with the ability to invade a wide 

range of cell types as well as evade host immune responses.  MIC3 proteins from Eimeria 

tenella, the cause of Coccidiosis in poultry, contain between 4 and 7 consecutive MAR1 

domains constructed from 5 distinct MAR1 sequences (Labbe et al., 2005) (Figure 3A).  A 

model of an uninterrupted stretch of MAR1 domains, as exist in EtMIC3, generated using our 

structure of TgMIC1-NT, gives rise to a stalk structure comprising a left-handed, helical axis 

with 70° rotations and 11 Å translations relating adjacent MARs (Figure 3B).   This 

arrangement would project from the parasite surface, presenting an array of MAR domains 

that could provide increased cell-binding avidity (Supplementary Figure 2).  Future studies 

will be aimed at unveiling other parasite surface proteins that possess members of the MAR 

family.  

 

The MAR domain—a novel carbohydrate binding domain  

A long-standing question is how T. gondii can infect and replicate within all nucleated 

cells.  The broad host range suggests that complementary receptors exist on a wide variety 

of host cell types. Carbohydrate recognition and discrimination provide an excellent means to 

facilitate such interactions and often play an important role in early recognition events by 

invasive pathogens. Although carbohydrate-binding properties have been described for 

microneme proteins from Toxoplasma  (Cerede et al., 2002; Harper et al., 2004), studies on 

the nature of these interactions have not been forthcoming. Monteiro et al. showed that sialic 

acid plays a role in host cell invasion, but the identity of the parasite ligand has been the 

subject of much speculation (Monteiro et al., 1998).  Indirect evidence exists for a lactose-
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binding activity for TgMIC1 and the TgMIC1-TgMIC4 sub-complex (Lourenco et al., 2006; 

Lourenco et al., 2001).  However, cell-binding inhibition (Figure 1B) and NMR titration 

experiments performed in the present study failed to detect lactose recognition by TgMIC1. 

To reassess the carbohydrate-binding properties of TgMIC1, microarray analyses 

(Campanero-Rhodes et al., 2006; Palma et al., 2006) were carried out using the fusion 

proteins TgMIC1-NT and TgMIC1-CT and lipid-linked oligosaccharide probes (Feizi and 

Chai, 2004) as described.  The microarrays encompassed a panel of >200 oligosaccharide 

probes representing diverse mammalian glycan sequences and their analogues, as well as 

some derived from fungal and bacterial polysaccharides (Palma et al., 2006)  

(Supplementary Table 1).  The C-terminal galectin-like domain, TgMIC1-CT, showed no 

binding to galactose-terminating glycans in the array consistent with our early NMR evidence 

(Saouros et al., 2005), nor was there binding to any of the other probes in the microarray 

(results not shown). In contrast, significant binding signals with fluorescence intensities 

between 150 and ~8000 were elicited by TgMIC1-NT and were observed only among 

terminally sialylated structures. (Supplementary Table 1 and Fig 4).  All the non-sialylated 

structures tested had numerical scores below 150 (Supplementary Table 1). 

More than 40 out of the 69 sialylated probes arrayed gave numerical binding scores 

greater than 150 with TgMIC1-NT; among them were several N- and O-glycans and 

gangliosides in groups D, G and F, respectively, and others representing sialylated capping 

structures on backbones of mammalian glycoconjugates in groups A, B, C and E (Figure 4).  

Where close comparisons could be made (Table 2), a mild preference is apparent for the 

Neu5Acα2-3Gal linkage over the α-2,6 and  α-2,8 linkage (Neu5Ac denotes N-

acetylneuraminic acid).  The N-acetyl group of the sialic acid was determined to be required 

for binding (cf for example probes 19 and 27 in Table 2). No effects on binding were 

observed when downstream residues were either sulfated or fucosylated (Supplementary 

Table 1).   

To locate the receptor binding surfaces on TgMIC1 and investigate the sialic acid 

binding mode in more detail, crystals were soaked with either sialic acid, α-2,3-sialyl-N-

acetyllactosamine or α-2,6-sialyl-N-acetyllactosamine.  The crystallographic structures of the 
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complexes showed that the protein structure was largely unchanged and in all cases a single 

glycan was seen bound to the MAR2 domain of TgMIC1-NT (Figure 5 and Supplementary 

Figure 1).  A shallow binding pocket is formed by a contiguous stretch of residues between 

Lys216 and Glu221, most of which make specific direct contacts to the sialyl moiety that 

represents a novel binding mode.  The interactions between the protein and sugar molecules 

do not appear to involve any tightly bound water molecules.  Most notably, the two oxygen 

atoms from the carboxyl group are recognized by hydrogen bonds to the amide and side-

chain hydroxyl proton of Thr220, rather than the side chain of an arginine or lysine which is 

often the case in other sialic acid-binding proteins (Alphey et al., 2003; May et al., 1998).  

Recognition of the acetyl group in sialic acid is enabled by a hydrogen bond between the NH 

group and the backbone carbonyl of His218.  The side chain of Tyr219 contacts the glycerol 

moiety, while His218 stacks with the underside of the ring.   Electron density was observed 

for the galactose unit in both α-2,3-sialyl-N-acetyllactosamine or α-2,6-sialyl-N-

acetyllactosamine complexes but no specific protein contacts could account for its preferred 

orientation (Figure 5A).  The glucose ring was not clearly observed in these electron density 

maps. 

To demonstrate whether the cell-binding activity of TgMIC1 (Figure 1) is mediated by 

sialo-oligosaccharide receptors, assays were repeated in the presence of increasing 

amounts of sialic acid.  Figure 6 shows that cell binding by TgMIC1 displays a striking 

sensitivity to the presence of soluble sialic acid and was undetectable for either full-length 

TgMIC1 or TgMIC1-NT in the presence of ~10 mM sialic acid.  Furthermore, in support of 

these findings pre-treatment of cells with neuraminidase abolished cell binding activity of 

TgMIC1 and TgMIC1-NT (Figure 6).  Taken together, these data corroborate the importance 

of surface exposed sialyl glycans in cell binding and we can also conclude that the tandem 

MAR domains host all of the cell binding properties of full-length TgMIC1.   

 

TgMIC1 presents a fixed arrangement of two sialic acid binding sites  

Results from the carbohydrate microarrays reveal that a variety of sialyl 

oligosaccharide sequences as found on glycoproteins and glycolipids are recognized with 
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specific preferences for sialic acid linkage position and some discrimination of 

oligosaccharide backbone sequences.  Interestingly, the most potent binders are branched 

carbohydrates having two or more terminal sialic acids, raising the possibility that the tandem 

MAR repeat recognizes specific bidentate ligands.   Optimal binding responses are observed 

when sialic acid termini are separated by 5-8 carbohydrate units, which suggest that this 

separation could be sufficient to span both MAR domains of one TgMIC1 molecule (Table 2).  

Although the key sialic acid-recognizing residues are conserved and located in 

structurally identical positions in both MAR1 and MAR2 domains (Figure 3A), and despite 

exhaustive crystal soaking experiments, no oligosaccharides were found bound in MAR1. 

Instead, an acetate molecule interacts with the equivalent threonine in MAR1 (Thr126) in an 

identical fashion to the carboxyl group of sialic acid in MAR2, suggesting that MAR1 is able 

to recognize sialyl oligosaccharides albeit perhaps with a lower affinity (Figure 5B).  The 

most likely reason for the absence of glycan in MAR1 is the extensive crystal contacts in 

which this region is involved. The binding site in MAR1 is very close to a 2-fold symmetry 

axis and residues Thr126, Arg127 and Gln129 are involved in crystal contacts. The presence 

of the glycan in MAR2, and its absence in MAR1, were confirmed with a simulated annealing 

omit map.  To investigate the potential 2:1 glycan:protein stoichiometry and to provide site-

specific information we performed a NMR titration experiment using 15N,13C-Ala/Thr labeled 

TgMIC1-NT in the presence of various sialyl carbohydrates.  Using a combination of triple 

resonance data and information from the site-specific labelling, amide chemical shifts for the 

two key threonine residues, namely 124HATR127 and 218HYTE221, were unambiguously 

assigned in MAR1 and MAR2, respectively (Figure 7A).  Significant amide chemical shift 

changes are observed for both threonines in the presence of either α-2,3-sialyl-N-

acetyllactosamine or α-2,6-sialyl-N-acetyllactosamine confirming that both MAR domains are 

active in binding sialic acid (Figure 7A).     

To test the importance of both carbohydrate-binding sites on function we performed 

site-directed mutagenesis and assessed their respective cell-binding capability (Figure 7B).  

As active site threonine residues make specific side-chain and main-chain contacts to the 

sialyl carboxylate group, we assumed that their disruption would have a major impact on 
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binding.  As predicted the double mutant T126A/T220A-TgMIC1 exhibited no observable 

binding to host cells.  Additionally, both single mutants, namely T126A-TgMIC1 and T220A-

TgMIC1, were also defective in binding thus confirming the importance of both binding sites.  

To assess the role of the “β-finger” extension in MAR2 (Figure 2C) in cell binding, an 

experiment was also conducted for a mutant lacking amino acid residues 238-262.  No effect 

of this truncation on cell binding was observed (Figure 7B).  Instead, expression of the 

mutant in T. gondii followed by immunofluorescence studies suggests that this part of the 

molecule is important for binding to its partner protein in the complex TgMIC4 (data not 

shown). 

 

A model for glycan recognition by TgMIC1 

It is well accepted that the binding of micronemal proteins to host cells provides a 

‘molecular bridge’ to the parasite and initiates invasion.  Few detailed structures of 

microneme proteins are known and their interactions with the host are especially poorly 

characterized.  Microarray experiments combined with structural studies reveal the first 

insights into the interaction between a key microneme protein complex and the host.  Not 

only do we identify an interaction between the N-terminal region of TgMIC1 and sialylated 

host cell ligands, but we also provide the atomic resolution basis for recognition.  The 

importance of this interaction is highlighted by observation that the ability of T. gondii to 

invade lec2, a CHO mutant deficient in sialic acid is reduced to about 30% (Monteiro et al., 

1998).  In this study we extend these data by performing cell invasion assays in either the 

presence of soluble carbohydrates or using cells pre-treated with neuraminidase.  Compared 

to controls both conditions severely reduced the levels of parasite internalisation (Figure  7C 

and 7D), thus confirming the importance of sialic acid recognition for efficient invasion.  The 

specific contribution made by the MAR domains has been established by studies reporting 

the invasion by mic1KOs reduced by ~50% compared to wild-type (Cerede et al., 2005), and 

by our earlier work ruling out carbohydrate and cell-binding activities for the C-terminal 

portion of TgMIC1, TgMIC4 and TgMIC6 (Saouros et al., 2005).  Furthermore, antibodies 

directed against the MAR domains from EtMIC3 from E. tenella (Figure 3) inhibit invasion 
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and further development (Labbe et al., 2005), thus emphasising the importance of the MAR 

domains in penetration.   

Sialic acids are found widely distributed in animal tissues especially in glycoproteins 

and gangliosides and have been shown to play an important role in several protozoa-host 

cell interactions.  A prominent example is the erythrocyte binding antigen (EBA-175) from P. 

falciparum, which recognizes the heavily sialylated receptor glycophorin A during invasion by 

the malaria parasite (Tolia et al., 2005). Although sialyl lactose binding sites were identified in 

EBA-175, high resolution insight into glycan recognition was not forthcoming.  A model was 

proposed in which the dimeric receptor-binding domain assembles around a glycophorin A 

dimer with carbohydrate binding within the channels. Our structural and binding experiments 

reveal that TgMIC1 possesses two sialic acid binding sites, uniquely arranged in tandemly-

repeated MAR domains.  These lie on one side of the molecule and, together with their fixed 

separation and relative geometry, are predicted to bind cognate carbohydrate receptors with 

high specificity and affinity (Figure 5C).  Intriguingly, some of the most potent ligands were 

multi-valent carbohydrates, possessing two or more sialic acid units, such as those on 

gangliosides or polysialic acid.  Gangliosides belong to a class of glycosphingolipids that are 

found in abundance within the membranes of neuronal cells (Karlsson, 1998) and the α(2-8) 

linked polysialic acids are found on the fetal neural cell adhesion molecule (Acheson et al., 

1991; Finne et al., 1983).  It is tantalizing to speculate that recognition of such a specific 

glycan might be important during the asexual life cycle of Toxoplasma in which cysts are 

formed within the intermediate host, particularly in the brain.  This subunit multivalency may 

also be required for the formation of cross-links between possible ganglioside receptors and 

TgMIC1-containing complexes.  Our work provides the first atomic resolution insight into the 

mechanism of cell attachment by T. gondii that will provide a foundation for further functional 

study and the design of novel therapeutics for parasitic infections. 

 

Materials and Methods 

 
Cloning, expression and purification from E. coli 
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TgMIC1-NT, spanning residues 17 to 262 in TgMIC1 (the first 16 residues represent 

the signal peptide), was expressed using the pET32Xa/LIC plasmid (Novagen) in E. coli 

Origami (DE3) (Stratagene), at 28° C (Saouros et al., 2007). Protein expression was induced 

with 800 µM isopropyl β-D-thiogalactopyranoside. The hexahistidine-thioredoxin-MIC1-NT 

fusion protein was purified using nickel-nitrilotriacetic acid HISBind resin (Novagen), and 

cleaved with Factor Xa (Invitrogen). The cleaved protein was re-applied to the same column, 

and pure MIC1-N terminal was recovered in the flow-through. The protein was concentrated 

to ~10 mg/mL, and stored at 4 or -20° C in 1 mM CaCl2, 100 mM NaCl, 50 mM Tris⋅Cl pH 

8.0. Selenomethionine-labelled TgMIC1-NT was expressed in minimal media in E. coli 

Origami (DE3), according to the protocol of Van Duyne et al. (Van Duyne et al., 1993), 

purified and concentrated as described above, and stored in small aliquots at -20° C.  

15N,13C-labelled samples of TgMIC1-NT were produced in minimal media, containing 0.07% 

15NH4Cl and 0.2% 13C6-glucose.   TgMIC1-NT 15N,13C-labelled at Ala and Thr positions was 

produced according to published protocols (Matthews et al., 1993). 

 

 

Generation of variants and mutants 

Plasmids pPICZα-TgMIC1TSR1 (called pPICZα-TgMIC1NT) and pROP1mycMIC1-

TSR1 (called pROP1mycMIC1NT) were obtained as described before (Saouros et al., 2005). 

C-terminal deletions of these clones were obtained from these plasmids by PCR as follows: 

The fragment obtained from pPICZα-TgMIC1NT with primers 5’-

CGCCTAGGGTTGGGCCAGAAGCATATGGAGAAG-3’ (MIC1-1_672) and 5’-

CCGGGCGCGGCCGCAGAACATGGGCTGTCGACGGATCC-3’ (TgMIC1-17_1717) was 

digested with NdeI and NotI and cloned back into pPICZα-TgMIC1NT, resulting in pPICZα-

TgMIC1NT∆Cterm (aa 238-262). Similarly, the fragment obtained  from pROP1mycMIC1NT 

with primers  5’-CCCGCTGCAGGAGCAAAGGCTGCCAATTATTC-3’ (ROP1-SP_141) and 

5’-GGCGAGCTCTTAATTAAGAACATGGGCTGTCGACGGATCC-3’ (TgMIC1-16_1716) was 
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digested with NsiI and PacI and cloned back into pROP1mycMIC1NT, resulting in 

pROP1mycMIC1NT∆C2.  

Mutants of pPICZα-TgMIC1NT were obtained using the Quickchange Kit 

(Stratagene). Primers 5’-CAGTAATCACGCAGCGCGCCATGAGATACTGTC-3’ (TgMIC1-

18_1729) and 5’-GACAGTATCTCATGGCGCGCTGCGTGATTACTG-3’ (TgMIC1-19_1730), 

as well as primers 5’-GACAAGCGGCATTATGCAGAAGAGGAAGGAATTCG-3’ (TgMIC1-

20_1731) and 5’-CGAATTCCTTCCTCTTCTGCATAATGCCGCTTGTC-3’ (TgMIC1-21_1732) 

were used for generation of the T126A and T220A single mutants and the T126A/T220A 

double mutant, respectively. 

 

Pichia pastoris expression 

P. pastoris transformation and expression was performed using the Pichia expression kit 

(Invitrogen), according to the supplied protocols, and all yeast strains were maintained on 

yeast extract-peptone-dextrose (YPD)-rich media. Transformation of the supplied host strain 

GS115 was performed by electroporation following linearization with PmeI for all pPICZα-

based vectors. Selection of transformants was then performed on YPD-Zeocin (100 µg/ml). 

Expression was performed using BMGY and BMMY media according to the manufacturer’s 

instructions. 

 

Cell binding assays 

These were performed as described previously (Brecht et al., 2001). Briefly, confluent 

monolayers of human foreskin fibroblasts (HFF) cells, grown in 12-well plates, were blocked 

for 1h at 4 °C with 1% BSA in cold PBS,1 mM CaCl2, 0.5 mM MgCl2 (CM-PBS). Excess BSA 

was removed by two 5-min washes with ice-cold CM-PBS. The proteins to be assayed were 

then added either in the form of P. pastoris culture supernatant (0.25 µg), or bacterially-

produced (0.25 µg), together or not with different concentrations of competitors (sialic acid 

buffered to pH 6.8, lactose, galactose, heparin; all purchased from Sigma-Aldrich) and 

diluted in cold CM-PBS to a total volume of 500 µl. After incubation at 4 °C for 1 h the 

supernatant (S) was removed, and the cells were washed four times for 5 min with ice-cold 
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CM-PBS. The cell-bound fraction (CB) was collected by the direct addition of 50 µl 1x SDS-

PAGE loading buffer with 0.1 M dithiothreitol.  In some cases, prior to blocking, HFF cells 

were pretreated with 66mU/ml α-2,3,6,8- Vibrio cholerae neuraminidase (Calbiochem) in 

RPMI1640, 25mM HEPES, L-glutamine (Gibco) for 1h at 37°C in a total reaction volume of 

1ml. 

 

Cell invasion assays in the presence of carbohydrate inhibitors 

Confluent monolayers of HFF cells on glass coverslips in 12 well plates were washed one 

time briefly in DMEM (Gibco) and incubated 15 minutes with 250µl DMEM only (control) or 

with 250µl DMEM containing different double concentrated competitors (sialic acid pH 6.8, 

lactose, galactose). Then 250µl of T.gondii RH parasites were added and invasion was 

allowed to proceed during 1h at 37°C. Afterwards cells were washed two times with 500µl 

DMEM, fixed with 4% paraformaldehyde/0.05% glutaraldehyde for 20 min, followed by 2-min 

incubation with 0.1 M glycine in PBS. Fixed cells were blocked in PBS, 2% bovine serum 

albumin for 20 min. The cells were then stained with anti-TgSAG1 antibody followed by Alexa 

488-conjugated goat anti-mouse IgG (H+L) antibody (Molecular Probes - Invitrogen). 

Afterwards cells were permeabilized with PBS, 0.2% Triton X-100 for 20 min and blocked 

again in PBS, 0.2% Triton X-100, 2% bovine serum albumin for 20 min. Staining was 

performed with anti-TgProfilin antibody followed by Alexa 594-conjugated goat anti-rabbit IgG 

(H+L) antibody (Molecular Probes - Invitrogen). Invasion assays were carried out as 

triplicates of two independent experiments. According to their staining, numbers of 

extracellular (attached) and intracellular (invaded) parasites were counted in three 

microscopic fields respectively. For the untreated control a total of 200 parasites were 

counted per microscopic field on average and attachment and invasion were set to 100%. 

With respect to this untreated control, the percentage of attached and invaded parasites was 

calculated for each condition. 

 

Cell invasion assays with neuraminidase treament 
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Confluent monolayers of HFF cells on glass coverslips in 24 well plates were incubated in 

RPMI1640, 25mM HEPES, L-Glutamine (Gibco) at 37°C with or without 66mU vibrio 

cholerae neuraminidase (Calbiochem) in a total volume of 500µl. After one hour 500µl freshly 

lysed T. gondii RH parasites resuspended in RPMI1640, 25mM HEPES, L-Glutamine (37°C) 

were added to each well and the plate was centrifuged immediately for 5 minutes at 480g. 

Then invasion was allowed to proceed for another 5 minutes at 37°C. Afterwards cells were 

washed two times with 500µl DMEM, fixed with 4% paraformaldehyde, 0.05% glutaraldehyde 

for 20 min, followed by 2 minutes incubation with 0.1 M glycine in PBS. Fixed cells were 

blocked in PBS, 2% bovine serum albumin for 20 min. Cells were then stained with anti-

TgSAG1 antibody followed by Alexa 488-conjugated goat anti-mouse IgG (H+L) antibody 

(Molecular Probes - Invitrogen). Afterwards cells were permeabilized with PBS, 0.2% Triton 

X-100 for 20 min and blocked again in PBS, 0.2% Triton X-100, 2% bovine serum albumin 

for 20 min. Staining was performed with anti-TgProfilin antibody followed by Alexa 594-

conjugated goat anti-rabbit IgG (H+L) antibody (Molecular Probes - Invitrogen).  

Four experiments were carried out in parallel. According to their staining, numbers of 

extracellular (attached) and intracellular (invaded) parasites were counted in five microscopic 

fields per coverslip respectively. For the untreated control a total of 400 parasites were 

counted per microscopic field on average and attachment and invasion were set to 100%. 

With respect to this untreated control, the percentage of attached and invaded parasites was 

calculated for the enzyme-treated cells. Enzyme activity was monitored in parallel with a 

binding assay using recombinant TgMIC1-NT. 

 

Crystallisation and data collection 

TgMIC1-NT was crystallised in hanging drops by the vapour-diffusion technique. 

Crystals shaped as tetragonal bipyramids, measuring approximately 50 × 50 × 100 µm, were 

obtained by adding 1 µl of protein to 1 µl of well solution containing 3.6 M ammonium acetate 

and 100 mM Bis-tris-propane pH 7.6 at 17° C. Crystals were briefly soaked in a 

cryoprotectant solution containing all the components of the well solution and 25% glycerol, 

and cryocooled in liquid nitrogen.  X-ray data for both native (1.9 Å) and SeMet-labelled 
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TgMIC1-NT (2.8 Å) were collected at beamline 10.1 at the Synchrotron Radiation Source, 

CCLRC Daresbury Laboratory. SeMet-labelled TgMIC1-NT showed a well defined Se K 

absorption edge by fluorescence scanning, and data were collected from a single crystal at 

three wavelengths, peak, inflection, and high-energy remote, for MAD phasing. SeMet-

TgMIC1-NT crystals were soaked overnight in either 3.6 M ammonium acetate, 100 mM Bis-

tris-propane pH 7.8 and 7.4 mM α-2,6-sialyl-N-acetyllactosamine;  3.4 M ammonium acetate, 

100 mM Bis-tris-propane pH 7.0, 3.3 mM α-2,3-sialyl-N-acetyllactosamine, 27.5 mM NaCl, 

and 5.5 mM sodium phosphate, or 3.6M ammonium acetate, 100 mM Bis-tris-propane pH 7.6 

and 20 mM sialic acid. The pH and ammonium acetate concentration matched the well 

solution used in growing the crystals. X-ray data for the crystals soaked in 2,3-sialyl-N-

acetyllactosamine (2.3 Å) and 2,6-sialyl-N-acetyllactosamine (2 Å) were collected at 

beamline 14.1 at the Synchrotron Radiation Source, CCLRC Daresbury Laboratory. The data 

were indexed, integrated and scaled using the HKL-2000 package (Otwinowski and Minor, 

1997). 

 

Structure Solution and Refinement 

The unbound structure was phased using the multiple anomalous dispersion method 

with the program SOLVE (Terwilliger and Berendzen, 1999), producing a mean figure of 

merit of 0.45 and a Z-score of 8.65.  The initial model was built automatically in ARP/wARP 

(Perrakis et al., 1999). Structures were improved manually using Coot (Emsley and Cowtan, 

2004). Refinement and water addition was done with multiple cycles of Refmac5 (Winn et al., 

2001) and ARP/wARP. ARP/warp, MOLREP and Refmac5 were used within the CCP4 suite 

(Bailey, 1994). Fifteen acetate ions, two glycerol molecules and two chloride ions were found 

in the structure, together with 181 water molecules.  Sugar-bound structures were phased by 

molecular replacement, using MOLREP (Vagin and Teplyakov, 1997) and the protein atoms 

from the unliganded structure as the model. Clear density was observed for the ligand atoms. 

The structures were rebuilt and refined as described above.  Refinement statistics are listed 

in Table 1. 99.5% of residues are within the allowed regions of the Ramachandran plot. The 

quality of the structure was assessed using procheck (Laskowski et al., 1993) and whatcheck 
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(Hooft et al., 1996). To confirm the presence of the glycan, a simulated annealing FoFc omit 

map was calculated by omitting the glycan and acetates occupying the binding sites. The 

models have been deposited in PDB with accession number 2JH1 (free TgMIC1-NT), 2JH7 

(TgMIC1-NT in complex with 2,6-sialyl-N-acetyllactosamine) and 2JHD (TgMIC1-NT in 

complex with 2,3-sialyl-N-acetyllactosamine). Figures were drawn using the program 

MacPyMol (DeLano Scientific). The model for the sialic acid complex showed density for the 

sialic acid that matched perfectly the sialic acid moiety in the other two sugars. The sialic 

acid structure was therefore not refined further as the data was at lower resolution (2.6 Å) 

than the other two sugars and was deemed not to add any extra information. 

 

 

Microarray analysis of the binding of TgMIC1-NT fusion protein to diverse 

oligosaccharide probes. 

Two hundred and eighteen, lipid-linked oligosaccharide probes (Supplementary Table 

1)  were robotically printed on 16-pad nitrocellulose-coated glass slides (FAST slides, 

Whatman Ltd) as described (Palma et al., 2006). The number of unique sequences printed 

was 207 as 11 probes were printed more than once.  These are grouped (Figure 4 and 

Supplementary Table 1) according to their backbone sequences, and include numerous 

mammalian-type carbohydrate sequences: N-glycans (neutral and acidic, high mannose- and 

complex-types), O-glycans, blood group-related sequences (A, B, H, Lewisa, Lewisb, Lewisx 

and Lewisy) on linear or branched backbones and their sialylated and sulphated analogues, 

gangliosides, glycosaminoglycans, homo-oligomers of sialic acid and fragments of other 

polysaccharides, ranging in size from two to twenty monosaccharides. The probes were 

printed at 2 and 7 fmol per spot, in duplicate, using a non-contact arrayer (Piezorray, Perkin 

Elmer LAS, UK), with Cy3 dye included to enable post-array monitoring of the slides.    

For binding analysis with TgMIC1-NT fusion protein, the arrayed pads were overlaid 

initially for 1 hr with blocking solution containing casein (Pierce) with 1% w/v bovine serum 

albumin (Sigma) and 10mM calcium (casein/BSA). The slides were rinsed and overlaid for 1h 

with fusion protein complex in casein/BSA: this contained per 100µl, 10µg mouse anti-
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histidine monoclonal antibody, 10µg biotinylated goat anti-mouse IgG and 4 µg of TgMIC1-

NT or TgMIC1-CT fusion protein. The overlaid pads were washed with 150 mM sodium 

chloride, 2mM calcium chloride solution and binding was detected using Alexa Fluor 647-

labelled streptavidin (Molecular Probes), 1µg per ml casein/BSA. After washing, the dried 

slides were scanned using a ProScanArray (Perkin-Elmer LAS) and Alexa Fluor 647-binding 

signals quantified using ScanArrayExpress software (Perkin-Elmer LAS).  Microarray data 

analysis and presentation were carried out using in-house software (M. S. Stoll, 

unpublished). The binding signals were glycan dose-related overall. The results shown in 

Figure 4 represent binding at 7 fmol per spot. 

 

 

NMR mapping of sialic acid binding sites 

For NMR experiments, samples of 15N-labeled TgMIC1-NT, uniformly 15N,13C-

labeled TgMIC1-NT or TgMIC1-NT specifically labeled with 15N,13C-labeled Ala and Thr 

were prepared in 20 mM sodium phosphate buffer pH 7, 100 mM NaCl, 4% CompleteTM 

protease inhibitor cocktail (Roche Diagnostics Ltd, UK, prepared according to instructions), 

0.03% sodium azide, and 0.2 mM 2,2-dimethyl-2-silapentane-5-sulfonic acid, in 90% H2O, 

10% D2O at approximately 500 µM in 0.25 ml.  Backbone assignment for Thr220 was 

completed using standard double and triple-resonance assignment experiments recorded 

on uniformly 15N,13C-labelled TgMIC1-NT samples (Sattler et al., 1999).  For Thr126, this 

data was supplemented with HNCO spectra recorded on TgMIC1-NT specifically labeled 

with 15N,13C-labelled Ala and Thr.  Four peaks were identified and could be assigned to AA, 

TA, TT and 124HATR127. Either α-2,3-sialyl-N-acetyllactosamine or α-2,6-sialyl-N-

acetyllactosamine in the same buffer was added in several steps up to a 10 fold molar 

excess and 2D 1H-15N HSQC spectra were recorded at each stage under identical 

experimental conditions. 
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Figure Captions 

 

Figure 1:   Host cell binding by TgMIC1-NT  

(A) Cell binding assays on human foreskin fibroblasts (HFFs) were performed using 

supernatant of P. pastoris cultures expressing TgMIC1, TgMIC1-NT, or 

TgMIC1MAR2, bacterially-produced TgMIC1-NT and PfProfillin, the latter as a 

negative control. Anti-His antibodies are used as the probe for Western blots and the 

asterisk indicates background from host cells. Samples of input (I), supernatant (S), 

wash (W) and cell binding fraction (CB) were run on each gel (see Materials and 

Methods). Molecular weight markers in kDa. The Pichia produced material is less 

efficient as it is a crude cell supernatant while that from E. coli is a purified protein.  

These data show that bacterially-produced TgMIC1-NT retains the cell binding 

activity of native TgMIC1. Increasing the concentration of the input (I), up to 50 

times results in enhanced binding of bacterially produced TgMIC1NT but not of 

PfProfilin to HFFs. Loading has been adjusted for detection in the linear range. Note: 

in all cell-binding assays the total volume of the input, supernatant and the wash is 

500µl whereas the total volume of the cell bound fraction is 50µl. 

 

(B) Cell binding competition experiments were performed using bacterially-produced 

hisTgMIC1-NT and supernatants of P. pastoris cultures expressing TgMIC1myc.  

Anti-myc and Anti-his antibodies were used as the probe for Western blots.  Samples 

are named: input (I), supernatant (S), Wash (W) and Cell binding fraction (CB).For 

the different conditions of competition only the cell bound fraction is shown. These 

data confirm that no inhibition of TgMIC1 binding to HFFs is observed in the 

presence of lactose, galactose or heparin.  Note: in all cell-binding assays the total 

volume of the input, supernatant and the wash is 500µl whereas the total volume of 

the cell bound fraction is 50µl. 
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Figure 2:   Host cell binding and structure of TgMIC1-NT  

 

(A) Ribbon representation of a representative structure for TgMIC1-NT.  Repeat 1 

(MAR1) is shown in green and Repeat 2 (MAR2) in blue.  The orientation shown on 

the right represents a 180o rotation. 

(B) Ribbon representation showing the superimposition of Repeat 1 (MAR1 - green) and 

Repeat 2 (MAR2 - blue).  The orientation shown is the same as (A) left.  The 

calculated RMSD is 2.2 Ǻ over 89 amino acid residues. 

(C) Zoomed region illustrating the altered disulphide bond patterns at the C-terminus of 

Repeat 1 (MAR1 - green) and Repeat 2 (MAR2 - blue).  The additional “β-finger” 

(amino acid residues 238-256) is pinned to the main body of MAR2 by a new 

arrangement of two disulphide bonds C6-C9 and C8-C10 (namely C197-C242 and 

C236-C252; See Figure 3A) replacing the single connection observed in repeat 1, 

C6-C8 (namely C107-C143; Figure 3A).   

 

Figure 3: Micronemal proteins from apicomplexan parasites contain the TgMIC1-

repeat 

 

(A) Structure-based sequence alignment of MAR1 and MAR2 domains from other 

micronemal proteins. Including TgMIC1 (MAR1 aa 16-144, MAR2 aa 145-247), two 

of the three MIC1-like proteins from T. gondii (MAR1 aa 113-222, MAR2 aa 223-336 

in TgMIC1a and MAR1 aa 113-222, MAR2 aa 223-335 in TgMIC1b), NcMIC1 

(MAR1 aa 30-142, MAR2 aa 143-261) and EtMIC3 (MAR1 aa 42-149, MAR1a aa 

150-274, MAR1b aa 291-425, MAR1c aa 36-158 and MAR1d aa 180-280). For 

clarity the third MIC1-like protein, TgMIC1c, from T. gondii has been omitted.  

Conserved residues are shaded blue. Cysteines and disulphide bond connectivities 
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are highlighted in orange. Cis-proline within the 232NPPL235 motif is shown in red.  

Secondary structure elements are indicated above the sequences. 

(B) A schematic representation of a model for the seven, sequential MAR1 domains 

from EtMIC3 is shown in two orientations (left – perpendicular to the helical axis and 

right – along the helical axis) 

 

 

Figure 4: Carbohydrate microarray data on sialyl glycan binding by TgMIC1-NT 

Numerical scores are shown of the binding signals, means of duplicate spots at 7 

fmol/spot (with error bars) for the 58 sialyl oligosaccharide probes examined.   Sixty 

nine positions are shown as 11 of the probes were printed more than once 

(Supplementary Table 1).  Selected sialo-oligosaccharide sequences are annotated, 

with designations of Neu5Acα-2,3-Gal linkage as pink; Neu5Ac α-2,6Gal, blue and 

Neu5Acα-2,8 linkage yellow. The scores for the non-sialylated probes in the 

microarray are not shown. These are given in Supplementary Table 1 (positions 70-

218).   

 

 

Figure 5: Structure of TgMIC-NT in complex with sialyl oligosaccharides 

(A) Simulated annealing (Fo – Fc) OMIT map contoured at 3  (left) and 2  levels (right) for the 

TgMIC-NT-glycan complex showing the unambiguous orientation of the sialic acid 

moiety and the position of the galactose unit of α-2,3-sialyl-N-acetyllactosamine.  

The omit map was calculated with the glycan omitted, stick models of key side-chains 

(green) and sialic acid (orange) are overlaid on the map.  

(B) Structure of α-2,3-sialyl-N-acetyllactosamine in complex with the MAR2 domain from 

TgMIC1-NT.  Ribbon representation of MAR2 is shown in green.  Key interacting 

side chains and the oligosaccharide are shown as stick representations.  Oxygen 

and nitrogen atoms participating in hydrogen bonds are coloured in red and blue, 
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respectively.  Note: The structure of the α-2,6-sialyl-N-acetyllactosamine complex is 

shown in Supplementary Figure 1. 

(C) Structure of the MAR1 domain from TgMIC1-NT show the position of the acetate 

molecules within the active site.  Ribbon representation of MAR1 is shown in blue.  

Key interacting side chains and the acetate molecule are shown as stick 

representations.   

(D) Ribbon representation of TgMIC1 showing the separation and relative geometries of 

two sialic acid-binding sites in MAR1 and MAR2. 

 

Figure 6: Sialic acid competes with TgMIC1 cell binding activity 

 

Cell binding competition experiments with sialic acid were performed on HFFs using 

supernatants of a P. pastoris culture expressing TgMIC1myc (top), bacterially-produced 

hisTgMIC1-NT (middle) or a P. pastoris culture expressing TgMIC1-NTmyc (bottom).  

Anti-myc and anti-his antibodies are used as the probe for Western blots.  Anti-tubulin 

antibodies were used as a control for equal amount of cell material used in the assay. 

For the competition experiments with sialic acid only the cell bound fractions are shown. 

In case of pre-treatment of HFFs with neuraminidase, samples of input (I), supernatant 

(S), Wash (W) and Cell binding fraction (CB) were run on each gel. These data confirm 

that TgMIC1 binds to sialic acid exposed receptors on HFF cells. Note: in all cell-binding 

assays the total volume of the input, supernatant and the wash is 500µl whereas the total 

volume of the cell bound fraction is 50µl. 

 

 

 

Figure 7: Characterisation of the interaction of sialyl oligosaccharides with MAR 

domains and their involvement in host cell invasion  
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(A) 1H-15N 2D TROSY-HNCO (top) and 1H-15N 2D TROSY-HSQC (bottom) NMR spectra 

for 13C,15N-labelled Ala, Thr TgMIC1-NT in the absence (black) and presence (red) 

of saturating amounts of a α-2,3-sialyl-N-acetyllactosamine.  The assignments of the 

Thr126 and Thr220 were achieved using standard triple resonance spectra. 

(B) Cell binding assays using supernatants of P. pastoris cultures expressing TgMIC1, 

TgMIC1-NT single (T126A and T220A) mutants, TgMIC1-NT double (T126A/T220A) 

mutant and a TgMIC1-NT C-terminal truncation mutant, lacking the “β-finger” (amino 

acid residues 238-262). Note that all proteins produced in P.pastoris have a C-

terminal myc-tag. Anti-myc antibodies are used as the probe for Western blots.  Cell 

binding fractions are shown for each protein together with α-tubulin as a control for 

equal amount of cell material used in the assay. Molecular weight markers in kDa.   

(C) Cell invasion assays using T. gondii RH parasites in the presence of sialic acid 

(NANA), lactose and galactose.  Invasion assays were carried out in triplicates of 

two independent experiments. Numbers of intracellular parasites were counted in 

three microscopic fields.  

(D) Cell invasion assays using T. gondii RH parasites after pre-treatment of target cells 

with neuramindase.  Four experiments were carried out in parallel. Numbers of 

intracellular parasites were counted in five microscopic fields.  
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Table 1 – Data collection, phasing and refinement statistics (Also see 
Supplementary Figure 1) 

 
Data collection and phasing 

SeMet  
Native Peak Inflection Remote 

2,6-sialyl-N-
acetyllactos

amine 

2,3-sialyl-N-
acetyllactos

amine 
Space group P43212 P43212 P43212 P43212 

Cell 
dimensions a, 

c (Å) 

66.2, 
172.3 

66.3, 172.6 65.9, 173.0 66.1, 172.7 

Beamline 10.1 SRS 10.1 SRS 10.1 SRS 10.1 SRS 14.1 SRS 14.1 SRS 
Wavelength 0.980 Å 0.980 Å 0.980 Å 0.972 Å 1.488 Å 1.488 Å 
Resolution 

(Å)* 
18.0-1.9  
(1.97-
1.90) 

18.0-2.8 
(2.90-2.80) 

18.0-2.8 
(2.90-2.80)

18.0-2.8 
(2.90-2.80) 

20.0-2.0 
(2.07-2.00) 

18.0-2.3 
(2.38-2.30) 

Total 
observations 

154515 91673 90740 93048 542909 351534 

Unique 
reflections 

30153 10069 10030 10070 49275 17796 

Redundancy* 5.1 (3.9) 9.1 (9.0) 9.0 (7.5) 9.2 (9.0) 7.6 (7.6) 7.6 (7.8) 
Rsym (%)†* 7.5 (31.1) 9.1 (23.3) 10.2 (29.1) 9.3 (25.1) 10.5 (53.6) 8.6 (41.3) 

I/σI * 19.2 (3.4) 20.5 (9.5) 18.6 (6.4) 20.6 (9.0) 43.54 (6.7) 38.0 (6.7) 
Completeness 

(%)* 
96.6 

(76.2) 
99.9 (100) 99.6 (96.6) 99.9 (100) 99.9 (99.7) 100 (99.9) 

Refinement 

 Native 2,6-sialyl-N-
acetyllactosamine soak 

2,3-sialyl-N-
acetyllactosamine soak 

Resolution (Å)* 17.5-1.9 (1.95-1.90) 18.29-2.07 (2.12-2.07) 17.5-2.3 (2.36-2.30) 
No. reflections 28,518 22,744 16,806 

Rfactor
§ / Rfree 

¶ (%)* 17.8 / 20.4 (29.4 / 31.3) 18.3 / 21.2 (28.4 / 35.6) 17.3 / 21.3 (20.2 / 25.5) 
No. atoms    

Protein 1840 1745 1744 
Ligand/ion 74 98 83 

Water 181 181 153 
B-factors    
Protein 26.3 27.1 35.0 

Ligand/ion 42.5 52.9 51.8 
Water 41.4 39.1 45.8 

R. m. s. deviations    
Bond lengths (Å)  0.018 0.021 0.023 
Bond angles (º) 1.6 1.8 1.9 
 
* Values in parentheses correspond to the highest resolution shell.  
†Rsym = ∑h∑i | I i (h) - <I(h)>|  /  ∑h ∑i (h) where Ii(h) is the ith measurement.  
§R factor = ∑ ||F(h)obs| - | F(h)calc || / ∑ | F(h)obs. 
¶ R free is calculated in the same way as the R factor, using only 5% of reflections randomly 
selected to be excluded from the refinement.   
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Table 2 – Comparisons of TgMIC1 binding signals elicited by selected sialyl 
probes in the carbohydrate microarray 
 

 

Name 
(position in Fig. 

4)  
Sequence   Fluoresc. Intensity 

at 7 fmol/spot  
 

SA (3’) LacNAc 
(3) 

 
NeuAcα-3Galβ-4GlcNAc 

 
886 

 
SA (6’) LacNAc 

(6) 
 

NeuAcα-6Galβ-4GlcNAc 
 

124 

Sialyl Lex  

(21) 

 
NeuAcα-3Galβ-4GlcNAcβ-3Galβ-4Glc 
                             | 
                   Fucα-3 

 
2520 

 
LSTc 
(22) 

 
 
NeuAcα-6Galβ-4GlcNAcβ-3Galβ-4Glc 
 

 
100 

 
6’ SU-Sialyl Lex  

(19) 

       
HSO3-6 

                 | 
NeuAcα-3Galβ-4GlcNAcβ-3Galβ-4Glcβ-Cer 
                            | 
                  Fucα-3 

 
1692 

 
de-N-acatyl 

6’ SU-Sialyl Lex  

(27) 

       
HSO3-6 
            | 
Neuα-3Galβ-4GlcNAcβ-3Galβ-4Glcβ-Cer 
                       | 
             Fucα-3 
 

<1 

 
A2F(A2-3) 

(36) 

 
NeuAcα-3Galβ-4GlcNAcβ-2Manα-6                  Fucα-3 
                                                      |                             | 
                                                     Manβ-4GlcNAcβ-4GlcNAc 
                                                      | 
NeuAcα-3Galβ-4GlcNAcβ-2Manα-3  

 
4170 

 
A2 
(37) 

 
NeuAcα-6Galβ-4GlcNAcβ-2Manα-6 
                                                      | 
                                                     Manβ-4GlcNAcβ-4GlcNAc 
                                                      | 
NeuAcα-6Galβ-4GlcNAcβ-2Manα-3 

 
1197 

A3 
(38) 

 
NeuAcα-6Galβ-4GlcNAcβ-2Manα-6 
                                                      | 
                                                     Manβ-4GlcNAcβ-4GlcNAc 
                                                      | 
NeuAcα-6Galβ-4GlcNAcβ-2Manα-3 
                                            | 
  NeuAcα-6Galβ-4GlcNAcβ-2 
 

6777 

 
GT1b 
(53) 

 
NeuAcα-3Galβ-4GalNAcβ-4Galβ-4Glcβ-Cer 
                                             | 
             NeuAcα-8 NeuAcα-3 

 
8254 

 
GD1a 
(54) 

 

 
NeuAcα-3Galβ-4GalNAcβ-4Galβ-4Glcβ-Cer 
                                             | 
                              NeuAcα-3 

4492 

GT1a 
(55) 

 
NeuAcα-8NeuAcα-3Galβ-4GalNAcβ-4Galβ-4Glcβ-Cer 
                                                            | 
                                              NeuAcα-3 
 

204 
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