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Abstract 

The recent development of First-Order Reversal Curve (FORC) diagrams has allowed 

the detailed investigation of coercivity spectra, interactions, and domain states of fine particle 

magnetic systems. However, calculation of a FORC distribution from the measured 

magnetisation data using a second order trend surface fitted in a piecewise manner [1, 2] can 

be a time consuming task and it is not yet clear what criteria are suitable for selecting the level 

of smoothing that should be applied to the data. 

Here the convolution method of Savitzky and Golay [3] is adapted to a two-

dimensional form and is found to accelerate the calculation of a FORC distribution 

substantially (by a factor of ~500), producing results that are identical to those obtained with 

the existing method. To provide a quantitative measure of the deviation of a smoothed FORC 

diagram from the measured magnetisation data we present a simple method that allows 

reconstruction of the smoothed FORCs and an assessment of the signal-to-noise ratio of the 

data. Finally, a methodology based on spatial autocorrelation [4] is employed to determine the 

level of smoothing which can be performed before the smoothing process distorts the 

representation of the FORC distribution. In numerical tests this method appears to be highly 

effective in selecting smoothing levels that remove a substantial proportion of the noise 

contribution from the data without unduly affecting the form of the FORC distribution. 
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Introduction 

FORC diagrams are becoming an increasingly popular method of studying coercivity 

and interaction spectra in fine particle magnetic systems. The ability to define these spectra 

accurately results in a detailed magnetic characterisation of a material, and provides an insight 

into the sample that is not available from a standard hysteresis loop. The analysis of FORC 

data is still in its infancy and a number of methodological aspects must be addressed if a 

movement towards a full quantitative interpretation is to be made. 

A FORC diagram is formed by a series of partial hysteresis curves [5, 6]. Each FORC 

is obtained by taking the material under study from a positively saturating field to a reversal 

point at a lower or negative field, which is defined as Ha. From this reversal point the applied 

field, Hb, is increased monotonically and the magnetisation is determined as the material 

returns to positive saturation. In this way the magnetisation of any given FORC is a function 

of both Ha and Hb, figure 1a. Once FORCs have been determined at a number of predefined 

values of Ha producing the magnetisation data M(Ha,Hb) the FORC distribution can be 

obtained via the mixed second derivative [1, 2]: 
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and plotted in rotated coordinates from {Ha,Hb} to {Hu = (Ha+Hb)/2, Hc = (Hb-Ha)/2}. 

The interpretation of the resultant probability density function (PDF) varies through 

the literature. Many authors take the distribution to be a representation of the Preisach 

distribution [5, 6]. Alternatively, other studies have preferred to use the term FORC 

distribution because the determined PDFs do not conform strictly to classic Preisach theory 

(i.e. they are not symmetrical about the Hc axis, [1, 2]). Here the term FORC distribution will 

be employed. 
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A number of different methods have previously been utilised to calculate FORC 

distributions from experimental hysteresis data. In a number of cases the mixed second 

derivative is simply calculated directly [6, 7]. Whilst revealing the major features of the 

distribution this representation tends to have a large noise contribution that can mask smaller 

features in the data. De Wolf et al. [8] presented an optimisation method which allowed small 

local changes to be made to the measured data to ensure to that the mixed second derivative 

would produce a smoother PDF and remove regions of negative values from the distribution 

(which they proposed were physically meaningless). 

Recently, a large amount of attention has been paid to the technique of Pike et al. [1] 

who utilised a piecewise second-order polynomial fitting procedure to obtain smoothed 

versions of the FORC distribution. Working under the assumption that data points were 

approximately equally spaced within the Ha, Hb coordinate system, Pike et al. [1] defined a 

local grid composed of points from consecutive data points from consecutive FORCs with 

side 2SF+1, where SF is any given positive integer smoothing factor. A second order trend 

surface of the form a1 + a2Ha + a3Ha
2 + a4Hb + a5Hb

2 + a6HaHb was then fitted to the data 

contained within the local grid in a least squares manner. In this case the value of -a6 provides 

the mixed second derivative of the fitted surface and it can be assigned to the centre of the 

grid as a representation of the density of the FORC distribution at that point, figure 1b. This 

process is repeated for all grid points and a smoother version of the PDF is produced and 

plotted on the rotated coordinate system. If the local grid is made larger using an increased 

value of SF, then a smoother distribution is produced. The selection of an appropriate 

smoothing factor is qualitative, however, it is recommend that SF set at 2 or 3 should be 

sufficient for most datasets, but a maximum of SF=5 could be employed for noisy curves, [1, 

2]. One drawback of the method in its current form is that no assessment is made of the extent 

to which the smoothed data deviates from the measured points, therefore resulting in 

uncertainties in the relationship between the hysteresis data and the final PDF. 
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Here we will address two aspects of the FORC procedure of Pike et al. [1] in an 

attempt to optimise the calculation and resolve some of the ambiguities in the smoothing 

procedure: 

 

1. Speed of the calculation of the smoothed FORC distribution. 

2. Determination of a quantitative measure of the deviation of smoothed FORC 

diagram away from the measured magnetisation data and an appropriate 

selection of SF which maximises removal of noise without causing distortions 

of the FORC distribution by excessive smoothing. 

 

Accelerating the FORC calculation using a convolution method 

The approach of using local polynomial regression to obtain derivative information 

from noisy data is an attractive one that has been utilised in a one-dimensional form for a 

number of years [9, 10]. One limiting factor of the method of Pike et al. [1] is computation 

time, which for large grids of data can be slow. Currently the calculation is performed using 

two nested loops which select the data for the local grid and employ a matrix inversion to 

obtain a least-squares fit for the trend surface (hereafter this will be referred to as the “Matrix 

Inversion” method). Such an approach requires a total of (n1-SF)*(n2-SF) matrix inversions 

for a measurement grid with dimensions n1 x n2, making the process computationally 

intensive. We propose that finding the mixed second derivative of a group of local data points 

by an alternative approach that only requires the inversion of a single matrix can accelerate 

the calculation of a FORC distribution. Savitzky and Golay [3] presented a convolution 

method exactly equivalent to piecewise least-squares polynomial fitting. Savitzky and Golay 

[3] limited their approach to smoothing and differentiation of data in one-dimension, 

however, such a method can be exploited in a two dimensional form to calculate rapidly 

smoothed FORC distributions.   For brevity the full derivation of the Savitzky-Golay method 
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will not be reviewed here, however it is based upon calculating the least-squares value for a 

point as a weighted combination of itself and its neighbours within a local grid. In this way a 

matrix inversion is only required once during the calculation of the appropriate convolution 

weights. It is possible to show the method by which convolution weights appropriate for the 

calculation of the mixed second derivative can be obtained (a short MATLAB function to 

perform this procedure is given in appendix 1). 

A coordinate system is developed for the size of the local grid over which the 

smoothing will be applied. The case shown is for SF = 2 and index Ha = 0, Hb = 0 defines the 

centre of the grid. 

 

Ha (i) 
 

-2 -1 0 1 2 

-2 M(0) M(1) M(2) M(3) M(4) 

-1 M(5) M(6) M(7) M(8) M(9) 

0 M(10) M(11) M(12) M(13) M(14) 

1 M(15) M(16) M(17) M(18) M(19) 

Hb (i) 

2 M(20) M(21) M(22) M(23) M(24) 

 

The magnetisation data contained in the local grid can be given in the column vector: 

 

TM(24)) ... M(1)  (M(0)M %   (eq. 2) 

 

The second-order trend surface required to calculate the FORC distribution with respect to Ha 

and Hb is given by: 
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The polynomial coefficients can then be found by the matrix equation: 

 

MXa %   (eq. 4) 
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and: 
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It is possible to determine a in a least squares manner: 

 

MXX)(Xa T1T "%   (eq. 6) 

 

Finally, B gives the pseudo-inverse of X 

 

T1T XX)(XB "%   (eq. 7) 
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The polynomial coefficient a6 is then given by the scalar product of the final row of B and the 

magnetisation vector M. The density of the distribution is given by the value –a6 at the 

location corresponding to the centre of the local grid (in the case of SF = 2, this is the location 

of M(12)).  

  To demonstrate the efficiency of this convolution approach we make a comparison of 

the Savitzky-Golay convolution method and the matrix inversion approach of Pike et al. [1]. 

Square grids of Ha, Hb field values and magnetisation data of various sizes were 

constructed  and the computation time to derive the smoothed mixed second derivative for 

each grid was determined using the matrix inversion method and the two-dimensional 

Savitzky-Golay convolution method for SF = 2 and 4. The comparison was performed on  a 

workstation with a Pentium4 1800 MHz processor and 512 MB of RAM.  Computation time 

for each method is directly proportional to the square of the side of the data grid. Determining 

an improvement in the computation time for the Savitzky-Golay method it was found for SF = 

2 the Savitzky-Golay method was on average ~580 times faster, whilst for SF = 4 the 

Savitzky-Golay method was on average ~470 times faster than the matrix inversion method, 

figure 3.  

One limitation of Savitzky-Golay approach is the assumption that values in Ha must be 

equally spaced and values in Hb must also be equally spaced. Whilst in theory this should be 

simple to achieve for FORC data sets, in practise due to machine error the fields produced do 

not correspond to the requested field, placing the measured magnetisation data on an 

irregularly spaced grid of field values. In such cases it is necessary to pre-process the data 

using a two-dimensional interpolation to calculate the magnetisation values at points on a 

regular field grid. To test if such an interpolation is robust we performed a numerical 

experiment where a 200 x 200 grid of points was generated from the joint cumulative 

distribution function of a normal distribution (( = 0 and ) = 0.1) and a lognormal distribution 

(( = 0.1 and ) = 0.2). The joint cumulative distribution was initially calculated on a regular 
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field grid to provide a reference data set. The irregular field grid was generated by starting 

with a regular grid and then adjusting the individual field values by the addition of a random 

value drawn from normal distribution with a mean equal to 0 and a standard deviation equal 

to the spacing between the field values on the regular grid multiplied by a predefined error 

term. The joint cumulative distribution function was then calculated for the irregular grid. The 

Savitzky-Golay method was applied to the data on the regular grid, data on the irregular grid 

and finally the data from the irregular grid after linear interpolation on to a regular grid. The 

results of this analysis for error terms of 0.01 and 0.05 are shown in figure 3. Error terms of 

these magnitudes provide a worst-case scenario, our analysis of the fields produced during 

real experimental FORC runs indicate that the error terms are typically < 0.001. The FORC 

distributions shown in figure 3 demonstrate that if the Savitzky-Golay method is 

inappropriately applied to data on an irregular grid with a large error term the resulting 

distribution is strongly deformed, however, inclusion of a pre-processing step where the data 

is interpolated on to a regular grid allows the method to be applied effectively. 

 

Determination of the Signal-to-Noise ratio of a smoothed FORC diagram 

It is important to recognise that the fitting method of Pike et al. [1] does not return the 

mixed second derivative of the FORC data, but instead the calculated values are the mixed 

second derivative of the local second-order trend surfaces that were fitted to the data. 

Therefore the procedure assumes that the variability of the hysteresis data conforms to a 

second order trend surface and as such noise free magnetisation data will not be 

misrepresented by the fitting procedure. Although Pike et al. [1] give no justification for their 

selection of a second-order trend surface as an appropriate function with which to model 

hysteresis data in most cases it appears to perform well in approximating measured curves.  It 

is however essential to be able to estimate how far the smoothed data deviates from the 
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original data in order to assess the fidelity of the calculated PDF. This point can be addressed 

very simply using a determination of the signal-to-noise ratio (S/N) for FORC diagrams. 

  Here a comparison is made between measured FORC data and the smoothed FORC 

data that acts as the basis for the smoothed PDF. In practise reconstruction of the smoothed 

FORC data is simple and can be performed using the polynomial coefficients determined by 

the local surface fitting for each point in the (Ha, Hb) grid. In FORC analysis the polynomial 

coefficients a1 to a5 are normally discarded, whilst a6 is retained to obtain the representation 

of the mixed second derivative at a given point. However, calculating the value of the full 

polynomial expression gives the value of the magnetisation for the smoothed FORC, here 

termed , which can be compared to the measured value  to determine 

the residual : 
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In this situation the values of represent the signal and the residuals, , 

represent the noise contribution that has been smoothed from the data. It is important to 

emphasize that here we class any variance of the data that is removed from the system by the 

FORC smoothing procedure as noise. If the data is oversmoothed or the local grids cannot be 

represented by second order trend surfaces then it is possible that parts of the true signal will 

also be removed from the data, in such cases these removed components will still be classed 

using the general term, noise. These quantities allow the determination of S/N (with units 

decibels [12]) for the FORC diagram using equation 10. 
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The above ratio provides a direct measure of the deviation of the smoothed data from the 

measured data and the application of this procedure will be discussed below. 

 

Appropriate selection of smoothing factor: a spatial autocorrelation approach 

Although the S/N provides a quantitative measure of the amount of smoothing that has 

taken place it gives no indication if an appropriate value of SF was selected. In all cases an 

increase in SF produces a decrease in S/N as the deviations between the original measured 

data and the smoothed hysteresis branches increase. It is therefore important to make an 

assessment of the balance between increasing the smoothness of the distribution at a cost of 

decreasing S/N. Ideally a SF should be selected that maximises the removal of measurement 

noise whilst minimising the spurious elimination of the true hysteresis signal. In the worst 

case the FORC data will be so oversmoothed that the calculated PDF will be distorted leading 

to a misrepresentation of the distribution. In a first step it should be noted that to simply quote 

a SF provides very little information about the smoothing which has taken place. This 

smoothing is related to the resolution of the data grid and it is far more meaningful to quote a 

bandwidth that relates the SF to the field increments of the measured data. Here we define the 

bandwidth of the smoothing to be the product of the field increment of the measurement and 

SF. To extend this idea the FORC smoothing method of Pike et al. [1] will be anisotropic 

unless the field increments in the Ha and Hb directions are the same. In cases where this 

condition is not met it is necessary to quote a bandwidths both for the Ha and Hb directions. 

It is possible to detect excessive smoothing of the FORC data by performing spatial 

autocorrelation on the fitting residuals (eq. 9) calculated in the previous section. Spatial 

autocorrelation occurs when the value at a given point is not independent of the value of the 
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points in its surroundings. Positive spatial autocorrelation indicates that similar values tend to 

be neighbouring each other whilst negative special autocorrelation implies different values are 

neighbouring each other. If the relationship between neighbouring points is random then no 

spatial autocorrelation exists. If noise in hysteresis data is assumed to be random (an 

assumption which is also made in the application of least-squares during the fitting routine) 

then the residuals produced by the fitting method of Pike et al. [1] should be independent and 

exhibit no spatial autocorrelation. In the case of inadequate smoothing where noise is still 

retained in the fitted data negative spatial autocorrelation will occur. However, if the data is 

oversmoothed regions of similar residuals will occur producing a positive spatial 

autocorrelation. Here we assess the spatial autocorrelation of the regression residuals using 

Moran’s I statistic [4, 13]. 
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Where N is the number of data points, Xi is the magnetisation residual at a particular 

location, Xj is the magnetisation residual at another location and Wi,j is a distance-based matrix 

of weights. Although the calculation of Wi,j is a simple task, the size of the matrix can make 

the process extremely cumbersome. For N data points Wi,j will have dimensions of N by N and 

in the case of FORC data this can result in the production of matrices with over 108 entries. 

This problem of size can be overcome using the method of Pace and Barry [14] which 

assumes that some points are so distant that their weighting effectively becomes zero, in this 

case it is possible to represent Wi,j using a sparse matrix which substantially decreases 

memory requirements during computation. 
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Once a value for Moran’s I of the FORC residuals is obtained it is not clear if the 

magnitude of the test statistic is sufficiently large to provide an indication of significant 

positive or negative autocorrelation. It is possible to standardise the calculated I by 

subtraction of the expected value E(I) of I and division by an estimate of the theoretical 

standard deviation under the assumption of normality [13]. 
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and: 
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We can now relate the value Z(I) to a standardised normal distribution and find 

autocorrelation to be significant at the 99.9% confidence level when |Z(I)| 1 3.29, where the 

sign of Z(I) indicates the sense of the autocorrelation. In the case of FORC data we are 

concerned that the magnetisation residuals do have a significant positive spatial 

autocorrelation because that would indicate that excessive smoothing has taken place.  

 

Appropriate selection of smoothing factor: numerical tests 

To test the S/N and spatial autocorrelation methods we utilised the phenomenological 

mathematical model of ferromagnetic hysteresis by Takács [15]. The approach of Takács [15] 

provides an analytical model of the hysteresis process and as such the produced FORC curves 
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can be considered to be free of noise (to within machine precision). This has an advantage 

over Monte Carlo type models that always contain some irregularities in the modelled curves 

because they are based on relatively small assemblages of grains. Takács [15] proposes a 

model for ferrimagnetic hysteresis based upon the combination of a hyperbolic and linear 

function: 

 

)tanh()( 000 bbb HHHM 234 &%   (eq. 14) 

 

Where 40, 30 and 20 are user-defined constants, Hb represents the applied field and M the 

magnetisation of the system. The linear part of the system will have no influence over the 

FORC distribution and as such we can ignore the 40 Hb component. To simply further, 30 and 

20 will be set to a value of 1. To introduce hysteresis into the system presented in eq. 14 the 

upper and lower branches of the loop are separated by 5Hc in the horizontal and in opposite 

directions vertically by a constant 31. The value of 31 is determined by the value Hmax, 

representing the point at which the upper and lower branches of the hysteresis loop intersect. 

The upper and lower branches of the hysteresis loop (Mupper and Mlower respectively) can then 

be calculated. 
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To produce the minor loops that make up the FORC dataset an additional term is introduced 

which represents the reversal field, Ha. It is then possible to calculate a minor loop so that 

after the field is reversed at Ha, the path of the magnetisation will follow the descending part 

of the major hysteresis loop. 

 

ucbupper HHM 22 &"% )tanh()( 0  for increasing B values.   (eq. 17a) 

dcblower HHM 22 &&% )tanh()( 0  for decreasing B values.   (eq. 17b) 
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Using this system, we constructed a FORC data set containing 120 branches with constants 28 

= 0.5, Hmax = 8, figure 4. These FORCs served as a basis to which normally distributed white 

noise could be added to form test datasets for which the S/N and spatial autocorrelation could 

be determined. The magnitude of the noise added to the FORCs was defined as the magnitude 

of the standard deviation of the noise distribution relative to Ms of the magnetisation data (in 

the case of the Takács model Ms = 1). For example, noise with a magnitude of 0.01 was 

drawn from a normal distribution of random numbers with a mean of zero and a standard 

deviation, )n, equal to 0.01. Tests were run for noise magnitudes at 0, 0.0001, 0.00025, 

0.0005, 0.001, 0.0025 and 0.005. For each magnitude the test was repeated a total of 100 
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times with different noise arrays to assess the variability of the result. Figure 5 shows the 

results of the test runs for the different noise levels. The test results follow the pattern that is 

to be expected for the given data. Firstly, in all cases S/N decreases as more noise is added to 

the system. It is important to note that although the noise free data should have an infinite S/N 

the smoothed version of this data has a finite S/N because the FORC data does not confirm to 

a piecewise second-order trend surface. Considering constant noise levels, S/N decreases with 

increasing SF as the smoothed data deviates more from the measured data. The standardized 

Z(I) values also vary as expected. In each case as SF increases the residuals move towards 

positive spatial autocorrelation as the data is oversmoothed. As more noise is added to the 

data the SF can be increased to greater values before positive spatial autocorrelation reaches a 

significant level. It would appear to be appropriate to select the smoothing parameter based 

upon the greatest value of SF which results in Z(I) 9 3.29. We can test this selection procedure 

by comparing the S/N of the smoothed data to the actual S/N of the data, which can be 

calculated in this case because the both the signal and the noise are known (i.e. the 

ferromagnetic model and the normally distributed random numbers respectively). The S/N for 

each noise level is shown in figure 5 and the spatial autocorrelation appears to provide a 

robust assessment for SF selection in each case. Working with the spatial autocorrelation 

selection procedure, SF would be set as 2, 2, 3, 3, 4, 4, and 4 for noise levels 0, 0.0001, 

0.00025, 0.0005, 0.001, 0.0025 and 0.005 respectively, which is identical to the SF levels 

which would be chosen if we made a selection on the basis of when the smoothed data S/N is 

the same as the actual S/N of the data. 

 

Application to real samples 

Finally, we test the S/N and spatial autocorrelation methods on a selection of natural 

magnetic mineral assemblages.  

 16



The first data set comes from an approximately 1:1 mixture of a natural goethite 

sample, MKB, [16, 17] and a natural hematite, LH6, [18]. The MKB sample consists of a 

goethite concentrate obtained from a marine sedimentary oolithic iron ore. Dekkers [16, 17] 

identified an additional hematite component within the sample estimated to have a 

concentration of ~5%. A more recent study of this sample after storage in air for 20 years also 

revealed traces of magnetite that were identified by the presence of the Verwey transition in a 

measurement of temperature dependence of magnetic susceptibility [19]. Sample LH6 was 

obtained by crushing a hematite aggregate [18]. The LH6 material is thought to be almost 

pure hematite with a small (~0.03%) maghemite component [20]. We selected this mixture as 

an example for this study because the FORC data was found to be slightly noisy due to the 

low spontaneous magnetisation of the material. Here the results of the smoothing indicate that 

SF should be set at 3, figure 6, at this level the residuals are negatively autocorrelated but this 

is a preferable to the strong positive autocorrelation at SF=4. 

The FORC data for 3 lava samples, H61-14D, H62-05B and H61-09F, taken from the 

1960 Kilauea flow, Hawaii [21] were investigated. Previous work by Hill and Shaw [21] 

showed that the material was dominated by titanium-poor titanomagnetites with some 

ilmenite lamellae and abundant hemoilmenite. The FORC diagram for sample H61-14D is 

typical of the three samples and reveals behaviour associated to interacting SD particles [2], 

figure 7. Investigation of the S/N and Z(I) variability with increasing SF shows that samples 

H61-14D and H62-05B can be smoothed at SF=3, whilst sample H61-09F can only tolerate 

smoothing at SF=2 before oversmoothing occurs.   

 

 

Conclusions 

With the increasing interest in the application of FORC diagrams to natural magnetic 

mineral assemblages it has been necessary to address a number of points to remove some of 
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the ambiguities in the data analysis procedure. The piecewise fitting of second-order trend 

surfaces to measured data can be performed efficiently using a two-dimensional form of the 

Savitzky-Golay convolution. This method dramatically increases the speed of the calculation 

and returns results that are identical to the existing slower methods. Concerning quantification 

of the smoothing procedure we have made two main points. Firstly, smoothing factors are 

more physically meaningful if they are related to the resolution of the measured data by  

conversion to bandwidths. Secondly, the level of smoothing can be determined quantitatively 

using a signal-to-noise ratio that simply relates the smoothed magnetisation data to the 

measured magnetisation data. Finally, we have presented a method for determining the 

appropriate SF for FORC distributions. This procedure uses the detection of positive spatial 

autocorrelation within the fitting residuals to ensure that the data are not oversmoothed and as 

a result there is no distortion of the underlying signal. Under an assumption of normality the 

residuals obtained from calculating a FORC distribution should have a standardised value of 

Moran’s I statistic of Z(I) 9 3.29 if positive spatial autocorrelation is non-significant at the 

99.9% confidence level. Investigation of the method for a series of numerical experiments and 

the examination of real samples shows that the SF must be selected as a balance between the 

ability to remove noise with the level to which the form of the FORC data can be fitted with 

second-order trend surfaces before it is deformed. 
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Appendix 1. 

 

function coeff=sg_forc(SF,dHa,dHb) 

 

%SF (input), chosen smoothing factor for the filter. 

%dHa (input), field spacing in Ha (must be constant) 

%dHb (input), field spacing in Hb (must be constant) 

%coeff (output), filter coefficants which can be applied to the FORC data using the built-in 

%matlab function filter2  

 

terms = []; 

for y = -(SF.*dHb):dHb:(SF.*dHb) 

for x = -(SF.*dHa):dHa:(SF.*dHa) 

terms=[terms;[1 x x.^2 y y.^2 x.*y]]; 

end 

end 

 

coeff=pinv(terms); 

coeff=reshape(coeff(6,:),[SF.*2+1 SF.*2+1]); 
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Figure Captions 

 

Figure 1. 

(a) An example of a FORC originating from the reversal field, Ha, and measured at 

various values of Hb as the field returns to positive saturation. (b) A local grid of points of 

side SF=2, placed over consecutive FORCs and consecutive field points. A second order trend 

surface fitted to the local grid provides an approximation of the mixed second derivative for 

the central point. 

 

Figure 2. 

Computation times for various data grids at SF = 2 and 4 to compare the matrix 

inversion and Savitzky-Golay convolution methods. The solid lines fitted through the data 

points are second order polynomials.  

 

Figure 3. 

(a) Reference FORC distribution obtained from a joint cumulative distribution 

function calculated on a regular grid of points. In this case the assumption of equally spaced 

field values required by the Savitzky-Golay convolution method are met.  

(b) FORC distribution obtained from the joint cumulative distribution function 

calculated on an irregular grid of points (grid error term = 0.01). In this case the Savitzky-

Golay method is incorrectly applied because the irregular spacing of the grid is not considered 

and as a result the obtained distribution is considerably deformed. 

(c) When the data on the irregular grid (error term = 0.01) are linearly interpolated 

onto a regular grid, the Savitzky-Golay method can be applied successfully and the correct 

FORC PDF is obtained. 
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(d) and (e) are of the same form as panels (b) and (c) but with more a variable field spacing in 

the irregular grid (error term is set to 0.05).  

 

Figure 4. 

(a) A total of 120 modelled FORC branches produced by the Takács model [15]. (b) 

The FORC distribution for the model data was produced using the smoothing method of Pike 

et al. [1] with SF=2. 

 

Figure 5. 

Results of the numerical experiment to determine S/N and spatial autocorrelation for 

the Takács [15] ferromagnetic hysteresis model with different noise levels. The magnitude of 

the added noise, )n is shown for each experiment and the smoothing factors are given next to 

the data points. Each point represents the mean of 100 runs utilising different noise arrays and 

the variability in the results are shown by error bars set at one standard deviation. The value 

of Z(I) represents the standardised spatial autocorrelation with the shading showing the region 

of no significant autocorrelation (99.9% confidence level). Once the data points move above 

the upper limit of this shaded area the fitting residuals are considered to have a positive spatial 

autocorrelation and it is assumed that the data have been oversmoothed. The hatched lines 

show the actual S/N for the data and demonstrate that spatial autocorrelation provides a robust 

selection procedure for SF. 

 

Figure 6. 

Results for the calculation of the FORC distribution of sample MKBLH6. Spatial 

autocorrelation analysis of the fitting residuals reveals that the optimum smoothing of the data 

is given by SF=3. Visual inspection of FORC distributions at all smoothing levels shows that 

the main body of the PDF is well defined at SF=3, whilst higher smoothing levels provide no 
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improvement in the clarity of the diagram whilst still reducing the S/N. All FORC 

distributions are displayed with the same colour scale. 

 

Figure 7. 

Analysis of three lava samples from the 1960 Kilauea Flow, Hawaii [21]. Analysis of 

the S/N verses Z(I) plot indicates that the fitting of samples H61-09F and H61-14D at SF=3 

produces residuals with no significant positive spatial autocorrelation. It appears that H62-

05B can tolerate less smoothing before the onset of positive spatial autocorrelation and in this 

case SF=2 would be selected as the suitable smoothing levels. The lower panels of the figure 

show the FORC distributions for sample H61-09F for SF values between 2 and 5. All FORC 

distributions are displayed with the same colour scale. 
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