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Multiresolution FIR Neural-Network-Based Learning
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Abstract—In this paper, a multiresolution finite-impulse-re-
sponse (FIR) neural-network-based learning algorithm using
the maximal overlap discrete wavelet transform (MODWT) is
proposed. The multiresolution learning algorithm employs the
analysis framework of wavelet theory, which decomposes a signal
into wavelet coefficients and scaling coefficients. The transla-
tion-invariant property of the MODWT allows aligment of events
in a multiresolution analysis with respect to the original time
series and, therefore, preserving the integrity of some transient
events. A learning algorithm is also derived for adapting the gain
of the activation functions at each level of resolution. The proposed
multiresolution FIR neural-network-based learning algorithm
is applied to network traffic prediction (real-world aggregate
Ethernet traffic data) with comparable results. These results
indicate that the generalization ability of the FIR neural network
is improved by the proposed multiresolution learning algorithm.

Index Terms—Finite-impulse-response (FIR) neural networks,
multiresolution learning, network traffic prediction, wavelet trans-
forms, wavelets.

I. INTRODUCTION

WHEN designing adaptive congestion control and proac-
tive management schemes for communication networks,

predicting the behavior of the network traffic is very impor-
tant. Predicting normally relies on the construction of stochastic
models to predict subsequent time series values given a history
of past values. This has traditionally been performed by the use
of linear models and neural networks. These models are known
as global models or single-resolution learning techiques since
only one model is used to characterize the measured process
[2], [16]. The classical linear models used for time-series pre-
diction include the auto-regressive (AR) and the auto-regres-
sive moving average (ARMA) models (see, e.g., [4]). These
models are applied in most of the reported cases to stationary
time series, that is, series whose statistical properties do not
change with time [9]. The parameters of these models can be es-
timated in blocks or in a sequence manner with the least-mean
square (LMS) and the recursive-least square (RLS) algorithms
[8]. These linear procedures are based on a priori information
about the statistics of the data to be processed. Artificial neural
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networks (ANNs), on the other hand, do not require a priori
information about the statistics and have demonstrated a great
potential for time-series prediction (see, e.g., [9], [10], [13],
[25], and [26]). Moreover, neural networks can naturally ac-
count for the practical realities of nonlinearity, nonstationarity,
and non-Gaussianity normally found in real data [9].

Feedforward neural networks, also known as multilayer per-
ceptron (MLP) networks, have been recognized for their approx-
imation capability of unknown functions [10]. MLPs, however,
are static networks which simply map input to output, and are
incapable of processing temporal information [10], [25], [26].
The simplest method for predicting time series in MLP net-
works is to provide its time-delayed samples to the input layer
(see, e.g., [9], [13], and [26]). Note, however, that time-delayed
samples can be applied at the network inputs only; that is, the
dynamics are external to the actual network itself. Finite-im-
pulse-response (FIR) neural networks represent a generalization
of MLP networks in which scalar static weights are replaced
by adaptive FIR linear filters [25]. Note that FIR neural net-
works achieved the best performance in the task of time-series
prediction when compared with standard recurrent neural net-
works, linear predictors, Wiener filters, and feedforward neural
networks (see, e.g., [25] and [26]). Although recurrent neural
networks have been suggested recently as viable prediction tools
[19] in the work reported here, we use the well-established feed-
forward neural network tool. The aim is to prove the underlying
fundamentals of our approach. It is worth noting that the best
neural-network architecture is problem dependent and that the
efficiency of the learning algorithm is a more important factor
than the network model used [7], [11].

Case-based reasoning systems and neural-network tech-
niques are used frequently in the forecasting literature [27],
[29], [32], [35] and have found broad applications in telecom-
munications such as congestion control in ATM [30] and fraud
detection [31]. Recently, it has been reported that multires-
olution learning can significantly improve neural network’s
generalization performance (generalization refers to the ability
of the neural network to provide a satisfactory performance in
response to test data never seen by the network before [10]) and
neural-network robustness on difficult signal prediction tasks
(see, e.g., [16] and [17]). Note that the approach reported in
[16] and [17] is still based on the decimated discrete wavelet
transform which can only be applied to time series with a
sample size equal to , where denotes the number of
resolutions. Furthermore, it can introduce ambiguities in the
time domain due to the decimation process that needs to be
applied at the output of the corresponding filters (see, e.g.,
[21]). Similar multiresolution learning approaches have been
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Fig. 1. Multiresolution learning algorithm for the FIR neural-network predictor.

reported in [23] and [28]. Support vector machines experts
using a self-organizing feature map (SOM) have also been
considered for time-series prediction (see, e.g., [5] and [36]).
Note that the algorithms used in [16], [17], [23], and [28] are
based on static MLP networks using the standard backpropa-
gation algorithm in contrast with our proposed algorithm that
uses FIR neural networks using temporal backpropagation
[25]. As stated in [16], multiresolution learning can reveal the
correlation structure (low- and high-frequency components) at
each level of resolution that may be obscured in the original
signal, and employs the analysis framework of wavelet theory
[6], [18], which decomposes a signal into wavelet coefficients
and scaling coefficients (see Section II).

This paper presents a multiresolution FIR neural-net-
work-based learning algorithm using the maximal overlap
discrete wavelet transform (MODWT) with application to
network traffic prediction. The contributions of this paper can
be summarized as follows. First, a multiresolution learning
algorithm is proposed for time-series prediction based on FIR
neural networks [25] and the MODWT [21]. The MODWT can
be applied to any sample size, and the wavelet coefficients are
translation-invariant. This property allows alignment of events
in a multiresolution analysis with respect to the original time
series and, therefore, preserving the integrity of some transient
events. Note that the proposed algorithm has its foundations
on the multiresolution learning paradigm reported in [16].
Second, to increase the learning speed and produce a good gen-
eralization performance on unseen data, a learning algorithm
is derived for adapting the gain of the activation functions at
each level of resolution based on the temporal backpropagation
algorithm [25]. Finally, the proposed multiresolution FIR
neural-network-based learning algorithm is applied to network
traffic prediction (real-world aggregate Ethernet traffic data),
which is known to be complex and irregular, suggesting that it
presents a difficult signal prediction problem [16], [22].

The basic idea of the multiresolution FIR neural-network
(MFIRNN)-based learning algorithm is as follows. First, the
signal is decomposed into wavelet coefficients and scaling
coefficients using the MODWT (Fig. 1). The input of the
MFIRNN-based learning algorithm is the known value of

(scaling coefficients) and the output
is the single step estimate of the true time-series value ,
where is the MFIRNN with total memory length , and
represents the level of resolution. The model for learning can
thus be represented by

(1)

where denotes the levels of resolution. During
training, the objective is therefore to minimize the squared error

by using the multiresolution FIR neural-
network-based learning algorithm (for details, see Section IV).

The remainder of this paper is organized as follows. In Sec-
tion II, a review of the MODWT is presented. FIR neural net-
works are described in Section III. In Section IV, a multireso-
lution FIR neural network with adaptive gain parameter at each
level of resolution is proposed. The multiresolution FIR neural-
network-based learning algorithm is also derived. In Section V,
experimental results and comparisons with previously published
approaches are presented. In Section VI, conclusions of this
paper are reported.

II. MAXIMAL OVERLAP DWT

In this section, we introduce the MODWT to be used in the
following sections. The computation of the DWT is based on
discrete compactly supported filters of the Daubechies class [6].
The even-length scaling filter and the wavelet filter are denoted
by and ,
respectively, where is the length of the filter. To build the
MODWT, a rescaling of the defining filters is required to con-
serve energy, that is, and , so that

and, therefore, the filters are still quadrature
mirror filters (QMFs). The wavelet filter must satisfy the fol-
lowing properties (see, e.g., [21]):

(2)

and (3)

for all nonzero integers . The scaling filter is also required
to satisfy (3) and . Now let be
the time series, the MODWT pyramid algorithm generates the
wavelet coefficients and the scaling coefficients
from (Fig. 2). That is, with nonzero coefficients di-
vided by ([21]), the convolutions can be written as follows:

(4)
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Fig. 2. Wavelet coefficients fd g and scaling coefficients fc g are
computed by cascading convolutions with filters f~h ; ~g g.

Fig. 3. Recovering the original signal. The filters f~h g and f~g g are used
to compute the inverse MODWT.

where . Note that there is some difference
in information about between the approximation
at the level of resolution and the approximation at level
of resolution . This difference is the time-series detail needed
to reconstruct the approximation at resolution from the
approximation at resolution (Fig. 3). Equation (4) can also be
formulated as filter operations of the original time series
using the filters and ,
namely

(5)

where is the length of the filter at level of resolution . The
MODWT wavelet coefficients at the level of resolution
are associated with the same nominal frequency band given by

. The original signal can be recovered from
and using the inverse pyramid algorithm [21]

(6)

where (Fig. 3). The MODWT scaling and
wavelet coefficients computed by (4)–(6) are used in the fol-
lowing sections.

Fig. 4. TDL filter structure for an FIR linear filter (z denotes a unit delay
operator) with neuron.

Fig. 5. FIR neuron model.

III. REVIEW OF FIR NEURAL NETWORKS

MLP neural networks commonly utilize scalar static weights.
MLP neural networks were originally proposed as a nonlinear
autoregressive model for time-series prediction [13]. MLP net-
works, however, are incapable of processing temporal informa-
tion [10], [25]. FIR neural networks, on the other hand, repre-
sent a generalization of MLP networks in which scalar static
weights are replaced either by adaptive FIR linear filters or by
infinite-impulse-response (IIR) linear filters (see, e.g., [1], [20],
and [25]). The most basic filter that is modeled by a tapped-
delay-line (TDL) as shown in Fig. 4 is used by the FIR network
model.

The FIR neural model is shown in Fig. 5. In a FIR neural
network, the coefficients of the FIR filter connecting neuron
to neuron in layer are given by the vector

(7)

where is the number of lags in layer , and the vector of
delayed activation values along with the FIR filter is given by

(8)

Note that each neuron passes the weighted sum of its inputs
through an activation function , that is

(9)

where denotes the discrete time index, the bias is denoted by
, and the vector dot product denotes a filter

operation.
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To train the FIR neural network, we may unfold it in time.
That is, the idea is to remove all time delays by expanding the
network into a larger static equivalent structure, to which the
standard backpropagation algorithm may be applied in the usual
way. However, a more efficient and practical approach is to use
the temporal backpropagation algorithm [25].

A. Temporal Back-Propagation Algorithm

Given an input sequence , the network pro-
duces the output sequence , where

represents the set of all filter coeffi-
cients in the network. The difference between the desired output

at time and the actual output of the network is the
error . The objective is to minimize the
cost function with respect to , where the
sum is taken over all points in the training
sequence. The true gradient of the cost function is given as [25]

(10)

An alternative expression for the true gradient is given by [25]

(11)

This expansion results by considering the total cost to be a
function of over all indices of . Then it follows that:

(12)

That is, only the sums over all are equivalent. By using the
gradient descent method, the weights of the FIR filters are up-
dated at each increment of time according to

(13)

where denotes the rate of learning, and since
, then it follows that:

(14)

for all layers in the network. Defining ,
the final temporal backpropagation algorithm is then given by
[25]

(15)

with

where denotes the number of layers, is the error at
output node, denotes the discrete time index, is the
derivative of the activation function with respect to its input,
is the number of inputs in the next layer, and

(16)

is a vector of propagated gradient terms. Each term
within the sum corresponds to a reverse FIR filter. That

is, delta terms are filtered through FIR filter connections

to form the deltas for the previous layer. This process is ap-
plied layer by layer working backward through the network.
The weights are adapted online at each increment of time .
Note that unit delay operators have been replaced with unit
advances . Details on the implementation of this noncausal
system are addressed in [25].

IV. PROPOSED MULTIRESOLUTION FIR
NEURAL-NETWORK-BASED LEARNING ALGORITHM

In this section, a multiresolution FIR neural-network
(MFIRNN)-based learning algorithm is proposed (Fig. 6). The
weights and gains are estimated at each level of resolution.
The filters and are used to compute the inverse
MODWT (see Section II), where denotes the scaling
coefficients and denotes the wavelet coefficients. Note
that the same FIR neural-network architecture with different
estimated weights and gains is used at each level of resolution.
As stated in [16], the first learning (learning scaling coefficients

) starts with randomly initialized connection weights and
gains, and each subsequent learning (wavelet plus scaling
coefficients) starts with the connection weights and gains
resulting from previous learning. FIR neural networks provide
a time-dependent mapping (the FIR network introduces time
delays into the synaptic structure of the network and adjusts
their values during the learning phase [10], [25]), making them
suitable for time-series prediction. Furthermore, an algorithm
is derived for adapting the gain of the activation function at
each level of resolution based on the gradient descent method.
The use of adaptive gains of the activation functions in MLP
and FIR neural networks greatly increases learning speed and
produces a good generalization performance on unseen data
(see, e.g., [3], [12], and [24]). Note that the algorithm for
adapting the gain of the activation function derived here differs
from previous reported approaches [12], [17] in the following
aspects. First, the proposed adaptive gain algorithm is based
on the temporal backpropagation algorithm [25], while the
approach reported in [12] is based on the standard backpropa-
gation algorithm. Second, the weights in the proposed adaptive
gain algorithm are adapted at each level of resolution and for
every training step, while the approach reported in [17] based
on the standard backpropagation algorithm adapts the weights
using the same gain value of the activation functions at each
resolution level training data. Also note that the proposed
algorithm uses two activation functions for modeling scaling
and wavelet coefficients (see Sections IV-B and IV-C). The
proposed MFIRNN-based learning algorithm is suitable for
capturing low- and high-frequency information as well as the
dynamics of time-varying signals and, as stated in the mul-
tiresolution learning paradigm presented in [16], it reveals the
correlation structure (low- and high-frequency components) at
each level of resolution that may be obscured in the original
signal.

A. Temporal Backpropagation With Adaptive Gain Parameter

As stated in Section II, the MODWT pyramid algorithm gen-
erates the wavelet coefficients and the scaling coeffi-
cients by cascading convolutions with wavelet and
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Fig. 6. Architecture of proposed multiresolution FIR NN-based learning algorithm with an adaptive gain in the activation functions at each level of resolution j.

scaling filters (4). It is worth noting that the weights ob-
tained by the temporal backpropagation algorithm are computed
assuming that the gain parameter (15). As a result, the
algorithm may fail to converge as the algorithm may be seized
in a local minimum of the error surface. To include the gain
parameter of activation functions into the temporal backpropa-
gation algorithm at each level of resolution , we use (15) and
(16) to obtain

(17)

for with the equation

where denotes the derivative of the activation function
with respect to its input and

is a vector of propagated gradient terms
at each level of resolution . Equation (17) indicates the extent
to which the gain of the activation function in the hidden node
participates in learning. The gain can be seen as modulating
the learning rate of the weight change, amplifying learning in
nodes that find successful directions in weight space. That is,
if the gain of the activation function is adjusted, the weight
learning rate is actually changed. Note that the weights are
adapted online at different levels of resolution . The selection
of the number of level of resolution depends primarily on the
time series under analysis and the wavelet itself. Therefore,
the number of levels of resolution can be chosen by analyzing
the frequency response magnitude of wavelet coefficients (see,
e.g., [21] and [33]).

In the work reported in this paper, the logistic (18) and the hy-
perbolic tangent (26) functions are considered for modeling the
scaling and wavelet coefficients. The logistic function performs
a smooth mapping , while the hyperbolic
tangent function perform a smooth mapping

, where denotes the slope. Note that the slope and the
gain are identical for activation functions with [24]. The
gain of an activation function of a node in a neural network is a
constant that amplifies or attenuates the net input to the node.

B. Learning Scaling Coefficients

Assuming that , the scaling coefficients
are always non-negative because

since , then it follows that (Section II)

where denotes the mean of raw measurements. Thus, the
logistic function

(18)
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can be used to model the scaling coefficients. The partial deriva-
tive of the logistic function with respect to is given by

(19)

Then, by using the gradient-descent method, an iterative proce-
dure can be derived for updating the gain of the logistic
function for learning scaling coefficients at resolution . Note
that a similar procedure for updating can also be derived, but
we will concentrate only on adaptation of . By using the gra-
dient descent method, the gain of the logistic function
is thus updated at each increment of time according to

(20)

for , then by using the total cost of the true
gradient

(21)

where denotes the number of points in the training sequence.
This yields

(22)

for , where

for

(23)

where denotes the number of layers in the neural network
and is the error at output node at resolution . For the
hidden layers, we obtain

(24)

for , where is the number of inputs in the next
layer and is a
vector of propagated gradient terms.

Algorithm 1 (Learning Scaling Coefficients): Using
(20)–(24), the following iterative algorithm for updating
the gain of the logistic function (18) for learning scaling coef-
ficients at resolution is then generated

(25)

for , with

where denotes the learning rate for the gain of the
logistic function, and the vector of propagated terms
at each level of resolution is denoted by

.

C. Learning Wavelet Plus Scaling Coefficients

An iterative procedure has also been derived for updating the
gain of the hyperbolic tangent function for learning

wavelet plus wavelet coefficients at resolution . It is important
to note that if we assume that , the wavelet coef-
ficients plus the scaling coefficients have zero-
mean (sign variations) because

The result follows by using the fact that

where denotes the mean of raw measurements. Thus, the
hyperbolic tangent function

(26)

can be used to model this space. The partial derivative of the
hyperbolic tangent function with respect to is given by

(27)

The same partial derivative is used at each level of resolution
. By using the gradient descent method, an iterative procedure

can be derived for updating the gain of the hyperbolic
tangent function for learning scaling plus wavelet coefficients
at resolution . The gain of the hyperbolic tangent function is
updated at each increment of time according to (20)–(24).

Algorithm 2 (Learning Wavelet Plus Scaling Coeffi-
cients): Using (20)–(24) and (27), the following iterative
algorithm for updating the gain of the hyperbolic tangent func-
tion for learning wavelet plus scaling coefficients at resolution

is then generated

(28)

for , with the equation
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Fig. 7. Flowchart of multiresolution FIR NN-based learning algorithm using the maximal overlap discrete wavelet transform.

where denotes the learning rate for the gain of the hy-
perbolic tangent function and

is a vector of propagated gradient terms at
each level of resolution .

D. Summary of Multiresolution FIR NN-Based
Learning Algorithm

The multiresolution FIR neural-network-based learning algo-
rithm here proposed undertakes the problem of learning
by starting from a much simplified version of using algo-
rithms 1 and 2. These algorithms are used to learn the internal
correlation structure of the original signal in the correponding
spaces, namely, the approximation space (scaling coefficients)
and the residual space (wavelet coefficients). The corresponding
learning rates, denoted by (see (17), (25), and (28)),
for each of the adaptive parameters weights and gain
of activation functions can be independently selected.
Recall that the slope (steepness) and the gain are identical
for activation functions with [24]. A relationship between
the learning rate in the learning algorithm and the gain of
the nonlinear function for FIR neural networks is provided in
[34]. In [34], it is shown that changing the gain of the nonlinear
function is equivalent to changing the learning and the weights.
Such relationships reduce the degrees of freedom and, therefore,

simplify the learning procedure by eliminating one of its param-
eters (see, e.g., [19]).

Algorithm 3 (Multiresolution FIR NN-Based Learning Algo-
rithm): Using algorithms 1 and 2, the following multiresolution
learning algorithm is obtained based on the maximal overlap
discrete wavelet transform (see also Fig. 7).

1) Initialization:

Step 1) Select the wavelet and scaling fil-
ters, and the number of levels of resolution

. Recall from Section IV-A that the number
of levels of resolution can be chosen by
analyzing the frequency-response magnitude
of wavelet coefficients (see, e.g., [21] and
[33]). The wavelet and scaling filters must be
chosen according to the common features of
the events present in real signals.

Step 2) Use (4) to compute the wavelet coefficients
and the scaling coefficients

from the training data .
Step 3) Initialize the weights and the

gains of the activation functions
randomly.

2) Multiresolution Learning Phase:

Step 4) Present an input set from the learning ex-
amples (input-ouput patterns) and compute
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the actual output using the actual parameter
values. That is, use the scaling coefficients

at the lowest resolution to es-
timate the weights with an
adaptive gain parameter of the
logistic function using (17) and Algorithm 1.

Step 5) Present another input–output pattern from the
next learning example and use the following
(see Section II)

to add details to the approximation process.
That is, add the wavelet coefficients
to the scaling coefficients at resolution

, and use the previous estimated
weights in step 4. Use the iterative algorithms
given by (17) and Algorithm 2 to estimate
the weights with an adaptive
gain parameter of the hyper-
bolic tangent function.

Step 6) Go back to step 5. Repeat according to the
number of resolutions .

3) Prediction Phase:

Step 7) Use the estimated weights to
perform time-series prediction.

Note that in Step 5, there is only an information increment
because only details (wavelet coefficients) are added to the ap-
proximation process. This information increment requires the
network to learn only the incremental details and, therefore, re-
fining the neural network’s learning behavior. Note that in order
to increase the learning speed and produce a good generaliza-
tion performance on unseen data, adaptive activation functions
at each level of resolution have also been used. As stated in
[16], the degree of generalization is influenced by how well the
correlation structure is learned by the neural network at each
level of resolution. Further details on generalization in neural
networks can be found in [14].

V. EXPERIMENTAL RESULTS

The underlying aim of the results here reported are twofold:
1) To assess the generalization ability of FIR neural networks
[25] and the proposed multiresolution FIR neural-network
(MFIRNN)-based learning algorithm (when applied to Eth-
ernet network traffic). 2) To compare with previous reported
multiresolution approaches [16], [17] using the same bench-
mark Ethernet network traffic, a comparison with previously
proposed algorithms is also reported. Real-world Ethernet
traffic data are used to assess the performance of the proposed
MFIRNN. The proposed MFIRNN has also been assessed
using recent real-world corporate proxy server traffic data
(Internet connections from machines within Digital Equipment

Corporation) and Internet traces, and the results are equally
encouraging and can be found in [34]. These results, together
with an anomaly detection classification algorithm, will be
reported in a forthcoming paper.

A. Performance Measures

To quantitatively compute the prediction performance, we
may use the mean squared error (MSE) or the root MSE
(RMSE). In the work reported in this paper, the normalized
mean-squared error (NMSE) and the prediction gain [10],
[25], [26] are considered to assess the prediction performance.

1) NMSE: In the normalized mean squared error (also
known as average relative prediction variance), a standard
measure of fit, is given by [26]

NMSE (29)

where is the true value of the sequence, is the predic-
tion, and is the variance of the true sequence over the predic-
tion duration . The normalization (division by the estimated
variance of the data, ) removes the dependence on the dy-
namic range of the data. This normalization implies that if the
estimated mean of the data is used as predictor, NMSE is
obtained. That is, a value of NMSE indicates perfect pre-
diction while a value of 1 corresponds to simply predicting the
average.

2) Prediction Gain: The prediction gain [10] is another
standard criterion to evaluate the prediction performance, which
is given by

(30)

where denotes the estimated variance of the incoming signal,
and denotes the estimated variance of the prediction error.

B. High-Speed Network Traffic Prediction

In this section, the following predictive models are assessed:
FIR neural networks (FIRNN) [25], multiresolution MLP
(MMLP) network [16], [17], the proposed multiresolution
FIRNN (MFIRNN), and the RLS linear predictor. Single-step
and multistep network traffic prediction of real-world aggregate
Ethernet traffic data are performed. The primary objective of
this experiment is to assess the generalization ability of the FIR
neural network using the proposed multiresolution learning al-
gorithm. A comparison with the FIRNN trained by the temporal
backpropagation algorithm (single-resolution technique) [25]
and a comparison with the multiresolution approach reported in
[16] and [17] are performed. We have chosen to compare these
two algorithms only, due to the similarity in the architectures.

The real-world Ethernet traffic data series used in this section
are part of a data set collected at Bellcore in August 1989. They
correspond to one normal hour’s worth of traffic, collected every
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Fig. 8. Ethernet Packet count for time scale 1 second.

Fig. 9. Ethernet Packet count for time scale 0.01 s.

10 ms, thus resulting in a length of 360 000 samples.1 Figs. 8
and 9 show an example of the Ethernet traffic in packet counts
(i.e., the number of packets per time unit) for two different time
scales: 1 s and 0.01 s. The amplitude of the Ethernet traffic data
was adjusted to lie in the range of the logistic function (i.e.,

). The 1000 samples are used for training, and the
subsequent 100 data samples following the training data set are
used for evaluating the prediction performance.

Table I shows the parameters settings used in each predictor
for learning the Ethernet traffic data series. The commonly used
notation for feedforward neural networks 1 10 1 (network
dimension) denotes the number of inputs, hidden units, and out-
puts, respectively. The selection of network dimension and net-
work parameters (i.e., taps per layer) is based on the following

1The Ethernet data were collected between August 1989 and February
1992 on several Ethernet LANs at Bellcore Morristown Research and En-
gineering Center, which carried primarily local traffic, but also all traffic
between Bellcore and the Internet [15]. These traces are available at
http://ita.ee.lbl.gov/index.html

TABLE I
PARAMETERS SETTINGS FOR LEARNING ETHERNET TRAFFIC DATA SERIES

Fig. 10. Ethernet traffic data with two levels of decomposition, J = 2, using
a quadratic spline wavelet.

heuristic. Since the first layer in the network prior to the sig-
moids act as a bank of linear filters, the filter order is obtained by
looking at single-step prediction error residuals using linear AR
predictors (see e.g., [25]). Based on the analyzed Ethernet traffic
data series, the single-step prediction error residuals show a neg-
ligible improvement for an order greater than 15. Therefore,
the FIR network has equivalent memory of 15 time steps corre-
sponding to the sum of the filter order in each layer . It is
worth noting that the selection of network dimensions for neural
networks remains as a difficult problem which requires further
research [25], [26]. Some attempts in solving this problem can
be found in [14], [37], and references therein. The number of
hidden units is chosen based on the following heuristic. We
use one hidden layer with ten hidden units, with the number
of units approximately equal to half the sum of the number of
input and output units (see, e.g., [10] and [38]). The RLS linear
predictor is used with 15 taps. The MLP network is also used
with 15 inputs and feeding ten neurons in the hidden layer. The
conventional logistic activation function is used in the hidden
units for the FIRNN and the MMLP network. The number of
training epochs for the FIRNN predictor and multiresolution ap-
proaches (MMLP and MFIRNN) is set to 100 and ,
respectively, with . The levels of resolution are chosen
based on the premise that the higher the order of resolutions,
the smoother the time series in the residual space and, thus, the
less information that the neural network can retrieve. This is il-
lustrated in Fig. 10 (see lower plot, ) in which two levels
of decomposition for the Ethernet traffic data are shown. The
following wavelets are assessed for the proposed MFIRNN: a
quadratic spline wavelet, the least-asymmetric (LA) compactly
supported wavelets, Daubechies wavelets, and Haar wavelet [6],
[18], [21]. In order to achieve a fair comparison, the randomly
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TABLE II
SINGLE-STEP NMSE AND R FOR THE ETHERNET DATA SERIES USING

1000 SAMPLES FOR TRAINING

Fig. 11. Single-step prediction for multiresolution FIR network and
multiresolution MLP network.

generated initial weights for the networks are identical as are the
learning rates for the temporal and backpropagation algorithms.

Table II shows the single-step NMSE and for different
predictors. It can be seen that the MFIRNN outperforms the RLS
linear predictor and previous reported algorithms (FIRNN and
MMLP) using, for example, the Haar wavelet and Daubechies’
wavelet with six filter coefficients. These results also indicate
the difficulty of predicting high-speed network traffic. Note that
the Haar and D(6) wavelets yield better predictions than those
resulting from the quadratic spline wavelet. This is because the
Haar and D(6) wavelets remove more details of the signal at
lower levels of resolution. Therefore, a more simplified version
of the signal is learned when using these wavelets. Note that
several runs were performed and similar results were obtained
in all runs. The results for single-step prediction are shown in
Fig. 11 for the MFIRNN and MMLP using the Haar wavelet.
Fig. 12 illustrates the results for MFIRNN, FIRNN, and RLS
predictor.

To further evaluate the prediction performance of the
MFIRNN, we have assessed the MFIRNN and the MMLP
using the Haar wavelet for different network structures. Note
that in the previous experiment, the Haar and D(6) wavelets
yield better predictions than those resulting from the quadratic
spline wavelet. Therefore, in this experiment, we have chosen
the Haar wavelet only to achieve a fair comparison. The same
learning rates shown in Table I are used in this experiment. The

Fig. 12. Single-step prediction for multiresolution FIR network, FIR network,
and RLS predictor.

number of training epochs for both multiresolution approaches
(MMLP and MFIRNN) is set to with . In
this assessment, 1000, 512, and 300 samples (reduced training
data set) are used for training, and the subsequent 100 data
samples following the training data are used for evaluating
the prediction performance. Table III shows the single-step
NMSE and for the MFIRNN and the MMLP networks using
1000 training data samples. It can be seen that the MFIRNN
outperforms the MMLP using the Haar wavelet for different
network structures. Note that the results are quite encouraging
since the number of training epochs for each level of resolu-
tion is approximately 30 epochs. Tables IV and V show the
results for both networks when using 512 and 300 training data
samples. It can be seen that there is still an improvement of
the MFIRNN over the MMLP for different network structures
when using a reduced data set. Note that the best performance
of the MFIRNN is achieved with small networks dimensions
when using 1000, 512, and 300 training data samples; however,
these small networks may not generalize well [14] (Fig. 14). In
the next experiment, the generalization ability of the proposed
MFIRNN is assessed using different network structures.

To illustrate the generalization ability of the FIR neural net-
work employing the proposed multiresolution learning algo-
rithm, we now turn to multistep prediction. In multistep pre-
dictions, the predicted output is fed back as input for the next
prediction and all other network inputs are shifted back one
time unit. Thus, as the iterated multistep prediction process pro-
ceeds, the inputs will eventually consist of entirely predicted
values [16]. The same learning rates, network dimensions, and
training parameters shown in Table I are used in this exper-
iment. In this assessment, the number of training epochs for
the FIRNN predictor and multiresolution approaches (MMLP
and MFIRNN) is set to 3000 and 3000/ , respectively,
with . The iterated multistep prediction NMSE for 20
time steps is shown in Fig. 13 for the FIR network, the MMLP,
the RLS linear predictor, and the proposed MFIRNN. It can
be seen that the MFIRNN prediction outperforms the RLS pre-
dictor and previous reported algorithms [16], [17], [25]. Fig. 14
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TABLE III
SINGLE-STEP NMSE AND R FOR THE MFIRNN AND THE MMLP USING 1000 SAMPLES FOR TRAINING

TABLE IV
SINGLE-STEP NMSE AND R FOR THE MFIRNN AND THE MMLP USING 512 SAMPLES FOR TRAINING

TABLE V
SINGLE-STEP NMSE AND R FOR THE MFIRNN AND THE MMLP USING 300 SAMPLES FOR TRAINING

shows the results for different network dimensions of the pro-
posed MFIRNN using a Haar wavelet. It can be seen that the
network structure 1 10 1 with 14 1 taps per layer gener-
alizes better than smaller networks (see, e.g., [14]). Thus, for the
data set and training parameters used in these results, the gen-
eralization ability of the FIR neural network is improved by the
proposed multiresolution learning algorithm.

C. Computational Complexity

It is well known that the RLS algorithm requires oper-
ations [8], where denotes the order of the filter. The proposed
multiresolution learning algorithm for FIR networks based on
the MODWT uses the same FIR neural network (FIRNN) at
each level of resolution. That is, if we assume that there is a
simplified FIRNN (e.g., two cascaded linear FIR filters), the
first filter is of order whereas the second filter contains four
taps delays. Then, the temporal backpropagation algorithm for
FIR networks requires multiplications at each update, that
is, the sum of the two filters orders. In general, each neuron

in the FIRNN requires on the order of multiplications,
where denotes the nodes per layer and is the number of
taps per layer [25]. Therefore, and since the MODWT requires

multiplications [21], where denotes the sample
size, the computational complexity involving the MODWT and
the FIRNN (i.e., MFIRNN) is approximately

multiplications. There is thus an increase in computa-
tional complexity when using the MODWT, but its computa-
tional burden is the same as the widely used fast Fourier trans-
form and, hence, is quite acceptable [21]. It is worth mentioning
that the computational complexity of the DWT and the back-
propagation algorithm [38] used in the multiresolution learning
paradigm (MMLP) reported in [16] are multiplications
and operations, respectively, where denotes the total
number of weights and biases.

VI. CONCLUSION

The currently published learning algorithm for FIR neural
networks is single-resolution learning techniques since only one
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Fig. 13. Iterated multistep prediction error for the Ethernet data series.

Fig. 14. Iterated multistep prediction error for the Ethernet data series using
different network structures of the proposed MFIRNN.

model is used to characterize the measured process. As a result,
the network cannot learn complex time series and, hence, the
trained network cannot generalize well. In this paper, a mul-
tiresolution FIR neural-network-based learning algorithm has
been proposed based on the maximal overlap discrete wavelet
transform. The proposed multiresolution FIR neural-network
learning algorithm, which has its foundations on the multires-
olution learning paradigm reported in [16], is suitable for cap-
turing low- and high-frequency information as well as the dy-
namics of time-varying signals and it has been applied to net-
work traffic prediction. The algorithm employs the multiresolu-
tion analysis framework of wavelet theory, which decomposes a
signal into wavelet coefficients and scaling coefficients. Exper-
iments are performed to evaluate the performance of the pro-
posed approach using a benchmark Ethernet network traffic.
For the algorithms settings and set of test series carried out in
this paper, the evidence suggest that the proposed approach can

outperform the RLS linear predictor and previous reported al-
gorithms (FIR neural network [25] and multiresolution MLP
neural network [16], [17]). Similar encouraging results for re-
cent real-world corporate proxy server traffic data and Internet
traces can be found in [34]. Furthermore, the results also sug-
gest that the generalization ability of FIR neural networks can be
improved by the proposed multiresolution learning algorithm.
At present, further tests are being carried out to produce more
experimental evidence of the generalization features of the pro-
posed solution. It is worth noting that there is an increase in
the computational complexity of the proposed MFIRNN when
compared with the FIRNN [25] and the MMLP [16], [17]; how-
ever, this increase is due to the use of the MODWT in the pro-
posed MFIRNN. The computational burden of the MODWT is
the same as the widely used fast Fourier transform and, hence, is
quite acceptable [21]. Further work will focus on investigating
further enhancements using recurrent neural networks and dif-
ferent types of internal memory.
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