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Path-Tracking of a Tractor-Trailer Vehicle
Along Rectilinear and Circular Paths:

A Lyapunov-Based Approach

A. Astolfi, P. Bolzern, and A. Locatelli

Abstract—The problem of asymptotic stabilization for straight and cir-
cular forward/backward motions of a tractor-trailer system is addressed
using Lyapunov techniques. Smooth, bounded, nonlinear control laws
achieving asymptotic stability along the desired path are designed, and
explicit bounds on the region of attraction are provided. The problem of
asymptotic controllability with bounded control is also addressed.

Index Terms—Articulated vehicles, autonomous vehicles, Lyapunov de-
sign, mobile robots, nonlinear stabilization.

I. INTRODUCTION

This paper addresses the problem of designing a controller for a
tractor-trailer autonomous vehicle which has to follow a prescribed
path. The only control variable is the steering angle of the tractor front
wheels. The desired path either consists of a circle of a given radius or
of a straight line to be followed at a specified speed, in either a forward
or backward maneuver. Observe that restricting the attention to circular
and rectilinear paths is not too severe a limitation, since any path can
be suitably approximated by a sequence of circular and rectilinear arcs.
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This problem is of great interest, both in applications and in purely
theoretical contexts. On one side, its solution provides the potential for
automatic guidance of a large class of industrial articulated vehicles,
such as mining trucks, earth-removal and road-paving vehicles, buses
for intercity travels, automated guided vehicles (AGVs), etc. (see, e.g.,
[1]–[6]). On the other side, the problem has constituted a challenging
benchmark for testing the effectiveness of several advanced nonlinear
control techniques (see, e.g., [7]–[20]). Most of the methods based on
either Jacobian or input–output linearization [17], [20] have the draw-
back that convergence to the prescribed path is ensured only if the ve-
hicle initial configuration is sufficiently close to the desired one, and
the size of the region of attraction is difficult to evaluate. On the other
hand, exact state-feedback linearization [11] yielding global conver-
gence is effective only in the case of on-axle hitching.
More advanced nonlinear control techniques, such as those based on

chained form [12], [13], [21], [22] or flatness [7], [8], [18] require, in
general, a nonobvious selection of the guidepoint and the simultaneous
use of two control variables, namely, the longitudinal velocity and the
steering velocity. Moreover, they are generally not robust with respect
to uncertainty in the system parameters.
This paper makes use of Lyapunov techniques as a tool for the design

of a path-tracking controller for the tractor-trailer vehicle. The guide-
point is located in the middle of the tractor rear axle, and the approach
of [9] is followed to decouple geometric path tracking from the ve-
locity control. Therefore, independent design of the longitudinal ve-
locity controller and the steering controller is possible. Herein, only
the steering controller will be considered. The purpose of the paper is
twofold. First, to cope in a unified framework with the general case of
positive/null/negative off-axle distance. Second, to design control laws
which allow for a precise characterization of the stability domain of the
closed-loop system. Furthermore, all the designed controllers take pos-
sible limitations on the control action (saturation of the steering angle)
explicitly into account.
The paper is organized as follows. Section II states the path-tracking

control problem and introduces the model of the path-tracking offsets.
The construction of stabilizing control laws is presented in Section III,
while Section IV contains some simulation results. The paper ends with
some concluding remarks in Section V.

II. PATH-TRACKING OFFSETS MODEL

The vehicle (see Fig. 1) consists of a wheeled tractor with two rear-
drive wheels and a front steering wheel, towing a trailer, possibly with
off-axle hitching (c 6= 0). The off-axle length c has to be regarded
as a variable with the sign being negative when the joint is in front of
the wheel axle, and positive otherwise. The longitudinal speed v1 and
the steering angle � of the tractor are the control variables to be (in-
dependently) manipulated so that the guidepoint P1 follows a desired
path with an assigned velocity. We will be concerned with two partic-
ular yet significant cases, a rectilinear path and a circular path of radius
R1. For simplicity, it is assumed that the path must be followed at con-
stant speed, but an appropriate time scaling can be used to deal with
the (more general) case of variable, yet sign-definite, speed.
Let los; #os denote the tractor lateral offset and its orientation offset,

respectively (see Fig. 1). They are measured with reference to the pro-
jection of the point P1 of the tractor onto the path. Moreover, let 'os =
'� 'p be the difference between the current angle ' between tractor
and trailer and its steady-state value 'p along the prescribed path. Path
tracking can be viewed as the task of driving these offsets asymptoti-
cally to zero.

1042-296X/04$20.00 © 2004 IEEE
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Fig. 1. Vehicle’s geometry and path-tracking offsets l and # .

Following [9], the dynamics of the offsets are described by

_los = ��jv1j sin#os (1a)

_#os = v1
u

L1

� �jv1j
cos#os
R1 + los

(1b)

_'os = �
v1
L2

sin('os + 'p)

�
v1

L1L2

(c cos('os + 'p) + L2)u (1c)

where u = tan � is the manipulated variable, and the parameter � is
used to distinguish between counterclockwise (� = 1) or clockwise
(� = �1) directions. The equations corresponding to the case of a
rectilinear desired path can be formally obtained from (1) by letting
R1 approach infinity with � = 1. To rule out meaningless circular path
assignments, the radius R1 must satisfy the inequality R2

1 > L2

2 � c2.
Observe that system (1) is not feedback linearizable when c 6= 0,

see, e.g., [15].
In many applications, the absolute value of the steering angle � is

bounded by a saturation value �M < �=2. Such a limitation may cause
difficulties in backward maneuvers, because the driver cannot recover
from a severely jack-knifed initial configuration unless the motion is
switched to the forward direction. As a matter of fact, it can be shown
that for L2 > jcj and tan �M � L1= L2

2
� c2, there exist initial

values of ' which cannot be driven to the prescribed value 'p in re-
verse motion. The same kind of trouble may arise even if �M = �=2
(no saturation), whenever the length of the trailer is smaller than the ab-
solute value of the off-axle length (L2 < jcj). In the sequel, the symbol
uM = tan �M will be used to denote the maximum allowable control
magnitude.

III. DESIGN OF STABILIZING CONTROL LAWS

In this section, we address the asymptotic stabilization problem for
system (1). Four different situations are considered, namely, the cases
of a vehicle moving forward or backward along a straight line or a
circle. It will be shown that these problems exhibit substantial differ-
ences, hence, it is not possible to derive a general (unified) result. For
convenience of exposition, we introduce the following definition.

Definition 1: The scalar valued function y = sat"(x) is said to
be a unitary "-saturation function if it is smooth and it is such that
d(sat"(0))=dx= ", jsat"(x)j � " for all x, and sat"(x)x > 0 for all
nonzero x.

The main results of this section make use of standard Lyapunov
theory, as can be found in [23], together with some recent results on
stabilization of cascaded systems and of feedforward systems, see
[24]–[26] and references therein for further detail.

A. Path Tracking in Forward Motion Along a Straight Line

Proposition 1: Consider the offset dynamics (1). Assume v1 > 0,
R1 = 1, � = 1, and 'p = 0. Then, for any 0 < �' < � and any
uM > 0, there exists a feedback control law u = u(los; #os) such
that:

• the zero equilibrium of the closed loop system is locally expo-
nentially stable;

• for any los and #os one has ju(los; #os)j � uM ;
• any trajectory of the closed-loop system starting in the set

M1 = f('os; los; #os) j ('os; los; #os) 2 [� �'; �']� IR� IRg

remains in M1 and converges to zero.
Finally, one such control law is

u = �1 tanh los
sin#os
#os

� sat� (#os) (2)

with �1 > 0, �2 > 0, and

�1 + �2 < sin �'
L1

jcj + L2

: (3)

Remark 1: The result expressed in Proposition 1 lends itself to the
following interpretation. If the angle 'os does not exceed (in absolute
value) �, then there exists an arbitrarily small control, which requires
only a partial knowledge of the state of the system, achieving asymp-
totic (exponential) regulation. Note, moreover, that the limitation on
the maximum allowable offset angle 'os is very mild in any significant
application, and the control law (2) does not depend on any system pa-
rameter except for the constraint (3).

Proof: To prove the first claim, consider the (los; #os) subsystem
and the (partial) Lyapunov function

V (los; #os) =
�1
L1

log(cosh los) +
1

2
#2os:

Differentiating with respect to time along the trajectories of the
closed-loop system yields

_V = �
v1
L1

#ossat� (#os) � 0:

We conclude that #os converges to zero, and by a straightforward appli-
cation of La Salle invariance principle, that also los converges to zero,
i.e., the (los; #os) subsystem in closed loop with the control (2) is glob-
ally asymptotically stable.
Note now that the 'os subsystem with u = 0 is locally asymptoti-

cally stable, hence, the overall closed-loop system is a cascaded inter-
connection of two locally asymptotically stable systems. By a general
results on cascaded systems, it is locally asymptotically stable. To con-
clude local exponential stability, note that the characteristic polynomial
of the closed-loop linearized system at the origin is

�3 + v1
�2L2 + L1

L1L2

�2 + v21
�1L2 + �2
L1L2

�+ v31
�1

L1L2

and this is a Hurwitz polynomial for any positive �1 and �2.
Observe now, that for any los and #os, one has

ju(los; #os)j � �1 + �2

which can be rendered arbitrarily small, and note that

_'osj' =�' � �
v1
L2

sin �'�
jcj + L2

L1

(�1 + �2)
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and this can be made negative, selecting �1 and �2 as in (3). Therefore,
if condition (3) holds, the set M1 is a positively invariant set for the
closed-loop system, hence

lim
t!1

los(t) = lim
t!1

#os(t)

= lim
t!1

u(los(t); #os(t)) = 0

and, by asymptotic stability of the 'os subsystem with u = 0,
limt!1 'os(t) = 0.

B. Path Tracking in Forward Motion Along a Circle

Proposition 2: Consider the offset dynamics (1). Assume v1 > 0,
R2

1 � L2

2 � c2, and L2 < R1. Then, for any uM > L1)=(L2, there
exists a feedback control law u = u(#os) such that:

• the zero equilibrium of the closed-loop system is locally expo-
nentially stable;

• for any #os one has

ju(#os)j � uM (4)

• any trajectory of the closed-loop system starting in the set

M2 = ('os; los; #os) j ('os; los; #os) 2 �
�

2
;
�

2

� (�R1;+1)� �
�

2
;
�

2

remains inM2 and converges to zero.
Finally, one such control law is

u = �
L1

R1

cos#os � sat"(#os) (5)

where

0 < " �
L1

L2

�
L1

R1

: (6)

Remark 2: The result in Proposition 2 can be interpreted as follows.
If the angle 'os does not exceed (in absolute value) �=2, if the angle
#os is not larger (in absolute value) than �=2, and finally, if the vehicle
position does not coincide with the center of the circle to be tracked,
then there exists a (bounded) feedback control law, requiring only the
knowledge of the angle #os, achieving local exponential stability and
asymptotic convergence in the setM2.

Proof: Define

z = log 1 +
los
R1

and note that, in the coordinates (z; #os; 'os), the offset dynamics (1)
can be rewritten as

_z = ��
v1
R1

sin#ose
�z

_#os =
v1
L1

u� �
v1
R1

cos#ose
�z

_'os = �
v1
L2

sin ('os + 'p)

�
v1

L1L2

(c cos('os + 'p) + L2)u

and does not have any singularity.
Consider now the (z; #os) subsystem and the function

W (z; #os) = � log(cos#os) + ez � z � 1

which is positive definite and proper in the set

~M2 = f(z; #os) j (z; #os) 2 IR� (��=2; �=2)g

and note that, along the trajectories of the closed-loop system

_W = �v1
1

L1

tan#ossat"(#os)� 0:

We conclude that the (z; #os) subsystem is rendered asymptotically
stable in the region ~M2 by the feedback control (5), which is bounded
(in magnitude) by L1=R1 + ".
Consider now the 'os subsystem, regarded as a locally asymptot-

ically stable system driven by external disturbances. Arguments sim-
ilar to those used in the proof of Proposition 1 allow us to conclude
that if " satisfies (6), any trajectory of the closed-loop system with
'os(0) 2 (��=2; �=2) is such that 'os(t) 2 (��=2; �=2) for all t
and converges toward the zero equilibrium.
Finally, to prove local exponential convergence, note that the char-

acteristic polynomial of the closed-loop linearized system at the zero
equilibrium is

�2R2

1L1 + �v1"R
2

1 + v21L1 � �R1L2 + v1 c2 +R2

1
� L2

2

which is a Hurwitz polynomial for any " > 0, hence the claim.
Remark 3: The control bound provided in (4) is very conservative.

If � = 1, a more precise bound is given by

�" � u(#os) �
L1

R1

+ "

whereas, if � = �1, one has

�
L1

R1

� " � u(#os) � ":

Finally, tighter bounds can be derived by selecting a particular sat-
uration function and computing the extrema of the function (5) for
#os 2 (��=2; �=2).

C. Path Tracking in Backward Motion Along a Straight Line

Proposition 3: Consider the offset dynamics (1). Assume v1 < 0,
R1 = 1, � = 1, 'p = 0, and L2 > jcj. Then, for any

uM >
L1

L2 � jcj

there exists a feedback control law u = u(los; 'os; #os) such that:

• the zero equilibrium of the closed-loop system is globally asymp-
totically and locally exponentially stable;

• for any los, 'os, and #os, one has ju(los; 'os; #os)j � uM .
Finally, one such control law is

u = �
L1

�('os)
sin'os � sat" ('os) + w (7)

where

�('os) = L2 + c cos'os;

w = �sat"
sin'os

sat" ('os)


�

�('os)
+
�('os)

L1L2

'os + r (8)

� = #os +  ('os) (9)

the function  ('os) is the smooth solution of the differential equation

d 

d'os

=
sin'os

sat" ('os)

L1L2

�2('os)
+

L2

�('os)

satisfying  (0) = 0

r = sat" (klos) (10)
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with 
 > 0, k > 0 appropriately chosen, and "i > 0, for i = 1; 2; 3
with "3 sufficiently small.

Proof: To begin with, note that the assumption L2 > jcj implies

�('os) = L2 + c cos'os > 0

for all 'os, hence, the feedback transformation (7) is globally defined.
Consider now system (1), with R1 = 1, in closed loop with the

control (7). This system is in strict feedforward form, hence, a globally
stabilizing control law can be designed using the methodology of [26].
Consider the (#os; 'os) subsystem in closed loop with the control in
(7)

_#os = �v1
sin'os
�('os)

� v1
sat" ('os)

L1

+
v1
L1

w

_'os = v1
�('os)

L1L2

sat" ('os)� v1
�('os)

L1L2

w

and consider the variable � defined in (9). Note that

_� = �
sin'os

sat" ('os)

v1
�('os)

w

and define

V (�; 'os) = 

�2

2
+
'2os
2
:

Simple computations show that

_V = v1'ossat" ('os)
�('os)

L1L2

� v1
sin'os

sat" ('os)


�

�('os)
+
�('os)

L1L2

'os w

hence, selecting w as in (8) yields

_V jr=0 < 0

for all nonzero (�; 'os).
Finally, consider the system (1) with u as in (7) and w as in (8).

This system can be regarded as the cascaded interconnection of a glob-
ally stable subsystem, the los subsystem, with a globally asymptotically
stable subsystem, the (�; 'os) subsystem, and with the control signal
r.

Let r be as in (10), then global asymptotic stability of the (�; 'os)
subsystem implies a local input-to-state stability with restriction prop-
erty with respect to the input r. Hence, if "3 is sufficiently small, the
set


� = (los; �; 'os) 
�2 + '2os � �2

where � is a positive constant depending on the parameters of the
system, is attractive and positively invariant for the closed-loop system
(1), (7), (8), (10). Moreover, the set 
� can be arbitrarily shrunk, re-
ducing the parameter "3, and if � is sufficiently small, the dynamics
of the closed-loop system (1), (7), (8), (10) inside the set 
� can be
approximated by a linear system, namely, the system that is obtained
discarding all high-order terms in #os and 'os. The characteristic poly-
nomial of such a system is

�3 +
"2

"2
1
(c+ L2)2

+
(c+ L2)

2"2
L2

1
L2

2

+
(c+ L2)"1
L1L2

jv1j�
2

+
v21"2


"1L1L2(c+ L2)
+
k"3v1jv1j

L1

�+
v21 jv1jk"3
L1L2

and this can be rendered a Hurwitz polynomial for any "1 > 0, "2 > 0,
"3 > 0, and 
 > 0, by a proper selection of k > 0. As a result, all

trajectories in the set 
� converge exponentially to the origin. Finally,
the control signal is bounded for any (los; 'os; #os) by

L1

L2 � jcj
+ "1 + "2 + "3:

Hence the claims.
Remark 4: Strictly speaking, Proposition 3 does not provide an ex-

plicit formula for a stabilizing control law, because of the presence
of the function  ('os), which is a solution of a differential equation.
However, from a practical point of view, it is possible to construct
simple approximations of the function  ('os), using numerical inte-
gration procedures. Such approximations turn out to be adequate, i.e.,
the properties of the closed-loop system are not modified if an approx-
imation, rather than the real function  ('os), is used.
Remark 5: It is interesting to compare the result in Proposition 3

with the result in Proposition 1. The former is a global result, i.e., no
constraint on the initial condition of the system is imposed, whereas the
latter is a local property, although an estimation of the region of conver-
gence is computable, and this is, for any practical purpose, sufficiently
large. However, the former requires full state feedback, whereas the
latter needs simply measurement of los and #os.
Remark 6: There is a substantial difference between a forward mo-

tion and a backward motion. In the former, the equation describing the
dynamics of 'os can be regarded as a locally (exponentially) stable
system driven by an exogenous disturbance, whereas in the latter, it can
be regarded as a driven exponentially unstable system. This explains the
need to feed back the variable'os in the backwardmaneuver. However,
the instability is due to a bounded function, hence, stabilization can be
achieved with small, yet not arbitrarily small, control.

D. Path Tracking in Backward Motion Along a Circle

Proposition 4: Consider the offset dynamics (1). Assume v1 < 0
and L2 > jcj. Then for any uM > L1=(L2 � jcj), there exists a
feedback control law u = u(los; 'os; #os) such that:

• the zero equilibrium of the closed-loop system is locally asymp-
totically stable;

• any trajectory of the closed-loop system starting in the set

M4 = f('os; los; #os) j (los; #os) 2 (�R1;+1)� (��; �]g

remains inM4 and converges to zero;
• for any los, 'os, and #os, one has

ju(los; 'os; #os)j � uM : (11)

Moreover, one such control law is

u = L1�('os) �
sin('os + 'p)

L2

� sat"
k1
"1
'os + w (12)

where

w = �sat"
k2
"2
 

 = 'os + (�+ C('os; �; los))

� 
(#os; los)�('os) 1 +
@C

@�
+

@C

@'os

� = log(1 + k3�)

� =
1

2

l2os
R1

+ (los +R1)(1� cos#os)

�('os) =
L2

c cos('os + 'p) + L2


(#os; los) = �
k3(los +R1) sin#os

1 + k3�
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and C('os; �; los) is the solution of the partial differential equation

0 = 
(#os; los)M('os)�
@C

@'os
sat"

k1

"1
'os

�

@C

@los
� sin#os +

@C

@�

(#os; los)M('os) (13)

with1

#os = arccos 1 +

1

2

l

R
�

e �1

k

los +R1

(15)

M('os) =
�

R1

� �('os)
sin('os + 'p)

L2

+ sat"
k1

�1
'os

such that C(0; �; los) = 0 for all (�; los), and k1, k2, k3, "1, and "2
are positive constants.

Proof: We break up the proof in four steps. First, we rewrite the
equations of the system in the new coordinates ('os; �; los). Then we
show that there is a solution of the partial differential equation (13),
and we derive a few properties of the function C('os; �; los). Then
we show that the proposed control law is such that the first two claims
of Proposition 4 hold. Finally, we show that condition (11) can be en-
forced by a proper selection of the design parameters.

Step 1) Change of coordinates. A simple analysis shows that, for
any pair (los; #os) in the set M4, there is a unique pair
(los; �), with � in the set specified in (14), and vice-versa.
Moreover, the point (los; #os) = (0; 0) is mapped into the
point (los; �) = (0; 0). In the coordinates (los; �; 'os), the
offset dynamics (1) are described by

_los = ��jv1j sin#os

_� = jv1j
(#os; los)
�

R1

+
u

L1

_'os = �
v1

L2

sin('os + 'p)

�
v1

L1L2

(c cos('os + 'p) + L2)u (16)

where #os is as in (15).
Step 2) Existence of a solution of (13). Consider system (16) with

u as in (12)

_los = ��jv1j sin#os

_� = jv1j
(los; #os)(M('os) + �('os)w)

_'os = jv1j �sat"
k1

�1
'os + w

where #os is as in (15). This system with w = 0 can be
regarded as the cascaded interconnection of two systems,
the former with state 'os (globally) asymptotically stable,
and the latter with state (los; �) globally stable. This system
has the same structure and the same properties as the sys-
tems studied in [24]. Hence, by the general results estab-
lished in [24], there exists a functionC('os; �; los) solving
the partial differential equation (13). Moreover, the function
C('os; �; los) is differentiable, in its set of definition, and
it is such that the function


('os; �; los) =
'2os

2
+

(�+ C('os; �; los))
2

2

1By definition of �, one has

1

2

l2os

R1

�
e� � 1

k3
�

1

2

l2os

R1

+ 2(los +R1) (14)

hence, # in (15) is well defined.
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Fig. 2. Tracking a circle: trajectories of the guidepoint starting from different
initial configurations.

is radially unbounded. Finally, the function C('os; �; los)
is such that C(0; �; los) = 0, i.e., there exists a differen-
tiable function C1('os; �; los) such that

C('os; �; los) = C1('os; �; los)'os:

This equation implies that

@C

@los ' =0

=
@C

@�
' =0

= 0

@2C

@los@'os ' =0

=
@C1

@los ' =0

:

Step 3) Asymptotic stability. Consider the function 
('os; �; los)
and note that, by construction

_
 = �jv1j'ossat"
k1

"1
'os � jv1j sat"

k2

"2
 � 0:

As a result, the zero equilibrium is stable in the sense of
Lyapunov. To conclude asymptotic stability, it is sufficient
to invoke La Salle invariance principle, noting that _
 = 0
implies'os = 0 and = 0. These, in turn, imply that along
any trajectory of the closed-loop system such that _
 = 0,
one has

u = �
�L1

R1

; w = 0; � = ��; � = �� (17)

for some constants �� and ��. Moreover, along such trajecto-
ries

0 =  = �� 
(#os; los)�(0) +
@C

@'os ' =0

0 = _ = �� _
(#os; los)�(0) +
@C1

@los ' =0

_los : (18)

Consider now the trajectory of the system (1) with the con-
straints (17) and (18)

_los = ��jv1j sin#os

_#os = jv1j�
1

R1

�
cos#os
R1 + los

(19)

_'os = 0:
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Fig. 3. Tracking a circle: time histories of the offsets and the steering angle in experiment A.

Note that the origin is an equilibrium for this system and that
any trajectory (los(t); #os(t)) of the (los; #os) subsystem
with nonzero initial conditions is such that, for some time
t = �t, #os(�t) = 0. Consider now the constraint (18) at time
�t, i.e.,

0 = ���jv1j�los(�t)
k3�(0)

(1 + k3��)R1

:

As a result, either �� = 0 or los(�t) = 0. This implies that
(los(�t); #os(�t)) = (0; 0). However, this contradicts the as-
sumption that the trajectory has nonzero initial conditions.
We conclude that the only trajectory of system (19) com-
patible with the constraint (18) is the trivial trajectory.

Step 4) Bound on the control variable. This point is straightforward,
once noted that the magnitude of the last two terms in the
control law can be arbitrarily reduced by a proper selection
of �1 and �2, and that the term

L1L2

c cos('os + 'p) + L2

�
1

L2

sin('os + 'p)

is upper bounded in magnitude by

L1

L2 � jcj

hence the claim.

Remark 7: As in the case of a straight backward motion, the result
summarized in Proposition 4 does not provide an explicit expression
for the control law yielding global asymptotic stability. Nevertheless,
it is possible to construct approximations of such a control law, i.e.,
approximations of the solution of the partial differential equation (13).

Remark 8: It is worth noting that the control law (12) does not yield
local exponential stability of the origin. In fact, a simple analysis shows

that the characteristic polynomial of the matrix associated with the
linear approximation of the closed-loop system (1), (12) is

�
2(�+ jv1j(k1 + k2))

hence the claim.

IV. SIMULATION RESULTS

The control strategies developed in this paper have been tested in a
number of simulation experiments. The attention has been focused on
backward maneuvers along a circular path, since it is known that they
represent the most challenging tasks. The simulated vehicle consists of
a tractor of length L1 = 5 m towing a trailer of length L2 = 5 m. The
off-axle length is c = 2:5 m, and the longitudinal velocity is v1 = �1
m/s. The maximum allowable control magnitude is taken as uM = 3.
The path to be tracked coincides with a circle of radius R1 = 20 m,

centered at the origin, to be followed counterclockwise. Several exper-
iments have been carried out with different initial vehicle’s configura-
tions.
The controller of Section III-D has been suitably tuned, obtaining

the following values of the relevant parameters: "1 = 0:1; "2 = 0:1;
k1 = 0:1; k2 = 1; and k3 = 1.
The results are collected in Fig. 2, where the trajectories of the guide-

point P1 are shown. Making reference to experiment A, where the ve-
hicle has to perform aU-turn maneuver, Fig. 3 reports the time histories
of the offsets and the steering angle. These simulations confirm conver-
gence of the vehicle to the prescribed path for any initial configuration.

V. CONCLUDING REMARKS

The paper has presented an application of Lyapunov techniques to
the design of stabilizing control laws for the problem of path tracking
a two-body articulated vehicle. In each of the four different situations
considered (forward/backward motion, rectilinear/circular desired
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path), a precise definition of the guaranteed domain of attraction in
the space of the offset variables has been given. Possible limitations
of the steering angle, frequently encountered in practice, have been
effectively dealt with. In some cases, the guaranteed stability region is
a finite proper subset of the entire state space. Thus, the development
of suitable strategies ensuring the convergence from any arbitrary
initial configuration is still a matter of investigation. Many of the ideas
in the paper are likely to be extended to a multitrailer vehicle, thanks
to the special structure of the relevant offsets equations.
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Task-Space Tracking Control of Robot Manipulators
via Quaternion Feedback

B. Xian, M. S. de Queiroz, D. Dawson, and I. Walker

Abstract—In this paper, we consider the problem of task-space tracking
control of robot manipulators. Based on a quaternion representation of the
end-effector orientation, we design a class of task-space controllers that
ensure asymptotic end-effector position and orientation tracking. To fa-
cilitate the control design, we first develop model-based and adaptive full-
state feedback controllers. We then present a model-based output feedback
controller that eliminates link velocity measurements via a model-based
observer. The application of the proposed control strategy to redundant
robots is also discussed. Simulation results based on a six-link manipulator
system are presented for the output feedback controller.

Index Terms—Robot manipulator, output feedback control, task-space
control, quaternion, Lyapunov.

I. INTRODUCTION

In robotic applications, the desired task is typically defined in terms
of the end-effector motion. As a result, the desired robot trajectory is
described by the desired position and orientation of a Cartesian coor-
dinate frame attached to the robot end-effector with respect to the base
frame (i.e., the so-called task-space variables). Control of the robot
motion is then performed using feedback of either the link variables
(position and velocity of each robot link) or the task-space variables.
Unfortunately, link-based control has the undesirable feature of re-
quiring the solution of the inverse kinematics to convert the desired
task-space trajectory into the desired link trajectory. In contrast, task-
space control does not require the inverse kinematics; however, the pre-
cise tracking control of the end-effector orientation is not straightfor-
ward. Several parameterizations exist to describe the orientation an-
gles, including three-parameter representations (e.g., Euler angles, Ro-
drigues parameters, etc.) and the four-parameter representation given
by the unit quaternion. Whereas the three-parameter representations
always exhibit singular orientations (i.e., the orientation Jacobian ma-
trix in the kinematic equation is singular for some orientations), the
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