
0018-9162/00/$10.00 © 2000 IEEE78 Computer

The Koala Component
Model for Consumer
Electronics Software

M
ost consumer electronics today contain
embedded software. In the early days,
developing CE software presented rela-
tively minor challenges, but in the past
several years three significant problems

have become apparent:

• The size and complexity of the software in indi-
vidual products are increasing rapidly. Embedded
software roughly follows Moore’s law, doubling
in size every two years.

• The required diversity of products and their soft-
ware is increasing rapidly.

• Development time must decrease significantly.

What does all this embedded software do? At first,
it provided only basic control of the hardware. Since
then, some of the signal and data processing has shifted
from hardware to software. Software has made new
product features possible, such as electronic pro-
gramming guides and fancy user interfaces. The latest
trends show a merging with the computer domain,
resulting in services such as WebTV.

No longer isolated entities, CE products have
become members of complex product-family struc-
tures. These structures exhibit diversity in product fea-
tures, user control style, supported broadcasting
standards, and hardware technology—all factors that
increase complexity.

Today’s dynamic CE market makes it impossible to
wait two years between the conception and introduc-
tion of a new product. Instead we must create new
products by extending and rearranging elements of

existing products. The highly competitive market also
requires us to keep prices low, using computing hard-
ware with severely constrained capabilities.

THE CHALLENGE
How can we handle the diversity and complexity of

embedded software at an increasing production speed?
Not by hiring more software engineers—they are not
readily available, and even if they were, experience
shows that larger projects induce larger lead times and
often result in greater complexity. We believe that the
answer lies in the use and reuse of software components
that work within an explicit software architecture.

Why software components?
Software reuse lets us apply the same software in

different products, which saves product-development
effort. Software reuse has been a goal for some time.1

The classical approach of defining libraries can be
highly successful in limited domains, such as scientific
and graphical libraries. However, while stimulating
low-level code reuse, libraries do not help much in
managing the similarities and differences in the struc-
ture of applications.

Developers devised object-oriented frameworks to
create multiple applications that share structure and
code.2 The framework provides a skeleton that they
can specialize in different ways. This approach makes
application development faster, as long as the appli-
cations share similar structures. But changing the
structure significantly is difficult because it is embed-
ded in the framework. Also, a strong and often
undocumented dependency exists between compo-

A component-oriented approach is an ideal way to handle the diversity of
software in consumer electronics. The Koala model, used for embedded
software in TV sets, allows late binding of reusable components with no
additional overhead.

Rob van
Ommering
Frank van der
Linden
Philips
Research
Laboratories

Jeff Kramer
Jeff Magee
Imperial
College,
London

R E S E A R C H F E A T U R E

nents and the framework because of implementation
inheritance.

Component-based approaches let engineers construct
multiple configurations with variation in both structure
and content.3,4 A software component is an encapsu-
lated piece of software with an explicit interface to its
environment, designed in such a way that we can use it
in many different configurations. Classical examples in
desktop application software are the button, tree view,
and Web browser. Well-known component models are
COM/ActiveX, JavaBeans, and CORBA.

Why an explicit architecture?
Many component models are used with one or

more programming languages—such as Visual Basic
and Java—to construct configurations out of sets of
components. Such an approach has one disadvantage:
difficulty in visualizing and therefore managing the
structure of the configurations. You can use visual
tools to design the structure and even generate skele-
ton code from it, but keeping such designs consistent
with the actual code often proves difficult. Although
we can use round-trip engineering techniques to
extract the design information from the actual code,
wouldn’t it be better to make the structure explicit in
the first place?

With an architectural description language (ADL),
you can make an explicit description of a configura-
tion’s structure in terms of its components.5 This
description makes both the diversity of the product
family and the complexity of the individual products
visible; thus, it serves as a valuable tool for software
architects.

The perfect marriage?
We believe that a component model combined with

an architectural description language will help us
develop CE product families. COM inspired us, but
we soon found the following requirements specific to
our domain:

• Most of the connections among our components
are constant and known at configuration time.
To limit the runtime overhead, we wish to use
static binding wherever possible.

• High-end products will allow for the upgrading
of components in the near future. We would
like the components we described earlier to be
dynamically bound into such products, which
will have looser resource constraints.

• We need an explicit notion of requires interfaces.

Figure 1 illustrates the need for requires interfaces.
In Figure 1a, if component A needs access to compo-
nent B1, it would traditionally import B1, but this puts
knowledge of B1 inside A, and therefore A cannot

combine with B2, shown in Figure 1b. One solution
would be to let A import an abstract component B
and have the configuration management system
choose between B1 and B2. But this would not allow
us to create product 3, shown in Figure 1c, where A
is bound to either B1 or B2 depending on some con-
dition to be determined at runtime.

The solution is to take the binding knowledge out
of the components. Component A is then said to
require an interface of a certain type, and B1 and B2
provide such an interface. The binding is made at the
product level.

Darwin,6,7 although originally designed for distrib-
uted systems, provides most of what we need from an
ADL: an explicit hierarchical structure, components
with provides and requires interfaces, and bindings.
However, it did require modification to support

• the easy addition of glue code between compo-
nents (without having to create auxiliary com-
ponents) and

• a diversity parameter mechanism that allows
many parameters to be defined and also permits
code optimization depending on the parameter
settings.

We therefore created the Koala model and lan-
guage, which Philips software architects and devel-
opers currently use to create a family of television
products.

THE KOALA MODEL
In designing Koala, we sought to achieve a strict

separation between component and configuration
development. Component builders make no assump-
tions about the configurations in which their compo-
nent is to be used. Similarly, configuration designers
are not permitted to change the internals of a com-
ponent to suit their configuration.

Components
Koala components are units of design, develop-

ment, and—more importantly—reuse. Although they
can be very small, the components usually require
many person-months of development effort.

March 2000 79

A

B1

Product 1

A

B2

Product 2

B1 B2

A

Product 3

(a) (b) (c)

Figure 1. The use of
requires and provides
interfaces takes the
binding knowledge out
of the components.

80 Computer

A component communicates with its environment
through interfaces. As in COM and Java, a Koala
interface is a small set of semantically related func-
tions. A component provides functionality through
interfaces, and to do so may require functionality
from its environment through interfaces. In our
model, components access all external functionality
through requires interfaces—even general services
such as memory management. This approach pro-
vides the architects with a clear view of the system’s
resource use.

For example, in a TV, a tuner is a hardware device
that accepts an antenna signal as input, filters a par-
ticular station, and outputs the signal at an interme-
diate frequency. This signal is fed to a high-end input
processor (HIP) that produces decoded luminance and
color signals, which in turn are fed to a high-end out-
put processor (HOP) that drives the TV screen. Each
of these devices is controlled by a software driver that
can access hardware through a serial I2C bus.
Therefore each driver requires an I2C interface, which
must be bound to an I2C service in a configuration.

Figure 2 graphically represents a TV software plat-
form that contains these drivers and some extra com-
ponents. We deliberately designed Koala’s graphical
notation to make components look like IC chips and
configurations look like electronic circuits. Interfaces
are represented as pins of the chip; the triangles des-
ignate the direction of function calls. The configura-
tion in Figure 2 binds the tuner and HIP driver to a
fast I2C service and binds the HOP driver to a slow
I2C service.

Interface definitions
We define an interface using a simple interface def-

inition language (IDL), in which we list the function

prototypes in C syntax. For instance, this is the
ITuner interface definition:

interface ITuner
{

void SetFrequency(int f);
int GetFrequency(void);

}

ITuner is an example of a specific interface type,
which will be provided or required by only a few dif-
ferent components. The IInit interface, also present
in Figure 2, exemplifies a more generic interface: It
contains functions for initializing a component, and
most components will provide this interface.

Component descriptions
We describe the boundaries of a component in a

component description language (CDL). The tuner
driver is defined as follows:

component CTunerDriver
{

provides ITuner ptun;
IInit pini;

requires II2c ri2c;
}

Each interface is labeled with two names. The long
name—for example, ITuner—is the interface type
name. This globally unique name refers to a particu-
lar description in our interface repository. The other
name—for example, ptun—is a local name to refer
to the particular interface instance. This convention
allows us to have two interfaces on the border of a
component with the same interface type—for

II2c

CTunerDriver
ctun

ptun

ri2c

IInit

pini

ITuner

pif

pini CHipDriver
chip

pscr

pini
CHopDriver

chop

pcol

IIf IColor IScreen

CFrontEnd
cfre

pprg

pini

IProgram

ppic

pini CBackEnd
cbke

IPicture

rscrrtun rif rcol

CTvPlatform pprg ppic

slowfast
II2c

pini

ri2cri2c

m

Figure 2. Koala’s
graphical notation
makes components
look like IC chips and
configurations look
like electronic circuits.
Interfaces are repre-
sented as pins of the
chip; the triangles
designate the direction
of function calls. The
configuration shown
here binds the tuner
and HIP driver to a fast
I2C service and binds
the HOP driver to a
slow I2C service.

instance, a volume control for the speakers and one
for the headphones—as long as the instance names
are different.

Configurations
A configuration is a set of components connected

together to form a product. All requires interfaces of a
component must be bound to precisely one provides
interface; each provides interface can be bound to zero
or more requires interfaces. Interface types must match.

Compound components
A typical component may contain 10 interfaces, and

a typical configuration contains tens of components.
Hence, it is not convenient to define system configu-
rations directly in terms of basic components.
Therefore, as in Darwin, we introduce compound
components. Figure 2 shows an example, the TV plat-
form. Here is an incomplete definition:

component CTvPlatform
{

provides IProgram pprg;
requires II2c slow, fast;
contains

component CFrontEnd cfre;
component CTunerDriver ctun;

connects
pprg = cfre.pprg;
cfre.rtun = ctun.ptun;
ctun.ri2c = fast;

}

Each contained component has a type name—for
example, CTunerDriver—and an instance name—
for example, ctun. The globally unique type name
refers to the reusable component definition in our
component repository. The instance name is local to
the configuration.

We have to extend the binding rules to cater to com-
pound components. The rules are very simple if we
take the triangles into account: An interface may be
bound by its tip to the base of precisely one other inter-
face. Conversely, each base may be bound to the tip of
zero or more other interfaces. In plain English, there
must be a unique definition of each function, but a
function may be called by many other functions.

Modules
In Figure 2, each subcomponent provides an ini-

tialization interface that must be called when initial-
izing the compound component. We cannot just
connect all initialization interfaces to that of the com-
pound component; that violates our binding rule
(What would be the order of calling?). We could define
a new component to perform the initialization, but

this nonreusable component would pollute our com-
ponent repository.

We have therefore chosen another solution. A mod-
ule is an interfaceless component that can be used to
glue interfaces. We declare modules within a compo-
nent and connect them to interfaces of the component
or of its subcomponents. The module has access to
any interface whose base is bound to the module. The
module implements all functions of all interfaces
whose tip is bound to the module. We also use mod-
ules to implement basic components, forming the
leaves of the decomposition hierarchy.

Implementation
In Koala, components are designed independently

of each other. They have interfaces to connect to other
components, but this binding is late—at configura-
tion time. By running the compiler at configuration
time, we can still deploy static binding.

The implementation of static binding is straightfor-
ward, using naming conventions and generated renam-
ing macros. A simple tool (also called Koala) reads all
component and interface descriptions and instantiates
a given top-level component. All subcomponents are
instantiated recursively until Koala obtains a directed
graph of modules, interfaces, and bindings.

For each module, Koala generates a header file with
renaming macros, as shown in Figure 3. A function f
in interface p, implemented in module m of compo-
nent C, is given the logical name p_f. Koala chooses a
physical name c_p_f, where c is a globally unique pre-
fix associated with C. To map logical to physical, Koala
generates the following macro in the header file for m:

#define p_f c_p_f

March 2000 81

n

m

C p

r

D

Figure 3. Implemen-
tation of static bind-
ing. Module m imple-
ments a function p–f,
while module n refers
to the function as r–f .
Macros do the rest.

#define p–f c–p–f

#define r–f c–p–f

82 Computer

Similarly, a module n in component D refers to a
function f in the requires interface r by its logical name,
r_f. Koala calculates the binding and generates the
appropriate renaming macro—in our case:

#define r_f c_p_f

The names p_f and r_f are local to modules and the
name c_p_f is globally unique. This is an example of
static binding. Koala also supports limited forms of
dynamic binding in the form of switches.

HANDLING DIVERSITY
Koala has some extra features aimed at handling

diversity efficiently: interface compatibility, function
binding, partial evaluation, diversity interfaces, diver-
sity spreadsheets, switches, optional interfaces, and
connected interfaces.

Interface compatibility
An interface of type ITuner can be required or pro-

vided by more than one component. For instance,
both a European frequency-based and an Amerian
channel-based television front end can be connected to
both a high-end and an economical tuner driver if they
support the same interface. Treating interface defini-
tions as “first-class citizens” ensures that component
builders do not change the interface to suit only one
implementation.

As a consequence, we declare an interface defini-
tion to be immutable—it cannot be changed once it
has been published. But it is possible to create a new
interface type that contains all the functions of the pre-
vious interface plus some additional ones. With strict
interface typing, a tuner driver providing the new

interface cannot be connected to a front end requir-
ing the old interface—without adding glue code.
Because we expect this to be a common design pat-
tern, we permit an interface to be bound to one of a
different type if the provided interface supports at least
all the functions of the required interface.

Function binding
When two interfaces are bound, their functions are

connected on the basis of their name. Sometimes we must
bind functions of different names efficiently, perhaps even
from different interfaces. We can implement glue func-
tions in C, but that introduces a runtime overhead. To
solve this problem, we introduce function binding.

Remember that developers ultimately implement
functions in modules. Normally, Koala generates a
renaming macro in the header file; a developer imple-
ments the function by hand in a C file. We allow a func-
tion to be bound to an expression in CDL. Koala will
then generate a macro that contains the C equivalent of
that expression as its body. The expression may contain
calls to functions of interfaces bound to that module.

For example, suppose that for some reason we must
bind a new front end requiring ITuner2 to an
old tuner driver providing ITuner. The interface
ITuner2 has an extra function EnableOutput. A
different component, the HIP, also can perform this
function.

Figure 4 shows how Koala performs function bind-
ing. Koala function binding can implement module
m as follows:

within m {
cfre.rtun.SetFrequency(x) =

ctun.ptun.SetFrequency(x);
cfre.rtun.GetFrequency() =

ctun.ptun.GetFrequency();
cfre.rtun.EnableOutput(x) =

chip.pout.EnableOutput(x);
}

Because Koala can shortcut the renaming macros,
this is more efficient than implementing the functions
in C. However, the real benefit of function binding
comes with partial evaluation.

Partial evaluation
Koala understands a subset of the C expression lan-

guage and can partially evaluate certain expressions —
so 1 + 1 will be 2, and 1?f(x):g(x) will be f(x).
This capability plays an important role in our diver-
sity management.

Diversity interfaces
To be reusable, components should not contain con-

figuration-specific information. Moving all configu-

CTunerDriver
ctun

ITuner

ptun

CHipDriver
chip

CFrontEnd2
cfre

ITuner2

IOutput

pout

rtun

m

Figure 4. Function
binding in Koala.
Module m is a glue
that binds the
interfaces. In this
module, functions can
be implemented in C
or in Koala.

ration-specific code out of the component may pro-
vide an almost empty component that, while reusable,
is not very usable. We believe that nontrivial reusable
components should be parameterized over all config-
uration-specific information.

We could add a parameter list to a component def-
inition, but this technique only works well with a few
parameters. We expect components to have tens and
maybe hundreds of parameters— see, for instance, the
property lists of ActiveX components.

Property lists are indeed suitable, but an implemen-
tation in terms of Set and Get functions does not
allow for optimization when we give certain parame-
ters constant values at design time. Therefore we reverse
roles: Instead of the component providing properties
to be filled in by the configuration, we let it require the
properties through the standard interface mechanism.
Such interfaces are called diversity interfaces.

Figure 5 shows how to give a television front end a
diversity interface. A parameter in the interface div
of CFrontEnd could be a Boolean function
ChannelMode(), indicating whether the component
should operate in frequency or in channel mode. The
function is implemented in a module m that belongs
to the configuration.

Koala can implement ChannelMode as a C func-
tion, which makes the diversity parameter dynamic.
It can also bind ChannelMode to an expression that
can be calculated at configuration or compile time.
Koala will then assign the result value—for example,
true—to the function so that the C compiler can,
for instance, remove the else part of if statements
referring to the parameter, resulting in less code.
Koala will generate an extra macro of the form
#define div_ChannelMode_CONSTANT 1 that can
be used to conditionally exclude certain pieces of code
that are unreachable given this diversity parameter
setting.

Diversity spreadsheets
Setting up an object-oriented spreadsheet of diver-

sity parameters provides the most interesting use of
Koala’s function binding and partial evaluation. Koala
can express parameters of inner components in terms
of parameters of outer components. For instance, it
can express ChannelMode of the television front end
in the module m in terms of the region diversity para-
meter of the TV platform (US=channel mode,
Europe=frequency). Koala can express this region
parameter again in terms of a product diversity para-
meter at a yet higher level. Using the product para-
meter in the front-end component would be a
violation of our principle of configuration-indepen-
dent components, which mandates that the compo-
nent designer have no knowledge of specific products.

The spreadsheet approach allows for even more ele-

gant diversity calculations. Consider the use of real-
time kernel (RTK) threads. Each component will cre-
ate zero or more of these threads. Some RTKs require
the thread descriptor blocks to be allocated statically.
If we let each component provide an interface that con-
tains the number of threads required, we can use Koala
to add all the numbers at compile time and bind the
result to the diversity parameter of the RTK.

Switches
Koala can use diversity interfaces to handle the

internal diversity of a component. But what about the
structural diversity in the connections between com-
ponents? Koala already provides for this: You can use
function binding with conditional expressions to route
the function calls to the appropriate components.
Koala’s partial evaluation mechanisms allow these
connections to be turned into normal function calls if
it can evaluate the condition at compile time. For us,
this design pattern occurs so frequently we decided to
make it a special Koala construct—the switch.

Figure 5 demonstrates the use of a switch. The front
end connects to the first or second tuner driver
depending on the switch’s setting. An interface, which
could be a diversity interface, controls the switch itself.
If the switch setting is known at compile time, Koala’s
partial evaluation techniques will optimize the switch
to a direct function call. Moreover, Koala removes
unreachable components from the configuration auto-
matically. These measures allow for late yet optimal
component binding. Koala also permits multiple inter-
faces to be switched simultaneously and between more
than two targets.

Optional interfaces
Our product family has a set of components that

all provide a basic set of interfaces, but some of them

March 2000 83

CTunerDriver
ctun

ITuner

ptun

CTuner2Driver
ctun2

CFrontEnd
cfre

ITuner

ITuner

ptun

rtun

div

m

Figure 5. Diversity
interfaces and
switches.CFrontEnd
has a diversity inter-
face that is defined in
module m. The switch
selects between two
drivers and is con-
trolled by module m.
Module m can define
both drivers in terms
of the diversity of the
compound
component.

84 Computer

provide extra interfaces. A set of tuner drivers
may, for instance, offer frequency and channel
selection interfaces, but some of them may also
offer advanced search interfaces. If we design
another component to be connected to one of
this set, this component may want to inquire
whether the tuner driver actually connected to
it supports searching—this knowledge is not a
component but a configuration property. To
do so, the component declares an optional
requires interface that may, but need not, be
connected at its tip.

A component with an optional requires inter-
face r can use the function r_iPresent() to deter-
mine whether the interface is indeed connected. Koala
will set this function to TRUE if the interface is con-
nected to a nonoptional provides interface of another
component, and to FALSE if it’s not connected.

A component can also provide optional interfaces.
Such an interface is automatically extended with an
iPresent function, which the component must
implement to inform others whether it actually imple-
ments the interface. The iPresent of such an
optional provides interface may depend on the avail-
ability of hardware or on the iPresent function of
optional requires interfaces that the component needs
for its implementation.

We modeled optional interfaces after COM’s query
interface mechanism. Again, partial evaluation allows
Koala to optimize the code if it can determine its pres-
ence at compile time.

Connected interfaces
A configuration consists of a given component

instantiated recursively. If Koala can determine after
switch evaluation that certain components are not
reachable, it will not include them. To start this
process, at least one module must be declared to be
present.

A reachable component can use the function
iConnected to determine whether a provided inter-
face is actually being used in that configuration. The
component can skip time-consuming initializations
or exclude parts of the code if certain interfaces are
not used.

COPING WITH EVOLUTION
Koala supports the software development of a prod-

uct family of up-market television sets. The model is
used by more than 100 developers at different sites all
over the world, which raises some process issues in
component-oriented development.

Interface repository
Developers store interface definitions in a global

interface repository, where each interface type has a

globally unique name. An interface definition consists
of an IDL description and a data sheet, a short text
document describing the semantics of the interface.

The repository is Web-based and globally accessible.
Changes can be made only after they’ve been ap-
proved by the interface management team. The fol-
lowing rules constrain the evolution:

• Existing interface types cannot be changed.
• New interface types can be added.

In practice, we allow exceptions to the first rule, but
only if all components using that interface can be
changed at the same time—which is usually impossible.

Component repository
Developers store component definitions in a global

component repository, where each component has a
globally unique long name, used in component
descriptions, and a globally unique short name, used
as a prefix for function names. Note that C itself has
no name-space facility other than file scope.

This repository is also Web-based. Each component
has a CDL description, a data sheet (a short document
describing the component), and a set of C and header
files. These header files are only for use by the com-
ponent itself; Koala handles all connections between
components.

Changes to the repository can only be made after
approval by the architecture team. The following
rules apply:

• New components can be added.
• An existing component can be given a new pro-

vides interface, but an existing provides interface
cannot be deleted.

• An existing component can be given a new
requires interface, but it must then be optional.
An existing requires interface cannot be deleted,
but it can be made optional.

A compound component is just as reusable as any
of its constituents. As with hardware, we sometimes
call a compound component a standard design. Our
component repository is flat: It contains both basic
and compound components. Although component
instances are encapsulated in compound components,
the corresponding types are not. Therefore, it is pos-
sible to construct a second compound component with
the same basic components in a different binding.

Configuration management
The repositories are under the control of a standard

configuration management system. This system man-
ages the history of components and temporary
branches—for example, where a developer repairs a

Koala lets us
introduce

component
orientation in
a domain still

severely resource-
constrained.

bug while another adds a feature. Koala handles all
permanent diversity, either by diversity interfaces or by
variants of components stored under a different name.

M ore than 100 software developers within
Philips are currently using Koala. It lets us
introduce component orientation in a domain

that is still severely resource-constrained. It offers
explicit management of requires interfaces, a graph-
ical notation that is very helpful in design discussions,
and an elegant parameterization mechanism. Its par-
tial evaluation techniques can calculate part of the
configuration at compile time while generating code
for the part that must be determined at runtime. We
do not claim that the underlying component model
is unique, but we do believe that its diversity features
and partial-evaluation techniques are both novel and
beneficial. Furthermore, we believe that the approach
will facilitate the future transition to standard plat-
forms such as COM. ✸

Acknowledgment
Koala is a result of the Esprit project 20477 (ARES).

References
1. M.D. McIlroy, “Mass-Produced Software Compo-

nents,” Software Engineering: Report on a Conference
by the NATO Science Committee, P. Naur and B. Ran-
dell, eds., NATO Scientific Affairs Division, Brussels,
1968, pp. 138-150.

2. M. Fayad and D. Schmidt, “Object-Oriented Applica-
tion Frameworks,” Comm. ACM, Oct. 1997, pp. 32-
38.

3. D. Batory and S. O’Malley, “The Design and Imple-
mentation of Hierarchical Software Systems with
Reusable Components,” ACM Trans. Software Eng. and
Methodology, Oct. 1992, pp. 355-398.

4. C. Szyperski, Component Software: Beyond Object-
Oriented Programming, Addison-Wesley, Reading,
Mass., 1997.

5. D. Garlan and D. Perry, “Introduction to the Special
Issue on Software Architecture,” IEEE Trans. Software
Eng., Apr. 1995, pp. 269-274.

6. J. Magee et al., “Specifying Distributed Software Archi-
tectures,” Proc. ESEC ’95, Springer-Verlag, Berlin, 1995,
pp. 137-153.

7. J. Magee, N. Dulay, and J. Kramer, “Regis: A Con-
structive Development Environment for Distributed Pro-

grams,” Distributed Systems Eng. J., Vol. 1, No. 5,
1994, pp. 304-312.

Rob van Ommering is a senior software architect at
Philips Research Laboratories, Eindhoven, the
Netherlands. His main interests are software archi-
tectures for resource-constrained systems, formal
specification, and architecture verification and visu-
alization. He received an MSc in physics from the
Technical University Eindhoven. Contact him at
Rob.van.Ommering@philips.com.

Frank van der Linden worked as a research scientist
at Philips Research Laboratories, Eindhoven, the
Netherlands, but now works for Phillips Medical Sys-
tems, Best, the Netherlands. His interests are in soft-
ware architectures, with emphasis on family aspects of
embedded systems. He has been active in research on
parallel algorithms for proof checking, programming
language semantics, and formal design methods. He
earned an MSc and a PhD in mathematics from the
University of Amsterdam, and is a member of the
Dutch Mathematics Society. Contact him at Frank.
van.der.Linden@philips.com.

Jeff Kramer is a professor and head of the Distributed
Software Engineering Research Section in the Depart-
ment of Computing at Imperial College, London. His
research interests include requirement analysis tech-
niques, design and behavior analysis methods, and
software architectures, especially as applied to dis-
tributed software. He received a BSc in electrical engi-
neering from Natal University and an MSc and a PhD
in computing from Imperial College, London. Con-
tact him at jk@doc.ic.ac.uk.

Jeff Magee is a professor in the Department of Com-
puting at Imperial College, London. His research pri-
marily concerns the software engineering of parallel
and distributed systems, including design methods,
operating systems, languages, and program support
environments. He received a BSc in electrical engi-
neering from Queens University Belfast and an MSc
and PhD in computing science from Imperial College,
London. Contact him at jnm@doc.ic.ac.uk.

March 2000 85

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

