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Constructing Distributed Systems in Conic 
JEFF MAGEE, JEFF KRAMER, AND MORRIS SLOMAN 

Abslrucl-Existing distributed systems vary from those which merely 
provide interconnection of autonomous systems to those which provide 
a complete language environment for writing distributed programs. 
The former tend to support flexibility and provide ready access to sys- 
tem facilities, but suffer by being complex to use. Language environ- 
ments are simpler to use and can provide safer environments by per- 
forming checks, but tend to be aimed a t  constructing distributed 
programs rather than systems, and tend to hide and prevent access to 
many system level facilities. Both tend to be weak in their support for 
the configuration and modification of distributed applications. 

The Conic environment provides a language-based approach to the 
building of distributed systems which combines the simplicity and safety 
of a language approach with the flexibility and accessibility of a n  op- 
erating systems approach. I t  provides a comprehensive set of tools for 
program compilation, configuration, debugging and execution in a dis- 
tributed environment. The environment is particularly strong in its 
conjigurution facilities. A separate Configuration language is employed 
to specify the configuration of software components into logical nodes. 
This provides a concise configuration description and facilitates the 
reuse of program components in different configurations. Applications 
a re  constructed as  sets of one or more interconnected logical nodes. 
Arbitrary, incremental change is supported by dynamic conjigurulion, 
the capability to dynamically create, interconnect, and control logical 
nodes. In addition, the system provides user transparent datatype 
transformation between heterogeneous processors. Applications may 
be run  on a mixed set of interconnected computers running the UNIX@ 
operating system and on bare target machines with no resident oper- 
ating system. 

This paper sets out the basic principles adopted in the construction 
of the Conic environment and, in particular, describes the configura- 
tion and run-time facilities provided. Examples a re  used to illustrate 
the approach. 

Zndex Terms-Configuration language, configuration management, 
distributed systems, dynamic configuration, networked systems, op- 
erating system, programming language, run-time system. 

I. INTRODUCTION 
ILE the advantages of the use of distributed sys- w tems are well known and widely acclaimed, there is 

still little agreement as to how to provide the necessary 
support for modularity, concurrency, synchronization, 
communication, and configuration. The approaches taken 
vary from those attempts to merely adapt and interconnect 
existing autonomous systems to those which provide a 
complete language environment in which to write distrib- 
uted programs. 

For instance, many Operating Systems (OS) provide di- 
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rect access to communication facilities. Examples of this 
approach include the SNA LU 6.2 interface in IBM op- 
erating systems [lo], the DECNET NSP interface in DEC 
operating systems [36], and the socket interface to TCPI 
IP protocols in most UNIX systems. A distributed appli- 
cation is implemented as a collection of sequential pro- 
grams which communicate using the relevant networking 
system calls. However, the communication interfaces are 
complex and difficult to use. The naming conventions and 
interprocess communication primitives are usually non- 
uniform, using different conventions and providing dif- 
ferent semantics for internal and remote interactions. Lit- 
tle support is provided by the OS environment for initial 
configuration of a set of program components into an ex- 
ecutable distributed application, nor for subsequent mon- 
itoring and control of the configuration. Similarly, little 
or no interface checking is supported to ensure compati- 
bility of interconnected programs. Applications pro- 
grammed in this way are thus difficult to construct, debug 
and maintain. The main advantage of the OS approach is 
that it isjexible, in that a distributed application is com- 
posed of a (potentially) changing set of interconnected 
programs. 

On the other hand, distributed programming languages 
[32], [9], [l], [3] reduce the complexity of constructing 
distributed applications by providing modularity, concur- 
rency, synchronization and communication facilities in- 
tegrated into a single language framework. They provide 
support for compile, link, and run-time checks to ensure 
operation or message compatibility between components. 
In addition they provide consistent naming, communica- 
tion and synchronization for both local and remote inter- 
actions. Thus language environments are generally sim- 
pler to use and can provide safer environments. However, 
configuration facilities are often part of the programming 
language which results in a single large distributable pro- 
gram rather than the OS view of a system as a changing 
set of interconnected programs. We believe that this 
makes unpredicted modification and the provision of re- 
dundancy more difficult. In many applications, particu- 
larly real-time ones, it is useful to have a set of compo- 
nents which form a unit for configuration or failure 
recovery, and which can be separately reconfigured. 

The Conic environment, developed by the Distributed 
Programming Group at Imperial College, provides a lan- 
guage-based approach to the building of distributed ap- 
plications which combines the simplicity and safety of a 
language approach with the flexibility of an operating sys- 
tems approach. Flexible configuration, modularity and 
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reuse of software components is facilitated by separation 
of the language for programming individual task modules 
(' 'programming in the small") from the language for con- 
Jiguring programs from predefined modules (' 'program- 
ming in the large"). The separate configuration language 
provides a concise configuration description and hierar- 
chical composition, and is employed to specify the con- 
figuration of software modules (processes) into logical 
nodes. A logical node is the system configuration unit. It 
is a set of tasks which execute concurrently within a shared 
address space. Systems are constructed as sets of one or 
more interconnected logical nodes. 

Large distributed applications are subject to both evo- 
lutionary and operational changes. Evolutionary changes 
occur through the need to incorporate new functionality 
and technology in a manner which is difficult to predict. 
Operational changes result from the need to redimension 
to cater for growth and to reorganize to recover from fail- 
ures. It is impractical and uneconomic to take out of ser- 
vice an entire distributed system simply to modify part of 
it. Conic caters for these requirements by language and 
run-time support for dynamic conjiguration [ 141 of logical 
nodes. This permits on-line modifications to be made to 
a running Conic system using the configuration language. 

Distributed applications should be capable of running 
in mixed host and target environments. A host environ- 
ment provides many useful services and utilities. Targets 
are useful in providing the distributed processing power 
and real-time response required for interaction with de- 
vices. For instance, applications in the areas of factory 
automation, process control, and telecommunications re- 
quire major parts of the system to exhibit real-time re- 
sponse, but also require access to file servers, graphic dis- 
plays, logging and printing services. A Conic application, 
consisting of one or more interconnected logical nodes, 
can be configured to run in such a mixed host-target en- 
vironment. Fig. 1 depicts a typical execution environ- 
ment. A Conic logical node may be executed on a host as 
a UNIX process or directly on a target. Communication 
between tasks within a logical node and between logical 
nodes is supported uniformly by message passing. This 
provides a simple communication facility between local 
and remote tasks which hides the complexity of the net- 
work interface. On a target computer, Conic executes with 
no resident operating system other than the Conic execu- 
tive, but can still access the services and facilities of the 
general purpose host operating system. 

Conic was designed for the support of distributed 
embedded systems, but in practice has been used to con- 
struct a wide range of applications from general distrib- 
uted algorithms to system support utilities and services. 
The flexibility objectives of Conic are similar to those of 
LYNX [28 ]  in providing language support for loosely 
coupled distributed programs; however we have not con- 
centrated on the client-server paradigm of system con- 
struction, but have provided support for general peer 
(mesh) interactions. The example used in Section I11 il- 
lustrates this. 

V A X  UNlX HOST SYSTEM SUN UNlX HOST SYSTEM 

DISCS w? Discs 

s i 5  
I I I 

Application 1 AppllcatiOn 1 Applicatmn 1 Applicaton 2 

I I 

INTERNET 
I I I 

I I I 

ConicTasks 

Xecutlv 

I TARGET COMPUTERS 
PDP 11 UNlX LSI 1 I 8 M68000 a = Logical Node whlch runs as a Unix process 

Fig. 1. Distributed applications in a Conic environment. 
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The rest of this paper concentrates on facilities pro- 
vided by the Conic environment. In Section I1 we briefly 
outline the important features of the Conic programming 
and configuration languages. Section I11 describes how 
distributed applications are constructed using the dynamic 
configuration tools. The run-time support environment 
(node executive, configuration manager and server) is de- 
scribed in Section IV. Finally, we discuss experience in 
using Conic and present some conclusions. 

11. THE CONIC PROGRAMMING AND CONFIGURATION 
LANGUAGES 

Conic provides a language based approach to building 
distributed systems which clearly distinguishes between 
the programming of individual software components and 
the building of systems from these components. In this 
section we give an overview of these languages. 

A .  Conic Module Programming Language 
The language for programming individual software 

components (modules) is based on Pascal which has been 
extended to support modularity and message passing 
primitives [13]. The language allows the definition of a 
task module type which is a self-contained, sequential task 
(process). At configuration time, module instances are 
created from these types. Module instances exchange 
messages and perform a particular function such as con- 
trolling a device or managing a resource. 

The Module interface is defined in terms of strongly 
typed ports which specify all the information required to 
use the module. An exitport denotes the interface at which 
message transactions can be initiated and provide a local 
name and type holder in place of the destination name and 
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type. An entryport denotes the interface at which message 
transactions can be received and provides a local name 
and typeholder in place of the source name and type. The 
binding of an exitport to an entryport is part of the con- 
figuration specification and can only be performed within 
the programming language by sending messages to the 
configuration management facilities (described later). 

The Conic task module thus provides conjiguration in- 
dependence in that all references are to local objects and 
there is no direct naming of other modules or communi- 
cation entities. This means there is no configuration in- 
formation embedded in the programming language and so 
no recompilation is needed for configuration changes, i.e., 
Conic modules are reusable in many different situations. 

The programming language supports communication 
primitives to send a message to an exitport or receive one 
from an entryport. The message types must correspond to 
the port types. There are two classes of message trans- 
action: 

1) A notify transaction provides unidirectional, poten- 
tially multidestination message passing. The send opera- 
tion is asynchronous and does not block the sender, al- 
though the receiver may block waiting for a message. 

2) A Request Reply provides bidirectional synchronous 
message passing. The sender is blocked until the reply is 
received from the responder. A fail clause allows the 
sender to withdraw from the transaction on expiry of a 
timeout or if the transaction fails. The receiver may also 
block waiting for a request. As an alternative to replying, 
the receiver of a message canforward it via an exitport to 
another task. 

Dejinition Units are used to define constants, types, 
functions, and procedures which are common between dif- 
ferent modules within a system. These can be compiled 
separately and imported into both task modules and other 
definition units. Definition units may also define data and 
initialization code and so provides a facility similar to 
Modula-2 [37] modules and Ada [35] packages. 

The following example of a task module (Fig. 2) which 
acts as scaling filter for its inputs gives the “flavor” of 
Conic programs. 

The scale task of Fig. 2 receives real values on its en- 
tryport input and sends scaled values to the exitport output 
when the boolean variable active has the value true. The 
value of active is set by boolean values received from the 
entryport control. Input and output are request-reply ports, 
where the reply type signaltype is a base type of zero 
length. The variable signal of type signaltype is automat- 
ically declared by the compiler. The example shows the 
abbreviated form of the receive-reply statement since no 
statements are executed between receiving the request and 
replying. Receive and reply may be separated by process- 
ing, in which case the reply in this example would be- 
come reply signal to input. The entryport control is a no- 
tify port with a default buffer queue length of 1. The dec- 
laration, 

control : boolean queue 8; 

task module scale(scale1actor integer), 

control boolean; 
input: real reply signaltype; 

output’ real reply signaltype, 

value. real, 
active boolean; 

entryport  

exl tport  

var 

b e g l n  
active .=false; 

select  

or  

loop  

recelve active from control 

when active 
recelve value from input reply signal =D 

send value/scalefactor to output Walt signal, 
e n d  

e n d  
e n d .  

Fig. 2 .  Task module. 

would declare a buffer queue for 8 boolean values. The 
default buffer exhaustion strategy is to overwrite the old- 
est buffer, reflecting the most common uses of the notify 
transaction which are event signaling and status updating. 
The interprocess communication primitives are discussed 
in more detail in [30]. Note that parameters, such as 
scalefactor in Fig. 2,  can be passed to a task instance at 
creation time to tailor it for a particular environment. 

Conic provides no explicit support for sharing data be- 
tween task modules. However, within a logical node mes- 
sages can contain pointer values. Consequently, a task can 
give direct access to the data it encapsulates. Mutually 
exclusive access can be enforced using the message pass- 
ing primitives for synchronization. In the respect that tasks 
exist in the same address space within a logical node, 
Conic tasks are similar to the “lightweight” processes of 
the V-kernel [4] and Amoeba [22]. 

B. Conic Configuration Language 
The Conic configuration language [5] is used to specify 

the configuration of tasks which constitute a logical node. 
A variant of the language is also used to specify to the 
dynamic management system the configuration of logical 
nodes which constitute a distributed application. 

The structure of tasks within a logical node is described 
as a hierarchy of group modules. For example, Fig. 3 de- 
scribes a group module composed of the two task types 
scale (from Fig. 2) and sensor. The use construct speci- 
fies the set of message types necessary to declare a mod- 
ule interface (in this case null since the messages are of 
base types) and the set of task and/or group module types. 
Instances of task (or group) types are specified by the cre- 
ate construct. In the example two instances of the task 
type sensor (temperature and pressure) and two instances 
of the task type scale (Tscale and Pscale) are specified. 
The link construct declares the interconnections between 
instance exitports and entryports. 

It should be noted that the interface to a group module 
is identical to that of a task module. When a group module 
type has been defined, it may be instantiated and con- 
nected in exactly the same way as a task. Hence complex 
configurations can be built up by nesting groups and tasks 
within groups to any required level. We have found the 
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group module monitor(Tfactor,Pfactor:integer); 
exitport 

entryport 

use 

create 

press, temp: real reply signaltype; 

contro1:boolean; 

scale; sensor; 

temperature: sensor; 
pressure: sensor; 
Tscale: scale(Tfactor); 
Pscale: scalepfactor); 

temperature.output to Tscalehput; 
pressure.output to Pscale.input; 
Tscale.output to temp; 
Pscale.output to press; 
control to Tscale.contro1, Pscale.contro1; 

llnk 

end. 
Monitor 

Pressure Pscale 

output 

Temperature 

output 

Fig. 3 .  Monitor group module. 

group module abstraction to be a powerful way of struc- 
turing the tasks which constitute a logical node. 

Each group module specification is separately compiled 
into a symbol table and a procedure which will instantiate 
its structure at node instantiation time. A group module 
type which includes an instance of the run-time executive 
(itself a group module-see Section IV) can be compiled 
into an executable load file from which logical nodes are 
created. The hierarchical structure of configuration spec- 
ifications has no run-time overhead as it is flattened into 
a uniform address space of task instances at the time a 
node is instantiated. 

111. DYNAMIC CONFIGURATION 
Distributed programs in Conic are constructed with the 

aid of the dynamic configuration tools from sets of pre- 
compiled logical node types. A logical node may run 
either as a UNIX process or on a standalone target de- 
pending on the run-time support modules which are con- 
figured into it. Like group modules, logical nodes are 
types in the sense that more than one node instance may 
be created from the code file which represents the node 
type. Actual parameters substituted at instantiation time 
control the numbers of tasks created within nodes and the 
values passed to those tasks. 

To illustrate the program construction process in Conic, 
the following outlines the construction of a simple dis- 
tributed application. The application supports the multi- 
screen display of a moving text “snake.” The snake, 
when it reaches the edge of one screen, moves to the be- 
ginning of the next. Each screen supports one or more 
segments which are horizontal paths along which the snake 
may move. Segments have a direction indicating whether 

the snake moves from left to right or right to left across 
the screen. The diagram of Fig. 4 illustrates a three screen 
display into which two snakes have been injected. Each 
screen has two segments (top segment-left to right, bot- 
tom segment-right to left). These segments are con- 
nected together to form a ring so that when a snake has 
been injected it continuously travels around the three 
screens. The snake in Fig. 4 has the string value 
“0 -=”. 

Each segment may be in one of four states: a snake may 
be entering the segment, a snake may be leaving the seg- 
ment, a snake may be traveling across the segment or the 
segment may be idle. Snakes are transferred between seg- 
ments one character at a time. Analogous to trains and 
sections of railway track, a segment may only have one 
snake entering, leaving or resident at any one time. While 
artificial, this example raises configuration issues which 
we have encountered in “real” applications in the areas 
of flexible manufacturing and control systems. It is felt 
that the exposition overhead of these real domains would 
obscure the issues of interest. 

A .  Task Programming 
It is natural to implement the functionality of a segment 

as a task type in Conic so that a display configuration can 
be constructed by interconnecting instantiations of this 
task type. The segment task (Fig. 5 )  takes two parame- 
ters, Ypos which determines the horizontal position of the 
segment on a VDU screen, and direction which deter- 
mines the direction the segment will move the snake 
across the screen (direction = 0 gives right to left and 
direction = 1 gives left to right). Snakes are prefixed by 
the ASCII character SOH and terminated by the character 
Em. Characters for a snake entering the segment are re- 
ceived from the entryport input and snakes leave the seg- 
ment via the exitport output. The definition module seg- 
display supplies procedures for initializing the segment 
display and displaying snake movement. The function 
movesnake moves the snake one position each time it is 
invoked, accepting the next input character as a parame- 
ter. It returns NULL characters until the snake reaches the 
segment boundary and then returns the characters which 
constitute the snake. 

The task program takes the form of a guarded command 
which is repeatedly executed. The arms of the guarded 
command are the actions performed for each of the states 
(idle, entering, moving, leaving) which the segment can 
take. To avoid fragmented snakes occurring because of 
either communication failures or reconfiguration, the seg- 
ment is reinitialized if a failure occurs in the entering or 
leaving states (lines 26, 27, 42). 

The only other active component required for this ex- 
ample is a task to generate snakes. The task of Fig. 6 
generates a snake and then terminates. 

B. Group Modules and Logical Nodes 
As stated above, Conic distributed applications are con- 

structed from logical node types. Logical node types are 
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Screen1 Screen2 Screen3 

Fig. 4. Multiscreen "snake" display 

task module segment( Ypos.direction-integer), 
u s e  

ascii soh,etx,nuI: 
segdisplay initseg. movesnake; 

input char reply signaltype, 

output char reply signaltype. 

ent rypor t  

ex i tpor t  

9 var 
10 chchar, 
11 state (idle.enlering rnoving,leaving), 
12 bea in  
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 

initseg(Ypos,direction); stale =idle. 
l o o p  

select 
when (state=idie) receive ch from input reply signal 
=> if ch=soh then begin 

movnsnakelsoh) 

end  
end .  

- \ - -  . .. ~ 

state:=entering: 
end ,  

when (state=entering) recelve ch from input reply signal 
=> mvesnake(ch). 

If ch=etx then state:=rnoving; 

when (state=entering) timeout 100 
=> initseg(Ypos.direction); state =idle: 

when (state=moving) 
=> if ch<>soh then 

{ milliseconds) 

ch-=movesnake(nul) 

send ch to output 
e l se  

wait signal =, slale,=leaving, 
fall => [ retry ), 

end ;  

when (state=leaving) 
=, ch =movesnake(nul); 

send ch to output 
wall signal=> If ch=etx then slate =idle; 
fail => initseg(Ypos.direction): state =idle: 

end ,  

46 end  

Fig. 5. Segment task 

task module snakegen(snake-string): 
u s e  

ex i tpor t  

var 

ascii SOH, ETX; 
strings strlen, 

out char reply signaltype, 

i . integer; 
beg in  

11 
12 
13 lor I = 1 to strlen lsnake) do 

while not Iinked(out) do delay(100). 
send SOH to out wait signal. 

14 
15 
16 end  

send snake"[i] to oui wall signal; 
send ETX to out wall signal; 

Fig. 6. Snake generator task. 

constructed from task types using the Conic Configuration 
Language. The snake display example can be constructed 
from two logical node types: screen-which contains one 
or more instances of the segment task and generator- 
which contains one instance of the snakegen task. The 
configuration language descriptions and diagrammatic 
representations for these logical nodes are depicted in 
Figs. 7 and 8.  

group module screen(N.integer=2: spacing-integer=8). 
u s e  

unixexec; 
create 

unixexec; 
ent  rypor t  

input [ l  ..NI . char reply signaltype; 
ex l tpor t  

output [l..N] : char reply signaltype; 
u s e  

segment: 
create family k:[l ..NI 

seg [k] : segment (ypos = k'spacing, direction = k mod 2); 
llnk lamlly k.[ l  .NI 

seg[k] output Io outpul[k]; 
input[k] Io seg[k].input; 

end.  

Screen 

seglll u w t [ l l  

~eg[21 utputI21 El seg[nl utputlnl 

Input[l] 

input[2] 

input[n] 

Fig. 7. Screen logical node. 

group module generator(s:slring="O-="); 
u s e  

create 

ex l tpo r l  

use 

create 

l lnk  

end.  

unixexec; 

unixexec; 

ouiput:char reply signaltype; 

snakegen; 

snakegen(s); 

snakegen.out to output; 

Generator (I+ Snakegen 

Fig. 8. Generator logical node. 

In addition to application tasks, logical nodes contain 
the run-time support necessary for the environment in 
which they are to execute. Both screen and generator are 
intended to run under a UNIX host operating system and 
consequently they include an instance of the group mod- 
ule unixexec which supports multitasking, message pass- 
ing, and dynamic configuration operations in conjunction 
with UNIX. The structure of run-time support is de- 
scribed in the next section. 

The Conic Configuration language supports default pa- 
rameter values. For screen, the default number of seg- 
ments is 2 and the default spacing between segments on 
the VDU display is 8 lines. The create statement specifies 
a family of N segment instances with odd numbered seg- 
ments having the direction left to right and even segments 
having the direction right to left. The default value of N 
can be overidden by passing a value to the node at crea- 
tion time. 

It should be noted that the interface to a logical node is 
specified in exactly the same way as the interfaces of 
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group and task modules. The distinction between a group 
module implementing a logical node and any other group 
module is that the logical node includes a run-time sup- 
port executive (in this case unixexec). 

The host compilation system produces an executable 
code file for each logical node type. To simplify the com- Fig. 9. Hardware configuration. 

pilation and subsequent maintenance of complex logical 
node types, the Conic host system includes a makefile 
generator tool. This analyzes group module specifications 
to determine dependencies and generates the required in- 
put file for the UNIX make facility to build a logical node 
type from its constituent group module, task module, and 
definition unit sources. 

C. Managing an Application Configuration 
Conic distributed application programs are constructed 

from a set of precompiled logical node types. Each logical 
node type is contained in an executable code file. To con- 
struct the snake display example we have two logical node 
types, screen and generator. The display of Fig. 4 could 
be configured to run on three VDU devices connected to 
one host or on three windows on a single Sun workstation. 
In the following, we will describe how the display can be 
mapped onto the hardware configuration of three Sun 
workstations depicted in Fig. 9. 

The logical configuration shown diagrammatically in 
Fig. 10 is constructed by submitting the following set of 
configuration statements to a configuration manager. The 
commands may be typed interactively to an invocation of 
the manager (iman) or may be read from a file. The man- 
ager may be run in a window on one of the Suns or on a 
separate machine. 

Configuration statements: 

manage snakedemo 

create screen 1 :screen at sun 1 
create screen2: screen at sun2 
create screen3:screen at sun3 
create gen:generator at sun2 

link screenl .output[ 11 to screen2.input[ ] 
link screen2 .output[ I]  to screen3. input1 J 
link screen3.output[ 11 to screen3.input[ ] 
link screen3.output[2] to screen2.input[2] 
link screen2.output[2] to screenl .input[2] 
link screenl .output[2] to screenl .input[ I ]  

link gen.output to screen2.input[2] 

The manage statement provides a name for the distrib- 
uted application. A user may thus control one or more 
distributed applications concurrently. Each time the con- 
figuration manager is invoked, the user must specify the 
application he wishes to control. If omitted this name de- 
faults to the users UNIX login name. 

The create statement creates the specified logical node 

m - 
inpuql I ou@ut[l] inpugl I w@ut[l I Input[l I wtput[l I 

screenl screen2 screen3 

oulpuq2] inpuq21 outpuq2l 1nputl2) outpuqzl input{2] 

Fig. 10. Logical configuration 

with its default parameters. A screen with four segments 
and different spacing between segments could be created 
with the statement: 

create bigscreen:screen(4,6) at sunl 

The language used to communicate with a configuration 
manager corresponds with the configuration language used 
to construct group modules. As yet the configuration man- 
ager does not implement the family construct supported 
by the group module compiler. This is mitigated to some 
extent by the fact that configuration statements can be ex- 
ecuted directly by UNIX csh as commands. The com- 
mands invoke the manager with their names as parameters 
in the standard UNIX fashion. Consequently, cunning sh 
macros can be defined to shorten the text of configuration 
descriptions (such as the list of link statements above). 

Additional snakes can be injected into the system by the 
commands: 

create gen2("0*** = "):generator at sun2 
link gen2.output to screen2.input[2] 

Generators terminate and disappear as soon as they have 
completed injecting a snake. 

An additional screen can be added to the right of the 
loop by the following set of configuration statements: 

unlink screen3.output[ 11 from screen3.input[2] 
create screen4:screen at sun3 
link screen3.output[ I ]  to screen4.input[ I] 
link screen4.output[ I ]  to screen4.input[2] 
link screen4.output[2] to screen3.input[2] 

As described in the next section, the above create will 
both instantiate screen4 and also create an additional Sun 
window for screen4 to run in. 

As well as providing commands to control a configu- 
ration, the manager provides a set of queries to let the user 
examine the state of his system: 

type at a location. In this example screenl is created at 
sunl,  screen2 and gen at sun2, and screen3 at sun3. Each 
instance of the screen logical node type has been created 

systems 

nodes 

-Lists the set of applications currently 

-Lists the set of nodes within a system. 
running. 
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ports <node > -Lists a node’s interface ports and types. 
links < node > -Lists the entryports connected to a 

node’s exitports. 

D. Summary and Discussion 
This section has attempted to give a user’s view of the 

Conic system. The functionality of an application is im- 
plemented by task modules and definition units using the 
Conic Programming Language. These tasks may be com- 
bined into groups to provide extra levels of structuring 
using the Conic Configuration Language. The set of task 
and group types is then partitioned into logical node types. 
These logical node types form the unit of distribution. 
When defining a logical node type the user must consider 
the environment in which the node is to execute (host or 
target) and include the appropriate run-time support ex- 
ecutive. Compiling a logical node type results in an exe- 
cutable code file. This compiled node type, although it is 
constrained as to whether it may run on a host or target, 
is unrestricted as to its hardware location and the partic- 
ular logical configuration in which it will run. Further- 
more, the number of task instances contained within a 
logical node can be specified by parameters at node cre- 
ation time. 

The initial construction and subsequent modification of 
an application is carried out using a configuration man- 
ager which allows the user to create instances of logical 
nodes at specified locations within his network. These in- 
stances are interconnected to form the logical application 
configuration. 

Essentially, the Conic system has two constraints in the 
dynamic configuration flexibility that it offers. First, the 
set of task and group types from which a node type is 
constructed is fixed at node compile time. The principal 
reason for this is the simplification to the dynamic config- 
uration system which results from management at the node 
level. The internal structure of a node is essentially invis- 
ible to the configuration management system. A second- 
ary reason is that it is nearly impossible under UNIX to 
implement loading and linking of new code into a running 
process in such a way that is portable across the different 
versions of Berkeley UNIX and the different machine ar- 
chitectures supported by these versions. 

The second constraint is that the number of task and 
group instances within a node is fixed at the time a node 
is created. Although the set of task types is fixed, addi- 
tional instances of these types could be created inside a 
node in response to application or configuration system 
actions. This second constraint is largely as a result of the 
historical development of the Conic system and is less 
easy to justify. One of the original objectives of the Conic 
system was to provide a strict separation between pro- 
gramming-in-the-small (provided by tasks and definition 
units defined using the Conic Programming Language) and 
programming-in-the-large (provided by group modules 
defined using the Conic Configuration Language). It was 
felt that providing primitives for task creation and inter- 

connection within the programming language would lose 
this strict separation. Currently, the Conic group is in- 
vestigating ways of providing dynamic tasking within a 
node, without completely losing the separation. The dis- 
tinction between programming and configuration is felt 
worth preserving since it results in system structures which 
are easy to understand and in modules which can be used 
in many different applications. 

The objections to static tasking outlined in [20] are 
largely overcome in CONIC through the use of the for- 
ward statement. This allows a server task to forward mes- 
sages, the servicing of which may incur local or remote 
delays, to one of a pool of “worker” tasks. The forward 
transfers the request message to a worker allowing the 
server to continue immediately and enabling the worker 
to reply directly to the original sender of the request. 
However, the size of the pool of worker tasks is fixed at 
node instantiation time. 

This section has concentrated on the structural aspects 
of constructing a distributed application. We have largely 
ignored aspects of application consistency. For example, 
segments make no effort to preserve snakes during recon- 
figuration or to avoid deadlock when accepting new 
snakes. In addition, newly injected snakes may merge 
with existing snakes. The preservation of consistent sys- 
tem state during reconfiguration requires synchronization 
between the management system and the distributed ap- 
plication. Recent work [ 151 has defined a general protocol 
for performing this synchronization which maintains the 
separation between configuration and module level con- 
cerns. 

IV. RUN-TIME SUPPORT 
Conic applications are intended to run in a mixed host- 

target environment. Logical nodes running on target ma- 
chines must be able to communicate with nodes running 
under a host as a process. This constrains the Conic run- 
time system to use a communications protocol offered by 
the host operating system. Consequently, internode com- 
munication is implemented using the Internet UDP/IP da- 
tagram protocol [18], [ 2 5 ] ,  [6] offered by BSD4.3 and 
2.9.  However, to facilitate porting to different host op- 
erating systems, operating system dependencies are re- 
stricted to a small number of modules in the run-time sys- 
tem. Access to operating system functions by other parts 
of the run-time system is always carried out by sending 
messages to these modules. 

The execution environment on which our development 
system runs at Imperial College consists of VAX’s, Sun 
Workstations, and some aging PDPl 1’s running various 
versions of Berkeley UNIX and interconnected by Eth- 
ernet (see Fig. 1). Users may develop software on any of 
the machines and run it on some (or all) of these host 
computers. In addition, target 68000 and LSIl l /73 com- 
puters (also connected to Ethernet) are available for ap- 
plications which require real-time response. Typically 
these targets are used for controlling real-time control ex- 
periments. The compilation system supports cross-com- 
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pilation from the Suns and VAX’s to PDPl 1 targets. AI- 
though possible, to date there has been no requirement for 
cross-compilation between VAX’s and 68000’s. This en- 
vironment means that the software for a particular appli- 
cation may be developed on a number of host machines, 
executed on both these and additional host and target ma- 
chines, and managed from a different machine. The Conic 
support environment must thus allow the distributed de- 
velopment of applications as well as their distributed ex- 
ecution and management in this heterogeneous hardware 
environment. 

In the following, both the structure of the run-time en- 
vironment and the rationale behind its design are outlined. 

A .  Conjiguration Management 
Our initial conception of dynamic configuration man- 

agement [ 141 involved what was essentially an on-line da- 
tabase which recorded the current configuration state. It 
was intended that a dynamic configuration manager would 
use this database to retrieve information on the current 
application configuration in order to perform changes. The 
dynamic manager would both change the system and up- 
date the configuration database. The database was in- 
tended to “mirror” the system providing translations from 
symbolic names to actual addresses. The database would 
ensure that only consistent and validated changes could 
be performed. One motivation for this design was that 
translation information need not be stored in target nodes 
which have no backing store and may have limited main 
store. This translation information would have been sig- 
nificant since we intended to manage systems at all levels 
down to the level of a task module. 

The design outlined above had a number of significant 
problems, primarily concerned with the implementation 
of the database. To achieve a distributed and robust man- 
agement system, it would have required a distributed da- 
tabase implementation with the attendant problems of 
maintaining replicated data and performing consistent 
atomic updates. While solutions exist to these problems 
and a distributed database could have been constructed we 
felt that this design was overly complex. The database 
would constrain the speed with which changes could be 
performed. This speed is particularly important when re- 
configuration is required as a result of failure. Conse- 
quently, we abandoned this design and the current imple- 
mentation results from two fundamental decisions. 

First, it was decided that the user’s requirement for dy- 
namic configuration could be satisfied by management at 
the level of logical nodes. Essentially, the logical node 
became both the unit of configuration management and 
the smallest unit of failure. This decision dramatically re- 
duces the quantity of information which must be handled 
by the management system. In the systems we have con- 
structed to date, the configuration of tasks within a node 
is more complex than the configuration of nodes which 
combine to form an application. Nodes typically have 10- 
100 constituent task instances, including the executive. 

Second, rather than have a separate configuration da- 

tabase, it was decided that a running application would be 
its own database. Each logical node would contain enough 
information to describe its own interface and its link to 
other nodes. The quantity of this information is small 
enough, as a result of the previous decision, to hold in 
main memory. A configuration manager obtains infor- 
mation on an application by querying a name server to 
find the set of logical nodes which constitute the appli- 
cation. Information concerning the node itself is obtained 
by communicating directly with the node. 

Node Interface: In addition to its application defined 
interface, each compiled logical node type has a set of 
ports which provide the management interface to in- 
stances of the node (Fig. 11 ) .  This standard interface is 
implemented by the node’s executive: unixexec for nodes 
which run as UNIX processes, and turgexec for nodes 
destined for targets. 

The services provided by the node’s management inter- 
face entryports are as shown in Fig. 11, and are as fol- 
lows: ports returns a description of the node’s interface 
in terms of the names and types of its ports; links returns 
the set of connections or links from the node’s exitports 
to external entryports; control changes the configuration 
state of the node (started, stopped) in response to re- 
quests; connect links or unlinks node exitports to external 
entryports in response to requests. The exitport sturus is 
linked at node startup time to the name server as shown 
in Fig. 12. 

Name Server: The name server has the only “well- 
known” or fixed UDP/IP address in the system. When a 
node is instantiated it obtains the address of the server 
from a UNIX environment variable and links its exitport 
status to the server entryport statusport. The node regis- 
ters itself with the server by sending a message containing 
its system name, node instance name, node type name, 
UDP/IP address, and its configuration state. 

The server is a central point of failure in the configu- 
ration management system since it is the only place that 
configuration managers can find the addresses of logical 
nodes. To overcome this reliability problem, nodes send 
registration messages to the server at regular ten second 
intervals in addition to informing the server of a change 
of configuration state. If the server crashes and is subse- 
quently restarted, it can recover its full database on the 
set of logical nodes within 10 to 20 seconds. Further, pro- 
vision is made for replicating the server by allowing nodes 
to link to one or more instances of the server node on 
startup. Registration messages are then sent periodically 
to each server to which the node is linked. The robustness 
of the configuration management system is thus a function 
of the communication overhead that a user is willing to 
Pay. 

As with the rest of the management system, the name 
server is implemented entirely in Conic as a logical node 
type and may consequently run on a host or target com- 
puter depending on the node executive included. 

Conjiguration Manager (iman): The logical node type 
iman provides the user interface to configuration manage- 
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ment. It may be invoked directly as a UNIX command to 
provide an interactive command interface or it may be in- 
voked by command files as described in the previous sec- 
tion. When invoked, the manager iman links to the server 
as shown in Fig. 12 and obtains the names and addresses 
of all the nodes running in a particula; application system 
which, by default, is the user’s UNIX login name. The 
system to be managed can be changed using the manage 
command as described in the previous section. The man- 
ager performs configuration actions on a node by linking 
its exitports to the management entryports of the node and 
invoking the management services provided by the node’s 
executive. Since the Conic message passing primitives do 
not guarantee reliable delivery, the protocols used to in- 
voke management actions on a node are designed to be 
idempotent. 

Remote creation on hosts is performed by a manager 
with the agency of a virtual target (vt) node running at 
the remote site. The virtual target is in effect a UNIX 
“shell” with a message passing interface. The manager 
locates a virtual target node by communicating with the 
name server, links to it, and then sends the creation com- 
mand which causes the virtual target to execute a UNIX 
fork and exec to create the new node. 

There is no restriction on the number of instances of 
iman which may be active managing a particular system. 
Consequently, it is currently possible for a manager to 
perform incorrect operations based on an inconsistent view 
of the system it is managing. We are investigating the 
implementation of a robust locking mechanism which 
would survive server crashes and prevent managers from 
destructive interference when modifying the system. 

B. Node Executive 
The structure of the runtime executive included in each 

logical node is the same for target executives as for host 
executives. This generic structure of a node executive is 
depicted in Fig. 13. However, the implementation of some 
modules differs depending on whether they are used in the 
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Fig. 13. Generic node executive. 

host executive unixexec or the target executive targexec. 
The functionality of each module and the differences be- 
tween their host and target implementations are outlined 
in the following. 

The kernel supports multitasking and intertask com- 
munication within a node. It is implemented in Conic as 
a task module and is treated as such for configuration pur- 
poses. However, unlike normal task modules, it is not 
scheduled but executes in response to kernel calls from 
other task modules. A small amount of assembly code is 
required to provide task context switching. The host ker- 
nel provides facilities to handle UNIX signals whereas the 
target kernel supports real interrupt handling. Apart from 
this difference and a difference in the details of kernel en- 
try, the host and target kernels are the same. 

Messages destined for remote nodes are passed by the 
kernel to the Communication Manager. Under UNIX this 
module merely frames the message with a Conic inter- 
task communication header and passes it to the UNIX net- 
working software via socket system calls. The target com- 
munications manager implements the full UDP/IP Inter- 
net protocol to frame messages and the Address 
Resolution Protocol (ARP) [24] to translate Internet ad- 
dresses to Ethernet addresses. The particular Ethernet 
driver included in the target manager depends on the de- 
tails of target hardware. A more detailed description of 
Conic communications may be found in [29]. 

The File Manager handles user task requests for both 
file and console I/O. Under UNIX, this manager either 
performs the appropriate system call or passes the request 
to the console module. The console module is necessary 
under UNIX to make the synchronous I/O calls appear 
asynchronous for other tasks running within the UNIX 
process (otherwise a read call from one task would sus- 
pend all tasks waiting for the read to complete). On a tar- 
get, the file manager either forwards file requests to a node 
running on the host or passes them to the console module, 
which in this case is a real device driver. 

The Error Manager is the same module on both host 
and target. It is usually configured to display error mes- 
sages on the local console, but it may optionally produce 
a file containing the state of a task’s variables at the time 
the error occurred. A tool is available to display the con- 
tents of this file symbolically. 

Again, the Link and Node Manager modules are the 
same for both host and target. They implement the man- 
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agement interface described in Section IV-A. Finally, the 
Time Manager module handles the targets real time clock 
interrupt or the UNIX ALARM signal to provide real-time 
within the node. 

Both unixexec and targexec represent a commonly used 
executive configuration. However, users are at liberty to 
configure their own version of the executive. They may 
do this using the standard modules or their own imple- 
mentations of these functions. The executive is tailored 
to different target hardware configurations by including 
different versions of the device driver modules. 

The table of Fig. 14 gives an idea of the performance 
of intertask communication on the range of host com- 
puters currently supported by Conic. The times in milli- 
seconds are for a request-reply cycle transferring a 20 byte 
request message from sender to receiver and a 1 byte reply 
message. 

The figures were obtained when both the machines and 
the interconnecting Ethernet were lightly loaded. 

C. Support f o r  Heterogeneous Machines 
As previously mentioned, logical node types can be 

compiled and run on computers based on the 68000, VAX, 
or PDPll  architectures. This is possible since both the 
group and task module compilers are based on the Am- 
sterdam Compiler Kit (ACK) [34]. ACK makes use of an 
intermediate code (EM) to allow compilers to generate 
code for more than one target architecture. 

To allow logical nodes running on different processor 
types to communicate, messages between nodes must be 
transformed to conform to the way data is represented on 
the destination machine. There are fundamentally two 
techniques for doing this. First, messages can be trans- 
formed to a common data representation before being sent 
to the network. The destination machine then transforms 
the message to its local data representation. This tech- 
nique is followed by the Sun RPC facility which uses XDR 
[33] as the common data representation. The disadvan- 
tage of this technique is that it requires two message trans- 
formations even when the machines communicating are 
of the same type. The advantage is that in an open net- 
work environment, each machine need only know how to 
transform between the common representation and its lo- 
cal representation. The addition of new machine types is 
thereby facilitated. 

The second technique involves transformation only at 
the destination machine if required. A machine sends the 
message as a byte string in its local data representation 
together with a descriptor which identifies the source ma- 
chine type and describes how the message is constructed 
from base types. The destination machine uses this de- 
scriptor to transform (if necessary) the message to its local 
data representation. The advantage of this technique is 
that it enhances communication performance by avoiding 
unnecessary data transformations. The disadvantage is 
that a machine must know how to transform all source 
representations into its local representation. 

We have chosen the second technique in Conic for the 
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Fig. 14. Intertask communication performance 

following reasons. Most importantly, we wish to avoid 
any performance overhead in communication between ho- 
mogeneous machines. Additionally, the technique fits well 
into the Conic environment since communication is al- 
ways between typed exit and entry ports. Consequently, 
the message descriptor can be associated with the ports 
avoiding the overhead (although small) of transmitting it. 
Existing node types can easily be recompiled to accom- 
modate the (usually simple) additional transformation al- 
gorithm. Finally, the number of machine types supported 
by the Conic system is small. 

Consequently, when the group module compiler pro- 
duces a logical node type it associates type descriptors 
with each node interface port. These descriptors describe 
how the message type is constructed from the base types 
of the Conic language. An example of a descriptor is given 
below: 

type message = record 
str:packed array [ l  . .lo01 of 

i, j ,  k : integer; 
long : longint; 
reading : real; 

char; 

end; 
descriptor : : 1OOCiiilr { C =packed character, i = 

integer, 1 =  long integer 
and r=  real} 

The only additional information sent in a message is a 
tag identifying the source machine type. 

Entry and exitports as described in Section I1 may have 
both a request and a reply message type. For data trans- 
formation purposes it is only necessary to record the type 
descriptor for the entryports request type and the exitports 
reply type since transformation is always done at the des- 
tination. However, we record the request and reply de- 
scriptors at both entry and exit port ends of a link. The 
reason is to allow the configuration manager to perform 
type checking before setting up a link. The type descriptor 
is part of the interface description returned by the node’s 
executive. Consequently, before a link is set up the man- 
ager checks that the exitport’s type names and descriptors 
match exactly the entryport’s type names and descriptors. 

This is a weaker form of type checking than that per- 
formed by the group module compiler which checks that 
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linked ports are using exactly the same version of a com- 
piled type. This weakened form of type checking at the 
node level permits the independent (rather than separate) 
compilation of nodes which can later be configured safely 
into the same distributed application system. It avoids the 
problems of having to distribute symbol tables represent- 
ing compiled types between machines of different types. 
The requirement for users on all machines to have access 
to the same versions of compiled types would make dis- 
tributed development of systems difficult in our distrib- 
uted environment. 

D. Discussion 
This section has described how the dynamic configu- 

ration facilities used in the previous section are provided. 
A management system may be easily tailored to a user’s 
environment by the appropriate creation of instances of 
the three node types-server, irnan, and vt which together 
implement dynamic configuration management. When 
available, existing operating system resources and facili- 
ties can be simply accessed by virtual targets. New target 
hardware configurations can be accommodated by creat- 
ing new versions of the target executive from existing 
modules and new device driver modules. In summary, the 
construction of the dynamic configuration support envi- 
ronment using Conic has the advantage of providing itself 
with the flexibility it provides for applications. Configu- 
ration actions are all supported by requesting actions on 
entryports. Consequently, applications may themselves 
request configuration changes when desired, for instance 
to recover from failures. 

The configuration system currently manages systems 
which are disjoint sets of logical nodes. We do not sup- 
port the interconnection of nodes in different systems. A 
more complex view, applicable to very large systems, 
would be the division of a system into management do- 
mains each containing a set of nodes which potentially 
could intercommunicate. Responsibility for managing dif- 
ferent parts of the system would reside with different 
users. Authorization to change a part of the system could 
be checked before allowing a user to manage that part of 
the system. The HPC proposal [17] outlines a similar ap- 
proach to Conic in the area of management and specifies 
a number of possible operations for manipulating domains 
and process hierarchies. However, as yet no implemen- 
tation has been reported in the literature. 

To date, we have constructed applications consisting of 
tens of logical nodes. The constraint on system size is 
largely a function of the servers capacity. It is likely that 
to accommodate systems with hundreds of nodes, we will 
have to partition the server function into a number of log- 
ical nodes and exploit locality to reduce the communica- 
tion overhead as is done in the Clearinghouse nameserver 
~ 3 1 .  

V. CONCLUSIONS 
The Conic environment has been used for a number of 

years at Imperial College, by research groups at other uni- 

versities and in industry. We have used the environment 
as the basis for further research, for substantial student 
research projects and for student exercises on concurrency 
and communication protocols. The industrial users in- 
clude British Coal for the implementation of underground 
monitoring and communication in coal mines; British Pe- 
troleum for research into reconfigurable control systems 
and GEC for the development of an object-oriented sup- 
port system and front-end security processor. The Conic 
system has been supplied to universities in the UK, Can- 
ada, France, Germany, Japan, Korea, and Sweden. For 
instance, Conic has been used for a number of years at 
the University of Sussex for research on self-tuning adap- 
tive controllers [7]. 

It is gratifying that all our users have found the con- 
cepts embodied in Conic, and the facilities provided by 
its support environment, to be easy to assimilate and use. 
They are particularly enthusiastic about the use of the 
configuration language to describe and construct their sys- 
tems and about dynamic configuration using logical 
nodes. The functionality provided seems to be more than 
adequate to support the flexibility required in distributed 
systems (as opposed to programs). 

The separation of programming from configuration has 
enabled us to maintain the knowledge of the configuration 
structure and status necessary to make unpredicted con- 
figuration changes. It is difficult to envisage how arbitrary 
changes could be incorporated into a system where such 
configuration information and control is embedded in the 
programming language, and hence in the program. Recent 
work has substantiated this by showing that configuration 
changes can be specified purely declaratively in terms of 
the current and required structure of the nodes and com- 
munication links. The protocol necessary to perform the 
actual change transaction on the system can be derived 
from these specifications by directing the affected part of 
the system towards a quiescent state [ 121. System consis- 
tency is maintained by the execution of initialization and 
finalization code provided by each node. Details of this 
approach can be found in [15]. Planned changes, such as 
in response to specific events or failures, can be initiated 
from the programming level by communication with the 
configuration manager. 

The selection of simple and efficient primitives for 
Conic have provided a sound basis for the implementation 
of experimental distributed systems. Where functionality 
was sacrificed for simplicity and/or efficiency, more com- 
plex operations can generally be provided at a higher 
level. For example we have provided transactions by ex- 
tending the standard facilities provided by the executive 
[2] rather than as base primitives as in Argus [19]. We 
have also experimented with the use of passive module 
redundancy and the configuration facilities to provide 
fault-tolerance in a transparent manner [ 2  1 I .  

As described in Sections I1 and IV, the Conic system 
and its environment is “open” in that it provides easy 
access to all its facilities [26] by the use of a common 
message passing interface for all component interaction. 
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Both distributed applications and the Conic support sys- 
tem itself are constructed using the same tools and tech- 
niques. With the exception of less than 100 lines of as- 
sembly code in the kernel, all the software for the Conic 
environment is implemented in Conic. This uniformity 
permits users to tailor or extend the system facilities to 
suit their particular requirements (although this is not nor- 
mally performed by naive applications programmers). The 
ability to easily modify the system is an essential attribute 
for an experimental environment. For example, the com- 
munication system can be configured to include a connec- 
tion service, routing over interconnected subnets or driv- 
ers for different LAN’s. In addition, the accessibility of 
the system facilities (“open architecture”) has even per- 
mitted users to adapt and modify the executive to support 
their requirements. For example, in their development of 
a run-time environment for an object-oriented system, 
GEC Research have modified some of the Conic intertask 
communication primitives and introduced support for ma- 
nipulating capabilities 1271. 

Support for mixed hostdtargets has provided an ex- 
tremely versatile environment. The fact that operational 
distributed targets can communicate with Conic logical 
nodes running under UNIX has obviated the development 
of standard facilities such as a file system or printer 
spooler. It has allowed us to keep targets simple as the 
complex components of the Conic support environment 
can run on the host computers. In addition, the ability to 
test distributed systems on a UNIX host prior to down- 
line loading to a distributed architecture, has speeded up 
the development process in many cases. 

As explained , the environment supports allocation flex- 
ibility and provides the necessary transformations (port- 
ability) for a restricted set of nonhomogeneous com- 
puters. Structuring the executive as Conic modules has 
meant that the standard Conic configuration tools can be 
used to build the run-time system for the variety of hosts 
and targets. It would have been difficult to maintain and 
support this variety of machines any other way. However, 
the environment currently supports only a single program- 
ming language. This has the advantage that the compiler 
can check message type compatibility between messages 
and ports and that port interconnections can be validated 
for type compatibility at configuration time. Therefore no 
run-time checks are needed. Furthermore, the transfor- 
mations required for transferring messages between het- 
erogeneous computers are comparatively simple as the 
compiler generates similar data structure representations 
in different target computers. Some current work, based 
on that of Matchmaker [ 111 and MLP [8] is aimed at sup- 
porting additional module programming languages. The 
Conic configuration facilities will provide the basis of in- 
tegrating diverse language components with those imple- 
mented in Conic. 

Our current work continues to center on the use of a 
separate configuration language. We are investigating the 
expressive power of configuration languages, and in par- 

ticular are examining the use of guarded configurations, 
to cater for conditional situations, recursion, and config- 
uration constraints, properties which should be preserved 
across configuration changes. As mentioned, recent work 
has also examined the support necessary for managing 
system evolution through dynamic configuration. Since 
this is capable of handling arbitrary, introduced change, 
it is our belief that the approach should be extensible to 
incorporate those configuration changes required as the 
result of the failure of a node. A graphical interface [16] 
has been provided to support both off-line configuration 
diagram editing and on-line system monitoring and man- 
agement by the direct manipulation of graphical icons. 
This latter facility has proved to be a novel and conve- 
nient means for viewing and modifying a system config- 
uration. We also intend to continue to use Conic as the 
basis for more general distributed system research in areas 
such as software heterogeneity, distributed algorithms, 
fault-tolerance and distributed system management using 
domains [29]. 

As can be seen from the above description, Conic pro- 
vides a flexible and sound environment for the implemen- 
tation of experimental distributed systems, both to our- 
selves and our various users. Conic has benefitted from 
user experience and we intend to continue this fruitful 
partnership. 
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