
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL 15. NO 6, JUNE 1989 663

Constructing Distributed Systems in Conic
JEFF MAGEE, JEFF KRAMER, AND MORRIS SLOMAN

Abslrucl-Existing distributed systems vary from those which merely
provide interconnection of autonomous systems to those which provide
a complete language environment for writing distributed programs.
The former tend to support flexibility and provide ready access to sys-
tem facilities, but suffer by being complex to use. Language environ-
ments are simpler to use and can provide safer environments by per-
forming checks, but tend to be aimed a t constructing distributed
programs rather than systems, and tend to hide and prevent access to
many system level facilities. Both tend to be weak in their support for
the configuration and modification of distributed applications.

The Conic environment provides a language-based approach to the
building of distributed systems which combines the simplicity and safety
of a language approach with the flexibility and accessibility of a n op-
erating systems approach. I t provides a comprehensive set of tools for
program compilation, configuration, debugging and execution in a dis-
tributed environment. The environment is particularly strong in its
conjigurution facilities. A separate Configuration language is employed
to specify the configuration of software components into logical nodes.
This provides a concise configuration description and facilitates the
reuse of program components in different configurations. Applications
a re constructed as sets of one or more interconnected logical nodes.
Arbitrary, incremental change is supported by dynamic conjigurulion,
the capability to dynamically create, interconnect, and control logical
nodes. In addition, the system provides user transparent datatype
transformation between heterogeneous processors. Applications may
be run on a mixed set of interconnected computers running the UNIX@
operating system and on bare target machines with no resident oper-
ating system.

This paper sets out the basic principles adopted in the construction
of the Conic environment and, in particular, describes the configura-
tion and run-time facilities provided. Examples a re used to illustrate
the approach.

Zndex Terms-Configuration language, configuration management,
distributed systems, dynamic configuration, networked systems, op-
erating system, programming language, run-time system.

I. INTRODUCTION
ILE the advantages of the use of distributed sys- w tems are well known and widely acclaimed, there is

still little agreement as to how to provide the necessary
support for modularity, concurrency, synchronization,
communication, and configuration. The approaches taken
vary from those attempts to merely adapt and interconnect
existing autonomous systems to those which provide a
complete language environment in which to write distrib-
uted programs.

For instance, many Operating Systems (OS) provide di-

Manuscript received March 1 , 1987; revised January 31, 1989. This
work was supported by British Coal and by the SERC under Grant GRICI
3 1440.

The authors are with the Department of Computing, Imperial College
of Science and Technology, 180 Queen’s Gate, London SW7 2BZ, En-
gland.

IEEE Log Number 8927378.
W N I X is a registered trademark of AT&T Bell Laboratories.

rect access to communication facilities. Examples of this
approach include the SNA LU 6.2 interface in IBM op-
erating systems [lo], the DECNET NSP interface in DEC
operating systems [36], and the socket interface to TCPI
IP protocols in most UNIX systems. A distributed appli-
cation is implemented as a collection of sequential pro-
grams which communicate using the relevant networking
system calls. However, the communication interfaces are
complex and difficult to use. The naming conventions and
interprocess communication primitives are usually non-
uniform, using different conventions and providing dif-
ferent semantics for internal and remote interactions. Lit-
tle support is provided by the OS environment for initial
configuration of a set of program components into an ex-
ecutable distributed application, nor for subsequent mon-
itoring and control of the configuration. Similarly, little
or no interface checking is supported to ensure compati-
bility of interconnected programs. Applications pro-
grammed in this way are thus difficult to construct, debug
and maintain. The main advantage of the OS approach is
that it isjexible, in that a distributed application is com-
posed of a (potentially) changing set of interconnected
programs.

On the other hand, distributed programming languages
[32], [9], [l], [3] reduce the complexity of constructing
distributed applications by providing modularity, concur-
rency, synchronization and communication facilities in-
tegrated into a single language framework. They provide
support for compile, link, and run-time checks to ensure
operation or message compatibility between components.
In addition they provide consistent naming, communica-
tion and synchronization for both local and remote inter-
actions. Thus language environments are generally sim-
pler to use and can provide safer environments. However,
configuration facilities are often part of the programming
language which results in a single large distributable pro-
gram rather than the OS view of a system as a changing
set of interconnected programs. We believe that this
makes unpredicted modification and the provision of re-
dundancy more difficult. In many applications, particu-
larly real-time ones, it is useful to have a set of compo-
nents which form a unit for configuration or failure
recovery, and which can be separately reconfigured.

The Conic environment, developed by the Distributed
Programming Group at Imperial College, provides a lan-
guage-based approach to the building of distributed ap-
plications which combines the simplicity and safety of a
language approach with the flexibility of an operating sys-
tems approach. Flexible configuration, modularity and

0098-5589/89/0600-0663$01 .OO @ 1989 IEEE

664 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15. NO. 6. J U N E 198')

reuse of software components is facilitated by separation
of the language for programming individual task modules
(' 'programming in the small") from the language for con-
Jiguring programs from predefined modules (' 'program-
ming in the large"). The separate configuration language
provides a concise configuration description and hierar-
chical composition, and is employed to specify the con-
figuration of software modules (processes) into logical
nodes. A logical node is the system configuration unit. It
is a set of tasks which execute concurrently within a shared
address space. Systems are constructed as sets of one or
more interconnected logical nodes.

Large distributed applications are subject to both evo-
lutionary and operational changes. Evolutionary changes
occur through the need to incorporate new functionality
and technology in a manner which is difficult to predict.
Operational changes result from the need to redimension
to cater for growth and to reorganize to recover from fail-
ures. It is impractical and uneconomic to take out of ser-
vice an entire distributed system simply to modify part of
it. Conic caters for these requirements by language and
run-time support for dynamic conjiguration [141 of logical
nodes. This permits on-line modifications to be made to
a running Conic system using the configuration language.

Distributed applications should be capable of running
in mixed host and target environments. A host environ-
ment provides many useful services and utilities. Targets
are useful in providing the distributed processing power
and real-time response required for interaction with de-
vices. For instance, applications in the areas of factory
automation, process control, and telecommunications re-
quire major parts of the system to exhibit real-time re-
sponse, but also require access to file servers, graphic dis-
plays, logging and printing services. A Conic application,
consisting of one or more interconnected logical nodes,
can be configured to run in such a mixed host-target en-
vironment. Fig. 1 depicts a typical execution environ-
ment. A Conic logical node may be executed on a host as
a UNIX process or directly on a target. Communication
between tasks within a logical node and between logical
nodes is supported uniformly by message passing. This
provides a simple communication facility between local
and remote tasks which hides the complexity of the net-
work interface. On a target computer, Conic executes with
no resident operating system other than the Conic execu-
tive, but can still access the services and facilities of the
general purpose host operating system.

Conic was designed for the support of distributed
embedded systems, but in practice has been used to con-
struct a wide range of applications from general distrib-
uted algorithms to system support utilities and services.
The flexibility objectives of Conic are similar to those of
LYNX [28] in providing language support for loosely
coupled distributed programs; however we have not con-
centrated on the client-server paradigm of system con-
struction, but have provided support for general peer
(mesh) interactions. The example used in Section I11 il-
lustrates this.

V A X UNlX HOST SYSTEM SUN UNlX HOST SYSTEM

DISCS w? Discs

s i 5
I I I

Application 1 AppllcatiOn 1 Applicatmn 1 Applicaton 2

I I

INTERNET
I I I

I I I

ConicTasks

Xecutlv

I TARGET COMPUTERS
PDP 11 UNlX LSI 1 I 8 M68000 a = Logical Node whlch runs as a Unix process

Fig. 1. Distributed applications in a Conic environment.

a m a b e t a m
XeCUtlV

The rest of this paper concentrates on facilities pro-
vided by the Conic environment. In Section I1 we briefly
outline the important features of the Conic programming
and configuration languages. Section I11 describes how
distributed applications are constructed using the dynamic
configuration tools. The run-time support environment
(node executive, configuration manager and server) is de-
scribed in Section IV. Finally, we discuss experience in
using Conic and present some conclusions.

11. THE CONIC PROGRAMMING AND CONFIGURATION
LANGUAGES

Conic provides a language based approach to building
distributed systems which clearly distinguishes between
the programming of individual software components and
the building of systems from these components. In this
section we give an overview of these languages.

A . Conic Module Programming Language
The language for programming individual software

components (modules) is based on Pascal which has been
extended to support modularity and message passing
primitives [13]. The language allows the definition of a
task module type which is a self-contained, sequential task
(process). At configuration time, module instances are
created from these types. Module instances exchange
messages and perform a particular function such as con-
trolling a device or managing a resource.

The Module interface is defined in terms of strongly
typed ports which specify all the information required to
use the module. An exitport denotes the interface at which
message transactions can be initiated and provide a local
name and type holder in place of the destination name and

MAGEE er al. : CONSTRUCTING DISTRIBUTED SYSTEMS IN CONIC 665

type. An entryport denotes the interface at which message
transactions can be received and provides a local name
and typeholder in place of the source name and type. The
binding of an exitport to an entryport is part of the con-
figuration specification and can only be performed within
the programming language by sending messages to the
configuration management facilities (described later).

The Conic task module thus provides conjiguration in-
dependence in that all references are to local objects and
there is no direct naming of other modules or communi-
cation entities. This means there is no configuration in-
formation embedded in the programming language and so
no recompilation is needed for configuration changes, i.e.,
Conic modules are reusable in many different situations.

The programming language supports communication
primitives to send a message to an exitport or receive one
from an entryport. The message types must correspond to
the port types. There are two classes of message trans-
action:

1) A notify transaction provides unidirectional, poten-
tially multidestination message passing. The send opera-
tion is asynchronous and does not block the sender, al-
though the receiver may block waiting for a message.

2) A Request Reply provides bidirectional synchronous
message passing. The sender is blocked until the reply is
received from the responder. A fail clause allows the
sender to withdraw from the transaction on expiry of a
timeout or if the transaction fails. The receiver may also
block waiting for a request. As an alternative to replying,
the receiver of a message canforward it via an exitport to
another task.

Dejinition Units are used to define constants, types,
functions, and procedures which are common between dif-
ferent modules within a system. These can be compiled
separately and imported into both task modules and other
definition units. Definition units may also define data and
initialization code and so provides a facility similar to
Modula-2 [37] modules and Ada [35] packages.

The following example of a task module (Fig. 2) which
acts as scaling filter for its inputs gives the “flavor” of
Conic programs.

The scale task of Fig. 2 receives real values on its en-
tryport input and sends scaled values to the exitport output
when the boolean variable active has the value true. The
value of active is set by boolean values received from the
entryport control. Input and output are request-reply ports,
where the reply type signaltype is a base type of zero
length. The variable signal of type signaltype is automat-
ically declared by the compiler. The example shows the
abbreviated form of the receive-reply statement since no
statements are executed between receiving the request and
replying. Receive and reply may be separated by process-
ing, in which case the reply in this example would be-
come reply signal to input. The entryport control is a no-
tify port with a default buffer queue length of 1. The dec-
laration,

control : boolean queue 8;

task module scale(scale1actor integer),

control boolean;
input: real reply signaltype;

output’ real reply signaltype,

value. real,
active boolean;

entryport

exl tport

var

b e g l n
active .=false;

select

or

loop

recelve active from control

when active
recelve value from input reply signal =D

send value/scalefactor to output Walt signal,
e n d

e n d
e n d .

Fig. 2 . Task module.

would declare a buffer queue for 8 boolean values. The
default buffer exhaustion strategy is to overwrite the old-
est buffer, reflecting the most common uses of the notify
transaction which are event signaling and status updating.
The interprocess communication primitives are discussed
in more detail in [30]. Note that parameters, such as
scalefactor in Fig. 2, can be passed to a task instance at
creation time to tailor it for a particular environment.

Conic provides no explicit support for sharing data be-
tween task modules. However, within a logical node mes-
sages can contain pointer values. Consequently, a task can
give direct access to the data it encapsulates. Mutually
exclusive access can be enforced using the message pass-
ing primitives for synchronization. In the respect that tasks
exist in the same address space within a logical node,
Conic tasks are similar to the “lightweight” processes of
the V-kernel [4] and Amoeba [22].

B. Conic Configuration Language
The Conic configuration language [5] is used to specify

the configuration of tasks which constitute a logical node.
A variant of the language is also used to specify to the
dynamic management system the configuration of logical
nodes which constitute a distributed application.

The structure of tasks within a logical node is described
as a hierarchy of group modules. For example, Fig. 3 de-
scribes a group module composed of the two task types
scale (from Fig. 2) and sensor. The use construct speci-
fies the set of message types necessary to declare a mod-
ule interface (in this case null since the messages are of
base types) and the set of task and/or group module types.
Instances of task (or group) types are specified by the cre-
ate construct. In the example two instances of the task
type sensor (temperature and pressure) and two instances
of the task type scale (Tscale and Pscale) are specified.
The link construct declares the interconnections between
instance exitports and entryports.

It should be noted that the interface to a group module
is identical to that of a task module. When a group module
type has been defined, it may be instantiated and con-
nected in exactly the same way as a task. Hence complex
configurations can be built up by nesting groups and tasks
within groups to any required level. We have found the

666 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. I S . NO. 6. JUNE 198’)

group module monitor(Tfactor,Pfactor:integer);
exitport

entryport

use

create

press, temp: real reply signaltype;

contro1:boolean;

scale; sensor;

temperature: sensor;
pressure: sensor;
Tscale: scale(Tfactor);
Pscale: scalepfactor);

temperature.output to Tscalehput;
pressure.output to Pscale.input;
Tscale.output to temp;
Pscale.output to press;
control to Tscale.contro1, Pscale.contro1;

llnk

end.
Monitor

Pressure Pscale

output

Temperature

output

Fig. 3 . Monitor group module.

group module abstraction to be a powerful way of struc-
turing the tasks which constitute a logical node.

Each group module specification is separately compiled
into a symbol table and a procedure which will instantiate
its structure at node instantiation time. A group module
type which includes an instance of the run-time executive
(itself a group module-see Section IV) can be compiled
into an executable load file from which logical nodes are
created. The hierarchical structure of configuration spec-
ifications has no run-time overhead as it is flattened into
a uniform address space of task instances at the time a
node is instantiated.

111. DYNAMIC CONFIGURATION
Distributed programs in Conic are constructed with the

aid of the dynamic configuration tools from sets of pre-
compiled logical node types. A logical node may run
either as a UNIX process or on a standalone target de-
pending on the run-time support modules which are con-
figured into it. Like group modules, logical nodes are
types in the sense that more than one node instance may
be created from the code file which represents the node
type. Actual parameters substituted at instantiation time
control the numbers of tasks created within nodes and the
values passed to those tasks.

To illustrate the program construction process in Conic,
the following outlines the construction of a simple dis-
tributed application. The application supports the multi-
screen display of a moving text “snake.” The snake,
when it reaches the edge of one screen, moves to the be-
ginning of the next. Each screen supports one or more
segments which are horizontal paths along which the snake
may move. Segments have a direction indicating whether

the snake moves from left to right or right to left across
the screen. The diagram of Fig. 4 illustrates a three screen
display into which two snakes have been injected. Each
screen has two segments (top segment-left to right, bot-
tom segment-right to left). These segments are con-
nected together to form a ring so that when a snake has
been injected it continuously travels around the three
screens. The snake in Fig. 4 has the string value
“0 -=”.

Each segment may be in one of four states: a snake may
be entering the segment, a snake may be leaving the seg-
ment, a snake may be traveling across the segment or the
segment may be idle. Snakes are transferred between seg-
ments one character at a time. Analogous to trains and
sections of railway track, a segment may only have one
snake entering, leaving or resident at any one time. While
artificial, this example raises configuration issues which
we have encountered in “real” applications in the areas
of flexible manufacturing and control systems. It is felt
that the exposition overhead of these real domains would
obscure the issues of interest.

A . Task Programming
It is natural to implement the functionality of a segment

as a task type in Conic so that a display configuration can
be constructed by interconnecting instantiations of this
task type. The segment task (Fig. 5) takes two parame-
ters, Ypos which determines the horizontal position of the
segment on a VDU screen, and direction which deter-
mines the direction the segment will move the snake
across the screen (direction = 0 gives right to left and
direction = 1 gives left to right). Snakes are prefixed by
the ASCII character SOH and terminated by the character
Em. Characters for a snake entering the segment are re-
ceived from the entryport input and snakes leave the seg-
ment via the exitport output. The definition module seg-
display supplies procedures for initializing the segment
display and displaying snake movement. The function
movesnake moves the snake one position each time it is
invoked, accepting the next input character as a parame-
ter. It returns NULL characters until the snake reaches the
segment boundary and then returns the characters which
constitute the snake.

The task program takes the form of a guarded command
which is repeatedly executed. The arms of the guarded
command are the actions performed for each of the states
(idle, entering, moving, leaving) which the segment can
take. To avoid fragmented snakes occurring because of
either communication failures or reconfiguration, the seg-
ment is reinitialized if a failure occurs in the entering or
leaving states (lines 26, 27, 42).

The only other active component required for this ex-
ample is a task to generate snakes. The task of Fig. 6
generates a snake and then terminates.

B. Group Modules and Logical Nodes
As stated above, Conic distributed applications are con-

structed from logical node types. Logical node types are

MAGEE er a / , : CONSTRUCTING DISTRIBUTED SYSTEMS IN CONIC 667

Screen1 Screen2 Screen3

Fig. 4. Multiscreen "snake" display

task module segment(Ypos.direction-integer),
u s e

ascii soh,etx,nuI:
segdisplay initseg. movesnake;

input char reply signaltype,

output char reply signaltype.

ent rypor t

ex i tpor t

9 var
10 chchar,
11 state (idle.enlering rnoving,leaving),
12 bea in
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

initseg(Ypos,direction); stale =idle.
l o o p

select
when (state=idie) receive ch from input reply signal
=> if ch=soh then begin

movnsnakelsoh)

end
end .

- \ - - . .. ~

state:=entering:
end ,

when (state=entering) recelve ch from input reply signal
=> mvesnake(ch).

If ch=etx then state:=rnoving;

when (state=entering) timeout 100
=> initseg(Ypos.direction); state =idle:

when (state=moving)
=> if ch<>soh then

{ milliseconds)

ch-=movesnake(nul)

send ch to output
e l se

wait signal =, slale,=leaving,
fall => [retry),

end ;

when (state=leaving)
=, ch =movesnake(nul);

send ch to output
wall signal=> If ch=etx then slate =idle;
fail => initseg(Ypos.direction): state =idle:

end ,

46 end

Fig. 5. Segment task

task module snakegen(snake-string):
u s e

ex i tpor t

var

ascii SOH, ETX;
strings strlen,

out char reply signaltype,

i . integer;
beg in

11
12
13 lor I = 1 to strlen lsnake) do

while not Iinked(out) do delay(100).
send SOH to out wait signal.

14
15
16 end

send snake"[i] to oui wall signal;
send ETX to out wall signal;

Fig. 6. Snake generator task.

constructed from task types using the Conic Configuration
Language. The snake display example can be constructed
from two logical node types: screen-which contains one
or more instances of the segment task and generator-
which contains one instance of the snakegen task. The
configuration language descriptions and diagrammatic
representations for these logical nodes are depicted in
Figs. 7 and 8.

group module screen(N.integer=2: spacing-integer=8).
u s e

unixexec;
create

unixexec;
ent rypor t

input [l ..NI . char reply signaltype;
ex l tpor t

output [l..N] : char reply signaltype;
u s e

segment:
create family k:[l ..NI

seg [k] : segment (ypos = k'spacing, direction = k mod 2);
llnk lamlly k.[l .NI

seg[k] output Io outpul[k];
input[k] Io seg[k].input;

end.

Screen

seglll u w t [l l

~eg[21 utputI21 El seg[nl utputlnl

Input[l]

input[2]

input[n]

Fig. 7. Screen logical node.

group module generator(s:slring="O-=");
u s e

create

ex l tpo r l

use

create

l lnk

end.

unixexec;

unixexec;

ouiput:char reply signaltype;

snakegen;

snakegen(s);

snakegen.out to output;

Generator (I+ Snakegen

Fig. 8. Generator logical node.

In addition to application tasks, logical nodes contain
the run-time support necessary for the environment in
which they are to execute. Both screen and generator are
intended to run under a UNIX host operating system and
consequently they include an instance of the group mod-
ule unixexec which supports multitasking, message pass-
ing, and dynamic configuration operations in conjunction
with UNIX. The structure of run-time support is de-
scribed in the next section.

The Conic Configuration language supports default pa-
rameter values. For screen, the default number of seg-
ments is 2 and the default spacing between segments on
the VDU display is 8 lines. The create statement specifies
a family of N segment instances with odd numbered seg-
ments having the direction left to right and even segments
having the direction right to left. The default value of N
can be overidden by passing a value to the node at crea-
tion time.

It should be noted that the interface to a logical node is
specified in exactly the same way as the interfaces of

668 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15. NO. 6. JUNE 1989

group and task modules. The distinction between a group
module implementing a logical node and any other group
module is that the logical node includes a run-time sup-
port executive (in this case unixexec).

The host compilation system produces an executable
code file for each logical node type. To simplify the com- Fig. 9. Hardware configuration.

pilation and subsequent maintenance of complex logical
node types, the Conic host system includes a makefile
generator tool. This analyzes group module specifications
to determine dependencies and generates the required in-
put file for the UNIX make facility to build a logical node
type from its constituent group module, task module, and
definition unit sources.

C. Managing an Application Configuration
Conic distributed application programs are constructed

from a set of precompiled logical node types. Each logical
node type is contained in an executable code file. To con-
struct the snake display example we have two logical node
types, screen and generator. The display of Fig. 4 could
be configured to run on three VDU devices connected to
one host or on three windows on a single Sun workstation.
In the following, we will describe how the display can be
mapped onto the hardware configuration of three Sun
workstations depicted in Fig. 9.

The logical configuration shown diagrammatically in
Fig. 10 is constructed by submitting the following set of
configuration statements to a configuration manager. The
commands may be typed interactively to an invocation of
the manager (iman) or may be read from a file. The man-
ager may be run in a window on one of the Suns or on a
separate machine.

Configuration statements:

manage snakedemo

create screen 1 :screen at sun 1
create screen2: screen at sun2
create screen3:screen at sun3
create gen:generator at sun2

link screenl .output[11 to screen2.input[]
link screen2 .output[I] to screen3. input1 J
link screen3.output[11 to screen3.input[]
link screen3.output[2] to screen2.input[2]
link screen2.output[2] to screenl .input[2]
link screenl .output[2] to screenl .input[I]

link gen.output to screen2.input[2]

The manage statement provides a name for the distrib-
uted application. A user may thus control one or more
distributed applications concurrently. Each time the con-
figuration manager is invoked, the user must specify the
application he wishes to control. If omitted this name de-
faults to the users UNIX login name.

The create statement creates the specified logical node

m -
inpuql I ou@ut[l] inpugl I w@ut[l I Input[l I wtput[l I

screenl screen2 screen3

oulpuq2] inpuq21 outpuq2l 1nputl2) outpuqzl input{2]

Fig. 10. Logical configuration

with its default parameters. A screen with four segments
and different spacing between segments could be created
with the statement:

create bigscreen:screen(4,6) at sunl

The language used to communicate with a configuration
manager corresponds with the configuration language used
to construct group modules. As yet the configuration man-
ager does not implement the family construct supported
by the group module compiler. This is mitigated to some
extent by the fact that configuration statements can be ex-
ecuted directly by UNIX csh as commands. The com-
mands invoke the manager with their names as parameters
in the standard UNIX fashion. Consequently, cunning sh
macros can be defined to shorten the text of configuration
descriptions (such as the list of link statements above).

Additional snakes can be injected into the system by the
commands:

create gen2("0*** = "):generator at sun2
link gen2.output to screen2.input[2]

Generators terminate and disappear as soon as they have
completed injecting a snake.

An additional screen can be added to the right of the
loop by the following set of configuration statements:

unlink screen3.output[11 from screen3.input[2]
create screen4:screen at sun3
link screen3.output[I] to screen4.input[I]
link screen4.output[I] to screen4.input[2]
link screen4.output[2] to screen3.input[2]

As described in the next section, the above create will
both instantiate screen4 and also create an additional Sun
window for screen4 to run in.

As well as providing commands to control a configu-
ration, the manager provides a set of queries to let the user
examine the state of his system:

type at a location. In this example screenl is created at
sunl, screen2 and gen at sun2, and screen3 at sun3. Each
instance of the screen logical node type has been created

systems

nodes

-Lists the set of applications currently

-Lists the set of nodes within a system.
running.

MAGEE er a l . : CONSTRUCTING DISTRIBUTED SYSTEMS IN CONIC 669

ports <node > -Lists a node’s interface ports and types.
links < node > -Lists the entryports connected to a

node’s exitports.

D. Summary and Discussion
This section has attempted to give a user’s view of the

Conic system. The functionality of an application is im-
plemented by task modules and definition units using the
Conic Programming Language. These tasks may be com-
bined into groups to provide extra levels of structuring
using the Conic Configuration Language. The set of task
and group types is then partitioned into logical node types.
These logical node types form the unit of distribution.
When defining a logical node type the user must consider
the environment in which the node is to execute (host or
target) and include the appropriate run-time support ex-
ecutive. Compiling a logical node type results in an exe-
cutable code file. This compiled node type, although it is
constrained as to whether it may run on a host or target,
is unrestricted as to its hardware location and the partic-
ular logical configuration in which it will run. Further-
more, the number of task instances contained within a
logical node can be specified by parameters at node cre-
ation time.

The initial construction and subsequent modification of
an application is carried out using a configuration man-
ager which allows the user to create instances of logical
nodes at specified locations within his network. These in-
stances are interconnected to form the logical application
configuration.

Essentially, the Conic system has two constraints in the
dynamic configuration flexibility that it offers. First, the
set of task and group types from which a node type is
constructed is fixed at node compile time. The principal
reason for this is the simplification to the dynamic config-
uration system which results from management at the node
level. The internal structure of a node is essentially invis-
ible to the configuration management system. A second-
ary reason is that it is nearly impossible under UNIX to
implement loading and linking of new code into a running
process in such a way that is portable across the different
versions of Berkeley UNIX and the different machine ar-
chitectures supported by these versions.

The second constraint is that the number of task and
group instances within a node is fixed at the time a node
is created. Although the set of task types is fixed, addi-
tional instances of these types could be created inside a
node in response to application or configuration system
actions. This second constraint is largely as a result of the
historical development of the Conic system and is less
easy to justify. One of the original objectives of the Conic
system was to provide a strict separation between pro-
gramming-in-the-small (provided by tasks and definition
units defined using the Conic Programming Language) and
programming-in-the-large (provided by group modules
defined using the Conic Configuration Language). It was
felt that providing primitives for task creation and inter-

connection within the programming language would lose
this strict separation. Currently, the Conic group is in-
vestigating ways of providing dynamic tasking within a
node, without completely losing the separation. The dis-
tinction between programming and configuration is felt
worth preserving since it results in system structures which
are easy to understand and in modules which can be used
in many different applications.

The objections to static tasking outlined in [20] are
largely overcome in CONIC through the use of the for-
ward statement. This allows a server task to forward mes-
sages, the servicing of which may incur local or remote
delays, to one of a pool of “worker” tasks. The forward
transfers the request message to a worker allowing the
server to continue immediately and enabling the worker
to reply directly to the original sender of the request.
However, the size of the pool of worker tasks is fixed at
node instantiation time.

This section has concentrated on the structural aspects
of constructing a distributed application. We have largely
ignored aspects of application consistency. For example,
segments make no effort to preserve snakes during recon-
figuration or to avoid deadlock when accepting new
snakes. In addition, newly injected snakes may merge
with existing snakes. The preservation of consistent sys-
tem state during reconfiguration requires synchronization
between the management system and the distributed ap-
plication. Recent work [151 has defined a general protocol
for performing this synchronization which maintains the
separation between configuration and module level con-
cerns.

IV. RUN-TIME SUPPORT
Conic applications are intended to run in a mixed host-

target environment. Logical nodes running on target ma-
chines must be able to communicate with nodes running
under a host as a process. This constrains the Conic run-
time system to use a communications protocol offered by
the host operating system. Consequently, internode com-
munication is implemented using the Internet UDP/IP da-
tagram protocol [18], [2 5] , [6] offered by BSD4.3 and
2.9. However, to facilitate porting to different host op-
erating systems, operating system dependencies are re-
stricted to a small number of modules in the run-time sys-
tem. Access to operating system functions by other parts
of the run-time system is always carried out by sending
messages to these modules.

The execution environment on which our development
system runs at Imperial College consists of VAX’s, Sun
Workstations, and some aging PDPl 1’s running various
versions of Berkeley UNIX and interconnected by Eth-
ernet (see Fig. 1). Users may develop software on any of
the machines and run it on some (or all) of these host
computers. In addition, target 68000 and LSIl l /73 com-
puters (also connected to Ethernet) are available for ap-
plications which require real-time response. Typically
these targets are used for controlling real-time control ex-
periments. The compilation system supports cross-com-

670 l E E t TRANSACTIONS O N SOFTWARE ENGINEERING. VOL 15. N O 6. J U N E IYXS

pilation from the Suns and VAX’s to PDPl 1 targets. AI-
though possible, to date there has been no requirement for
cross-compilation between VAX’s and 68000’s. This en-
vironment means that the software for a particular appli-
cation may be developed on a number of host machines,
executed on both these and additional host and target ma-
chines, and managed from a different machine. The Conic
support environment must thus allow the distributed de-
velopment of applications as well as their distributed ex-
ecution and management in this heterogeneous hardware
environment.

In the following, both the structure of the run-time en-
vironment and the rationale behind its design are outlined.

A . Conjiguration Management
Our initial conception of dynamic configuration man-

agement [141 involved what was essentially an on-line da-
tabase which recorded the current configuration state. It
was intended that a dynamic configuration manager would
use this database to retrieve information on the current
application configuration in order to perform changes. The
dynamic manager would both change the system and up-
date the configuration database. The database was in-
tended to “mirror” the system providing translations from
symbolic names to actual addresses. The database would
ensure that only consistent and validated changes could
be performed. One motivation for this design was that
translation information need not be stored in target nodes
which have no backing store and may have limited main
store. This translation information would have been sig-
nificant since we intended to manage systems at all levels
down to the level of a task module.

The design outlined above had a number of significant
problems, primarily concerned with the implementation
of the database. To achieve a distributed and robust man-
agement system, it would have required a distributed da-
tabase implementation with the attendant problems of
maintaining replicated data and performing consistent
atomic updates. While solutions exist to these problems
and a distributed database could have been constructed we
felt that this design was overly complex. The database
would constrain the speed with which changes could be
performed. This speed is particularly important when re-
configuration is required as a result of failure. Conse-
quently, we abandoned this design and the current imple-
mentation results from two fundamental decisions.

First, it was decided that the user’s requirement for dy-
namic configuration could be satisfied by management at
the level of logical nodes. Essentially, the logical node
became both the unit of configuration management and
the smallest unit of failure. This decision dramatically re-
duces the quantity of information which must be handled
by the management system. In the systems we have con-
structed to date, the configuration of tasks within a node
is more complex than the configuration of nodes which
combine to form an application. Nodes typically have 10-
100 constituent task instances, including the executive.

Second, rather than have a separate configuration da-

tabase, it was decided that a running application would be
its own database. Each logical node would contain enough
information to describe its own interface and its link to
other nodes. The quantity of this information is small
enough, as a result of the previous decision, to hold in
main memory. A configuration manager obtains infor-
mation on an application by querying a name server to
find the set of logical nodes which constitute the appli-
cation. Information concerning the node itself is obtained
by communicating directly with the node.

Node Interface: In addition to its application defined
interface, each compiled logical node type has a set of
ports which provide the management interface to in-
stances of the node (Fig. 11) . This standard interface is
implemented by the node’s executive: unixexec for nodes
which run as UNIX processes, and turgexec for nodes
destined for targets.

The services provided by the node’s management inter-
face entryports are as shown in Fig. 11, and are as fol-
lows: ports returns a description of the node’s interface
in terms of the names and types of its ports; links returns
the set of connections or links from the node’s exitports
to external entryports; control changes the configuration
state of the node (started, stopped) in response to re-
quests; connect links or unlinks node exitports to external
entryports in response to requests. The exitport sturus is
linked at node startup time to the name server as shown
in Fig. 12.

Name Server: The name server has the only “well-
known” or fixed UDP/IP address in the system. When a
node is instantiated it obtains the address of the server
from a UNIX environment variable and links its exitport
status to the server entryport statusport. The node regis-
ters itself with the server by sending a message containing
its system name, node instance name, node type name,
UDP/IP address, and its configuration state.

The server is a central point of failure in the configu-
ration management system since it is the only place that
configuration managers can find the addresses of logical
nodes. To overcome this reliability problem, nodes send
registration messages to the server at regular ten second
intervals in addition to informing the server of a change
of configuration state. If the server crashes and is subse-
quently restarted, it can recover its full database on the
set of logical nodes within 10 to 20 seconds. Further, pro-
vision is made for replicating the server by allowing nodes
to link to one or more instances of the server node on
startup. Registration messages are then sent periodically
to each server to which the node is linked. The robustness
of the configuration management system is thus a function
of the communication overhead that a user is willing to
Pay.

As with the rest of the management system, the name
server is implemented entirely in Conic as a logical node
type and may consequently run on a host or target com-
puter depending on the node executive included.

Conjiguration Manager (iman): The logical node type
iman provides the user interface to configuration manage-

MAGEE er a l . : CONSTRUCTING DISTRIBUTED SYSTEMS I N CONIC 67 I

Application r d status 1
modules node

executive
interface
ports

control

I

Fig. 1 1 . Node standard interface ports.

Logical Nodes

status

requestpod

Fig. 12. Configuration name server.

ment. It may be invoked directly as a UNIX command to
provide an interactive command interface or it may be in-
voked by command files as described in the previous sec-
tion. When invoked, the manager iman links to the server
as shown in Fig. 12 and obtains the names and addresses
of all the nodes running in a particula; application system
which, by default, is the user’s UNIX login name. The
system to be managed can be changed using the manage
command as described in the previous section. The man-
ager performs configuration actions on a node by linking
its exitports to the management entryports of the node and
invoking the management services provided by the node’s
executive. Since the Conic message passing primitives do
not guarantee reliable delivery, the protocols used to in-
voke management actions on a node are designed to be
idempotent.

Remote creation on hosts is performed by a manager
with the agency of a virtual target (vt) node running at
the remote site. The virtual target is in effect a UNIX
“shell” with a message passing interface. The manager
locates a virtual target node by communicating with the
name server, links to it, and then sends the creation com-
mand which causes the virtual target to execute a UNIX
fork and exec to create the new node.

There is no restriction on the number of instances of
iman which may be active managing a particular system.
Consequently, it is currently possible for a manager to
perform incorrect operations based on an inconsistent view
of the system it is managing. We are investigating the
implementation of a robust locking mechanism which
would survive server crashes and prevent managers from
destructive interference when modifying the system.

B. Node Executive
The structure of the runtime executive included in each

logical node is the same for target executives as for host
executives. This generic structure of a node executive is
depicted in Fig. 13. However, the implementation of some
modules differs depending on whether they are used in the

Manager cuntrol

links

porfs
Manager Sld-writ

I I - 1

Communications
lnterncd Manager

Fig. 13. Generic node executive.

host executive unixexec or the target executive targexec.
The functionality of each module and the differences be-
tween their host and target implementations are outlined
in the following.

The kernel supports multitasking and intertask com-
munication within a node. It is implemented in Conic as
a task module and is treated as such for configuration pur-
poses. However, unlike normal task modules, it is not
scheduled but executes in response to kernel calls from
other task modules. A small amount of assembly code is
required to provide task context switching. The host ker-
nel provides facilities to handle UNIX signals whereas the
target kernel supports real interrupt handling. Apart from
this difference and a difference in the details of kernel en-
try, the host and target kernels are the same.

Messages destined for remote nodes are passed by the
kernel to the Communication Manager. Under UNIX this
module merely frames the message with a Conic inter-
task communication header and passes it to the UNIX net-
working software via socket system calls. The target com-
munications manager implements the full UDP/IP Inter-
net protocol to frame messages and the Address
Resolution Protocol (ARP) [24] to translate Internet ad-
dresses to Ethernet addresses. The particular Ethernet
driver included in the target manager depends on the de-
tails of target hardware. A more detailed description of
Conic communications may be found in [29].

The File Manager handles user task requests for both
file and console I/O. Under UNIX, this manager either
performs the appropriate system call or passes the request
to the console module. The console module is necessary
under UNIX to make the synchronous I/O calls appear
asynchronous for other tasks running within the UNIX
process (otherwise a read call from one task would sus-
pend all tasks waiting for the read to complete). On a tar-
get, the file manager either forwards file requests to a node
running on the host or passes them to the console module,
which in this case is a real device driver.

The Error Manager is the same module on both host
and target. It is usually configured to display error mes-
sages on the local console, but it may optionally produce
a file containing the state of a task’s variables at the time
the error occurred. A tool is available to display the con-
tents of this file symbolically.

Again, the Link and Node Manager modules are the
same for both host and target. They implement the man-

612 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15. N O 6. JUNE 1980

agement interface described in Section IV-A. Finally, the
Time Manager module handles the targets real time clock
interrupt or the UNIX ALARM signal to provide real-time
within the node.

Both unixexec and targexec represent a commonly used
executive configuration. However, users are at liberty to
configure their own version of the executive. They may
do this using the standard modules or their own imple-
mentations of these functions. The executive is tailored
to different target hardware configurations by including
different versions of the device driver modules.

The table of Fig. 14 gives an idea of the performance
of intertask communication on the range of host com-
puters currently supported by Conic. The times in milli-
seconds are for a request-reply cycle transferring a 20 byte
request message from sender to receiver and a 1 byte reply
message.

The figures were obtained when both the machines and
the interconnecting Ethernet were lightly loaded.

C. Support f o r Heterogeneous Machines
As previously mentioned, logical node types can be

compiled and run on computers based on the 68000, VAX,
or PDPll architectures. This is possible since both the
group and task module compilers are based on the Am-
sterdam Compiler Kit (ACK) [34]. ACK makes use of an
intermediate code (EM) to allow compilers to generate
code for more than one target architecture.

To allow logical nodes running on different processor
types to communicate, messages between nodes must be
transformed to conform to the way data is represented on
the destination machine. There are fundamentally two
techniques for doing this. First, messages can be trans-
formed to a common data representation before being sent
to the network. The destination machine then transforms
the message to its local data representation. This tech-
nique is followed by the Sun RPC facility which uses XDR
[33] as the common data representation. The disadvan-
tage of this technique is that it requires two message trans-
formations even when the machines communicating are
of the same type. The advantage is that in an open net-
work environment, each machine need only know how to
transform between the common representation and its lo-
cal representation. The addition of new machine types is
thereby facilitated.

The second technique involves transformation only at
the destination machine if required. A machine sends the
message as a byte string in its local data representation
together with a descriptor which identifies the source ma-
chine type and describes how the message is constructed
from base types. The destination machine uses this de-
scriptor to transform (if necessary) the message to its local
data representation. The advantage of this technique is
that it enhances communication performance by avoiding
unnecessary data transformations. The disadvantage is
that a machine must know how to transform all source
representations into its local representation.

We have chosen the second technique in Conic for the

Intra-node Inter-node Inter-node
(intra-host) (inter-host)

Sun 3/160 0.6ms

VAX 1 In50 I .sm\
PDP 11/43 0.73rns
Sun ~ PDP ...
Sun - VAX ...
PDP - VAX ...
MVME133/1 0.57ms
(16.67 MHr 68020 target)

Sun3/lhO-target ---

8. X m s IO.Ym?,

45ms 66m.r

39ms 53ms
... 371115
... 3Ym.r

... 55m5 ... 5.2nis

... 7.5 111s

Fig. 14. Intertask communication performance

following reasons. Most importantly, we wish to avoid
any performance overhead in communication between ho-
mogeneous machines. Additionally, the technique fits well
into the Conic environment since communication is al-
ways between typed exit and entry ports. Consequently,
the message descriptor can be associated with the ports
avoiding the overhead (although small) of transmitting it.
Existing node types can easily be recompiled to accom-
modate the (usually simple) additional transformation al-
gorithm. Finally, the number of machine types supported
by the Conic system is small.

Consequently, when the group module compiler pro-
duces a logical node type it associates type descriptors
with each node interface port. These descriptors describe
how the message type is constructed from the base types
of the Conic language. An example of a descriptor is given
below:

type message = record
str:packed array [l . .lo01 of

i, j , k : integer;
long : longint;
reading : real;

char;

end;
descriptor : : 1OOCiiilr { C =packed character, i =

integer, 1 = long integer
and r= real}

The only additional information sent in a message is a
tag identifying the source machine type.

Entry and exitports as described in Section I1 may have
both a request and a reply message type. For data trans-
formation purposes it is only necessary to record the type
descriptor for the entryports request type and the exitports
reply type since transformation is always done at the des-
tination. However, we record the request and reply de-
scriptors at both entry and exit port ends of a link. The
reason is to allow the configuration manager to perform
type checking before setting up a link. The type descriptor
is part of the interface description returned by the node’s
executive. Consequently, before a link is set up the man-
ager checks that the exitport’s type names and descriptors
match exactly the entryport’s type names and descriptors.

This is a weaker form of type checking than that per-
formed by the group module compiler which checks that

MAGEE er o l . : CONSTRUCTING DISTRIBUTED SYSTEMS I N CONIC 673

linked ports are using exactly the same version of a com-
piled type. This weakened form of type checking at the
node level permits the independent (rather than separate)
compilation of nodes which can later be configured safely
into the same distributed application system. It avoids the
problems of having to distribute symbol tables represent-
ing compiled types between machines of different types.
The requirement for users on all machines to have access
to the same versions of compiled types would make dis-
tributed development of systems difficult in our distrib-
uted environment.

D. Discussion
This section has described how the dynamic configu-

ration facilities used in the previous section are provided.
A management system may be easily tailored to a user’s
environment by the appropriate creation of instances of
the three node types-server, irnan, and vt which together
implement dynamic configuration management. When
available, existing operating system resources and facili-
ties can be simply accessed by virtual targets. New target
hardware configurations can be accommodated by creat-
ing new versions of the target executive from existing
modules and new device driver modules. In summary, the
construction of the dynamic configuration support envi-
ronment using Conic has the advantage of providing itself
with the flexibility it provides for applications. Configu-
ration actions are all supported by requesting actions on
entryports. Consequently, applications may themselves
request configuration changes when desired, for instance
to recover from failures.

The configuration system currently manages systems
which are disjoint sets of logical nodes. We do not sup-
port the interconnection of nodes in different systems. A
more complex view, applicable to very large systems,
would be the division of a system into management do-
mains each containing a set of nodes which potentially
could intercommunicate. Responsibility for managing dif-
ferent parts of the system would reside with different
users. Authorization to change a part of the system could
be checked before allowing a user to manage that part of
the system. The HPC proposal [17] outlines a similar ap-
proach to Conic in the area of management and specifies
a number of possible operations for manipulating domains
and process hierarchies. However, as yet no implemen-
tation has been reported in the literature.

To date, we have constructed applications consisting of
tens of logical nodes. The constraint on system size is
largely a function of the servers capacity. It is likely that
to accommodate systems with hundreds of nodes, we will
have to partition the server function into a number of log-
ical nodes and exploit locality to reduce the communica-
tion overhead as is done in the Clearinghouse nameserver
~ 3 1 .

V. CONCLUSIONS
The Conic environment has been used for a number of

years at Imperial College, by research groups at other uni-

versities and in industry. We have used the environment
as the basis for further research, for substantial student
research projects and for student exercises on concurrency
and communication protocols. The industrial users in-
clude British Coal for the implementation of underground
monitoring and communication in coal mines; British Pe-
troleum for research into reconfigurable control systems
and GEC for the development of an object-oriented sup-
port system and front-end security processor. The Conic
system has been supplied to universities in the UK, Can-
ada, France, Germany, Japan, Korea, and Sweden. For
instance, Conic has been used for a number of years at
the University of Sussex for research on self-tuning adap-
tive controllers [7].

It is gratifying that all our users have found the con-
cepts embodied in Conic, and the facilities provided by
its support environment, to be easy to assimilate and use.
They are particularly enthusiastic about the use of the
configuration language to describe and construct their sys-
tems and about dynamic configuration using logical
nodes. The functionality provided seems to be more than
adequate to support the flexibility required in distributed
systems (as opposed to programs).

The separation of programming from configuration has
enabled us to maintain the knowledge of the configuration
structure and status necessary to make unpredicted con-
figuration changes. It is difficult to envisage how arbitrary
changes could be incorporated into a system where such
configuration information and control is embedded in the
programming language, and hence in the program. Recent
work has substantiated this by showing that configuration
changes can be specified purely declaratively in terms of
the current and required structure of the nodes and com-
munication links. The protocol necessary to perform the
actual change transaction on the system can be derived
from these specifications by directing the affected part of
the system towards a quiescent state [121. System consis-
tency is maintained by the execution of initialization and
finalization code provided by each node. Details of this
approach can be found in [15]. Planned changes, such as
in response to specific events or failures, can be initiated
from the programming level by communication with the
configuration manager.

The selection of simple and efficient primitives for
Conic have provided a sound basis for the implementation
of experimental distributed systems. Where functionality
was sacrificed for simplicity and/or efficiency, more com-
plex operations can generally be provided at a higher
level. For example we have provided transactions by ex-
tending the standard facilities provided by the executive
[2] rather than as base primitives as in Argus [19]. We
have also experimented with the use of passive module
redundancy and the configuration facilities to provide
fault-tolerance in a transparent manner [2 1 I .

As described in Sections I1 and IV, the Conic system
and its environment is “open” in that it provides easy
access to all its facilities [26] by the use of a common
message passing interface for all component interaction.

6 74 lEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. IS. NO. 6. JUNE I Y X 9

Both distributed applications and the Conic support sys-
tem itself are constructed using the same tools and tech-
niques. With the exception of less than 100 lines of as-
sembly code in the kernel, all the software for the Conic
environment is implemented in Conic. This uniformity
permits users to tailor or extend the system facilities to
suit their particular requirements (although this is not nor-
mally performed by naive applications programmers). The
ability to easily modify the system is an essential attribute
for an experimental environment. For example, the com-
munication system can be configured to include a connec-
tion service, routing over interconnected subnets or driv-
ers for different LAN’s. In addition, the accessibility of
the system facilities (“open architecture”) has even per-
mitted users to adapt and modify the executive to support
their requirements. For example, in their development of
a run-time environment for an object-oriented system,
GEC Research have modified some of the Conic intertask
communication primitives and introduced support for ma-
nipulating capabilities 1271.

Support for mixed hostdtargets has provided an ex-
tremely versatile environment. The fact that operational
distributed targets can communicate with Conic logical
nodes running under UNIX has obviated the development
of standard facilities such as a file system or printer
spooler. It has allowed us to keep targets simple as the
complex components of the Conic support environment
can run on the host computers. In addition, the ability to
test distributed systems on a UNIX host prior to down-
line loading to a distributed architecture, has speeded up
the development process in many cases.

As explained , the environment supports allocation flex-
ibility and provides the necessary transformations (port-
ability) for a restricted set of nonhomogeneous com-
puters. Structuring the executive as Conic modules has
meant that the standard Conic configuration tools can be
used to build the run-time system for the variety of hosts
and targets. It would have been difficult to maintain and
support this variety of machines any other way. However,
the environment currently supports only a single program-
ming language. This has the advantage that the compiler
can check message type compatibility between messages
and ports and that port interconnections can be validated
for type compatibility at configuration time. Therefore no
run-time checks are needed. Furthermore, the transfor-
mations required for transferring messages between het-
erogeneous computers are comparatively simple as the
compiler generates similar data structure representations
in different target computers. Some current work, based
on that of Matchmaker [111 and MLP [8] is aimed at sup-
porting additional module programming languages. The
Conic configuration facilities will provide the basis of in-
tegrating diverse language components with those imple-
mented in Conic.

Our current work continues to center on the use of a
separate configuration language. We are investigating the
expressive power of configuration languages, and in par-

ticular are examining the use of guarded configurations,
to cater for conditional situations, recursion, and config-
uration constraints, properties which should be preserved
across configuration changes. As mentioned, recent work
has also examined the support necessary for managing
system evolution through dynamic configuration. Since
this is capable of handling arbitrary, introduced change,
it is our belief that the approach should be extensible to
incorporate those configuration changes required as the
result of the failure of a node. A graphical interface [16]
has been provided to support both off-line configuration
diagram editing and on-line system monitoring and man-
agement by the direct manipulation of graphical icons.
This latter facility has proved to be a novel and conve-
nient means for viewing and modifying a system config-
uration. We also intend to continue to use Conic as the
basis for more general distributed system research in areas
such as software heterogeneity, distributed algorithms,
fault-tolerance and distributed system management using
domains [29].

As can be seen from the above description, Conic pro-
vides a flexible and sound environment for the implemen-
tation of experimental distributed systems, both to our-
selves and our various users. Conic has benefitted from
user experience and we intend to continue this fruitful
partnership.

ACKNOWLEDGMENT

We particularly acknowledge the contribution of our
colleagues N. Dulay and K. Twidle (who provided the
first implementation of the snakes example) to the con-
cepts described in this paper and to the implementation of
the Conic environment itself. Finally we wish to thank
the referees for their helpful comments and suggestions.

REFERENCES

[l] G. Andrews and R. Olsson, “The evolution of the SR programming
language,” Distributed Cornput., vol. 1, pp. 133-149, July 1986.

[2] R. Anido and J. Kramer, “Synchronised forward & backward recov-
ery,” in Proc. 7rh IFAC DCCS, Germany. New York: Pergamon,
1986.

[3] A. Black, N. Hutchison, E. Jul, H. Levy, and L. Carter, “Distribu-
tion and abstract types in Emerald,” IEEE Trans. Software Eng., vol.
SE-13, no. 1, pp. 65-76, Jan. 1987.

[4] D. Cheriton, “The V-Kernel: A software base for distributed sys-
tems,” IEEE Soflwure, vol. 1 , no. 2 , pp. 19-43, Apr. 1984.

[5] N. Dulay, J . Kramer, J. Magee, M. Sloman, and K . Twidle, “The
Conic configuration language, version 1.3,” Imperial College, Res.
Rep. DOC 84/20, Nov. 1984.

[6] “DOD standard internet protocol,” ACM Cornput. Commun. Rev. ,
vol. 10, no. 4, pp. 12-51, Oct. 1980.

[7] P. Gawthrop, “Implementation of distributed self-tuning control-
lers,” in Proc. EUROCOM 1984, Brighton, England, Peter Peregri-
nus, pp. 384-352.

[8] R. Hayes and R. D. Schlichting, “Facilitating mixed language pro-
gramming in distributed systems,” Dept. Comput. Sci., Univ. Ari-
zona, Tucson, Tech. Rep. TR 85- l l a , Mar. 1986.

[9] C . A. R. Hoare, “Communicating sequential processes.” Commun.
A C M , vol. 21, no. 8, pp. 666-677, Aug. 1978.

[IO] IBM Sys?. J . (Special Issue on SNA), vol. 22, no. 4, 1983.
[l l] M. Jones, R . Rashid, and M. Thomson, “An interface specification

language for distributed processing,” in Proc. 12th ACM SIGACT-

MAGEE PI al. : CONSTRUCTING DISTRIBUTED SYSTEMS IN CONIC 675

SIGPLAN Symp. Principles of Programming Languages, ACM, Jan.
1985.
J . Kramer and R. J . Cunningham. “Towards a notation for the func-
tional design of distributed processing systems,’’ in IEEE Proc. 1978
Int. Con$ Parallel Processing, Aug. 1978, pp. 69-76.
J . Kramer, J . Magee, M. Sloman. K. Twidle, and N. Dulay, “The
Conic programming language, version 2.4,” Imperial College, Res.
Rep. DOC 84/19. Oct. 1984.
J . Kramer and J . Magee, “Dynamic configuration for distributed sys-
tems,” IEEE Trans. Software Eng., vol. SE-11, no. 4, pp. 424-436,
Apr. 1985.
- , “A model for change management,” in Proc. IEEE Workshop
Future Trends of Distributed Computing Systems in the 1990s. Hong
Kong, Sept. 1988, pp. 286-295.
J . Kramer, J. Magee, and K. Ng, “Graphical support for configura-
tion programming,” in Proc. Hawaii Int. Con$ System Sciences, Jan.

T. J. Leblanc and S . A. Friedberg, “HPC: A model of structure and
change in distributed systems,’’ IEEE Trans. Cornput., vol. C-34, no.
12, pp. 1114-1129, Dec. 1985.
S . Leffler, S . Fabry, and W. Joy, “A 4.2 bsd communications
primer,” Comput. Syst. Res. Group, Univ. California, Berkeley, July

1989, pp. 860-870.

[36] S . Wecker, “DNA: The digital network architecture,” IEEE Trans.

(37) N. Wirth. Programming in Modula-2. New York: Springer-Verlag.
Commun., vol. COM-28, no. 4 , pp. 510-526, Apr. 1980.

1982.

Jeff Magee graduated from Queens University
Belfast with a degree in electrical engineering in
1973. After working with the British Post Office
on the design and development of System X he
returned to college at the Imperial College of Sci-
ence and Technology, London, where he received
the M.Sc. and Ph.D. degrees in computing sci-
ence in 1978 and 1984, respectively.

He is currently a Lecturer in the Department of
Computing at Imperial College. His research in-
terests include parallel algorithm design, distrib-

uted operating systems and languages, and tool support for distributed sys-
tems. He has been one of the principal investigators of the various research
projects funded by British Coal and SERC which led to the development
of the Conic environment.

[191 B. Liskov and R. Sheifler, “Guardians and actions: Linguistic sup-
port for robust distributed programs,” ACM TOPLAS, vol. 5 , no. 3,

[20] B. Liskov, M. Herlihy, and L. Gilbert, “Limitations of remote pro-
cedure call and static process structure for distributed computing.”

D,., M~~~~ is a member of the IEE

pp. 381-404, July 1983.

. I

Lab. Comput. Sci., M.’I.T., Programming Methodology Group Memo
41, Sept. 1984, revised Oct. 1985.
0. Loques and J . Kramer, Flexible fault tolerance for distributed
computer systems,’’ IEE Proc. , pt. E, vol. 133, no. 6 , pp. 319-337,
Nov. 1986.
S . J. Mullender and A. S . Tanenbaum, “The design of a capability
based distributed operating system,’’ Comput. J . , vol. 29, no. 4, pp.
289-299, Aug. 1986.
D. L. Oppen and Y. K. Dalal, “The Clearinghouse: A decentralised
agent for locating named objects in a distributed environment,” ACM
Trans. Ofice Syst., vol. 1, no. 3, pp. 230-253, July 1983.
D. Plummer, “An Address Resolution Protocol (RFC 826);’ Nov.
1982.
J . Postel, “User Datagram Protocol (RFC 768),” Inform. Sci. Inst.,
Univ. Southern California, Marina del Ray, CA.
D. Redel et a l . , “Pilot: An operating system for a personal com-
puter,” Commun. ACM, vol. 32, no. 2, pp. 81-92, Feb. 1980.
D. Robinson and M. Sloman, “Domain based access control for dis-
tributed systems,’’ IEE Software Eng. J . , vol. 3, no. 5, pp. 161-170,
Sept. 1988.
M. L. Scott, “Language support for loosely coupled distributed pro-
grams,” IEEE Trans. Software Eng. , vol. SE-13, no. 1, pp. 77-86,
Jan. 1987.
M. Sloman, J . Kramer, J. Magee, and K. Twidle, “Flexible com-
munications for distributed embedded systems,” IEE Proc . , pt. E,
vol. 133, no. 4 , pp. 201-211, July 1986.
M. Sloman and J . Kramer, Distributed Systems and Computer Ner-
works.
M. Sloman, “Distributed systems management,” in Proc. IFIP TC
6.4 Workshop LAN Management, Berlin, July 1987. Amsterdam,
The Netherlands: North-Holland, pp. 15-59.
R. Strom and S . Yemini, “The Nil distributed systems programming
language: A status report,” ACM SIGPLAN Notices, vol. 20, no. 5 ,
pp. 36-44, May 1985.
External Data Representation Reference Manual (Part 800-1 177-01,
Rev. A-P), Sun Microsystems Inc., Mountain View, CA, Jan. 1985.
A. Tanenbaum, H . van Stavaren, E. Keizer, and J. Stevenson, “A
practical toolkit for making portable compilers,” Commun. ACM, vol.
26, no. 9. pp. 654-662. Sept. 1983.
U. S . Dep. Defense, Reference Manual for the Ada Programming
Language, proposed standard document, July 1980.

Englewood Cliffs, NJ: Prentice-Hall, 1987.

Jeff Kramer received the B.Sc. (Eng) degree in
electrical engineering from the University of Na-
tal, South Africa, in 1970, and the M.Sc and
Ph.D. degrees in Computing Science from Impe-
rial College of Science and Technology, London,
in 1972 and 1979, respectively.

He is currently a Senior Lecturer in the De-
partment of Computing at Imperial College. His
research interests include software specification
techniques, design methods, and languages and
tool support environments, especially for distrib-

uted systems. He has been one of the principal investigators of the various
research projects funded by British Coal and SERC which led to the de-
velopment of the Conic environment. He is coauthor of a book on distrib-
uted systems and computer networks. In addition, he was the principal
investigator of the TARA project on tool assisted requirements analysis.

Dr. Kramer is a member of the IEE, the IEEE Computer Society, and
the ACM.

Morris Sloman graduated from the University of
Cape Town with a degree in electrical engineering
in 1971 and then received the Ph D degree in
computer science from the University of Essex.

After working for GEC Computers Ltd he
joined the Department of Computing at Imperial
College of Science and Technology, London, in
1976 and is now a Senior Lecturer His research
interests include architecture and languages for
distributed systems, di5tributed systems manage-
ment, heterogeneous systems, and real-time sys-

tems He has been one of the principle investigators of the various research
projects funded by British Coal and SERC which led to the development
of the Conic Environment He is coauthor of a book on distributed systems
and computer networks

Dr Sloman is a member of the BCS. SIGDSM (a U K study group on
Distributed Systems Management) and the BSI committee on Open Dis-
tributed Processing

-- -

