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The physics of forgetting: Landauer’s erasure principle and information theory

M. B. Plenio and V. Vitelli
Optics Section, The Blackett Laboratory, Imperial College,

London SW7 2BW, UK

This article discusses the concept of information and its intimate relationship with physics. After
an introduction of all the necessary quantum mechanical and information theoretical concepts we
analyze Landauer’s principle that states that the erasure of information is inevitably accompanied
by the generation of heat. We employ this principle to rederive a number of results in classical and
quantum information theory whose rigorous mathematical derivations are difficult. This demon-
strates the usefulness of Landauer’s principle and provides an introduction to the physical theory of
information.

I. INTRODUCTION

In recent years great interest in quantum information
theory has been generated by the prospect of employing
its laws to design devices of surprising power [1–7]. Ideas
include quantum computation [2,5,8], quantum telepor-
tation [7,9] and quantum cryptography [4,5,10,11]. In
this article, we will not deal with such applications di-
rectly, but rather with some of the underlying concepts
and physical principles. Rather than presenting very ab-
stract mathematical proofs originating from the math-
ematical theory of information, we will base our argu-
ments as far as possible on the paradigm that informa-
tion is physical. In particular, we are going to employ
the fact that the erasure of one bit of information always
increases the thermodynamical entropy of the world by
kln2. This principle, originally suggested by Rolf Lan-
dauer in 1961 [12,13], has been applied successfully by
Charles Bennett to resolve the notorious Maxwell’s de-
mon paradox [13,14]. In this article we will argue that
Landauer’s principle provides a bridge between informa-
tion theory and physics and that, as such, it sheds light
on a number of issues regarding classical and quantum
information processing and the truly quantum mechan-
ical feature of entanglement and non-local correlations

[7]. We introduce the basic concepts both at an informal
level as well as a more mathematical level to allow a more
thorough understanding of these concepts. This enables
us to approach and answer a number of questions at the
interface between pure physics and technology such as:

1. What is the greatest amount of classical informa-
tion we can send reliably through a noisy classical
or quantum channel?

2. Can quantum information be copied and com-
pressed as we do with classical information on a
daily basis?

3. If entanglement is such a useful resource, how much
of it can be extracted from an arbitrary quantum
system composed of two parts by acting locally on
each of the two?

The full meaning of these questions and their answer
will gradually emerge after explaining some of the un-
pleasant but unavoidable jargon used to state them. For
the time being, our only remark is that Landauer’s prin-
ciple will be our companion in this journey. A glance at
what lies ahead can be readily obtained by inspecting the
”map” of this paper in Fig. 1.
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FIG. 1. The essential structure of the article is captured in this diagram.

A final word on the level of this article: the concepts
of entanglement and quantum information are of great
importance in contemporary research on quantum me-
chanics, but they seldom appear in graduate textbooks
on quantum mechanics. This article, while making little
claim to originality in the sense that it does not derive
new results, tries to fill this gap. It provides an introduc-
tion to the physical theory of information and the concept
of entanglement and is written from the perspective of an
advanced undergraduate student in physics, who is eager
to learn, but may not have the necessary mathemati-
cal background to directly access the original sources.
This pedagogical outlook is also reflected in the choice
of particularly readable references mainly textbooks and
lecture notes, that we hope the reader will consult for
a more comprehensive treatment of the advanced topics
[15–21]. We also try our best to use mathematics as a
language rather than as a weapon. Every idea is first mo-
tivated, then illustrated with a non-trivial example and
occasionally extended to the general case by using Lan-
dauers principle. The reader will not be drowned in a
sea of indices or obscure symbols, but he will (hopefully)
be guided to work out the simple examples in parallel
with the text. Most of the subtle concepts in quantum
mechanics can indeed be illustrated using simple matrix
manipulations. On the other hand, the choice to actively
involve the reader in calculations makes this article un-
suitable for bed-time readings. In fact, it is a good idea
to keep a pen and plenty of blank paper within reach,
while you read on.

II. CLASSICAL INFORMATION ENCODED IN

CLASSICAL SYSTEMS

A. The bit

In this section we will try to build an intuitive under-
standing of the concept of classical information. A more
quantitative approach will be taken in section II E, but
for the full blown mathematical apparatus we refer the
reader to textbooks, e.g. [21].

Imagine that you are holding an object, be it an array
of cards, geometric shapes or a complex molecule and we
ask the following question: what is the information con-

tent of this object? To answer this question, we introduce
another party, say a friend, who shares some background
knowledge with us (e.g. the same language or other sets
of prior agreements that make communication possible at
all), but who does not know the state of the object. We
define the information content of the object as the size
of the set of instructions that our friend requires to be
able to reconstruct the object, or better the state of the
object. For example, assume that the object is a spin-up
particle and that we share with the friend the background
knowledge that the spin is oriented either upwards or
downwards along the z direction with equal probability
(see fig. 2 for a slightly more involved example). In this
case, the only instruction we need to transmit to another
party to let him recreate the state is whether the state
is spin-up ↑ or spin-down ↓. This example shows that in
some cases the instruction transmitted to our friend is
just a choice between two alternatives. More generally,
we can reduce a complicated set of instructions to n bi-
nary choices. If that is done we readily get a measure of
the information content of the object by simply counting
the number of binary choices. In classical information
theory, a variable which can assume only the values 0 or
1 is called a bit. Instructions to make a binary choice can
be given by transmitting 1 to suggest one of the alterna-
tive (say arrow up ↑) and 0 for the other (arrow down
↓). To sum up, we say that n bits of information can
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be encoded in a system when instructions in the form of
n binary choices need to be transmitted to identify or
recreate the state of the system.

horizontal/rotated horizontal/rotated

triangle/square

FIG. 2. An example for a decision tree. Two binary choices
have to be made to identify the shape (triangle or square) and
the orientation (horizontal or rotated). In sending with equal
probability one of the four objects, one therefore transmits 2
bits of information.

B. Information is physical

In the previous subsection we have introduced the con-
cept of the bit as the unit of information. In the course
of the argument we mentioned already that information
can be encoded in physical systems. In fact, looking at it
more closely, we realize that any information is encoded,
processed and transmitted by physical means. Physical
systems such as capacitors or spins are used for stor-
age, sound waves or optical fibers for transmission and
the laws of classical mechanics, electrodynamics or quan-
tum mechanics dictate the properties of these devices and
limit our capabilities for information processing. These
rather obvious looking statements, however, have signifi-
cant implications for our understanding of the concept of
information as they emphasize that the theory of infor-
mation is not a purely mathematical concept, but that
the properties of its basic units are dictated by the laws
of physics. The different laws that rule in the classical
world and the quantum world for example results in dif-
ferent information processing capabilities and it is this
insight that sparked the interest in the general field of
quantum information theory.

In the following we would like to further corroborate
the view that information and physics should be unified
to a physical theory of information by showing that the
process of erasure of information is invariably accompa-
nied by the generation of heat and that this insight leads

to a resolution of the longstanding Maxwell demon para-
dox which is really a prime example of the deep con-
nection between physics and information. The rest of
the article will then attempt to apply the connection be-
tween erasure of information and physical heat genera-
tion further to gain insight into recent results in quantum
information theory.

C. Erasing classical information from classical

systems: Landauer’s principle

We begin our investigations by concentrating on clas-
sical information. In 1961, Rolf Landauer had the impor-
tant insight that there is a fundamental asymmetry in the
way Nature allows us to process information [12]. Copy-
ing classical information can be done reversibly and with-
out wasting any energy, but when information is erased
there is always an energy cost of kT ln2 per classical bit
to be paid. For example, as shown in fig. 3, we can en-
code one bit of information in a binary device composed
of a box with a partition.

(a) (b)

FIG. 3. We erase the information of the position of the
atom. First we extract the wall separating the two halves of
the box. Then we use a piston to shift the atom to the left
side of the box. After the procedure, the atom is on the left
hand side of the box irrespective of its intial state. Note that
the procedure has to work irrespective of whether the atom
is initially on the right (figure (a)) or on the left side (figure
(b)).

The box is filled with a one molecule gas that can be
on either side of the partition, but we do not know which
one. We assume that we erase the bit of information en-
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coded in the position of the molecule by extracting the
partition and compressing the molecule in the right part
of the box irrespective of where it was before. We say
that information has been erased during the compres-
sion because we will never find out where the molecule
was originally. Any binary message encoded is lost! The
physical result of the compression is a decrease in the
thermodynamical entropy of the gas by kln2. The min-
imum work that we need to do on the box is kT ln2, if
the compression is isothermal and quasi-static. Further-
more an amount of heat equal to kT ln2 is dumped in the
environment at the end of the process.

Landauer’s conjectured that this energy/entropy cost
cannot be reduced below this limit irrespective of how
the information is encoded and subsequently erased - it
is a fundamental limit. In the discussion of the Maxwell
demon in the next section we will see that this principle
can be deduced from the second law of thermodynamics
and is in fact equivalent to it [22]. Landauer’s discovery
is important both theoretically and practically as on the
one hand it relates the concept of information to physical
quantities like thermodynamical entropy and free energy
and on the other hand it may force the future designers
of quantum devices to take into account the heat produc-
tion caused by the erasure of information although this
effect is tiny and negligible in today’s technology.

At this point we are ready to summarize our findings
on the physics of classical information.

1) Information is always encoded in a physical system.
2) The erasure of information causes a generation of kT ln2
of heat per bit in the environment.

Armed with this knowledge we will present the first
successful application of the erasure principle: the solu-
tion of the Maxwell’s demon paradox that has plagued
the foundations of thermodynamics for almost a century.

D. Maxwell’s demon deposed

1. The paradox

In this section we present a simplified version of the
Maxwell’s demon paradox suggested by Leo Szilard in
1929 [23]. It employs an intelligent being or a computer
of microscopic size, operating a heat engine with a single
molecule working fluid (figure 4).

Demon
determines position of atom

Demon inserts piston

Gas expands
converting heat from reservoir to work

(b)

(c)(d)

(a)

r

Demon memory

FIG. 4. A schematical picture of Szilard’s engine of a box
filled with a one atom gas. Initially the position of the atom
is unknown. Then the demon measures the position and de-
pending on the outcome inserts a piston. Then the gas ex-
pands and thereby does work on a load attached to the piston.
This procedure is repeated and we apparently do work at the
sole expense of extracting heat from one reservoir only.

In this scheme, the molecule is originally placed in
a box, free to move in the entire volume V as shown
in step (a). Step (b) consists of inserting a partition
which divides the box in two equal parts. At this point
the Maxwell’s demon measures in which side of the box
the molecule is and records the result (in the figure the
molecule is pictured on the right-hand side of the parti-
tion as an example). In step (c) the Maxwell demon uses
the information to replace the partition with a piston and
couple the latter to a load. In step (d) the one-molecule
gas is put in contact with a reservoir and expands isother-
mically to the original volume V . During the expansion
the gas draws heat from the reservoir and does work to
lift the load. Apparently the device is returned to its ini-
tial state and it is ready to perform another cycle whose
net result is again full conversion of heat into work, a
process forbidden by the second law of thermodynamics.

Despite its deceptive simplicity, the argument above
has missed an important point: while the gas in the box
has returned to its initial state, the mind of the demon
hasn’t! In fact, the demon needs to erase the informa-
tion stored in his mind for the process to be truly cyclic.
This is because the information in the brain of the de-
mon is stored in physical objects and cannot be regarded
as a purely mathematical concept! The first attempts to
solve the paradox had missed this point completely and
relied on the assumption that the act of acquisition of
information by the demon entails an energy cost equal
to the work extracted by the demonic engine, thus pre-
venting the second law to be defeated. This assumption
is wrong! Information on the position of the particle can
be acquired reversibly without having to pay the energy
bill, but erasing information does have a cost! This im-
portant remark was first made by Bennett in a very read-
able paper on the physics of computation [14]. We will
analyze his argument in some detail. Bennett developed
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Szilard’s earlier suggestion [23] that the demon’s mind
could be viewed as a two-state system that stores one bit
of information about the position of the particle. In this
sense, the demon’s mind can be an inanimate binary sys-
tem which represents a significant step forward, as it rids
the discussion from the dubious concept of intelligence.
After the particle in the box is returned to the initial
state the bit of information is still stored in the demon’s
mind (ie in the binary device). Consequently, this bit
of information needs to be erased to return the demon’s
mind to its initial state. By Landauer’s principle this
erasure has an energy cost

Werasure = −kT ln2 . (1)

On the other hand, the work extracted by the demonic
engine in the isothermal expansion is

Wextracted = +kT ln2 . (2)

All the work gained by the engine is needed to erase the
information in the demon’s mind, so that no net work is
produced in the cycle. Furthermore, the erasure trans-
fers into the reservoir the same amount of heat that was
drawn from it originally. So there is no net flow of heat
either. There is no net result after the process is com-
pleted and the second law of thermodynamics is saved!
The crucial point in Bennett’s argument is that the in-
formation processed by the demon must be encoded in
a physical system that obeys the laws of physics. The
second law of thermodynamics states that there is no en-
tropy decrease in a closed system that undergoes a cyclic
transformation. Therefore if we let the demon measure
the Szilard’s engine we need to include the physical state
he uses to store the information in the analysis, otherwise
there would be an interaction with the environment and
the system would not be closed. One could also view the
demon’s mind as a heat bath initially at zero tempera-
ture. After storing information in it, the mind appears
to an outside observer like a random sequence of digits
and one could therefore say that the demons mind has
been heated up. Having realized that the demon’s mind
is a second heat bath, we now have a perfectly acceptable
process that does not violate the second law of thermo-
dynamics.

2. Generalized entropy

The solution of the paradox presented in the last sec-
tion views the ”brain of the demon” as a physical system
to be included in the entropy balance together with the
box that is being observed (see part (b) of figure 5).

(a)                       Demon

System

System + Demon

(b)

Demon

FIG. 5. A figure that shows the two different viewpoints
discussed in this section. The demon is outside the system
which consists of the box and the atom only (figure (a)) or
the demon and the box form a joint system that is closed.

A different approach can be taken if one does not want
to consider explicitly the workings of the demon’s mind,
but just treat it as an external observer that obtains in-
formation about the system (see part (a) of figure 5).
This is done by including in the definition of the entropy
of the system a term that represents the knowledge that
the demon has on the state of the system together with
the well known term representing how ordered the state
is [24,13].

In the context of Szilard’s engine we found that the de-
mon extracts from the engine an amount of work given
by

Wextracted = kT ln2 = ∆Q = T∆S, (3)

where ∆S is the change of thermodynamical entropy in
the system when the heat ∆Q is absorbed from the en-
vironment. On the other hand, to erase his memory he
uses at least an equal amount of work given by

Werasure = −kT ln2 = −TI, (4)

where I denotes the information required by the demon
to specify on which side of the box the molecule is times
the scaling factor kln2. In this case the information is
just 1 bit. The scaling factor is introduced for consistency
because the definition of information is given in bits as a
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logarithm in basis 2 of the number of memory levels in
the demon’s mind.

The total work gained (equal to the total heat ex-
changed Qtotal since the system is kept at constant tem-
perature T) is thus given by

Wtotal = Werasure +Wextracted = Qtotal = T (∆S − I) = 0 .

(5)

This suggests that the second law of thermodynamics is
not violated if we introduce a generalized definition of
entropy ℑ (in bits) as the difference of the thermody-
namical entropy of the system ∆S and the information
about the system I possessed by an external observer.

ℑ = ∆S − I . (6)

The idea of modifying the definition of thermodynam-
ical entropy that represents an objective property of the
physical system with an ”informational term” relative to
an external observer appears bizarre at first sight. Physi-
cal properties like entropy identify and distinguish phys-
ical states. By introducing a notion as information di-
rectly in the second law of thermodynamics we somehow
bolster the view that an ensemble composed of parti-
tioned boxes each containing a molecule in a position
unknown to us is not the same physical state than an
ensemble in which we know exactly on which side of the
partition the molecule is in each box. Why? Because we
can extract work from the second state by virtue of the
knowledge we gained, but we cannot do the same with
the first. We will encounter similar arguments in later
sections when we study the concept of information in the
context of quantum theory. For the time being, we re-
mark that the approach presented in this section to the
solution of the Maxwell’s demon paradox adds new mean-
ing to the slogan information is physical. Information is
physical because it is always encoded in a physical sys-
tem and also because the information we possess about
a physical system contributes to define the state of the
system.

E. The information content of a classical state in bits

So far we have discussed how information is encoded in
a classical system and subsequently erased from it. How-
ever, we really haven’t quantified the information con-
tent of a complicated classical system composed of many
components each of which can be in one of n states with
probability pn. This problem is equivalent to determining
the information content of a long classical message. In
fact, a classical message is encoded in a string of classical
objects each representing a letter from a known alphabet
occurring with a certain probability. The agreed relation
between objects and letters represents the required back-
ground knowledge for communication. Bob sends this
string of objects to Alice. She knows how the letters of

the alphabet are encoded in the objects, but she does
not know the message that Bob is sending. When Alice
receives the objects, she can decode the information in
the message, provided that none of the objects has been
accidentally changed on the way to her. Can we quantify
the information transmitted if we know that each letter
ρi occurs in the message with probability pi? Let us be-
gin with some hand-waving which is followed in the next
section by a formally correct argument. Assume that our
alphabet is composed of only two letters 1 and 0 occur-
ring with probability p1 = 0.1 and p0 = 0.9 respectively.
Suppose we send a very long message, what is the average
information sent per letter? Naively, one could say that
if each letter can be either 1 or 0 then the information
transmitted per letter has to be 1 bit. But this answer
does not take into account the different probabilities as-
sociated with receiving a 1 or a 0. For example, presented
with an object Alice can guess its identity in 90% of the
cases by simply assuming it is 0. On the other hand, if
the letters 1 and 0 come out with equal probability, she
will guess correctly only 50% of the time. Therefore her
surprise will usually be bigger in the second case as she
doesn’t know what to expect. Let us quantify Alice’s sur-
prise when she finds letter i which normally occurs with
probability pi by

surprise letter i = log
1

pi
. (7)

We have chosen the logarithm of 1
pi

because if we guess

two letters, then the surprise should be additive, i.e.

log(
1

pi

1

pj
) = log

1

pi
+ log

1

pj
.

= surprise letter i + surprise letter j . (8)

and this can only be satisfied by the logarithm. Now we
can compute the average surprise, which we find to be
given by the Shannon entropy

H =
∑

i

pi log
1

pi
= −

∑

i

pi log pi . (9)

This argument is of course hand-waving and therefore
the next section addresses the problem more formally by
asking how much one can compress a message, i.e. how
much redundancy is included in a message.

1. Shannon’s entropy

In 1948 Shannon developed a rigorous framework for
the description of information and derived an expression
for the information content of the message which indeed
depends on the probability of each letter occurring and
results in the Shannon entropy. We will illustrate Shan-
non’s reasoning in the context of the example above.
Shannon invoked the law of large numbers and stated

6



that, if the message is composed of N letters where N is
very large, then the typical messages will be composed of
Np1 1’s and Np0 0’s. For simplicity, we assume that N
is 8 and that p1 and p0 are 1

8 and 7
8 respectively. In this

case the typical messages are the 8 possible sequences
composed of 8 binary digits of which only one is equal to
1 (see left side of figure 6).

0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

by relabelling sequences
Compressed messages obtained

8 original messages

FIG. 6. The idea behind classical data compression. The
most likely sequences are relabeled using fewer bits while rare
sequences are discarded. The smaller number of bits still al-
lows the reconstruction of the original sequences with very
high probability.

As the length of the message increases (i.e. N gets
large) the probability of getting a message which is all
1’s or any other message that differs significantly from
a typical sequence is negligible so that we can safely ig-
nore them. But how many distinct typical messages are
there? In the previous example the answer was clear:
just 8. In the general case one has to find in how many
ways the Np1 1’s can be arranged in a sequence of N
letters? Simple combinatorics tells us that the number
of distinct typical messages is

(

N
Np1

)

=
N !

(Np1)!(Np0)!
(10)

and they are all equally likely to occur. Therefore, we can
label each of these possible messages by a binary number.
If that is done, the number of binary digits I we need to
label each typical message is equal to log2

N !
Np1!Np0!

. In

the example above each of the 8 typical message can be
labeled by a binary number composed by I = log28 = 3
digits (see figure 6). It therefore makes sense that the
number I is also the number of bits encoded in the mes-
sage, because Alice can unambiguously identify the con-
tent of each typical message if Bob sends her the corre-
sponding binary number, provided they share the back-
ground knowledge on the labeling of the typical messages.
All other letters in the original message are really redun-
dant and do not add any information! When the message
is very long almost any message is a typical one. There-
fore, Alice can reconstruct with arbitrary precision the
original N bits message Bob wanted to send her just by
receiving I bits. In the example above, Alice can com-
press an 8 bits message down to 3 bits. Though, the ef-
ficiency of this procedure is limited when the message is

only 8 letters long, because the approximation of consid-
ering only typical sequences is not that good. We leave to
the reader to show that the number of bits I contained in
a large N -letter message can in general be written, after
using Stirling’s formula, as

I = −N(p1logp1 + p0logp0) . (11)

If we plug the numbers 1
8 and 7

8 for p0 and p1 respectively
in equation 11, we find that the information content per
symbol I

N
when N is very large is approximately 0.5436

bits. On the other hand, when the binary letters 1 and 0
appear with equal probabilities, then compression is not
possible, i.e. the message has no redundancy and each
letter of the message contains one full bit of information
per symbol. These results match nicely the intuitive ar-
guments given above.

Equation 11 can easily be generalized to an alphabet
of n letters ρi each occurring with probabilities pi. In
this case, the average information in bits transmitted per
symbol in a message composed of a large number N of
letters is given by the Shannon entropy:

I

N
= H{pi} = −

n
∑

i=1

pilogpi . (12)

We remark that the information content of a compli-
cated classical system composed of a large number N of
subsystems each of which can be in any of n states oc-
curring with probabilities pi is given by N ×H{pi}.

2. Boltzmann versus Shannon entropy

The mathematical form of the Shannon entropy H dif-
fers only by a constant from the entropy formula derived
by Boltzmann after counting how many ways are there to
assemble a particular arrangement of matter and energy
in a physical system.

S = −kln2

n
∑

i=1

pilogpi . (13)

To convert one bit of classical information in units of
thermodynamical entropy we just need to multiply by
kln2. By Landauer’s erasure principle, the entropy so
obtained is the amount of thermodynamical entropy you
will generate in erasing the bit of information.

Boltzmann statistical interpretation of entropy helps
us to understand the origin of equation 6. Consider
our familiar example of the binary device in which the
molecule can be on either side of the partition with equal
probabilities. An observer who has no extra knowledge
will use Boltzmann’s formula and work out that the en-
tropy is kln2. What about an observer who has 1 extra
bit of information on the position of the molecule? He
will use the Boltzmann’s formula again, but this time
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he will use the values 1 and 0 for the probabilities, be-
cause he knows on which side the molecule is. After
plugging these numbers in equation 13, he will conclude
that the entropy of the system is 0 in agreement with
the result obtained if we use equation 6. The acquisition
of information about the state of a system changes its
entropy simply because the entropy is a measure of our
ignorance of the state of the system as transparent from
Boltzmann’s analysis.

F. Sending classical information through a noisy

classical channel

In the previous section, we found that the Shannon
entropy measures the information content in bits of an
arbitrary message whose letters are encoded in classical
objects. Throughout our discussion, we made an impor-
tant assumption: that the message is encoded and trans-
mitted to the recipient without errors. It is obvious that
this situation is quite unrealistic. In realistic scenarios
communication errors are unavoidable. To the physicist
eyes, the origin of noise in communication can be traced
all the way down to the unavoidable interaction between
the environment and the physical systems in which each
letter is encoded. The errors caused by the noise in the
communication channel cannot be eliminated completely.
However, one hopes to devise a strategy that enables the
recipient of the message to detect and subsequently cor-
rect the errors, without having to go all the way to the
sender to check the original message. This procedure is
sometimes referred to as coding the original message.

1. Coding a classical message: an example

For example, imagine that Bob wants to send to Alice
a 1 bit message encoded in the state of a classical binary
device in which a particle can be on the left hand side
(encode a 0) or the right hand side (encode a 1) of a finite
potential barrier. Unfortunately, the system is noisy and
there is a probability 1

100 for the binary letter to flip (i.e.
1 → 0 or 0 → 1). For example, a thermal fluctuation in-
duced by the environment may cause the particle in the
encoding device to overcome the potential barrier and go
from the left hand side to the right hand side. Alice, who
is not aware of this change, will therefore think that Bob
attempted to send a 1 and not a 0. This event occurs
with 1% probability so it is not that rare after all. On
the other hand, the (joint) probability that two such er-
rors occur in the same message is only 0.01% ( 1

100 × 1
100 ).

Alice and Bob decide to ignore the unlikely event of two
errors happening in one encoding but they still want to
protect their message against single errors. How can they
achieve this?

One strategy is to add extra digits to the original mes-
sage and dilute the information contained in it among all

the binary digits available in the extended message. Here
is an example. Alice and Bob add two extra digits. Now
their message is composed of 3 binary digits, but they
still want to get across only one bit of information. So
they agree that Alice will read a 1 whenever she receives
the sequence 111 and a 0 when she receives 000.

The reader can see that this encoding ensures safer
communication, because the worst that can happen is
that Alice receives a message in which not all the digits
are either 0s or 1s, for example 101. But that is not big
deal. In this case the original message was clearly a 111,
because we have allowed for single errors only. Under
this assumption, any original message of the form 000
can never get transformed in 101 because that requires
flipping at least two bits.

This strategy protects the message from single errors
and therefore ensures that the error rate in the commu-
nication is reduced down to 0.01% (the probability of
double errors). By simply adding other two extra bits
to the encoded message Bob can protect the message
against double errors and reduce the error rate of two
orders of magnitude (ie the probability of triple errors).
Quite obviously one can make the error rate as small
as possible but at the price of decreasing the ratio of

bits transmitted
binary letters employed

. Is it possible to achieve a finite

ratio bits transmitted
binary letters employed

and an arbitrarily small er-

ror rate in the decoded messages? We will address this
question, that has been first answered by Shannon, in the
next section.

2. The capacity of a noisy classical channel via Landauer’s

principle

Maybe surprisingly, one can indeed bring the error rate
in the received message in communication arbitrary close
to zero, provided that the actual message of lengthN bits
is ”coded” in a much longer message of size NC bits. The
actual construction of efficient strategies to code a mes-
sage is a task that requires a lot of ingenuity, but is not
what we are after. Our concern here is to answer the
following more fundamental question:

Given that the probability of error is q, what is the

largest number of bits N that we can transmit reliably
through a noisy channel after encoding them in a larger

message of size NC bits?

In other words we want a bound on the classical infor-
mation capacity of a noisy channel. We start by remark-
ing that if the coded message is composed of NC bits,
then the average number of errors will be qNC . If we
let the size of the message be very large, the probability
of getting a number of errors different from the average
value becomes vanishing small. In the asymptotic limit
one will expect exactly qNC bits to be affected by errors
in the NC bits message. However, there are many ways
in which qNC errors can be distributed in the NC bits of
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the original message. In fact, we worked out the exact
number in the section on the Shannon entropy and it is
given by

number of ways the errors can be distributed =

(

NC
qNC

)

.

(14)

The problem there was slightly different, but after
rephrasing the argument a bit we can conclude that in or-
der to specify how the qNC errors are distributed among
the NC message bits you need n bits of information,
where n is given by :

n = log

(

NC
qNC

)

∼= −NC [qlogq + (1 − q)log(1 − q)]

= NCH(q). (15)

The reader should convince himself that equation 15
can be derived following the same steps that led us to
equation 11. One just needs to rename the variables.

The short calculation above may inspire the following
idea. Bob can send only NC bits in total and he knows
that he needs NCH(q) bits to specify the position of the
errors. All he has to do, then, is to allocate NCH(q)
binary digits to store the information on the position of
the errors. At that point the remaining NC−NCH(q) bi-
nary digits will be fully available for safe communication.
Unfortunately, Bob cannot implement this idea directly
because it requires him to know, in advance, which let-
ters of the message are going to be affected by errors.
But the errors are random and they would occur even
in the letters that supposedly store information on their
positions! But there is something to be learned from this
suggestion anyway.

Suppose, instead, that Bob had diluted the informa-
tion he wants to transmit among all the letters of the
message as shown in the last section. When Alice re-
ceives the string of binary digits and she deciphers the
message, she gains knowledge of the actual message, but
also the information necessary to extract the message
from all the digits. This extra amount of information is
implicitly provided by the coding technique and it is also
diluted among all the letters in the message. To see this
point more clearly, let us use Landauer’s principle and
ask how much entropy Alice generates when she decides
to erase the message sent by Bob. For simplicity, let us
stick to our simple example where Bob sends 3 bits to
effectively transmit only a 1 bit message. In order to
erase the information sent by Bob, Alice has to reset to
zero the three classical binary devices sent by Bob and
that generates an amount of entropy not less than 3kln2,
by Landauer’s principle. But, Alice has effectively ac-
quired only 1 bit of information corresponding to kln2
of entropy. So why did she have to generate that ex-
tra amount of entropy equal to 2kln2? Those extra 2
bits of information that she is erasing must have been
implicitly used to identify the errors and separate them

from the real message. In general, when Alice receives
the string of NC binary devices and she erases it, the
minimum amount of entropy that she generates is equal
to NC × kln2. Now we can figure out how much of that
entropy needs to be wasted to extract the real message
from these (redundant) string of binary digits. No mat-
ter how sophisticated Bob’s coding was, there is no way
that Alice could isolate the errors without using at least
NCH(q) bits of information. In fact, even if she can com-
press the errors in a block of digits and concentrate the
message in the remaining block she would still need at
least NCH(q) binary digits for the errors. Note that we
are by no means proving that she will be able to achieve
this efficiency, but only that she will compress the er-
rors in a block of at least NCH(q) binary letters. But,
if Alice and Bob could device such a strategy, something
much more sophisticated than the naive idea suggested
above, then they would really have NC − NCH(q) bits
available for error free communication. That means that
there is an upper bound on the information capacity of
any classical noisy channel given by

N = NC(1 −H(q)) (16)

where N is the size of the message effectively transmit-
ted, NC is the size of the (larger) coded message and q is
the probability that each bit will flip under the effect of
the noise. The rigorous proof that this bound is indeed
achievable was given by Shannon (see textbooks such as
[21]). The reader interested in more details can consult
the Feynman lectures on computation on which this short
treatment was based [18].

The problem of the noisy channel concludes our survey
of classical information encoded in classical systems. If
you have a look at the map of this paper you will see
that we have gone through one of the 4 columns of topics
shown pictorially in figure 1. The rest of this paper will
deal with topics that require a grasp of the basic princi-
ples and mathematical methods of quantum mechanics.
The next section is a quick recap that should be of help to
those with a more limited background. If the reader feels
confident in the use of the basics of quantum mechanics,
the density operator and tensor products, then he can
just skip this part and move on to the next section.

III. A CRASH COURSE ON QUANTUM

MECHANICS

At the end of our discussion on the Maxwell’s demon
paradox, we started putting forward the idea that the
information we have on the state of a classical system
contributes to define the state itself. In this section we
will push our arguments even further and investigate the
role that the concept of information plays in the basic
formalism of quantum mechanics.
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A. To be or to know

The quantum state of a physical system is usually rep-
resented mathematically by a vector |ψ〉 or a matrix ρ̂ in a
complex vector space called the Hilbert space [15–17,19].
We will explain the rules and the reasoning behind this
representation in the next sections by considering two-
level quantum systems as an easy example that displays
most of the features of the general case.

But, first of all, what do the mathematical symbols ex-

actly represent? In this article, we take the pragmatic
point of view that what is being represented is not the

quantum system itself but rather the information that we
have about its preparation procedure. As an example that
illustrates this point, we consider the process by which
an atom prepared in an arbitrary superposition of en-
ergy eigenstates collapses into only one of the eigenstates
after the measurement is done. This process seems to
happen instantaneously unlike the ordinary time evolu-
tion of quantum states. Generations of physicists have
been puzzled by this fact and have searched for the phys-
ical mechanism which causes the collapse of the wave
function. However, if we consider the wave-function to
represent only the information that we possess about
the state of the quantum system, we will definitely ex-
pect it to change discontinuously after the measurement
has taken place, because our knowledge has suddenly in-
creased. Not everybody is satisfied with this view. Some
people think that physical theories should deal with ob-
jective properties of Nature, with what is really out there
and avoid subjectivism. It is difficult to assess the valid-
ity of these arguments entirely on philosophical grounds.
To our knowledge there are no experiments that provide
compelling evidence in favor of any of the existing inter-
pretational frameworks. Therefore we will adopt what we
feel is the easiest way out of the problem and explain the
rules for representing mathematically our knowledge of
the preparation procedure of an arbitrary quantum state
[25].

B. Pure states and complete knowledge

1. Pure states of a single system

We start by considering how to proceed when we have
complete knowledge on the preparation procedure of a
single quantum system. In this simpler case, we say that
the state of the quantum system is pure and we represent
our complete knowledge of its preparation procedure as
a vector in a complex vector space. As an example, con-
sider two non-orthogonal states of a two-level atom |ψ1〉
and |ψ0〉. These states are arbitrary superpositions of the
two energy eigenstates. In the next few lines, we show
how to write them as two 2-dimensional vectors

|ψ1〉 =
2√
5
|0〉 +

1√
5
|1〉 .

=
2√
5

(

1
0

)

+
1√
5

(

0
1

)

.

=
1√
5

(

2
1

)

. (17)

|ψ0〉 =
1√
2
|0〉 +

1√
2
|1〉 .

=
1√
2

(

1
1

)

. (18)

The rule used above to convert from Dirac to matrix
notation is to write the energy eigenstates |0〉 and |1〉,
as the column vectors

(

1
0

)

and

(

0
1

)

, respectively.

There is nothing mystical behind the choice of this cor-
respondence. One could have also chosen the basis vec-

tors 1√
2

(

1
1

)

and 1√
2

(

−1
1

)

, instead. What is impor-

tant is that the two vectors are orthogonal and normal-
ized so that they can faithfully represent the important
experimental property that the two states |0〉 and |1〉 are
orthogonal and can be perfectly distinguished in a mea-
surement. The important point to observe in the choice
of the basis in which to represent your state-vectors is
that of consistency. Every physical quantity has to be
represented in the same basis when you bring them to-
gether in computations. If one has used different bases
for representation, then one has to rotate them into one
standard basis using unitary transformations. This ro-
tation can be expressed mathematically as 2× 2 unitary
matrix U . A unitary matrix is defined by the require-
ment that UU † = U †U = 1. Given a set of quantities in
one basis then upon rewriting them in another basis, the
predictions for all physically observable quantities have
to remain the same. This essentially requires that the
mathematical expressions that are used to express these
observable quantities have to be invariant under unitary
transformations. We will see examples of this soon.

Above we have seen examples for orthogonal states
(namely the basis states |0〉 and |1〉, as the column vectors
(

1
0

)

and

(

0
1

)

). In general two quantum states will

be neither orthogonal nor parallel such as for example
the states |ψ0〉 and |ψ1〉. To quantify the angle between
two vectors |ψi〉 and |ψj〉 we introduce the complex scalar
product. For complex vectors with two components it is
given by

〈ψj |ψi〉 = (aj
∗〈0| + bj

∗〈1|)(ai|0〉 + bi|1〉) .

=
(

aj∗ bj
∗ )

(

ai
bi

)

.

= aj
∗ai + bj

∗bi . (19)

Note that the components of the first vector have to be
complex conjugated, but apart from that the complex

10



scalar product behaves just as the ordinary real scalar
product. One nice property of the scalar product is the
fact that it is invariant under unitary transformations,
just as you would expect for a quantity that measures
the angle between two state vectors.

2. Operators and probabilities for a single system

In our new language of state vectors, the dot prod-
uct 〈ψi|ψj〉 is analogous to the overlap integral between
two wave-functions ψi(x) and ψj(x), that is usually en-
countered in introductory courses of quantum mechan-
ics. The reader may recall that the squared result of the
overlap integral, write as |〈ψi|ψj〉|2, can be interpreted
as the probability of projecting the quantum state |ψi〉
on the eigenstate |ψj〉 of an appropriate observable after
the measurement is performed.

Now we would like to represent this projection math-
ematically by a projection operator denoted by |ψ〉〈ψ|.
This projector is simply a matrix that maps all the vec-
tors onto the vector corresponding to |ψj〉, apart from a
normalization constant. The recipe to construct the ma-
trix representation of |ψ〉〈ψ| is to multiply the column
vector |ψ〉 times the row vector 〈ψ| as shown below:

|ψ〉〈ψ| = (a|0〉 + b|1〉)(a∗〈0| + b∗〈1|) .

=
(

a
b

)

(

a∗ b∗
)

=

(

|a|2 ab∗

a∗b |b|2
)

. (20)

For example, the reader can easily construct the matrix
representing the projector |1〉〈1| and check that when it
operates on the state |ψ0〉 in equation 18 we indeed obtain
the excited state |1〉 apart from a normalization constant.
Furthermore, the probability of finding the state |ψ〉 in a
measurement of a system originally in the quantum state
|φ〉 is given by

Prob|ψ〉 = 〈φ|(|ψ〉〈ψ|)|φ〉 = tr{|ψ〉〈ψ||φ〉〈φ|} (21)

where tr denotes the trace which is the sum of the di-
agonal elements of a matrix, a concept that is invariant
under unitary transformations. The reader can easily
check that Eq. 21 is true by explicitly constructing the
matrices |ψ〉〈ψ| and |φ〉〈φ| (see equation 20), multiplying
them, take the trace, and verify that the result is indeed
equal to |〈φ|ψ〉|2, calculated after squaring the result of
equation 19. Once this is done it is easy to write the ex-
pectation value of any observable whose eigenvalues are
the real numbers {ei} and its eigenstates are the vectors
{|ei〉}. In fact, if we label the probability of projecting
on the eigenstate |ei〉 as Prob|ei〉 and we make use of
equation 21, we can indeed write the expectation value

for any observable Ô of the two level system in a given
state |φ〉 as

〈Ô〉|φ〉 = e0Prob|e0〉 + e1Prob|e1〉 .

= e0tr{|e0〉〈e0||φ〉〈φ|} + e1tr{|e1〉〈e1||φ〉〈φ|} .

= tr{(e0|e0〉〈e0| + e1|e1〉〈e1|)|φ〉〈φ|} . (22)

The expression above can be tided up a bit by defining
the observable Ô as the matrix

Ô = e0|e0〉〈e0| + e1|e1〉〈e1| . (23)

Note that in order to use the projectors to calculate prob-
abilities as in equation 22, we have to demand that the
sum of the matrices representing the projectors must be
the unity matrix. For a two dimensional vector space
this means that |0〉〈0| + |1〉〈1| = 1. This condition en-
sures that the sum of the probabilities obtained using
equation 22 is equal to 1. Once we check this important
property of the projectors we can use equation 23 to con-
struct the matrix representation of any observable. For
example, the reader can check that the energy observable

Ê can be written using the basis

(

1
0

)

and

(

0
1

)

in the

form:

Ê = e0|e0〉〈e0| + e1|e1〉〈e1| .

= e0

(

1 0
0 0

)

+ e1

(

0 0
0 1

)

.

=

(

e0 0
0 e1

)

. (24)

Note that the energy operator is diagonal in this basis
because these basis vectors were originally chosen as the
energy eigenvectors! However, the prescription given in
equation 23 to represent any observable Ô ensures that
the resulting matrix is Hermitian because the projectors
themselves are Hermitian. A matrix is said to be Her-
mitian if all its entries that are symmetrical with respect
to the principal diagonal are complex conjugate of each
other (see equation 20). The fact that the matrix Ô is
Hermitian ensures that its eigenvectors are orthogonal
and the corresponding eigenvalues are real. This means
that the possible ”output states” after the measurement
are distinguishable and the corresponding results are real
numbers. Once you accept equation 23, you can imme-
diately write equation 22 simply as

〈Ô〉 = tr{Ô|ψi〉〈ψi|} (25)

This completes our quick survey of the rules to represent
the arbitrary state of a single two level quantum system.
The main motivation to adopt these rules is dictated by
their ability to correctly predict experimental results.
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3. Non-orthogonality and inaccessible information

We would like to expand a little bit on the important
concept of non-distinguishibility between two quantum
states. By this we mean the following. Suppose that you
are given two two-level atoms in states |ψ0〉 and |ψ1〉 re-
spectively (see equations 18 and 17) and you are asked to
work out which particle is in state |ψ1〉 and which in state
|ψ0〉. The two states are said to be non-distinguishable
if you will never be able to achieve this task without
the possibility of a wrong answer and if you are given
only one system and irrespective of the observable you
to measure. For example you could decide to measure
the energy of the two atoms. After using equation 21or
just by inspection, you can verify that the probability of
finding the atom in the excited state if it was in state
|ψ0〉 before the measurement is equal to 1

5 . On the other
hand, you can also check that the probability of finding
the atom in the excited state if it was in state |ψ1〉 be-
fore the measurement is also non-vanishing and in fact
equal to 1

2 . Now, suppose that you perform the measure-
ment and you find that the atom is indeed in the excited
state. At this point, you still cannot unambiguously de-
cide whether the atom had been prepared in state |ψ0〉
or |ψ1〉 before the measurement took place. In fact, by
measuring any other observable only once you will never

be able to distinguish between two non-orthogonal states
with certainty.

This situation is somehow surprising because the two
non-orthogonal states are generated by different prepa-
ration procedures. Information was invested to prepare
the two states, but when we try to recover it with a single
measurement we fail. The information on the superposi-
tion of states in which the system was prepared remains
not accessible to us in a single measurement.

It is sometimes argued that we therefore have to as-
sume that a single quantum mechanical measurement
does not give us any information. This viewpoint is, how-
ever, wrong. Consider the situation above again, where
we either have the state |ψ0〉 or the state |ψ1〉 with a priori
probabilities 1/2 each. If we find in a measurement the
excited state of the atom, then it would be a fair guess to
say that it is more likely that the system was in state |ψ1〉
because this state has the higher probability to yield the
excited state in a measurement of the energy. Therefore
the a posteriori probability distribution for the two states
has changed, and therefore we have gained knowledge as
we have reduced our uncertainty about the identity of
the quantum state.

The non-distinguishability of non-orthogonal quantum
states is an important aspect of quantum mechanics and
will be encountered again several times in the remainder
of this article.

4. Two 2-level quantum systems in a joint pure state

We have gained a good grasp of the properties of an
isolated two-level quantum system. We are now going to
study how the joint quantum state of two such systems
(say a pair of two level atoms) is represented mathemati-
cally. The generalization is straightforward. We initially
concentrate on the situation when our knowledge of the
preparation procedure of the joint state is complete, i.e.
when the joint system is in a pure state. The reader who
is not very familiar with quantum mechanics may won-
der why we have to include this section altogether. At
the end of the day, according to classical intuition, the
state of a joint quantum system comprised of two sub-
systems A and B can be given by simply providing, at
any time, the state of each of the subsystems A and B
independently. This reasonable conclusion turns out to
be wrong in many cases! Let us see why.

We first consider one of the most intuitive examples of
joint state of the two atoms: the case in which atom A is
in its excited state |1〉A and atom B in its ground state
|0〉B, where the subscript labels the atoms and the binary
number their states. In this case, the joint state of the
two atoms |ψAB〉 can be fully described by stating the
state of each atom individually so we write |ψAB〉 down
symbolically as |1〉A |0〉B. We call this state a product

state. We now decide to represent the joint state |1〉A|0〉B
of the two atoms as a vector in an enlarged Hilbert space
whose dimensionality is no longer 2 as for a single atom
but it is 2×2 = 4. The vector representation of |1〉A|0〉B
is constructed as shown below:

|ψAB〉 = |1〉A|0〉B

=

(

0
1

)

⊗
(

1
0

)

:=







0 × 1
0 × 0
1 × 1
1 × 0







=







0
0
1
0






. (26)

Equation 26 defines the so called tensor product between
two vectors belonging to two different Hilbert spaces, one
used to represent the state of atom A and the other for
atom B. For the readers who have never seen the sym-
bol ⊗ we write down a more general case involving the
two vectors |ψA〉 with coefficients a and b and |ψB〉 with
coefficients c and d:

|ψAB〉 = |ψA〉|ψB〉

=

(

a
b

) (

c
d

)
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:=







ac
ad
bc
bd






. (27)

The case of tensor product between n dimensional vec-
tors is a simple generalization of the rule of multiplying
component-wise as above [16]. Using equation 27 the
reader can work out the vector representation of the fol-
lowing states:

|0〉A|0〉B −→







1
0
0
0






, (28)

|0〉A|1〉B −→







0
1
0
0






, (29)

|1〉A|1〉B −→







0
0
0
1






. (30)

A trick to write the states above as vectors without ex-
plicitly performing the calculation in equation 26 is the
following. First, read the two digits inside |...〉|...〉 as two
digits binary numbers (for example read |0〉|1〉 as 1), and
add 1 to get the resulting number n. Then place a 1
in the nth entry of the column vector and 0s in all the
others. The four states-vectors in equations 26, 28, 29
and 30 are a complete set of orthogonal basis vectors for
our four-dimensional Hilbert space. Therefore, any state
|ψAB〉 of the form |ψB〉|ψA〉 in equation 27 can be written
as:

|ψAB〉 = ac|0〉A|0〉B + ad|0〉A|1〉B + bc|1〉A|0〉B + bd|1〉A|1〉B.
(31)

where we wrote the vectors symbolically, in Dirac no-
tation, to save paper. We interpret the coefficients of
each basis vector in terms of probability amplitudes, as
we did for single systems. For example, the modulus
squared |ad|2 gives the probability of finding atom A in
its ground state and atom B in the excited state after an
energy measurement. A question that arises naturally
after inspecting equation above is the following:

What happens when I choose the coefficients of the su-

perposition in equation 31 in such a way that it is impos-
sible to find two vectors |σ〉A and |β〉B that ”factorize”

the 4-dimensional vector |ψAB〉 as in equation 27? Are
these non factorizable vectors a valid mathematical repre-

sentation of quantum states that you can actually prepare
in the lab?

5. Bipartite Entanglement

The answer to the previous question is a definite yes.
Before expanding on this point, let us write an example
of a non factorizable vector:

|ψAB〉 =
1√
2
|0〉A|0〉B +

1√
2
|1〉A|1〉B. (32)

The vector above corresponds to the state for which there
is equal probability of finding both atoms in the excited
state or both in the ground state. The reader can perhaps
make a few attempts to factorize this vector, but they are
all going to be unsuccessful. This vector, nonetheless,
represents a perfectly acceptable quantum state. In fact,
according to the laws of quantum mechanics, ANY vec-
tor in the enlarged Hilbert space is a valid physical state
for the joint system of the two atoms, independently of it
being factorizable or not. In fact, in section VB 2 we will
show that for an n-partite system most of the states are
actually non factorizable. So these states are the norm
rather than the exception!

The existence of non-factorizable states is not too dif-
ficult to appreciate mathematically, but it leads to some
unexpected conceptual conclusions. If the quantum state
of a composite system cannot be factorized than it is im-
possible to specify a pure state of its constituent compo-
nents. More strangely perhaps, non-factorizable states,
such as |ψAB〉 in equation 32 are pure states. This means
that the corresponding vectors are mathematical repre-
sentations of our complete knowledge of their prepara-
tion procedure. There is nothing more we can in prin-

ciple know about these composite quantum objects than
what we have written down, but nonetheless we still can-
not have full knowledge of the state of their subsystems.
With reference to the discussion following equation 32,
we conclude that in a non-factorizable state we have
knowledge of the correlation between measurements out-
comes on atom A and B but we cannot in principle iden-
tify a pure state with each of the atomsA andB individu-
ally. This phenomena seemed very weird to the fathers of
quantum mechanics who introduced the name entangled
states to denote states whose corresponding vectors can-
not be factorized in the sense explained above. In section
VI, that is entirely devoted to this topic, we will go be-
yond the dry mathematical notion of non-factorizability
and start exploring the physical properties that make en-
tangled states peculiar. We will focus on possible appli-
cations of these weird quantum objects in the lab. But
before doing that, the reader will have to swallow another
few pages of definition and rules because we have not ex-
plained yet how to construct and manipulate operators
acting on our enlarged Hilbert space.
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6. Operators and probabilities for two systems

In this section, we generalize the discussion of projec-
tion operators and observables given previously for single
quantum systems to systems consisting of two particles.
The generalization to n-particle systems should then be
obvious. We start by asserting that the rules stated in
equations 21 and 23 for single quantum systems are still
valid with the only exception that now observables and
projector operators are represented by 4 × 4 matrices.
Imagine that you want to write down the joint observ-
able ÔA ⊗ ÔB where ÔA and ÔB are possibly different
observables acting respectively on the Hilbert space of
particle A and of particle B. The rule to write down the
joint observable is the following:

ÔAB = ÔA ⊗ ÔB .

=

(

a1 b1
c1 d1

)

⊗
(

a2 b2
c2 d2

)

.

=







a1a2 a1b2 b1a2 b1b2
a1c2 a1d2 b1c2 b1d2

c1a2 c1b2 d1a2 d1b2
c1c2 c1d2 d1c2 d1d2






. (33)

where the subscript 1 denotes the operator on particle A
and the subscript 2 the operator on particle B. However,
there are some observables ÔAB whose corresponding
matrices cannot be factorized as in equation 33. These
matrices still represent acceptable observables provided
that they are Hermitian.

Furthermore, it is possible to construct projectors on
any 4d vectors by using the same principle illustrated in
equation 20. For example, the projector on the entangled
state |ψ〉AB in equation 32 can be written as

|ψAB〉〈ψAB | =
1

2







1
0
0
1







(

1 0 0 1
)

.

=
1

2







1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1






. (34)

Finally, suppose you are interested in knowing the prob-
ability of projecting atom A on its ground state |0〉A and
atom B onto its excited state |1〉B after performing a
measurement on the maximally correlated state |ψAB〉
considered above. How do you proceed? The answer to
this question should be of guidance also for other cases,
so we work it out in some detail. The first thing you do
is to construct the tensor product of the matrices corre-
sponding to the single particle projectors |0〉〈0| and |1〉〈1|
that project particle A onto its ground state and particle
B on its excited state:

|0〉〈0| ⊗ |1〉〈1| =

(

1 0
0 0

)

⊗
(

0 0
0 1

)

.

=







0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0






. (35)

Once you have worked out the matrix in equation 35 you
can multiply it with the matrix found in equation 34 and
take the trace, as explained for single particles in equa-
tion 21. The result is 0, as expected, since we have max-
imal correlations between the two atoms in state |ψAB〉.

C. Mixed states and incomplete knowledge

1. Mixed states of a single two-level atom

In this section, we explain how to represent mathemat-
ically the state of a quantum system whose preparation
procedure is not completely known to us. This lack of
knowledge may be caused by random errors in the appa-
ratus that generates our quantum systems or by fluctua-
tions induced by the environment. In these cases we say
that the quantum system is in a mixed state. This can
be contrasted with the pure states considered in the pre-
vious sections for which there was no lack of knowledge
of the preparation procedure (i.e. the quantum states
were generated by a perfect machine whose output was
completely known to us). To some extent, by considering
mixed states, we start dealing with ”real world quantum
mechanics”. We will build on the example introduced in
section III B 1 to make our treatment more accessible.

An experimentalist needs to prepare two-level atoms in
the state |ψ1〉 to be subsequently used in an experiment.
He has at his disposal an oven that generates atoms in
the state |ψ1〉 with probability p1 = 95% (see Fig. 7 for
illustration).

Oven
Detector of
Experimentalist

|ψ> |ψ> |ψ>|ψ> |ψ>
2 4 21 1

FIG. 7. An oven emits atomic two-level systems. The inter-
nal state of the system is randomly distributed. With proba-
bility pi the system is in the pure state |ψi〉. A person oblivi-
ous to this random distribution measures observable Â. What
is the mean value that he obtains?

In the remaining p0 = 5% of the cases the oven fails
and generates atoms in a different state |ψ0〉. This prepa-
ration procedure is pretty efficient, but of course still dif-
ferent from the ideal case. The experimentalist collects
the atoms, but he does not know for which of them the
preparation has been successful because the experimental
errors occur randomly in the oven. Neither can he mea-
sure the atoms because he is scared of perturbing their

14



quantum state. The only thing he knows is the probability
distribution of the two possible states. The experimental-
ist has to live with this uncertainty. However, he his
aware that, if he uses the states produced by the oven,
his experimental results are going to be different from
the ones he would have obtained had he used atoms in
the state |ψ1〉 exactly, because the oven occasionally out-
puts atoms in the undesired state |ψ0〉. He would like to
find an easy way to compute the measurement results in
this situation so he asks a theorist to help him modeling
his experiments. The first task the two have to face is
to construct a mathematical object that represents their
incomplete knowledge of the preparation procedure. In-
tuitively, it cannot be the vector |ψ1〉 because of that 5%
probability of getting the state |ψ0〉. The way the two
approach the problem is a good example of empirical rea-
soning, so it is worth exploring their thought process in
some detail. The theorist asks the experimentalist to de-
scribe what he needs to do with these atoms and the two
reach the conclusion that what really matters to them are
the expectation values of arbitrary observables measured
on the states generated by the oven. The theorist points
out that, after performing measurements on N atoms,
the experimentalist will have used, approximately, Np1

atoms in the state |ψ1〉 and Np0 atoms in state |ψ0〉. For
each of the two states |ψi〉 they would know how to cal-

culate the expectation value for any observable Â that
the experimentalist wants to measure. After using equa-
tion 23 the theorist rewrites the expectation value of the
observable Â on the state |ψi〉 as tr{Â|ψi〉〈ψi|}. The two
are now only one step away from the result. What they
need to do is to average the two expectation values for
the states |ψ1〉 and |ψ0〉 with the respective probabilities.
The mean value observed by the experimentalist is thus
given by:

〈Â〉 =
∑

i

pitr{Â|ψi〉〈ψi|}

= tr{Â
∑

pi|ψi〉〈ψi|} . (36)

The calculation above can be tided up a bit by defining
the density operator ρ̂ as

ρ̂ =
∑

pi|ψi〉〈ψi| . (37)

Once this is done equation 36 can be compactly written
as

〈Â〉 = tr{Âρ̂} . (38)

A glance at these few lines of mathematics convinces the
two physicists that they have actually solved their prob-
lem. In fact the density operator is the mathematical de-
scription of the knowledge the two have about the quan-
tum states prepared by the oven. Equation 38, on the
other hand, tells them exactly how to use their knowl-
edge to compute the expectation value of any operator.

Similarly, they can write down the probability of find-
ing the system in any state |σ〉 after a measurement by
simply constructing the projector |σ〉〈σ|. After this, they
just multiply it with the density operator and take the
trace (as in equation 21)

Prob|σ〉 = tr{|σ〉〈σ|ρ̂} . (39)

Equation 37 provides the recipe for constructing the den-
sity matrix for the example above. We leave as an ex-
ercise to the reader to show that the density operator
representing the preparation procedure described above
can be written as

ρ̂ =

(

0.785 0.405
0.405 0.215

)

(40)

One can see that the trace of the density operator ρ̂ in
equation 40 is equal to 1. This is not an accident but a
distinctive property of any density operator. You can eas-
ily check that by plugging the unity matrix rather than
the operator Ô in equation 38. The expectation value
of the unity operator on any normalized vector state is
1 (i.e. the expectation value reduces to the dot product
of the normalized state vector with itself). That in turn

implies via equation 38 that the trace of Ô is 1.

To sum up, one can use density operators in matrix
form to represent both states of complete and incomplete
knowledge (i.e. pure or mixed states). We saw, however,
that for pure states a vector representation is sufficient.
If one wants to use the same mathematical tool to write
down any state irrespective of the knowledge he holds
on its preparation procedure then the method of choice
is the density operator (also called density matrix). A
system is in a pure state when the corresponding density
operator in equation 37 contains only one term. In this
ideal case, there is no lack of knowledge on the prepara-
tion of the system, the preparation procedure generates
the desired output with unit probability. This implies
that the diagonalized density matrix representing a pure
state has all entries equal to zero except one entry equal
to 1 on the principal diagonal. Therefore, if you take the
trace of the diagonalized density matrix squared, you will
still get one. Furthermore, the trace of the diagonalized
density matrix squared is equal to the trace of the original
density matrix squared (remember the trace is invariant
under unitary transformations). This observation is the
basis of a criterion to check whether a given density ma-
trix represents a pure or a mixed state. The test consists
in taking the trace of the density matrix squared. If the
trace is equal to 1, then the state is pure otherwise it is
mixed. We recall that a mixed state arises in situation
when the preparation procedure is faulty and the result
is a distribution of different outputs each occurring with
a given probability.
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2. Mixed states for two quantum systems

Our treatment of density operators for single quantum
systems can be applied to bipartite systems with no es-
sential modification. Let us consider an example in which
an experimental apparatus produces the maximally en-
tangled state |ψAB〉 (see equation 32) with probability p0

and the product state |0〉A|0〉B with probability p1. For
both states we know how to construct the correspond-
ing projectors by using the same method illustrated in
equation 34. But, before writing down the resulting den-
sity operator, we introduce a small simplification in the
notation used. We write the state |0〉A|0〉B simply as
|00〉AB or simply |00〉. The rule to write down the four-
dimensional vector corresponding to this state and its in-
terpretation does not change. The first digit still refers to
atom A and the second to atom B. We can now write the
corresponding density operator ρ̂AB as shown in equation
37

ρ̂AB = p0|ψAB〉〈ψAB| + p1|00〉〈00|

=
p0

2







0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0






+ p1







1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0







=







p1 0 0 0
0 p0

2
p0
2 0

0 p0
2

p0
2 0

0 0 0 0






. (41)

There is another situation that will arise in later sec-
tions. Suppose that two distant machines are generating
one atom each, but we do not know exactly the prepara-
tion procedure of each atom. Since the two machines are
very far away from each other, we can ignore the inter-
action between the atoms and describe them separately
in two different 2-dimensional Hilbert spaces by writing
down the corresponding single particle density operators
ρ̂A and ρ̂B. All this is fine. But, we may also write the
joint state of these two non-interacting atoms as a den-
sity operator ρ̂AB in our 4-dimensional Hilbert space, as
we did for the case considered in equation 41. How do
we proceed? We simply take the tensor product between
the two 2×2 matrices corresponding to ρ̂A and ρ̂B to get

ρ̂AB = ρ̂A ⊗ ρ̂B (42)

We leave as an exercise for the reader to choose two ar-
bitrary density operators ρ̂A and ρ̂B and perform an ex-
plicit calculation of ρ̂AB.

Once we know how to write 1) the density matrix for
the joint state of the two atoms and 2) the matrix rep-
resenting a joint observable or projector we will have no
trouble finding expectation values or probabilities of cer-
tain measurement outcomes. All we need to do is to mul-
tiply two 4× 4 matrices and take the trace as illustrated
for a single particle in equations 38 and 39.

3. The reduced density operator

There is another context in which a mixed state arises
even when there is no uncertainty in the preparation pro-
cedure of the quantum system one is holding. Imagine
you have an ideal machine that generates, with proba-
bility one, pairs of maximally entangled particles in the
state |ψAB〉 = 1√

2
(|00〉+ |11〉). The density operator ρAB

for this pure state reduces to the corresponding projec-
tor, because all the probabilities except one are vanishing
see discussion at the end of section III C1. In fact, the
4 × 4 density matrix for this preparation procedure was
explicitly calculated in equation 34.

After having created the entangled pair we decide to
lock particle A in a room to which we have no access and
we give particle B to our friend Bob. Bob can do any
measurement he wants on particle B and he would like
to be able to predict the outcomes of any of these. Evi-
dently Bob does not know what is happening to particle
A after it has been locked away and as a consequence
now he has an incomplete knowledge of the total state.
The question is how we can describe mathematically his
state given the incomplete knowledge that Bob has of
particle A. The first point to make is that Bob still has
some background knowledge on particle A because he re-
tains information on the original preparation procedure
of the entangle pair. For example, he knows that if Alice
subjects her particle to an energy measurement and finds
that particle A is in the ground (excited) state, then par-
ticle B has to be in the ground (excited) state too. This
prediction is possible because the measurement outcomes
of the two particles are always correlated because they
were prepared in the entangled state |ψAB〉. Further-
more, Bob knows from the preparation procedure, that
the probability that Alice finds her particle in either the
ground state |0〉A or in the excited state |1〉A is 1

2 . By
using the non local correlations between his particle and
the other, Bob concludes that particle B too is in either
the ground state |0〉B or in the excited state |1〉B with
probability 1

2 . Now let us assume that Alice indeed has
measured the energy operator on her particle but, as she
is inside the box, has not told Bob that she did this.
Therefore, in half the cases Bob’s particle will be in state
|0〉〈0| and in half the cases it will be in state |1〉〈1|. This
is a situation that is most easily described by a density
operator. We find that the state of Bob’s particle is de-
scribed by the reduced density operator ρ̂B given by:

ρ̂B =
1

2
|0〉〈0| + 1

2
|1〉〈1| .

=
1

2

(

1 0
0 1

)

. (43)

where we used the rules for the representation and manip-
ulation of quantum states as vectors (equation 20). From
the above reasoning it is perhaps not surprising that ρ̂B
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is often termed the reduced density operator. Being a
mixed state, it represents Bob’s incomplete information
on the state of his particle (the reduced system) due to
his inability to access particle A while the total system is
in a pure entangled state represented by the larger ma-
trix ρ̂AB. In fact, Bob wrote down ρ̂B after taking into
account all information that was available to him. It is
important to note that we would have obtained the same
result for Bob’s density operator if we had assumed any
other operation on Alice’s side. The key point is that, as
Alice’s actions do not affect Bob’s particle in any phys-
ically detectable way, it should not make any difference
for Bob’s description of his state which assumptions he
makes for Alice’s action.

The whole operation of ignoring Alice’s part of the sys-
tem and generating a reduced density operator only for
Bob’s system is sometimes written mathematically as

ρ̂A = trB{ρ̂AB} . (44)

The mathematical operations that one has to perform on
the entries of the larger matrix ρ̂AB in order to obtain
ρ̂A are called the partial trace over system B. The gen-
eral case can be dealt with analogously to the reasoning
above. One assumes that in the inaccessible system a
measurement is carried out whose outcomes are not re-
vealed to us. We then determine the state of our system
for any specific outcome from the projection postulate
and we use the associated probabilities to form the ap-
propriate density operator. We refer the reader interested
in learning how to deal with this method in the most ef-
ficient way to some recent courses of quantum mechanics
[16,17,15].

This topic concludes our very concise review of quan-
tum mechanics. We will now extensively apply the math-
ematical tools introduced in this section to deal with
situations in which classical information is encoded in
a quantum system and later to discuss the new field of
quantum information theory. It is therefore essential that
the reader feels confident with what he has learned so far
before moving on.

IV. CLASSICAL INFORMATION ENCODED IN

QUANTUM SYSTEMS

A. How many bits can we encode in a quantum

state?

In the previous section, we studied two situations in
which the state of a quantum system is mixed, namely
when the preparation procedure is not completely known
or when we have a subsystem that is part of a larger inac-
cessible system. In both cases, our knowledge was limited
to the probabilities {pi} that the system is in one of the
pure states |ψi〉. A question that arises naturally in this
context is whether we can assign an entropy to a quan-
tum system in a mixed state in very much the same way

as we do with a classical system that can be in a num-
ber of distinguishable configurations with a given set of
probabilities. In the classical case the answer is the well
known Boltzmann formula given in equation 13. At first
sight, you may think that the same formula can be ap-
plied to evaluate the mixed state entropy just by plugging
in the probabilities {pi} that the quantum system is in
one of the pure quantum states |ψi〉. Unfortunately, this
idea does not work, because the quantum states |ψi〉 are
different from the distinguishable configuration of a clas-
sical system in one important way. They are not always
perfectly distinguishable! As we pointed out earlier, two
quantum states can be non-orthogonal and therefore not
perfectly distinguishable. But maybe the idea of starting
from the classical case as a guide to solve our quantum
problem is not that bad after all.

In particular, imagine that you are given the density
matrix representing the mixed state of a quantum sys-
tem. Can you perform some mathematical operations on
this matrix to bring it in a form that is more suggestive?
You may recall from equations 20 and 37 that the proce-
dure to write down this density matrix is the following.
First construct the matrix representation of the projector
|ψi〉〈ψi| for each of the vectors |ψi〉, then multiply each
of them by their respective probability and finally sum
all up in one matrix. The reader can check that the pre-
scription on how to construct each matrix |ψi〉〈ψi| given
in equation 20 ensures that the resulting density matrix
is Hermitian. We denote the orthogonal eigenvectors of
our (hermitian) density matrix by |ei〉. If we choose the
|ei〉 as basis vectors, we can rewrite our matrix in a di-
agonal form. All the entries on the diagonal are the real
eigenvalues of the matrix. These matrices can now be
written in Dirac notation as

ρ̂ =
∑

qi|ei〉〈ei| , (45)

where the qi are now the eigenvalues of the density ma-
trix. This new matrix actually represents another prepa-
ration procedure namely the mixed state of a quantum
system which can be in any of the orthogonal states |ei〉
with probability qi. But now the states |ei〉 are distin-
guishable and therefore one can apply the Boltzmann
formula by simply plugging the eigenvalues of the matrix
as the probabilities.

There is one problem in this reasoning. When you
rewrite the old density matrix in diagonal form you are
actually writing down a different matrix and therefore a
representation of a different preparation procedure. How
can you expect then that the entropy so found applies to
the mixed state you considered originally? The answer to
this question lies in the fact that what matters in the ma-
trix representation of quantum mechanical observables or
states is not the actual matrix itself, but only those prop-
erties of the matrix that are directly connected to what
you can observe in the lab. From the previous section, we
know that all the physically relevant properties are basis
independent. The diagonalization procedure mentioned
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above is nothing else than a change of basis and therefore
there is no harm in reducing our original density matrix
ρ̂ in diagonal form and hence define the von Neumann
entropy as the function

S(ρ̂) = −tr{ρ̂logρ̂}
= −

∑

qi log qi . (46)

The formula above is an example of how a function of
a matrix can be evaluated as an ordinary function of
its eigenvalues only. Since the eigenvalues are invariant
under a change of basis the function itself is invariant,
as expected. One can check the validity of the formula
above as an entropy measure by considering two limit-
ing cases. Consider first a pure state, for which there is
no uncertainty on the output of the preparation proce-
dure. The probability distribution reduces to only one
probability which is one. Therefore the density matrix
representing this state has eigenvalue equal to one. If
you plug the number one in the logarithm in formula 46
you get the reassuring result that the entropy of this state
is zero. On the other hand, for a maximally mixed state
in which the system can be prepared randomly in one
of N equally likely pure state we find that the entropy
is logN in agreement (in dimensionless units) with the
Boltzmann and Shannon entropies.

There is an interesting point to note. If we create a
mixed state by generating the states {|ψi〉} with proba-
bilities {pi} we first hold a list of numbers which tell us
which system is in which quantum state. In this classical
list each letter holds H({pi}) bits of information. If we
want to complete the creation of the mixed states, we
have to erase this list and, according to Landauer’s prin-
ciple, will generate kTH({pi}) of heat per erased message
letter. In general the Shannon entropy is larger than or
equal to the von Neumann entropy of the density oper-
ator ρ̂ =

∑

i pi|ψi〉〈ψi|. It is also clear that the same
mixed state can be created in many different ways and
that the information invested into the state will not be
unique. It seems therefore unclear whether we can as-
cribe a unique classical information content to a mixed
state. However, the only quantity that is independent
of the particular way in which the mixed state has been
generated is the von Neumann entropy which is different
from the amount of information invested in the creation
of the mixed state. In fact, the von Neumann entropy
S(ρ̂) is the smallest amount of information that needs to
be invested to create the mixed state ρ̂. As we are unable
to distinguish different preparations of the same density
operator ρ̂ this is certainly the minimum amount of clas-
sical information in the state ρ̂ that we can access. The
question is whether we can access even more classical in-
formation. The answer to this question is NO, as we will
see in the next section in which we generalize Landauers
principle to the quantum domain to illuminate the situ-
ation further. The result of these considerations is that
there is a difference between information that went into
a mixed state, and the accessible information that is left

after the preparation of the states [19].

B. Erasing classical information from quantum

states: Landauer’s principle revisited

In the previous subsection we have discussed the
amount of classical information that goes into the cre-
ation of a mixed state. But an obvious question has not
been discussed yet: how do you erase the classical infor-

mation encoded in a quantum mixed state ? In section
II C, we explained how to erase one bit encoded in a par-
titioned box filled with a one molecule gas. All you have
to do in this simple case is to remove the partition and
compress the gas on one side of the box (say the right)
independently of where it was before. This procedure
erases the classical state of the binary device and the
bit of information encoded in it. If the compression is
carried out reversibly and at constant temperature, then
the total change of thermodynamical entropy is given by
kln2, the minimum amount allowed by Landauer’s prin-
ciple. In this sense the erasure is optimal. What we are
looking for in this section is a procedures for the erasure
of the state of quantum systems. We will first present
a direct generalization of the classical erasure procedure
and then follow this up with a more general procedure
that applies directly to both classical and quantum sys-
tems. These results will then be used to show that the
accessible information in a quantum state ρ̂ created from
an ensemble of pure states is equal to S(ρ̂).

1. Erasure involving measurement

We know from the previous section that the informa-
tion content of a pure state is zero. Therefore, all we
need to do to erase the information encoded in a mixed
quantum state, is to return the system to a fixed pure
state called the standard state. We show how to achieve
this in the context of an example.

Imagine you want to erase the information encoded in
quantum systems in the mixed state ρ =

∑

i pi|ei〉〈ei|
where the |ei〉 are the energy eigenstates. You start by
performing measurements in the energy eigenbasis . Af-
ter the measurement is performed, each system will in-
deed be in one of the pure states |ei〉 and we have a clas-
sical record describing the measurement outcomes. If the
density operator represents the preparation procedure of
two level atoms and we measure their energies, the clas-
sical measurement record would be a set of partitioned
boxes storing a list of 0s and 1s labeling the energy of
the ground state or the excited state for each atom mea-
sured. Now we can apply a unitary transformation and
map the state |ei〉 onto the standard state |e0〉 for each
atom on which a measurement has been performed (see
first step in figure 8).
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FIG. 8. Particles described by a quantum state ρ arrive
and are being measured in a basis |ei〉 giving the outcome
i with probability pi. Given the outcome the each of the
particles can be rotated into the pure state |e0〉. The re-
maining classical list has to be erased as well. This generates
kT ln2H({pi}) of heat. This procedure can be optimized if one
measures in the eigenbasis of ρ in which case one generates
kT ln2S(ρ) heat.

Naively, one could think that this completes the era-
sure, because we have reset the quantum systems to
a fixed standard state |e0〉. However this is not true,
because we are still holding the classical measurement
records so the erasure is still not complete. We need
one more step namely to erase the classical measurement
record using the classical procedure discussed above. In
the example of figure 8 , this amounts to compressing
each of the partitioned boxes where the list of 0s and 1s
were encoded. This process will generate an amount of
thermodynamical entropy not less than kln2 per bit. In
general we have that k ln 2S(ρ̂) ≤ k ln 2H(p) as pointed
out in the previous section. The optimal erasure proce-
dure, ie the one that creates the least amount of heat,
is the one where the quantum measurements are made
in the basis of the eigenstates of ρ̂, so that the Shannon
entropy equals the von Neumann entropy as discussed in
section IVA .

To sum up, the protocol described above relies on a
quantum mechanical measurement followed by a unitary
transformation and the erasure of the classical measure-
ment record. While this protocol is a perfectly acceptable
erasure procedure, it consists of two conceptually differ-
ent steps and one may wonder whether there is a simpler
method that does not involve the explicit act of measur-
ing the quantum system.

2. Erasure by thermal randomization

Such an elegant way to erase information, which has
been introduced by Lubkin [38,40], is by thermal ran-

domization. Simply stated, you have to place the quan-
tum system that is to be erased into contact with a heat
bath at temperature T . The laws of statistical mechanics
teach us that when thermal equilibrium is reached, there
will be an uncertainty about the energy state the system
is in. The origin of this uncertainty is classical because
it is induced by thermal fluctuations. This situation of
lack of knowledge of the preparation procedure for the
quantum state is equivalent to the example of the oven
considered in section III C 1. The state of the system can
therefore be written as a density operator ω̂ given by

ω̂ =
e−βĤ

Z

=

∑

i e
−βEi |ei〉〈ei|
Z

, (47)

where β = 1/kT , Ĥ is the Hamiltonian of the system
whose eigenstates and eigenvalues are |ei〉 and Ei respec-
tively. The number Z is the partition function of the

system and can be calculated from Z = tr{e−βĤ}. For
example, the system can be in its ground state with prob-
ability p0 given by the Boltzmann distribution:

p0 =
e−βE0

Z
. (48)

The exponential dependence of the probabilities in the
equation above implies that, if the system has a suffi-
ciently large level spacing (ie E0 is much smaller than
the other energy levels), it will be almost surely in its
ground state. Thus, if a measurement is made, the re-
sult will be almost certainly that the apparatus is in its
ground state. In other words, the mixed state ρ̂ can be
made arbitrarily close to a standard pure state |e0〉 by
greatly reducing the presence of the other pure states
|ei〉 in the thermal preparation procedure. In practice,
this is exactly what we wanted: a procedure that always
resets our system, originally in the mixed state ρ̂, to a
standard state (independent of the initial state), eg the
ground state |e0〉. Also note that this erasure procedure
never requires any measurement to be performed, so we
do not need to be concerned with erasing the classical
measurement record, as in the previous method.

Furthermore, we can readily calculate the net amount
of thermodynamical entropy generated in erasing the
quantum mixed state ρ̂ where the classical information
is encoded. We proceed by computing first the change
of thermodynamical entropy in the system and then the
change of thermodynamical entropy of the environment.
All the steps in this derivation are reproduced and moti-
vated. The readers who do not feel comfortable with the
formalism of density operators explained in the previous
sections can skip this derivation and jump to the result
in equation 54.

The mixed state ρ̂ is generated by a source that pro-
duces randomly pure states |ei〉 with probability pi. Each
quantum system in such a pure state |ei〉 is brought into
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contact with the heat bath and thermalizes into the state
ω̂ (see figure 9).

|e>

|e>

|e>

|e>

|e>

ω

ω

ω

ω

|e>

Heat bath

Temperature T

Thermalization

FIG. 9. The quantum particles, described by the average
state ρ, are brought into contact with a thermal heat bath and
are allowed to relax into thermal equilibrium. The resulting
change of heat depends on the temperature of the heat bath
and its optimal value is given by kT ln2S(ρ)

We remind the reader that the entropy of the system
before the thermalization procedure takes place is zero
because the system is in one of the pure states |ei〉 (see
equation 46 and discussion below). Therefore, in each of
these contacts, the thermodynamical entropy of the sys-
tem increases by the same amount kln2S(ω̂), where S(ω̂)
is the von Neumann entropy times the conversion factor
between information and thermodynamical entropy, so
that we have

∆Ssys = kln2S(ω̂) . (49)

Now we proceed to discuss the change in the thermody-
namical entropy of the heat bath. The latter is given
in terms of the heat lost by the heat bath and its tem-
perature T by the well known thermodynamical relation
∆Sbath = ∆Qbath

T
. The easiest way to attack this prob-

lem is by using the observation that the change of heat
in the heat bath ∆Qbath is equal and opposite to the
change of heat in the system ∆Qsystem. The latter is
given in terms of the heat lost by the system and the
temperature of the reservoir by the well known thermo-
dynamical relation T∆Ssystem = ∆Qsystem. Further-
more, the first law of thermodynamics can be used to
write ∆Qsystem as the change in the internal energy of
the system ∆Usystem = Ufinal − Uinitial (i.e. the proce-
dure can be done reversibly so that the work required is

arbitrary close to 0). One can summarize what is stated
above in the equation:

∆Sbath = −∆Usystem
T

= −Ufinal − Uinitial
T

. (50)

We can now rewrite the initial and final energy of the
system as the expectation value of the Hamiltonian Ĥ of
the system calculated in the initial state ρ̂ and in the final
thermal state ω̂. The formula to use is given in equation
38. Once this is done equation 50 can be recast in the
following form:

∆Sbath = − tr{ω̂Ĥ} − tr{ρ̂Ĥ}
T

= − tr{(ω̂ − ρ̂)Ĥ}
T

. (51)

The expression in equation 51 can be further elaborated
by substituting the operator Ĥ with the corresponding
expression −kT ln(Zω̂) obtained after solving the first

equation in 47 with respect to Ĥ .

∆Sbath = ktr{(ω̂ − ρ̂)ln(Zω̂)}
= ktr{(ω̂ − ρ̂)lnω̂} + klnZtr{(ω̂ − ρ̂)lnω̂} . (52)

In the previous steps we used the properties of logarithm
and the fact that a constant like lnZ or kT can be ”taken
out of the trace”. The last term in equation 52 vanishes
because tr{ρ} = tr{ω} = 1 because the trace of a density
operator is always equal to 1. Also the first term can be
expanded as

∆Sbath = ktr{ω̂lnω̂} − ktr{ρ̂lnω̂}
= −kln2S(ω̂) − ktr{ρ̂lnω̂} . (53)

Note the factor ln2 to convert the logarithm from the
natural basis to the basis 2 adopted in the definition of
the Von Neumann entropy. We therefore reach the final
result that the total change of thermodynamical entropy
in system and environment in our procedure is given by

∆Stot = ∆Ssys + ∆Sbath = −ktr{ρ̂lnω̂}, (54)

where ω̂ is the state of the system after having reached
thermal equilibrium with a heat bath at temperature T .

This entropy of erasure can be minimized by choosing
the temperature of the heat bath such that the thermal
equilibrium state of the system is ρ̂, i.e.

min{∆Stot} = S(ρ̂) = −tr{ρ̂logρ̂} , (55)

which equals the von Neumann entropy of ρ̂. Equation
55 restates Landauer’s principle for quantum systems in
which classical information is encoded.

From the last section we remember that the amount of
classical information invested in the creation of the state
ρ̂ was never smaller than the von Neumann entropy S(ρ̂)
a value which can always be achieved. This left open
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the question how much classical information is actually
still accessible after the creation of ρ̂. Having seen above,
that the entropy of erasure of a quantum state ρ̂ can be
as small as the von Neumann entropy we conclude from
Landauer’s principle, that the accessible information in
the state ρ̂ cannot be larger than its von Neumann en-
tropy. Therefore it becomes clear that the only possible
quantity to describe the classical information content of
a mixed state that has been prepared from an ensemble
of pure states is given by the von Neumann entropy.

C. Classical information transmitted through a noisy

quantum channel

In this section we will evaluate how much classical in-
formation can be transmitted reliably down a noisy quan-
tum channel. The reader may remember that we consid-
ered the classical analogue of this problem in section II F.

Imagine that Alice wants to transmit a message to Bob.
This message is written in an alphabet composed of N
letters ai each occurring with probability pi. Alice de-
cides to encode each letter ai in the pure quantum state
|ψi〉. Alice can transmit the letter ai simply by send-
ing a particle in the state |ψi〉 via a physical channel,
like an optical fiber. When Bob receives the particle, he
does not know which pure state it is in. Bob’s incom-
plete knowledge of the state of the particle is represented
by the mixed state ρ̂ =

∑

pi|ψi〉〈ψi|. When Bob reads
the state of the particle he will have gained some use-
ful information to guess which letter Alice had encoded.
The information encoded in the mixed state of the quan-
tum carrier is equal to the von Neumann entropy S(ρ)
as explained in the last section. If the states |ψi〉 are or-
thogonal, then the von Neumann entropy reduces to the
Shannon entropy of the probability distribution {pi} be-
cause all the quantum states are distinguishable and the
situation is analogous to the classical case. If the states
are non-orthogonal then the von Neumann entropy will
be less that the Shannon entropy. The information trans-
fer is degraded by the lack of complete distinguishability
between the pure states of the carriers in which the infor-
mation was encoded at the source. This feature has no
classical analogue and is sometimes referred as intrinsic
quantum noise. The name is also justified by the fact
that this noise is not induced by the environment or any
classical uncertainty about the preparation procedure of
the carriers’ states.

We now wonder what happens when the channel itself
is noisy (see figure 10). For example, the optical fiber
where the carriers travel could be in an environment or
an eavesdropper, Eve, could be interacting with the car-
riers. This extra noise is not intrinsic to the preparation
of the pure states at the source, but it is induced by the
environment. One can view the transmission through a
noisy channel in the following way.

ρi

ρ0

ρ0 ?
a

b
c  10

d  11

a  00

b  01

Loss of information to environment

Alice Bob

|ψ  >
|ψ  >
|ψ  >
|ψ  >

00

01

10

11

ρ
ρ
ρ

0

1

1

|ψ  >
|ψ  >
|ψ  >

00

01

10

11

|ψ  >

ψij

ρ1 ?
c

d

Second index lost

FIG. 10. The basics of information transmission. Al-
ice encodes the letters a,b,c,d (which can also be encoded in
binary as 00, 01, 10, 11) and encodes them in pure quantum
states ψij〉. These states are sent through the channel where
the environment interacts with them. Here the information
about the second index is lost leading to mixed states ρ0 and
ρ1. Bob receives these mixed states and has lost some of the
original information as he cannot distinguish between a and
b and between c and d.

Initially the sender, Alice, holds a long classical mes-
sage. She encodes letter i (which appears with probabil-
ity pi) of this message into a pure state that, during the
transmission, is turned into a possibly mixed quantum
state ρi due to the incomplete knowledge of the environ-
ment or of Eve’s actions. These quantum states are then
passed on to the receiver, Bob, who then has the task to
infer Alice’s classical message from these quantum states.
The upper bound for the capacity for such a transmis-
sion, i.e. the information I that Bob can obtain about
Alice’s message per sent quantum state, is known as the
Holevo bound

I = IH = S(ρ) −
∑

i

piS(ρi) , (56)

The rigorous proof of this result is rather complicated
complicated. [39]. The aim of the next section is to
justify Holevo’s bound from the assumption of the va-
lidity of Landauer’s principle.

1. Holevo’s bound from Landauer’s principle

The idea behind the derivation of the Holevo bound
from Landauer’s principle is to determine an upper
bound on the entropy that is generated when Bob erases
the information that the message system carries in its
state ρi. In this way we directly obtain an upper bound
on the information received by Bob, because we know
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from Landauer’s principle that the information received
is always less or equal to the entropy generated when it
is erased (see equation 55).

Let us begin by assuming that Alice uses an alphabet
of letters (i, α) that are enumerated by the two integers
i and α. We use this form of double indices to make
formulation of the following analysis simpler, but apart
from that it has no deeper meaning. The letter i appears
with probability pi and given i, α appears with the prob-
ability riα. Alice encodes her message in the following
way. Given she wants to send letter (i, α) which occurs
with probability pi ·riα, she encodes it into the pure state
|φiα〉. Therefore ρi =

∑

α r
i
α|φiα〉〈φiα|. Now these quan-

tum states are inserted into the quantum channel and
they are subjected to an interaction with the environ-
ment or an eavesdropper Eve. The effect of this inter-
action is that the systems loose their correlation to the
specific values of α or in other words, the information
about α is lost, and we are left with a certain degree of
correlation between the integers i and the mixed states
ρi. Evidently the lost information about α has leaked
into the environment or to Eve and this information is
not available to Bob anymore. In the following we would
like to compute, using Landauers principle, how much
information has actually been lost. To this end we con-
struct an optimal erasure procedure and compute the
thermodynamical heat it generates.

2. Direct erasure

As explained above message letter (i, α) which appears
with probability pi · riα is encoded in state |φiα〉. We will
now delete the information encoded in these pure state by
bringing them into contact with a heat bath. We chose
the temperature of this heat bath such that the thermal
equilibrium state of the message system is ρ =

∑

i piρi.
This ensures that the erasure is optimal, in the sense that
it produces the smallest possible amount of heat. Follow-
ing the analysis of Lubkin’s erasure in section IV B, the
entropy of erasure is given by

∆S(2)
er = −

∑

i

pitr{ρi log ρ} = S(ρ) . (57)

Note that all information has been deleted because now
every quantum system is in the same state ρ so that there
is no correlation between the original letter i and the en-
coded quantum state left after the erasure!

3. Two step erasure

Now let us compute the entropy of erasure in going
from the pure states |φiα〉 into which Alice encoded her
message initially to the mixed states ρi that Bob obtains
after the carriers have passed the channel. This is the
first step in our erasure procedure and determines the

amount of information lost to the environment or the
eavesdropper.

For a fixed i which appears with probability pi, we
place the encoded pure states into contact with a heat
bath. The temperature T of the heat bath is chosen such
that the thermal equilibrium state of the message system
is ρi. Again this choice ensures that the erasure is opti-
mal. According to our analysis of the Lubkin erasure in
section IVB, the entropy of erasure is then found to be

∆S(1)
er = −

∑

i

pi
∑

α

tr{riα|φiα〉〈φiα| log ρi}

= −
∑

i

pitr{ρi log ρi}

=
∑

i

piS(ρi) . (58)

After this first step in the erasure procedure there is still
some information left in the physical systems as the let-
ter i of the classical message is correlated with the state
ρi of the quantum system. Therefore some information
is available to Bob. In fact, this is exactly the situation
in which Bob is after he received a message which is en-
coded as in mixed states ρi. To obtain a bound on the
information that Bob is now holding, we need to find a
bound on the entropy of erasure of his quantum systems.

Now we would like to determine the entropy of erasure
of the signal states ρi that Bob has received through the
channel. In order to carry out this second step of the
erasure procedure we place each of Bob’s systems, which
is in one of the states ρi with probability pi, into contact
with a heat bath such that the thermal equilibrium state
of the message system is ρ. As the average state of the
systems is ρ =

∑

i piρi, we expect the erasure to be op-
timal again. We can see easily that this second step of
erasure, just generates an amount of entropy that is the
difference between the entropy of erasure of the first pro-
cedure and that of the first step of the second procedure.
Therefore the entropy of erasure of Bob’s systems which
are in one of the states ρi’s is

∆Ser(Bob) = ∆S(2)
er − ∆S(1)

er

= S(ρ) −
∑

i

piS(ρi) . (59)

As the largest possible amount of information available
to the receiver Bob is bounded by his entropy of erasure
we have

I ≤ ∆Ser(Bob) = S(ρ) −
∑

i

piS(ρi) = IH . (60)

Therefore we have obtained the Holevo bound on the in-
formation in the states ρi which appear with probabilities
pi. The Holevo bound completes our answer to the first
of the three questions posed in the introduction. This is
the last result that we prove in this article about classi-
cal information. We now turn our attention to the newly
developed subject of quantum information theory.
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V. THE BASICS OF QUANTUM INFORMATION

THEORY

The concept of quantum information represents a rad-
ical departure from what we have encountered so far. In
the next few sections, we will explore some of its proper-
ties by using Landauer’s erasure principle. But first we
want to discuss why the term quantum information has
been introduced and what exactly it means.

A. Quantum information: motivation of the idea

The choice of the bit as the fundamental unit of in-
formation is reasonable both logically and physically. In
fact, right from the outset, our definition of information
content of an object has focused on the fact that informa-
tion is always encoded in a physical system. Classically,
the simplest physical system in which information can
be encoded is a binary device like a switch that can be
either open (1) or closed (0). However, as technology
shrinks more and more, we need to abandon the macro-
scopic world in favor of devices that are sufficiently small
to deserve the name of quantum hardware. To some ex-
tent, the quantum analogue of a classical binary device
is a two level quantum system like a spin-half particle.
Just as the classical device, it possesses two perfectly dis-
tinguishable states (spin-up and spin-down) and as such
it is the simplest non-trivial quantum system. However,
it differs in one important way from the classical switch.
The general state |ψ〉 of a spin-half particle can be in an
arbitrary superposition of the state | ↑〉z corresponding
to the spin of the particle being oriented upwards, say
in the positive z direction, and of the state | ↓〉z corre-
sponding to the spin oriented downwards:

|ψ〉 = α| ↓〉z + β| ↑〉z. (61)

where α and β are two arbitrary complex numbers such
that |α|2 + |β|2 = 1. |α|2 (|β|2) are the probabilities for
finding the particle spin-up or spin-down in a measure-
ment of the spin along the z direction. By analogy with
the classical bit, we define a qubit as the information en-
coded in this two-level quantum system. An example will
elucidate the motivation behind this definition.

Imagine that you are holding a complex quantum sys-

tem and you want to send instructions to a friend of yours
so that he can reconstruct the state of the object with
arbitrary precision. We have previously mentioned that,
if the necessary instructions can be transmitted in the
form of n classical bits, then the classical information
content of the object is n bits. Sending n bits of clas-
sical information is not difficult. We just need to send
a series of n switches and our friend will read a 0 when
the switch is closed and a 1 when it is open. He will
then process this information to recreate the state of a
complex quantum object like n interacting spin- 1

2 parti-
cles. All this is fine, but it entails a number of problems.

Firstly the set of instructions may be very large even if
we only want to recreate a single qubit simply because
the complex amplitudes are real numbers. More impor-
tantly though, we are somewhat inconsistent in trying to
reduce the state of a quantum system to classical binary
choices. It would be more logical to transmit the quan-
tum state of the composite object by sending ”quantum
building blocks”. For example, we could try to send our
instructions directly in the form of simple two level quan-
tum systems (qubits) rather than bits encoded in classi-
cal switches. The hope is that, if we prepare the joint
state of these qubits appropriately, our friend will be able
to manipulate them somehow and finally reconstruct the
state of the complex quantum object. Ben Schumacher
[26,15] proved that this is indeed possible and he also
provided a prescription to calculate the minimum num-
ber of qubits m that our friend requires to reconstruct
an arbitrary quantum state. The existence of this proce-
dure allows us to establish an analogy with the classical
case and say that the quantum information content of
the object is m qubits. In this sense, the qubit is the ba-
sic unit of quantum information in very much the same
way as the bit is the unit of classical information. We
ask the reader to be patient and wait for later sections,
namely section VC, in which we will explain in more de-
tail Schumacher’s reasoning and expand on some of the
remarks made above. The previous arguments should
anyway convince the reader that, although the ideas of
qubit and bit have a common origin, it is worth exploring
the important differences between the two.

B. The qubit

The key to understand the differences between quan-
tum and classical information is the principle of super-
position. Our discussion below will be articulated in two
points. We first assess the implications of the superposi-
tion principle for the state of a single spin-half particle (1
qubit) and then we move to consider the case of a quan-
tum system composed of n spin-half particles (n qubits).

1. A single qubit

The concept of superposition of states, that plays a
crucial role in the definition of the state of a spin-half
particle has no analogue in the description of a classical
switch which is either in one state or in the other, but
not in both! Naively, one could think that the proba-
bilistic interpretation of the coefficients α and β in the
superposition of states given by equation 61 solves all the
problems. In fact, if |α|2 and |β|2 are the probabilities for
finding the particle spin-up or spin down after the spin is
measured along the z direction, then a qubit is nothing
more than a statistical bit. That is a random variable,
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which can be either 0 or 1 with given probabilities |α|2
or |β|2 respectively. This conclusion is wrong!

The probabilistic interpretation of equation 61 given
above is not the full story on the qubit because it con-
centrates only on the modulus squared of the complex
numbers α and β. This amounts to throwing away some
degrees of freedom that are contained in the imaginary
entries. We have shown before that the qubit is mathe-
matically described by a vector in a two dimensional com-
plex vector space (the Hilbert space). This state vector
can be visualized as a unit-vector in a three-dimensional
space, ie. pointing from the origin of the coordinate sys-
tem to the surface of a unit sphere, known as the Bloch
sphere [15,27] (see figure 11b).

(a)           Classical bit (b)             Quantum bit

FIG. 11. The Bloch sphere representation of (a) a classi-
cal bit in which the vector can only point up or down; (b) a
qubit in which the vector is allowed to point in any direction.
This illustrates that a qubit possesses more freedom than a
classical bit when information is processed.

This can be contrasted with a classical bit which is
simply a discrete variable that can take up either of the
values 0 or 1. A classical bit is thus shown in the same
diagram as a unitary vector along the z axis, pointing
either up or down (see figure 11a). This makes intuitive
the idea that to some extent there is ”more room for
information” in a qubit than in a bit. However, the abil-
ity of the qubit to store more information in its ”larger
space” is limited to the processing of information. It is
in fact impossible to fully access this information (ie. the
whole of the spherical surface) in a measurement. More
explicitly, whenever we manipulate a spin-up particle we
do act on all its degrees of freedom (ie. we change both
the amplitude and the relative phase of the two complex
coefficients α and β) so that the vector representing the
qubit can be rotated freely on any point on the surface of
the sphere. However, when we try to measure the state
of the system we have to choose a basis (ie. a direction)
in which the spin measurement has to be done. That
amounts to fixing a direction in space and asking only
whether the projection of the vector state in that direc-
tion is oriented parallel or anti-parallel. In other words
when we try to extract information from the spin-half
particle we never recover a full qubit (ie. the quantum
state of the system). We know from section III B 3 that it

is impossible to extract the complex coefficients α and β
with a single measurement. In fact, the information one
can extract from the measurement is just one classical
bit. It is remarkable to note, that there is a large frac-
tion of information in a qubit that can be processed but
not accessed in a measurement. Therefore, the difference
between a single qubit and a classical bit is not merely
quantitative, as figure 11 suggests, but also qualitative.

2. n qubits

We have hopefully clarified what is meant by a qubit.
We will now expand on our knowledge of quantum in-
formation by explaining what people mean by having or
transmitting n qubits. We already know that n qubits
is nothing more than a fancy way of saying n two level
quantum systems. So the point is really to understand
the features displayed by the joint system of n two level
quantum systems, possibly interacting with one-another.
In section III B 5, we saw that, when you abandon the
safe territory of single particle quantum mechanics, you
immediately stumble over the remarkable phenomena of
quantum entanglement that make the quantum descrip-
tion of a composite object very different from its classi-
cal description. Please note that we are not contrasting
macroscopic objects obeying the laws of classical physics
(say three beams of light), with microscopic objects obey-
ing the laws of quantum mechanics (say three photons).
Instead, we are remarking that even if you choose macro-
scopic objects, say three beams of light, and you decide
never to mention the word photon, you will still be able
to come out with states of the joint macroscopic system
that are entangled and therefore completely beyond clas-
sical intuition. Let us be even more explicit. Imagine
that you have a classical physicist right in front of you
and you ask him the following question:

You: How many complex numbers do you need to
provide in order to specify the joint state of a system
comprised of three polarized beams of light?

The classical physicist will probably find the expres-
sion joint state rather peculiar, but he will still answer
your question on the basis of his knowledge of classical
electrodynamics.

Classical physicist: To completely describe the state
of a composite system (ie. one composed of many subsys-
tems) you just need to specify the state of each subsystem
individually. So if you have n arbitrary polarized light
beams, you need 2n complex numbers to describe com-
pletely the joint system, 2 complex parameters for each
of the n systems. In fact the state of each beam of light
can be described by a superposition of say horizontally
and vertically polarized components.

|θ〉 = AV e
iθV |V 〉 +AHe

iθH |H〉 (62)

What we mean is only to prepare a beam of light in
a superposition of horizontally and vertically polarized
components. Instructions given in this form should be
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understandable by a classical physicist, too. Further-
more the two complex coefficients in equation 62 can be
interpreted as follows: AV and AH are the moduli of the
amplitude, corresponding to the field strength, and θV
and θH are the phases of the vertically and horizontally
polarized components. An example is light that is polar-
ized at a 45 degree angle, which can also be viewed as an
equally weighted superposition of horizontally and verti-
cally polarized light with the same phase. The descrip-
tion of three such beams of light will obviously require
2 × 3 complex parameters.

Unfortunately, statements that seem obvious some-
times turn out to be wrong. The reader, who remembers
our discussion of entanglement in section III B 5, may
see where the problem with the argument above lies. In
order to describe an n-partite object quantum mechan-
ically, you need an enlarged Hilbert space spanned by
2n orthogonal state vectors. For example the joint state
of three beams of light is an arbitrary superposition of
the 23 orthogonal state vectors, and therefore requires 8
complex coefficients, not 6. Why 8? Consider the state
vector |HHV 〉 representing the state in which the first
and the second beams are horizontally polarized whereas
the third is vertically polarized. Here we used H and V,
rather than 1 and 0 as in section III B 5, but the logic
is the same. How many of those vector states can you
superpose? Well, each of the three entries in |...〉 can be
either H or V so you have 2×2×2 possibilities. Therefore
any quantum state can be written as the superposition of
these 8 vectors in an 8 dimensional Hilbert space. How-
ever, as we saw in section III B 5, not every vector can
be factorized in three 2-dimensional vectors each describ-
ing a single beam of light. If he insists on using only 6
parameters to describe a tripartite system, the classical
physicist will ignore many valid physical states that are
entangled! You may wonder how big that loss is. In other
words, how much of the Hilbert space of a n-partite sys-
tem, is actually composed of entangled states. The an-
swer is pretty straightforward. Product states predicted
by classical thinking ”live” in a subspace of dimension
2 × n, whereas the dimension of the whole Hilbert space
for the joint state of n beams of light has 2n dimen-
sion. Formally stated, the phase space of a quantum
many body system scales exponentially with the number
of components if you allow for entanglement among its
parts. The classical product states instead occupy only
an exponentially small fraction of its Hilbert space as
shown in figure 12.

Hilbert space is large!

Classical state space is much smaller!

FIG. 12. Schematic picture of the whole Hilbert space, in-
cluding entangled states, and the smaller space comprising
only the disentangled states expected by a classical physicist.

Going back to our starting point, we say that we are
able to hold and manipulate n qubits when we can pre-
pare and keep n beams of light, n two-level atoms or n
spin- 1

2 particles in a joint state |ψ〉 given by any arbitrary
superposition of the 2n state vectors which can take the
form

|ψ〉 =

1
∑

i1,...,in=0

αi1...in |i1 . . . in〉 (63)

with 2n complex amplitudes αi1...in . The actual prepa-
ration of such a state presents a tremendous experimen-
tal task no matter which constituents subsystems you
choose. You need to carefully control and ”engineer”
the interaction among all the constituent components to
choose the state you want and at the same time you have
to protect the joint state against environmental noise.
To date, this is possible with only a few qubits and
many people are skeptical about radical improvements in
the near future. The prospect of implementing quantum
computation, that requires manipulation of many qubits
to be effective, seems far beyond present capabilities.

C. The quantum information content of a quantum

system in qubits

We want to make up for the pessimistic tone that ended
the last section with the discussion of an interesting fea-
ture of quantum information that might be useful in case
devices based on quantum information theory are ever
built. We will explain how an arbitrary quantum state
of a composite system comprised of n interacting 2-level
atoms, can be compressed and transmitted by sending a
number m < n of qubits. As advertised in chapter 3,
this procedure justifies the use of the qubit as the unit
of quantum information and by analogy with classical
data compression partly justifies the otherwise mislead-
ing name qubit. We proceed in close mathematical anal-
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ogy to the classical case studied in section II E and see
how well we can compress quantum states, ie. how many
qubits are needed to describe a quantum state. We first
give a simple example, that illustrates the key ideas, and
then we reiterate these ideas in a slightly more general
and formal way.

1. Quantum data compression: a simple example

Let us begin with the following very simple exam-
ple, which is in fact essentially classical, but displays
all the relevant ideas of the more general case. Con-
sider a quantum source that emits two-level systems with
probability p0 = 0.95 in state |0〉 and with probability
p1 = 1−p0 = 0.05 in the orthogonal state |1〉. Our knowl-
edge of this preparation procedure for a single qubit is
represented by the density operator ρ̂ given by

ρ̂ = 0.95|0〉〈0|+ 0.05|1〉〈1| (64)

Note, that the two states generated by the oven have
been chosen to be orthogonal for simplicity. We will con-
sider the more general case later. For the time being, let
us consider blocks of 7 qubits generated by the source
described above. Clearly any sequence of qubits in states
|0〉 and |1〉 is possible, but some are more likely than
others. In fact, typically you will find either a sequence
that contains only qubits in state |0〉 or sequences with
a single qubit in state |1〉 and all others in state |0〉, as
shown below:

|ψ000〉 = |0〉|0〉|0〉|0〉|0〉|0〉|0〉
|ψ001〉 = |0〉|0〉|0〉|0〉|0〉|0〉|1〉
|ψ010〉 = |0〉|0〉|0〉|0〉|0〉|1〉|0〉
|ψ011〉 = |0〉|0〉|0〉|0〉|1〉|0〉|0〉
|ψ100〉 = |0〉|0〉|0〉|1〉|0〉|0〉|0〉 (65)

|ψ101〉 = |0〉|0〉|1〉|0〉|0〉|0〉|0〉
|ψ110〉 = |0〉|1〉|0〉|0〉|0〉|0〉|0〉
|ψ111〉 = |1〉|0〉|0〉|0〉|0〉|0〉|0〉 .

The probability that you will get one of the above se-
quences is plikely = (0.95)7 + 7(0.95)6(0.05) = 0.955. Of
course, these ’typical’ states can be enumerated using
just three binary digits, i.e. 3 binary digits are sufficient
to enumerate 95.5% of all occurring sequences. This pro-
cedure is analogous to labeling the typical sequences of 0s
and 1s shown in figure 6 except that we now ’enumerate’
the typical sequences with ’quantum states’. Now, let us
see how we can use this fact quantum mechanically. We
define a unitary transformation that has the following
effect:

U |0〉|0〉|0〉|0〉|0〉|0〉|0〉 = |0〉|0〉|0〉|0〉|0〉|0〉|0〉
U |0〉|0〉|0〉|0〉|0〉|0〉|1〉 = |0〉|0〉|0〉|0〉|0〉|0〉|1〉
U |0〉|0〉|0〉|0〉|0〉|1〉|0〉 = |0〉|0〉|0〉|0〉|0〉|1〉|0〉

U |0〉|0〉|0〉|0〉|1〉|0〉|0〉 = |0〉|0〉|0〉|0〉|0〉|1〉|1〉
U |0〉|0〉|0〉|1〉|0〉|0〉|0〉 = |0〉|0〉|0〉|0〉|1〉|0〉|0〉 (66)

U |0〉|0〉|1〉|0〉|0〉|1〉|0〉 = |0〉|0〉|0〉|0〉|1〉|0〉|1〉
U |0〉|1〉|0〉|0〉|0〉|1〉|0〉 = |0〉|0〉|0〉|0〉|1〉|1〉|0〉
U |1〉|0〉|0〉|0〉|0〉|1〉|0〉 = |0〉|0〉|0〉|0〉|1〉|1〉|1〉 .

In this case the unitary transformation is a matrix that
maps a set of 8 orthogonal column vectors on another set
of 8 orthogonal vectors in a complex vector space of di-
mension 27. The effect of this unitary transformation is
to compress the information about the typical sequences
into the last three qubits, while the first four qubits are
always in the same pure state |0〉 and therefore do not
carry any information. However, when U acts on other,
less likely, sequences it will generate states that have
some of the first four qubits in state |1〉. Now comes
the crucial step, we throw away the first four qubits and
obtain a sequence of three qubits:

|0〉|0〉|0〉|0〉|0〉|0〉|0〉 → |0〉|0〉|0〉
|0〉|0〉|0〉|0〉|0〉|0〉|1〉 → |0〉|0〉|1〉
|0〉|0〉|0〉|0〉|0〉|1〉|0〉 → |0〉|1〉|0〉
|0〉|0〉|0〉|0〉|0〉|1〉|1〉 → |0〉|1〉|1〉
|0〉|0〉|0〉|0〉|1〉|0〉|0〉 → |1〉|0〉|0〉
|0〉|0〉|0〉|0〉|1〉|0〉|1〉 → |1〉|0〉|1〉
|0〉|0〉|0〉|0〉|1〉|1〉|0〉 → |1〉|1〉|0〉
|0〉|0〉|0〉|0〉|1〉|1〉|1〉 → |1〉|1〉|1〉 (67)

Therefore we have compressed the 7 qubits into 3 qubits.
Of course we need to see whether this compression can be
undone again. This is indeed the case, when these three
qubits are passed on to some other person, this person
then adds four qubits all in the state |0〉 and then ap-
plies the inverse unitary transformation U−1 and obtains
the states in equation 66 back. This implies that this
person will reconstruct the correct quantum state in at
least 95.5% of the cases and he has achieved this sending
only 3 qubits. As we showed in the classical case (see
equation 12), in the limit of very long blocks composed
of n qubits, our friend will be able to reconstruct almost
all quantum states by sending only nH(0.95) = 0.2864n
qubits. Note that this procedure also works when we
have a superposition of states. For example, the state

|ψ〉 = α|0〉|0〉|0〉|0〉|0〉|0〉|0〉+ β|0〉|0〉|0〉|0〉|0〉|0〉|1〉 (68)

can be reconstructed perfectly if we just send the state
of three qubits given below:

|ψ〉 = α|0〉|0〉|0〉 + β|0〉|0〉|1〉 (69)

Therefore not only the states in equation 66 are re-
constructed perfectly, but also all superpositions of these
states.

A very similar procedure would work also when we
have a source that emits quantum states |ψi〉 with prob-
abilities pi, giving rise to an arbitrary density operator
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ρ =
∑

i pi|ψi〉〈ψi|. Unlike the example in equation 64,
the states |ψi〉 can be non − orthogonal states of a two
level system so the resulting density matrix is not in di-
agonal form. In this slightly more complicated case, the
first step consists in finding the eigenvectors and eigen-
values of ρ. As the eigenvectors to different eigenvalues
are orthogonal, we are then in the situation of equation
64. We can immediately see that the number of qubits
that need to be sent, to ensure that the probability with
which we can reconstruct the quantum state correctly is
arbitrarily close to unity, is given by n times the Shannon
entropy of the eigenvalues of ρ which is in turn equal to
the von Neumann entropy S(ρ). Since we can reconstruct
the quantum state ρ⊗n of a system composed of n qubits
by sending only nS(ρ) qubits, we say that nS(ρ) is the
quantum information content of the composite system.

2. Quantum data compression via Landauer’s principle

One may wonder whether the efficiency of quantum
data compression can be deduced from Landauers prin-
ciple and indeed this is possible. Given a source that
generates |ψi〉 with probabilities pi, and gives rise to a
density operator ρ =

∑

i pi|ψi〉〈ψi| we know from section
IVB that the entropy of erasure per qubit is given by
S(ρ)kln2. Now let us assume that we could compress the
quantum information in state ρ̂⊗n to n(S(ρ̂) − ǫ) qubits
where ǫ ≥ 0. The state of each of these qubits will be
the maximally mixed state ω̂ = 1

2 |0〉〈0|+ 1
2 |1〉〈1| because

otherwise we could compress it even further. We can
then calculate the entropy of erasure of the n(S(ρ) − ǫ)
qubits in state ω̂ and find of course n(S(ρ)−ǫ)S(ω̂)kln2 =
n(S(ρ̂) − ǫ)H(1

2 )kln2 = n(S(ρ̂) − ǫ)kln2. Therefore the
total entropy of erasure would be given by the total num-
ber of qubits times the entropy of erasure for the qubits
n(S(ρ̂)−ǫ)×kln2 which is less than nS(ρ̂)kln2. This how-
ever, cannot be, because Landauer’s principle dictates
that the entropy of erasure cannot be less than S(ρ)kln2
if the compressed states should hold the same amount of
information as the uncompressed states. Therefore, we
arrive at a contradiction which demonstrates that the ef-
ficiency of quantum data compression is limited by the
Von Neumann entropy S(ρ), as classical data compres-
sion is limited by the Shannon entropy. This is the an-
swer to the first part of the second searching question in
I. We still need to find out whether this similarity be-
tween classical and quantum information extends also to
the act of copying information.

D. Quantum information cannot be copied

In this section, we use Landauer’s erasure principle to
argue that unlike classical bits qubits cannot be copied.
This result is often termed the no-cloning theorem. The
basis of our arguments is a reductio ad absurdum. We

show that if Bob can clone an unknown state sent to him
by Alice, then he can violate Landauer’s principle. The
logical steps of this argument are discussed below in the
context of an example.

1. Alice starts by encoding letter 0 and 1, occur-
ring with equal probabilities, in the non-orthogonal
states |ψ0〉 and |ψ1〉

0 7−→ |ψ0〉 = | ↑〉 (70)

1 7−→ |ψ1〉 =
1√
2
| ↑〉 +

1√
2
| ↓〉. (71)

We can find the upper bound to the information
transmitted per letter by using Landauer’s princi-
ple. As discussed in section IVA, the minimum
entropy of erasure generated by thermalisation of
the carriers’ states is given by S(ρ) where ρ repre-
sent the incomplete knowledge that we have of the
state of each carrier:

ρ =
1

2
|ψ1〉〈ψ1| +

1

2
|ψ0〉〈ψ0|. (72)

After working out the matrix corresponding to ρ̂
and plugging it in the formula 46 for the Von Neu-
mann entropy, we find that the entropy of erasure
and therefore the information is equal to 0.6008
bits. This is less than 1 bit because the two states
are non-orthogonal and the von Neumann entropy
is less that the Shannon entropy of the probability
distribution with which the states are chosen, i.e.
H(1

2 ) = log2 =1 bit.

2. Alice sends the message states to Bob who has the
task to decipher her message. Bob is also informed
of how Alice encoded her letters (but of course he
does not know the message!) and uses this infor-
mation in his guess. No matter how clever Bob is,
he will never recover more information than what
Alice encoded (i.e. more than 0.6008 bits).

3. Now let us assume that Bob owns a machine that
can clone an arbitrary unknown quantum state and
he uses it to clone an arbitrary number of times
each of the message-states Alice sends to him.

4. However, if Bob can clone the state of the message-
system, then, upon receiving any of the two states
|ψ0〉 or |ψ1〉 he can create a copy. Since the prob-
ability of receiving each state is 1

2 , Bob will end
up holding either two copies of the first |ψ0〉|ψ0〉
or two copies of the second state |ψ1〉|ψ1〉. We can
compute the density operator that describes this
situation following the rules described in section
III:
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ρtwocopies =
1

2
|ψ0〉|ψ0〉〈ψ0|〈ψ0| +

1

2
|ψ1〉|ψ1〉〈ψ1|〈ψ1|

(73)

The density operator ρtwocopies is represented a 4×4
matrix. After finding the eigenvalues of this ma-
trix we can calculate its Von Neumann entropy
S(ρtwocopies). This is a measure of the classical
information that Bob has about the letter received
after cloning. We find:

S(ρtwocopies) = 0.8113 > 0.6008 . (74)

Therefore the information content of the state has
increased and if we would push this further and
create infinitely many copies, then Bob would per-
fectly distinguish between the two non-orthogonal
states and he could extract one bit of information
per letter-state received. This, however, is not pos-
sible as we cannot extract more info than Alice has
originally encoded.

The no-cloning theorem represents one of the most
striking differences between classical and quantum infor-
mation. We therefore conclude this section on quantum
information by completing our answer to the second ques-
tion posed in the introduction. Quantum information
can be compressed in the sense described in section VC,
but it cannot be copied as we routinely do with classical
information.

VI. ENTANGLEMENT REVISITED

In the last section, we have always encountered the
concept of entanglement as one of the central theme in
quantum information theory. However, we never system-
atically addressed the question of what physical prop-
erties make entangled states peculiar and how they can
be engineered and exploited for practical purposes in the
lab. We now embark on this task. Our approach here will
be based on worked out examples. We have chosen the
same approach and numerical examples as in reference
[17], so that the reader who masters the topics presented
here can easily jump to a more comprehensive and math-
ematical treatment. Throughout the following sections,
we concentrate exclusively on bipartite entanglement for
which a sufficient understanding has been reached.

A. The ebit

In section III B 5, we saw that any arbitrary superposi-
tion of the basis vectors (|01〉, |11〉, |00〉, |10〉) represents
the physical state of a bipartite system. So that must be
true also for the vector |σAB〉 given by:

|σAB〉 = α|01〉 + β|10〉. (75)

where α and β are two arbitrary complex numbers such
that |α|2 + |β|2 = 1. We quickly remind the reader that,
according to the rules of quantum mechanics, |α|2 is the
probability for finding the first system in |0〉 and the sec-
ond in state |1〉 after a measurement, whereas |β|2 is the
probability of finding the first system in state |1〉 and the
second |0〉. The states of systems A and B are clearly
anti-correlated. But this is not the whole story.

We remind the reader that what is remarkable about
|σAB〉 is that it is impossible to write it as a product
state. The state |σAB〉 is represented by a vector in the
enlarged Hilbert space HAB that cannot be factorised as
the tensor product of two vectors in HA and HB. There-
fore, we reach the conclusion that |σAB〉 does represent
the state of a bipartite system, but we cannot assign a
definite state to its constituent components. In fact, even
the terminology constituent components is a bit mislead-
ing in this context. We emphasize that the systems A
and B can be arbitrary far from each other but never-
theless constitute a single system. The entanglement of
the bipartite state |σAB〉 is then a measure of the non-
local correlations between the measurement outcomes for
system A and system B alone. These correlations are the
key to the famous Bell inequalities and origin of much
philosophical and physical debate [31] and more recently
the basis for new technological applications [1–8,5,9,10,4]

A basic question that arises in this context is how
much entanglement is contained in an arbitrary quan-
tum state? A general answer to this question has not
been found yet, although quite a lot of progress has been
made [7,32,35,34] . In this article we confine ourselves
to the simplest case of bipartite entanglement for which
an extensive literature exists. As a first step we define
the unit of entanglement for a bipartite system as the
amount of entanglement contained in the maximally cor-
related state:

|σAB〉 =
1√
2
|10〉 +

1√
2
|01〉 . (76)

We call this fundamental unit the ebit in analogy with the
qubit and the bit. Note that this state differs from the
maximally correlated state |ψAB〉 in equation 32, only
by a local unitary transformation and should therefore
contain the same amount of entanglement. The reason
behind the name ebit will be clear after reading section
VI D, where we explain how to turn any multipartite
entangled systems into a group of m ebits plus some
completely disentangled (product) states, just by using
local operations and classical communication. There is
another reason, related to communication, for choosing
state Eq. (76) as the unit of entanglement. One can show
that the ebit is the minimal amount of entanglement that
allows the non-local transfer of one unit of quantum in-
formation. Such a procedure is quantum teleportation
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of one qubit of quantum information [9,7]. For our pur-
poses this process can be compared to the working of a
hypothetical quantum fax machine (see figure 13).

ψ ψ

1 2 3 4 1 2 3 4

☎
Classical Information

Entanglement

FIG. 13. A schematic picture of quantum state teleporta-
tion. A qubit in an unknown quantum state is entered into
a machine which consumes one unit of entanglement (ebit)
and a local measurement whose four possible outcomes are
transmitted to the receiver. As a result the original state of
the qubit is destroyed at the senders location and appears at
the receivers end. The mathematical details can be found in
[9,7]

Alice, who is very far away from Bob can transmit the
unknown quantum state of a qubit to Bob by using this
device. In what follows, we regard the quantum fax ma-
chine as a black box (figure 13). We are not interested in
the internal mechanism of this device nor in the proce-
dures that Alice and Bob have to learn to make it work.
All we are interested are the resources that this machine
exploits and of course the result that it produces. It turns
out that the only two resources needed to send the un-
known quantum state of ONE qubit from Alice to Bob
are:

1. ONE maximally entangled pair of particles shared
between Alice and Bob (represented by a wiggled
line in figure 13). For example, Bob is holding sys-
tem B and Alice system A and the joint state is
|σAB〉 in equation 76.

2. TWO classical bits that Alice must send to Bob
through a classical channel like an ordinary phone
(represented by the telephone line in figure 13).

If these two resources are available Alice and Bob can
successfully transmit the unknown quantum state of a
qubit. The existence of such quantum fax machines sug-
gests that the sending of 1 qubit can be accomplished by
1 ebit plus 2 classical bits.

There is an important difference between the quantum
and classical fax machine. After Alice sends the qubit
to Bob the state of her qubit (the original copy of the
quantum message) gets destroyed. Only one qubit sur-
vives the process and is in Bob’s hands. Incidentally also
the ebit that acted as a sort of quantum channel during
the communication is destroyed. Those who were think-
ing of buying a quantum fax machine and use it also as
a quantum photocopier will be disappointed. The rea-
son for this is the no cloning theorem [36] discussed in

section VD. Furthermore if we could clone we would vi-
olate the law of the non-increase of entanglement under
local operations [7] that we will explore in the next few
sections.

B. Classical versus quantum correlations

In the last section we mentioned that bipartite entan-
glement is a measure of quantum correlations between
two spatially separated parts. We now want to make
clear what is meant by quantum and classical correla-
tions in the context of an example.

Consider an apparatus that generates two beams of
light in the mixed state ρ̂AB given by:

ρ̂AB =
1

2
|HH〉〈HH | + 1

2
|V V 〉〈V V | (77)

The notation above represents our incomplete knowledge
of the preparation procedure, namely the fact that we
know that the two beams were prepared either both ver-
tically polarized or both horizontally polarized but we
do not know which of these two alternatives occurred.
If we perform a polarization measurement on these two
beams by placing the polarizer along the axis of vertical
or horizontal polarization we will find half of the time
the two beams both polarized in the vertical direction
and half of the time in the horizontal direction. In this
sense, the measurement outcomes for the two beams are
maximally correlated. We say that mixed states like
ρ̂AB are classically correlated. The adjective classical is
there not because the systems considered are necessarily
classical macroscopic objects, but rather because the ori-
gin of this correlation can be perfectly explained in terms
of classical reasoning. It simply arises from our lack of
complete knowledge of the preparation procedure.

If we represent the distinguishable single beam states

|H〉 and |V 〉 as the orthogonal column vectors

(

1
0

)

and
(

0
1

)

, respectively, we can then write the state ρ̂AB in

matrix form following the guidance provided in equations
27, 34 and 41

ρ̂AB =
1

2







1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1






. (78)

We now turn our attention to the maximally entan-
gled state |ψAB〉 = 1√

2
|HH〉 + 1√

2
|V V 〉. When the two

beams are prepared in this pure state the outcomes of
a polarization measurement along the vertical and hori-
zontal directions are maximally correlated as in the pre-
vious case. However, there is an important difference
between the two. The maximally entangled state is a
pure state. That means there is nothing more that we
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can in principle know about it than what we can deduce
from its wave-function. So the origin of this correlation
is not lack of knowledge, because for a pure state we have
complete information on the preparation procedure. The
state |ψAB〉 can be represented mathematically using the
same conventional choice of basis vectors and following
the same hints as the density matrix:

|ψAB〉〈ψAB | =
1

2







1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1






. (79)

A quick look at the entries of the matrix above shows
that ρ̂AB is indeed a different mathematical object than
|ψAB〉〈ψAB |. But this mathematical difference on paper
means nothing if we cannot interpret it physically. In
other words, how can you distinguish in the lab these
two states from each other, if they seem to have the
same measurement statistics? The answer is: turn the
polarizer and measure again! Unfortunately, we cannot
perform this crucial experiment in front of the reader but
we can try to model it on paper and predict the results
on the basis of our knowledge of measurement theory as
developed in section III.

For example imagine that you turn the polarizer by
45o. Now you have two new orthogonal directions that
you can label x and y. These new directions are analo-
gous to the directions of horizontal and vertical polariza-
tion considered before.

The new polarization states can be expressed in terms
of the old ones by using simple vector decomposition:

|X〉 =
1√
2
|V 〉 +

1√
2
|H〉 (80)

|Y 〉 =
1√
2
|V 〉 − 1√

2
|H〉 (81)

It seems natural to ask the question: are the measure-
ment outcomes of the two beams still maximally corre-
lated (ie. the beams are both found in either state |X〉 or
state |Y 〉? To answer this question, we can check whether
there is a non-vanishing probability of finding one of the
beams in state |X〉 and the other in state |Y 〉. To do that
we have to first construct the column vectors representing
|X〉 and |Y 〉 (see equation 17), then the single beam pro-
jectors |X〉〈X | and |Y 〉〈Y | (see equation 20) and finally

the joint projector P̂ given by |X〉〈X |⊗|Y 〉〈Y | (see equa-
tion 35). We will not deprive the reader from the pleasure
of explicitly constructing the 4 × 4 matrix representing
P̂ , a task well within reach if one follows the hints given
above. Once you have P̂ , you can calculate the probabil-
ities of finding the two beams anti-correlated in the new
basis (ie. when you measure with the polarizer turned
by π

2 ) for both the classically and quantum correlated

states (Probρanticorrelated and Probψanticorrelated). Note
that turning the polarizer affects the measurement not

the preparation procedure of states ρ̂AB and |ψAB〉〈ψAB |
that must be prepared exactly as before. By using equa-
tion 21 we then find:

Probρanticorrelated = tr{P̂ ρ̂AB} =
1

4
. (82)

Probψanticorrelated = tr{P̂ |ψAB〉〈ψAB |} = 0. (83)

The results above demonstrate that the the two states
in eq. 77 and 79 possess different forms of correlations
which we revealed by going from the ’standard’ basis to a
rotated basis. This trick is the basis for the formulation
of Bell inequalities [31] which show that a combination of
correlations measured along different rotated axes cannot
overcome a certain value when the state on which they
are measured is classically correlated. If we measure the
same set of correlations on a quantum mechanically en-
tangled state, then this limit can be exceeded and this
has been confirmed in experiments.

C. How to create an entangled state?

Another way to gain an intuitive understanding of the
differences between quantum and classical correlations is
to investigate the preparation procedures of states |ψAB〉
and ρ̂AB. The latter can be generated by two distant par-
ties, Alice and Bob, who have a beam of light each and are
allowed only 1) local operations on their own beam and
2) classical communication via an ordinary phone. The
entangled state instead cannot be created unless Bob and
Alice let their beams interact. More explicitly, suppose
that Alice and Bob are both given each one beam of light
and are asked to create first the mixed state ρ̂AB and
then the pure entangled state |ψAB〉. What operations
are they going to do, if they start with the same resources
in the two cases?

Let’s first consider ρ̂AB. Alice who is in London phones
Bob who is in Boston and tells him to prepare his beam
horizontally polarized. That amounts to sending one bit
of classical information (ie. either H or V). Then she pre-
pares her beam also horizontally polarized. After com-
pleting this operation the two have constructed the prod-
uct state |HH〉. Now they repeat the same procedure
many time and each time they store their beams in two
rooms (one in London and the other in Boston) clearly
labeled with the SAME number (for example, ”exper-
iment 1”) and with an H to indicate that the beam is
horizontally polarized. After doing this for n times, they
perform an analogous procedure to create |V V 〉 and they
fill other n rooms carefully labeled with the same system,
but they write V rather than H, to indicate that they
store vertically polarized beams. Now, the two decide to
erase the letter H or V from each room but they keep
the labeling number. After the erasure, Alice and Bob
have an incomplete knowledge of the state of the two
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beams contained in each pair of room labeled with the
same number. They know that the two beams are either
in state |HH〉 or |V V 〉 but they do not know which. The
information the two hold on each of the pair of corre-
lated beams contained in rooms labeled with the same
number is correctly described by ρ̂AB. They have in fact
created an ensemble of pair of beams in state ρ̂AB by
acting locally and just using phone calls. The example
above is a bit of a ”theorist’s description of what is going
on in the lab”. The example captures the crucial fact
that classical correlations arise from 1) local manipula-
tions of the quantum states and 2) erasure of information
that in principle is available to some more knowledgeable
observers.

The situation is very different when Alice and Bob
want to create an entangled state and they start with two
completely disentangled product states like one beam in
Boston and another independent one in London. In this
situation, one of the two has to take the plane and bring
his or her beam to interact with the other. Only at that
point can entanglement be created. In fact, one of the
basic results of quantum information theory is that the
net amount of entanglement in a system cannot be in-

creased by using classical communication and local oper-
ations only. So, if Alice and Bob start with no entangle-
ment at all, then they are forced to bring the two beams
together and let them interact in order to create entan-
glement. We now would like to illustrate an example of
two beams that are initially in a disentangled state and
become entangled by interacting with each other. Sup-
pose that Alice and Bob hold a beam each polarized at
an angle π

4 (see equation 80) . The two beams are ini-
tially far away from each other so they are not interact-
ing. The joint system can be described mathematically
by the product state |ψAB(0)〉 given below:

|ψAB(0)〉 = (
1√
2
|H〉A +

1√
2
|V 〉A) ⊗ (

1√
2
|H〉B +

1√
2
|V 〉B) .

=
1

2

(

1
1

)

⊗
(

1
1

)

.

=
1

2







1
1
1
1






. (84)

The two beams in the product state |ψAB(0)〉 are
brought together and they start interacting with each
other. The time evolution of the original state is deter-
mined by the joint Hamiltonian of the system Ĥ that
is represented mathematically by a 4 × 4 hermitian ma-
trix because it has to operate on vectors in the enlarged
Hilbert space. Let us pick up an Hamiltonian of this
type, something easy so the calculation does not get too
complicated and let us see what happens.

Ĥ =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1






. (85)

The basis vectors used to write the Hamiltonian Ĥ are
the same used to write |ψAB(0)〉 in equation 84. Since
the matrix in equation 85 is diagonal, we can read out the
eigenstates and eigenvalues of the Hamiltonian. They are
the state vectors |HH〉, |HV 〉, |V H〉 and |V V 〉 and the
corresponding eigenvalues are equal to 1, 1, 1 and −1.

We can now write down the time evolution of the state
|ψAB(0)〉 by solving the Schrödinger equation with the

Hamiltonian Ĥ :

i~
∂ψAB(t)

∂t
= ĤψAB(t) (86)

The Schrödinger equation above is really a set of four
linear differential equations one for each component of
the four dimensional vector representing ψAB(t). Usu-
ally, these four differential equations would be coupled
by the Hamiltonian so you would have to diagonalize the
corresponding matrix. In this case however the Hamilto-
nian is already diagonal so we can redily write the solu-
tion of this set of equations in vector form as:

ψAB(t) = exp(
−i
~
Ĥt)ψAB(0). (87)

The exponential of the Hamiltonian exp(−i
~
Ĥt) is the

diagonal matrix whose eigenvalues are the exponential of
the eigenvalues of the Hamiltonian’s matrix (see equation
46 and discussion below). The reader can also check that
this time evolution matrix is unitary. After time t = π~

2
(never mind the units) the matrix can be written as:

exp(
−i
~
Ĥt) =











e
−iπ

2 0 0 0

0 e
−iπ

2 0 0

0 0 e
−iπ

2 0

0 0 0 e
+iπ

2











.

=







−i 0 0 0
0 −i 0 0
0 0 −i 0
0 0 0 i






. (88)

According to equation 87, you can now write down
the vector ψAB(t) just by multiplying the unitary matrix
in equation 88 times the column vector ψAB(0) given in
equation 84. The result is that after time π~

2 the state
vector representing the system is:

|ψAB(t)〉 =
−i
2







1
1
1
−1






. (89)

You can check by inspection that the state in equation
89 is entangled (ie. it cannot be factorized). The more
ambitious reader may consult reference [17] that explains
in simple terms the systematic criteria to check whether
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the state of a bipartite system is entangled or not in the
context of this example.

Whatever way you choose to convince yourself that
the state above is entangled the conclusion is the same.
States that can be factorized arise mathematically only
for very special choices of the entries of the corresponding
vectors. Under Hamiltonian evolution the value of these
entries will change and in general it will not be possi-
ble to factorize the state any more. The discussion above
shows that the process by which two independent systems
in a product state like |ψAB(0)〉 get entangled is indeed
quite natural provided that the two systems are brought
together and left to interact with each other. However,
most interaction will not lead to a maximally entangled
state. It is therefore important for applications like tele-
portation to devise techniques by which one can distill a
set of ebits from an ensemble of partially entangled states
like |ψAB(t)〉 in equation 89. This is the subject of the
next section.

D. Entanglement distillation

We emphasize that the fundamental law of quantum
information processing does not rule out the possibility to
occasionally increase the net amount of entanglement in
a system by using local operations and classical commu-
nication only, provided that on average the net amount
of entanglement is not increased. This implies that it
should be possible to devise strategies to turn a partially
entangled pair of particles into an ebit provided that this
strategy sometimes leads to an increase and other times
to a loss of entanglement so that on average the ”en-
tanglement balance” stays the same. We first consider a
simple example of entanglement distillation and then we
look at the efficiency of a general distillation procedure
by using Landauer’s principle.

1. A simple example

Alice is still in London and Bob in Boston. They share
a non maximally entangled pair of particles in the state
|ψAB〉 = α|00〉+ β|11〉, where α 6= β. They want to turn
it into an ebit but they are only allowed to act locally on
their own particle but not to let the two interact. Fur-
thermore, their communication must be limited to classi-
cal bits sent over an ordinary channel, nothing fancy like
sending or teleporting quantum states is allowed. The
reason why we demand such tough conditions on Bob
and Alice and we insist on them not to freely meet up is
because we want to investigate the issue of locality ver-
sus non-locality. This is really the main theme behind
our study of entanglement, so we have to be extra care-
ful in keeping track of what they do. That still leaves a
lot of room for manipulation on both Alice’s and Bob’s
side. For example the two can add other particles on

their own side and let them interact with the entangled
particle they are holding and perform measurements on
them. We now describe what operations the two perform
in order to distill one ebit.

1. Alice adds another particle in state |0A〉 on her side.
Note that the subscript A denotes particles on Al-
ice’s side and B on Bob’s side. Now the joint state
of the entangled pair plus the extra particle is given
by the product state |ψtot〉 given below:

|ψtot〉 = |0A〉 ⊗ (α|0A〉|0B〉 + β|1A〉|1B〉). (90)

We can collect the states of the two particles on Al-
ice side in the same four dimensional column vector
and rewrite equation 90 as:

|ψtot〉 = α|00〉A|0B〉 + β|01〉A|1B〉 (91)

2. Now Alice performs a unitary transformation Û on
her two particles. As we mentioned in the previ-
ous section, a unitary transformation can be im-
plemented by letting the joint system evolve for a
certain time as dictated by a suitably chosen Hamil-
tonian (see example in equation 88). The unitary

transformation Û that Alice needs to implement on
the joint state of her two particles is given below in
matrix form:

Û =











β
α

0 −
√
α2−β2

α
0

0 1 0 0√
α2−β2

α
0 β

α
0

0 0 0 1











. (92)

The reader can check that, when the unitary trans-
formation is applied on her states |00〉A and |01〉A,
Alice achieves the following:

Û |00〉A =
β

α
|00〉A +

√

α2 − β2

α
|10〉A ;

Û |01〉A = |01〉A . (93)

Hence, when the unitary transformation Û is ap-
plied to the joint state of the three particles |ψtot〉,
the state of the particle on Bob’s side is unaf-
fected whereas the state of the two on Alice’s side
is changed according to equation 93:

Û |ψtot〉 = β|00〉A|0B〉
+

√

α2 − β2|10〉A|0B〉 + β|01〉A|1B〉. (94)

We can split Alice’s vector states in equation 94
and isolate the state of the entangled pair from the
state of the particle added on Alice’s side by writing
the latter first in the equation below:
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Û |ψtot〉 =
√

2β|0A〉
|0A〉|0B〉 + |1A〉|1B〉√

2

+
√

α2 − β2|1A〉|0A〉|0B〉 . (95)

3. Now, Alice decides to perform a measurement on
the extra particle she is holding on her side. She
chooses the observable that has |0〉 and |1〉 as its
eigenstates. There are two possible scenarios:

a) Alice finds the extra particle in state |0〉. Then
the total state is |0〉A⊗ 1√

2
(|0A0B〉+ |1A1B〉). Alice

and Bob share a maximally entangled state. This
event occurs with probability 2β2.

b) Alice finds the extra particle in state |1〉. Then
the total state is |1A〉⊗|0A0B〉. The procedure was
unsuccessful and the two lost their initial entan-
glement. This possibility occurs with probability
1 − 2β2.

4. Alice phones Bob and informs him of the measure-
ment outcomes. If the procedure is successful Bob
holds his particle otherwise they try again.

A question that arises naturally in this context is the
following: what is the maximum number of ebits that
Alice and Bob can extract from a large ensemble of N
non maximally entangled states? We will answer this
question by using Landauer’s erasure principle.

2. Efficiency of entanglement distillation from Landauer’s

principle

We start by considering an example of a process that
will cause two systems to become entangled: a quantum
measurement. A quantum measurement is a process by
which the apparatus and the system interact with each
other so that correlations are created between the states
of the two. These correlations are a measure of the in-
formation that an observer acquires on the state of the
system if he knows the state of the apparatus.

Consider an ensemble of systems S on which we want
to perform measurements using apparatus A. A general
way to write the state of S is

|ψS〉 =
1√
N

N
∑

i=1

|si〉 , (96)

where {|si〉} is an orthogonal basis. In our previous ex-
ample, the orthogonal basis was given by the vertically
and horizontally polarized states. When the apparatus
is brought into contact with the system the joint state of
S and A is given by

|ψS+A〉 =
1√
N

N
∑

i=1

|si〉 |ai〉 . (97)

The result of the act of measurement is to create cor-
relations (ie. entanglement) between the apparatus and
the system. The equation above is a generalization of
equation 76.

An observation is said to be imperfect when it is unable
to distinguish between two different outcomes of a mea-
surement. Let A be an imperfect measuring apparatus
so that {|ai〉} is NOT an orthogonal set. A consequence
of the non-orthogonality of the states |ai〉 is that we are
unable to distinguish with certainty the correlated states
|si〉. There is no maximal correlation between the state
of the system and the apparatus, which means that S and
A are not maximally entangled). However, suppose that
by acting locally on the apparatus we can transform the
whole state |ψS+A〉 into the maximally entangled state
|φS+A〉:

|φS+A〉 =
1√
N

N
∑

i=1

|si〉 |bi〉 , (98)

where {|bi〉} IS an orthogonal set. This does not increase
the information between the apparatus and the system
since we are not interacting with the system at all. In
order to assess the efficiency of this distillation procedure
we need to find the probability with which we can distill
successfully.

The state of the apparatus only, after the correlations
are created, is given by the reduced density operator first
encountered in section III C 3:

trS(|ψS+A〉 〈ψS+A|) = ρA. (99)

Landauer’s principle states that to erase the information
contained in the apparatus we need to generate in the en-
vironment an entropy of erasure larger than S(ρA) and
this has to be greater than or equal to the information
gain. After we purify the state to |φS+A〉 with a prob-
ability p , we gain p logN bits of information about the
system. In fact, since we have maximal correlations now,
the result of a measurement enables us to distinguish be-
tween N equally likely outputs. The rest of the state
contains no information because it is completely disen-
tangled and therefore there are no correlations between
the states of the system and the apparatus. After read-
ing the state of the apparatus we will not gain any useful
knowledge on the state of the system.

By Landauer’s principle, the entropy of erasure is
greater than or equal to the information gain before pu-
rification and this is in turn greater than or equal to the
information the observer has after purification, because
the apparatus is not interacting with the system so the
information can not increase. We thus write

S(ρA) ≥ p logN. (100)

The upper bound to purification efficiency is therefore

p ≤ S(ρA)/ logN. (101)

33



This bound obtained from Landauer’s principle is actu-
ally achievable as has been proven in [32] by construction
of an explicit procedure that achieves it. It is neverthe-
less satisfying that Landauer’s principle is able to give a
sharp upper bound with a minimal amount of technicali-
ties and by doing so it provides an informal argument for
using the Von Neumann entropy as a measure of bipar-
tite entanglement. With this result we answer the last of
the three questions posed in the introduction that have
served as guidelines for our exploration of the physical
theory of information.

VII. CONCLUSION

This is really the end of our long investigation on the
properties of entanglement, classical and quantum infor-
mation. We hope to have reasonably delivered what we
promised in the introduction. Throughout the paper,
we used the pedagogical technique of going backwards
and forward among different aspects of the subject, each
time increasing the level of sophistication of the ideas
and mathematical tools employed. This method has the
advantage of allowing enough time for ”different layers of
knowledge to sediment in the mind of the reader”. Un-
fortunately, there is also the inevitable side effect that a
proper understanding of the subject matter will only fol-
low when the reader goes through the material more than
once. For example, the understanding of the differences
between quantum and classical information crucially re-
lies on the appreciation of the concepts of classical and
quantum correlations that were explicitly studied only at
the end of the article. No matter how hard we tried to ar-
gue with words previously, a proper grasp of these topics
came only after employing more advanced mathematical
tools developed in later parts of the paper.

To prevent the reader from feeling lost, we will now
attempt to recap the content of the paper. In the first
part, the scene was dominated by the Shannon entropy
that helped us to define and evaluate the amount of clas-
sical information encoded in a classical object or mes-
sage. We were also able to find a bound on the classical

information capacity of a noisy classical channel by using
Landauer’s principle. The answer depended once again
on the Shannon entropy. Following a brief recap of quan-
tum mechanics, our interest slightly shifted to quantify-
ing the amount of classical information encoded in quan-
tum systems. This was achieved by introducing the Von
Neumann entropy. After developing a suitable thermal-
ization procedures to erase information from quantum
systems, we managed to employ Landauer’s principle to
justify the Holevo bound. This bound expresses the clas-
sical information capacity of a noisy quantum channel in
terms of the Von Neumann entropy. That completed our
investigation of classical information.

We then turned our attention to quantifying the
amount of quantum information encoded in a quantum

object or message. This result, which is based on quan-
tum data compression, was obtained employing Lan-
dauer’s principle and provided a solid basis for the intro-
duction of the qubit as the fundamental unit of quantum
information. The answer to this question was once again
given by the von Neumann entropy. Quantum informa-
tion can be compressed, but unlike classical information,
it cannot be copied. This was our conclusion after study-
ing the no-cloning theorem with the help of Landauer’s
erasure principle.

Motivated by these successes we tried to shed light on
the phenomena of entanglement using Landauer’s prin-
ciple. We explained that creating a pair of entangled
states is not difficult after all. Any two systems initially
uncorrelated will get entangled just by interacting with
each other. However, it is not equally easy to create
quantum states that are maximally entangled over large
distance. This problem can be overcome by designing
suitable distillation procedures by which maximally en-
tangled states, ebits, are produced from an ensemble of
non-maximally entangled states without increasing the
total amount of entanglement. To some extent this pro-
cedure provides a way to measure the amount of entan-
glement (in ebits) contained in a system composed of only
two parts. The efficiency of a distillation procedure was
once again expressed in terms of the von Neumann en-
tropy after carrying out a simple analysis based on Lan-
dauer’s principle. The von Neumann entropy in quantum
information theory is so widespread to justify the claim
that the whole field is really about its use and interpre-
tation , as classical information theory was based on the
Shannon entropy. [15].

After reading this summary you might have noticed
two glaring omissions in our treatment. Firstly, we spent
a lot of time discussing the classical information capacity
of a noisy classical and quantum channel, but we never
mentioned the more interesting problem of the quantum
information capacity of a noisy quantum channel. In
other words how many qubits can you send through a
noisy channel when the letters of your message are en-
coded in arbitrary quantum states? Secondly, we never
mentioned how to generalize our discussion of entangle-
ment measure to the useful and interesting case of entan-
gled states composed of more than two particles.

We reassure the reader that these omissions are not
motivated by our compelling desire to meet the deadline
for submission of this paper, but rather by the fact that
nobody really knows the answer to these fundamental
and natural questions. We do not know whether one can
push Landauer’s principle to investigate these problems.
Landauer’ principle is somehow limited to the erasure
of classical information whereas the questions above are
completely quantum. However, Landauer’ principle can
be used to yield upper bounds to entanglement distilla-
tion a completely non-classical procedure. Therefore the
hope that Landauer’s principle can shed some light on
these unsolved problems may not remain unfulfilled.
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Anyway, these final remarks prove the point that, al-
though a large amount of work has been published since
Shannon, there is still room for further research in the
foundations of information theory. It is also evident that
this research belongs to fundamental physics as much as
it does to engineering. If you found some of the ideas in
this paper fascinating and you wish to start working in
the field, you may want to start by studying some further
introductory texts such as [15–17,19,20]. Perhaps some-
day, we will find out the answer to the questions above
from you.
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