
Università degli Studi dell’Insubria

Dipartimento di Scienze Teoriche e Applicate

Enhancing Data Privacy and Security Related Process
Through Machine Learning

A thesis presented by

Md. Zulfikar Alom

Submitted to the
Department of Theoretical and Applied Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

Advisor: Professor Elena Ferrari

Advisor: Professor Barbara Carminati

Jury :

Reviewers : Dr. Marco Mesiti - Università degli Studi di Milano
Dr. George Pallis - University of Cyprus

Examiners : Professor Maria Luisa Damiani - Università degli Studi di Milano
Professor Sergio Mascetti - Università degli Studi di Milano
Dr. Pierluigi Gallo - Università degli Studi di Palermo

defended on October 09, 2019

Abstract

Machine learning (ML) is one of the most exciting technologies being developed
in the world today. Machine learning gives computers the ability to learn just like
humans do. The appeal and pervasiveness of ML technology is growing. ML methods
are being improved, and their ability to understand and provide answers to real
problems is highly appreciated. These achievements have led to the adoption of ML
in several areas, such as big data, computer vision, and medical analysis. The main
advantage of ML is its prediction capability. This benefit motivated us to exploit ML
in the domains of data security and data privacy.

Nowadays, individuals are becoming increasingly dependent on numerous online
services to make their lives more comfortable and convenient. To offer such services,
service providers collect, store, and process a massive amount of personal infor-
mation about individual users. However, although individuals voluntarily provide
such personal information to service providers, they often have no idea how their
information is subsequently used. This may also cause serious privacy threats as
users lose control over their data. To tackle this problem, and to gain more control
over their data, individuals can alter their privacy settings, stating how their data
can and cannot be used and managed by the service providers. Unfortunately, the
average user might find it difficult to properly set up privacy settings due to lack of
knowledge and subsequent lack of decision-making abilities regarding the privacy of
their data. Since ML has a strong prediction ability, in this thesis, first of all, we use
ML technology to try to predict the best privacy settings for users.

Another benefit of ML is that it can eliminate (or reduce) the need for human
participation in some tasks. More precisely, ML can help to reduce the load of
human-based annotation. For instance, the scenario of intrusion detection or a
fake news detection system, where individual involvement is needed to define the
rules, and human expertise is required to annotate the sample data based on those
rules. Defining rules and annotating samples is an exhausting and time-consuming
task. Instead, an ML model can quickly learn to label samples, which unload some
tasks from humans. Since the ML approach has the potential to considerably cut
down on manual efforts by humans, our second task in this thesis is to exploit ML
technology to redesign security mechanisms of social media environments that rely

3

on human participation for providing such services. In particular, we use ML to
train spam filters for identifying and removing violent, insulting, aggressive, and
harassing content creators (a.k.a. spammers) from a social media platform. It helps
to solve violent and aggressive issues that have been growing on the social media
environments. The experimental results show that our proposals are efficient and
effective.

4

Acknowledgement

First of all, I would like to thank the Almighty Allah for blessing me to accomplish
this thesis. Without His blessing, I could not able to continue this work.

I cannot obtain this Ph.D. without my excellent advisors, Prof. Elena Ferrari and
Prof. Barbara Carminati. I would like to express the most sincere gratitude to
my advisors. They played the key roles in my Ph.D. In addition to their academic
guidance, they have shown a great deal of patience towards me and supported my
research in a way that goes beyond a professional relationship. Their caring attitude
has always given me the strength to continue my research endeavor.

I gratefully acknowledge the members of my Ph.D. committee for their time and
valuable feedback on my thesis.

I am thankful to my Ph.D. colleagues, especially, Bikash, Stefania, Gokhan, Shah,
Alberto, Christian, Tu, Deniz, Federico, Riccardo, and all my Italian friends in here,
for showing me Italian hospitality and enriching my life greatly. Without them, my
Ph.D. would never be such a great experience.

I would like to thank Mauro Santabarbara for his time in helping me with the
computer that I used during my research. I would like to thank Roberta Viola for
aiding me in processing the official paperwork during my Ph.D.

I would like to thank all the people who take participation in my experiments. I really
appreciate their efforts and time for helping me to evaluate my research work.

Last but not least, I am deeply thankful to my family: my beloved parents, my
sisters and their husbands, and my brother, for their unconditional love and spiritual
support in all my life.

5

Dedication

I would like to dedicate this doctoral dissertation ...

To my mother Anowara Begum
To my father Forhad Hossain
To my sister Farhana Parvin
To my sister Farzana Yasmin
To my brother Toriqul Islam
To my little niece Maisha
To my little nephew Fahad

Contents

1 Introduction 15

1.1 Machine Learning in an IoT-based Smart Environment 16

1.2 Machine Learning in a Social Media Environment 18

1.3 Main Contributions . 18

1.4 Thesis Organization . 19

1.5 Related Publications . 20

2 Literature Review 23

2.1 ML-based privacy settings mechanisms 23

2.2 ML-based security mechanisms . 26

2.2.1 Spam detection ML techniques 28

2.3 Thesis contributions with respect to the literature review 30

2.4 Chapter summary . 32

3 ML-based Privacy Preferences Adaptation 33

3.1 Smart environment modeling . 34

3.2 Flexible privacy matching . 36

3.2.1 Metrics . 36

3.2.2 Learning strategy . 39

3.3 Experiments and results . 40

3.3.1 Settings . 41

3.3.2 Performance evaluation . 44

3.4 Chapter summary . 48

4 ML-based Privacy Preferences Suggestions 49

4.1 Proposed methodology . 50

4.1.1 Contexts and context-based privacy preferences modeling . . 51

4.1.2 Context distance metrics . 52

4.1.3 Context similarity . 55

4.1.4 Learning mechanism . 56

4.2 Experiments . 58

4.2.1 Experimental settings . 58

4.2.2 Effectiveness . 59

4.2.3 Participant evaluation . 61

9

4.3 Chapter summary . 63

5 ML-based Spam Accounts Detection on Twitter 65
5.1 Proposed features . 66

5.1.1 Graph-based features . 66
5.1.2 Content-based features . 67

5.2 Experiments and results . 68
5.2.1 Data collection . 68
5.2.2 Evaluation metrics . 69
5.2.3 Data analysis . 70
5.2.4 Evaluation . 71

5.3 Chapter summary . 76

6 Conclusion and Future work 77

Bibliography 79

10

List of Figures

3.1 An example of purpose tree . 36
3.2 Learning architecture . 40
3.3 Learning phase . 42
3.4 Testing phase . 43
3.5 Accuracy of different classifiers . 45
3.6 Evaluators satisfaction level . 46
3.7 Satisfaction level of consistent and inconsistent evaluators 46
3.8 Comparison of F1 score of different classifiers for training datasets . . 47
3.9 Comparison of F1 score of different classifiers for testing datasets . . . 47

4.1 Location hierarchy . 53
4.2 Activities hierarchy . 54
4.3 Social hierarchy . 54
4.4 Learning architecture . 56
4.5 Comparison of accuracy of different approaches 60
4.6 Comparison of F1-score of different classifiers for training dataset . . . 60
4.7 Comparison of F1-score of different classifiers for testing dataset 61
4.8 Comparison of evaluators satisfaction level for different approaches . . 62
4.9 Satisfaction level of consistent and inconsistent evaluators 62

5.1 Number of triangles . 69
5.2 Number of triangles/followers . 70
5.3 Number of bi-directional links . 71
5.4 Unique URL ratio . 71
5.5 URL to tweets ratio . 72
5.6 Accuracy . 73
5.7 Precision . 73
5.8 Recall . 74
5.9 F1-score . 74
5.10 F1-score . 75

11

List of Tables

2.1 Summary of the reviewed Twitter spam detection papers 31

3.1 Confusion matrix . 44
3.2 Metrics . 44
3.3 Performance comparison of different learning algorithms for the training

datasets . 48
3.4 Performance comparison of different learning algorithms for the testing

datasets . 48

4.1 Confusion matrix . 59
4.2 Metrics definition . 59
4.3 Performance comparison of different learning algorithms for the training

and testing datasets . 63

5.1 Characteristics of the dataset . 69
5.2 Confusion matrix . 70
5.3 Top 10 features . 75

13

1Introduction

Machine learning (ML) is a subset of artificial intelligence whereby computers learn
data autonomously. Machine learning refers not only to the use of computers for
calculations and data retrieval but also to combining those two capabilities of a
computer system so that it appears to be learning and making rational decisions
in accordance with previously observed data. In 1952, Arthur Samuel wrote the
first ML program which learned to play checkers [1]. In the mid-1980s, several
people independently discovered the back-propagation algorithm, which boosted
ML technology, enabling more powerful neural networks with hidden layers to be
trained [2]. In the 21st century, businesses have realized the power of ML technology
and several companies have launched large ML-based projects (e.g., GoogleBrain1,
DeepFace2, DeepMind3) to stay ahead of their competitors.

Today, ML technology is becoming more pervasive and appealing because it has
demonstrated the ability to solve real problems. The major advantages of ML technol-
ogy are its prediction capability and its ability to reduce the need for human activities
to perform tasks [3]. These benefits have led to its adoption in the data security
and privacy domain. Today, to make their lives more comfortable and convenient,
individuals are becoming dependent on a variety of online services. The providers of
these services collect, store, and process a vast amount of personal information about
individuals. Clients of these providers provide personal information for a specific
purpose. However, they often have no idea how their personal information will be
used subsequently. This may cause serious privacy threats as it means that users lose
control over their data. To address this challenge and to enhance privacy control,
individuals can explicitly express their privacy preferences, stating conditions on
how their data should be used and managed by the service providers. However,
average users may find it difficult to effectively manage their privacy settings due
to a lack of knowledge or decision-making abilities regarding data privacy [4, 5].
As ML has good prediction capabilities, in this thesis, we attempt to predict the
most appropriate privacy settings for users by exploiting ML technology. Specifically,
we propose a privacy preference prediction framework for a specific domain, the
Internet of Things (IoT) based smart environment.

1https://ai.google
2https://deepface.ir
3https://deepmind.com

15

We note that ML technology has the potential to considerably cut down on manual
efforts by humans and exploit its benefits in the cybersecurity domain to protect
individuals from cyber attacks. For instance, most previous intrusion detection
systems used signature-based approaches to detect attacks in a network. Today, ML
can offer new network security solutions called network traffic analytics to perform
an in-depth analysis of all traffic at each layer and detect attacks and anomalies.
More specifically, an ML regression model can be used to predict the network packet
parameters and compare them with the normal ones, and classification can be
used to identify different classes of network attacks such as scanning and spoofing.
Likewise, in cybersecurity, a regression model can be used for fraud detection.
The features (e.g., the total amount of suspicious transactions and location of
fraudulent transactions) can be used to determine the probability of fraudulent
actions. Moreover, ML classification methods can be used to detect spam and
fake news. For spam detection, a spam filter separates spam messages and users
from normal ones. Previously, spam detection in social media environments was
required human expertise to define the rules and annotate the data (e.g., mark
users/messages as spam or non-spam) based on those rules. Assigning annotators to
annotate the sample data is an exhausting, time-consuming, and extremely expensive
task. Since ML can be used to train spam filters automatically, it brings the advantage
of eliminating the need for human participation. In this thesis, we attempt to exploit
ML technology to train spam filters for identifying and removing violent, insulting,
aggressive, and harassing content creators (i.e., spammers) from the Twitter platform.
The goal is to improve Twitter’s existing spam-detection mechanisms (e.g., [6, 7,
8]).

1.1 Machine Learning in an IoT-based Smart
Environment

Internet of Things (IoT) based smart environments are physical spaces, enriched
with connected sensors and smart devices that offer various services (e.g., home
automation, entertainment, and health monitoring) to support individuals in their
daily activities. In order to provide personalized services based on individual habits,
smart environments usually collect, store, and process vast amounts of personal in-
formation on individuals. For instance, IoT-based home automation systems monitor
users’ behavior using motion sensors, Wi-Fi signals, or facial recognition technol-
ogy to identify their presence in rooms and automatically adjust the temperature
or lighting. In general, service providers collect these data in accordance with
their privacy policies. A privacy policy defines how a service provider collects and
manages customers’ personal information, the purpose for which that information
may be used and the length of time it can be retained. To have more control over

16

how their personal data are used, individuals can specify their privacy preferences,
stating how their data should be used and managed by the service provider. In a
smart environment, privacy checking is handled by hard matching users’ privacy
preferences against service providers’ privacy policies and denying all services whose
privacy policies do not fully match an individual’s privacy preferences. This means
that a user can only access a service if the provider’s policies fully match all his or
her privacy preferences. Therefore, if individuals do not choose suitable privacy
settings, they may not be able to access many services. Due to a lack of knowledge
and decision-making abilities with regard to privacy management, many users expe-
rience difficulty when selecting privacy preferences. For instance, a user may choose
a privacy preference whereby he or she agrees to share his or her health-related data
(e.g., blood-pressure and heart-beat data) acquired through a smart device with a
healthcare service provider if the data are stored for only 100 days. A healthcare
service provider whose privacy policy states that it will store data for 110 days clearly
does not satisfy the user’s privacy preference, even though it is close to satisfying
them. In a real-life scenario, if a user has a health condition, she or he would
likely not care about data retention for a further 10 days and would likely make an
exception to her or his privacy preference in order to access the service. However, a
hard privacy matching mechanism would deny the user access to the service without
considering the possible benefits for the user. Therefore, we examine how privacy
checking in IoT-based environments can be made more flexible. First, we propose
a soft privacy matching mechanism, which can relax, in a controlled way, some
of the conditions of users’ privacy preferences to match service providers’ privacy
policies. To achieve this aim, we exploit ML algorithms to build a classifier that
can make decisions on future service requests by learning which privacy preference
components a user is willing to relax, as well as the relaxation range (i.e., by how
much the preferences may be relaxed). We then extend our approach to take into
account individuals’ contextual information. Contextual information refers to any
piece of data on an individual that can be used to define his or her current situation.
We have witnessed that individual’s privacy preferences may vary based on his or
her contextual information [9, 10, 11]. For instance, a user may feel comfortable
accessing entertainment services while at home but not during office hours when
he or she is at work. To achieve more fine-grained control, a user can set different
privacy preferences for different contexts. However, since users’ contexts frequently
change, this might be an extremely complex and time-consuming task. To address
this issue, this thesis also proposes a context-based privacy management service that
uses ML technology to help users manage their privacy preferences for different
contexts.

17

1.2 Machine Learning in a Social Media
Environment

In the last few years, online social networks (OSNs), such as Twitter, Facebook, and
LinkedIn, have become extremely popular communication tools [12, 13]. Users
spend a substantial amount of time on OSNs developing friendships with people
they know or who have similar interests and sharing messages about real-life issues
including news, events, social problems, and political crises. Moreover, social
networks give businesses an unprecedented opportunity to connect with customers.
However, due to the significant popularity of OSNs, boosted by the proliferation of
social networks, OSNs also attract the interest of cybercriminals (i.e., spammers) [14,
15]. Spammers exploit the implicit trust between users to achieve their malicious
aims. For example, on Twitter, spammers create malicious links within tweets, spread
violent, aggressive and fake news, and send insulting and harassing messages to
legitimate users. To deal with this problem, rule-based approaches are used to
detect spammers. Generally, a rule-based approach means that humans define rules,
and, based on those rules, annotate the sample data [16, 17]. However, defining
rules and annotating samples is an exhausting and time-consuming task. Since
ML has the ability to reduce human participation in such tasks, it can be used to
train spam filters to annotate samples. In this thesis, we exploit ML technology to
detect spammers on Twitter using several newly proposed features (e.g., graph-based
features) that are more effective and robust than existing features (e.g., number of
followings/followers).

1.3 Main Contributions

The main contributions of this thesis lie in its exploitation of ML techniques (1) to
improve data privacy in IoT-based smart environments and (2) to enhancing data
security by redesigning the security mechanism of a social media environment.

In summary, this thesis offers the following main research contributions:

• We propose a soft privacy matching mechanism that enables fine-grained learn-
ing of the extent to which individuals are willing to relax their privacy prefer-
ences. More specifically, we demonstrate that the proposed privacy-checking
mechanism is able to relax, in a controlled way, some conditions of users’
privacy preferences in order to match with service providers’ privacy policies.

18

• As an extension of the above-mentioned mechanism, we propose an ML-
based privacy preference management service that helps individuals to manage
their privacy preferences in different contexts. More specifically, we design a
framework that infers individuals’ privacy preferences based on their contextual
information.

• This thesis also focuses on redesigning security mechanisms in social media
environments that rely on human participation to provide services. To this
end, we exploit ML to investigate the behavior of spammers on Twitter with
the goal of improving existing spam-detection mechanisms. To detect spam
accounts on Twitter, we design a set of novel graph-based and content-based
features that are more effective and robust than existing features. The results
show that the proposed set of features offers better performance than existing
state of the art approaches.

1.4 Thesis Organization

The dissertation is organized into six chapters, which are briefly described below.

Chapter 1: Introduction

In this chapter, we mainly discuss the motivation for this dissertation and its main
contributions.

Chapter 2: Literature Review

We review the literature on data security and privacy issues in different domains.
More particularly, we discuss previous work on privacy preference settings in IoT-
based smart environments. We then summarize the existing work on exploiting
users’ contextual information to build privacy preference models to protect personal
data in different contexts. The chapter closes with a discussion of related work
that applied ML technology to redesign the security mechanism of social media
environments.

Chapter 3: ML-based Privacy Preferences Adaptation

In this chapter, we describe the proposed soft privacy matching mechanism, which
can relax, in a controlled way, some of the conditions of users’ privacy preferences
to match with service providers’ privacy policies. We exploit ML algorithms to build
a classifier that can make decisions on future service requests by learning which

19

privacy preference components a user is willing to relax and the extent to which he
or she is willing to relax them. We then conduct experiments to determine which
learning approach provides better accuracy in IoT-based smart environment.

Chapter 4: ML-based Privacy Preferences Suggestions

In this chapter, we present the proposed ML-based privacy preferences management
service, which helps users to manage their privacy preference settings in different con-
texts. More precisely, we focus on users’ contextual information and define a learning
approach exploiting contextual features to learn users’ privacy preferences.

Chapter 5: ML-based Spam Accounts Detection on Twitter

In this chapter, we exploit ML to redesign the security mechanism of the social
media environment and make it a more secure place for individuals. To this end, we
investigate the behavior of spammers on Twitter with the goal of improving existing
spam-detection mechanisms. We present a method of classifying Twitter users based
on several new features and show that the proposed technique can be more effective
and robust than existing spam-detection methods.

Chapter 6: Conclusion and Future work

This chapter summarizes the thesis, discussing the results that we have obtained,
and outlining plans for further developments along with new research objectives.

1.5 Related Publications

The research activities described in this thesis have resulted in the following publica-
tions:

• Md Zulfikar Alom, Barbara Carminati, Elena Ferrari, “Adapting Users’ Pri-
vacy Preferences in Smart Environments” 2019 IEEE International Congress on
Internet of Things (ICIOT, 2019), pp. 165-172, Milan, Italy.

• Md Zulfikar Alom, Barbara Carminati, Elena Ferrari, “Helping Users Managing
Context-based Privacy Preferences” 2019 IEEE International Conference on
Services Computing (SCC, 2019), pp. 100-107, Milan, Italy.

• Md Zulfikar Alom, Barbara Carminati, Elena Ferrari, “Detecting Spam Accounts
on Twitter” 2018 IEEE/ACM International Conference on Advances in Social

20

Networks Analysis and Mining (ASONAM, 2018), pp. 1191-1198, Barcelona,
Spain.

21

2Literature Review

In this chapter, we review the proposals dealing with data privacy and security issues
in different domains. To this end, in Section 2.1, we discuss the related works that
exploited ML strategies to learn users’ privacy settings in the different environments.
Afterwards, in Section 2.2, we review previous works that applied ML technology to
redesign the security mechanism of social media environments.

2.1 ML-based privacy settings mechanisms

In the last few years, many studies have been devoted to improve user privacy
settings by recommending privacy choices to the users. For instance, Lee et al. [18]
proposed the concept of intelligent software that helps users to make better privacy
decisions in the IoT-based environments. To this end, the authors adopted ML tools
and performed clustering analysis on the collected preferences to understand users’
privacy concerns towards IoT applications and services. Recently, Nakamura et al.
[19] proposed a ML approach to provide users personalized default privacy settings
for online services. The proposed approach combines prediction and clustering
techniques for modeling the privacy profile associated with users’ privacy preferences.
The authors asked a set of 80 questions to each individual user at the time of
registration. Similarly, Singh et al. [20] proposed a suite of semi-supervised approach
in order to learn the privacy aptitudes of Personal Data Storage owners. The learned
models are then used to answer third party access requests. The authors showed that
their approach provides a better accuracy than [19] with the same training set.

Substantial research efforts have been also made to suggest privacy preferences to
the users of social networks. Although almost all social network platforms have
a privacy setting page to allow users to set up their privacy preferences, most of
the users are facing many problems in the privacy setting specification task due
to its complexity and lack of enough privacy knowledge [21]. Thus, researchers
have investigated solutions that automatically configure user privacy settings with
minimal effort. For instance, Sadeh et al. [22] proposed an automated mechanism
for mobile social networking applications for making privacy decisions on behalf
of the users. The authors exploited supervised learning (i.e., Random Forest) and
made a comparison between the user-defined sharing policies and ML-based ones.

23

The authors claimed that the machine-generated policies have better accuracy than
the user-defined ones. Likewise, Fang et al. [23] proposed a model that infers access
control policies for personal information sharing in online social networking services.
They also used a supervised ML approach to learn users’ privacy preferences by
iteratively asking them questions regarding their sharing activities with friends. The
authors used personal profiles information (e.g., age, gender) with feedback of the
users as a training dataset and they trained the personalized ML models. Bilogrevic
et al. [24] proposed a ML privacy-preserving information sharing model for mobile
social networks, called SPISM, that semi-automatically decides whether or not to
share personal information and at what level of granularity. The authors used a
supervised ML-based logistic classifier to predict users’ privacy decisions.

Moreover, a number of studies have been carried out to understand user’s privacy
preferences by taking into account user’s contextual data. For example, Wijesekera
et al. [25] proposed a novel privacy management system that relies on user’s
contextual information, to improve user privacy decision making capability in mobile
platforms. The author implemented model uses four different contextual features
for making a decision on a resource request, namely, the name of the app requesting
the permission, the app in the foreground at the time of the request (if different than
the app making the request), the requested permission type (e.g., Location, Camera,
Contacts), and the visibility of the app making the request. Similarly, Liu et al. [26]
proposed a personalized privacy assistant that pro-actively produces permission
settings for Android applications on behalf of the users. The authors developed
ML classifiers to predict users’ decisions for each permission request by using their
privacy profiles. Smith et al. [27] presented different solutions that enable people to
share contextual information in mobile networks, whereas, in [28], authors observed
that people’s willingness for sharing information are impacted of various factors.
More particularly, in [28], authors have done the study of 42 participants, who
self-report aspects of their relationships with 70 of their friends, including frequency
of collocation and communication, closeness, and social group. The study shows
that (a) self-reported closeness is the strongest indicator of willingness to share; (b)
individuals are more likely to share in scenarios with common information (e.g., we
are within one mile of each other) than other kinds of scenarios (e.g., my location
wherever I am); and (c) frequency of communication predicts both closeness and
willingness to share better than frequency of collocation. In [29] authors presented
a framework for automatic estimation of privacy risk of data based on the sharing
context. More precisely, the authors used Item Response Theory (IRT) on top of the
crowdsourced data to determine the sensitivity of items and diverse attitudes of
users towards privacy. To this end, firstly, they determine the feasibility of IRT for
the cloud scenario by asking workers feedback on Amazon mTurk on various sharing
scenarios. It obtains a good fit of the responses with the theory and thus shows that
IRT, a well-known psychometric model for educational purposes, can be applied to

24

the cloud scenario. After that, the authors present a lightweight mechanism such
that users can crowdsource their sharing contexts with the server and determine the
risk of sharing a particular data item(s) privately. Finally, they use the Enron dataset
to simulate their conceptual framework and also provide experimental results using
synthetic data. The result shows that the proposed scheme converges quickly and
provides accurate privacy risk scores under varying conditions.

Liang et al. [30] developed a learning approach that recommends context-aware app
by utilizing a tensor-based framework so as to effectively integrate user’s preferences,
app category information and multi-view features. More particularly, the authors
used a multi-dimensional structure to capture the hidden relationships between
multiple app categories with multi-view features. They developed an efficient
factorization method which applies Tucker decomposition to learn the full-order
interactions within multiple categories and features. Furthermore, authors employ a
group 1-norm regularization to learn the group-wise feature importance of each view
with respect to each app category. In the experiments, they have demonstrated the
effectiveness of the proposed method by using two real-world mobile app datasets.
[31] proposed user’s location sharing privacy preferences model by considering
contextual information. More particularly, authors have investigated the users’
location sharing privacy preferences with three groups of people (i.e., Family, Friend,
and Colleague) in different contexts, including check-in time, companion, and
emotion. The study reveals that location sharing behaviors are highly dynamic,
context-aware, audience-aware, and personal. In particular, emotion and companion
are good contextual predictors of privacy preferences. It also shows that there are
strong similarities or correlations among contexts and groups. Furthermore, the work
shows that despite the dynamic and context-dependent nature of location sharing,
it is still possible to predict a user’s in-situ sharing preference in various contexts.
More specifically, it explores whether it is possible to give users a personalized
recommendation of the sharing setting they are most likely to prefer based on
context similarity, group correlation, and collective check-in preference. The results
demonstrated that personalized recommendations that could be helpful to reduce
both user’s burden and privacy risk. Yuan et al. [32] proposed a privacy-aware
model for photo sharing based on ML by exploiting contextual information. The
proposed model utilizes image semantics and requester contextual information to
decide whether or not to share a particular picture with a specific requester in a
certain context. Likewise, [33] proposed a privacy preference framework that semi-
automatically predicts sharing decision, based on personal and contextual features.
More precisely, the author presents a novel information-sharing system that decides
(semi) automatically, based on personal and contextual features, whether to share
information with others and at what granularity, whenever it is requested. The
author uses of (active) machine learning techniques, including cost-sensitive multi-
class classifiers based on support vector machines (SVM). Based on a personalized

25

survey about information sharing, which involves 70 participants, results provide
insight into the most influential features behind a sharing decision, the reasons users
share different types of information and their confidence in such decisions. In [34],
authors presented a privacy preference model for helping users to manage their
privacy in context-aware systems in term of sharing location on the basis of the
general user population using crowd-sourcing architecture. Bigwood et al. [35]
have evaluated different ML algorithms so as to build information sharing models.
More particularly, the author uses a dataset collected from a location-sharing user
study (i.e., 80 participants) to investigate whether users’ willingness to share their
locations can be predicted. They find that while default settings match actual users’
preferences only 68% of the time, machine learning classifiers can predict up to 85%
of users’ preferences. Moreover, the results demonstrate that using these predictions
instead of default settings would reduce the over-exposed location information by
40%. Likewise, Schlegel et al. [36] proposed a mechanism that summaries the
number of requests made by the requester for sharing his/her location. The authors
propose an intuitive mechanism for summarizing and controlling a user’s exposure
on smartphone-based platforms. The approach uses the visual metaphor of eyes
appearing and growing in size on the home screen, the rate at which these eyes
grow depends on the number of accesses granted for a user’s location, and the type
of person (e.g., family vs friend) making these accesses. The authors also claim that
their approach gives users an accurate and ambient sense of their exposure and helps
them take actions to limit their exposure, all without explicitly identifying the social
contacts making requests. Through two user studies (i.e., 43 and 41 participants), the
result shows that the proposed interface is indeed effective at summarizing complex
exposure information and provides comparable information to a more cumbersome
interface presenting more detailed information.

However, our approach differs from all the above mentioned proposals in that none
of the above works addressed the issue of learning how much a privacy preference
can be relaxed in order to access a service. To the best of our knowledge, we are the
first showing that ML tools can be effectively used to learn users privacy relaxing
aptitudes toward satisfying service providers’ policies.

2.2 ML-based security mechanisms

ML technology has been significantly improved in recent years. It has shown
the ability to reduce human-participation in some tasks. For this benefits, many
researchers have been used ML technologies to redesign the security mechanisms
for online social networks (OSNs), where individual was required to define rules,
and based on those rules, human expertise annotated the sample data.

26

However, the overwhelming popularity of OSNs, it attracts the interest of cyber-
criminals, therefore, a significant number of studies have been focused on security
mechanisms of OSNs to protect individuals from cyber attacks. For instance, Gao
et al. [37] collected two different data sets for detecting spammers on OSNs. The
authors collected 187 million Facebook wall posts generated by roughly 3.5 million
users and Twitter dataset that contains over 17 million public tweets. Authors gen-
erated social graph and exposed spammers according to the users’ social degree,
interaction history, and cluster size. Ala’M et al. [7] used four ML classifiers and some
of the most common account-based (e.g., default image, following to followers ratio)
and text-based (e.g., number of tweets per day, suspicious words, repeated words,
text to links ratio, comments ratio, tweet time pattern, different description from
tweets, different following interest from tweets) features for detecting spammers
on Twitter. Similarly, Ameen et al. [6] used four ML classification algorithms and
13 text-based features including the age of an account (days), number of re-tweets,
number of followers, number of following/friends, number of favorites, number of
user mentions, number of lists, number of tweets, number of hash tags, number
of URLs, number of characters, number of digits, time of sending the most recent
tweet. Benevento et al. [14] compared two approaches for detecting spam profiles
and spam tweets. Initially, they built their model to identify spam profiles based on
account-based features. Then, they used both account-based and text-based features
to classify the tweets into spam and non-spam categories. Lee et al. [38] used 10 ML
classifiers and two different data sets for detecting spammers on Twitter. Chen et
al. [39] collected a large dataset of over more than 600 million public tweets. Then,
they extracted 12 light-weight features1 and used them into six ML algorithms to
classify the tweets into spam and non-spam categories.

Some hybrid approaches, for example, Sing et al. [8] used three feature sets, namely
trust score, content-based and user-based features and four ML classification al-
gorithms for classifying the users into spammers and non-spammers. Similarly,
Wang et al. [40] focused on spam tweets detection rather than detecting spam
accounts. They used two hand-labeled data sets (i.e., Social honeypot and 1KS-
10KN) and four feature sets, i.e., user-based, content-based, n-gram, and sentiment
features. Fazil et al. [13] also proposed an hybrid framework, exploiting users’
meta-data, interaction-based, community-based and tweet text-based features to
detect spammers on Twitter. They used 19 features and three popular ML algorithms
for classifying users into spammers and non-spammers. Similarly, Hai Wang et al.
[41] used a social graph model, by leveraging on the followings and followers rela-
tionships. They extracted from Twitter around 25K users, and 20 recent tweets for
each user, along with 49M friends/followers relationships. To assess their detection
method, they used four different ML classifiers to classify users into spammers and

1A feature that is relatively easy to extract from the user’s profile on Twitter is called a light-weight
feature.

27

legitimate users. However, more information about the different machine learning
classifiers/algorithms that have been widely used to detect spammers in online social
networks is given in Section 2.2.1.

One key issue is that spammers normally evade user-based detection features by
obtaining more followers. Since, spammers repeat posting with malicious URLs
for attracting legitimate users to visit particular sites, so their tweets show strong
homogeneous characteristics. For this reason, many researchers used tweet content-
based features (e.g., tweet similarity, duplicate tweet count, etc.) to detect spam
accounts. Although, using simple techniques, such as posting heterogeneous tweets
and act as normal users, spammers can avoid these detection techniques. On the
other hand, we propose graph-based features, which are based on social relationships
in the real-world scenario, for instance, legitimate users usually follow accounts
whose owners are their close friends, relatives or family members, as such these
accounts are likely to have a relationship together and build a triangle in their
networks. Likewise, they follow each other and increase number of bi-directional
links between them. However, spammers can change their tweets by changing words
but they cannot change the URLs since they want users to visit a particular website.
Moreover, spammers intend to post more tweets with URLs than legitimate users, so
we have considered URLs to tweet ratio and average tweet per day features. We also
proposed average likes per tweet, spammers usually posted more tweets but they
could not get response (e.g., likes) from users, so this feature may be useful for the
detection process. More information about the proposed features are given in the
section 5.1.

As summary, Table 2.1 lists the used features, classifiers, data sets and the results of
the approaches described so far.

2.2.1 Spam detection ML techniques

There are many ML classification algorithms that have been widely used to detect
spam users in online social networks. Here, we have discussed some of them, namely,
Naive Bayesian, k-NN, Decision Tree, Random Forest, Logistic Regression, SVM, and
XGBoost, briefly described in what follows [42].

Naive Bayesian (NB). Naive Bayesian classifier is based on the probability theory
(i.e., Bayes theorem) [42]. This model is widely used because it gives good per-
formance and requires less computational time for training the model. The main
assumption of this algorithm is that the features of a dataset are independent, it
means that the probability of one attribute does not affect the probability of the other.
However, let us consider C represents the class (i.e., spammer or non-spammer)

28

and D defines a Twitter user’s profile, which may belong to class spammer or non-
spammer. The Naive Bayesian classifier, which is based on Bayes theorem, can be
described as follows [43]: P (C|D) = P (D|C)∗P (C)

P (D) , where, P (C) and P (D) are the
probability of C and D, respectively. These are called the prior probability and their
values can be computed from the training data. P (D|C) is called the conditional
probability, which means the probability of D given that C happens. Likewise,
P (C|D) means the probability of C given that D happens, it is called the posterior
probability [42, 43].

k-Nearest Neighbor (k-NN). k-Nearest Neighbor classifier is a very simple super-
vised learning algorithm, which stores all available instances and classifies new
instances based on the similarity measure (e.g., distance functions). The instances
are classified by majority vote of their neighbors, the instances being assigned to the
class which is the most common amongst its k nearest neighbors. If k = 1, then the
instance is simply assigned to the class of its nearest neighbor [44].

Decision Tree (DT). Decision Tree is an extension of ID3 algorithm which uses
Entropy and Information Gain to construct a decision tree [45]. It is a very powerful
and widely used classifier because it is very simple and gives good results by using
less memory space than other algorithms. The major disadvantage of this algorithm
is that it takes long time for training the classification model. Generally, Decision tree
classification method is divided into two phases: tree building and tree pruning [43].
In the tree building phase, it recursively partitions a dataset using depth-first greedy
approach or breadth-first approach until all the data items belong to the same class
label. In the tree pruning phase, it works for improving the classification accuracy
by minimizing over-fitting problem. The Decision tree consists of root, internal and
leaf nodes, where the root node is the topmost node of decision tree, internal node
corresponds to a test condition on an attribute, branch corresponds to results of the
test conditions, and a leaf node corresponds to a class label.

Random Forest (RF). Random Forest is a very flexible and easy to use machine
learning classifier that consists of a collection of tree structured classifiers [46]. It
randomly selects the features to construct a collection of decision trees. It is one
of the most widely used algorithms, because of its simplicity and it can be used for
both classification and regression tasks.

Logistic Regression (LR). Logistic Regression is an extension of simple regression
method. In logistic regression, the output of linear regression is passed through the
activation function. Softmax function can be used as an activation function, it is a
very popular function to calculate the probabilities of the events. It can be defined
as follows: σ(z)j = expzj∑K

k=1 expzk
for j = 1, 2, .., K, where z is a vector of the inputs

29

to the output layer (since we have 2 output class i.e., spam and non-spam, so there
are 2 elements in z) and j is the index of output units. The output values of this
function is always in the range [0,1], and the sum of the output values is equal to 1.
Generally, LR is intended for binary classification, so that we classify input to class
1 when the output of this function is closed to 1 (i.e., output > 0.5) and classify to
class 2 when the output is closed to 0 (i.e., output ≤ 0.5) [47].

Support Vector Machine (SVM). Support Vector Machine is probably one of the
most popular machine learning algorithm. It performs classification by finding
the hyperplane that maximizes the margin between the two classes. The vectors
which define the hyperplane are called the support vectors. An ideal SVM produces
a hyperplane which completely separates the vectors into two non-overlapping
classes. However, perfect separation may not be possible, so in this case, SVM finds
the hyperplane which maximizes the margin and minimizes the mis-classifications
[48].

eXtreme Gradient Boosting (XGBoost). XGBoost has become a widely used and
popular machine learning algorithm. It is an implementation of gradient boosted
decision trees. More particularly, it is an ensemble method which sequentially adds
predictors and corrects the previous models. However, instead of assigning weights
to the classifiers after every iteration, this method fits the new model to new residuals
of the previous prediction and then minimizes the loss [49].

2.3 Thesis contributions with respect to the
literature review

In this section, we discuss how we address the limits in existing privacy preference
and security management frameworks. For this purpose, we do not simply study
the existing techniques rather we propose different approaches for enhancing users
data privacy and security. The majority of existing works require users to manually
set up their privacy preferences by selecting yes or no options for a set of questions.
However, several studies have shown that with this approach, the average user
might find it difficult to properly set up privacy settings [21, 50]. To resolve this
issue, we propose the privacy preference frameworks that exploit machine learning
tools for learning user privacy preferences according to users’ feedback so as to set
up privacy preferences automatically. Until now, some recent research work also
exploits machine learning tools to implement privacy preference frameworks [19,
22, 33]. The main intention of these studies is to design a framework that can
automatically set up user privacy preferences with minimal user efforts. Although
they did not investigate how to relax some conditions of users privacy preferences

30

R
ef

.
ID

Fe
at

u
re

s
C

la
ss

ifi
er

s
D

at
as

et
R

es
u

lt
s

[1
4]

U
se

r-
ba

se
d

Tw
ee

t
co

nt
en

t-
ba

se
d

SV
M

10
65

us
er

s’
pr

ofi
le

s
35

5
sp

am
m

er
s

71
0

le
gi

ti
m

at
e

us
er

s

A
cc

ur
ac

y
w

it
h

on
ly

us
er

at
tr

ib
ut

es
:

84
.5

%
bo

th
us

er
an

d
co

nt
en

t
at

tr
ib

ut
es

:
87

.6
%

[3
8]

U
se

r-
ba

se
d

Tw
ee

t
co

nt
en

t-
ba

se
d

D
ec

or
at

e,
Lo

gi
tB

oo
st

H
yp

er
Pi

pe
s,

B
ag

gi
ng

R
an

do
m

Su
bS

pa
ce

,B
FT

re
e,

FT
Si

m
pl

eL
og

is
ti

c,
Li

bS
V

M
C

la
ss

ifi
ca

ti
on

Vi
a

R
eg

re
ss

io
n

50
0

us
er

s’
pr

ofi
le

s
16

8
sp

am
m

er
s

33
2

le
gi

ti
m

at
e

us
er

s

D
ec

or
at

e
cl

as
si

fie
r

gi
ve

s
th

e
be

st
ac

cu
ra

cy
:

88
.9

8%

[4
1]

G
ra

ph
-b

as
ed

Tw
ee

t
co

nt
en

t-
ba

se
d

D
T,

N
eu

ra
lN

et
w

or
k

SV
M

,N
B

50
0

us
er

s’
pr

ofi
le

s
3%

sp
am

us
er

s’
ac

co
un

t

N
B

gi
ve

s
th

e
be

st
pe

rf
or

m
an

ce
Pr

ec
is

io
n:

91
.7

%
R

ec
al

l:
91

.7
%

F1
-s

co
re

:
91

.7
%

[4
0]

U
se

r-
ba

se
d

Tw
ee

t
co

nt
en

t-
ba

se
d

n-
gr

am
Se

nt
im

en
t

N
B

,k
-N

N
,S

V
M

D
T,

R
F

2
ha

nd
la

be
le

d
da

ta
se

ts
So

ci
al

H
on

ey
po

t
D

at
as

et
1K

S-
10

K
N

D
at

as
et

R
F

gi
ve

s
th

e
be

st
pe

rf
or

m
an

ce
w

it
h

F1
-s

co
re

:
94

%

[7
]

Tw
ee

t
co

nt
en

t-
ba

se
d

U
se

r-
ba

se
d

D
T

M
ul

ti
la

ye
r

Pe
rc

ep
ti

on
k-

N
N

,N
B

82
us

er
s’

pr
ofi

le
s

N
B

gi
ve

s
th

e
hi

gh
es

t
ac

cu
ra

cy
:

95
.7

%

[6
]

U
se

r-
ba

se
d

Tw
ee

t
co

nt
en

t-
ba

se
d

N
B

,J
48

R
F,

IB
K

11
83

us
er

s’
pr

ofi
le

s
35

5
sp

am
m

er
s

82
8

le
gi

ti
m

at
e

us
er

s

R
F

gi
ve

s
th

e
be

st
pe

rf
or

m
an

ce
w

it
h

ac
cu

ra
cy

:
92

.9
5%

[8
]

Tr
us

t-
ba

se
d

Tw
ee

t
co

nt
en

t-
ba

se
d

U
se

r-
ba

se
d

B
ay

es
N

et
,L

og
is

ti
c,

J4
8

R
F,

A
da

B
oo

st
M

1

19
58

1
us

er
s’

pr
ofi

le
s

11
05

9
sp

am
m

er
s

85
22

le
gi

ti
m

at
e

us
er

s

R
F

gi
ve

s
th

e
be

st
pe

rf
or

m
an

ce
w

it
h

ac
cu

ra
cy

:
92

.1
%

[1
3]

M
et

ad
at

a-
ba

se
d

Tw
ee

t
co

nt
en

t-
ba

se
d

In
te

ra
ct

io
n-

ba
se

d
C

om
m

un
it

y-
ba

se
d

R
an

do
m

Fo
re

st
D

ec
is

io
n

Tr
ee

B
ay

es
ia

n
N

et
w

or
k

20
00

us
er

s’
pr

ofi
le

s
10

00
sp

am
m

er
s

10
00

le
gi

ti
m

at
e

us
er

s

R
F

gi
ve

s
th

e
be

st
pe

rf
or

m
an

ce
w

it
h

F1
-s

co
re

:
97

.9
%

[3
7]

Tw
ee

t
co

nt
en

t-
ba

se
d

G
ra

ph
-b

as
ed

C
4.

5
D

ec
is

io
n

Tr
ee

2
la

be
le

d
da

ta
se

ts
Fa

ce
bo

ok
D

at
as

et
co

ns
is

ts
of

18
7

m
ill

io
n

w
al

lp
os

ts
Tw

it
te

r
D

at
as

et
co

ns
is

ts
of

17
m

ill
io

n
tw

ee
ts

Fa
ce

bo
ok

D
at

as
et

Tr
ue

Po
si

ti
ve

:
80

.9
%

Tw
it

te
r

D
at

as
et

Tr
ue

Po
si

ti
ve

:
69

.8
%

[3
9]

Tw
ee

t
co

nt
en

t-
ba

se
d

A
cc

ou
nt

-b
as

ed

R
an

do
m

Fo
re

st
,C

4.
5

D
ec

is
io

n
Tr

ee
,

B
ay

es
N

et
w

or
k,

kN
N

N
ai

ve
B

ay
es

,S
V

M

6.
5

m
ill

io
n

sp
am

tw
ee

ts
6

m
ill

io
n

no
n-

sp
am

tw
ee

ts
R

F
gi

ve
s

th
e

be
st

pe
rf

or
m

an
ce

w
it

h
F1

-s
co

re
:

93
.6

%

Ta
bl

e
2.

1:
Su

m
m

ar
y

of
th

e
re

vi
ew

ed
Tw

it
te

r
sp

am
de

te
ct

io
n

pa
pe

rs

31

to access services. We recall that a user can only access a service if the provider’s
policies fully match all his or her privacy preferences. Considering such issue the
proposed approach tries to learn how much a user’s privacy preference can be
relaxed to access a service, by exploiting different machine learning tools. Moreover,
to improve user security in social networks, we also exploit ML tools to train the
spam filters automatically for identifying and removing spam accounts from social
media environments. In the previous work, for spamming detection individuals
involvement was needed to define some rules and based on those rules human
expertise annotated the sample data (i.e., spam or non-spam). However, defining
rules and annotating samples is an exhausting and time-consuming task. The ML
technology bears the potential to considerably cut down on manual efforts and
unloads tasks from humans. This advantage led us to exploit ML technology to solve
the problem of human-based spam detection on social networks. So far, some recent
research work also exploits ML technology to detect spammers on social networks
[6, 7, 14]. The key issue of these methods is that they have used user-based and
text-based features to detect spammers on social networks. However, spammers
normally evade such kind of feature-based (i.e., user-based and text-based) detection
methods. To solve this limitation, we redesign an ML-based security mechanism to
detect spammers on social networks by using several newly proposed features (e.g.,
graph-based features) that are more effective and robust than existing user-based
and text-based features.

2.4 Chapter summary

In this chapter, we have focused on the solutions that can provide privacy preference
frameworks to the users for setting privacy preferences according to their privacy
requirements. For privacy settings, different frameworks have been discussed. Most
of the proposals have been discussed based on ML technology. Moreover, we have
also discussed the usage of ML approach to social media environment so as to
eliminate human-based spam detection techniques. In this thesis, we propose a
new framework based on ML approach so as to help the users for configuring their
privacy settings. We also propose an ML-based approach to redesign the security
mechanisms of social network platforms.

32

3ML-based Privacy Preferences
Adaptation

In this chapter, we propose an automatic flexible privacy matching model that helps
users in protecting their personal data as well as accessing more number of services,
by exploiting ML technologies. More precisely, we propose a soft privacy matching
mechanism, able to relax, in a controlled way, some of the conditions of users’ privacy
preferences such to match with service providers’ privacy policies. The key idea is
to adopt ML to infer, for each user, which component of a privacy preference (e.g.,
purpose, data, retention, and recipient) she/he is willing to relax and how much
(i.e., relaxation range). At this purpose, we exploit supervised ML algorithms over a
labeled training dataset, consisting of provider service requests and related policies,
and user decisions on joining/denying these services. The learning algorithm takes
as features the decision and the distance values between each component of user’s
privacy preferences and provider’ policy, and learn a classifier able to state when
privacy preferences can be relaxed.

To show the effectiveness of the proposed approach, we have carried out several
experiments. In particular, we have experimentally tested different supervised ML
algorithms [42], namely, Support Vector Machine (SVM), Naive Bayesian (NB), and
Random Forest (RF) to see which one gives better performance in the considered
scenario. At this purpose, we developed a web application through which evaluators
were able to: (1) label a training dataset of service joining requests, and (2) give
their feedback on service joining decisions (i.e., accept/reject) suggested by the
system for new service joining requests. We have tested the proposed approach by
using two different groups of evaluators: university-based evaluators (i.e., 25 CS
students from two universities in two different geographical areas); crowd-based
evaluators (i.e., 160 workers from a crowd-sourcing platform). The obtained results
show that about 96.5% of university-based evaluators and 83.4% of crowd-sourcing
based evaluators are satisfied with the decisions taken by the system.

The rest of this chapter is organized as follows. Section 3.1 provides the idea of
smart environment modeling, whereas Section 3.2 explains the building blocks of
the proposed approach. Section 3.3 illustrates the experimental results.

33

3.1 Smart environment modeling

We model a smart environment as a set of N services, tailored for smart devices,
and provided by different service providers, where each service has its own privacy
policy. A service provider’s privacy policy is formalized as follows.

Definition 1 (Privacy Policy). A privacy policy of a service provider S, denoted as
Spp, is a tuple (sp, p, d, ret, rec), where sp is the service provider name, p is the
access purpose according to which sp wants to collect users’ data, d is the data to which
the policy applies, ret indicates how long sp will store the data, whereas rec specifies
whether sp wants to share d with third parties.

Example 1 Let us consider a service provider, named, My_Diagnostic, and suppose
that, according to its privacy policy, it collects users’ blood_pressure, weight, height,
disease_name data for diagnosis purpose, stores this data for 120 days and share it
with third_party. According to Definition 1, the service provider’s privacy policy can be
specified as follows:

Spp =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sp = My_Diagnostic

p = diagnosis

d = blood_pressure, weight, height, disease_name

ret = 120 days

rec = yes

Likewise, to provide control of personal data, a user can set up his/her privacy
preferences, which state the conditions according to which his/her data has to be
used and managed [51, 52]. We formally define a user’s privacy preference as
follows.

Definition 2 (Privacy Preference). A privacy preference for a user U , denoted as
Upp, is a tuple (sp, p, d, ret, rec), where, sp is the service provider name to which the
preference applies, p denotes the purpose for which sp is allowed to collect the data
denoted by d, ret specifies how long the service provider can store the data, whereas rec

indicates whether additional third party entities can use the data.

Example 2 Let us consider a user U that wishes to release his/her blood_pressure,
weight, heart_beat data to My_Diagnostic only for treatment purpose. More-
over, (s)he wants that the data will not be retained more than 100 days, allowing

34

My_Diagnostic to share it with third_party. These privacy requirements can be
encoded through the following privacy preference:

Upp =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sp = My_Diagnostic

p = treatment

d = blood_pressure, weight, heart_beat

ret = 100 days

rec = yes

When a user U enters into a smart environment, service providers send joining
requests to U ’s devices (e.g., smart watch, fitness tracker, etc). These requests
consist of information about provided service as well as the related privacy policy.1

According to a traditional privacy matching, U ’s software agent performs an hard
matching of U ’s privacy preference against the providers’ privacy policy, by denying
those services that do not fully match. This conventional binary decision (i.e.,
yes or no) method is very restrictive because users cannot access services even if
their preferences are almost satisfied by service providers’ policies. To overcome
this limitation, we propose a more flexible privacy matching mechanism, able to
dynamically relax some conditions of users’ privacy preferences in order to match
providers’ privacy policies. The design of such a mechanism requires to address
some research challenges. The first is that, as a matter of fact, different individuals
have different privacy aptitudes, so, the flexible privacy matching has to take into
account user’s perspective wrt the release of personal information. This has to be
considered in deciding which components of a privacy preference (e.g., purpose,
data, retention) should be relaxed. Depending on the considered user, different
components might have a difference relevance for the decision. Additionally, user’s
perspective is also relevant to understand how much the matching mechanism can
relax the selected component.

To cope with these subjective aspects, we design a mechanism to learn: (1) which
components will be relaxed, and (2) how much they could be relaxed. To this
purpose, we first need a metric able to measure the distance between user’s prefer-
ence and provider’s policy components (see Section 3.2.1). Then, we exploit ML
algorithms, and we take into account user feedback to create a training dataset
on which learning algorithms build the classifiers. The learned classifiers are then
used to answer future service requests. The following section explains the overall
architecture of the proposed approach and how it works.

1For the sake of simplicity, in what follows, we assume that a single privacy policy is in the joining
request. However, multiple privacy policies can be easily supported as well.

35

3.2 Flexible privacy matching

As introduced in the previous section, our learning strategy has two main goals: (i)
understanding which conditions in a user privacy preference can be relaxed and how
much, and (ii) building a classifier to predict future decisions on new service joining
requests. These steps will be described in the following by starting from the metrics
to quantify the distance between a user privacy preference and a service privacy
policy.

Figure 3.1: An example of purpose tree

3.2.1 Metrics

As mentioned earlier, when a user U enters into a smart environment, service
providers send joining requests to his/her devices. When a user’s privacy preference
fully satisfies the service providers’ privacy policy, the user joins the service. In
contrast, if the user’s privacy preference does not fully satisfy the service privacy
policy, we measure their distance to determine how far the user’s preference is to
satisfy the provider’s privacy policy. To do so, we measure the distance of each
preference component, as explained in what follows.

Purpose distance: a purpose is the reason for which a service provider wants to
collect users’ personal data. Service providers always inform the data owner about
their intended purposes via their privacy policies [53]. For instance, the following
privacy policy: “The service collects blood_pressure data for treatment purpose”, means
that the service provider collects blood pressure data only for treatment purpose,
and not for other purposes (e.g., research, and so on).

As usual, we consider purposes organized into a purpose tree [53], called Tp (see
an Example in Figure 3.1). Let p be a purpose in the purpose tree Tp, and let ↓ p

represents all descendants of p including p itself. Let pi be a purpose in the purpose
tree, we say that pi matches p, if pi ∈↓ p. For instance, according to Figure 3.1, if
a user allows data sharing for medical purpose, this means that the user does not
have any problem to share data with service providers if their intended purpose is

36

treatment or diagnosis. In contrast, if the service provider’s purposes in Spp does not
match with users’ intended purpose in Upp, then we measure the distance between
them, by leveraging on the the Wu and Palmer similarity [54] metric.2

Definition 3 (Purpose distance). Given two purposes p and p. Let ccn be the closest
common ancestor of the purpose p and p in the purpose tree, depth(ccn) be the number
of edges from the root to ccn, dis(p) and dis(p) be the distance of the purpose p and p

from ccn, respectively. Purpose distance is defined as follows:

∆p(p, p) = 1 − 2 ∗ depth(ccn)
dis(p) + dis(p) + 2 ∗ depth(ccn)

Example 3 Let us consider the user privacy preference and service provider’s privacy
policy presented in Examples 1 and 2, where the purpose in Upp is treatment, whereas,
provider’s purpose is diagnosis. According to the purpose tree in Figure 3.1, the ccn

between treatment and diagnosis is medical. Moreover, the distances between medical
and treatment, and medical and diagnosis are both 1. Therefore:

∆p(treatment, diagnosis) = 1 − (2 ∗ 1)
(1 + 1 + 2 ∗ 1) = 1 − 2

4
= 1 − 0.50

= 0.50

Data distance: the data component refers to the data objects for which users set up
their privacy preferences. It may contain different types of data, such as personal
data (e.g., name, address, gender, phone number, email, date of birth, and so on.),
credit card data (e.g., card number, card types, expiry date, and so on.), healthcare
data (e.g., blood pressure, heart beat, weight, etc.). However, since both user’s
privacy preference data field and service provider’s privacy policy data field are
defined as a set of data items, to measure the distance between them we exploit the
Jaccard coefficient [55].

Definition 4 (Data distance). Let Upp be a user’s privacy preference, and Spp be a
service provider’s privacy policy. The data distance between their data components is
defined as follows:

2Note that here and for the other components, alternative similarity metrics can be easily used as
well.

37

∆d(Upp.d, Spp.d) = 1 − |Upp.d ∩ Spp.d|
|Upp.d ∪ Spp.d|

Example 4 Let us consider the user privacy preference and service provider’s privacy
policy presented in Examples 1 and 2, where the data to which the preference ap-
plies are blood_pressure, weight, heart_beat, whereas provider’s requested data are:
blood_pressure, weight, height, disease_name. Hence, the distance value of can be
calculated as follows:

∆d(Upp.d, Spp.d) = 1 − 2
5 = 1 − 0.40

= 0.60

Retention distance: the retention component of a user privacy preference represents
how long a service provider can store, use, and process his/her data, whereas, the
analogous component in a provider privacy policy represents how long it wants to
store users’ data. Since retention can be expressed as a numerical value, we use
Euclidean distance [56] to measure the retention distance.

Definition 5 (Retention distance). Let Upp be a user’s privacy preference, and Spp

be a service provider’s privacy policy. Let max(Upp.ret, Spp.ret) be the maximum value
between the retention components. Therefore, the retention distance is defined as
follows:

∆ret(Upp.ret, Spp.ret) = |Upp.ret − Spp.ret|
max(Upp.ret, Spp.ret)

Example 5 Let us consider again the user privacy preference (Upp) and service provider’s
privacy policy (Spp) presented in Examples 1 and 2, where the retentions are 100 and
120, respectively. Consequently, the retention distance is calculated as follows:

∆ret(Upp.ret, Spp.ret) = |100 − 120|
max(100, 120) = 20

120
= 0.16

Recipient distance: the data owner can specify whether any additional third-party
can use his/her data, besides the service provider itself, by using the recipient
attribute of user preferences. For simplicity, we assume that the recipient component
of a policy/preference is modeled as a binary value. We therefore use the Hamming
distance [56].

38

Definition 6 (Recipient distance). Let Upp be a user’s privacy preference, and Spp be
a service provider’s privacy policy. Therefore, the recipient distance is defined as follows:

∆rec(Upp.rec, Spp.rec) = Upp.rec ⊕ Spp.rec

Hence, the distance is zero if the user’s and service provider’s retention values are
equal, it is one, otherwise.

3.2.2 Learning strategy

The key idea is to exploit learning algorithms to build a classifier able to decide
whether a privacy policy, not matching user’s privacy preference conditions, has to
be anyway accepted due to user’s tendency in relaxing his/her privacy preferences.
That is, we need a classifier able to decide whether: (i) the not matching attributes
of the privacy policy are components that the user is prone to relax (e.g., retention),
and (ii) the not matching attributes’ values are within a range tolerated by the user
(e.g., 10 days). At this purpose, the proposed solution has a first training phase (see
Figure 3.2), where the user is required to judge a set of service provider privacy
policies (enclosed into a set of Service Joining Requests (SJRs)), labeling them as to
be accepted or denied. On this labelled dataset, we then build a classifier able to
predict labels for future service join requests based on both: (i) user’s preferences
on components to be relaxed and (ii) the corresponding relaxation range.

To select the privacy preference components to be relaxed, we use the labeled
SRJs as features set on which building the classifier. However, it does not address
the prediction on user tolerated values. At this purpose, for each labeled service
privacy policy, we compute the distance between it and user’s privacy preference, by
leveraging on the metrics introduced in Section 3.2.1.

These distances together with the user assigned label represent the features set on
which algorithms run. Once the learning phase ends, the learned classifiers are used
to label future service joining requests (SJRs) as to be accepted or rejected. More
precisely, when a new service joining request SJR arrives, the proposed mechanism
firstly computes the policy distance between it and user’s privacy preference; sec-
ondly, based on these distances, it identifies to which class SJR belongs to (i.e.,
accept or reject).

Among the available learning strategies, we decided to use supervised machine
learning. Indeed, since, we need user feedback to take into account the subjective

39

Figure 3.2: Learning architecture

aptidude of the user towards relaxing his/her privacy preferences, unsupervised
learning approaches do not fit. Likewise, we do not consider semi-supervised learning
approaches, because we are able to perform learning by asking a reasonable number
of questions (50) to the users (see Section 3.3), so we think that, by burdening not
too much the users, we are able to have the dataset needed for supervised learning.
Among possible supervised machine learning algorithms, we choose Support Vector
Machine (SVM), Naive Bayesian (NB), and Random Forest (RF) [42].

3.3 Experiments and results

In this section, we present the results of the experimental evaluation carried out to
show the effectiveness of the proposed learning approach in capturing users’ privacy
preference tolerance (i.e., relaxing aptitude). We recall that, to learn user’s tolerance
in relaxing his/her privacy preferences, we posed some questions to the users. The
answer to these questions are then used as a labelled training dataset on which
algorithms build the classifiers. To evaluate whether the classifier correctly works on
new service joining requests, we need also to ask users to give their feedback on the
decisions generated by the system. To do so, we have developed a web application
through which evaluators first label a training dataset of service joining requests
as depicted in Figure 3.3 (i.e., learning phase), and then give their feedback on
labels associated by the system to new service joining requests as depicted in Figure
3.4 (i.e., testing phase). More particularly, the whole process has been divided
into two phases. In the first phase (learning phase), each evaluator is presented a
privacy preference UP P and asked to associate a decision (yes, no, or maybe) with
50 service joining requests, by assuming UP P as his/her privacy preference. We
recall that a service joining request consists of a providers’ privacy policy. Based

40

on that, evaluators make decisions on whether they will accept the service joining
requests or not. Afterwards, for each evaluator, the collected training dataset is used
by three supervised ML algorithms (i.e., SVM, NB, and RF) to learn his/her privacy
behaviors (see Figure 3.2). In the second phase (the evaluation phase), the system
asks the evaluators whether they are satisfied with the system-generated decision.
The evaluators can give yes, no, and maybe as answer where Maybe means that the
evaluator does not have any opinion on the system-generated decision.

3.3.1 Settings

Users’ privacy preferences and service providers’ privacy policies generation.
We have randomly generated users’ privacy preferences and service providers’ privacy
policies. Since both privacy preferences and privacy policies consist of four compo-
nents (i.e., purpose, data, retention, and recipient), we have first generated possible
values for these fields. To build a realistic and meaningful dataset, we have defined
12 purposes (e.g., payment, treatment, research, and so on.) for which a service
provider is allowed to collect users’ data. Moreover, we define 30 different data types
(e.g., name, email_id, phone_number, date_of_birth, credit_card, blood_pressure, and
so on.) to which privacy policies/preferences can refer to. In addition, we consider
the retention time between 30 to 365 days, whereas third-party data access status is
either Yes or No.

Evaluator groups. In order to evaluate the performance of the proposed approach
with different datasets, we have collected datasets using two types of evaluators,
namely, university-based and crowd-sourcing based evaluators. To check the quality
of evaluators contribution, we have measured the time that each evaluator has
spent on giving feedback, thus to exclude from experimental results those that have
devoted too little time.

• University-based evaluators: we collected data from 25 CS students from two
different universities, placed in two different geographical areas.3 6 students
are from the University I, and 19 students are from University II.

• Crowd-sourcing based evaluators: we have used the Microworkers crowd-
sourcing platform4 with the aim of having a bigger group of evaluators with
different nationalities and ages. We have collected data from 160 evaluators
(aka workers), by only selecting those having a good work record (i.e., a
minimum rating of 4 out of 5). Once the worker accepted the job offer, (s)he

3To adhere to the blind review process, we do not report here details on the involved universities.
4https://www.microworkers.com

41

Figure
3.3:

Learning
phase

42

Fi
gu

re
3.

4:
Te

st
in

g
ph

as
e

43

has been redirected to our web application to conduct both learning and
evaluation phase.

Experimental setup. After collecting the datasets from the two evaluator groups,
we have trained the learning algorithms by exploiting the R platform [57]. We run
the experiments on 3.00 GHz Intel Core i5 processor 8 GB RAM using the Windows
10 OS.

Performance metrics. We exploit the 3 X 3 confusion matrix in Table 3.1. More
precisely, each column of the matrix represents the predicted class, whereas, each
row represents the true class. The diagonal elements of the matrix represent the
number of items that have been correctly classified, whereas, other elements of the
matrix specify the error. According to the confusion matrix, we define the evaluation
metrics (i.e., accuracy, precision, recall, and F1-score) given in Table 3.2.

Predicted class
Yes No Maybe

True class
Yes TPyes Eyes,no Eyes,maybe

No Eno,yes TPno Eno,maybe

Maybe Emaybe,yes Emaybe,no TPmaybe

Table 3.1: Confusion matrix

Accuracy = (TPyes + TPno + TPmaybe) / total number of samples
Precision Yes = TPyes / (TPyes + Eno,yes + Emaybe,yes)
Precision No = TPno / (TPno + Eyes,no + Emaybe,no)

Precision Maybe = TPmaybe / (TPmaybe + Eyes,maybe + Eno,maybe)
Recall Yes = TPyes / (TPyes + Eyes,no + Eyes,maybe)
Recall No = TPno / (TPno + Eno,yes + Eno,maybe)

Recall Maybe = TPmaybe / (TPmaybe + Emaybe,yes + Emaybe,no)
F1C = (2 ∗ PrecisionC ∗ RecallC)/(PrecisionC + RecallC),

where C ∈ {Y es, No, Maybe}
Table 3.2: Metrics

3.3.2 Performance evaluation

In this subsection, we report the experiments we perform to evaluate the accuracy,
satisfaction level, and F1-score of the proposed approach by comparing SVM, NB,
and RF.

Accuracy. In this experiment, we compare the accuracy obtained by using different
classifiers on the two datasets (i.e., university-based and crowd-sourcing based). At
this purpose, we use the training datasets and re-label them with the built classifiers.

44

As shown in Figure 3.5, about 96.4% and 94.5% of the university-based and crowd-
sourcing based datasets have correctly labeled by RF, respectively. Likewise, around
81.8% and 77.2% of the university-based and crowd-sourcing based training datasets
have been correctly labeled by SVM, respectively, whereas, only 67% and 65.5% of
the two training datasets have been correctly labeled by NB, respectively. Therefore,
we can see that RF gives better performance than SVM and NB.

Figure 3.5: Accuracy of different classifiers

Satisfaction level. In this experiment, we show how many evaluators are satisfied
with the decisions taken by the system. We consider the feedback received by
the evaluators during the testing phase. In this phase, the web application shows
new service joining requests (i.e., privacy policies of service providers) with the
corresponding system-generated decisions (i.e., labels) and it asks the evaluators
whether they are satisfied with the system-generated decision. We consider a
total of 15 new service joining requests. Among them, 12 request decisions have
been generated by the three classifiers, where each classifier generated the label
for 4 service joining requests. The remaining 3 service joining requests are taken
from the set of joining requests that the evaluators have already labeled during
the learning phase. This allows us to measure the evaluators’ quality (as later
explained). As shown in Figure 3.6, around 96.5% and 83.4% of the university-based
and crowd-sourcing based evaluators are satisfied with the decisions taken by the
system using RF, respectively. Similarly, around 78.2% and 70.5% of the university-
based and crowd-sourcing based evaluators are satisfied with the decisions taken
by SVM, respectively, whereas, about 78.4% and 72.6% of the university-based
and crowd-sourcing based evaluators are satisfied with the decisions taken by NB,
respectively. Therefore, by this experiment, we can see that all algorithms achieve a
good satisfaction level (above 70%), whereas, RF outperforms the others.

45

Figure 3.6: Evaluators satisfaction level

Figure 3.7: Satisfaction level of consistent and inconsistent evaluators

Evaluators quality. As mentioned earlier, to measure the evaluators’ quality and
how a badly labelled training dataset impacts on the satisfaction level, we have
used three service joining requests which have been labeled in the first phase and
presented them again in the evaluation phase. More precisely, in the second phase,
the web application shows these three service joining requests along with the decision
given by the users in the training phase. We then collect the label (i.e., satisfaction
level) evaluators assign to these decisions. Based on this, we measure whether the
evaluator is consistent or not with his/her previous decision. We assume that an
evaluator is consistent if two out of three decisions taken during the training and
the evaluation phase match. The percentage of consistent evaluators is 76% for
the university-based, whereas it is 80% for the crowd-sourcing based. Figure 3.7
shows the satisfaction level of consistent and inconsistent evaluators for the two

46

groups. As expected, the satisfaction level of consistent evaluators is greater than
the satisfaction level of inconsistent evaluators.

Figure 3.8: Comparison of F1 score of different classifiers for training datasets

Figure 3.9: Comparison of F1 score of different classifiers for testing datasets

F1-score. We measured the F1-score for each class (i.e., Yes, No, and Maybe) in the
training dataset (see Table 3.3) and in the testing dataset (see Table 3.4). Figures
3.8 and 3.9 shows the comparison for the different classifiers. From our analysis, it
can be observed that, for both datasets, RF gives greater F1-score for all three classes
than other learning algorithms. In particular, service acceptance (aka Yes) gives the
highest F1-score for both datasets (97.4% and 90.3%, respectively).

However, from the above results analysis, we can see that RF classifier provides
better performance in terms of accuracy, F1-score, and satisfaction level. This is
motivated by the fact that the labels collected from evaluators are not uniformly

47

SVM NB RF
Yes No Maybe Yes No Maybe Yes No Maybe

University-based evaluators
Precision 82.2% 81.9% 67.77% 86.18% 61.06% 58.2% 96.94% 95.8% 97.59%

Recall 92.21% 56.66% 55.17% 67.26% 63.06% 84.58% 97.61% 95.87% 93.29%
F1-score 86.9% 66.98% 60.82% 75.55% 62.04% 68.95% 97.27% 95.83% 95.4%

Crowd-sourcing based evaluators
Precision 78.26% 72% 64.45% 77.94% 61.36% 62.05% 95.84% 94.27% 94.69%

Recall 82.88% 56.61% 53.31% 65.65% 70.38% 74.41% 94.85% 93.08% 94.42%
F1-score 80.50% 63.38% 58.35% 71.26% 65.56% 67.67% 95.34% 93.67% 94.55%

Table 3.3: Performance comparison of different learning algorithms for the training
datasets

SVM NB RF
Yes No Maybe Yes No Maybe Yes No Maybe

University-based evaluators
Precision 83.09% 73.07% 67% 86% 82.8% 73.3% 96.6% 97% 100%

Recall 89.39% 65.5% 40% 87.7% 74.3% 91.6% 98.3% 97% 85.7%
F1-score 86.12% 69.5% 50.09% 86.84% 78.32% 81.43% 97.4% 97% 92.3%

Crowd-sourcing based evaluators
Precision 78.8% 50% 83.3% 81.9% 60.8% 84.2% 94.6% 64% 90.3%

Recall 81.2% 60% 44% 70% 75.8% 78.87% 86.4% 85.6% 78.9%
F1-score 80% 54.5% 57.58% 75.48% 67.47% 81.4% 90.3% 73.24% 84.2%

Table 3.4: Performance comparison of different learning algorithms for the testing datasets

distributed, and RF has a good ability to deal with datasets with imbalanced class
frequencies.

3.4 Chapter summary

This chapter presented a privacy preference adaptation framework that is able to
relax, in a controlled way, individuals’ privacy preferences in order to join more
services. This approach exploits ML algorithms (i.e., SVM, NB, and RF) that discloses
the personal data whose release has been explicitly learned from data owners
previous feedbacks. We have extensively tested the proposed approach by using
evaluators recruited from university students as well as a crowd-sourcing platform.
The obtained results show that with the Random Forest (RF) classifier, around 96.5%
of university-based evaluators and 83.4% of crowd-sourcing based evaluators are
satisfied with the decisions taken by the system.

48

4ML-based Privacy Preferences
Suggestions

Today, most of the provided services are context dependent, that is, the deliver of the
service is based on users’ contextual information (e.g., time, location). Examples are
location-based services, IoT-based services and so on. Typically, contexts can impact
the user privacy preferences, for instance, a user may feel comfortable to access
entertainment services when (s)he stays at home, but (s)he will not be comfortable to
access the same type of services during office hours, when he/she is in his/her office.
Many studies show how contextual information is important in privacy preferences
specification [22, 27, 58, 59]. For example, Nissenbaum et al. [59] shows that most
of the privacy preference models fail to protect against violations of user privacy
preferences because they do not keep into account contextual information. As a
matter of fact, many of the existing privacy preferences frameworks (e.g., [20, 60,
61]) do not consider individuals’ contextual information to make privacy aware
decisions.

To cope with this limitation, users might specify context-based privacy preferences,
that is, privacy preferences stating conditions on how personal data has to be used
based on current situation (e.g., no access to entertainment services when the
location is office). This brings the nice benefit of increasing the user control over
his/her data. However, since a user may interact with several contexts, it also
increases the number of preferences that (s)he has to specify and manage, resulting
in a very complex and time-consuming task. For this reason, we propose a ML-based
privacy preferences management service that helps users to manage their privacy
preferences when they move to a new context. More particularly, we design a
framework that infers individuals’ privacy preferences based on their contextual
information.

To show the feasibility of the proposed approach, we have conducted some pre-
liminary experiments. In particular, we compared the proposed approach with a
naive approach, that is, a classifier suggesting context-based privacy preferences
without leveraging on previously specified context-based privacy preferences. At this
purpose, we have extended the approach in [61], where a learning approach has
been proposed to suggest non context-based user privacy preferences. The approach
in [61] first creates a training dataset of user labels on a set of service requests (e.g.,

49

a label is the accept/deny decision on a given service request), then generate a clas-
sifier on it, able to automatically decide if a new service request has to be accepted
or denied. In order to compare the proposed approach with [61], we extended the
latter such as to collect users’ labels on service requests complemented with context
information. Moreover, we test different supervised ML algorithms, namely, Logistic
Regression (LR), Random Forest (RF), and Naive Bayesian (NB) [42]. The obtained
results show that the proposed approach gives better performance than the naive
approach.

The rest of this chapter is organized as follows. In Section 4.1, we describe our
proposal, whereas Section 4.2 shows the results of our preliminary experiments.

4.1 Proposed methodology

As mentioned earlier, individuals’ privacy expectations are highly context dependent,
and since users change their context very often, setting up privacy preferences for
every new context is a very complex and time-consuming task. To address this
issue, we design a service helping users to manage privacy preferences setting
when they move from one context to another. The main idea is to infer the best
privacy preferences for the new context leveraging on privacy preferences previously
specified by the user for different contexts. Thus, as a first step, we need to select
among the contexts for which the user has already specified a preference, those
that are similar to the new one. In doing this, we do not simply rely on a similarity
measure between contexts, but we also want to keep into account users’ perspective
(see Section 4.1.3). Indeed, given a similarity measure, two existing contexts could
have the same distance to the new one but differ on a few fields (e.g., time, location)
that are very relevant for that user. As such, we would like also to take into account,
for a target user, his/her preferences on which context field is more informative and
thus should have more relevance in the similarity measure.

Once the most similar and most relevant context has been selected, the system has
to retrieve the corresponding privacy preference. Here, the basic assumption is that
this preference might represent a good match for the new context but some slightly
modifications might be needed as well. In order to understand whether and how the
identified privacy preference has to be adapted for the new context, we want to take
into account once again user’s perspective. More precisely, to learn which fields of
the identified privacy preference need to be modified (e.g., purpose, data, retention,
and recipient), we exploit ML to infer, from each user, which component and how is
willing to adapt it.

50

All the above described steps will be described in the following, starting from the
modeling of contexts and context-based privacy preferences.

4.1.1 Contexts and context-based privacy preferences
modeling

A context is defined by the information used to characterize the present situation
of individuals (e.g., activity, time, etc.). For the sake of simplicity, in this paper,
we consider contexts containing information on four different dimensions, namely,
time, location, activity, and social. The latter two represent the action the user is
currently doing (e.g., work, run, relaxing, etc) and companion with whom (s)he is
(e.g., alone, friends, colleagues, etc). However, the approach can be extended to the
consideration of additional contextual information.

More formally, user contexts can be defined as follows.

Definition 7 (User context). A context for a user U , denoted as CTXU , is a set of
pairs {(tm, vtm), (lc, vlc), (ac, vac), (sl, vsl)}, where the first component is a contextual
property and the second its corresponding value. More precisely, tm denotes a time, lc a
user location, ac denotes a user activity, whereas sl specifies the social dimension (i.e.,
user companion).

Example 6 Let us suppose that a user U’s location is library, time is Monday morning,
and (s)he is studying with his/her brother. Therefore, the current context of U can be
modelled in the following way:

CTXU =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

tm = Monday morning

lc = library

ac = studying

sl = brother

To provide a more fine-grained control of personal data release, a user can set up
different privacy preferences for different contexts, stating the conditions according
to which his/her data has to be used and managed in that particular context. We
formally define a user’s context-based privacy preference as follows.

Definition 8 (Context-based privacy preference). A context-based privacy prefer-
ence for a user U , denoted as CTXpp_U , is a tuple (CTX, PP), where, CTX is a

51

context, and PP is a tuple (p, d, ret, rec), where, p denotes the purpose for which
a service provider is allowed to collect the data denoted by d, ret specifies how long
the service provider can store the data, whereas rec indicates whether additional third
party entities can use the data.

Example 7 Let us consider a user U that wishes to release his/her name, date_of_birth,
certificates data only for admission purpose. Moreover, (s)he wants that the data
will not be retained more than 260 days, allowing service providers to share it with
third_party. Let us assume that the user wants this preference to be enforced in the
context presented in Example 6. Therefore, such context-based privacy requirements
can be encoded through the following context-based privacy preference:

CTXpp_U =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tm = Monday morning

lc = library

ac = studying

sl = brother

p = admission

d = name, date_of_birth, certificates

ret = 260 days

rec = yes

4.1.2 Context distance metrics

As mentioned earlier, when a user moves to a new context, we calculate a similarity
score between the new context and all the contexts for which the user has already
defined a privacy preference. To find the most similar context and corresponding
privacy preference, we measure a distance to determine how far the new context is
from existing contexts. To do so, we measure the distance of each context component,
as explained in what follows.

Time distance: time can be expressed as a numerical value1, hence, we can use the
Euclidean distance [56] to measure the time distance between different contexts.

Definition 9 (Time distance). Let CTXUn be a user new context, and CTXUp be a
user’s prior context. Let max(CTXUn .tm, CTXUp .tm) be the maximum value between
the time components. Therefore, the time distance is defined as follows:

1For the sake of simplicity, in this thesis, the time is expressed by only considering 4 time slots for
each weekday (e.g., morning (6.00 − 11.59), afternoon (12.00 − 17.59), evening (18.00 − 23.59),
and night (0.00 − 5.59)).

52

Dtm(CTXUn .tm, CTXUp .tm) =
|CTXUn .tm − CTXUp .tm|

max(CTXUn .tm, CTXUp .tm)

Location distance: In this work, rather than the exact GPS location, we are inter-
ested in modelling locations that can be sensitive for personal data release (e.g.,
home, office). To this end, we rely on the Aura Location Identifier (ALI) model [62].
The main idea of this model is to decompose physical spaces into different levels of
spaces. For instance, the campus of the University of Insubria can be decomposed into
several spaces: Rossi Building, Morselli Building, Antonini Building, etc. Each of these
buildings is in turn divided into smaller composing sub-spaces, until reaching enough
precision. This hierarchical representation is called a space tree, where each node
corresponds to a given space in the physical environment. Figure 4.1 shows part of
a space tree (i.e., location hierarchy) for the University of Insubria. By exploiting this
hierarchy, we measure the distance between spaces, by leveraging on the Wu and
Palmer similarity [54] metric.2

Figure 4.1: Location hierarchy

Definition 10 (Location distance). Given two location l1 and l2, let ccn be the closest
common ancestor between l1 and l2 in the space tree, depth(ccn) be the number of
edges from the root to ccn, dis(l1) and dis(l2) be the distance of location l1 and l2 from
ccn, respectively. Therefore, the location distance is defined as follows:

Dlc(l1, l2) = 1 − 2 ∗ depth(ccn)
dis(l1) + dis(l2) + 2 ∗ depth(ccn)

Activity distance: we exploit the daily living activities ontology [63] to build an
individuals’ activities hierarchy (see Figure 4.2). If a1 and a2 are two activities, we

2Note that alternative similarity/distance metrics can be easily used as well. Here, we have selected
the Euclidean distance, and Wu and Palmer similarity/distance metrics because of their simplicity
and ability to provide high performance.

53

Figure 4.2: Activities hierarchy

measure their distance, denoted as Dac(a1, a2), as in Definition 10, by exploiting the
activity hierarchy instead of the location one.

Social distance: to calculate the distance between the social attributes, we exploit an
ontology similar to the one used by social networks [64]. If s1 and s2 are two social
attributes, we measure their distance, denoted as Dsl(s1, s2), as Definition 10, by
exploiting the social hierarchy (cfr. Figure 4.3). However, it is noteworthy to mention
that the children of the root node are disjoint. Therefore, the nodes that belong to
the different subtrees, their distance would be maximum. For understanding more
clearly, let’s take an example, look at the social hierarchy as shown in Figure 4.3,
here, the distance between Brother and Close_friends is greater than the distance
between Brother and Sister, because Brother and Close_friends nodes belong to
the different subtrees, whereas the nodes Brother and Sister belong to the same
subtree.

Figure 4.3: Social hierarchy

Example 8 Let us consider a user U ’s context-based privacy preference (CTXpp_U)
presented in Example 7. Let us assume that U moves to a new context, according to
which location is kitchen, time is Monday morning, activity is cooking with parents.
According to the location, activity, social, time distance definitions and the hierarchies

54

shown in Figure 4.1, 4.2 and 4.3, we can measure the distance between each context
components as follows:

Dlc(library, kitchen) = 1 − (2 ∗ 1)
(2 + 2 + 2 ∗ 1) = 1 − 2

6
= 1 − 0.34

= 0.66

Likewise,

Dac(studying, cooking) = 1 − 0.5 = 0.5

Dsl(brother, parents) = 1 − 0.4 = 0.6

Dtm(Monday morning, Monday morning) = 0

4.1.3 Context similarity

When computing the similarity between two contexts, we take into account which
are the contextual information that a user considers more relevant in determining
the similarity. Therefore, we add weights to the similarity measure to keep into
account the user perspective. Such weights will be learnt by using machine learning
algorithms (as explained in Section 4.1.4).

Definition 11 (Context similarity score). Let CTXU 1 and CTXU 2 be two contexts
for user U . Let w1, . . . w4 be the weights associated with each of the four context
attributes. Therefore, the similarity score is defined as follows:

Example 9 Let us consider user U ’s context-based privacy preference presented in
Example 7, and the new contexts and related distance measures illustrated in Example
8. Suppose that the learned weights are w1 = 0.1, w2 = 0.2, w3 = 0.3, and w4 = 0.4.
Therefore, according to Definition 11, the similarity score is calculated as follows:

Simw(CTX1, CTX2) = 1 − 0.1 ∗ 0 + 0.2 ∗ 0.66 + 0.3 ∗ 0.5 + 0.4 ∗ 0.6
4

= 1 − 0 + 0.132 + 0.15 + 0.24
4

= 1 − 0.13

= 0.87

55

Figure 4.4: Learning architecture

4.1.4 Learning mechanism

In this subsection, we explain the learning strategy we have designed. Since we need
users feedback, we exploit supervised ML algorithms, namely, Logistic Regression
(LR), Random Forest (RF), and Naive Bayesian (NB) [42]. Moreover, the preliminary
experiments we have carried out show that, with a reasonable user burden (i.e.,
asking only 30 questions), we are able to get a dataset that is adequate for supervised
learning, hence, we do not consider semi-supervised learning approaches. However,
it should be mentioned that our collected dataset is small. Since the neural network
does not work well with small data, therefore, we do not consider deep learning
approaches (e.g., neural networks) in the analysis.

We use ML algorithms to build a classifier able to decide which privacy preference
will be set for the user new context. More particularly, we build a classifier able to
decide: (i) which elements of the context are more relevant (e.g., location, time) for
the target user; and (ii) how much privacy preference components associated with
preferences defined for similar contexts could be modified.

For this purpose, the proposed solution has a first training phase (see Figure 4.4),
where the user is required to judge whether a given privacy preference works for a
certain context or (s)he wishes to modify it. More precisely, let CTXnew be a new

56

context and CTXsim the most similar context to CTXnew.3 We take the privacy
preference associated with CTXsim, denoted as PPsim_ctx, and we ask the user if
(s)he would adopt PPsim_ctx in CTXnew as is or would like to modify it. In the latter
case, we let the user modify it obtaining a new preference, denoted as PPmod. Then,
we measure the distance between each component of PPsim_ctx and PPmod, denoted
as Dispp. For measuring the distance between privacy preferences components, we
rely on the metrics introduced in the previous chapter (see Section 3.2.1). Finally,
the features set on which we build the proposed classifier consists of Disctx, Dispp

and the assigned label (adopt/modify), where Disctx is the set of distance between
each component of CTXnew and CTXsim.

Once the learning phase is concluded, we exploit the learned classifiers to infer
privacy preferences for new contexts. More particularly, when the user moves to a
new context CTXnew, the proposed approach (i.e., evaluation module) computes
similarity scores between the new context and all contexts for which a privacy
preference has been previously specified. We recall that according to Definition 11,
this score exploits w1, . . . , w4 weights to take into account which context field (e.g.,
time or location) is more relevant to the user. These weights are initialized with
values of weights of the classifier model built in the training phase. As an example,
w1 weight, associated to the time context field in Definition 11, is initialized with
the value of weight computed by classifier for the feature containing the distance
between time in Disctx.

Then, it selects the privacy preference of the most similar context, and adapts
the selected privacy preference according to the learnt user’s adapting attitudes.
More precisely, to determine how much each privacy preference component has
to be modified, we exploit the correlation between privacy preference components
and the context fields. For this purpose, we used a linear regression model [65],
defined as Y = r1x1 + r2x2 + . . . + rnxn + ϵ where, r1, . . . , rn are the regression
coefficients, x1, . . . , xn are the independent variables, ϵ is the constant, and n is the
number of attributes (our case n = 4). To train this model, for each user, we have
used the feature set Disctx as independent variables and as a target variable/label
(i.e., Y) the value of Dispp. Once trained, this model can be used to update
each privacy preference component. For example, let consider, as the privacy
preference component that needs to be modified, the retention attribute retmod

having value 260 days. Let assume that the learned coefficients r1, . . . , r4 are 2, 8,
15, and 11, respectively, and the constant value ϵ is −10. Let suppose the distance
values between the new context and the similar context is the one presented in
Example 8. Therefore, the update retention value would be: retupdt = retmod + Y =
260 + (2 ∗ 0 + 8 ∗ 0.64 + 15 ∗ 0.5 + 11 ∗ 0.6 − 10) = 270 days.

3We assume that user has inserted a preliminary small set of context-based privacy preferences.
CT Xsim is selected among contexts associated to these preferences.

57

4.2 Experiments

In this section, we illustrate a series of preliminary experiments we have performed to
show the effectiveness of the proposed approach. More particularly, to demonstrate
the feasibility of the proposed approach, we compare it with the naive strategy
of inferring new context-based privacy preferences from scratch. At this aim, we
have extended the approach proposed in [61], where a learning approach has been
proposed to suggest traditional (i.e., non context-based) privacy preferences. More
precisely, [61] creates a training dataset of user labels on a set of service requests
(e.g., accept/deny decision on a given service request), and builds a classifier on
this training dataset, able to automatically decide if a new service request should
be accepted or denied. To make a fair comparison with the proposed approach, we
modify the learning strategy proposed in [61] so that it can infer privacy preferences
from service requests containing also contextual data. We first measure the accuracy
and F1 score obtained by using LR, RF, and NB. Next, we compute the satisfaction
level of users regarding privacy preference suggestions generated by both approaches
using various learning strategies. In addition, we also evaluate the user quality in
terms of feedback on the training dataset to examine how a badly labeled training
dataset impacts user satisfaction.

4.2.1 Experimental settings

To generate a meaningful dataset, we consider the following contextual information:
23 different locations (e.g., home, office, university, and so on), 7 days (e.g., Sunday,
Monday, etc.) with 4 time slots (e.g., morning, afternoon, evening, and night), 12
different user activities (e.g., studying, meeting, sleeping, and so on), and 10 different
social attribute values (e.g., alone, family, friends, and so on). Moreover, for privacy
preferences components, we have considered purposes, data types, retention time
and recipient value as did in Section 3.3.1. To collect labels for the training dataset,
we developed a web application through which users can give feedback on system-
generated privacy preferences. We have recruited two types of evaluators, namely,
university-based and crowd-sourcing based evaluators. More particularly, we first
collected data of 10 CS students from the Islamic University, Bangladesh. Then, to
have a bigger group of evaluators with different nationalities and ages, we used the
Microworkers crowd-sourcing platform.4 From this platform, we have collected data
from 50 evaluators (aka workers). We recall that to learn user’s aptitude in adapting
his/her context-based privacy preferences, we posed some questions to the users.
The answers to these questions are then used as a labeled training dataset on which
we build the classifiers. It should be pointed out that we have collected two types

4https://www.microworkers.com

58

Predicted class
Yes No

True class
Yes TPyes Eyes,no

No Eno,yes TPno

Table 4.1: Confusion matrix

Accuracy = (TPyes + TPno) / total number of samples
Precision Yes = TPyes / (TPyes + Eno,yes)
Precision No = TPno / (TPno + Eyes,no)
Recall Yes = TPyes / (TPyes + Eyes,no)
Recall No = TPno / (TPno + Eno,yes)

F1C = (2 ∗ PrecisionC ∗ RecallC)/(PrecisionC + RecallC),
where C ∈ {Y es, No}

Table 4.2: Metrics definition

of dataset. First, we collect a labeled training dataset for the naive approach from
30 users (i.e., 10 CS students plus 20 workers), denoted in what follows as naive
approach dataset, then we exploit other 30 users to collect a labeled training dataset
for evaluating our approach (we name this as proposed approach dataset).

After collecting the datasets, we have trained the machine learning classifiers by
exploiting the R platform [57]. To evaluate whether the classifier correctly works on
the new context, we also ask users to give their feedback on the privacy preference
suggestions generated by the system (i.e., testing phase). In order to measure the
effectiveness of the proposed approach, we consider the confusion matrix illustrated
in Table 4.1. According to this, we exploit the standard evaluation metrics, namely,
accuracy, precision, recall, and F1-score, illustrated in Table 4.2.

4.2.2 Effectiveness

In this experiment, we carried on a comparative analysis of accuracy and F1-score
obtained by the proposed approach and the naive one using different classifiers.

Accuracy. As a first experiment, we use the training datasets and re-label them with
the built classifiers. As shown in Figure 4.5, about 99% and 98% of the proposed
approach and naive approach datasets have been correctly labeled by RF, respectively.
Likewise, around 98% and 93.2% of the proposed approach and naive approach
datasets have been correctly labeled by LR, respectively, whereas, only 88.3% and
76.7% of the two training datasets have been correctly labeled by NB, respectively.

59

Therefore, we can see that RF gives better performance on proposed approach than
the naive one.

Figure 4.5: Comparison of accuracy of different approaches

F1-score. We have calculated the F1-score for each class (yes, no) for comparing the
performance among the learning approaches over the training dataset and testing
dataset (see Table 4.3). Figures 4.6 and 4.7 represent the F1-score comparison for
the two approaches using different classifiers. It can be observed that, for both
approaches, RF gives greater F1-score. More particularly, by using RF, the proposed
approach achieves 97% and 94% F1-score for the class label yes on the training and
testing dataset, respectively.

Figure 4.6: Comparison of F1-score of different classifiers for training dataset

60

Figure 4.7: Comparison of F1-score of different classifiers for testing dataset

4.2.3 Participant evaluation

In this experiment, in order to evaluate user satisfaction, we collect feedback from
the users regarding the privacy preference suggestions taken by both approaches
using various learning strategies.

Satisfaction level. We exploit the developed web application to show evaluators the
system-generated privacy preferences for the new context, and we ask the evaluators
to give their feedback regarding the system-generated suggestions. More precisely,
we have shown to each evaluator 15 context-based privacy preferences, where, 12
of them have been generated by the classifiers, whereas the remaining 3 are taken
from the set of context-based privacy preferences that the evaluators have set up
during the learning phase. These are used for checking the consistency of evaluators
feedback and measuring the evaluators’ quality (as later explained). As shown in
Figure 4.8, about 65% of the evaluators are satisfied with the suggestions given
by the proposed approach using RF, whereas, around 57.5% of the evaluators are
satisfied with the suggestions given by the naive approach. Similarly, by using LR,
around 62% and 53.3% of the evaluators are satisfied with the suggestions given by
the proposed approach and the naive approach, respectively. Likewise, by using NB,
about 49% and 41.6% of the evaluators are satisfied with the suggestions given by
the proposed approach and the naive one, respectively. Therefore, it is clear that the
proposed approach achieves higher satisfaction level than the naive one.

Evaluators quality. Through this experiment, we are interested in investigating how
a badly labeled training dataset impacts the satisfaction level. With this aim, we used
some techniques to identify consistent and inconsistent evaluators. To do so, we
have taken 3 context-based privacy preferences from the set of context-based privacy

61

Figure 4.8: Comparison of evaluators satisfaction level for different approaches

Figure 4.9: Satisfaction level of consistent and inconsistent evaluators

preferences that evaluators have labeled during the training phase. Then, in the
testing phase, the web application shows these privacy preferences again to them,
and collect the label (i.e., satisfaction level) they assign. Based on this, we can judge
whether the evaluator is consistent or not in his/her decisions. We consider that an
evaluator is consistent if any two out of three decisions taken during the training
and the testing phase match. Figure 4.9 presents the comparative analysis of the
satisfaction level of consistent and inconsistent evaluators for both the approaches.
It can be seen that, the satisfaction level of consistent evaluators is greater than the
satisfaction level of inconsistent evaluators. However, even in the worst case, about
35.4% of inconsistent evaluators are satisfied with the decisions by the proposed
approach, whereas, it is only 28.5% for the naive approach.

62

LR RF NB
Yes No Yes No Yes No

Training
dataset

Proposed
approach

Precision 98.1% 96.6% 96.1% 99.5% 83.9% 75.5%
Recall 99% 90.7% 96.4% 97% 83.8% 64.1%

F1-score 98% 92.4% 97% 97.8% 81% 66.9%

Naive
approach

Precision 93.4% 93.2% 99% 98% 79.2% 60.6%
Recall 95.1% 87.2% 98% 97% 75.1% 68.3%

F1-score 94.2% 89.3% 98% 97% 76.9% 63.2%

Testing
dataset

Proposed
approach

Precision 91.7% 73.3% 92.3% 68.9% 79.93% 58.8%
Recall 96.6% 68.9% 95.3% 68% 83.33% 61.4%

F1-score 93% 70.6% 94% 68.2% 80.56% 58.13%

Naive
approach

Precision 76.4% 52.8% 79.2% 57.6% 73.2% 55.1%
Recall 80.7% 46.4% 81.8% 57.8% 71% 54.3%

F1-score 77.5% 46.9% 79.8% 56.3% 70.6% 51.6%

Table 4.3: Performance comparison of different learning algorithms for the training and
testing datasets

However, from the above experimental results, it is clear that the proposed approach
provides better performance in terms of accuracy and satisfaction level. Besides,
these results let us think that this is a good direction to study and there is room for
improvement. By doing more experiments, we need to understand why users are
not satisfied with the system-generated suggestions and how we can increase their
satisfaction level.

4.3 Chapter summary

In this chapter, we have extended the approach presented in Chapter 3 by considering
users’ contextual information. More particularly, we have proposed an ML-based
privacy preferences management service for helping users to manage their context-
based privacy preferences. To show the feasibility of the proposed approach, we have
compared the proposed approach with a naive approach, by using three different
ML algorithms. The experimental results show that the proposed approach provides
better performance than the naive approach.

63

5ML-based Spam Accounts
Detection on Twitter

Twitter, a microblogging service launched in 2006, is one of the most popular online
social network platform, where users post messages of around 280 characters, known
as “tweet”. It has been reported that Twitter has over 330 million monthly active users
as of 2019, that posted over 500 million tweets every single day [66]. However, due to
the huge popularity of Twitter, it also attracts the interest of cybercriminals [14, 15].
Attackers exploit the implicit trust relationships between users in order to achieve
their malicious aims. In previous, for spamming detection individuals involvement
was needed to define some rules and based on those rules human expertise annotated
the sample data. However, defining rules and annotating samples is an exhausting
and time-consuming task. The ML technology bears the potential to considerably
cut down on manual efforts and unloads tasks from the humans. This advantage led
us to exploit ML technology to solve the problem of human-based spam detection on
social networks. Therefore, in this chapter, we tried to exploit ML approach to train
the spam filters automatically for identifying and removing spam accounts from the
Twitter platform.

To detect spammers on Twitter, we have considered both graph-based features
(i.e., triangle count of user’s network, the ratio of triangle count to the number of
followers of a user, and the ratio of bi-directional links) and content-based features
(i.e., unique URL ratio, URL to tweet ratio, average tweets per day of a user, and
average likes per tweet of a user). To assess our detection method, we selected,
from the popular social honeypot dataset [38], 325 Twitter accounts, where 168
are considered legitimate users and 157 spam users. We have used several ML
classification algorithms for distinguishing between spammers and non-spammers
accounts. Through the experiments, we show that the proposed set of feature gives
better performance than existing state of the art approaches. Moreover, our results
show that, among all considered classifiers, Random Forest (RF) classifier gives the
better performance. By using this classifier, our suggested features can achieve 92%
precision and 91% F1-score.

In summary, this chapter provides the following main contributions:

65

• we design a set of novel graph-based and content-based features that have
been proved to be powerful for spam account detection on Twitter.

• we use seven ML algorithms, namely: k-Nearest Neighbor (k-NN), Decision
Tree (DT), Naive Bayesian (NB), Random Forest (RF), Logistic Regression (LR),
Support Vector Machine (SVM), and eXtreme Gradient Boosting (XGBoost) to
classify spam and legitimate users.

• we compare the proposed set of features with [6], [7], [8], and [67] showing
that our features provide better accuracy.

• by using the feature ranking method (i.e., information gain), we ranked the
top 10 most influencing detection features among all the features used by state
of the art approaches.

5.1 Proposed features

In this section, we present the proposed set of features, consisting of three graph-
based and four content-based features.

5.1.1 Graph-based features

Twitter allows users to build their own social graph. A social graph represents the
following and follower relationships among users. From the social graph of a target
user u, we extract three graph-based features: (1) triangle count of user u’s network,
(2) the ratio of triangle count to number of followers of u, and (3) the ratio of
bi-directional links from the users’ social graph.

Triangle count of user u’s network: We compute the total number of triangles of u’s
network, (Triangle_Count(u)). In the social network, a triangle exists if a user/node
has two adjacent nodes which, in turn, are also adjacent to each other. To find out
spammer and non-spammer users, we make use of this feature because legitimate
users usually follow accounts whose owners are their close friends, colleagues, or
family [12, 68], as such these accounts are likely to have a relationship together.
Therefore, an high number of triangles implies that the user is legitimate. On the
other hand, spammers usually blindly follow other accounts, these accounts do not
know each other and have a lower relationship among them. Thus, compared to
legitimate users, spam users will have a smaller number of triangles.

66

The ratio of u’s triangles to number of u’s followers: To evade the triangle
count feature, spammers could create many fake accounts so as to form triangles,
by building links among these fake accounts. Moreover, spammers can purchase
followers, thus sometimes the number of followers of spammers is greater than the
one of legitimate users. Thus, this feature (RateTNF (u) = T riangle_Count(u)

Nfer(u)), where,
Nfer(u) refers to the number of followers of user u, can help us to detect spam users,
even if spam users generate fake triangles in their social networks.

The ratio of bi-directional links of u: When any two users’ accounts follow each
other, we refer to this as a bi-directional link. The number of bi-directional links of
an account reflects the reciprocity between an account holder and its followings. In
general, spammers follow huge amount of legitimate users, but they cannot force
them to follow back, thus their number of bi-directional links will probably be low.
On the other hand, legitimate users usually follow their family members, friends, and
co-workers who will follow them back. It means that the number of bi-directional
links of legitimate users will be high. So, we can use this feature for distinguishing
between spammers and legitimate users. We define ratio of bi-directional links as
follows: Ratebilink(u) = Nbilink(u)

Nfer(u)+Nfing(u) , where Nbilink(u) refers to the number of
followings of a user u which follow him back, whereas Nfer(u) is the number of
followers of user u, and Nfing(u) is the number of followings of user u.

5.1.2 Content-based features

These features are properties related to text of tweets. In previous work, many
researchers used content-based features i.e., duplicate tweets, suspicious words,
repeated words, tweet time patterns, for detecting spammers. Thus, we consider
four new content-based features that can isolate spammers from non-spammers,
namely: 1) Unique URL ratio, 2) URL to tweet ratio, 3) Average tweets per day of
user u, and 4) Average likes per tweet of user u.

Unique URL ratio: A way to gain money from spammer activities is to force le-
gitimate users to visit a particular site. As such, spammers post the same URL
several times. URateurl(u) is the ratio of the number of unique URLs posted by
user u to the number of total URLs posted by him/her. A higher URateurl(u) means
that user u is a legitimate user. Similarly, the lower URateurl(u) is, the higher is
the chance of being a spammer account. We define unique URL ratio as follows :
URateurl(u) = Nunique_URLs(u)

Nall_URLs(u) .

URL to tweets ratio: Spammers post a huge number of URLs compared to legitimate
users. This feature Rateurl_tweet(u) defines the ratio of number of URLs posted
by a user u to the number of tweets posted by him/her. A high value of this

67

feature means that user u is a spam user. Likewise, a lower value means a higher
chance of being a legitimate user. URL to tweets ratio is defined as follows :
Rateurl_tweet(u) = Nall_URLs(u)

Ntweets(u) .

Average tweets per day of u: This feature refers to the ratio of the number of tweets
posted by a user u to the age of an account (days). More precisely, Avgtweet(u) =
Ntweets(u)

Age(u) . For making money or spreading fake news, spammers tend to post more
tweets than legitimate users. Thus, a higher value of Avgtweet(u) means that user u

is likely to be a spam user, whereas a lower value of Avgtweet(u) means an higher
chance of being a legitimate user.

Average likes per tweet of u: This feature defines the ratio of the number of
likes of user u’s tweets over the number of tweets posted by u. It is expressed by
Avglikes(u) = Nlikes(u)

Ntweets(u) . Since, spam users do not get more likes for their tweets, so
a high value of Avglikes(u) means user u is a legitimate user, whereas a lower value
means user u is a spam user.

5.2 Experiments and results

In this section, we present the results of experimental carried out to show the
effectiveness of the proposed set of features.

5.2.1 Data collection

In order to build our model, we need a dataset of Twitter users classified as spam-
mers and legitimate users. For this reason, we used the Twitter Social Honeypot
dataset [38] in which users have been already classified as spammers and legitimate
users based on tweet content, user behavioral and topological features. The authors
created and manipulated 60 social honeypot accounts on Twitter to attract spam-
mers. Thereafter, they used Expectation-Maximization (EM) clustering algorithm
and then manually grouped their harvested users into spammers and legitimate
users. The dataset consists of 41, 499 user accounts, with pre-classified accounts of
22, 223 spammers and 19, 276 legitimate users that were captured during an eight
month period in 2010. In this dataset, most of the users do not have their list of fol-
lowings/followers; hence values of their interaction and novel graph-based features
(i.e., triangle count, bi-directional links) will be zero, which forces classifiers to be
biased for spamming detection. Therefore, we consider only those users who have a
complete list of followers and followings. Moreover, we also excluded those users
who posted tweets in non-English language. We randomly selected 325 seed Twitter
accounts including 168 legitimate users and 157 spammer users’ profile from this

68

dataset. Since the dataset is quite old, we have manually checked all the collected
dataset (i.e., 325 users account) and found that all data are still labeled correctly.
To extract the followers and followings relationship among these seed users, a web
crawler was developed based on Twitter API [69]. In addition, we collected 20 most
recent tweets with the URLs. The basic characteristics of the dataset are shown in
Table 5.1.

Property Value
Number of Twitter accounts 325

Number of legitimate accounts 168
Number of spammer accounts 157

Number of followings 21676
Number of followers 5039

Average number of followings 66
Average number of followers 15

Number of tweets 6500
Number of extracted URLs 2506

Number of unique URLs extracted 1346
Number of triangles 5037

Table 5.1: Characteristics of the dataset

Figure 5.1: Number of triangles

5.2.2 Evaluation metrics

In the evaluation, we consider the confusion matrix illustrated in Table 5.2, where
a means the number of spammers that have been correctly classified, b represents
the number of spammers which are misclassified as non-spammers, c expresses
the number of non spammers which are misclassified as spammers, and d refers
to the number of non-spammers that have been correctly classified. We used four
widely adopted machine learning metrics, that is: accuracy, precision, recall, and
F1-score.

69

Accuracy (A) is ratio of the total number of correctly classified instances of both
classes over the total number of all instances in the dataset and is expressed by:
A = (a+d)

(a+b+c+d) . Precision (P) refers to the ratio of the number of correctly classified
instances to the total number of instances and is expressed by: P = a

(a+c) . Recall
(R) defines the ratio of the number of instances correctly classified to the total
number of predicted instances and is expressed by: R = a

(a+b) . Finally, F1-score (F1)
is measured as a weighted average of the precision and recall, and is defined as:
F1 = 2P ∗R

(P +R) .

Predicted class
Spammer Non-spammer

True class
Spammer a b
Non-spammer c d

Table 5.2: Confusion matrix

Figure 5.2: Number of triangles/followers

5.2.3 Data analysis

In this subsection, we analyze the collected dataset. As we can see from Fig. 5.1,
showing the characteristics of graph-based features, the number of triangles for
legitimate users is higher than those for spammers. Likewise, from Fig. 5.2, we see
that the ratio of the number of triangles to number of followers for legitimate users
is higher than for spammer users. Fig. 5.3 shows that the number of bi-directional
links of each account which reflects reciprocity between user accounts is higher for
legitimate users than for spammer users.

Fig. 5.4 - 5.5 show the differences between the considered content-based features of
spammers and legitimate users. From Fig. 5.4, we see that legitimate users tend to

70

Figure 5.3: Number of bi-directional links

Figure 5.4: Unique URL ratio

post a unique link in their tweets. As we expected, spammer users tend to post more
links in their tweets than legitimate users, but from Fig. 5.5, we see that the number
of unique links does is almost the same for non-spammers and spammer users.

5.2.4 Evaluation

We evaluate our proposed approach through performance comparison and feature
ranking, by using different machine learning tools.

Performance comparison: In this experiment, we compare the performance of our
approach (E) with four existing state of the art approaches, namely: (A) [6], which

71

Figure 5.5: URL to tweets ratio

used 12 features; (B) [7], which used 10 features; (C) [8], which used 10 features;
and (D) [67], which used 17 features.

We selected these four approaches for comparison because these are the latest
published state of the art approaches for spam detection on Twitter, and it was
possible to extract all of the features they considered from our dataset. We conducted
our evaluation by using seven different ML classifiers, namely: k-NN, DT, NB, RF,
LR, SVM, and XGBoost (see Section 2.2.1). For each ML classifier, we compute four
performance metrics: accuracy, precision, recall, and F1- score.

As shown in Fig. 5.6 - 5.9, our proposed approach outperforms every considered
approaches. More particularly, from Fig. 5.6, we can see that the accuracy of our
approach (i.e., RF of E) is greater than the others. It reaches highest accuracy of
91% for RF classifier and lowest accuracy of 74% for NB. Likewise, from Fig. 5.7,
we can see that the precision of our approach is greater than the other approaches.
It achieves highest precision value of 92% for both RF and XGBoost classifiers.
Especially, under the NB the precision value of our approach is 0.04% lower than
approach D and 0.01% lower than approach A. Similarly, for SVM the precision
value of our approach is 0.08% lower than approach C. On the other hand, we can
see that the precision of the other five ML classifiers are the highest. In the same
way, from Fig. 5.8, we can see that the recall value of E is lower than approach
C and D under SVM and Naive Bayes respectively, whereas the recall value of the
other five ML classifiers are the highest.

From Fig. 5.9, we can see that the F1-score of our work under all ML classifiers
is also the highest. More particularly, the highest F1-score of our approach is 91%
(RF in E), and the lowest F1-score of our approach is 74% (NB in E). From the

72

above discussion, we see that our new feature set is more effective to detect Twitter
spammers than other existing approaches.

Figure 5.6: Accuracy

Figure 5.7: Precision

Feature ranking: In order to verify the importance of the considered features, we
used feature selection method. It is also known as variable selection or attribute
selection, which is the process of selecting relevant features in terms of the target
learning problem. The purpose of feature selection is to remove redundant and
irrelevant features because these features can reduce the learning accuracy and the
quality of the model. However, we used information gain feature selection method,
that are available on Weka [70]. Weka supports feature selection via information
gain using the Info_Gain_Attribute_Eval attribute evaluator. It calculates the
information gain (i.e., entropy) for each attribute. This value varies from 0 (i.e., no
information) to 1 (i.e., maximum information). The attributes that contribute more
information will have a higher information gain value and can be selected, whereas

73

Figure 5.8: Recall

Figure 5.9: F1-score

those that do not add much information will have a lower score and can be removed.
Information gain can be calculated as follows: IG(C, Pi) = H(C) − H(C|Pi), where
C is the output class, Pi and H is the entropy.

The result listed in Table 5.3 indicates the top most 10 important attributes among
55 features. Interestingly, we see that 5 of our features are included among the top
10 important features. The first and third most important attributes in the list are
the number of triangles and the number of triangles to number of followers.

Furthermore, we verify the importance of the top 10 features, by measuring the
F1-score. We calculated F1-score considering: (1) all top 10 attributes, which we
labeled as X, (2) 5 of our features that are included among the top 10 ones, which
we labeled as Y, and (3) all of our 7 features, which labeled as Z. From Fig. 5.10, we

74

Figure 5.10: F1-score

Rank Information gain

1 Number of triangles
2 Age of an account (days)
3 Number of triangles to number of followers
4 Number of followers
5 Number of tweets
6 Average tweets per day
7 Unique URL ratio
8 Average likes per tweet
9 Reputation

10 Fifo ratio
Table 5.3: Top 10 features

can see that the highest F1-score is 92% for RF, when we consider all top 10 features
(RF in X), whereas we get the highest F1-score of 92% for k-NN classifiers on Y, and
91% for both RF and XGBoost. For Z, we get the highest F1-score of 91% for RF, and
the lowest F1-score is around 74% (NB in Z).

According to the experimental results, it can be observed that the top features
identified by the feature selection method (i.e., information gain) gives slightly
improved performance. We conclude that the features identified by information gain,
which are number of triangles, age of an account (days), and number of triangles
to number of followers, are very important and higher influencing features in the
process of identifying spam users on Twitter.

75

5.3 Chapter summary

In this chapter, we have designed a new and more robust set of features to detect
spammers on Twitter. We have considered both graph-based and tweet content-based
features, and applied them into seven different ML algorithms. In the experiment,
Random Forest (RF) gives the better results compared to other algorithms, with
an accuracy of 91%, precision 92%, and F1-score 91%. Through the performance
comparison analysis, we showed that our proposed solution is feasible and is capable
to give better results than other existing state of the art approaches.

76

6Conclusion and Future work

This thesis focused on enhancing individuals’ data privacy and security using machine
learning technologies. Machine learning has very good prediction capabilities, and
previous research has shown that average users are not skilled in defining their
privacy preferences effectively. Therefore, in this thesis, we attempt to predict
the best privacy settings for users with ML technology. In Chapter 3, we have
described the proposed soft privacy matching mechanism, which is able to relax, in
a controlled way, some conditions of users’ privacy preferences to match service
providers’ privacy policies. We have considered different learning approaches to test
which one performs better in the IoT-based smart environment. We have tested our
approaches extensively using evaluators enrolled from the university students and
through a crowd-sourcing platform and achieved promising results. In Chapter 4, we
have extended the approach presented in Chapter 3 by considering users’ contextual
data. In this chapter, we have presented a privacy preferences management service
that helps users to manage their privacy preferences settings in different contexts.
More precisely, we have focused on users’ contextual information and defined a
learning approach exploiting contextual features to learn users’ privacy preferences.
The results have shown that contextual data are essential for setting users’ privacy
preferences. We have also exploited the benefits of ML (e.g., the elimination or
reduction of the necessity for human activity) to redesign the security mechanisms
in the social media environment (e.g., spam detection) and make it more secure
for individuals. In Chapter 5, we have investigated the behavior of spam users on
Twitter with the goal of improving existing spam-detection mechanisms. We have
presented a method to classify Twitter users based on several new features and
shown that the proposed technique can be extremely effective and more robust than
existing spam-detection methods. More specifically, we have used ML to train the
spam filters to address issues of violence and aggression that have been increasing in
social media environments by identifying and removing violent, insulting, aggressive,
and harassing content creators from the social media environments.

In the future, we plan to extend our work in several directions. The first direction
will be to implement a prototype of our proposed approach and test it in various real-
world scenarios. Moreover, we plan to extend the approach discussed in Chapter 3
by analyzing how to address the uncertainty that the “maybe” label introduces to the
classifier and examining whether a binary classifier (i.e., using “yes” and “no” labels)

77

could improve the satisfaction level of the proposed approach. Next, to develop
the approach discussed in Chapter 4, we plan to investigate other ontology-based
distance measures [71] to assess how they might influence the context selection
process. Besides, we will investigate other states of the art approaches to compare
with the proposed approach. In addition, we will conduct more experiments and user
studies to examine why users are dissatisfied with the system-generated suggestions
and how we can increase their satisfaction levels. Finally, our future plan is to extend
the approach presented in Chapter 5 by proposing a more effective model to easily
classify various types of spammers within various social networks such as Facebook
and LinkedIn.

78

Bibliography

[1] Samuel, Arthur L. “Some Studies in Machine Learning Using the Game of Checkers.
II—Recent Progress”. In: Computer Games I. Springer, 1988, pp. 366–400 (cit. on p. 15).

[2] Cilimkovic, Mirza. “ Neural networks and back propagation algorithm ”. In: Institute
of Technology Blanchardstown, Blanchardstown Road North Dublin 15 (2015) (cit. on
p. 15).

[3] Advantages of Machine Learning Technology. https://data-flair.training/blogs/advantages-
and-disadvantages-of-machine-learning/ (cit. on p. 15).

[4] Acquisti, Alessandro and Brandimarte, Laura and Loewenstein, George. “Privacy and
human behavior in the age of information”. In: Science 347.6221 (2015), pp. 509–514
(cit. on p. 15).

[5] Solove, Daniel J. “Introduction: Privacy Self-Management and the Consent Dilemma”.
In: Harvard Law Review 126 (2013), p. 1880 (cit. on p. 15).

[6] Ameen, Aso Khaleel and Kaya, Buket. “Detecting Spammers in Twitter Network”. In:
International Journal of Applied Mathematics, Electronics and Computers 5.4 (2017),
pp. 71–75 (cit. on pp. 16, 27, 31, 32, 66, 71).

[7] Ala’M, Al-Zoubi and Faris, Hossam and others. “Spam profile detection in social
networks based on public features”. In: Information and Communication Systems (ICICS),
2017 8th International Conference on. IEEE. 2017, pp. 130–135 (cit. on pp. 16, 27, 31,
32, 66, 72).

[8] Singh, Monika and Bansal, Divya and Sofat, Sanjeev. “Who is Who on Twitter–Spammer,
Fake or Compromised Account? A Tool to Reveal True Identity in Real-Time”. In:
Cybernetics and Systems (2018), pp. 1–25 (cit. on pp. 16, 27, 31, 66, 72).

[9] Kim, Seung-Hyun and Ko, Han-Gyu and Ko, In-Young and Choi, Daeseon. “ Effects of
Contextual Properties on Users’ Privacy Preferences in Mobile Computing Environments
”. In: 2015 IEEE Trustcom/BigDataSE/ISPA. Vol. 1. IEEE. 2015, pp. 507–514 (cit. on
p. 17).

[10] Saleh, Rafiy and Jutla, Dawn and Bodorik, Peter. “Management of Users’ Privacy
Preferences in Context”. In: 2007 IEEE International Conference on Information Reuse
and Integration. IEEE. 2007, pp. 91–97 (cit. on p. 17).

[11] Kapitsaki, Georgia M. “ Reflecting user privacy preferences in context-aware web
services”. In: 2013 IEEE 20th International Conference on Web Services. IEEE. 2013,
pp. 123–130 (cit. on p. 17).

79

[12] Yang, Chao and Harkreader, Robert and Gu, Guofei. “Empirical evaluation and new
design for fighting evolving twitter spammers”. In: IEEE Transactions on Information
Forensics and Security 8.8 (2013), pp. 1280–1293 (cit. on pp. 18, 66).

[13] Fazil, Mohd and Abulaish, Muhammad. “A Hybrid Approach for Detecting Automated
Spammers in Twitter”. In: IEEE Transactions on Information Forensics and Security 13.11
(2018), pp. 2707–2719 (cit. on pp. 18, 27, 31).

[14] Benevenuto, Fabricio and Magno, Gabriel and Rodrigues, Tiago and Almeida, Virgilio.
“Detecting spammers on twitter”. In: Collaboration, electronic messaging, anti-abuse and
spam conference (CEAS). Vol. 6. 2010. 2010, p. 12 (cit. on pp. 18, 27, 31, 32, 65).

[15] Grier, Chris and Thomas, Kurt and Paxson, Vern and Zhang, Michael. “@ spam: the
underground on 140 characters or less”. In: Proceedings of the 17th ACM conference on
Computer and communications security. ACM. 2010, pp. 27–37 (cit. on pp. 18, 65).

[16] Wu, Chih-Hung. “ Behavior-based spam detection using a hybrid method of rule-based
techniques and neural networks ”. In: Expert Systems with Applications 36.3 (2009),
pp. 4321–4330 (cit. on p. 18).

[17] Basnet, Ram B and Sung, Andrew H and Liu, Quingzhong. “ Rule-based phishing attack
detection ”. In: Proceedings of the International Conference on Security and Manage-
ment (SAM). The Steering Committee of The World Congress in Computer Science,
Computer . . . 2011, p. 1 (cit. on p. 18).

[18] Lee, Hosub and Kobsa, Alfred. “Privacy preference modeling and prediction in a
simulated campuswide IoT environment”. In: Pervasive Computing and Communications
(PerCom), 2017 IEEE International Conference on. IEEE. 2017, pp. 276–285 (cit. on
p. 23).

[19] Nakamura, Toru and Kiyomoto, Shinsaku and Tesfay, Welderufael B and Serna, Jetzabel.
“Easing the Burden of Setting Privacy Preferences: A Machine Learning Approach”. In:
International Conference on Information Systems Security and Privacy. Springer. 2016,
pp. 44–63 (cit. on pp. 23, 30).

[20] Singh, Bikash Chandra and Carminati, Barbara and Ferrari, Elena. “Learning privacy
habits of PDS owners”. In: 2017 IEEE 37th International Conference on Distributed
Computing Systems (ICDCS). IEEE. 2017, pp. 151–161 (cit. on pp. 23, 49).

[21] Lipford, Heather Richter and Besmer, Andrew and Watson, Jason. “Understanding
Privacy Settings in Facebook with an Audience View.” In: UPSEC 8 (2008), pp. 1–8
(cit. on pp. 23, 30).

[22] Sadeh, Norman and Hong, Jason and Cranor, Lorrie and Fette, Ian and Kelley, Patrick
and Prabaker, Madhu and Rao, Jinghai. “Understanding and capturing people’s pri-
vacy policies in a mobile social networking application”. In: Personal and Ubiquitous
Computing 13.6 (2009), pp. 401–412 (cit. on pp. 23, 30, 49).

[23] Fang, Lujun and LeFevre, Kristen. “Privacy wizards for social networking sites”. In:
Proceedings of the 19th international conference on World wide web. ACM. 2010, pp. 351–
360 (cit. on p. 24).

[24] Bilogrevic, Igor and Huguenin, Kévin and Agir, Berker and Jadliwala, Murtuza and
Hubaux, Jean-Pierre. “Adaptive information-sharing for privacy-aware mobile social
networks”. In: Proceedings of the 2013 ACM international joint conference on Pervasive
and ubiquitous computing. ACM. 2013, pp. 657–666 (cit. on p. 24).

80

[25] Wijesekera, Primal and Reardon, Joel and Reyes, Irwin and Tsai, Lynn and Chen,
Jung-Wei and Good, Nathan and Wagner, David and Beznosov, Konstantin and Egelman,
Serge. “Contextualizing privacy decisions for better prediction (and protection)”. In:
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. ACM.
2018, p. 268 (cit. on p. 24).

[26] Liu, Bin and Andersen, Mads Schaarup and Schaub, Florian and Almuhimedi, Hazim
and Zhang, S Aerin and Sadeh, Norman and Agarwal, Y and Acquisti, A. “Follow my
recommendations: A personalized privacy assistant for mobile app permissions”. In:
Symposium on Usable Privacy and Security. 2016 (cit. on p. 24).

[27] Smith, Ian and Consolvo, Sunny and Lamarca, Anthony and Hightower, Jeffrey and
Scott, James and Sohn, Timothy and Hughes, Jeff and Iachello, Giovanni and Abowd,
Gregory D. “Social disclosure of place: From location technology to communication
practices”. In: International Conference on Pervasive Computing. Springer. 2005, pp. 134–
151 (cit. on pp. 24, 49).

[28] Wiese, Jason and Kelley, Patrick Gage and Cranor, Lorrie Faith and Dabbish, Laura
and Hong, Jason I and Zimmerman, John. “Are you close with me? are you nearby?:
investigating social groups, closeness, and willingness to share”. In: Proceedings of the
13th international conference on Ubiquitous computing. ACM. 2011, pp. 197–206 (cit. on
p. 24).

[29] Harkous, Hamza and Rahman, Rameez and Aberer, Karl. “C3p: Context-aware crowd-
sourced cloud privacy”. In: International Symposium on Privacy Enhancing Technologies
Symposium. Springer. 2014, pp. 102–122 (cit. on p. 24).

[30] Liang, Tingting and He, Lifang and Lu, Chun-Ta and Chen, Liang and Philip, S Yu and
Wu, Jian. “A broad learning approach for context-aware mobile application recommen-
dation”. In: 2017 IEEE International Conference on Data Mining (ICDM). IEEE. 2017,
pp. 955–960 (cit. on p. 25).

[31] Xie, Jierui and Knijnenburg, Bart Piet and Jin, Hongxia. “Location sharing privacy
preference: analysis and personalized recommendation”. In: Proceedings of the 19th
international conference on Intelligent User Interfaces. ACM. 2014, pp. 189–198 (cit. on
p. 25).

[32] Yuan, Lin and Theytaz, Joël and Ebrahimi, Touradj. “Context-dependent privacy-aware
photo sharing based on machine learning”. In: IFIP International Conference on ICT
Systems Security and Privacy Protection. Springer. 2017, pp. 93–107 (cit. on p. 25).

[33] Bilogrevic, Igor and Huguenin, Kévin and Agir, Berker and Jadliwala, Murtuza and
Gazaki, Maria and Hubaux, Jean-Pierre. “A machine-learning based approach to privacy-
aware information-sharing in mobile social networks”. In: Pervasive and Mobile Comput-
ing 25 (2016), pp. 125–142 (cit. on pp. 25, 30).

[34] Toch, Eran. “Crowdsourcing privacy preferences in context-aware applications”. In:
Personal and ubiquitous computing 18.1 (2014), pp. 129–141 (cit. on p. 26).

[35] Bigwood, Greg and Abdesslem, F Ben and Henderson, Tristan. “Predicting location-
sharing privacy preferences in social network applications”. In: Proc. of AwareCast 12
(2012), pp. 1–12 (cit. on p. 26).

[36] Schlegel, Roman and Kapadia, Apu and Lee, Adam J. “Eyeing your exposure: quantify-
ing and controlling information sharing for improved privacy”. In: Proceedings of the
Seventh Symposium on Usable Privacy and Security. ACM. 2011, p. 14 (cit. on p. 26).

81

[37] Gao, Hongyu and Chen, Yan and Lee, Kathy and Palsetia, Diana and Choudhary, Alok N.
“Towards Online Spam Filtering in Social Networks.” In: NDSS. Vol. 12. 2012, pp. 1–16
(cit. on pp. 27, 31).

[38] Lee, Kyumin and Caverlee, James and Webb, Steve. “Uncovering social spammers:
social honeypots+ machine learning”. In: Proceedings of the 33rd international ACM
SIGIR conference on Research and development in information retrieval. ACM. 2010,
pp. 435–442 (cit. on pp. 27, 31, 65, 68).

[39] Chen, Chao and Zhang, Jun and Chen, Xiao and Xiang, Yang and Zhou, Wanlei. “6
million spam tweets: A large ground truth for timely Twitter spam detection”. In:
Communications (ICC), 2015 IEEE International Conference on. IEEE. 2015, pp. 7065–
7070 (cit. on pp. 27, 31).

[40] Wang, Bo and Zubiaga, Arkaitz and Liakata, Maria and Procter, Rob. “Making the
most of tweet-inherent features for social spam detection on twitter”. In: arXiv preprint
arXiv:1503.07405 (2015) (cit. on pp. 27, 31).

[41] Wang, Alex Hai. “Don’t follow me: Spam detection in twitter”. In: Security and cryp-
tography (SECRYPT), proceedings of the 2010 international conference on. IEEE. 2010,
pp. 1–10 (cit. on pp. 27, 31).

[42] Kotsiantis, Sotiris B. “Supervised machine learning: A review of classification tech-
niques”. In: (2007) (cit. on pp. 28, 29, 33, 40, 50, 56).

[43] Jadhav, Sayali D and Channe, HP. “Comparative Study of K-NN, Naive Bayes and
Decision Tree Classification Techniques”. In: International Journal of Science and Research
5.1 (2016) (cit. on p. 29).

[44] Wu, Yingquan and Ianakiev, Krassimir and Govindaraju, Venu. “ Improved k-nearest
neighbor classification ”. In: Pattern recognition 35.10 (2002), pp. 2311–2318 (cit. on
p. 29).

[45] Bhargava, Neeraj and Sharma, Girja and Bhargava, Ritu and Mathuria, Manish. “ Deci-
sion tree analysis on j48 algorithm for data mining ”. In: Proceedings of International
Journal of Advanced Research in Computer Science and Software Engineering 3.6 (2013)
(cit. on p. 29).

[46] Robnik-Šikonja, Marko. “ Improving random forests ”. In: European conference on
machine learning. Springer. 2004, pp. 359–370 (cit. on p. 29).

[47] Dreiseitl, Stephan and Ohno-Machado, Lucila. “ Logistic regression and artificial
neural network classification models: a methodology review ”. In: Journal of biomedical
informatics 35.5-6 (2002), pp. 352–359 (cit. on p. 30).

[48] Gunn, Steve R and others. “ Support vector machines for classification and regression
”. In: ISIS technical report 14.1 (1998), pp. 5–16 (cit. on p. 30).

[49] Chen, Tianqi and Guestrin, Carlos. “ Xgboost: A scalable tree boosting system ”. In:
Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and
data mining. ACM. 2016, pp. 785–794 (cit. on p. 30).

[50] Albertini, Davide Alberto and Carminati, Barbara and Ferrari, Elena. “ Privacy Settings
Recommender for Online Social Network ”. In: 2016 IEEE 2nd International Conference
on Collaboration and Internet Computing (CIC). IEEE. 2016, pp. 514–521 (cit. on p. 30).

82

[51] Pearson, Siani. “Taking account of privacy when designing cloud computing services”.
In: Proceedings of the 2009 ICSE Workshop on Software Engineering Challenges of Cloud
Computing. IEEE Computer Society. 2009, pp. 44–52 (cit. on p. 34).

[52] Singh, Bikash Chandra and Carminati, Barbara and Ferrari, Elena. “A risk-benefit driven
architecture for personal data release”. In: 2016 IEEE 17th International Conference on
Information Reuse and Integration (IRI). IEEE. 2016, pp. 40–49 (cit. on p. 34).

[53] Byun, Ji-Won and Li, Ninghui. “Purpose based access control for privacy protection in
relational database systems”. In: The VLDB Journal—The International Journal on Very
Large Data Bases 17.4 (2008), pp. 603–619 (cit. on p. 36).

[54] Wu, Zhibiao and Palmer, Martha. “Verbs semantics and lexical selection”. In: Proceedings
of the 32nd annual meeting on Association for Computational Linguistics. Association for
Computational Linguistics. 1994, pp. 133–138 (cit. on pp. 37, 53).

[55] Niwattanakul, Suphakit and Singthongchai, Jatsada and Naenudorn, Ekkachai and
Wanapu, Supachanun. “Using of Jaccard coefficient for keywords similarity”. In: Pro-
ceedings of the International MultiConference of Engineers and Computer Scientists. Vol. 1.
6. 2013 (cit. on p. 37).

[56] Xu, Zeshui and Xia, Meimei. “Distance and similarity measures for hesitant fuzzy sets”.
In: Information Sciences 181.11 (2011), pp. 2128–2138 (cit. on pp. 38, 52).

[57] mlr: Machine Learning in R. https://rdrr.io/cran/mlr/ (cit. on pp. 44, 59).

[58] Wu, Hongchen and Knijnenburg, Bart P and Kobsa, Alfred. “Improving the prediction of
users’ disclosure behavior by making them disclose more predictably?” In: Symposium
on Usable Privacy and Security (SOUPS). 2014 (cit. on p. 49).

[59] Nissenbaum, Helen. “A contextual approach to privacy online”. In: Daedalus 140.4
(2011), pp. 32–48 (cit. on p. 49).

[60] De Montjoye, Yves-Alexandre and Shmueli, Erez and Wang, Samuel S and Pentland,
Alex Sandy. “openpds: Protecting the privacy of metadata through safeanswers”. In:
PloS one 9.7 (2014), e98790 (cit. on p. 49).

[61] Singh, Bikash Chandra and Carminati, Barbara and Ferrari, Elena. “Privacy-aware
Personal Data Storage (P-PDS): Learning how to Protect User Privacy from External
Applications”. In: IEEE Transactions on Dependable and Secure Computing (2019) (cit. on
pp. 49, 50, 58).

[62] Jiang, Changhao and Steenkiste, Peter. “A hybrid location model with a computable
location identifier for ubiquitous computing”. In: International Conference on Ubiquitous
Computing. Springer. 2002, pp. 246–263 (cit. on p. 53).

[63] Tonkin, Emma L and Woznowski, Przemyslaw R. “Activities of Daily Living Ontology
for Ubiquitous Systems”. In: 2018 IEEE International Conference on Pervasive Computing
and Communications Workshops (PerCom Workshops). IEEE. 2018, pp. 573–578 (cit. on
p. 53).

[64] Li, Tao and Yang, He and He, Jun and Ai, Yong. “A Social Network Analysis methods
based on ontology”. In: 2010 Third International Symposium on Knowledge Acquisition
and Modeling. IEEE. 2010, pp. 258–261 (cit. on p. 54).

[65] Seber, George AF and Lee, Alan J. Linear regression analysis. Vol. 329. John Wiley &
Sons, 2012 (cit. on p. 57).

83

[66] Twitter Usage Statistics - Internet Live Stats (2019). http://www.internetlivestats.com/
twitter-statistics/ (cit. on p. 65).

[67] Herzallah, Wafa and Faris, Hossam and Adwan, Omar. “Feature engineering for detect-
ing spammers on Twitter: Modelling and analysis”. In: Journal of Information Science
(2017), p. 0165551516684296 (cit. on pp. 66, 72).

[68] Yang, Chao and Harkreader, Robert Chandler and Gu, Guofei. “Die free or live hard?
empirical evaluation and new design for fighting evolving twitter spammers”. In: Inter-
national Workshop on Recent Advances in Intrusion Detection. Springer. 2011, pp. 318–
337 (cit. on p. 66).

[69] Twitter Developers. Documentation, https://developer.twitter.com/en/docs (cit. on
p. 69).

[70] Witten, Ian H and Frank, Eibe and Hall, Mark A and Pal, Christopher J. Data Mining:
Practical machine learning tools and techniques. Morgan Kaufmann, 2016 (cit. on p. 73).

[71] Gan, Mingxin and Dou, Xue and Jiang, Rui. “From ontology to semantic similarity:
calculation of ontology-based semantic similarity”. In: The Scientific World Journal 2013
(2013) (cit. on p. 78).

84

Declaration

I, Md. Zulfikar Alom, do hereby declare that this doctoral dissertation entitled En-
hancing Data Privacy and Security Related Process Through Machine Learning
was carried out by me for the degree of Doctor of Philosophy in Computer Science
under the guidance and supervision of the Prof. Elena Ferrari and Prof. Barbara
Carminati, Department of Theoretical and Applied Science, University of Insubria,
Varese, Italy.

I declare that all the material presented for examination is my own work and has
not been written for me, in whole or in part, by any other person.

I also declare that any quotation or paraphrase from the published or unpublished
work of another person has been duly acknowledged in the work which I present for
examination.

This dissertation contains no material that has been submitted previously, in whole
or in part, for the award of any other academic degree or diploma.

Varese, Italy, October 09, 2019

Md. Zulfikar Alom

	Abstract
	Acknowledgement
	Dedication
	1 Introduction
	1.1 Machine Learning in an IoT-based Smart Environment
	1.2 Machine Learning in a Social Media Environment
	1.3 Main Contributions
	1.4 Thesis Organization
	1.5 Related Publications

	2 Literature Review
	2.1 ML-based privacy settings mechanisms
	2.2 ML-based security mechanisms
	2.2.1 Spam detection ML techniques

	2.3 Thesis contributions with respect to the literature review
	2.4 Chapter summary

	3 ML-based Privacy Preferences Adaptation
	3.1 Smart environment modeling
	3.2 Flexible privacy matching
	3.2.1 Metrics
	3.2.2 Learning strategy

	3.3 Experiments and results
	3.3.1 Settings
	3.3.2 Performance evaluation

	3.4 Chapter summary

	4 ML-based Privacy Preferences Suggestions
	4.1 Proposed methodology
	4.1.1 Contexts and context-based privacy preferences modeling
	4.1.2 Context distance metrics
	4.1.3 Context similarity
	4.1.4 Learning mechanism

	4.2 Experiments
	4.2.1 Experimental settings
	4.2.2 Effectiveness
	4.2.3 Participant evaluation

	4.3 Chapter summary

	5 ML-based Spam Accounts Detection on Twitter
	5.1 Proposed features
	5.1.1 Graph-based features
	5.1.2 Content-based features

	5.2 Experiments and results
	5.2.1 Data collection
	5.2.2 Evaluation metrics
	5.2.3 Data analysis
	5.2.4 Evaluation

	5.3 Chapter summary

	6 Conclusion and Future work
	Bibliography
	Declaration

