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Abstract

In this thesis, a generalization of the classical Rough set theory [81] is de-

veloped considering the so-called sequences of orthopairs that we define in

[16] as special sequences of rough sets.

Mainly, our aim is to introduce some operations between sequences of ortho-

pairs, and to discover how to generate them starting from the operations

concerning standard rough sets (defined in [29]). Also, we prove several

representation theorems representing the class of finite centered Kleene algeb-

ras with the interpolation property [28], and some classes of finite residuated

lattices (more precisely, we consider Nelson algebras [86], Nelson lattices [21],

IUML-algebras [69] and Kleene lattice with implication [24]) as sequences of

orthopairs.

Moreover, as an application, we show that a sequence of orthopairs can be

used to represent an examiner’s opinion on a number of candidates applying for

a job, and we show that opinions of two or more examiners can be combined

using operations between sequences of orthopairs in order to get a final

decision on each candidate.

Finally, we provide the original modal logic SOn with semantics based on

sequences of orthopairs, and we employ it to describe the knowledge of an

agent that increases over time, as new information is provided. Modal logic

SOn is characterized by the sequences (�1, . . . ,�n) and (©1, . . . , ©n) of n

modal operators corresponding to a sequence (t1, . . . , tn) of consecutive times.

Furthermore, the operator �i of (�1, . . . ,�n) represents the knowledge of an

agent at time ti, and it coincides with the necessity modal operator of S5 logic

[26]. On the other hand, the main innovative aspect of modal logic SOn is

the presence of the sequence (©1, . . . , ©n), since ©i establishes whether an

agent is interested in knowing a given fact at time ti.
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„Imagination is the Discovering Faculty,

pre-eminently. It is that which penetrates

into the unseen worlds around us, the worlds

of Science. It is that which feels & discovers

what is, the real which we see not, which

exists not for our senses. Those who have

learned to walk on the threshold of the

unknown worlds, by means of what are

commonly termed par excellence the exact

sciences, may then with the fair white wings

of Imagination hope to soar further into the

unexplored amidst which we live.

— Ada Lovelace
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1Introduction

„We can only see a short distance ahead, but

we can see plenty there that needs to be

done.

— Alan Turing

Rough sets and orthopairs are mathematical tools that are used to deal with

vague, imprecise and uncertain information. Rough set theory was intro-

duced by the Polish mathematician Zdzislaw Pawlak in 1980 [81, 79, 80],

and successively numerous researchers of several fields have contributed to

its development. The rough set approach appears of fundamental importance

in many research domains, for example in artificial intelligence and cognitive

sciences, especially in the areas of machine learning, knowledge acquisition,

decision analysis, knowledge discovery from databases, expert systems, in-

ductive reasoning and pattern recognition [74, 111, 51, 82]. Also, rough

set theory has been applied to solve many real-life problems in medicine,

pharmacology, engineering, banking, finance, market analysis, environment

management, etc. (see [91, 94, 49] for some examples). On the other hand,

rough sets are also explored in mathematical logic for their relationship with

three-valued logics [87, 100, 31]. Rough set philosophy is founded on the

assumption that each object of the universe of discourse is described by some

information, some data, or knowledge. Objects characterized by the same

data are indiscernible in view of the available information about them. In this

way, an indiscernibility relation between objects is generated, and it is the

mathematical basis of rough set theory. The set of all indiscernible objects is

named elementary set, and we can say that it is the basic granule of knowledge

about the universe. Indiscernibility relations are equivalence relations, and

elementary sets are their equivalence classes. Then, given an equivalence

relation R defined on U , the rough set of a subset X of the universe U is the

pair (LR(X), UR(X)) consisting respectively of the union of all equivalence

classes fully contained in X, named lower approximation of X with respect

to R, and the union of all the equivalence classes that have at least one

element in common with X, named upper approximation of X with respect to

R. Therefore, the rough set (LR(X), UR(X)) is the approximation of X with
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respect to the relation R. The set BR(X) is called the R-boundary region of X,

and it is the set UR(X) \ LR(X). The objects of BR(X) cannot be classified as

belonging to X with certainty.

In this dissertation, we focus on orthopairs, that are equivalent to rough

sets. Let R be an equivalence relation on U , and let X be a subset of U , the

orthopair of X determined by R is the pair (LR(X), ER(X)), where LR(X) is

the lower approximation and ER(X), called impossibility domain or exterior

region of X with respect to R, is the union of equivalence classes of R

with no elements in common with X [29]. Orthopairs and rough sets are

obtained from one another; indeed, the impossibility domain coincides with

the complement of the upper approximation with respect to the universe. A

pair (A, B) of disjoint subsets of a universe U can be viewed as the orthopair

of a subset of U generated by an equivalence relation on U ; in this case, we

can say that (A, B) is an orthopair on U . We can see any orthopair (A, B) on

the universe U as a three-valued function f : U Ô→ {0, 1
2
, 1} such that, let x ∈

U , f(x) = 1 if x ∈ A, f(x) = 0 if x ∈ B and f(x) = 1
2

otherwise. Conversely,

the three-valued function f : U Ô→ {0, 1
2
, 1} determines the orthopair (A, B)

on U , where A = {x ∈ U |f(x) = 1} and B = {x ∈ U |f(x) = 0}. Several

kinds of operations between rough sets have been considered [31]. They

correspond to connectives in three-valued logics. Logical approaches to

some of these connectives have been given, such as Łukasiewicz, Nilpotent

Minimum, Nelson and Gödel connectives [78, 7, 12, 4].

Several authors generalized the definitions of rough sets and orthopairs

by considering binary relations that are not equivalence relations, since the

latter are not usually suitable to describe the real-world relationships between

elements [109, 93]. We consider orthopairs generated by a tolerance relation,

that is a reflexive and symmetric binary relation [92]. Given a tolerance

relation R defined on U and an element x of U , by tolerance class of x with

respect to R, we mean the set of elements of U indiscernible to x with respect

to R. The set of all tolerance classes of R is a covering of U , that is a set of

subsets of U whose union is U . Moreover, if R is an equivalence relation,

then the set of all equivalence classes is a partition of U (a partition is a set

of subsets of U that are pairwise disjoint and whose union is U). Therefore,

we can define rough sets and orthopairs determined by a covering (or a

partition) instead of a tolerance relation (or an equivalence relation).
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In this thesis, we focus on sequences of orthopairs generated by refinement

sequences of coverings [16, 17]. A refinement sequence of a universe U is a

finite sequence (C1, . . . , Cn) of coverings of U such that Ci is finer than Cj

(each block of Ci is included at least in a block of Cj) for each j ≤ i. Clearly,

for each subset X of U , the refinement sequence (C1, . . . , Cn) generates the

sequence

((L1(X), E1(X)), . . . , (Ln(X), En(X))),

where (Li(X), Ei(X)) is the orthopair of X determined by Ci. Furthermore,

we deal with sequences of partial coverings. These are coverings that do not

fully cover the universe, and they are suitable for describing situations in

which some information is lost during the refinement process [36]. Refine-

ment sequences of partial coverings are obtained starting from incomplete

information tables, that are tables where a set of objects is described by a

set of attributes, but some information is lost or not available [63]. It is

interesting to notice that when (C1, . . . , Cn) consists of all partitions of U , the

pair (U, (C1, . . . , Cn)) is an Aumann structure, that is a mathematical struc-

ture used by economists and game theorists to represent the knowledge [5].

Refinement sequences can be represented as partially ordered sets. Hence, se-

quences of orthopairs generated by refinement sequences can be represented

as pairs of upward closed subsets of such partially ordered sets. By using this

correspondence, we give a concrete representation of some finite algebraic

structures related with Kleene algebras. Kleene algebras form a subclass of De

Morgan algebras. The latter were introduced by Moisil [71], and successively,

they were explored by several authors, in particular, by Kalman [60] (under

the name of distributive i-lattices), and by Bialynicki-Birula and Rasiowa,

which called them quasi-Boolean algebras [11]. The notation that is still

used was introduced by Monteiro [73]. We are interested in the family of

finite centered Kleene algebras with the interpolation property, studied by the

Argentinian mathematician Roberto Cignoli. In particular, in [28], he proved

that centered Kleene algebras with the interpolation property are represen-

ted by bounded distributive lattices [83]. By Birkhoff representation, each

bounded distributive lattice is characterized as a set of upsets of a partially

ordered set with set intersection and union [13]. In this thesis, we prove

that each finite centered Kleene algebra with the interpolation property is

isomorphic to the set of sequences of orthopairs generated by a refinement

sequence with operations obtained extending the Kleene operations between

orthopairs (see [31]) to the sequences of orthopairs. We obtain a similar

result for some other finite structures that are residuated lattices [100], and

having as reduct a centered Kleene algebras with the interpolation property.
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More exactly, we show that some subclasses of Nelson algebras, Nelson lattices

and IUML-algebras are represented as sequences of orthopairs in which the

residuated operations are respectively obtain by extending Nelson implication,

Łukasiewicz conjunction and implication, and Sobociński conjunction and im-

plication between orthopairs (listed in [31]) to sequences of orthopairs. In the

following table each structure is associated with its orthopaired operations.

Structures Operations between orthopairs

Nelson algebras Kleene conjunction and Nelson implication

Nelson lattices Łukasiewicz conjunction and implication

IUML-algebras Sobociński conjunction and implication

Tab. 1.1: Structures and Operation between orthopairs

Nelson algebras were introduced by Rasiowa [86], under the name of N-

lattices, as the algebraic counterparts of the constructive logic with strong

negation considered by Nelson and Markov [84]. The centered Nelson

algebras with the interpolation property are represented by Heyting algebras

[10]. Nelson lattices are involutive residuated lattices, and are equationally

equivalent to centered Nelson algebras [21]. IUML-algebras are the algebraic

models of the logic IUML, which is a substructural fuzzy logic that is an

axiomatic extension of the multiplicative additive intuitionistic linear logic

MAILL [69]. IUML-algebras can also be defined as bounded odd Sugihara

monoids, where a Sugihara monoid is the equivalent algebraic semantics

for the relevance logic RM t of R-mingle as formulated with Ackermann

constants. In [45], a dual categorical equivalence is shown between IUML-

algebras and suitable topological spaces defined starting from Kleene spaces.

In this dissertation we focus only on finite IUML-algebras, and we refer to

[1] and [69].

Moreover, we investigate the relationship between sequences of orthopairs

and some finite lattices with implication. The latter are more general than

Nelson lattices and form a subclass of algebras with implication, (DLI-algebras

for short) [25]. We find a pair of operations that allows us to consider

sequences of orthopairs as Kleene lattices with implication, but they coincide
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with no pair of three-valued operations. Consequently, we can introduce new

operations between orthopairs, and so between rough sets.

On the other hand, some three-valued algebraic structures have been rep-

resented as rough sets generated by one covering [57, 59, 58, 4, 37]. Our

results are more general, since many-valued algebraic structures correspond

to sequences of rough sets determined by a sequence of coverings.

An important application of rough set theory is to partitions a given universe

into three pairwise disjoint regions: the acceptance region (i.e. the lower

approximation), the rejection region (i.e. the impossibility domain), and

the uncertain region (i.e. the boundary region). This classification is at

the basis of the three-way decision theory [105], which allows us to make a

decision on each object by considering the region to which it belongs. In

this framework, we use a sequence of orthopairs to represent an examiner’s

opinion on a number of candidates applying for a job. Moreover, we show that

the opinions of two or more examiners can be combined using operations

between sequences of orthopairs in order to get a final decision on each

candidate. On the other hand, we also show that sequences of orthopairs are

identified as decision trees with three outcomes. Decision trees are graphical

models widely used in machine learning for describing sequential decision

problems [44].

Rough sets can be interpreted as the necessity and possibility operators in

modal logic S5 [77, 8]. Moreover, the relationships between modal logic

and many generalizations of rough set theory have been examined by several

authors [66, 107]. In Chapter 5, we present a new modal logic, named

SOn logic, with semantics based on sequences of orthopairs. Modal logic

SOn is characterized by two families of modal operators, (�1, . . . ,�n) and

(©1, . . . , ©n), which are semantically interpreted through the Kripke frame

(U, (R1, . . . , Rn)), where (R1, . . . , Rn) is a sequence of equivalence relations

defined on the domain U , such that Rj(u) ⊆ Ri(u), for each i ≤ j and

u ∈ U .

Modal logic SOn can also be viewed as an epistemic logic. More precisely,

SOn can represent the knowledge of an agent that increases over time, as

new information is provided. Epistemic logic is the logic of knowledge and

belief [55]. Epistemic modal logic provides models to formalize and describe

the process of accumulating knowledge by individual knowers and groups of
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knowers by using modal logic [15, 42]. Its applications include addressing

numerous complex problems in philosophy, artificial intelligence, economics,

linguistics and in other fields [95, 54]. Therefore, the sequences (�1, . . . ,�n)

and (©1, . . . , ©n) correspond to a sequence (t1, . . . , tn) of consecutive in-

stants of time. The operator �i of (�1, . . . ,�n) represents the knowledge

of an agent at time ti, and it coincides with the necessity modal operator of

S5 logic [53]. The main innovative aspect of our logic is the presence of

(©1, . . . , ©n), since its element ©i establishes whether the agent is interested

in knowing the truth or falsity of the sentences at time ti.

Contents of the thesis We conclude this introductory chapter by briefly

describing the contents of the following chapters.

Chapter 2 reviews the basic notions and notation that we will use throughout

the thesis along with some simple preliminary results. Specially, we will focus

on rough set theory, partial order theory and lattice theory.

In Chapter 3, we introduce the definition of refinement sequences of partial

coverings as special sequences of coverings representing situations where new

information is gradually provided on ever smaller sets of objects. We provide

examples of environments in which refinement sequences arise; in detail, we

obtain refinement sequences starting from incomplete information tables and

formal contexts. Some families of sequences are defined considering how

much the blocks of their coverings overlap. We identify refinement sequences

as partially ordered sets. Moreover, the notion of sequences of orthopairs is

introduced in order to generalize the rough set theory. We represent each

sequence of orthopairs as a pair of disjoint upsets of a partially ordered set,

or equivalently, as a labelled poset. Finally, we view sequences of orthopairs

as decision trees with only three outcomes.

Preliminary versions of this chapter appeared in [3, 17, 16, 2].

In Chapter 4, we equip sets of sequences of orthopairs with some operations

in order to obtain finite many-valued algebraic structures. Furthermore,

we prove theorems wherewith to represent such structures as sequences

of orthopairs. We show that, when sequences of orthopairs are generated

by one covering, our operations coincide with some operations between

orthopairs listed in [31]. Also, we discover how to generate operations

between sequences of orthopairs starting from those concerning individual
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orthopairs. Finally, we use a sequence of orthopairs to represent an examiner’s

opinion on a number of candidates applying for a job. Moreover, we show

that opinions of two or more examiners can be combined using our operations

in order to get a final decision on each candidate.

Some results shown in this chapter can be found in [3, 17, 16, 2].

In Chapter 5, we recall some basic notions of modal logic and the existing

connections between modal logic and rough sets. Then, we develop the

original modal logic SOn, defining its language, introducing its Kripke models,

and providing its axiomatization. Moreover, we investigate the properties of

our logic system, such as the consistency, the soundness and the completeness

with respect to Kripke’s semantics. We explore the relationships between

modal logic SOn and sequences of orthopairs. We consider the operations

between orthopairs and between sequences of orthopairs from the logical

point of view. Eventually, we employ modal logic SOn to represent the

knowledge of an agent that increases over time, as new information is

provided.

We conclude this dissertation with Chapter 6, in which we briefly summarize

the results that we have obtained, and we discuss their potential further

developments along with new research objectives.
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2Preliminaries

„That language is an instrument of human

reason, and not merely a medium for the

expression of thought, is a truth generally

admitted.

— George Boole

In this chapter, we introduce the basic notions and notation that we will use

throughout the thesis along with some simple preliminary results. Briefly, in

Section 2.1, we recall the main definitions of rough set theory. In Section

2.2, we list several operations between orthopairs that are found in [31];

moreover, we show the connection between these operations and three-

valued connectives. Finally, Section 2.3 focuses on some important contents

of partial order theory and lattice theory.

2.1 Rough sets and orthopairs

Rough set theory, developed by Pawlak [81, 79], is a mathematical tool

used to deal with imprecise and vague information of datasets, and it finds

numerous applications in several areas of science, such as, for instance

chemistry [62], medicine [98], marketing [48], social network [18, 38],

etc. Rough sets provide approximations of sets with respect to equivalence

relations.

Definition 1 (Equivalence relation). An equivalence relation R of U is a

subset on U × U such that

1. (x, y) ∈ R (reflexivity),

2. if (x, y) ∈ R, then (y, x) ∈ R (symmetry),

3. if (x, y) ∈ R and (y, z) ∈ R, then (x, z) ∈ R (transitivity),
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for each x, y, z ∈ U .

Moreover, let x ∈ U , we set R(x) = {y ∈ U | (x, y) ∈ R}, and we call R(x)

equivalence class of x with respect to R.

Definition 2 (Rough set). Let R be an equivalence relation on U , and let

X ⊆ U . Then, the rough set of X determined by R is the pair (LR(X), UR(X)),

where

LR(X) = {x ∈ U | R(x) ⊆ X} and

UR(X) = {x ∈ U | R(x) ∩ X Ó= ∅}.

LR(X) and UR(X) are respectively called lower approximation and upper

approximation of X with respect to R. We write (L(X), U(X)) instead of

(LR(X), UR(X)), when R is clear from the context.

Also, we call the R-boundary region of X the set BR(X) = UR(X) \ LR(X).

Remark 1. Let R be an equivalence relation on U , and let X ⊆ U . Then,

LR(X) ⊆ X ⊆ UR(X) and UR(X) = LR(X) ∪ BR(X).

Definition 3 (Orthopair). Let R be an equivalence relation on U , and let

X ⊆ U . Then, the orthopair of X determined by R is the pair (LR(X), ER(X)),

where

LR(X) is the lower approximation defined in 2, and

ER(X) = {x ∈ U | R(x) ∩ X = ∅}.

ER(X) is called impossibility domain or exterior domain of X. We write

(L(X), E(X)) instead of (LR(X), ER(X)), when R is clear from the context.

Remark 2. Let R be an equivalence relation on U , and let X ⊆ U . Then,

LR(X) ∩ ER(X) = ∅ and ER(X) = U \ UR(X).

The lower and upper approximations, the R-boundary region and the im-

possibility domain are depicted in Figure 2.1. The blocks, that cover the
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universe U (the largest rectangle), represent the equivalence classes with

respect to an equivalence relation R on U . Moreover, if X is represented by

the oval shape, then L(X) is the union of green blocks, U(X) is the union of

green and white blocks, B(X) is the union of white blocks, and E(X) is the

union of red blocks.

Fig. 2.1: Graphic representation of L(X), U(X), B(X) and E(X).

In Rough set theory, given an equivalence relation R on the universe U , the

pair (U, R) is called Pawlak space.

Remark 3. Let U be a universe, we denote the power set of U (i.e. the

set of all subsets of U) with 2U . Then, the structure (2U , ∩, ∪, ¬, ∅, U) is a

Boolean algebra [102], where ∩, ∪ and ¬ are the usual set-theoretic operators.

On the other hand, lower and upper approximations can be defined as

unary operators on 2U satisfying some properties [68], and so they are also

named approximation operators. Thus, given an equivalence relation R on

U , the system (2U , ∩, ∪, ¬, LR, UR, ∅, U), called Pawlak rough set algebra, is

a topological algebra [85], which is an extension of the Boolean algebra

(2U , ∩, ∪, ¬, ∅, U). This means that we can regard the Rough set theory as an

extension of set theory with the additional approximation operators [106].

We can observe that equivalence relations are equivalent to partitions, that

are defined as follows.

Definition 4 (Partition). By partition P of the universe U , we mean a set

{b1, . . . , bn} such that

1. b1, . . . , bn ⊆ U ,

2. bi ∩ bj = ∅, for each i Ó= j,

2.1 Rough sets and orthopairs 11



3. b1 ∪ . . . ∪ bn = U .

Therefore, a partition of U is a set of subsets of U that are pairwise disjoint

and whose union is U .

Remark 4. The equivalence relation R of U determines the partition PR of U

made of all equivalence classes of R, namely

PR = {R(x) | x ∈ U};

vice-versa, the partition P of U generates the equivalence relation RP on U

such that, let x, y ∈ U,

x RP y if and only if x and y belong to the same element of P .

We call blocks both equivalence classes and elements of partitions.

By Remark 4, it follows that rough sets can be defined starting from partitions.

Therefore, the following definition is equivalent to Definition 2 and Definition

3.

Definition 5 (Rough set and Orthopair). Let P be a partition of U , and

let X ⊆ U . The rough set and the orthopair of X determined by P are

respectively the pairs (LP (X), UP (X)) and (LP (X), EP (X)), where

LP (X) = ∪{b ∈ P | b ⊆ X},

UP (X) = ∪{b ∈ P | b ∩ X Ó= ∅}, and

EP (X) = ∪{b ∈ P | b ∩ X = ∅}.

Several authors generalize the classical definitions of rough sets and ortho-

pairs, by considering binary relations that are not equivalence relations, since

the latter are not usually suitable to describe the real-world relationships

between elements (e.g. [109, 93]).

In this thesis, we consider orthopairs generated by tolerance relations [92,

67], or equivalently by coverings [30, 32].

12 Chapter 2 Preliminaries



Definition 6 (Tolerance relation). A tolerance relation R on U is a subset of

U × U such that

1. (x, y) ∈ R (reflexivity),

2. if (x, y) ∈ R, then (y, x) ∈ R (symmetry),

for each x, y, z ∈ U .

Moreover, let x ∈ U , we set R(x) = {y ∈ U | (x, y) ∈ R} and we call R(x)

tolerance class of x with respect to R.

Trivially, an equivalence relation is also a tolerance relation. Moreover,

tolerance relations generate coverings.

Definition 7 (Covering). By covering C of the universe U , we mean a set

{b1, . . . , bn} such that

1. b1, . . . , bn ⊆ U ,

2. b1 ∪ . . . ∪ bn = U .

We can say that a partition is a covering that satisfies the additional property

to have blocks pairwise disjoint.

2.2 Operations between orthopairs

In this thesis, we focus on some operations between orthopairs corresponding

to three-valued connectives. The relationship between orthopairs and three-

valued logics is based on the idea expressed in the following observation.

Remark 5. Each pair (A, B) of disjoint subsets of a universe U can be seen

as the orthopair of a subset of U generated by an equivalence relation

on U . In this case, we say that (A, B) is an orthopair on U . Therefore,
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the orthopair (A, B) on the universe U generates the three-valued function

f(A,B) : U Ô→ {0, 1
2
, 1} such that, let x ∈ U ,

f(A,B)(x) =























1 if x ∈ A,

0 if x ∈ B,

1
2

if x ∈ U \ (A ∪ B).

Conversely, the three-valued function f : U Ô→ {0, 1
2
, 1} determines the

orthopair (Af , Bf ) on U , where

Af = {x ∈ U | f(x) = 1} and Bf = {x ∈ U | f(x) = 0}.

The most simple operations between orthopairs are defined as follows.

Definition 8. Let (A, B) and (C, D) be two orthopairs on the universe U, we

set

(A, B) ∧K (C, D) = (A ∩ C, B ∪ D) and

(A, B) ∨K (C, D) = (A ∪ C, B ∩ D).

Theorem 1 states that ∧K and ∨K are respectively obtained from the Kleene

conjunction and the Kleene disjunction on {0, 1
2
, 1}. The latter are defined by

the following tables.

∧ 0 1
2

1

0 0 0 0

1
2

0 1
2

1
2

1 0 1
2

1

Tab. 2.1: Kleene conjunction

∨ 0 1
2

1

0 0 1
2

1

1
2

1
2

1
2

1

1 1 1 1

Tab. 2.2: Kleene disjunction

We notice that ∧ and ∨ are the minimum and the maximum on {0, 1
2
, 1},

respectively.

Theorem 1. Let (A, B) and (C, D) be orthopairs on U . Then,

(A, B) ∧K (C, D) = (E, F ) and (A, B) ∨K (C, D) = (G, H),
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where

E = {x ∈ U | f(A,B)(x) ∧ f(C,D)(x) = 1},

F = {x ∈ U | f(A,B)(x) ∧ f(C,D)(x) = 0}),

G = {x ∈ U | f(A,B)(x) ∨ f(C,D)(x) = 1} and

H = {x ∈ U | f(A,B)(x) ∨ f(C,D)(x) = 0}.

Proof. Let x ∈ U . By Remark 5, x ∈ A ∩ C if and only if f(A,B)(x) = 1 and

f(C,D)(x) = 1, namely f(A,B)(x) ∧ f(C,D)(x) = 1 (see the Kleene conjunction

table). Similarly, we can prove that x ∈ B ∪ D if and only if f(A,B)(x) ∧

f(C,D)(x) = 0. By Remark 5 and starting from the Kleene disjunction table,

we can prove that

x ∈ A ∪ C if and only if f(A,B)(x) ∨ f(C,D)(x) = 1, and

x ∈ B ∩ D if and only if f(A,B)(x) ∨ f(C,D)(x) = 0.

The next operations between orthopairs are equivalent to some three-valued

connectives belonging to the families of conjunctions and implications on

{0, 1
2
, 1}. Now, we recall the definitions of conjunction and implication that

are based on some intuitive properties in scope of modelling incomplete

information.

Definition 9 (Conjunction). A conjunction on {0, 1
2
, 1} is a map

∗ :
{

0,
1

2
, 1

}

×
{

0,
1

2
, 1

}

Ô→
{

0,
1

2
, 1

}

satisfying the following properties: let x, y, z ∈ {0, 1
2
, 1},

1. if x ≤ y, then x ∗ z ≤ y ∗ z,

2. if x ≤ y, then z ∗ x ≤ z ∗ y,

3. 0 ∗ 0 = 0 ∗ 1 = 1 ∗ 0 and 1 ∗ 1 = 1.
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Example 1. Among the conjunctions listed in [31], we only consider the Kleene

conjunction, the Łukasiewicz conjunction and the Sobociński conjunction [96].

The latter two are defined by the following tables.

⊛L 0 1
2

1

0 0 0 0

1
2

0 0 1
2

1 0 1
2

1

Tab. 2.3: Łukasiewicz conjunction

⊛S 0 1
2

1

0 0 0 0

1
2

0 1
2

1

1 0 1 1

Tab. 2.4: Sobociński conjunction

Definition 10 (Implication). An implication on {0, 1
2
, 1} is a map

→:
{

0,
1

2
, 1

}

×
{

0,
1

2
, 1

}

Ô→
{

0,
1

2
, 1

}

satisfying the following properties: let x, y ∈ {0, 1
2
, 1},

1. if x ≤ y, then y → z ≤ x → z,

2. if x ≤ y, then z → x ≤ z → y,

3. 0 → 0 = 1 → 1 = 1 → 0 and 1 → 0 = 0.

Example 2. Among the implications listed in [31], we consider the Nelson

implication, the Łukasiewicz implication and the Sobociński implication. They

are defined by the following tables.

⇒N 0 1
2

1

0 1 1 1

1
2

1 1 1

1 0 1
2

1

Tab. 2.5: Nelson implication

⇒L 0 1
2

1

0 1 1 1

1
2

1
2

1 1

1 0 1
2

1

Tab. 2.6: Łukasiewicz implication

⇒S 0 1
2

1

0 1 1 1

1
2

0 1
2

1

1 0 0 1

Tab. 2.7: Sobociński implication
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Now, we regard two multiplications between orthopairs defined as follows.

Definition 11. Let (A, B) and (C, D) be orthopairs on U , we set

1. (A, B) ∗L (C, D) = (A ∩ C, (U \ (A ∪ C)) ∪ B ∪ D),

2. (A, B) ∗S (C, D) = ((A \ D) ∪ (C \ B), B ∪ D).

We can prove that ∗L and ∗S are respectively equivalent to the three-valued

conjunctions ⊛L and ⊛S . More precisely, the following theorem holds.

Theorem 2. Let (A, B) and (C, D) be orthopairs on U . Then,

(A, B) ∗L (C, D) = (E, F ) and (A, B) ∗S (C, D) = (G, H),

where

E = {x ∈ U | f(A,B)(x) ⊛L f(C,D)(x) = 1},

F = {x ∈ U | f(A,B)(x) ⊛L f(C,D)(x) = 0},

G = {x ∈ U | f(A,B)(x) ⊛S f(C,D)(x) = 1} and

H = {x ∈ U | f(A,B)(x) ⊛S f(C,D)(x) = 0}.

Proof. The proof is similar to that of Theorem 1.

Finally, we consider the following implications between orthopairs.

Definition 12. Let (A, B) and (C, D) be orthopairs on U , then

1. (A, B) →N (C, D) = ((U \ A) ∪ C, A ∩ D),

2. (A, B) →L (C, D) = (((U \ A) ∪ C) ∩ (B ∪ (U \ D)), A ∩ D),

3. (A, B) →S (C, D) = (B ∪ C, U \ [(((U \ A) ∪ C) ∩ (A ∪ (U \ D))]).

The previous implications are respectively obtained from the three-valued im-

plications ⇒N , ⇒L and ⇒S . More precisely, the following theorem holds.
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Theorem 3. Let (A, B), (C, D) and (E, F ) be orthopairs on U. Then,

(A, B) →N (C, D) = (E, F ), where

E = {x ∈ U | f(A,B)(x) ⇒N f(C,D)(x) = 1} and

F = {x ∈ U | f(A,B)(x) ⇒N f(C,D)(x) = 0}.

(A, B) →L (C, D) = (G, H), where

G = {x ∈ U | f(A,B)(x) ⇒L f(C,D)(x) = 1} and

H = {x ∈ U | f(A,B)(x) ⇒L f(C,D)(x) = 0},

(A, B) →S (C, D) = (I, J),

I = {x ∈ U | f(A,B)(x) ⇒S f(C,D)(x) = 1} and

J = {x ∈ U | f(A,B)(x) ⇒S f(C,D)(x) = 0}.

Proof. The proof is similar to that of Theorem 1.

On the other hand, there is an equivalent way to describe the relationship

between three-valued connectives and the operations defined in 8, 11 and

12. It is provide by using the next definition and the next theorem.

Definition 13. Let C be a covering of the universe U , and let X ⊆ U, we can

define the function F C
X : C Ô→ {0, 1

2
, 1}, where

F C
X (N) =























1 if N ⊆ X,

0 if N ∩ X = ∅,

1
2

otherwise.

(2.1)

for each N ∈ C. We denote F C
X with FX , when C is clear from the context.

The following theorem states that each operation between orthopairs is

obtained from the respective three-valued connective, by using function

2.1.
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Theorem 4. Let C be a covering of U , and let X, Y ⊆ U . Suppose that the

operation ◦ belongs to {∧K, ∨K, ∗L, ∗S , →N , →L, →S}, then (L(X), E(X)) ◦

(L(Y ), E(Y )) is the orthopair (A, B) such that

A =
⋃

{N ∈ C | FX(N) ⊚ FY (N) = 1}

and

B =
⋃

{N ∈ C | FX(N) ⊚ FY (N) = 0},

where ⊚ respectively belongs to {∧, ∨,⊛L,⊛S , ⇒N , ⇒L, ⇒S}.

Proof. We provide the proof only for the operation ∗S , since the remaining

cases can be similarly demonstrated.

Let x ∈ U and suppose that (L(X), E(X)) ∗S (L(Y ), E(Y )) = (A, B). By

Definition 11, x ∈ A if and only if x ∈ (L(X)\E(Y ))∪ (L(Y )\E(X)), namely

x ∈ L(X) \ E(Y ) or x ∈ L(Y ) \ E(X). This is equivalent to affirm that x

belongs to a node N of C such that

• N ⊆ X and N ∩ Y = ∅, or

• N ⊆ X and N ∩ Y = ∅.

Then, FX(N) = 1 and FY (N) Ó= 0, or FY (N) = 1 and FX(N) Ó= 0. We

conclude that FX(N) ⊛S FY (N) = 1, since ⊛S is the Sobociński conjunction.

Similarly, x ∈ B if and only if x ∈ E(X) ∪ E(Y ), by 11; namely, x belongs

to a node N of C such that N ∩ X = ∅ or N ∩ Y = ∅. Then, FX(N) = 0 or

FY (N) = 0. Hence, FX(N) ⊛S FY (N) = 0.

In Section 4.5, we extend the operations defined in 8, 11 and 12 to sequences

of orthopairs in order to obtain many-valued algebraic structures.

2.3 Ordered structures

Partial orders and lattices This section contains some important contents

of partial order theory and lattice theory. Partial order and lattice theory play
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an important role in many disciplines of computer science and engineering

[50, 13].

Definition 14 (Partially ordered set). A partially ordered set, more briefly a

poset, is a pair (P, ≤), where P is a non empty set and ≤ is a binary relation

on P satisfying the following properties.

1. x ≤ x (reflexivity),

2. if x ≤ y and y ≤ x, then x = y (antisymmetry),

3. if x ≤ y and y ≤ z, then x ≤ z (transitivity),

for each x, y, z ∈ L.

Moreover, if (P, ≤) is a poset, then (S, ≤) is also a poset, for each S ⊆ P .

An example of partially ordered set is the set 2U of all subsets of U with the

set inclusion ⊆.

Let (P, ≤) be a poset, and x, y ∈ P , we say that y is the successor of x in P ,

if x < y and there is no z ∈ P such that x < z < y. Furthermore, P has a

maximum (or greatest) element if there exists x ∈ P such that y ≤ x for all

y ∈ P . An element x ∈ P is maximal if there is no element y ∈ P with y > x.

Minimum and minimal elements are dually defined. P has a minimum (or

least) element if there exists x ∈ P such that x ≤ y for all y ∈ P . An element

x ∈ P is minimal if there is no element y ∈ P with y < x.

We can draw the Hasse diagram of each finite poset (P, ≤): the elements

of P are represented by points in the plane, and a line is drawn from x up

to b, when b is a successor of a. Smaller elements are drawn under their

successors.

Definition 15 (Chain). A partially ordered set (P, ≤) is a chain if and only if

x ≤ y or y ≤ x, for each x, y ∈ P .

Definition 16 (Downset and Upset). Let (P, ≤) be a partially ordered set,

and let S ⊆ P . Then, S is a downset of P if and only if satisfies the following

property:
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for any y ∈ P , if y ≤ x and x ∈ S, then y ∈ S.

Dually, S is an upset of P if and only if satisfies the following property:

for any y ∈ P , if x ≤ y and x ∈ S, then y ∈ S.

Moreover, we set

↓ S = {y ∈ P | y ≤ x for some x ∈ S} and

↑ S = {y ∈ P | x ≤ y for some x ∈ S}.

Definition 17 (Forest). Let (P, ≤) be a partially ordered set, and let F ⊆ P .

Then, (F, ≤) is a forest if and only if every downset is a chain.

Definition 18 (Tree). A tree (P, ≤) is a forest that has minimum.

Example 3. Consider the following binary relation on the set N of positive

integers defined as follows: let x, y ∈ N,

x 4 y if and only if x divides y. (2.2)

Then, the Hasse diagrams of the partially ordered sets

({1, 2, 3},4), ({1, 2, 5, 10},4) and ({2, 7, 14},4)

are respectively the following.

1

2 3

1

2 5

10

14

2 7

Fig. 2.2: Partially ordered sets

The poset (↑ {7},4) is a chain. The poset ({1, 2, 3},4) is a forest.
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Minimal elements of a forest are called roots, while maximal elements are

called leaves. A map f : F Ô→ G between forests is open if, for a ∈ G and

b ∈ F , whenever a ≤ f(b) there exists c ∈ F with c ≤ b such that f(c) = a.

Equivalently, open maps carry upsets to upsets.

Let P be a poset, and let S be a subset of P. We say that an element x ∈ P is

an upper bound for S if x ≥ s for each s ∈ S. We can say that x is the least

upper bound for S if x is an upper bound for S and x ≤ y, for every upper

bound y of S. Dually, x is a lower bound for S if s ≤ x for each s ∈ S; x is the

greatest lower bound for S if x is a lower bound for S and y ≤ x, for every

lower bound y of S. If the least upper bound and the greatest lower bound

of S exist, then they are unique.

Definition 19 (Lattice). A lattice is a partially ordered set in which every

pair of elements x and y has a least upper bound and a greatest lower bound,

denote with x ∧ y and x ∨ y, respectively.

Lattices can also be defined as algebraic structures.

Definition 20 (Lattice). [75] A lattice is an algebra (L, ∧, ∨) that satisfies the

following proprieties.

1. x ∧ x = x and x ∨ x = x (idempotent laws),

2. x ∧ y = y ∧ x and x ∨ y = y ∨ x (commutative laws),

3. x ∧ (y ∧ z) = (x ∧ y) ∧ z and x ∨ (y ∨ z) = (x ∨ y) ∨ z (associative laws),

4. x ∧ (x ∨ y) = x and x ∨ (x ∧ y) = x (absorption law),

for each x, y, z ∈ L.

Remark 6. The latter two definitions are equivalent. Indeed, suppose that

(L, ≤) is a lattice, and x ∧ y and x ∨ y denote the least upper bound and a

greatest lower bound of x and y, respectively. Then, (L, ∧, ∨) satisfies the all

proprieties of Definition 20.

Moreover, given a lattice (L, ∧, ∨), we can consider the following binary

relation ≤ on L: let x, y ∈ L
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x ≤ y if and only if x ∧ y = x (or x ∨ y = y).

We can prove that (L, ≤) is a partially ordered set, in which every pair of

elements has a greatest lower bound and a least upper bound.

An example of lattice is the structure (2U , ∩, ∪) of all subsets of a set U , with

the usual set operations of intersection and union, or equivalently (2U , ⊆),

where ⊆ is the set inclusion.

We are interested in bounded distributive lattices having the following defini-

tion.

Definition 21 (Bounded lattice). A bounded lattice is a structure

(L, ∧, ∨, 0, 1)

such that (L, ∧, ∨) is a lattice, 0 is the identity element for ∨ (x ∨ 0 = 0) and

1 is the identity element for ∧ (x ∧ 1 = x). 0 and 1 are called bottom and top

of L, respectively.

Definition 22 (Distributive lattice). A lattice (L, ∧, ∨) is distributive if and

only if the operations ∧ and ∨ distribute over each other, namely

1. x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and

2. x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

for each x, y, z ∈ L.

In 1937, the mathematician Garrett Birkhoff proved that there exists a one-

to-one correspondence between distributive lattices and partial orders [14].

Namely, elements of a distributive lattice can be seen as upsets, and the

lattices operations correspond to intersection and union between sets.

Theorem 5 (Birkhoff’s representation theorem). Let (P, ≤) be a partially

ordered set, then the structure (Up(P ), ∩, ∪, ∅, P ), where Up(P ) is the set of

all upsets of P , and the operations ∩ and ∪ are respectively the intersection

and the union between sets, is a bounded distributive lattice; furthermore,

if (L, ∧, ∨, 0, 1) is a bounded distributive lattice, then there exists a partially

ordered set (P, ≤) such that (Up(P ), ∩, ∪, ∅, P ) is isomorphic to (L, ∧, ∨, 0, 1).
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Definition 23 (Residuated lattice). A residuated lattice is a structure

(L, ∧, ∨, ∗, →, e, 0, 1)

such that

1. (L, ∧, ∨, 0, 1) is a bounded lattice,

2. (L, ∗, e) is a monoid,

3. x ∗ y ≤ z if and only if x ≤ z → y, for each x, y, z ∈ L (∗ and → satisfy

the adjointness property).

Kleene algebras Kleene algebras are a subclass of De Morgan algebras. The

latter were introduced by Moisil [71] without the restriction including 0 and

1. Successively, they were studied by several authors, in particular, by Kalman

[60] (under the name of distributive i-lattices), and by Bialynicki-Birula and

Rasiowa, which called them quasi-Boolean algebras [11]. The notation that is

still used was introduced by Monteiro [73].

Definition 24 (De Morgan algebra). A De Morgan algebra is a structure

(A, ∧, ∨, ¬, 0, 1), where

1. (A, ∧, ∨, 0, 1) is a bounded distributive lattice,

2. ¬(x ∨ y) = ¬x ∧ ¬y (the Morgan’s law),

3. ¬¬x = x (¬ is an involution),

for each x, y ∈ A.

Definition 25 (Kleene algebra). A Kleene algebra (A, ∧, ∨, ¬, 0, 1) is a De

Morgan algebra such that the following property, called Kleene property,

holds:

x ∧ ¬x ≤ y ∨ ¬y (2.3)

for each x, y ∈ A.

Kleene algebras are also called normal i-lattices by Kalman.
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Example 4. The structure ({0, 1
2
, 1}, ∧, ∨, ¬, 0, 1) is a three-elements Kleene

algebra, where ∧ and ∨ are respectively the Kleene conjunction and implication

defined in Section 2.2, and ¬x = 1 − x for each x ∈ {0, 1
2
, 1}.

Example 5. Let C be a partition of the finite universe U , and let OC be the set

of all orthopairs generated by C. Then, the structure

(OC , ∧K, ∨K, ¬, (∅, U), (U, ∅))

is a Kleene algebra, where ∧K and ∨K are defined in 11, and ¬(A, B) = (B, A)

for each (A, B) ∈ OC .

We are interested in the family of finite centered Kleene algebras with the

interpolation property, that are explored in [28].

From now on, we denote an algebraic structure having support A with A.

Definition 26 (Centered Kleene algebra). A Kleene algebra A is a centered

Kleene algebra if there exists c ∈ A such that c = ¬c. The element c is called

center of A.

By 2.3, it is easy to prove that if c is a center of A, then it is unique.

The following notion was introduced for the first time by Monteiro [72].

Definition 27. Let (A, ∧, ∨, ¬, 0, 1) be a centered Kleene algebra. Let c be

the center of A. We say that A has the interpolation property if and only if

for every x, y ≥ c such that x ∧ y ≤ c there exists z such that z ∨ c = x and

¬z ∨ c = y.

In [24] the above definition is called (CK) property, but it is also noticed

that it coincides with the interpolation property described in [28], so we will

use this last name. Not every centered Kleene algebra has the interpolation

property, see Example 5 in [24].

Definition 28. As in [28], let (A, ∧, ∨, ¬, 0, 1) be a Kleene algebra, we set

A+ = {x ∈ A | ¬x ≤ x} and A− = {x ∈ A | x ≤ ¬x}.

We call A+ and A− positive and negative cone, respectively.
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We can observe that the structure (A+, ∧, ∨) is a sublattice of (A, ∧, ∨) con-

taining 1, and dually, (A−, ∧, ∨) is a sublattice of (A, ∧, ∨) containing 0.

Kalman construction The following construction is due to Kalman [60]. Let

(L, ∧, ∨, 0, 1) be a bounded distributive lattice, we consider

K(L) = {(x, y) ∈ L × L | x ∧ y = 0} (2.4)

and the operations ⊓, ⊔ and ¬ defined on K(L) as follows:

(x, y) ⊓ (u, v) = (x ∧ u, y ∨ v) (2.5)

(x, y) ⊔ (u, v) = (x ∨ u, y ∧ v) (2.6)

¬(x, y) = (y, x) (2.7)

for each (x, y), (u, v) ∈ K(L). Then,

K(L) = (K(L), ⊓, ⊔, ¬, (0, 1), (1, 0)) (2.8)

is a centered Kleene algebra, with center (0, 0). Moreover,

K(L)+ = {(x, 0) | x ∈ L} and K(L)− = {(0, x) | x ∈ L}.

The following theorem, proved by Cignoli [28] states that centered Kleene

algebras with the interpolation property are represented by bounded dis-

tributive lattices.

Theorem 6. A Kleene algebra A is isomorphic to K(L) for some bounded

distributive lattice L if and only if A is centered and satisfies the interpolation

property. In this case L is isomorphic to the lattice A+.

By Birkhoff representation theorem and by Theorem 6, the following result

holds.

Theorem 7. A Kleene algebra A is isomorphic to K(Up(P )), for some partially

ordered set (P, ≤), if and only if A is centered and satisfies the interpolation

property. In this case (Up(P ), ∩, ∪, ∅, P ) is isomorphic to the lattice A+.
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Remark 7. Trivially, K(Up(P )) is the set of all pairs of disjoint upsets of P ,

and the operations 2.5 and 2.6 are the following: let (X1, X2), (Y 1, Y 2) ∈

K(Up(P )), then

(X1, X2) ⊓ (Y 1, Y 2) = (X1 ∩ Y 1, X2 ∪ Y 2), (2.9)

(X1, X2) ⊔ (Y 1, Y 2) = (X1 ∪ Y 1, X2 ∩ Y 2). (2.10)

In this thesis, we focus on some structures having Kleene algebras as reduct.

Namely, they are Nelson algebras, Nelson lattices, Kleene lattices with implic-

ation and IUML-algebras. Moreover, we will require that they are centered

and satisfy the interpolation property.

Nelson algebras Nelson algebras were introduced by Rasiowa [86], under

the name of N-lattices, as the algebraic counterparts of the constructive logic

with strong negation considered by Nelson and Markov [84]. The centered

Nelson algebras with the interpolation property are represented by Heyting

algebras, that are defined as follows.

Definition 29 (Pseudo-complement). [28] Let (L, ∧, ∨, 0, 1) be a bounded

distributive lattice, and let x, y ∈ L. Then, the pseudo-complement of x with

respect to y, denoted with x → y, is an element of L satisfying the following

proprieties:

1. x ∧ x → y ≤ y and

2. if x ∧ z ≤ y, then z ≤ x → y, for each z ∈ L.

Notice that, given a bounded distributive lattice (L, ∧, ∨, 0, 1), the pseudo-

complement of x with respect to y does not always exist.

Definition 30 (Heyting algebra). An Heyting algebra is a structure

(H, ∧, ∨, →, 0, 1),

where the reduct (H, ∧, ∨, 0, 1) is a bounded residuated lattice, and x → y is

the pseudo-complement of x with respect to y given in Definition 29.
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The next theorem affirms that there exists a correspondence one-to-one

between finite Heyting algebras and finite partially ordered sets.

Theorem 8. [14] For each finite Heyting algebra H, there exists a finite poset

(P, ≤) such that H is isomorphic to (Up(P ), ∩, ∪, →P , ∅, P ), where

X →P Y = P\ ↓ (X \ Y ), (2.11)

for each X, Y ∈ Up(P ).

Definition 31 (Quasi-Nelson algebra). A quasi-Nelson algebra is a structure

(A, ∧, ∨, ¬, ⇒, 0, 1)

such that

1. (A, ∧, ∨, ¬, 0, 1) is a Kleene algebra, and

2. for each x, y ∈ A, the pseudo-complement of x with respect to ¬x ∨ y,

denoted with x ⇒ y, exists.

Definition 32 (Nelson algebra). A Nelson algebra is a quasi Nelson algebra

(A, ∧, ∨, ¬, ⇒, 0, 1), that satisfies the following property: let x, y, z ∈ A

(x ∧ y) ⇒ z = x ⇒ (y ⇒ z).

Example 6. The structure ({0, 1
2
, 1}, ∧, ∨, ¬, ⇒N , 0, 1), where ¬x = 1 − x for

each x ∈ {0, 1
2
, 1}, and ⇒N is the Nelson implication on {0, 1

2
, 1} defined in

Section 2.2, is a three-elements Nelson algebra.

Example 7. Let C be a partition of the finite universe U , and let OC be the set

of all orthopairs generated by C. Then, the structure

(OC , ∧K, ∨K, ¬, →N , (∅, U), (U, ∅))

is a finite Nelson algebra, where →N is given in Definition 12.

Manuel M. Fidel [43] and Dimiter Vakarelov [99] have shown independently

that if (H, ∧, ∨, →, 0, 1) is an Heyting algebra, then (K(H), ⇒), that is the

structure (K(H), ⊓, ⊔, ¬, ⇒, (∅, H), (H, ∅)), is a Nelson algebra, where

(x, y) ⇒ (u, v) = (x → u, x ∧ v) (2.12)
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for each (x, y), (u, v) ∈ K(H).

Moreover, Cignoli [28] proved the following result.

Theorem 9. A finite Nelson algebra A is isomorphic to (K(H), ⇒) for some

finite Heyting algebra H if and only if A is centered and satisfies the interpolation

property.

By Theorem 8, Equation 2.12 and Theorem 9, the following result holds.

Theorem 10. Let A be a Nelson algebra. Then, A is a finite centered Nelson

algebra with the interpolation property if and only if there exists a finite poset

(P, ≤) such that A ∼= (K(Up(P )), →1), where

(X1, X2) →1 (Y 1, Y 2) = (P\ ↓ (X1 \ Y 1), X1 ∩ Y 2), (2.13)

for each (X1, X2), (Y 1, Y 2) ∈ K(Up(P )).

Nelson lattices Nelson lattices are algebraic models of constructive logic

with strong negation [97]. They are particular involutive residuated lat-

tices. Moreover, finite centered Nelson lattices are represented by Heyting

algebras.

Definition 33 (Involutive residuated lattice). An involutive residuated lattice

is a bounded, integral and commutative residuated lattice

(A, ∧, ∨, ∗, →, e, 0, 1)

such that the operation ¬, defined by ¬x = x → 0 for each x ∈ A, is an

involution.

The operations ∗ and → of an involutive residuated lattice with support A

can be obtained one from each other as follows: let x, y ∈ A, then

x ∗ y = ¬(x → ¬y) (2.14)

and

x → y = ¬(x ∗ ¬y). (2.15)

Definition 34 (Nelson lattice). A Nelson lattice is an involutive residuated

lattice

(A, ∧, ∨, ∗, →, e, 0, 1),

2.3 Ordered structures 29



where the following inequality holds: let x2 = x ∗ x,

(x2 → y) ∧ ((¬y2) → ¬x) ≤ x → y,

for each x, y ∈ A.

Example 8. The structure ({0, 1
2
, 1}, ∧, ∨,⊛L, ⇒L, 1

2
, 0, 1) is a three-elements

Nelson lattice, where ⊛L and ⇒L are respectively the Łukasiewicz conjunction

and implication on {0, 1
2
, 1} defined in Section 2.2.

Example 9. Let C be a partition of the finite universe U , and let OC be the set

of all orthopairs generated by C. Then, the structure

(OC , ∧K, ∨K, ∗L, →L, (∅, ∅), (∅, U), (U, ∅)),

where ∗L and →L are defined in Section 2.2, is a finite Nelson lattice.

Remark 8. Centered Nelson algebras and Nelson lattices are equationally

equivalent, namely they are obtained one from the other as follows [21].

If (A, ∧, ∨, ¬, ⇒, 0, 1) is a centered Nelson algebra, then (A, ∧, ∨, ∗, →, 0, 1) is

a Nelson lattice, where

x ∗ y = ¬(x ⇒ ¬y) ∨ ¬(y ⇒ ¬x) and x → y = (x ⇒ y) ∧ (¬y ⇒ ¬x),

for each x, y, z ∈ A. Vice-versa, if (A, ∧, ∨, ∗, →, 0, 1) is a Nelson lattice, then

(A, ∧, ∨, ¬, ⇒, 0, 1) is a centered Nelson algebra, where

¬x = x → 0 and x ⇒ y = x2 → y,

for each x, y ∈ A.

We can notice that if (H, ∧, ∨, →, 0, 1) is an Heyting algebra, then

(K(H), ∗, ⇒),

where (K(H), ∗, ⇒) denotes (K(H), ⊓, ⊔, ∗, ⇒, (∅, ∅), (∅, H), (H, ∅)), is a Nel-

son lattice, such that

(x, y) ∗ (u, v) = (x ∧ u, (x → v) ∧ (u → y)) (2.16)
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and

(x, y) ⇒ (u, v) = ((x → u) ∧ (v → y), x ∧ v), (2.17)

for each x, y, u, v ∈ H.

Finite centered Nelson lattices with the interpolation property are represented

by finite Heyting algebras [24].

Theorem 11. A finite Nelson lattice A is isomorphic to (K(H), ∗, ⇒) for some

finite Heyting algebra H if and only if A is centered and satisfies the interpolation

property.

By Theorem 8, Equation 2.16, Equation 2.17 and Theorem 11, the following

result holds.

Theorem 12. Let A be a Nelson lattice. Then, A is a finite centered Nelson

lattice with the interpolation property if and only if there exists a finite poset

(P, ≤) such that A ∼= (K(Up(P )), ⋆2 →2), where

(X1, X2) ⋆2 (Y 1, Y 2) = (X1 ∩ Y 1, P \ (↓ (X1 \ Y 2) ∪ ↓ (Y 1 \ X2))), (2.18)

(X1, X2) →2 (Y 1, Y 2) = (P \ (↓ (X1 \ Y 1) ∪ ↓ (Y 2 \ X2)), X1 ∩ Y 2), (2.19)

for each (X1, X2), (Y 1, Y 2) ∈ K(Up(P )).

IUML-algebras IUML-algebras are the algebraic counterpart of the logic

IUML, which is a substructural fuzzy logic that is an axiomatic extension

of the multiplicative additive intuitionistic linear logic MAILL [69]. IUML-

algebras can also be defined as bounded odd Sugihara monoids, where a

Sugihara monoid is the equivalent algebraic semantics for the relevance

logic RM t of R-mingle as formulated with Ackermann constants. In [45] a

dual categorical equivalence is shown between IUML-algebras and suitable

topological spaces defined starting from Kleene spaces. In this dissertation,

we focus only on finite IUML-algebras refers to [1] and [69].

Definition 35 (IUML-algebra). An idempotent uninorm mingle logic algebra

(IUML-algebra) [70] is an idempotent commutative bounded residuated

lattice

(A, ∧, ∨, ∗, →, e, ⊥, ⊤),
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satisfying the following properties:

1. (x → y) ∨ (y → x) ≥ e, and

2. (x → e) → e = x,

for every x, y ∈ A.

In any IUML-algebra, if we define the unary operation ¬ as ¬x = x → e, then

¬¬x = x (¬ is involutive) and x → y = ¬(x ∗ ¬y).

Example 10. The structure ({0, 1
2
, 1}, ∧, ∨,⊛S , ⇒S , 1

2
, 0, 1) is a three-elements

IUML-algebra, , where ⊛S and ⇒S are respectively the Sobociński conjunction

and implication on {0, 1
2
, 1} defined in Section 2.2.

Example 11. Let C be a partition of the finite universe U , and let OC be the

set of all orthopairs generated by C. Then, the structure

(OC , ∧K, ∨K, ∗S , →S , (∅, ∅), (∅, U), (U, ∅)),

where ∗S and →S are defined in Section 2.2, is a finite IUML-algebra.

Moreover, in [1] a dual categorical equivalence is described between finite

forests F with order preserving open maps and finite IUML-algebras with

homomorphisms.

Definition 36. For any finite forest F , we consider K(Up(F )), that is the set

of pairs of disjoint upsets of F (it is the set defined by 2.4 starting from the

lattice (Up(F ), ∩, ∪, ∅, F ), and we define the following operations: if (X1, X2)

and (Y 1, Y 2) belong to K(Up(F )), we set:

(X1, X2) ⋆3 (Y 1, Y 2) = ((X1 ∩ Y 1) ∪ (X ⋄ Y ), (X2 ∪ Y 2) \ (X ⋄ Y )) (2.20)

where, for each U = (U1, U2), V = (V 1, V 2) ∈ K(Up(F )), letting

U0 = F \ (U1 ∪ U2), we set

U ⋄ V = ↑ ((U0 ∩ V 1) ∪ (V 0 ∩ U1)).

(X1, X2) →3 (Y 1, Y 2) = ¬((X1, X2) ⋆3 (Y 2, Y 1)). (2.21)
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Theorem 13. [1] For every finite forest F , the structure

(K(Up(F )), ⋆3, →3) = (K(Up(F )), ⊓, ⊔, ⋆3, →3, (∅, ∅), (∅, F ), (F, ∅))

is an IUML-algebra. Vice-versa, for each finite IUML-algebra A there is a finite

forest FA such that A is isomorphic with (K(Up(FA)), ⋆3, →3).

Kleene lattices with implication Kleene lattices with implication are a class

of Kleene algebras where an additional operation of implication can be

defined in such a way to make them DLI-algebras, (i.e. algebras with

implication). The latter generalize the Heyting algebras and are defined in

[25].

Definition 37 (DLI-algebra). A DLI-algebra is a structure

(H, ∨, ∧, →, 0, 1),

where (H, ∧, ∨, 0, 1) is a bounded distributive lattice and the following prop-

erties hold: let x, y, z ∈ A

1. (x → y) ∧ (x → z) = x → (y ∧ z),

2. (x → z) ∧ (y → z) = (x ∨ y) → z,

3. 0 → x = 1,

4. x → 1 = 1.

Furthermore, a DLI+-algebra is a DLI-algebra (H, ∨, ∧, →, 0, 1) where the

following inequality holds: a ∧ (a → b) ≤ b, for each a, b ∈ H.

It is easy to prove that each Heyting algebra is also a DLI+-algebra.

Definition 38 (DLI∗-algebra). A DLI∗-algebra is a structure

(H, ∧, ∨, →, 0, 1),

where (H, ∧, ∨, 0, 1) is a bounded distributive lattice and → is defined as

follows: let x, y ∈ H,

x → y =











1 if x = 0,

y if x Ó= 0.
(2.22)
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Proposition 1. A DLI∗-algebra is a DLI+-algebra.

By Theorem 5, the following result holds.

Theorem 14. The structure (H, ∧, ∨, →, 0, 1) is a DLI∗-algebra if and only if

H ∼= (Up(P ), ∩, ∪, →∗
P , ∅, P ), where

X →∗
P Y =











P if X = ∅,

Y if X Ó= ∅,
(2.23)

for each X, Y ∈ P .

Definition 39 (Kleene lattice with implication). A Kleene lattice with implica-

tion is a structure

(A, ∧, ∨, ¬, ∗, →, 0, 1)

such that (A, ∧, ∨, ¬, 0, 1) is a centered Kleene algebra and the following

conditions hold: let c be the center of A and let x, y ∈ A

1. (A, ∧, ∨, →, 0, 1) is a DLI-algebra,

2. (x ∧ (x → y)) ∨ c ≤ y ∨ c,

3. c → c = 1,

4. (x → y) ∧ c = (¬x ∨ y) ∧ c,

5. (x → ¬y) ∨ c = ((x → (¬x ∨ c))).

By equation 2.14, we can define the operation ∗ from →. Vice-versa, by

equation 2.15, → is obtained from ∗.

It is easy to prove that each Nelson algebra is also a Kleene lattice with

implication.

Let (H, ∧, ∨, →, 0, 1) be a DLI+-algebra, then (K(H), ⋆, ⇒) is a Kleene lattice

with implication, where ⇒ is defined by 2.17 and x ⋆ y = ¬(x ⇒ ¬y).

Moreover, the following theorem holds.

Theorem 15. A Kleene lattice with implication A is isomorphic to the structure

(K(H), ⋆, ⇒) for some DLI+-algebra H if and only if it has the interpolation

property.
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Definition 40 (KLI∗-algebra). A KLI∗-algebra is a structure

(A, ∧, ∨, ¬, ∗, →, 0, 1),

where (A, ∧, ∨, ¬, 0, 1) is a centered Kleene algebra and the operations ∗ and

→ are defined as follows: let c be the center of A, and let x, y ∈ A

x → y =







































1, if x ≤ c and y ≥ c;

¬x, if x ≤ c and y � c;

y, if x � c and y ≥ c;

((y ∨ c) ∧ ¬x) ∨ ((¬x ∨ c) ∧ y), if x � c and y � c;

(2.24)

and x ∗ y = ¬(x → y).

Proposition 2. [24] A KLI∗-algebra is a Kleene lattice with implication.

The next result follows by Theorem 14 and Theorem 15.

Theorem 16. The structure (A, ∧, ∨, ¬, ∗, →, 0, 1) is a KLI∗-algebra with the

interpolation property if and only if A ∼= (K(Up(P )), ⋆4, →4), where ⋆4 and →4

are defined as follows.

(X1, X2) ⋆4 (Y 1, Y 2) =



































(∅, P ), if X1 = ∅ and Y 1 = ∅;

(X1, X2), if X1 = ∅ and Y 1 Ó= ∅;

(Y 1, Y 2), if X1 Ó= ∅ and Y 1 = ∅;

(X1 ∩ Y 1, X2 ∩ Y 2), if X1 Ó= ∅ and Y 1 Ó= ∅;

(2.25)

and

(X1, X2) →4 (Y 1, Y 2) =



































(P, ∅), if X1 = ∅ and Y 2 = ∅;

(X2, X1), if X1 = ∅ and Y 2 Ó= ∅;

(Y 1, Y 2), if X1 Ó= ∅ and Y 2 = ∅;

(Y 1 ∩ X2, X1 ∩ Y 2), if X1 Ó= ∅ and Y 2 Ó= ∅;

(2.26)

for each (X1, X2), (Y 1, Y 2) ∈ K(Up(P )).
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3Sequences of refinements

of orthopairs

„Mathematical objects are not so directly

given as physical objects. They are

something between the ideal world and the

empirical world.

— Kurt Gödel

In this chapter, we introduce the definition of refinement sequences of partial

coverings as special sequences of coverings representing situations where new

information is gradually provided on ever smaller sets of objects. We provide

examples of environments in which refinement sequences arise; in detail, we

obtain refinement sequences starting from incomplete information tables and

formal contexts. We identify some families of sequences considering how

much the blocks of their coverings overlap. We identify refinement sequences

as partially ordered sets. Moreover, we introduce the notion of sequences of

orthopairs, in order to generalize the rough set theory. We represent each

sequence of orthopairs as a pair of disjoint upsets of a partially ordered set,

or equivalently, as a labelled poset. Finally, we provide a theorem that is

fundamental to prove the results of Chapter 4. Preliminary versions of this

chapter appeared in [3, 17, 16, 2].

3.1 Refinement sequences

In this section, we introduce the notion of refinement sequence of a universe.

Refinement sequences are special sequences of partial coverings of a given

universe (a partial covering of U is a subset of 2U , i.e. any set of subsets of

U). More precisely, the refinements sequences are defined as follows.

Definition 41. A sequence C = (C1, . . . , Cn) of partial coverings of U is a

refinement sequence of U if each element of Ci is contained in an element of

Ci−1, for i = 2, . . . , n.
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For simplicity, we omit to specify on which universe the refinement sequence

is defined, when it is clear.

Example 12. Suppose that U = {a, b, c, d, e, f, g} and that C1 and C2 are

partial coverings of U respectively defined as follows:

• C1 = {{a, b, c, d}, {d, e, f, g}};

• C2 = {{a, b, c}, {c, d}, {d, e},{f, g}}.

Then, (C1, C2) is a refinement sequence of U .

Remark 9. We notice that a partial covering of U naturally defines a tol-

erance relation on a subset of U and the vice-versa also holds. Moreover,

we call blocks both the elements of a partial covering and the tolerance

classes. Therefore, a refinement sequence (C1, . . . , Cn) of partial coverings of

U corresponds to a sequence (R1, . . . , Rn) of tolerance relations respectively

defined on the subsets U1, . . . , Un of U , where

• Ui is the union of the blocks of Ci, for each i ∈ {1, . . . , n};

• Ui ⊆ Uj, for each j ≤ i;

• Ri(u) ⊆ Rj(u), for each j ≤ i and u ∈ Ui.

In this thesis, we also consider refinement sequences of partial partitions of a

universe, where a partition corresponds to an equivalence relation, and it is

a covering such that its blocks are disjoint with each others.

As shown in the following example, the refinement sequences can be used

for ontology construction.

Example 13. Suppose to start from a set of rocks (first covering) and then

to specify our interest in magmatic rocks and sedimentary rocks that form

a partial covering of the initial set of rocks (the latter also contains several

elements that are metamorphic rocks, then the covering made of magmatic and

sedimentary rocks is partial). Then, we intend to refine such classification by

considering two groups of magmatic rock (intrusive rocks and extrusive rocks)

and two groups of sedimentary rocks (Chemical rocks and Clastic rocks). The

refinement sequence of partial coverings can be represented as follows.
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Rocks

Magmatic Rocks Sedimentary Rocks

Intrusive Rocks Extrusive Rocks Chemical Rocks Clastic Rocks

Fig. 3.1: Refinement sequence for rocks classification

The next example shows that a refinement sequence corresponds to an

incomplete information table. The latter is a table where a set of objects is

described by several attributes, but some data may be missing.

Example 14. Suppose that we have information about 22 users of Facebook,

labelled with u1, . . . , u22. In particular, we focus on information related to the

place where each user declares to come from on its personal profile.

The available data are organized in the information table as in Table 3.1, (see

[63]) where U = {u1, . . . , u22} is the universe and {Country, Region, City} is

the set of attributes.

Country Region City

u1 Italy × ×

u2 Italy Lombardy Varese

u3 Italy Lombardy Varese

u4 Italy Lombardy Milan

u5 Italy Lombardy Milan

u6 Italy Lombardy Pavia

u7 Italy Lombardy Pavia

u8 Italy Campania Naples

u9 Italy Campania Naples

u10 Italy Campania ×

u11 Italy Campania ×

Country Region City

u12 France Brittany Rennes

u13 France Brittany Rennes

u14 France Brittany ×

u15 France Brittany ×

u16 France Grand Est Strasbourg

u17 France Grand Est Strasbourg

u18 France Grand Est Mets

u19 France Grand Est Mets

u20 France Grand Est ×

u21 France Grand Est ×

u22 France × ×

Tab. 3.1: Information table of the users
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Observe that there are three equivalence relations between users determined respect-

ively by considering users coming from the same country or the same region or

the same city1. They are the so-called indiscernibility relations of Table 3.1 [63].

Moreover, their respective partial coverings (that are also partial partitions) are

C1 = {{u1, . . . , u11}, {u12, . . . , u22}} (classes are sets of users coming from the same

country); C2 = {{u2, . . . , u7}, {u8, . . . , u11}, {u12, . . . , u15}, {u16, . . . , u21}} (classes

are set of users coming from the same region) and C3 = {{u2, u3}, {u4, u5}, {u6, u7},

{u8, u9}, {u12, u13}, {u16, u17}, {u18, u19}} (classes are set of users coming from the

same city). It easy to see that C = (C1, C2, C3) is a refinement sequence of U .

Refinement sequences and formal context There is a close connection

between refinement sequences and formal contexts, which are mathematical

structures used in Formal Concept Analysis and Fuzzy Formal Concept Analysis

[46, 23]. A formal context is a triple (X, Y, I), where X is a set of objects,

Y is a set of attributes, and I is a binary relation between X and Y . If I

is a fuzzy relation, then (X, Y, I) is called fuzzy formal context, and I(x, y)

expresses the degree wherewith the object x has the attribute y. A formal

context can be represented by a table with rows corresponding to objects,

columns corresponding to attributes, and table entries containing each degree

I(x, y), with x ∈ X and y ∈ Y . In particular, it is clear that if I is an ordinary

relation, the table entries only contain the degrees 0 and 1. By using several

techniques [9, 19], formal concepts are extracted from every formal context.

Formal concepts are particular clusters which represent natural human-like

concepts such as “organism living in water”, “car with all wheel drive system”,

etc.

Given a refinement sequence C = (C1, . . . , Cn), we can see a block b of Ci

as the set of all elements of U that have a specific attribute yb. Thus, C

corresponds to a formal context (U, YC, I), where YC = ∪{yb | b ∈ Ci and i ∈

{1, . . . , n}} and “(u, yb) ∈ I if and only if u ∈ b”. For example, let C = (C1 =

{b1, b2}, C2 = {b3, b4, b5}) be the refinement sequence of {a, b, c, d, e, f, g} such

that b1 = {a, b, c}, b2 = {d, e, f, g}, b3 = {a, b}, b4 = {c, d, e} and b5 = {f, g}.

Then, the formal context associated to C is represented by Table 3.2.

Vice-versa, starting from a formal context, we can build a the refinement

sequence as follows. For each y ∈ Y , we set by = {x ∈ X | (x, y) ∈ I}.

Let s = |Y |, if s = 1, then the refinement sequence assigned to (X, Y, I) is

1The equivalence relations coming from the same region and coming from the same city are
defined on proper subsets of U , for there are missing data for some users.
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I yb1
yb2

yb3
yb4

yb5

a 1 0 1 0 0

b 1 0 1 0 0

c 1 0 0 1 0

d 0 1 0 1 0

e 0 1 0 1 0

f 0 1 0 0 1

g 0 1 0 0 1

Tab. 3.2: Formal context of C

trivially made of only one covering. Suppose that s > 1, then we set Cs =

{by | by′ Ó⊆ by, for each y′ ∈ Y } and, let i < s, Ci = {by | there exists by′ ∈

Ci+1 such that by′ ⊆ by and by′ ⊂ by′′ ⊂ by does not hold for each y′′ ∈ Y }.

Therefore, C = (Ck, Ck+1, . . . , Cs) is the refinement sequence assigned to

(X, Y, I), where k = max{i ∈ {1, . . . , s − 1} | Ci Ó= Ci+1}. For example, we

consider the formal context

K = ({a1, a2, a3, a4, a5}, {feline, cat, tiger}, I),

where {a1, a2, a3, a4, a5} represents a set of 5 animals and I is defined by

Table 3.3.

I feline cat tiger

a1 1 1 0

a2 1 1 0

a3 0 0 0

a4 1 0 1

a5 1 0 1

Tab. 3.3: Formal context K

Then, the refinement sequence assigned to K is made of coverings C1 and

C2 such that C1 = {{a1, a2, a4, a5}} = {animals that are felines} and C2 =

{{a1, a2}, {a4, a5}} = {{animals that are cats}, {animals that are tigers}}.
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3.2 Refinement sequences as Posets

In this section, we show that each refinement sequence is represented as a

partially ordered set.

Definition 42. Let C = (C1, . . . , Cn) be a refinement sequence of U . We

assign the partially ordered set (PC, ≤C) to C, where:

• PC =
⋃n

i=1 Ci (the set of nodes is the set of all subsets of U belonging to

the coverings C1, . . . , Cn), and

• N ≤C M if and only if M ⊆ N , for N, M ∈ PC (the partial ordered

relation is the reverse inclusion between sets).

Example 15. Let (C1, C2, C3) be a refinement sequence of {a, b, c, d, e, f, g, h},

where

• C1 = {{a, b, c, d, e, f, g}},

• C2 = {{a, b, c, d}, {c, d, e, f}} and

• C3 = {{c, d}, {d, e, f}}.

The poset assigned to (C1, C2, C3) is shown in the following figure.

{a, b, c, d} {c, d, e, f}

{d, e, f}

{a, b, c, d, e, f, g}

{c, d}

Fig. 3.2: Poset assigned to (C1, C2, C3)

Proposition 3. If C is a refinement sequence of partial partitions of U , then

(PC, ≤C) is a forest.

Proof. Let N, M ∈ ↓ X, with X ∈ PC. Then, N, M ≤C X. By Definition 42,

X ⊆ N ∩ M . Suppose that N ∈ Ci and M ∈ Cj, with i ≤ j. By Definition 41,
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there exists Ñ ∈ Cj such that Ñ ⊆ N . Since Cj is a partial partition of U , we

have that Ñ = M or Ñ ∩ M = ∅. On the other hand, both M and Ñ contain

X. Consequently, Ñ = M and so N ≤C M .

Example 16. If C is the refinement sequence of Example 14, then (PC, ≤C) is

the following forest.

{u1, . . . , u11} {u12, . . . , u22}

{u2, . . . , u7} {u8, . . . , u11} {u12, . . . , u15} {u16, . . . , u21}

{u2, u3}{u4, u5} {u12, u13} {u16, u17} {u18, u19}{u6, u7} {u8, u9}City

Region

Country

Fig. 3.3: Forest of the users

Remark 10. The maximal and minimal elements of (PC, ≤C) are all blocks of

Cn and C1, respectively.

Remark 11. The main difference between C = (C1, . . . , Cn) and the partially

ordered set PC is that the coverings C1, . . . , Cn can also contain the same

blocks, while each block appears only once in PC. For example, consider

the refinement sequence C = (C1, C2) such that C1 = {{a, b}, {b, c, d, e}} and

C2 = {{a, b}, {c, d}}, then PC, that is represented by the following figure, has

only one block {a, b}.

{b, c, d, e}

{a, b} {c, d}

Fig. 3.4: Poset assigned to (C1, C2)

Remark 12. Let C = (C1, . . . , Cn) be a refinement sequence of partial partition

of U and let N ∈ Ci, the successors of N are the nodes of Ci+1 that are

included in N if and only if N /∈ Ci+1. More precisely, the successors of N

are the blocks of Cj included in N , such that j = min{k > i | N /∈ Ck}.
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3.3 Some properties of refinement

sequences

Now, we introduce several properties that a refinement sequence could have;

so, we define what does it mean that a refinement sequence is complete, safe

and pairwise overlapping.

Given a refinement sequence C, we denote by K(C) the set made of the pairs

of disjoint upsets of PC. We notice that K(C) coincides with the set K(Up(PC))

given by 2.4 starting from the lattice (Up(PC), ∩, ∪, ∅, P ).

Definition 43. A refinement sequence C of a universe U is complete if and

only if
⋃

N∈A

N ∩
⋃

N∈B

N = ∅ (3.1)

for each pair (A, B) of K(C).

If the pair (A, B) belongs to K(C), and it satisfies the condition 3.1, then we

say that (A, B) is a pair of totally disjoint upsets of PC and A and B are totally

disjoint from each other.

Example 17. Let C = (C1, C2, C3) be a refinement sequence of the universe

{a, b, c, d, e, f}, where

• C1 = {{a, b, c, d, e, f}},

• C2 = {{a, b, c, d}, {d, e, f}} and

• C3 = {{a, b}}.

Also, we consider the sets A1 = {{a, b, c, d}, {a, b}} and A2 = {{d, e, f}}, which

are upsets of PC, and they are pairwise disjoint. We have that {d} is the

intersection between {a, b, c, d}∪{a, b} (the blocks of A1) and {d, e, f} (the only

block of A2). Indeed, the refinement sequence C is not complete.

Example 18. The refinement sequence of {a, b, c, d, e, f, g} represented by the

following forest is complete.
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{a, b, c} {d, e, f}

{a, b, c, d, e, f, g}

Fig. 3.5: Complete refinement sequence

Proposition 4. Let C = (C1, . . . , Cn) be a refinement sequence of U . If

C1, . . . , Cn are partial partitions of U , then C is complete.

Proof. Let A1 and A2 be upsets of PC such that A1 ∩ A2 = ∅. Suppose that

b1 ∈ A1 ∩ Ci and b2 ∈ A2 ∩ Cj with i ≤ j. By Definition 41, there exists

b̃2 ∈ Ci with b2 ⊆ b̃2. Since Ci is a partial partition, b1 ∩ b̃2 = ∅ or b1 = b̃2. The

equality b1 = b̃2 implies b2 ∈ A1 ∩ A2 which can not occur (A2 is an upsets).

Consequently, b1 ∩ b̃2 = ∅ and so b1 ∩ b2 = ∅.

On the other hand, there exist complete refinement sequences made of

coverings that are not partitions (see the following example).

Example 19. Let C = (C1, C2, C3) be the refinement sequence of the universe

{a, b, c, d, e, f, g} such that

• C1 = {{a, b, c, d, e}, {f, g}},

• C2 = {{a, b, c}, {a, b, d}, {f, g}} and

• C3 = {{a, b}, {f, g}}.

Then, C is complete.

Definition 44. A refinement sequence C is safe if for each N ∈ PC such that

N ⊆ N1 ∪ . . . ∪ Nr with N1, . . . , Nr ∈ PC, there exists j ∈ {1, . . . r} such that

N ⊆ Nj.

Therefore, given a safe refinement sequence C, each node N of PC is not

included in the union of some other nodes of PC that are all greater than N

or disjoint with N .
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The followings are two examples of refinement sequence: the first one is safe

and the second one is not safe.

Example 20. Suppose that

C1 = {{a, b, c, d, e}, {a, f, g, h}} and C2 = {{a, b, c}, {c, d}, {f, g}},

then the refinement sequence C = (C1, C2) is safe.

Example 21. The refinement sequence (C̃1, C̃2) with

C̃1 = {{a, b, c, d, e}, {c, d, e, f, g, h}} and C̃2 = {{a, b, c}, {c, d}, {e, f, g}},

is not safe, since {a, b, c, d, e} ⊆ {a, b, c} ∪ {c, d} ∪ {e, f, g}.

The next remark provides a condition that all nodes of PC must satisfy so that

the complete refinement sequence C is also safe.

Remark 13. By Definition 44, if C is safe and N ∈ PC, then there exists x ∈ N

such that x /∈ M , for each M ∈ PC\ ↓ {N}.

The following proposition yields a condition on nodes of PC, so that a com-

plete refinement sequence C is also safe.

Proposition 5. Let C be a complete refinement sequence of U . C is safe if and

only if each node of PC is not included in the union of its successors.

Proof. (⇒). This implication is trivial and and holds true even without the

assumption that C is complete.

(⇐). Suppose that N ∈ PC and N ⊆ N1 ∪ . . . ∪ Nr, with N1, . . . , Nr ∈ PC and

Ni ∩ N Ó= ∅ for each i ∈ {1, . . . , r}. Since C is complete, Ni ⊆ N or N ⊆ Ni,

for each i ∈ {1, . . . , n}. By hypothesis, there exists Ñ ∈ {N1, . . . , Nr} such

that Ni Ó⊆ N . Then, N ⊆ Ni.

By Proposition 4, we can say that a refinement sequence of partial partitions

is safe if and only if each node of the respective forest is not equal the union

of its successors.

Definition 45. A refinement sequence C = C1, . . . , Cn is pairwise overlapping

if there are not disjoint blocks in Ci, for each i ∈ {1, . . . , n}.
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Example 22. The refinement sequence of Examples 15 is pairwise overlapping,

since the element d belongs to each block of C1, C2 and C3.

A pairwise overlapping refinement sequence differs more from the sequences

of partial partitions than the other refinement sequences. Furthermore,

refinement sequences of partial partitions are pairwise overlapping if and

only if the forests assigned with them are chains.

We also notice that refinement sequences that are associated to forests are

not complete, when are pairwise overlapping. As a consequence, a complete

refinement sequence cannot also be pairwise overlapping.

3.4 Sequences of refinements of

orthopairs

The main aim of this section is to define sequences of refinements of ortho-

pairs.

Definition 46. Let C = (C1, . . . , Cn) be a refinement sequence of U and

X ⊆ U . The sequence of refinements of orthopairs of X determined by C is the

sequence

OC(X) = ((L1(X), E1(X)), . . . , (Ln(X), En(X))),

where (Li(X), Ei(X)) is the orthopair of X determined by Ci.

For short, OC(X) is also called sequence of orthopairs of X determined by

C.

Example 23. Let U = {a, b, c, d, e, f, g, h, i, j} and X = {a, b, c, d, e}. If C is

the refinement sequence of U made of C1 = {{a, b, c, d, e, f, g, h, i, j}}, C2 =

{{a, b, c, d, e}, {e, f, g, h, i}}, C3 = {{a, b, c}, {c, d}, {e, f, g}, {g, h}}, then

OC(X) = ((∅, ∅), ({{a, b, c, d, e}}, ∅), ({{a, b, c}, {c, d}}, {{g, h}})) .

Example 24. Suppose that we are interested to describe the set X = {u1, u8,

u9, u10, u11, u12, u13, u14, u15, u16, u17} with respect to the refinement sequence C

of Example 14. We know that X contains all users that have the attributes

Campania (hence Naples), Brittany (hence Rennes) and Strasbourg; while
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users that come from Lombardy (hence Varese, Milan and Pavia) and Mets

do not belong to X. This means that the sequence of orthopairs of X is

(OC1
(X), OC2

(X), OC3
(X)) where OC1

(X) = (∅, ∅), OC2
(X) = ({u8, . . . , u15},

{u2, . . . , u7}) and OC3
(X) = ({u8, u9, u12, u13, u16, u17}, {u2, . . . , u7, u18, u19})).

We indicate the set of all sequences of orthopairs generated by C with SO(C);

namely, we set

SO(C) = {OC(X) | X ⊆ U}.

Given a refinement sequence C = (C1, . . . , Cn) of U , by Definition 46, the

orthopair (Li(X), Ei(X)) of OC(X) is generated by the covering Ci that is

finer than Ci−1. Clearly, this does not imply that (Li(X), Ei(X)) approximates

better than (Li−i(X), Ei−1(X)) the set X (we say that the orthopair O(X) =

(L(X), E(X)) approximates better than the orthopair Õ(X) = (L̃(X), Ẽ(X))

the set X if and only if L̃(X) ⊆ L(X) and Ẽ(X) ⊆ E(X)), since X ∩ Ui may

be strictly included in X ∩ Ui−1 (the sets U1, . . . , Un are defined in Remark

9).

Example 25. We consider the sequence of Example 24. We observe that OC3
(X)

is not a better approximation of X than OC2
(X), despite C3 is finer than C2,

since u10, u11, u14, u15 appear in OC2
(X), but do not appear in OC3

(X). Trivially,

this is the consequence of the fact that the sequence of partial coverings loses

objects during the refinement process.

More precisely, the following proposition holds.

Proposition 6. Let C = (C1, . . . , Cn) be a refinement sequence of U and X ⊆ U .

Suppose that a ∈ Li−1(X) (or a ∈ Ei−1(X)), with i ∈ {2, . . . , n}. Then,

a ∈ Li(X) if and only if a ∈ Ui; (or a ∈ Ei(X) if and only if a ∈ Ui).

Moreover, it is clear that two different subsets of the given universe can have

the same sequences of orthopairs.

Example 26. Let C = (C1, C2) be the refinement sequence of Example 18.

Suppose that X = {a, b, c, d} and Y = {a, b, c, e}, then OC(X) = OC(Y ) =

((∅, ∅), ({a, b, c}, ∅)).

At ths is point, in order to show that each sequence of orthopairs is represen-

ted by a pair of disjoint upsets of the poset assigned to the given refinement

sequence, we give the following definition.
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Definition 47. Let C = (C1, . . . , C2) be a refinement sequence of U and

X ⊆ U . We set

(X1
C , X2

C) = ({N ∈ PC | N ⊆ X}, {N ∈ PC | N ∩ X = ∅}).

Moreover, we set KO(C) = {(X1
C , X2

C) | X ⊆ U}.

From now, we write (X1, X2) instead of (X1
C , X2

C), when C is clear from the

context.

The following theorem shows that there is a correspondence one-to-one

between the elements of SO(C) and KO(C).

Theorem 17. Given a refinement sequence C = (C1, . . . , Cn) of a universe U ,

the map

α : OC(X) ∈ SO(C) Ô→ (X1, X2) ∈ KO(C)

is a bijection.

Proof. First of all, we prove that α is well defined and injective, namely

OC(X) = OC(Y ) if and only if (X1, X2) = (Y 1, Y 2).

(⇒). We observe that N ∈ X1 if and only if N ∈ Ci and N ⊆ X for some

i ∈ {1, . . . , n}, namely N ∈ Ci and N ⊆ Li(X). Consequently N ∈ Y 1, since

Li(X) = Li(Y ). Dually, N ∈ X2 if and only if N ∈ Y 2, since Ei(X) = Ei(Y )

for each i ∈ {1, . . . , n}.

(⇐). Let i ∈ {1, . . . , n}. x ∈ Li(X) if and only if there is N ∈ PC such that

x ∈ N and N ⊆ X. By hypothesis, N ⊆ Y . Then, x ∈ Li(Y ). Dually, we can

prove that Ei(X) = Ei(Y ) for each i ∈ {1, . . . , n}, since X2 = Y 2.

Surjectivity follows by the definition of KO(C). Hence, α is a bijection.

Remark 14. Definition 42 and Theorem 17 allow us to see a sequence of

orthopairs as a labelled poset. Indeed, we can graphically represent sequences

of orthopairs. More precisely, given a refinement sequence C, the sequence
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OC(X) corresponds to the poset PC that has labels associated with its nodes

through the function lX : PC Ô→ {•, ◦, ?} such that

lX(N) =























• if N ∈ X1;

◦ if N ∈ X2;

? if N ∈ PC \ {X1 ∪ X2}.

(3.2)

For example, consider the refinement sequence of Example 18. Assume

that X = {d, e, f, g}, Y = {a, b, c, d, e, f} and Z = {a}, then the sequences

OC(X) = ((∅, ∅), ({d, e, f}, {a, b, c})), OC(Y ) = ((∅, ∅), ({a, b, c, d, e, f}, ∅)) and

OC(Z) = ((∅, ∅), (∅, {d, e, f})) have the following labelled posets, respectively.

• •

?

◦ •

?

? ◦

?

Fig. 3.6: Labelled posets

Trivially, by 3.2, if lX(N) = • and N ≤C M , then lX(M) = •. Similarly, if

lX(N) = ◦ and N ≤C M , then lX(M) = ◦. On the other hand, lX(M) can be

anyone between •, ◦ and ?, when lX(N) =? and N ≤C M .

Sequences of orthopairs and decision trees Sequences of orthopairs cor-

respond to decision trees. These are graphical models widely used in machine

learning for describing sequential decision problems. A decision tree gen-

erates a classification procedure that recursively partitions a universe into

smaller subdivisions on the basis of a set of tests defined at each branch (or

node) in the tree [44]. The tree is made of a root node (the universe), a

set of internal nodes (splits), and a set of terminal nodes (leaves). A test is

applied for the universe and for each internal node in order to split the set

of objects into successively smaller groups. The terminal nodes are labelled

with values corresponding to the final decisions. An example of decision tree

can be viewed in Figure 3.7, where the labels A, B, C and D represent the

final outcomes of the decision-making process.
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T T

T T

T T

T

A

CB

D

Fig. 3.7: Decision tree

Let C be a refinement sequence of partial partition of U , and let X ⊆ U . The

sequence of orthopairs OC(X) determines three pairwise disjoint subsets of U :

∪{N ∈ PC | lX(N) = •}, ∪{N ∈ PC | lX(N) = ◦} and ∪{N ∈ PC | lX(N) =?}.

This also corresponds to result produced by the decision tree (TC(X), ≤C)

such that

• TC(X) = (PC ∪ {U}) \ H, where

H = {N ∈ PC | if M ∈ PC and M ≤C N then lX(M) ∈ {•, ◦}}, and

• let N be a leaf of TC(X), then the label of N is lX(N).

Trivially, TC(X) can have three outcomes at most, which are •, ◦ and ?. Hence,

if OC(X) is the sequence of orthopairs having labelled poset as in Figure 3.8.

Then, the tree decision TC(X) is shown in Figure 3.9.

? ?

? ◦ • •

◦ ◦ •

Fig. 3.8: Labelled poset of OC(X)

T T

T

? ◦ • •

Fig. 3.9: Decision tree TC(X)
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Clearly, a decision tree with three outcomes determines a refinement sequence

(by considering all nodes of the tree) and a sequence of orthopairs (by

considerings all nodes and all labels of the tree).

From now, given a refinement sequence C, we write K(C) to denote K(Up(PC)),

that is

K(Up(PC)) = {(A, B) ∈ Up(PC) × Up(PC) | A ∩ B = ∅},

where Up(PC) is the set of all upsets of PC (see Section 2.3).

The next proposition shows that each element of KO(C) also belongs to

K(C).

Proposition 7. Let C be a refinement sequence of U and X ⊆ U . Then, (X1, X2)

is a pair of disjoint upsets of PC.

Proof. By Definition 47, X1 ∩ X2 = ∅. If N ∈ X1 and N ≤C M , then

M ⊆ N ⊆ X (by Definition 47) hence M ⊆ X and M ∈ X1. Similarly, if

N ∈ X2 and N ≤C M then M ⊆ N and N ∩ X = ∅, hence M ∩ X = ∅ and

M ∈ X2.

By Proposition 7, KO(C) ⊆ K(C). However, the opposite does not always

hold.

Example 27. Consider the refinement sequence C, where PC is represented in

the following figure.

{a, b, c} {c, d}

{a, b, c, e} {a, b, c, d, f}

Fig. 3.10: Poset of C

We have that ({{a, b, c}}, {{c, d}}) ∈ KO(C), but ({{a, b, c}}, {{c, d}}) /∈ K(C).
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The next theorem (Theorem 18) provides the condition that a pair of disjoint

upsets of PC must have in order to belong to KO(C), when C is safe. To prove

Theorem 18, we need the following proposition.

Proposition 8. Let C be a safe refinement sequence of U and let A be an upset

of PC. Suppose that N ∈ PC and

N ⊆
⋃

M∈A

M.

Then, N ∈ A.

Proof. Since C is safe (see Definition 44), there exists M ∈ A such that

N ⊆ A. However, A is an upset of PC, then N ∈ A.

From now on, we only consider coverings that do not contain singletons,

which are blocks with only one element. We stress that the imposition of this

constraint concerns the very relations between coverings and orthopairs as

approximation of sets, as shown in the following example.

Example 28. Let U = {a, b, c, d, e} and consider the covering of U given by

C = {{a, b}, {c}, {d, e}}. Then, (X1, X2) = ({a, b}, {d, e}) is an orthopair

made of blocks of C, but (X1, X2) does not approximate any subset X of U ,

since either c ∈ X, and then c ∈ X1 or c ∈ X, and then c ∈ X2. More generally,

each orthopair such that {c} is not contained in one of the components of the

pair does not approximate any subset of U .

In order to state the next theorem, we recall that two upsets A and B of a

given poset are totally disjoint if and only if all blocks of A are disjoint from

all blocks of B.

Theorem 18. Let C be a safe refinement sequence of U and let (A, B) ∈ K(C).

Then, (A, B) ∈ KO(C) if and only if A and B are totally pairwise disjoint.

Proof. (⇒). By Definition 47, if (A, B) ∈ KO(C), then there exists X ⊆ U

such that N ⊆ X for each N ∈ A and N ∩ M = ∅ for each M ∈ B. Trivially,

each node of A is disjoint with each node of B, since there is not x ∈ U such

that x ∈ X and x /∈ X.
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(⇐). Suppose that each node of A is disjoint with each node of B. We set

D = {N ∈ PC \(A∪B) | N ∩M = ∅ for each M ∈ A and if M >C N then M ∈ B}.

Since C is safe, for each N ∈ D, we can pick an element xN ∈ N such that

xN /∈ M , for each M ∈ PC \ {↓ N} (see Remark 13). Then, we set

X =
⋃

N∈A

N ∪ {xN |N ∈ D}.

We prove that (A, B) = (X1, X2). It is trivial that A ⊆ X1 and B ⊆ X2. Now,

we suppose that N ∈ X1, and we intend to prove that N ∈ A. Let x ∈ N .

Then, x = xM with M ∈ D or x belongs to some node of A. If x = xM

with M ∈ D, then N ∈ ↓ M (see 13), and so M ⊆ N . Now, two cases

can happen. If M is not a maximal element of PC, then M contains some

elements of the nodes of B. However, by the hypothesis that A and B are

totally pairwise disjoint, this is an absurd. In the other case, namely, if M is a

maximal element of PC, then it contains at least another element that is not

equal to xM (we assumed that the blocks of refinement sequences are not

singletons). By definition of D, such element is not in A and it is different

from other elements xN . It is clear that it is an absurd, since N is included

in X, by hypothesis. We can conclude N is included in the union of blocks

of A. Therefore, by Proposition 8, since C is safe, we have that N ∈ A. Now,

we suppose that N ∈ X2, and we intend to prove that N ∈ B. if N ∈ X2,

then N ∩ M = ∅, for each M ∈ A ∪ D. Consequently, N /∈ (↓ A) ∪ (↓ D).

Moreover, we can notice that B = PC \ {(↓ A) ∪ (↓ D)}. Then, we can state

that N ∈ B.

Theorem 18 permits us to prove the following result, which is relevant to

regard sequences of orthopairs as Kleene algebras.

Theorem 19. Let C be a complete and safe refinement sequence of U . Then,

KO(C) = K(C).

Proof. We have that KO(C) ⊆ K(C), by Proposition 7. Moreover, Let (A, B) ∈

K(C), then A and B are totally pairwise disjoint, since C is complete. By

hypothesis that C is safe and by Theorem 18, (A, B) ∈ KO(C).

As a consequence of the previous theorem, we can define several operations

on sequences of orthopairs, using the operations already defined on sets of
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pairs of disjoint upsets of posets (see Section 2.3). However, we will explore

this topic in the next chapter.
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4Sequences of orthopairs

as Kleene algebras

„Mathematics is the art of giving the same

name to different things.

— Henrie Poincaré

In this chapter, we equip sets of sequences of orthopairs with some operations

in order to obtain finite many-valued algebraic structures (those are defined

in Section 2.3). Furthermore, we prove theorems providing to represent

such structures as sequences of orthopairs. We show that, when sequences

of orthopairs are generated by one covering, our operations coincide with

operations between orthopairs listed in Section 2.2. Also, we discover how

to generate operations between sequences of orthopairs starting from those

concerning individual orthopairs. Finally, we use a sequence of orthopairs to

represent an examiner’s opinion on a number of candidates applying for a job.

Moreover, we show that opinions of two or more examiners can be combined

using our operations in order to get a final decision on each candidate.

4.1 From a safe refinement sequence to a

Kleene algebra

In the previous chapter, given a refinement sequence C, we proved that each

element of KO(C) is a pair of disjoint upsets of PC (see Proposition 7), and

that KO(C) coincides with K(C) if and only if C is safe and complete (see

Example 27 and Theorem 19). As a consequence, we can equip KO(C) with

the operations ⊓, ⊔ and ¬ defined by 2.9, 2.10 and 2.7, respectively, and so

we can consider the following structure

KO(C) = (KO(C), ⊓, ⊔, ¬, (PC, ∅), (∅, PC)).

Unfortunately, KO(C) is not always a lattice, since KO(C) could not be closed

under ⊓ and ⊔, when KO(C) ⊂ K(C).
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Example 29. Let U = {a, b, c, d} and C = (C1, C2), where

• C1 = {{a, b, c, d}} and

• C2 = {{a, b}, {c, d}}).

Then, it occurs that

• (∅, {{a, b}}) ⊓ (∅, {{c, d}}) = (∅, {{a, b}, {c, d}}) and

• ({{a, b}}, ∅) ⊔ ({{c, d}}, ∅) = ({{a, b}, {c, d}}, ∅).

However, (∅, {{a, b}, {c, d}}), ({{a, b}, {c, d}}, ∅) /∈ KO(C).

On the other hand, the following theorem states that requiring that re-

finement sequences be safe is sufficient to obtain finite centered Kleene

algebras.

Theorem 20. Let C be a safe refinement sequence of U . Then,

1. KO(C) ⊇ K
+(C) and

2. KO(C) is a centered Kleene subalgebra of K(C) (see Definition 26), where

K(C) = (K(C), ⊓, ⊔, ¬, (∅, PC), (PC, ∅)),

and the center is (∅, ∅).

Proof. 1. Let (A, B) ∈ K
+(C), then B = ∅. Consequently, A and B are

totally disjoint, namely satisfy Condition 3.1. Certainly, (A, B) ∈ KO(C),

by Theorem 18.

2. Since K
+(C) ⊆ KO(C), we have that (∅, ∅) ∈ KO(C). Moreover, KO(C) is

closed under all operations of K(C), since both (X1 ∩ Y 1, X2 ∪ Y 2) and

(X1 ∪ Y 1, X2 ∩ Y 2) are pairs of totally disjoint upsets of PC. Then, by

Theorem 18, both belong to KO(C).
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Remark 15. Clearly, when C is a safe refinement sequence of U , then K
−(C)

is also included in KO(C).

When a safe refinement sequence C is also complete or pairwise overlapping,

KO(C) satisfies properties that are additional to those of Theorem 20. More

precisely, the following theorem holds.

Theorem 21. Let C be a safe refinement sequence of U,

1. if C is complete, then KO(C) is a finite centered Kleene algebra with the

interpolation property,

2. if C is pairwise overlapping, then KO(C) = K
+(C) ∪ K

−(C).

Proof. 1. By Theorem 19, KO(C) = K(C). Moreover, the structure K(C) is

a centered Kleene algebra with the interpolation property (see Theorem

7).

2. By Definition 47, if (A, B) ∈ KO(C), then A and B are totally disjoint.

However, since C is pairwise overlapping, Vice-versa, by Theorem 20, if

(A, B) is in K
+(C) or K

−(C), then belongs to KO(C), also.

In the next example, we take three different refinement sequences such that

their posets are isomorphic, and we show that the Hasse diagrams of their

respective Kleene algebras are not isomorphic.

Example 30. We consider the refinement sequences C = (C1, C2) and C ′ =

(C ′
1, C ′

2) of {a, b, c, d, e, f}, where

• C1 = {{a, b, c, d, e}, {c, d, f}},

• C2 = {{a, b}, {c, d}},

• C ′
1 = {{a, b, d, e, f}, {c, d, e}} and

• C ′
2 = {{b, d}, {d, e}}.
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As shown in the following two figures, PC and PC′ have the same Hasse diagram.

Then, K(C) ∼= K(C ′).

{a, b} {c, d}

{c, d, f}{a, b, c, d, e}

Fig. 4.1: Hasse diagram of PC

{b, d} {d, e}

{c, d, e}{a, b, d, e, f}

Fig. 4.2: Hasse diagram of P ′
C

We set b1 = {a, b, c, d, e}, b2 = {c, d, f}, b3 = {a, b}, b4 = {c, d}, b′
1 =

{a, b, d, e, f}, b′
2 = {c, d, e}, b′

3 = {b, d} and b′
4 = {d, e}. Then, KO(C) and

KO(C ′) have the following Hasse diagrams.

({b1, b2, b3, b4}, ∅)

({b1, b3, b4}, ∅)({b2, b3, b4}, ∅)

({b3, b4}, ∅)

({b2, b4}, {b3})

({b2, b4}, ∅)

({b3}, ∅) ({b4}, ∅)

(∅, ∅)

(∅, {b3})(∅, {b4})

(∅, {b3, b4})

(∅, {b2, b3, b4})(∅, {b1, b3, b4})

(∅, {b1, b2, b3, b4})

(∅, {b2, b4})

({b3}, {b2, b4})

({b3}, {b4}) ({b4}, {b3})

Fig. 4.3: Hasse diagram of KO(C)
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({b′
1, b′

2, b′
3, b′

4}, ∅)

({b′
1, b′

3, b′
4}, ∅)({b′

2, b′
3, b′

4}, ∅)

({b′
3, b′

4}, ∅) ({b′
2, b′

4}, ∅)

({b′
3}, ∅) ({b′

4}, ∅)

(∅, ∅)

(∅, {b′
3})(∅, {b′

4})

(∅, {b′
3, b′

4})

(∅, {b′
2, b′

3, b′
4})(∅, {b′

1, b′
3, b′

4})

(∅, {b′
1, b′

2, b′
3, b′

4})

(∅, {b′
2, b′

4})

Fig. 4.4: Hasse diagram of KO(C′)

Notice that KO(C) = K(C), since C is safe and complete. Instead, since C ′ is safe

but not complete, KO(C ′) ⊂ K(C ′) and ({b′
3}, {b′

4}), ({b′
4}, {b′

3}), ({b′
3},

{b′
2, b′

4}), ({b′
2, b′

4}, {b′
3}) /∈ KO(C ′). We stress that KO(C) Ó∼= KO(C ′), despite

PC
∼= PC′.

Now, we consider the refinement sequence C̃ = (C̃1, C̃2), where

• C̃1 = {{a, b, c, d, e}, {c, d, f}} and

• C̃2 = {{a, b, c}, {c, d}}.

Clearly, C̃ is a safe and pairwise overlapping refinement sequence. If we set

b̃1 = {a, b, c, d, e}, b̃2 = {c, d, f}, b̃3 = {a, b, c} and b̃4 = {c, d}, then the Hasse

diagrams of PC̃ and KO(C̃) are respectively the following.
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{a, b, c} {c, d}

{c, d, f}{a, b, c, d, e}

Fig. 4.5: Hasse diagram of PC̃

({b̃1, b̃2, b̃3, b̃4}, ∅)

({b̃1, b̃3, b̃4}, ∅)({b̃2, b̃3, b̃4}, ∅)

({b̃3, b̃4}, ∅)

({b̃3}, ∅) ({b̃4}, ∅)

(∅, ∅)

(∅, {b̃3})(∅, {b̃4})

(∅, {b̃3, b̃4})

(∅, {b̃2, b̃3, b̃4})(∅, {b̃1, b̃3, b̃4})

(∅, {b̃1, b̃2, b̃3, b̃4})

Fig. 4.6: Hasse diagram of KO(C̃)

We can observe that KO(C̃) = K(C̃)+ ∪ K(C̃)−. Moreover, KO(C̃) Ó∼= KO(C) and

KO(C̃) Ó∼= KO(C ′), despite PC̃
∼= PC and PC̃

∼= PC′.

Remark 16. Let C be a refinement sequence, then |KO(C)|, that is the cardin-

ality of KO(C), depends from the number of blocks that pairwise overlap in

every covering of C. Consequently, if C is complete and safe, then |KO(C)| is

maximum, and it is equal to |K(C)|. Furthermore, if C is pairwise overlapping

and not safe, then |KO(C)| ≥ |K(C)+ ∪ K(C)−|.

We can extend the results shown in Theorem 21, by considering the operation

→1 and the pairs of operations (⋆2, →2), (⋆3, →3) and (⋆4, →4), defined in

Section 2.3 (more exactly, see the equations 2.13, 2.18, 2.19, 2.20, 2.21, 2.25

and 2.26), on the set KO(C). Then, let i ∈ {1, . . . , 4}, we can use the notation

Ki
O(C) to denote the structure KO(C) with the additional operations ⋆i and

→i.

Corollary 1. If C is a safe and complete refinement sequence, then

• K1
O(C) is a finite Nelson algebra,
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• K2
O(C) is a finite Nelson lattice and

• K4
O(C) is a finite KLI∗ algebra.

Regarding K3
O(C), we need to add the extra condition that C must be com-

posed by partial partitions.

Corollary 2. If C is a safe refinement sequence of partial partitions, then K3
O(C)

is a finite IUML-algebra.

If some coverings of C are not partitions, then the operations ⋆i and →i cannot

be defined on KO(C). Clearly, this is a consequence that such operations are

defined between pairs of disjoint upsets of a forest (see 2.20 and 2.21), and

they can not be extended between pairs of disjoint upsets of a poset.

Example 31. Let C be the refinement sequence defined in Example 30. C is safe

and complete, but

({b3}, {b2, b4}) ⋆3 ({b1, b3, b4}, ∅) = ({b1, b3, b4}, {b2})

and

({b3}, {b2, b4}) →3 (∅, {b1, b3, b4}) = ({b2}, {b1, b3, b4})

that do not belong to K(C).

4.2 From a complete refinement sequence

to a Kleene algebra

In this section, given a complete refinement sequence C, we want to determine

new operations on KO(C), to obtain the same structure encountered in the

previous section. In order to do this, starting from a complete refinement

sequence C, we build a new refinement sequence C ′ such that KO(C) =

KO(C ′) = K(C ′).

Definition 48. Let C = (C1, . . . , Cn) be a refinement sequence of U . Then,

we build the sequence C ′ = (C ′
1, . . . , C ′

n) in the following way.

• C ′
n = Cn,
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• for every i ∈ {1, . . . , n − 1} and N ∈ Ci, if there are not N1, . . . , Nl ∈

C ′
i+1 such that N = N1 ∪ . . . ∪ Nl then N ∈ C ′

i, otherwise N /∈ C ′
i but

Nj ∈ C ′
i for each j = 1, . . . , l.

Example 32. Let C be the refinement sequence of Example 14. Then, C ′ =

(C ′
1, C ′

2, C ′
3), where

C ′
1 = {{u1, . . . , u11}, {u12, . . . , u22}};

C ′
2 = {{u2, u3}, {u4, u5}, {u6, u7}, {u8, . . . , u11}, {u12, . . . , u15}, {u16, . . . , u21}};

C ′
3 = {{u2, u3}, {u4, u5}, {u6, u7}, {u7, u8}, {u12, u13}, {u16, u17}, {u18, u19}.

Observe that C ′ is still a refinement sequence of U, so we can associate it with

a poset PC′.

Example 33. Let C be the refinement sequence of Example 14. The poset PC′

assigned to the new refinement sequence C ′ is the following.

{u1, . . . , u11} {u12, . . . , u22}

{u8, . . . , u11} {u12, . . . , u15} {u16, . . . , u21}{u2, u3} {u4, u5}

{u12, u13} {u16, u17} {u18, u19}

{u6, u7}

{u8, u9}

Fig. 4.7: Forest of the users

We notice that the node {u2, . . . , u7} of PC (see Example 16) does not belong to

PC′ , and it is equal to the union of its successors {u2, u3}, {u4, u5} and {u6, u7}.

Remark 17. In general, PC′ is obtained by removing from PC all the nodes

equal to the union of their successors (cfr. the operation of elimination in

[22] ). That is, we delete reducible elements, according to the terminology

given in [110], in the covering generated by all sets in the forest PC.

By the previous remark follows this proposition.

Proposition 9. Let C be a refinement sequence of U and let N ∈ PC. Then,

N ∈ PC′ if and only if N Ó= N1 ∪ . . . ∪ Nr, where N1, . . . , Nr are the successors

of N in PC.
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Clearly, KO(C ′) ⊆ KO(C). Moreover, it is clear that the following proposition

holds.

Proposition 10. Let C be a complete refinement sequence. Then, C ′ is also

complete.

The following proposition shows that there exists an order isomorphism

between KO(C) and KO(C ′), when C is complete.

Theorem 22. Let C = (C1, . . . , Cn) be a complete refinement sequence of U . If

C ′ is the refinement sequence of U built in Definition 48, then the function

β : KO(C) Ô→ KO(C ′),

where β((X1
C , X2

C)) = (X1
C′ , X2

C′) for each X ⊆ U , is an order isomorphism.

Proof. • The function β is injective. Let X, Y ⊆ U , we suppose that

β((X1
C , X2

C)) = β((Y 1
C , Y 2

C )).

Then,

(X1
C′ , X2

C′) = (Y 1
C′ , Y 2

C′). (4.1)

Firstly, we intend to prove that X1
C = Y 1

C . By Definition 48, each node

N of PC is equal to N1 ∪ . . . ∪ Nr, where N1 ∪ . . . ∪ Nr ∈ PC′. Let

N ∈ X1
C , then N = N1 ∪ Nr ⊆ X and so Ni ⊆ X for each i ∈ {1, . . . , r}.

Therefore, N1, . . . , Nr ∈ X1
C′ = Y 1

C′. Consequently, N is included in Y

and so belongs to Y 1
C . The proof that X2

C = Y 2
C is analogous.

• The function β is surjective. Let X ⊆ U and (X1
C′ , X2

C′) ∈ KO(C ′). We

consider the set

H = {N ∈ PC : N = N1∪. . .∪Nr, where Ni ∈ X1
C′ for each i ∈ {1, . . . , r}}

and

K = {N ∈ PC : N = N1∪. . .∪Nr, where Ni ∈ X2
C′ for each i ∈ {1, . . . , r}}.

Since C is complete, we have that (X1
C′ ∪ H, X2

C′ ∪ K) belongs to KO(C).

Moreover, it is clear that β((X1
C′ ∪ H, X2

C′ ∪ K)) = (X1
C′ , X2

C′).
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• It is trivial that (X1
C , X2

C) ≤ (Y 1
C , Y 2

C ) if and only if (X1
C′ , X2

C′) ≤ (Y 1
C′ , Y 2

C′)

(we remember that, let (X1, X2) and (Y 1, Y 2) be two pairs of disjoint

upsets, then (X1, X2) ≤ (Y 1, Y 2) if and only if X1 ⊆ Y 1 and Y 2 ⊆ Y 1).

By 5 and 9, the next result follows.

Proposition 11. Let C be a complete refinement sequence, then C ′ is safe.

Consequently, by Theorem 19, KO(C ′) coincides with K(C ′). Therefore, we

can consider KO(C ′) equipped with the operations defined in the previous

section. By using this result and Theorem 22, we can introduce the following

new operations on KO(C).

Definition 49. Let C be a complete refinement sequence of U and let β be

the function defined in Theorem 22. Then, we set

• (X1
C , X2

C) ∩KO
(Y 1

C , Y 2
C ) := β−1((X1

C′ , X2
C′) ⊓ (Y 1

C′ , Y 2
C′)),

• (X1
C , X2

C) ∪KO
(Y 1

C , Y 2
C ) := β−1((X1

C′ , X2
C′) ⊔ (Y 1

C′ , Y 2
C′)),

• ¬KO
(X1

C , X2
C) := β−1(¬(X1

C′ , X2
C′)),

• (X1
C , X2

C)⋆i
KO

(Y 1
C , Y 2

C ) := β−1((X1
C′ , X2

C′)⋆i(Y
1

C′ , Y 2
C′)), for each i ∈ {2, 3, 4},

• (X1
C , X2

C) →i
KO

(Y 1
C , Y 2

C ) := β−1((X1
C′ , X2

C′) →i (Y 1
C′ , Y 2

C′)), for each i ∈

{1, 2, 3, 4}.

As a consequence of the previous definition and the results of the Section 4.1,

we obtain the following theorem.

Theorem 23. Let C be a complete refinement sequence of U , then

K′
O(C) = (KO(C), ∩KO

, ⊔KO
, ¬KO

, (∅, PC′), (PC′ , ∅))

is a centered Kleene algebra with the interpolation property and if C is pairwise

overlapping, then KO(C) ∼= K(C ′)+ ∪ K(C ′)−. Moreover,

• (K′
O(C), →1

KO
) is a finite Nelson algebra;
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• (K′
O(C), ⋆2

KO
, →2

KO
) is a finite Nelson lattice;

• (K′
O(C), ⋆4

KO
, →4

KO
) is a finite KLI∗-algebra.

If C is a refinement sequence of partial partitions, then

• (K′
O(C), ⋆3

KO
, →3

KO
) is a finite IUML-algebra.

Remark 18. Trivially, if C is also safe, then C = C ′ and so KO(C) = K′
O(C).

Example 34. Let C be the refinement sequence defined in Example 29. Trivially,

C ′ = {{a, b}, {c, d}}. The Hasse diagram of K(C), KO(C) and KO(C ′) (which is

the same as that of K(C ′)) are respectively represented in the next figures.

({{a, b, c, d}, {a, b}, {c, d}}, ∅)

({{a, b}, {c, d}}, ∅)

({{a, b}}, ∅) ({{c, d}}, ∅)

(∅, ∅)({{a, b}}, {{c, d}}) ({{c, d}}, {{a, b}})

(∅, {{c, d}}) (∅, {{a, b}})

(∅, {{a, b}, {c, d}})

(∅, {{a, b, c, d}, {a, b}, {c, d}})

Fig. 4.8: Hasse diagram of K(C)

({{a, b, c, d}, {a, b}, {c, d}}, ∅)

({{a, b}}, ∅) ({{c, d}}, ∅)

(∅, ∅)({{a, b}}, {{c, d}}) ({{c, d}}, {{a, b}})

(∅, {{c, d}}) (∅, {{a, b}})

(∅, {{a, b, c, d}, {a, b}, {c, d}})

Fig. 4.9: Hasse diagram of KO(C)
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({{a, b}, {c, d}}, ∅)

({{a, b}}, ∅) ({{c, d}}, ∅)

(∅, ∅)({{a, b}}, {{c, d}}) ({{c, d}}, {{a, b}})

(∅, {{c, d}}) (∅, {{a, b}})

(∅, {{a, b}, {c, d}})

Fig. 4.10: Hasse diagram of KO(C′)

Now, we consider ({{a, b}}, ∅) and ({{c, d}}, ∅) in KO(C). Then

({{a, b}}, ∅) ⊔ ({{c, d}}, ∅) is equal ({{a, b}, {c, d}}, ∅) that does not belong to

KO(C). However, ({{a, b}}, ∅) ∪KO
({{c, d}}, ∅) = β−1(({{a, b}, {c, d}}, ∅)) =

({{a, b, c, d}, {a, b}, {c, d}}, ∅) ∈ KO(C).

4.3 From a Kleene algebra to a refinement

sequence

In this section, we associate a finite Kleene algebra with a refinement se-

quence and the respective sequences of orthopairs.

Let (P, ≤) be a finite partially ordered set and let n be the maximum number

of elements of a chain in P . For each i ∈ {1, . . . , n} we define the i-th level

of P as

P i = { N ∈ P | i = max{|h| | h is a chain of ↓ N} }. (4.2)

We denote by M(P ) the set of maximal elements of P and we set UP =

{x1, . . . , xm}, where m = |P | + |M(P )|. We call maximal sequence of P the

sequence C = (C1, . . . , Cn) built as follows. Suppose M(P ) consists of nodes

N1, . . . , Nu, where u = |M(P )| ≤ ⌊m/2⌋ since u < 2u ≤ |M(P )| + |P | = m.

We set

bNi
= {x2i−1, x2i} (4.3)
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for every i = 1, . . . , u and

Cn = {bNi
| Ni ∈ M(P )}. (4.4)

Since |P\M(P )| = m − 2u, we denote by Nu+1, . . . , Nm−u the nodes of

P\M(P ) and we set αP (Ni) = xi+u for any i ∈ {u + 1, . . . , m − u}.

For each N /∈ M(P ), let

bN =
⋃

M>N

bM ∪ {αP (N)} (4.5)

and, for each j ∈ {1, . . . , n − 1},

Cj = {bN | N ∈ P j} ∪ {bM | M ∈ M(P ) and ↓ M ∩ P j = ∅}. (4.6)

It is trivial to see that for each N, M ∈ P

bN ∩ bM = ∪{ bL | L ∈ ↑ N ∩ ↑ M }. (4.7)

Example 35. Let P be the partially ordered set with the following Hasse dia-

gram.

N3 N4

N2N1

Fig. 4.11: Hasse diagram of P

UP = {x1, . . . , x6}, since 6 = 4 + 2, where |P | = 4 and |M(P )| = 2. We have

αP (N3) = x5 and αP (N4) = x6. Then, we have bN1
= {x1, x2}, bN2

= {x3, x4},

bN3
= {x1, x2}∪{x3, x4}∪{αP (N3)} = {x1, x2, x3, x4, x5} and bN4

= {x3, x4}∪

{αP (N4)} = {x3, x4, x6}. Moreover, n = 2, then the maximal sequence is made

of two partial coverings of {x1, . . . , x6} that are C1 = {{x1, x2, x3, x4, x5}, {x3,

x4, x6}} and C2 = {{x1, x2}, {x3, x4}}.

Proposition 12. Let P be a finite partially ordered set. Then, the maximal

sequence C of P is a complete and safe refinement sequence of UP and SO(C) ∼=

K(Up(P )).
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Proof. Firstly, we prove that C is a refinement sequence of UP . Then, suppose

that b ∈ Ci with i > 1, we have b = bN where N ∈ P . Since bN ∈ Ci, two

cases are possible: if N ∈ P i, then there exists at least a node M of P i−1

such that M < N (see 4.2), hence bM ∈ Ci−1 (see 4.6) and bN ⊂ bM (see

4.5); if N /∈ P i, then N ∈ M(P ) and ↓ N ∩ P i = ∅. In this latter case, we

have two subcases to consider: ↓ N ∩ P i−1 = ∅ which implies bN ∈ Ci−1 and

↓ N ∩ P i−1 Ó= ∅ which implies that there exists M ∈ P i−1 with M ≤ N , hence

bN ⊆ bM where bM ∈ Ci−1.

C is complete, since if bN ∩ bM Ó= ∅ with bN , bM ∈ PC, then bN ∩ bM ⊇ bL with

L ∈ ↑ N ∩ ↑ M (see 4.7), hence bN and bM can not belong to two upsets that

are disjoint. To prove that C is safe, we consider the blocks bN , bN1
, . . . , bNk

of

coverings of C with bN ⊆ bN1
∪ . . .∪bNk

. Then, we pick a subset {bN ′

1
, . . . , bN ′

h
}

of {bN1
, . . . , bNk

} such that bN ⊆ bN ′

1
∪ . . . ∪ bN ′

h
and bN ∩ bN ′

i
Ó= ∅ for each

i ∈ {1, . . . , h}. Trivially, bN ∩ b Ó= ∅ if and only if bN ⊆ b, when N ∈ M(P ).

Otherwise, if N /∈ M(P ), by 4.5 we have that αP (N) ∈ bN , hence αP (N)

belongs to b′
Ni

for some i ∈ {1, . . . , h}, then bN ⊆ bN ′

i
since N ′

i ≤ N (see 4.5).

By Proposition 7, KO(C) ⊆ K(C). Vice-versa, let (A, B) ∈ K(C), then A∗∩B∗ =

∅, since otherwise, by 4.7, there exist N, M, L ∈ P such that bL ⊆ bN ∩ bM ,

then bL ∈ A∩B that is an absurd. By Theorem 19, (A, B) ∈ KO(C). Therefore,

K(C) ⊆ KO(C).

Furthermore, observe that if C = (C1, . . . , Cn) is the maximal sequence of the

poset P , then Cn is a partial partition of the respective universe UP .

We remark that the maximal sequence C = (C1, . . . , Cn) of a given partially

ordered set P is not the only complete and safe refinement sequence having

the assigned poset isomorphic to P . We can generate such sequences in

addressing numerous ways. For example, we can build a sequence C∗ by

adopting the previous procedure, but by assigning a set Ai made of at least

three elements to the maximal node Ni of P , for each i ∈ {1, . . . , m}. Trivially,

if the sets A1, . . . , Am are pairwise disjoints, then C∗ is a complete and safe

refinement sequence satisfying PC∗
∼= PC. Clearly, we can also generate a

safe and complete refinement with its poset isomorphic to P by starting from

the maximal sequence C. For example, we can add a finite set disjoint with

UP to each block of an upsets of C. On the other hand, we observe that the

universe covered by any safe and complete refinement sequence with its

poset isomorphic to P has cardinality grater that |UP |.
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By Theorem 9 and Proposition 12, the following Theorem holds.

Theorem 24. Let P be a partially ordered set and C its maximal sequence. Then,

KO(C) is a centered Kleene algebra that satisfies the interpolation property.

4.4 Representation theorems

Considering that KO(C) coincides with the set of sequences of orthopiars

generated by C (see Theorem 17), we can define on SO(C) the following

operations.

Definition 50. Let C be a refinement sequence of U and let α be the function

defined in 17. Then, let X, Y ⊆ U , we set

• O(X) f O(Y ) := α−1((X1, X2) ∩KO
(Y 1, Y 2));

• O(X) g O(Y ) := α−1((X1, X2) ∪KO
(Y 1, Y 2));

• ∼ O(X) := α−1(¬
KO

(X1, X2));

• O(X) ⊙i O(Y ) := α−1((X1, X2) ⋆i
KO

(Y 1, Y 2)), for i ∈ {2, 3, 4};

• O(X) →֒i O(Y ) := α−1((X1, X2) →i
KO

(Y 1, Y 2)), for i ∈ {1, 2, 3, 4}.

Moreover, given a refinement sequence C = (C1, . . . , Cn), we set

⊥C = (⊥1, . . . , ⊥n) and ⊤C = ∼ ⊥C,

where ⊥i = (∅, {x ∈ b | b ∈ Ci}), for each i from 1 to n. Then, it is clear

that ⊥C and ⊤C are respectively the minimum and the maximum of SO(C).

Moreover, we set eC = ((∅, ∅), . . . , (∅, ∅)), that is α−1((∅, ∅)).

Theorem 25. Let S be a Kleene algebra. S is a finite centered Kleene algebra

with interpolation property if and only if

S ∼= (SO(C),f,g, ∼, ⊥C, ⊤C),

where C is a complete refinement sequence of a finite universe U .
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Proof. (⇒). If S is a centered Kleene algebra with interpolation property,

then there exists a bounded distributive lattice LS such that S ∼= K(LS), by

Theorem 9. By Birkhoff representation theorem, there exists a poset PLS
such

that LS
∼= U(PLS

). Consequently, S ∼= K(U(PLS
)). By Proposition 12, C is the

maximal sequence of PLS
, that is a complete and safe refinement sequence of

UPLS
.

(⇐). By the theorems 17 and 23, if C is complete, then (SO(C),f,g, ∼

, ⊥C, ⊤C) is a centered Kleene algebra with the interpolation property.

Similarly, by using the theorems of Section 2.3, we can present some classes

of finite many-valued structures such that their reduct is a centered Kleene

algebra with the interpolation property as sequences of orthopairs. More

precisely, the following theorems hold.

Theorem 26. Let S be a Nelson algebra. S is a finite centred Nelson algebra

with interpolation property if and only if

S ∼= (SO(C),f,g, ∼, ⊙1, →֒1, ⊥C, ⊤C),

where C is a complete refinement sequence of a finite universe U .

Theorem 27. Let S be a Nelson lattice. S is a finite centred Nelson lattice with

interpolation property if and only if

S ∼= (SO(C),f,g, ∼, ⊙2, →֒2, eC, ⊥C, ⊤C),

where C is a complete refinement sequence of a finite universe U .

Theorem 28. Let S be a IUML-algebra. S is a finite IUML-algebra if and only if

S ∼= (SO(C),f,g, ∼, ⊙3, →֒3, eC, ⊥C, ⊤C),

where C is a refinement sequence of partial partitions of a finite universe U .

Theorem 29. Let S be a KLI∗-algebra. S is finite and satisfies the interpolation

property if and only if

S ∼= (SO(C),f,g, ∼, ⊙4, →֒4, ⊥C, ⊤C),

where C is a complete refinement sequence of a finite universe U .

72 Chapter 4 Sequences of orthopairs as Kleene algebras



4.5 Operations between sequences of

orthopairs

In this section, we focus on operations between sequences of orthopairs. In

particular, we show how they can be obtained starting from the operations

between orthopairs of an individual covering. The latter are listed in Section

2.2.

Theorem 30. Let C = (C1, . . . , Cn) be a safe and complete refinement sequence

of U and let X, Y ⊆ U , then

1. OC(X) f OC(Y ) = ((A1, B1), . . . , (An, Bn)),

2. OC(X) g OC(Y ) = ((D1, E1), . . . , (Dn, En)),

3. ∼ OC(X) = ((F1, G1), . . . , (Fn, Gn)),

where

1. (Ai, Bi) = (Li(X), Ei(X)) ∧K (Li(Y ), Ei(Y ))

2. (Di, Ei) = (Li(X), Ei(X)) ∨K (Li(Y ), Ei(Y ))

3. (Fi, Gi) = ¬(Li(X), Ei(X)),

for each i ∈ {1, . . . , n}. The operations ∧K and ∨K are given in Definition 8,

and ¬(A, B) = (B, A).

Proof. We only provide the proof of point 1, since we can demonstrate the

remaining cases in a similar way. Then, we suppose that Z is the subset of

U such that OC(X) f OC(Y ) = OC(Z). Since C is safe, OC(X) f OC(Y ) =

α−1((X1, X2) ⊓ (Y 1, Y 2)) = α−1((X1 ∩ Y 1, X2 ∪ Y 2)). Then, Z1 = X1 ∩ Y 1

and Z2 = X2 ∪ Y 2. On the other hand, we recall that

(Li(X), Ei(X)) ∧K (Li(Y ), Ei(Y )) = (Li(X) ∩ Li(Y ), Ei(X) ∪ Ei(Y )).

So, fixed i ∈ {1, . . . , n}, x ∈ Li(Z) if and only if there exists N ∈ PC such

that N ⊆ Z. Therefore, there exists N ∈ PC such that N ∈ X1 ∩ Y 1, and so
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N ⊆ X ∩ Y . This is equivalent to say that x ∈ Li(X) ∩ Ei(Y ). Similarly, we

can prove that x ∈ Ei(Z) if and only if Ei(X) ∪ Ei(Y ).

Example 36. Let C = (C1, C2) be the refinement sequence of {a, b, c, d, e},

such that C1 = {{a, b, c, d, e}} and C2 = {{a, b}, {c, d}}. Since C is safe and

complete, the previous theorem holds. Then,

OC({a, b}) f OC({a, b, c}) = ((∅, ∅), ({a, b}, {c, d})),

where

(L1({a, b}), E1({a, b}))∧K(L1({a, b, c}), E1({a, b, c})) = (∅, ∅)∧K(∅, ∅) = (∅, ∅).

(L2({a, b}), E2({a, b}))∧K(L2({a, b, c}), E2({a, b, c})) = ({a, b}, {c, d})∧K({a,

b}, ∅) = ({a, b}, {c, d})).

Moreover,

OC({a, b}) g OC({a, b, c}) = ((∅, ∅), ({a, b}, ∅)),

where

(L1({a, b}), E1({a, b}))∨K(L1({a, b, c}), E1({a, b, c})) = (∅, ∅)∨K(∅, ∅) = (∅, ∅).

(L2({a, b}), E2({a, b}))∨K(L2({a, b, c}), E2({a, b, c})) = ({a, b}, {c, d})∨K({a,

b}, ∅) = ({a, b}, ∅)).

Moreover,

∼ OC({a, b}) = ((∅, ∅), ({c, d}, {a, b})),

where

(L1({a, b}), E1({a, b})) = ¬(∅, ∅) = (∅, ∅);

(L2({a, b}), E2({a, b})) = ¬({a, b}, {c, d}) = ({c, d}, {a, b}).

The following theorems allow us to express the operations →֒1, ⋆2, →֒2, ⋆3

and →֒3 through the operations between orthopairs of an individual covering

(see Definition 11 and Definition 12). We present the proof only for the

operation ⊙3 of Theorem 33, because it is possible to give the proof for the
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other operations with similar procedures. We recall that, given a refinement

sequence C = (C1, . . . , Cn), in Remark 9, we denote the union of all blocks of

Ci with Ui, for each i ∈ {1, . . . , n}.

Theorem 31. Let C = (C1, . . . , Cn) be a safe and complete refinement sequence

of U . Then,

OC(X) →֒1 OC(Y )

is the sequence ((A1, B1), . . . , (An, Bn)) defined as follows. Firstly, we set

(A′
i, B′

i) = (Li(X), Ei(X)) →N (Li(Y ), Ei(Y )),

for each i from 1 to n. Then, we set (An, Bn) = (A′
n, B′

n) and

Ai = A′
i \ ∪{N ∈ Ci | N ′ ⊆ N with N ′ ∈ Ci+1 and N ′ ⊆ Ui+1 \ Ai+1},

and Bi = B′
i for each i < n.

Theorem 32. Let C = (C1, . . . , Cn) be a safe and complete refinement sequence

of U . Then,

OC(X) ⊙2 OC(Y )

is the sequence ((A1, B1), . . . , (An, Bn)) defined as follows. Firstly, we set

(A′
i, B′

i) = (Li(X), Ei(X)) ∗L (Li(Y ), Ei(Y )),

for each i from 1 to n. Then, we set (An, Bn) = (A′
n, B′

n), Ai = A′
i, and

Bi = B′
i \ ∪{N ∈ Ci | N ′ ⊆ N with N ′ ∈ Ci+1 and N ′ ⊆ Ui+1 \ Bi+1}

for each i < n. Moreover,

OC(X) →֒2 OC(Y )

is the sequence defined as follows. Firstly, we set

(A′
i, B′

i) = (Li(X), Ei(X)) →L (Li(Y ), Ei(Y )),

for each i from 1 to n. Then, we set (An, Bn) = (A′
n, B′

n),

Ai = A′
i \ ∪{N ∈ Ci | N ′ ⊆ N with N ′ ∈ Ci+1 and N ′ ⊆ Ui+1 \ Ai+1},

and Bi = B′
i, for each i < n.

4.5 Operations between sequences of orthopairs 75



Theorem 33. Let C = (C1, . . . , Cn) be a safe refinement sequence of partial

partitions of U , then

OC(X) ⊙3 OC(Y )

is the sequence of orthopairs ((A1, B1), . . . , (An, Bn)) defined as follows. Firstly

we set

(A′
i, B′

i) = (Li(X), Ei(X)) ∗S (Li(Y ), Ei(Y ))

for each i from 2 to n. Then, we set (A1, B1) = (A′
1, B′

1),

Ai = A′
i ∪ {N ∈ Ci | N ⊆ Ai−1}, and Bi = B′

i \ Ai,

for each i > 0.

Moreover,

OC(X) →֒3 OC(Y )

is the sequence of orthopairs ((A1, B1), . . . , (An, Bn)) defined as follows. Firstly,

we set

(A′
i, B′

i) = (Li(X), Ei(X)) →S (Li(Y ), Ei(Y ))

for each i > 2. Then, we set

(A1, B1) = (A′
1, B′

1), Bi = B′
i ∪ {N ∈ Pi | N ⊆ Bi−1}, and Ai = A′

i \ Bi,

for each i > 0.

In order to prove Theorem 33, we need to move from sequences of orthopairs

to pairs of disjoint upsets. Let C be a refinement sequence of U such that C =

C ′. Then, the operation ⋆3
KO

coincides with ⋆3 on K(C). Indeed, C = C ′ implies

that β is the identity function (β is defined in Theorem 22). Consequently, for

any X, Y ⊆ U , we have (X1, X2) ⋆3
KO

(Y 1, Y 2) = β−1((X1, X2) ⋆3 (Y 1, Y 2)) =

(X1, X2) ⋆3 (Y 1, Y 2).

On the other hand, if C Ó= C ′ the IUML-algebras KO(C) and KO(C ′) are not

isomorphic. In any case, we can find a relationship between operations in

KO(C ′) and Sobociński conjunction, as follows.
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Proposition 13. Let C be a refinement sequence of partial partition of U , let

X, Y ⊆ U , and let F C
X be the function defined by 2.1. Then,

(X1
C , X2

C) ⋆3
KO

(Y 1
C , Y 2

C ) = β−1((Z1
C′ , Z2

C′)),

where

Z1
C′ =↑ {N ∈ PC′ | F C′

X (N) ⊛S F C′

Y (N) = 1}

and

Z2
C′ = {N ∈ PC′ | F C′

X (N) ⊛S F C′

Y (N) = 0} \ Z1
C′ .

Proof. By Definition 49, we must prove that Z1
C′ = (X1

C′ ∩ Y 1
C′) ∪ (X ⋄ Y ) and

Z2
C′ = (X2

C′ ∪ Y 2
C′)\(X ⋄ Y ), where X ⋄ Y is related to C ′.

A node N belongs to (X1
C′ ∩ Y 1

C′) ∪ (X ⋄ Y ) if and only if FX(N) = 1 and

FY (N) = 1, or there exists M ∈ PC′ such that N ⊆ M and FX(M) = 1 and

FY (M) = 1\2, or FX(M) = 1\2 and FY (M) = 1. This is equivalent to affirm

that FX(N) ⊛S FY (N) = 1 or there exists M ∈ PC′ such that N ⊆ M and

FX(M) ⊛S FY (M) = 1, since ⊛S is the Sobociński conjunction.

Similarly, N belongs to (X2
C′ ∪ Y 2

C′)\(X ⋄ Y ) if and only if FX(N) = 0 or

FY (N) = 0 and there does not exist M ∈ PC′ such that N ⊆ M and FX(M)⊛S

FY (M) = 1. Then, N ∈ {N ∈ PC′ | FX(N) ⊛S FY (N) = 0} \ Z1.

Theorem 33. By definition of α (see Theorem 17), we have (X1, X2) =

α(OC(X)), (Y 1, Y 2) = α(OC(Y )). Let Z be the subset of U such that

(Z1, Z2) = α(OC(X)) ⊙3 α(OC(Y )).

By induction on i we prove that (Li(Z), Ei(Z)) = (Ai, Bi).

Let i = 1. By definition and recalling that Z1 = {N ∈ PC | N ⊆ Z}, we have

L1(Z) =
⋃

{N ∈ C1 | N ⊆ Z} =
⋃

{N ∈ C1 ∩ Z1}.

By Proposition 13, Z1 =↑ {N ∈ PC | FX(N)⊛S FY (N) = 1}, hence Z1 ∩ C1 =

{N ∈ C1 | FX(N) ⊛S FY (N) = 1}. We have, by Proposition 4:

L1(Z) =
⋃

{N ∈ C1 | FX(N) ⊛S FY (N) = 1} = A1.
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Now, we fix i > 1 and suppose by induction hypothesis that Ai−1 = Li−1(Z).

Then by Proposition 4 and 13,

Li(Z) =
⋃

N∈Z1∩Ci

N =

=
⋃

{N ∈ Ci | FX(N)⊛SFY (N) = 1}∪
⋃

{N ∈ Ci | N ⊆ M with M ∈ Z1∩Ci−1}.

We notice that A′
i = ∪{N ∈ Ci | FX(N)⊛S FY (N) = 1} and Ai−1 = Li−1(Z) =

∪{M | M ∈ Z1 ∩ Ci−1}. Consequently,

Li(Z) = A′
i ∪ {N ∈ Ci | N ⊆ Ai−1}.

Similarly, by Propositions 4 and 13, we can prove that Bi = B′
i \ Ai, for each

i ∈ {1, . . . , n}.

In other words, the operation ⊙3 maps each pair of sequences of orthopairs

to the sequence of orthopairs given by applying the Sobociński conjunction

between orthopairs relative to the same partition and then closing with

respect to the inclusion in the first component.

Hence, we can say that if we apply ⊙3 to sequences of orthopairs, the

indeterminate value is always overcome by the determined ones, and in

addition, as soon as a determined value is reached with respect to a given

level of partial partitions, it is automatically given to all the blocks in the next

refinements.

Example 37. Let C ′ be the refinement sequence of U of Example 16. We

consider X, Y ⊆ U such that OC′(X) is equal to OC(X) defined in Example 24

and OC′(Y ) = (OC′

1
(Y ), OC′

2
(Y ), OC′

3
(Y )), where

OC′

1
(Y ) = (∅, ∅),

OC′

2
(Y ) = ({u3, u4}, {u5, u6, u15, . . . , u20}) and

OC′

3
(Y ) = ({u3, u4, u7, u8}, {u5, u6, u11, u12, u15, . . . , u18}).

Hence,

OC′

1
(X) ∗S OC′

1
(Y ) = (∅, ∅),
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OC′

2
(X) ∗S OC′

2
(Y ) = ({u7, . . . , u14}, {u1, . . . , u6, u15, . . . , u20}),

OC′

3
(X) ∗S OC′

3
(Y ) = ({u7, u8}, {u1, . . . , u6, u11, u12, u15, . . . , u18}).

Then, in order to close with respect to the inclusion in the first component, we

add the elements of block {u11, u12} to the first component of OC′

3
(X) ∗S OC′

3
(Y )

and we subtract them from the second component of OC′

3
(X) ∗S OC′

3
(Y ).

Finally, we obtain that OC′(X) ⊙3 OC′(Y ) is the sequence of SO(C ′) made of the

following pairs.

(∅, ∅),

({u7, . . . , u14}, {u1, . . . , u6, u15, . . . , u20}) and

({u7, u8, u11, u12}, {u1, . . . , u6, u15, . . . , u18}).

We observe that OC′(X) ⊙3 OC′(Y ) provides precise information about blocks

{u15, . . . , u20}, {u1, u2}, {u7, . . . , u10} and {u11, . . . , u14}, while we do not know

what happens to elements u19 and u20 in OC′(X) and to elements u1, u2, u9, u10,

u13 and u14 in OC′(Y ). Hence, the uncertainty represented by the sequence

OC′(X) ⊙3 OC′(Y ) is smaller than uncertainty presented in OC′(X) and OC′(Y ).

Remark 19. The operations ⊙4 and →֒4 are not obtained by the generalization

of some three-valued connectives. On the other hand, they allow us to define

a new pair of operations between orthopairs, that is the following.

Let C be a covering of U , and let X, Y ⊆ U . Then,

(L(X), E(X))⊙4(L(Y ), E(Y ))=



































(∅, U), if L(X)=∅ and L(Y )=∅;

(L(X), E(X)), if L(X)=∅ and L(Y ) Ó=∅;

(L(Y ), E(Y )), if L(X) Ó=∅ and L(Y )=∅;

(L(X)∩L(Y ), E(X)∩E(Y )), if L(X) Ó=∅ and L(Y ) Ó=∅.

(4.8)
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and

(L(X), E(X))֒→4(L(Y ), E(Y ))=



































(U, ∅), if L(X)=∅ and E(Y )=∅;

(E(X), L(X)), if L(X)=∅ and E(Y ) Ó=∅;

(L(Y ), E(Y )), if L(X) Ó=∅ and E(Y )=∅;

(E(X)∩L(Y ),L(X)∩E(Y )), if L(X) Ó=∅ and E(Y ) Ó=∅.

(4.9)

4.6 Application scenario

In this section, we explain how an examiner’s opinion on a number of

candidates applying for a job can be represented by a sequence of orthopairs.

Also, we show how opinions of two or more examiners can be combined by

employing the operations f, g, ⊙2, ⊙3 and ⊙4 in order to get a final decision

on each candidate.

Imagine that a food company needs to recruit staff through a commission

composed of several examiners, and managed by a committee chair. We

indicated with {c1, . . . , c24} the set of twenty-four candidates. The first se-

lection will be to investigate the curriculum vitae of each candidate, after

that all shortlisted applicants will be called for the first job interview. We

suppose that the chair identifies some groups of applicants of {c1, . . . , c24}

that have some specific characteristics which in his/her opinion are useful

to work for the given company. Step by step, as it will be explained, the

chair continues to refine each of these groups by identifying other suitable

characteristics to work for the company. We underline that the chair selects

sets made of applicants that have a specific characteristic in order to allow

to each examiner to express his / her opinion on groups of candidates and

not on every individual candidate. In this way, the first selection process is

simplified.

In detail, the refinement process is made as follows. Initially, the chair iden-

tifies two characteristics: “to have a master degree in chemistry” and “to

have a master degree in biology”. Consequently, the covering C1 = {b1, b2}

of {c1, . . . , c24} is determined, where b1 = {c1, . . . , c12} is made of candidates

with a master degree in chemistry and b2 = {c13, . . . , c23} is made of candid-

ates with a master degree in biology. Successively, the chair decides that the
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best candidates of b1 are those specialized in “industrial chemistry”, namely

those of the set b3 = {c1, . . . , c5} or in “pharmaceutical technology”, namely

the candidates of the set b4 = {c6, . . . , c11}. Moreover, the chair thinks that

the best candidates of b2 are those of b5 = {c13, . . . , c17} that are specialized in

“Biology of immunology” and those of b6 = {c18, . . . , c22} that are specialized

in “Food biology”. In this way, the partial covering C2 = {b3, b4, b5, b6} of

{c1, . . . , c24} is determined. Eventually, the chair considers b7 = {c1, c2}, b8 =

{c3, c4}, b9 = {c6, c7}, b10 = {c8, c9}, b11 = {c13, c14}, b12 = {c15, c16} and b13 =

{c18, c19} and b14 = {c20, c21}, where b7, b9, b11 and b13 are respectively the

subsets of b3, b4, b5 and b6 of candidates that have a certificate of Spanish lan-

guage, instead b8, b10, b12 are respectively the subsets of b3, b4, b5 and b6 of can-

didates that have a certificate of French language. Trivially, C3 = {b7, . . . , b14}

is also a partial covering of {c1, . . . , c24}, and C = (C1, C2, C3) is a refinement

sequence of {c1, . . . , c24}. More precisely, C1, C2 and C3 are partial partitions

of {c1, . . . , c24}. The data used for the chair’s classification are contained

in the incomplete information table as Table 4.1, where {c1, . . . , c24} is the

universe and {Master degree, Specialization, Language certification} is the

set of attributes. The poset assigned to C is a forest, and it is shown in the

following figure.

{c1, . . . , c12} {c13, . . . , c23}

{c1, . . . , c5} {c6, . . . , c11} {c13, . . . , c17} {c18, . . . , c22}

{c1, c2} {c3, c4} {c6, c7} {c13, c14}{c15, c16}{c18, c19}{c20, c21}{c8, c9}

Fig. 4.12: Forest of the candidates

It is easy to notice that C is safe and complete.

Clearly, PC is isomorphic to the forest of Figure 4.13.

{Ch} {Bio}

{Ch, IC} {Ch, PT} {Bio, I} {Bio, FB}

{Ch, IC, Sp} {Ch, IC, Fr}{Ch, PT, Sp}{Ch, PT, Fr} {Bio, I, Sp}{Bio, I, Fr}{Bio, FB, Sp}{Bio, FB, Fr}

Fig. 4.13: Forest of the values of the candidates

4.6 Application scenario 81



Master degree Specialization Language certification

c1 Chemistry Industrial Chemistry Spanish

c2 Chemistry Industrial Chemistry Spanish

c3 Chemistry Industrial Chemistry French

c4 Chemistry Industrial Chemistry French

c5 Chemistry Industrial Chemistry ×

c6 Chemistry Pharmaceutical Technology Spanish

c7 Chemistry Pharmaceutical Technology Spanish

c8 Chemistry Pharmaceutical Technology French

c9 Chemistry Pharmaceutical Technology French

c10 Chemistry Pharmaceutical Technology ×

c11 Chemistry Pharmaceutical Technology ×

c12 Chemistry × ×

c13 Biology Immunology Spanish

c14 Biology Immunology Spanish

c15 Biology Immunology Spanish

c16 Biology Immunology French

c17 Biology Immunology ×

c18 Biology Food Biology Spanish

c19 Biology Food Biology Spanish

c20 Biology Food Biology French

c21 Biology Food Biology French

c22 Biology Food Biology ×

c23 Biology × ×

c24 × × ×

Tab. 4.1: Information table of the candidates

82 Chapter 4 Sequences of orthopairs as Kleene algebras



Each node of Figure 4.13 is the set of all values contained in Table 4.1 that

characterizes the block of candidates of the respective node in PC (we set

Ch=Chemistry, IC=Industrial Chemistry, PT=Pharmaceutical Technology,

Bio=Biology, I=Immunology, FB=Pharmaceutical Technology, Sp=Spanish,

Fr=French). As an example, {Ch, IC, Fr} is the set of the values that

characterize the block {c3, c4}.

Once the classification process is completed, the chair invites every examiner

to express his / her opinion about every block of PC, starting from the blocks

that are minimal elements of PC to those that are maximal elements of

PC. Namely, examiners must first reveal their point of view on the nodes

of level 0 of PC, then on those of level 1 of PC, and finally on those of

level 2 of PC. For example, they can evaluate the blocks of PC by following

this order: {c1, . . . , c12}, {c6, . . . , c23}, {c1, . . . , c5}, {c6, . . . , c11}, {c13, . . . , c17},

{c18, . . . , c22}, {c1, c2}, {c3, c4}, {c6, c7}, {c8, c9}, {c13, c14}, {c15, c16}, {c18, c19},

{c20, c21}. Moreover, given a block b of PC and an examiner E, we assume

that three possibilities can occur: E could be in favour of the recruitment of

all candidates in b, or E could not want to hire them, or E could be doubtful

about them. Trivially, if E is in favour of the applicants of b, then E is also in

favour of the candidates of all blocks included in b. For example, if E wants to

recruit all candidates having a master degree in Chemistry, namely those of

{c1, . . . , c12}, then E is also in favour of hiring the candidates of {c1, . . . , c5}

and {c6, . . . , c11}, regardless of their specialization, and consequently also

all candidates of {c1, c2}, {c3, c4}, {c6, c7}, and {c8, c9}, regardless of their

language certification. Similarly, if E is not in favour of the applicants of b,

then E is against hiring candidates of b. Therefore, the opinion of E about all

blocks of candidates in PC is represented by the sequence of orthopairs OC(E)

belonging to SO(C), that is

OC(E) = ((L1(E), E1(E)), (L2(E), E2(E)), (L3(E), E3(E))),

such that

Lj(E) = ∪{b ∈ Cj | E is in favour of hiring the candidates of b} and

Ej(E) = ∪{b ∈ Cj | E is not in favour of hiring the candidates of b},

for j = 1, 2, 3.
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Once examiners give their opinions, the chair can combine these through

some operations defined between sequences of orthopairs. Hence, if E1, . . . , Em

are our examiners, then the chair can consider the sequence

OC(E1) ⋆ . . . ⋆ OC(Em),

where ⋆ ∈ {f,g, ⊙2, ⊙3, ⊙4} (these operations are defined in Section 4.5).

So, if a candidate belongs at least to one of first components of pairs in

OC(E1) ⋆ . . . ⋆ OC(Em), then he / her will pass the first selection; if he / she

belongs to at least one of the second components of pairs in OC(E1) ⋆ . . . ⋆

OC(Em), then he / she will be excluded; otherwise, the chair will decide

about him / her.

In order to provide the reader with a more intuitive representation of the

examiners opinion and their combinations through our operations, we can de-

scribe sequences of orthopairs as labelled graphs defined in Remark 14. Thus,

the labelled poset assigned to the sequence OC(X) of SO(C) is determined by

the function

lX : PC Ô→ {•, ◦, ?}

such that

lX(b) =























• if b ⊆ Li(X) for some i ∈ {1, 2, 3},

◦ if b ⊆ Ei(X) for some i ∈ {1, 2, 3},

? otherwise,

where (Li(X), Ei(X)) denotes the i-th orthopair of OC(X).

Now, we assume that the examiners of the commission are two: E1 and

E2. Moreover, the opinions of E1 and E2 are respectively expressed by the

following labelled posets.
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? ?

• ? ? ?

• • ? • ◦ ◦ ? ?

Fig. 4.14: Labelled forest of OC(E1)

? ?

?

? ◦

?

? ◦ • ◦ • ◦ ◦ ◦

Fig. 4.15: Labelled forest of OC(E2)

The labelled posets assigned to OC(E1)fOC(E2), OC(E1)gOC(E2), OC(E1) ⊙2

OC(E2), OC(E1)⊙3OC(E2) and OC(E1)⊙4OC(E2) are respectively the following.

? ?

?

? ◦

?

? ◦ ? ◦ ◦ ◦ ◦ ◦

Fig. 4.16: Labelled forest of OC(E1) f OC(E2)

• ?

?

? ?

?

• • • • • ◦ ? ?

Fig. 4.17: Labelled forest of OC(E1) g OC(E2)
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? ?

?

◦ ◦

◦

? ◦ ? ◦ ◦ ◦ ◦ ◦

Fig. 4.18: Labelled forest of OC(E1) ⊙2 OC(E2)

• ?

?

? ◦

?

• • • • ◦ ◦ ◦ ◦

Fig. 4.19: Labelled forest of OC(E1) ⊙3 OC(E2)

? ?

?

? ?

?

? ? ? ? ? ◦ ? ?

Fig. 4.20: Labelled forest of OC(E1) ⊙4 OC(E2)

We can observe that each of the previous operation determines the choice or

the exclusion of some candidates of {c1, . . . , c24} with respect to the first se-

lection. For example, ⊙2 involves the exclusion of candidates c3, c4, c6, . . . , c23,

and it does not allow any candidate to be admitted.

We can make the following remarks, in order to compare the results generated

with f, g, ⊙2 and ⊙3. By theorems proved in Section 4.5, by Theorem 1, and

by Theorem 2, we can affirm that f,g, ⊙2 and ⊙3 are respectively obtained

starting from the three-valued operations ∧, ∨, ⊛L and ⊛S . Therefore, we

obtain more excluded candidates with ⊙2 than with f, g and ⊙3; indeed, ⊙2

is determined starting from the Łukasiewicz conjunction ⊛L, where 1
2
⊛L

1
2

= 0,

instead of 1
2

∨ 1
2

= 1
2
⊛S

1
2

= 1
2

∧ 1
2

= 1
2
. More candidates pass the first selection

with ⊙3 than with f and ⊙2, since ⊙3 is obtained from the Sobociński

conjunction ⊛S , where 1
2
⊛S 1 = 1 ⊛S

1
2

= 1, instead of 1
2
⊛L 1 = 1 ⊛L

1
2

=
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1
2

∧ 1 = 1 ∧ 1
2

= 1
2
. On the other hand, more candidates pass with g than

with ⊛S , since lE1
({c13, c14}) = ◦ and lE2

({c13, c14}) = •, so 0 ∨ 1 = 1 and

0 ∧ 1 = 0. The operation f refers more candidates to the chair’s decision

than ⊙2 and ⊙3, since it is defined starting from the Kleene conjunction ∧,

where 1
2

∧ 1
2

= 1
2

∧ 1 = 1 ∧ 1
2

= 1
2
.

In this context, the operation ⊙4 can be interpreted as follows. Given j ∈

{1, 2}, we say that the opinion of Ej is overall positive, when Ej is in favour of

recruiting of at least one block of candidates of PC, otherwise Ej ’s opinion

is overall negative. If the opinions of E1 and E2 are both overall negative,

then all candidates of {c1, . . . , c24} are excluded. If only the E1’ s opinion (or

the E2’ s opinion) is overall positive, then the candidates that are negative

for E2 (or E1) are excluded (by negative candidates for E2 (or E1), we mean

those belonging to each block b such that lE2
(b) = ◦ (or lE1

(b) = ◦)), and the

chairman decides for the remaining applicants. If the opinions of E1 and E2

are both overall positive, then the candidates of each block b in PC such that

lE1
(b) = lE2

(b) = • pass the first selection, the candidate of each block b in PC

such that lE1
(b) = lE2

(b) = ◦ are excluded, and the chairman decides for the

remaining applicants.

We can notice that each operation belonging to {f,g, ⊙2, ⊙3, ⊙4} represents

a way to repartition the universe {c1, . . . , c24} in three sets of candidates:

the selected candidates (those belonging to some blocks with label •), the

excluded candidates (those belonging to some blocks with label ◦), and the

remaining candidates on which the evaluation is uncertain (those belonging

to blocks that all with label ?). More generally, each sequence of orthopairs

of SO(C) determines a tri-partition (i.e. partition made of three elements)

of {c1, . . . , c24}. For example, OC(E1) and OC(E2) generate respectively the

following partitions of {c1, . . . , c24}.

PE1
= {{c1, . . . , c4, c8, c9}, {c13, . . . , c16}, {c5, . . . , c7, c17, . . . , c24}},

PE2
= {{c6, c7, c13, c14}, {c3, c4, c8, c9}, {c1, c2, c5, c10, c11, c12, c17, c22, c23, c24}}.

Tri-partitions are at the basis of three-way decision (3WD) theory proposed

by Yao [105]. A three-way decision procedure mainly consists in two steps:

dividing the universe in three region and then acting, i.e. taking a differ-

ent strategy on objects belonging to different regions. In 3WD theory, the

standard tools to trisect the universe are the classical rough sets and or-
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thopairs, namely those generated by a partition [104]. Then, the lower

approximation, the impossibility domain and the boundary region are called

acceptance region, rejection region and uncertain region, respectively. On

the other hand, a sequence of orthopairs divides the universe in a more

precise way also starting from an incomplete information table, in which

the data are missing. For example, if we focus on the labelled forest as-

signed to OC(E1), then we can observe that level 2 gives arise the tri-partition

{{c1, c2, c3, c4, c8, c9}, {c13, c14, c15, c16}, {c6, c7, c18, c19, c20, c21}}, but level 1 al-

lows us to put in the acceptance region also the element c5.

Furthermore, operations between sequences of orthopairs represent several

ways to aggregate different tri-partition of the same universe. For example,

if we consider g, then the tri-partition made of {c1, . . . , c9, c13, c14}, {c15, c16}

and {c10, c11, c12, c17, . . . , c24} is generated starting from PE1
and PE2

.

Once the three regions have been obtained, one might need to expand or

reduce one of them. For example, it could occur that the accepted candidates

with g may be too many. Then, we can assign a weight to every object of the

universe, by considering the labels of each block to which it belongs. Let P j
C

be the j-th level of PC defined in 4.2 such that j ∈ {1, . . . , n}, where n is the

maximum number of elements of a chain in PC. For each c ∈ {c1, . . . , c24},

we set

pj(c) =























1 if c ∈ b where b ∈ P k
C with k ≤ j and it is labelled with •;

0 if c ∈ b where b ∈ P k
C with k ≤ j and it is labelled with ◦;

1
2

otherwise.

Moreover, we assign to c, the following final weight.

w(c) =

n
∑

j=1

pj(c)

n
.

If we focus on the sequences of orthopairs obtained staring from operation

⊙3, we have

• w(c1) = w(c2) = w(c3) = w(c4) = w(c5) =
1
2

+ 1 + 1

3
=

5

6
;
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• w(c6) = w(c7) = w(c8) = w(c9) = w(c10) = w(c11) =
1
2

+ 1
2

+ 1

3
=

2

3
;

• w(c13) = w(c14) = w(c15) = w(c16) =
1
2

+ 1
2

+ 0

3
=

1

3
;

• w(c18) = w(c19) = w(c20) = w(c21) = w(c22) =
1
2

+ 0 + 0

3
=

1

6
;

• w(c12) = w(c17) = w(c23) = w(c24) =
1
2

+ 1
2

+ 1
2

3
=

1

2
.

Trivially, w(c) belongs to the real interval [0, 1], and it expresses how much

the candidate c must pass the first selection from 0 to 1.

The weights w(c1), . . . , w(c24) can be used in several ways. For example, the

chairman could decide that the candidates with weight greater than 2
3
, and

so c1, c2, c3, c4, c5 pass the first selection, and that the remaining candidates

are excluded. Moreover, he could choose two thresholds α and β in [0, 1]

such that α ≤ β. Successively, he can redefine the following tri-partition of

{c1, . . . , c24}

• {c ∈ {c1, . . . , c24} : w(c) ≤ α}} (rejection region),

• {c ∈ {c1, . . . , c24} : α < w(c) < β} (uncertain region),

• {c ∈ {c1, . . . , c24} : w(c) ≥ β} (acceptance region).

We observe that our procedure can be also apply for sequences of orthopairs

generated by a sequence of equivalence relations that is not a refinement

sequence. However, the advantage of considering sequences of refinements of

orthopairs is that once we know that a block N is included in the acceptance

region (or in the rejection region), we also know that all block included in N

are included in the acceptance region (or in the rejection region). Similarly,

if we know that pj(c) = 1 (or pj(c) = 0), we also know that pj+1(c) = 1 (or

pj+1(c) = 0).
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5Modal logic and

sequences of orthopairs

„ “Then you should say what you mean,” the

March Hare went on. “I do,” Alice hastily

replied; “at least–at least I mean what I

say–that’s the same thing, you know.” “Not

the same thing a bit!” said the Hatter. “You

might just as well say that ‘I see what I eat’

is the same thing as ‘I eat what I see’!” “You

might just as well say,” added the March

Hare, “that ‘I like what I get’ is the same

thing as ‘I get what I like’!” “You might just

as well say,” added the Dormouse, who

seemed to be talking in his sleep, “that ‘I

breathe when I sleep’ is the same thing as ‘I

sleep when I breathe’!”

— Lewis Carroll

(Alice’s Adventures in Wonderland)

In this chapter, firstly, we recall some basic notions of modal logic and the

existing connections between modal logic and rough sets (see Section 5.1). In

Section 5.2, we develop the original modal logic SOn, defining its language,

introducing its Kripke models, and providing its axiomatization. Moreover,

we investigate the properties of our logic system, such as the consistency, the

soundness and the completeness with respect to Kripke semantics. In Section

5.3 we explore the relationships between modal logic SOn and sequences of

orthopairs. Also, we consider the operations between orthopairs and between

sequences of orthopairs from the logical point of view. In the last section of

this chapter, we employ modal logic SOn to represent the knowledge of an

agent that increases over time, as new information is provided.
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5.1 Modal logic S5 and rough sets

Modal logic is the logic of necessity and possibility. It is characterized by the

symbols � and ♦, called modal operators, such that the formula �ϕ means

“it is necessary that ϕ” or, in other words, “ϕ is the case in every possible

circumstance”, and the formula ♦ϕ means “it is possible that ϕ” or, in other

words, “ϕ is the case in at least one possible circumstance”. However, necessity

and possibility are not the only modalities, since the term modal logic is used

more broadly to cover a family of logics with similar rules and a variety

of different symbols [47]. In this thesis, we are interested in propositional

modal logic S5, that was proposed by Clarence Irving Lewis and Cooper

Harold Langford in their book Symbolic Logic [65].

Now, we briefly describe the syntax and the semantics of modal logic S5

[26]. The S5-language contains all symbols of propositional logic, plus the

modalities � and ♦. In terms of semantics, the formulas of S5-language are

interpreted with the Kripke models. A Kripke model of S5 is a triple consisting

of a universe U (its element are named possible worlds), an equivalence

relation R on U , and an evaluation function v, that assigns to a propositional

variable p the set of all worlds of U in which p is true. We can extend v on

the formulas of propositional logic as usual and on the modal formulas as

following. Let p be a propositional variable, and let u ∈ U ,

�p is true in u if and only if “p is true in every world v of U such that uRv”, and

♦p is true in u if and only if “p is true at least in a world v of U such that uRv”.

The axiom schemas are obtained by adding the following schemas to those

of propositional logic.

Definition 51 (Axioms of S5).

K. �(ϕ → ψ) → (�ϕ → �ψ) (distribution axiom);

T. �ϕ → ϕ (necessitation axiom);

5. ♦ϕ → �♦ϕ.
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We notice that Axiom 5 it is equivalent to the set of axioms made of

B. ϕ → �♦ϕ and

4. �ϕ → ��ϕ.

The inference rules are the modus ponens and the necessitation rule (ϕ/�ϕ).

We stress that S5 belongs to the family of normal modal logics, that are

characterized by adding the necessitation rule, and a list of axiom schemas

Ax including K to the principles of propositional logic. The weakest normal

modal logic is named K in honour of Saul Kripke, where Ax={K}. Thus,

S5, as every normal modal logic, is an extension of K. A further example of

normal modal logic is S4, that is obtained by adding to system K the axiom

schemas T a and 4.

The system S5 is sound and complete with respect to the class of all Kripke

models of S5.

Moreover, propositional modal logic is also interpreted as an extension of

classical propositional logic with two added operators expressing modality

[52]. Since Pawlak rough set algebra is an extension of Boolean algebra (see

Remark 3), the relationship between propositional modal logic and rough

sets appears intuitive. In particular, modal logic S5 is connected with rough

set theory, since the necessity and possibility can be interpreted as the lower

and the upper approximation [77]. Hence, let (U, R, v) be a Kripke model of

S5, we have that

||�ϕ||v = LR(||ϕ||v) and ||♦ϕ||v = UR(||ϕ||v),

where ||ϕ||v, ||�ϕ||v and ||♦ϕ||v are made of possible worlds in which ϕ, �ϕ

and ♦ϕ are true, respectively.

It is important to recall that S5 can be considered as an epistemic logic in the

sense that it is suitable for representing and reasoning about the knowledge

of an individual agent [42], [64]. Indeed, the formula �ϕ can be read as

“the agent knows ϕ”. Moreover, the axioms of S5 express the properties of the

knowledge. For instance, Schema 4 expresses the fact that if an agent knows

ϕ, then she knows that she knows ϕ (the positive introspection axiom).
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5.2 Modal logic SOn

In this section, the novel modal logic SOn is developed.

From now, by refinement sequence, we mean a refinement sequence of partial

partitions of the given universe, and we fix an integer n > 0.

Language of SOn

We indicate the language of SOn with L. Then, the alphabet of L consists

of

• a set Var of propositional variables;

• the logical connectives ∧ and ¬;

• the sequences of modal operators (�1, . . . ,�n) and (©1, . . . , ©n).

The propositional variables are typically denoted with p, q, r, . . . and refer to

the statements that are considered basic, for example “the book is red”. The

symbols ∧ and ¬ are respectively the conjunction and negation of classical

propositional logic. Fixed i ∈ {1, . . . , n}, we call i-box and i-circle the modal

operators �i and ©i, respectively.

We denote the well formed formulas of L with Greek letters. As usual, the

set Form of all well formed formulas of L is the smallest set that contains Var

and satisfies the following conditions. Let ϕ, ψ ∈ Form,

• if ϕ ∈ Form, then ¬ϕ, �iϕ, ©iϕ ∈ Form, for each i ∈ {1, . . . , n};

• if ϕ, ψ ∈ Form, then ϕ ∧ ψ ∈ Form.

We simply call the elements of Form formulas or sentences. Moreover, the

alphabet of L also contains the brackets “(” and “)” to establish the order

wherewith the connectives work in the complex formulas. In this way, the

language is clear and has no ambiguity.
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The abbreviations introduced in the next definition, except the last one,

are the standard abbreviations defined for the classical propositional logic

[61].

Definition 52 (Abbreviations in L). Let ϕ, ψ ∈ Form and p ∈ Var,

1. ⊥ := p ∧ ¬p (false);

2. ⊤ := ¬⊥ (true);

3. ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ) (disjunction);

4. ϕ → ψ := ¬ϕ ∨ ψ (implication);

5. ϕ ≡ ψ := (ϕ → ψ) ∧ (ψ → ϕ) (equivalence);

6. △iϕ := �i¬ϕ, (i-triangle) with i ∈ {1, . . . , n}.

We employ the convention that ↔ dominates →, and → dominates the

remaining symbols. For example, the formula �ip → q is understood as

(�ip) → q.

By schema, we mean a set of formulas all having the same form. For example,

the schema ϕ ∧ ψ is the set {ϕ ∧ ψ | ϕ, ψ ∈ Form}.

Semantics of SOn

We define the Kripke models of SOn, which we also call orthopaired Kripke

models or SOn-models.

Definition 53. A Kripke model of SOn is a triple

M = (U, (R1, . . . , Rn), v),

where

1. U is a non-empty set of objects,
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2. (R1, . . . , Rn) is a sequence of equivalence relations on U (i.e, for i from

1 to n, Ri ⊆ (U ×U) and Ri is reflexive, symmetric and transitive) such

that, let u ∈ U ,

• R1(u) Ó= {u}, and

• Ri+1(u) ⊆ Ri(u), for each i < n;

3. v is an evaluation function that assigns a subset of U to each element

of Var (i.e. v : Var Ô→ 2U , where 2U is the power set of U).

We say that U is the domain or the universe of M, the elements of U are the

states or the possible worlds of M, and R1, . . . , Rn are the accessibility relations

of M. The pair (U, (R1, . . . , Rn)) is called Kripke frame of SOn. Moreover, let

p ∈ Var, if u ∈ v(p), then we can say that p is true at u in M.

Remark 20. The domain of an orthopaired Kripke model has at least two

elements.

Example 38. Let Var = {p, q, r}, we suppose that

• U = {a, b, c, d},

• R1 = {(a, b), (b, a), (c, d), (d, c)} ∪ {(u, u) | u ∈ U},

• R2 = {(a, b), (b, a)} ∪ {(u, u) | u ∈ U},

• v is a function from Var to 2U such that v(p) = {a, b, c}, v(q) = {c, d} and

v(r) = {a, c}.

Then, M = (U, (R1, R2), v) is a Kripke model of SOn.

Orthopaired Kripke models are also models of modal logic S5n developed in

[42]. However, a Kripke model of S5n is not always a Kripke model of SOn;

in fact, the accessibility relations of each S5n-model have only the property

to be equivalence relations.

Definition 54 (Kripke models of SOn as graphs). A Kripke model M =

(U, (R1, . . . , Rn), v) of SOn is represented by the graph GM, where
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• the set of the vertices is U ,

• two vertices are connected with the labeled edge i if and only if

i = max{j ∈ {1, . . . , n} | (a, b) ∈ Rj}.

• the label of u ∈ U is the list of the propositional variables that are true

at u in M.

Example 39. Suppose that Var = {p} and M = (U, (R1, R2), v) is a Kripke

model of SOn, where

• U = {a, b, c, d, e};

• R1={(a, b), (b, a), (a, c), (c, a), (b, c), (c, b), (d, e), (e, d)}∪{(u, u) | u ∈ U},

• R2 = {(a, b), (b, a)} ∪ {(u, u) | u ∈ U},

• v(p) = {a, b, d}.

The graph GM is as in the following figure.

Fig. 5.1: Graph GM

The notion of truth of a formula in a Kripke model of SOn is given by the

next definition.

Definition 55. Let M = (U, (R1, . . . , Rn), v) be a Kripke model of SOn. The

notion of (M, u) |= ϕ is inductively defined as follows.

1. (M, u) |= p, with p ∈ Var iff “ u ∈ v(p) = ||p||v”;
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2. (M, u) |= (ϕ ∧ ψ) iff “ (M, u) |= ϕ and (M, u) |= ψ”;

3. (M, u) |= ¬ϕ iff “ (M, u) Ó|= ϕ”;

4. (M, u) |= �iϕ iff “ Ri(u) ⊆ ||ϕ||v and Ri(u) Ó= {u}”;

5. (M, u) |= ©iϕ iff “ u |= ϕ and Ri(u) Ó= {u}”;

where ||ϕ||v is the truth set of ϕ, that is

||ϕ||v = {u ∈ U | (M, u) |= ϕ}.

(M, u) |= ϕ can be read as “ϕ is true at u in M” or “ϕ holds at u in M” or

“(M, u) satisfies ϕ”. Moreover, we say that “ϕ is false at u in M” if and only

if (M, u) Ó|= ϕ. We can write u |= ϕ, instead of (M, u) |= ϕ, when M is clear

from the context.

Remark 21. The points 1, 2 and 3 of Definition 55 are given for standard

Kripke semantics too. Also, once fixed i ∈ {1, . . . , n}, u |= �iϕ differs from

u |= �ϕ, where � is the necessity operator of S5 logic interpreted by Ri,

since the additional condition Ri(u) Ó= {u} is required.

The next proposition follows by Definition 52 and Definition 55.

Proposition 14. Let M = (U, (R1, . . . , Rn), v) be a Kripke model of SOn. Then,

1. (M, u) |= (ϕ ∨ ψ) iff “ either (M, u) |= ϕ or (M, u) |= ψ”;

2. (M, u) |= △iϕ iff “ Ri(u) ∩ ||ϕ||v = ∅ and Ri(u) Ó= {u}”;

3. (M, u) |= ϕ → ψ iff “ (M, u) |= ϕ implies that (M, u) |= ψ”;

4. (M, u) |= ϕ ≡ ψ iff “ (M, u) |= ϕ if and only if (M, u) |= ψ”;

for each u ∈ U , ϕ, ψ ∈ Form and i ∈ {1, . . . , n}.

Remark 22. It is clear that

• (M, u) |= �1ϕ iff R1(u) ⊆ ||ϕ||v;
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• (M, u) |= △1ϕ iff R1(u) ∩ ||ϕ||v = ∅;

• (M, u) |= ϕ iff (M, u) |= ©1ϕ;

• If (M, u) |= ©iϕ, then (M, u) |= ϕ;

• If (M, u) |= �iϕ, then (M, u) |= ©iϕ;

for each i from 1 to n.

The following theorem expresses the connection between the logical connect-

ives of L and the set-theoretic operations.

Theorem 34. Let M = (U, (R1, . . . , Rn), v) be a Kripke model of SOn. Then,

1. ||⊥||v = ∅;

2. ||⊤||v = U ;

3. ||¬ϕ||v = U \ ||ϕ||v;

4. ||ϕ ∧ ψ||v = ||ϕ||v ∩ ||ψ||v;

5. ||ϕ ∨ ψ||v = ||ϕ||v ∪ ||ψ||v;

6. ||ϕ → ψ||v = (U \ ||ϕ||v) ∪ ||ψ||v;

7. ||ϕ ≡ ψ||v = ((U \ ||ϕ||v) ∪ ||ψ||v) ∩ ((U \ ||ψ||v) ∪ ||ϕ||v);

8. ||�iϕ||v = {u ∈ U | Ri(u) ⊆ ||ϕ||v and Ri(u) Ó= {u}};

9. ||△iϕ||v={u ∈ U | Ri(u) ∩ ||ϕ||v=∅ and Ri(u) Ó= {u}}; for i from 1 to n.

Let Cln be the class of the Kripke models of SOn, we define the notion of

validity in the models that belong to Cln.

Definition 56. Let M ∈ Cln. Then, for each ϕ ∈ Form, we write

• |=M ϕ iff “ (M, u) |= ϕ, for every world u in M”, and we say that ϕ is

valid in M;
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• |=Cln ϕ iff “ |=M ϕ, for every model M in Cln”, and we say that ϕ is

valid in Cln.

From the previous notions of validity, two logical consequence relations can

be formally defined.

Definition 57. For each M ∈ Cln, ϕ ∈ Form and Γ ⊆ Form, we write

• Γ |=M ϕ iff “ if |=M Γ, then |=M ϕ”, and

• Γ |=Cln ϕ iff “ if |=Cln Γ, then |=Cln ϕ”.

Proposition 15. Let i ∈ {1, . . . , n}, the instances of the following schemes are

SOn-tautologies.

Ab△1
. △1⊥.

Dist�i
. �i(ϕ ∧ ψ) ≡ �iϕ ∧ �iψ.

Dist△i
. △i(ϕ ∨ ψ) ≡ △iϕ ∧ △iψ.

P1. ¬ ©i ϕ → (¬�iϕ ∨ ¬△iϕ).

P2. (¬ ©i ϕ ∧ ϕ) → (¬�iϕ ∧ ¬△iϕ).

Proof. Let M = (U, (R1, . . . , Rn), v) ∈ Cln, and let u ∈ U .

Ab△1
. By Definition 53, R1(u) Ó= {u}; moreover, by Theorem 34, ||⊥||v = ∅.

Then, (M, u) |= △1⊥.

Dist�i
. By Theorem 34, ||ϕ∧ψ||v = ||ϕ||v∩||ψ||v. Trivially, Ri(u) ⊆ ||ϕ∧ψ||v if

and only if Ri(u) ⊆ ||ϕ||v and Ri(u) ⊆ ||ψ||v. Then, (M, u) |= �i(ϕ ∧ ψ)

if and only if (M, u) |= �iϕ ∧ �iψ.

Dist△i
. (M, u) |= △i(ϕ ∨ ψ) if and only if Ri(u) ⊆ ||ϕ ∨ ψ||v and Ri(u) Ó= {u}.

By Proposition 14, Ri(u) ∩ ||ϕ ∨ ψ||v = Ri(u) ∩ (||ϕ||v ∪ ||ψ||v). Since

Ri(u) ∩ (||ϕ||v ∪ ||ψ||v) = (Ri(u) ∩ ||ϕ||v) ∪ (Ri(u) ∩ ||ψ||v), we have that

Ri(u)∩||ϕ∨ϕ||v = ∅ if and only if Ri(u)∩||ϕ||v = ∅ and Ri(u)∩||ψ||v = ∅.

Then, (M, u) |= △iϕ and (M, u) |= △iψ.
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P1. Suppose that (M, u) |= ¬ ©i ϕ. Then, (M, u) Ó|= ϕ or Ri(u) = {u}. If

(M, u) Ó|= ϕ, then ¬�iϕ is true at u in M. If Ri(u) = {u}, then both

¬�iϕ and ¬△iϕ are true at u in M.

P2. If (M, u) |= ¬ ©i ϕ ∧ ϕ, then Ri(u) = {u}. Consequently, both ¬�iϕ and

¬△iϕ are true at u in M.

Axiomatic system of SOn

The orthopaired modal logic SOn is the smallest set of sentences that contains

the instances of the axiom schemes of propositional logic and the instances

of the axiom schemes of Definition 58, and that is closed under the inference

rules of Definition 59.

Definition 58 (Axioms of SOn).

Z�1
. �1⊤.

Def1. �iϕ ≡ △i¬ϕ.

Def2. ©iϕ ≡ ©i⊤ ∧ ϕ.

K�i
. �i(ϕ → ψ) → (�iϕ → �iψ).

T�i
. �iϕ → ϕ.

B�i
. ©iϕ → �i¬△iϕ.

4�i
. �iϕ → �i�iϕ.

Eq. ©i⊤ ≡ �i⊤.

R1©i
. ©iϕ → (�jϕ → �iϕ), with j ≤ i.

R2©i
. �iϕ → ©iϕ.
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Nst©i
. ©iϕ → ©jϕ, with 0 < j ≤ i.

Definition 59 (Inference rules of SOn).

MP.
ϕ, ϕ → ψ

ψ
(Modus Ponens).

�iMn.
ϕ → ψ

�iϕ → �iψ
, for each i ∈ I.

We notice that Schema Z�1
ensures that all equivalence classes of the first

accessibility relation of the SOn-models are not singletons. Furthermore,

fixed i ∈ {1, . . . , n}, Schema Def1 allows us to obtain �i through the modal

operator △i; vice-versa, we also have that △iϕ ≡ �i¬ϕ. Trivially, Def2 is

introduced to individuate the possible worlds of which the i-th equivalence

class is a singleton. Schemas K�i
, T�i

and 4�i
are respectively the schemas

K, T, and 4 that characterized S4 (see Definition 51), where � = �i and ♦ =

¬△i. Thus, K�i
states that the operator �i distributes over the implication

→; T�i
and 4�i

express respectively that the accessibility relations of all

SOn-models are reflexive and transitive relations. On the other hand, taking

�i = �, B�i
is not equal to B; they are different because the hypothesis

of B�i
(©iϕ) is stronger than the hypothesis of B (ϕ); so, we can say that

each relation of each Kripke model of SOn is a strongly symmetric relation.

Furthermore, B�1
is equal to B, since Z�1

requires that the condition R1(u) Ó=

{u} is satisfied, for each possible world u, and for each accessibility relation

R1 of the SOn-models. Moreover, by Schema B�i
, we can observe that the

accessibility relations of the SOn-models satisfy the euclidean property. Also,

we have to stress that the modal operator △i corresponds to the negation of

the possibility operator ♦ of every modal logic. In addition, the schemas Eq,

R1©i
, R2©i

and Nst©i
provide some connections between the operators ©i

and �i. More precisely, Eq affirms that both (M, u) |= ©i⊤ and (M, u) |=

�i⊤ mean that Ri(u) is not a singleton. R1©i
guarantees that each relation is

finer than the previous one, namely Ri+1(u) ⊆ Ri(u) for each i > 1. By R2©i
,

we have that ©i follows from �i. On the other side, Nst©i
states that if Ri(u)

is not a singleton, then all equivalence classes of the previous relations to Ri

containing u are not singletons. Finally, we can notice that T�i
is obtained

from Def2 and R2©i
.

Remark 23. Suppose that Schema Z�1
is substituted by the schemas ¬ ©1 ⊤,

. . . , ¬ ©n ⊤. Then, each equivalence class of each accessibility relation of the
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SOn-models is a singleton. In this case, it is clear that all axiom schemas of

Definition 58 are trivially satisfied by each SOn-model. Moreover, if n = 1,

then the axiom schemas Eq, R1©1
, R2©1

and Nst©1
are trivially satisfied by

each SO1-model. Thus, the axiom schemas of our logic is obtain by adding

Z�1
to those of modal logic S5 and by setting �1 = � and △1 = ¬♦. Clearly,

in this case, the Kripke models of SO1 are all Kripke models of S5 such that

the equivalence classes of their accessibility relations are not singletons.

Soundness and Completeness of SOn

Next, we prove the soundness of SOn system with respect to the class of

models Cln already defined.

Theorem 35. The axiom schemes of SOn are valid in the class Cln, and the

rules preserve the validity in this class.

Proof. Let M = (U, (R1, . . . , Rn), v) be a model of Cln. Fixed u ∈ U , we prove

that each instance of the axiom schemas of SOn is true at u in M.

Z�1
. By Definition 53, R1(u) Ó= {u}, and by Theorem 34, ||⊤||v = U . Then,

(M, u) |= �1⊤.

Def1. (M, u) |= �iϕ if and only if Ri(u) ⊆ ||ϕ||v and Ri(u) Ó= {u}, by

Definition 55. Moreover, Ri(u) ⊆ ||ϕ||v if and only if Ri(u)∩(U\||ϕ||v) =

∅. However, by Theorem 34, U \ ||ϕ||v = ||¬ϕ||v, So, it is clear that

(M, u) |= △i¬ϕ.

Def2. It is trivial.

K�i
. Suppose that (M, u) |= �i(ϕ → ψ) and (M, u) |= �iϕ. Then, Ri(u) Ó=

{u}, Ri(u) ⊆ ||ϕ → ψ||v and Ri(u) ⊆ ||ϕ||v. By Theorem 34, ||ϕ →

ψ||v = (U \ ||ϕ||v) ∪ ||ψ||v. Therefore, it is obvious that Ri(u) ⊆ ||ψ||v

and so (M, u) |= �iψ.

T�i
. Suppose that (M, u) |= �iϕ. Then, Ri(u) ⊆ ||ϕ||v. By Definition 53, Ri

is reflexive and so u ∈ Ri(u). Consequently, (M, u) |= ϕ.
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B�i
. Suppose that (M, u) |= ©iϕ. Then, (M, u) |= ϕ and Ri(u) Ó= {u}. Since

u ∈ ||ϕ||v, we have that

Ri(u) ∩ ||ϕ||v Ó= ∅. (5.1)

On the other hand,

||△iϕ||v = {v ∈ U | Ri(v) Ó= {v} and Ri(v) ∩ ||ϕ||v = ∅}. (5.2)

By 5.1 and 5.2, Ri(u) ∩ ||△iϕ||v = ∅. Therefore, Ri(u) ⊆ U \ ||△iϕ||v

and so Ri(u) ⊆ ||¬△iϕ||v. Consequently, (M, u) |= ¬△iϕ.

4�i
. If (M, u) |= �iϕ, then Ri(u) ⊆ ||ϕ||v and Ri(u) Ó= {u}. On the other

hand, ||�iϕ||v = ∪u∈U{Ri(u) | Ri(u) Ó= {u}}. Then, Ri(u) ⊆ ||�iϕ||v.

Therefore, (M, u) |= �i�iϕ.

Eq. By Theorem 34, we have that ||⊤||v = U . Then, both �i⊤ and ©i⊤ are

true at u in M if and only if Ri(u) Ó= {u}.

R1©i
. Suppose that (M, u) |= ©iϕ and (M, u) |= �jϕ. Then Rj(u) ⊆ ||ϕ||v.

Since j ≤ i, Ri(u) ⊆ Rj(u). Therefore, Ri(u) ⊆ ||ϕ||v. Since (M, u) |=

©iϕ, we also have that Ri(u) Ó= {u}. Then, (M, u) |= �iϕ.

R2©i
. Trivially, Ri(u) ⊆ ||ϕ||v implies that u ∈ ||ϕ||v, since Ri is a reflexive

relation.

Nest©i
. Let j ≤ i, if Ri(u) Ó= {u} then Rj(u) Ó= {u}, since Ri(u) ⊆ Rj(u);

indeed (M, u) |= ©iϕ → ©jϕ.

We prove that if the hypothesis of the inference rules are true at u in M, then

the thesis is also true at u in M.

MP. It is trivial.

�iMn. By Theorem 34, if (M, u) |= ϕ → ψ, then ||ϕ||v ⊆ ||ψ||v. If (M, u) |=

�iϕ, then Ri(u) ⊆ ||ϕ||v and Ri(u) Ó= {u}. Then, it is clear that

(M, u) |= ψ.
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Corollary 3. The SOn system is sound with respect to the class of models Cln

(i.e. if ⊢SOn
ϕ then |=Cln ϕ, for each ϕ ∈ Form).

We usually write “⊢SOn
ϕ” to mean that ϕ is a theorem of SOn, this is

⊢SOn
ϕ.

In terms of theoremhood, we can characterize notions of deducibility and

consistency.

Definition 60. A formula ϕ of Form is deductible or derivable from a set of

sentences Γ in the system SOn, written Γ ⊢SOn
ϕ, if we have

⊢SOn
(ϕ1 ∧ ... ∧ ϕn) → ϕ,

where ϕ1, . . . , ϕn are formulas in Γ.

Definition 61. A subset Γ of Form is consistent in SOn, written ConSOn
Γ, if

and only if the falsum is not deducible from Γ in SOn, namely Γ Ó⊢SOn
⊥.

Thus, Γ is inconsistent in SOn just when Γ ⊢SOn
⊥.

Next, we define the idea of a canonical model for axiomatic system SOn,

and we prove some fundamental theorems about completeness. Before of

introducing the concept of canonical model, we need to define the concept

of maximality. Intuitively, a set of formulas is maximal if it is consistent, and

it contains as many formulas as it can without becoming inconsistent. We

write MaxSOn
Γ to indicate that Γ is SOn-maximal, and we formally give the

definition as follows.

Definition 62. Let Γ ⊆ Form, MaxSOn
Γ if and only if

1. ConsSOn
Γ, and

2. for each ϕ ∈ Form, if ConsSOn
( Γ

⋃

{ϕ} ) then ϕ ∈ Γ.

Now, we have to recall Theorem 36, the Lindenbaum’s lemma and its two

corollaries (found in [26]) for the maximal consistent sets of logical systems.

By logical system, we mean be any set which contains certain initial axioms

and which is closed under certain rules of inference. Moreover, we write

MaxΣΓ to denote that Γ is Σ-maximal.
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Theorem 36. Let Σ be a logical system, and let MaxΣΓ, then

1. ¬ϕ ∈ Γ iff ϕ /∈ Γ;

2. ϕ ∧ ψ ∈ Γ iff ϕ ∈ Γ and ψ ∈ Γ;

3. ϕ → ψ ∈ Γ iff if ϕ ∈ Γ, then ψ ∈ Γ.

Theorem 37 (Lindenbaum’s lemma). Let Σ be a logical system. If ConΣΓ,

then there is a MaxΣ∆ such that Γ ⊆ ∆

Corollary 4. Let Σ be a logical system. Then,

⊢Σ ϕ if and only if ϕ ∈ ∆,

for every MaxΣ∆.

Corollary 5. Let Σ be a logical system. Then, Γ ⊢Σ ϕ if and only if ϕ is an

element of every MaxΣ∆ such that Γ ⊆ ∆.

In terms of maximality we can define what we shall call the proof set of a

formula. Relative to system SOn, the proof set of a formula ϕ (denoted by

| ϕ |SOn
) is the set of SOn-maximal sets containing ϕ.

Definition 63. Let ϕ ∈ Form, we set

| ϕ |SOn
= {MaxSOn

Γ | ϕ ∈ Γ}.

We can state that a formula is deducible from a set of formulas if and only if

it belongs to every maximal extension of the set.

Theorem 38. Let Γ ⊆ Form, and let ϕ ∈ Form. Then,

Γ ⊢SOn
ϕ if and only if ϕ ∈ ∆ for every ∆ ∈| Γ |SOn

Proof. It follows from the Lindenbaum’s Lemma.
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Definition 64. The canonical model of SOn is the structure

M∗ = (U∗, (R∗
1, . . . , R∗

n), v
∗)

that satisfies the following conditions.

1. U∗ = {Γ ⊆ Form : MaxSOn
Γ};

2. For every w′, w ∈ U∗, w′ ∈ R∗
i (w) iff {ϕ|�iϕ ∈ w} ⊆ w′ (namely,

wR∗
i w′ if and only if every formula ϕ belongs to w′, whenever �iϕ

belongs to w), and ©i⊤ ∈ w;

3. v∗(p) = | p |SOn
, for each p ∈ Var.

The canonical model has this property: if w ∈ U∗, then the formulas that are

true at w in M∗ are all and only the formulas belonging to w. More precisely,

the following theorem holds.

Theorem 39. Let M∗ be the canonical model of SOn. Then, for every possible

world w of M∗ and for every formula ϕ of Form,

(M∗, w) |= ϕ if and only if ϕ ∈ w. (5.3)

Proof. In order to prove 5.3, we use the induction on the length of the

formulas. By the definition of v∗ and by Definition 63, the propositional

variables satisfy 5.3 (case base). Suppose that 5.3 holds for the formulas ϕ

and ψ (induction hypothesis), we intend to prove that ¬ϕ, ϕ ∧ ψ, �iϕ and

©iϕ satisfy 5.3for each i ∈ {1, . . . , n} (induction step).

(¬ϕ). By Definition 55, (M∗, w) |= ¬ϕ if and only if (M∗, w) Ó|= ϕ. By

induction hypothesis, we have that ϕ /∈ w, namely ¬ϕ /∈ w, since

Theorem 36 holds.

(ϕ ∧ ψ). By Definition 55, (M∗, w) |= ϕ ∧ ψ if and only if (M∗, w) |= ϕ and

(M∗, w) |= ψ. By induction hypothesis, we have that ϕ ∈ w and ψ ∈ w,

namely ϕ ∧ ψ ∈ w, since Theorem 36 holds.

(�iϕ). Suppose that (M∗, w) |= �iϕ. Then, by Definition 55, R∗
i (u) ⊆ ||ϕ||v∗ .

Therefore, if w′ ∈ U∗ and {ψ | �iψ ∈ w} ⊆ w′, then (M∗, w′) |= ϕ.
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By induction hypothesis, ϕ ∈ w′. Then, w′ ⊢SOn
ϕ, by Theorem 36.

By Corollary 5, {ψ | �iψ ∈ w} ⊢SOn
ϕ. So, by Definition 60, ⊢SOn

ψ1 ∧ . . . ∧ ψn → ϕ. By rule �iMn, ⊢ �iψ1 ∧ . . . ∧ �nψ → �iϕ ∈ w.

Moreover, by modus ponens, �iϕ ∈ w.

Let �iϕ ∈ w, we intend to prove that R∗
i (w) ⊆ ||ϕ||v∗ and R∗

i (w) Ó= {w}.

Firstly, suppose that w′ ∈ R∗
i (w), then {ψ | �iψ ∈ w} ⊆ w′. Thus, ϕ ∈ w,

since �iϕ ∈ w. Then, w ∈ ||ϕ||v∗.

By schema R2©i
, �iϕ → ©iϕ ∈ w and by hypothesis ©iϕ ∈ w. Then,

by modus ponens, ©iϕ ∈ w, and so R∗
i (w) Ó= {w}.

(©iϕ). (M∗, w) |= ©iϕ if and only if (M∗, w) |= ϕ and (M∗, w) |= ©i⊤.

Then, by induction hypothesis, ϕ ∈ w and by definition of canonical

model ©i⊤ ∈ w. They are equivalent to say that ϕ ∧ ©i⊤ ∈ w, namely

©iϕ ∈ w.

Theorem 40. The canonical model M∗ = (U∗, (R∗
1, . . . , R∗

n), v∗) is a Kripke

model of SOn.

Proof. (R∗
i is reflexive). Let w ∈ U∗ such that �iϕ ∈ w. By the schema Ti

of Definition 58 (�iϕ → ϕ) and by Theorem 36, we have that ϕ ∈ w.

Then, wR∗
i w.

(R∗
i is symmetric). Suppose that wR∗

i w′, with w Ó= w′. Therefore, R∗
i (w) Ó=

{w} (consequently, ©i⊤ ∈ w), and {ϕ ∈ Form | �iϕ ∈ w} ⊆ w′. Let

ϕ ∈ Form such that �iϕ ∈ w′. We have to prove that ϕ ∈ w. If ϕ /∈ w,

then ¬ϕ ∈ w. By Schema Def2, ©i¬ϕ ∈ w. By Schema B�i
and by

Theorem 36, �i¬△i¬ϕ ∈ w. By hypothesis, ¬△i¬ϕ ∈ w′, namely

△i¬ϕ /∈ w′. By Schema Def1, �iϕ /∈ w′. The latter is an absurd, since

we have assumed that �iϕ ∈ w′.

(R∗
i is transitive). Suppose that wR∗

i w′ and w′R∗
i w′′. Consequently, {ϕ ∈

Form | �iϕ ∈ w} ⊆ w′ and {ϕ ∈ Form | �iϕ ∈ w′} ⊆ w′′. Let ϕ ∈ Form

such that �iϕ ∈ w, we have to prove that ϕ ∈ w′′. By schema 4�i

of Definition 58 and Theorem 36, if �iϕ ∈ w, then �i�iϕ ∈ w. By

hypothesis, �iϕ ∈ w′ and so ϕ ∈ w′′.
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(R∗
1(w) Ó= {w}, for each w ∈ U∗). We consider w ∈ U∗. By Definition 64,

©i⊤ ∈ w. Then, ©1⊤ ∈ w and so R∗
1(w) Ó= {w}.

(R∗
i+1(w) ⊆ R∗

i (w), for each i ∈ {1, . . . , n − 1}). Let w′ ∈ R∗
i+1(w) and ϕ ∈

Form such that �iϕ ∈ w. We have to prove that ϕ ∈ w′. By Schema

T�i
, the hypothesis that �iϕ ∈ w implies that ϕ ∈ w. By Definition 64,

©i+1⊤ ∈ w. Consequently, ©i⊤ ∧ ϕ ∈ w and so ©i+1ϕ ∈ w.

Since Ri+1(w) Ó= {w}, then ©i+1⊤ ∈ w. By schema R1©i
of Definition

58 and Theorem 36, �i+1ϕ ∈ w. Then, ϕ ∈ w′.

5.3 Orthopaired Kripke model and

sequences of orthopairs

In this section, we intend to investigate on the connections between se-

quences of orhopairs and modal logic SOn. The relationships between rough

sets and modal logic have been explored by several authors (see [66] for

a list); the most studied one concerns Pawlak set theory and modal logic

S5 [8, 88]. As we have already said in Section 5.1, the intuition besides

this link is that the lower and the upper approximations can be regarded

as two unary operations on subsets of the given universe. Thus, let U be

a universe, and let R be an equivalence relation on U , the Pawlak rough

set algebra (2U , ∩, ∪, ¬, LR, UR, ∅, U) is an extension of the Boolean algebra

(2U , ∩, ∪, ¬, ∅, U) (see Remark 3), and then it may be interpreted in terms of

the notions of topological space and topological Boolean algebra [8].

Firstly, we prove that there is a correspondence one-to-one between refine-

ment sequences and Kripke frames of SOn.

Without loss of generality, let be C = (C1, . . . , Cn) a refinement sequence of

U , we suppose that its first partition C1 covers U .

Let n be a positive integer. We denote the set of all refinement sequences

made of n partial partitions with RSn, and the set of all Kripke frames of SOn

made of n equivalence relations with Fn.
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Definition 65. We consider the map f : RSn Ô→ Fn, where, let C ∈ RSn,

f(C) = (U, (R1, . . . , Rn)) ∈ Fn such that

1. U = ∪{b | b ∈ C1},

2. uRiv if and only if u = v or {u, v} ⊆ b, with b ∈ Ci; for each u, v ∈ U

and i ∈ {1, . . . , n}.

Clearly, let (U, (R1, . . . , Rn)) ∈ Fn, then f−1((U, (R1, . . . , Rn))) is the refine-

ment sequence (C1, . . . , Cn) of U such that

Ci = {Ri(u) | u ∈ U and Ri(u) Ó= {u}}.

Proposition 16. The function f is a bijection.

Proof. It is trivial.

Let C ∈ RSn, we denote f(C) with FC. vice versa, let F ∈ Fn, we denote

f−1(C) with CF .

Example 40. Let C = (C1 = {{a, b, c}, {d, e}}, C2 = {{a, b}}) be a refinement

sequence of {a, b, c, d, e}. Then, f(C) = ({a, b, c, d, e}, (R1, R2)), where

1. R1 = {(a, b), (b, a), (a, c), (c, a), (b, c), (c, b), (d, e), (e, d)} ∪ {(u, u) | u ∈

{a, b, c, d, e}} and

2. R2 = {(a, b), (b, a)} ∪ {(u, u) | u ∈ {a, b, c, d, e}}.

Vice versa, f−1(({a, b, c, d, e}, (R1, R2)) = C.

Therefore, function f allows us to identify Kripke frames of SOn logic having

U as universe with refinement sequences of partial partitions of U . Further-

more, we can observe that Kripke frame (U, (R1, . . . , Rn)) corresponds to the

sequences of Pawlak spaces ((U, R1), . . . , (U, Rn)).

The following theorem establishes a connection between sequences of ortho-

pairs and the modal operators (�1, . . . ,�n) and (△1, . . . , △n) of SOn logic.
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Theorem 41. Let F = (U, (R1, . . . , Rn)) ∈ Fn and (F , v) ∈ Cn. Then,

(||�iϕ||v, ||△iϕ||v) is the orthopair of ||ϕ||v generated by the i-th partition of CF .

Therefore,

( (||�1ϕ||v, ||△1ϕ||v), . . . , (||�nϕ||v, ||△nϕ||v) )

is the sequence of orthopairs of ||ϕ||v generated by CF .

Proof. The proof follows by Definition 55 (point 4), Proposition 14 (point 2)

and Definition 65.

Example 41. Let F be the Kripke frame of Example 40. We suppose that

Var = {p, q} and we consider the Kripke model (F , v) such that v(p) = {a, b, c},

and v(q) = {a, b, d}. Then, ||p ∧ q||v = {a, b}. Moreover,

( (||�1 p∧q||v, ||△1 p∧q||v), (||�2 p∧q||v, ||△2 p∧q||v) ) = ((∅, {d, e}), ({a, b}, ∅)),

that is the sequence OCF
(||ϕ||v).

Trivially, let v and v’ be two evaluation functions such that v Ó= v’, then the

sequence OCF
(||ϕ||v) is not usually equal to OCF

(||ϕ||v′).

Example 42. We consider the Kripke model (F , v) of Example 41 and the

Kripke model (F , v’) such that v’(p) = {a, d, e} and v’ = {d, e}.

Then, ||p ∧ q||v’ = {d, e} and so OCF
(||ϕ||v’) = (({d, e}, {a, b, c}), (∅, {a, b})),

that is not equal to the sequence OCF
(||ϕ||v).

Given a Kripke model (F , v) of SOn and two formulas ϕ and ψ, there exists

a formula obtained from ϕ and ψ that is valid in (FC, v) if and only if the

sequences of orthopairs of ||ϕ||v and ||ψ||v generated by CF are equal to each

other. More precisely, the following theorem holds.

Theorem 42. Let ϕ, ψ ∈ Form and (F , v) ∈ Cn, then

OCF
(||ϕ||v) = OCF

(||ψ||v) iff |=(F ,v)
n

∧

i=1

(�iϕ ≡ �iψ) ∧ (△iϕ ≡ △iψ).

Proof. Notice that, by Proposition 14, |=(F ,v) (�iϕ ≡ �iψ) if and only if

||�iϕ||v = ||�iψ||v, for each i ∈ {1, . . . , n}. Then, the thesis clearly follows.
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The following remark shows that the modal operators ©1, . . . , ©n allow us

to understand what are the elements that are lost during the refinement

process.

Remark 24. Let C = (C1, . . . , Cn) be a refinement sequence of U , through the

modal operator ©i, it is easy to check whether an element of U belongs to a

block of the partial partition Ci; thus, let u ∈ U and i ∈ {1, . . . , n}, we have

that

u ∈
⋃

b∈Ci

b if and only if ((FC, v), u) |= ©i⊤,

for each evaluation function v.

Furthermore, we can express the property of safety of refinement sequences of

partial partitions by using the modal operators (�1, . . . ,�n) and (©1, . . . , ©n)

(the meaning of safe refinement sequence is given in Definition 44).

Theorem 43. Let C be a refinement sequence of U . Then, C is safe if and only

if the following condition holds:

“if (M, u) |= �iϕ and i ≤ j, then Ri(u) = Rj(u) or there exists u′ ∈ Ri(u)

such that (M, u′) |= ¬ ©j ϕ” (or “if (M, u) |= △iϕ, then Ri(u) = Rj(u) or

there exists u′ ∈ Ri(u) such that (M, u′) |= ¬ ©j ¬ϕ”), for each ϕ ∈ Form,

M = (FC, v) ∈ Cn, u ∈ U and i ∈ {1, . . . , n − 1}.

Proof. (⇒). We suppose that (M, u) |= �iϕ and Ri(u) Ó= Rj(u), with j > i.

We notice that Ri(u) ∈ Ci, since Ri(u) Ó= {u}. On the other hand, Ri(u) /∈

Cj, since Ri(u) Ó= Rj(u). So, we call N1, . . . , Nm the blocks of Cj that are

included in Ri(u). By Remark 12, the successors N ′
1, . . . , N ′

l of Ri(u) belong

to Ck, where i < k ≤ j. Since C is safe, there exists u′ ∈ Ri(u) such

that u′ /∈ N ′
1 ∪ . . . ∪ N ′

l (see Definition 44). Then, u′ /∈ ∪{b | b ∈ Ck} and so

u′ /∈ ∪{b | b ∈ Cj}. Then, Rj(u
′) = {u′} and this means that (M, u′) |= ¬©j ϕ.

(⇐). Let N ∈ PC. Suppose that N1, . . . , Nm are the successors of N in PC.

We intend to prove that N1 ∪ . . . ∪ Nm ⊂ N . We consider the evaluation

function v such that v(p) = N , where p ∈ Var. If N ∈ Ci, then there exists

u ∈ U such that N = Ri(u). Trivially, we have that ((FC, v), u) |= �ip. We

notice that N1, . . . , Nm belong to Cj, with j > i. By hypothesis, there exists
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u′ ∈ Ri(u)(= N) such that ((FC, v), u) |= ¬©i p. Then Rj(u
′) Ó= {u′} and so u′

does not belong to some nodes of Cj. Therefore, u′ ∈ N , but u′ /∈ N1∪. . .∪Nm

and so by Definition 44, C is safe.

As a consequence of the previous theorem, we can express the results of

Corollary 2 for refinement sequences of partial partitions by using the modal

operators (�1, . . . ,�n) and (©1, . . . , ©n) as follows.

Theorem 44. Let C = (C1, . . . , Cn) be a refinement sequence of U . Then, K3
C is

a finite IUML-algebra if and only if the following condition holds:

“if (M, u) |= �iϕ and i ≤ j, then Ri(u) = Rj(u) or there exists u′ ∈ Ri(u)

such that (M, u′) |= ¬ ©j ϕ” (or “if (M, u) |= △iϕ, then Ri(u) = Rj(u) or

there exists u′ ∈ Ri(u) such that (M, u′) |= ¬ ©j ¬ϕ”), for each ϕ ∈ Form,

M = (FC, v) ∈ Cn, u ∈ U and i ∈ {1, . . . , n − 1}.

However, by using modal logic, we can also express the results obtained for

the structures K1
C, K2

C and K4
C in Section 4, but only when C is a refinement

sequence of partial partitions (we recall that such algebraic structures, except

K3
C, are generated by refinement sequences of partial coverings of the given

universe).

At the end of this section, we intend to include the operations f, g, →֒1, ⊙2,

→֒2, ⊙3 and →֒3 defined on sequences of orthopairs of partial partitions (see

50) in our modal logic. 1

Theorem 45. Let ϕ, ψ ∈ Form and (F , v) ∈ Cln. If CF is safe, then

OCF
(||ϕ||v) f OCF

(||ψ||v) = ((A1, B1), . . . , (An, Bn)),

where (Ai, Bi) = (||�iϕ ∧�iψ||v
2, ||△iϕ ∨ △iψ||v), for each i ∈ {1, . . . , n}, and

OCF
(||ϕ||v) g OCF

(||ψ||v) = ((C1, D1), . . . , (Cn, Dn)),

where (Ci, Di) = (||�iϕ ∨ �iψ||v, ||△iϕ ∧ △iψ||v
3), for each i ∈ {1, . . . , n}.

1We exclude the operations ⊙4 and →֒4, since they can not be obtained starting from
operations between the orthopairs.

2By 15, �iϕ ∧ �iψ = �i(ϕ ∧ ψ).
3By 15, △iϕ ∧ △iψ = △i(ϕ ∨ ψ).
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Proof. By Theorem 30, OCF
(||ϕ||v) f OCF

(||ψ||v) = ((A1, B1), . . . , (An, Bn)),

such that (Ai, Bi) = (Li(||ϕ||v), Ei(||ϕ||v))∧K(Li(||ψ||v), Ei(||ψ||v)) = (Li(||ϕ||v)

∩ Li(||ψ||v), Ei(||ϕ||v) ∪ Ei(||ψ||v)). Suppose that u ∈ U , we have that u ∈

Li(||ϕ||v) ∩ Li(||ψ||v) if and only if Ri(u) ⊆ ||ϕ||v, Ri(u) ⊆ ||ψ||v and Ri(u) Ó=

{u}, namely u |= �iϕ ∧ �iψ. Moreover, u ∈ Ei(||ϕ||v) ∪ Ei(||ψ||v) if and

only if Ri(u) Ó= {u} and either Ri(u) ⊆ ||ϕ||v or Ri(u) ⊆ ||ψ||v, namely

u |= △iϕ ∨ △iψ. The proof for the operation g is analogous.

Definition 66. Let ϕ, ψ ∈ Form, we recursively define the sequences of

formulas (α1(ϕ, ψ), . . . , αn(ϕ, ψ)), (β1(ϕ, ψ), . . . , βn(ϕ, ψ)), (γ1(ϕ, ψ), . . . ,

γn(ϕ, ψ)), (δ1(ϕ, ψ), . . . , δn(ϕ, ψ)), (ǫ1(ϕ, ψ), . . . , ǫn(ϕ, ψ)), (ζ1(ϕ, ψ), . . . ,

ζn(ϕ, ψ)), (η1(ϕ, ψ), . . . , ηn(ϕ, ψ)), (θ1(ϕ, ψ), . . . , θn(ϕ, ψ)), (ι1(ϕ, ψ), . . . ,

ιn(ϕ, ψ)) and (κ1(ϕ, ψ), . . . , κn(ϕ, ψ)) as follows.

• αn(ϕ, ψ) := ¬�nϕ ∨ �nψ;

• αi(ϕ, ψ) := (¬�iϕ ∨ �iψ) ∧ ¬νi+1(ϕ, ψ), with i ∈ {1, . . . , n − 1};

• βi(ϕ, ψ) := �iϕ ∧ �iψ, with i ∈ {1, . . . , n};

• γi(ϕ, ψ) := �iϕ ∧ �ψ, with i ∈ {1, . . . , n};

• δn(ϕ, ψ) := λn;

• δi(ϕ, ψ) := λi ∧ ¬δi+1(ϕ, ψ), with i ∈ {1, . . . , n − 1}, where

λi := ¬(�iϕ ∨ �iψ) ∨ �iϕ ∨ �iψ.

• ǫn(ϕ, ψ) := µn;

• ǫi(ϕ, ψ) := µi ∧ ¬ǫi+1(ϕ, ψ), with i ∈ {1, . . . , n − 1}, where

µi := (¬�iϕ ∨ �iψ) ∧ (△iϕ ∨ ¬△iψ).

• ζi(ϕ, ψ) := �iϕ ∧ △iψ, with i ∈ {1, . . . , n};

• η1(ϕ, ψ) := ν1;
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• ηi(ϕ, ψ) := νi ∨ �iηi−1(ϕ, ψ), with i > 1 and

νi = (�iϕ ∧ ¬△iψ) ∨ (�iψ ∧ ¬△iϕ).4

• θi(ϕ, ψ) := (△iϕ ∨ △iψ) ∧ ¬ ηi(ϕ, ψ), with i ∈ {1, . . . , n};

• ιi(ϕ, ψ) := ((¬�iϕ ∨ �iψ) ∧ (△iϕ ∨ ¬△iψ)) ∧ κi(ϕ, ψ), for each i ∈

{1, . . . , n};

• κ1(ϕ, ψ) := �1ϕ ∧ △1ψ;

• κi(ϕ, ψ) := (�iϕ ∧ △iψ) ∨ κi−1(ϕ, ψ), for each i ∈ {2, . . . , n}.

Theorem 46. Let ϕ, ψ ∈ Form and (F , v) ∈ Cn. If CF is safe, then

OCF
(||ϕ||v) →֒1 OCF

(||ψ||v) = ((E1, F1), . . . , (En, Fn)),

where (Ei, Fi) = (||αi(ϕ, ψ)||v, ||βi(ϕ, ψ)||v), for each i ∈ {1, . . . , n}.

OCF
(||ϕ||v) ⊙2 OCF

(||ψ||v) = ((G1, H1), . . . , (Gn, Hn)),

where (Gi, Hi) = (||γi(ϕ, ψ)||v, ||δi(ϕ, ψ)||v), for each i ∈ {1, . . . , n}.

OCF
(||ϕ||v) →֒2 OCF

(||ψ||v) = ((I1, J1), . . . , (In, Jn)),

where (Ii, Ji) = (||ǫi(ϕ, ψ)||v, ||ζi(ϕ, ψ)||v), for each i ∈ {1, . . . , n}.

OCF
(||ϕ||v) ⊙3 OCF

(||ψ||v) = ((K1, L1), . . . , (Kn, Ln)),

where (Ki, Li) = (||ηi(ϕ, ψ)||v, ||θi(ϕ, ψ)||v), for each i ∈ {1, . . . , n}.

OCF
(||ϕ||v) →֒3 OCF

(||ψ||v) = ((M1, N1), . . . , (Mn, Nn)),

where (Mi, Ni) = (||ιi(ϕ, ψ)||v, ||κi(ϕ, ψ)||v), for each i ∈ {1, . . . , n}.

4Observe that this expression is equivalent to (�iϕ \ △iψ ∧ �iψ \ △iϕ)
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Proof. We only provide the proof for the operation ⊙3, since those of the

remaining cases are analogous.

Let u ∈ U ,

((F , v), u) |= νi iff ((F , v), u) |= �1ϕ ∧ ¬△1ψ or ((F , v), u) |= �1ψ ∧ ¬△1ϕ,

that is

• Ri(u) ⊆ ||ϕ||v, Ri(u) Ó= {u} and Ri(u) ∩ ||ψ||v Ó= ∅, or

• Ri(u) ⊆ ||ψ||v, Ri(u) Ó= {u} and Ri(u) ∩ ||ϕ||v Ó= ∅.

Consequently, we obtain that

((F , v), u) |= νi if and only if u ∈ (Li(ϕ) \ Ei(ψ)) ∪ (Li(ψ) \ Ei(ϕ)).

Trivially, we can observe that

((F , v), u) |= �iηi−1(ϕ, ψ) iff Ri(u) ⊆ ||ηi−1(ϕ, ψ)||v and Ri(u) Ó= {u},

and

((F , v), u) |= θi(ϕ, ψ) iff u ∈ Ei(||ϕ||v) ∪ Ei(||ψ||v).

By Theorem 33 and by (X, Y ) ∗S (Z, W ) = ((X \ W ) ∪ (Z \ Y ), Y ∪ W )

(see Definition 11), we obtain that the i-th component of the sequence

OCF
(||ϕ||v) ⊙3 OCF

(||ψ||v) is (||ηi(ϕ, ψ)||v, ||θi(ϕ, ψ)||v).

5.4 Epistemic logic SOn

In this section, we employ modal logic SOn and describe the knowledge of

an agent during a sequence (t1, . . . , tn) of consecutive instants of time. Also,

we intend to establish whether the given agent is interested in knowing the

truth or falsity of the sentences at every instant of (t1, . . . , tn). In detail, we

represent situations in which, given an agent A and a sequence (t1, . . . , tn),

• A knows more information at time ti+1 than at time ti, and

116 Chapter 5 Modal logic and sequences of orthopairs



• A is less interested in knowing at time ti+1 than at time ti.

Example 43. We suppose that a restaurant owner manages seven restaurants in

seven Italian cities: Viterbo, Rieti, Rome, Latina, Frosinone, Potenza and Matera.

He needs to know the weather report for tomorrow in order to decide whether

to set up the gardens of his restaurants. At time t1, he knows by speaking with

a friend, that it is cloudy throughout Lazio, consequently it is cloudy in Viterbo,

Rieti, Rome, Latina and Frosinone, but he does not know the weather in Potenza

and Matera. At time t2 > t1, he finds the weather report on Internet, and he

knows that it is cloudy with a chance of rain in Viterbo and Rieti, it is cloudy

without rain in Latina and Frosinone, and it is sunny in Matera and Potenza.

Since he decides that the restaurant will be close in Rome, he does not look

for any information about the weather there. This situation is synthesized in

Table 5.1, where C, C + R, C - R and S denote respectively cloudy, cloudy with

rain, cloudy without rain and sunny. Moreover, the symbol × means that the

restaurant owner excludes Rome from all cities he is interested in knowing the

weather, and ? means that he has not information about the respective cities.

Viterbo Rieti Rome Latina Frosinone Potenza Matera

t1 C C C C C ? ?

t2 C + R C + R × C - R C - R S S

Tab. 5.1: Information about the weather

Table 5.1 corresponds to a refinement sequence made of the partial partitions

C1 and C2, where

C1 = {{Viterbo, Rieti, Rome, Latina, Frosinone}, {Potenza, Matera}} and

C2 = {{Viterbo, Rieti}, {Latina, Frosinone}, {Potenza, Matera}}.

Then, each block of C1 is the set of the cities that, at time t1, have the same

weather with respect to the knowledge of the restaurant owner, and C2 is made

of the cities that, at time t2, have the same weather with respect to the knowledge

of the restaurant owner. We underline that the owner has more information

about the weather in cities of Table 5.1 at time t2 than at time t1 (for example,

at time t1, he knows that it is cloudy in Viterbo, and at time t2, he knows that it

is cloudy with rain there); however, he is interested in knowing the weather in

less cities at time t2 than at time t1 (precisely, at time t2, he excludes Rome).
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The finite sequences (�1, . . . ,�n) and (©1, . . . , ©n) of SOn correspond to a

sequence (t1, . . . , tn) made of consecutive instants of time, or by consecutive

time intervals. In addition, let i ∈ {1, . . . , n}, the interpretation of the modal-

ity �i with respect to an orthopaired Kripke model allows us to represent the

knowledge of an agent at time ti. Furthermore, the semantic interpretation

of the modality ©i establishes whether the agent is interested in knowing

the truth or falsity of a sentence at each initial possible world at time ti.

Thus, each Kripke frame M = (U, (R1, . . . , Rn)) of SOn is associated with a

pair (A, (t1, . . . , tn)) such that A is an agent, and (t1, . . . , tn) is a sequence

of successive instants of time. More precisely, let u ∈ U, i ∈ {1, . . . , n} and

ϕ ∈ Form, if u |= �iϕ, we can say that

“ at time ti, the agent A knows that ϕ is true at u”.

Moreover, if u |= ©iϕ, then we can say that

“ϕ is true at u, but at time ti, A is not interested in knowing it”.

When Ri(u) Ó= {u} (i.e. u |= ©i⊤), at time ti, the agent A is not able to

distinguish the elements of Ri(u) from one another; on the contrary, that is

Ri(u) = {u} (i.e. u |= ¬ ©i ⊤), at time ti, the agent A ignores whether a

formula is true or false at u. The epistemic interpretation that we give to

modal logic SOn is better explained through the following example.

Example 44. We consider a game where a player selects a card x in D that is a

deck of French playing cards which are left face down, and he/she tries to guess

the identity of x. He/she repeats these actions (i.e. select and try to guess a card)

for up to three times, exactly at times t1, t2 and t3, with t1 < t2 < t3. If he/she

guesses the identity of the choice card at least once, then he/she wins; otherwise,

he/she loses. Trivially, let i ∈ {1, 2}, if he/she guesses the selected card at time ti,

then the game finishes without considering the time ti+1. Furthermore, during

the game, a referee, that knows the identity of all cards of D, provides the player

with information on several properties of the cards in D at each time of the

sequence (t1, t2, t3), as it will be shown.

We suppose that Alice and Bob are respectively the player and the referee of this

game. Then, it occurs that
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1. at time t1, Bob divides the deck D into two stacks: red cards and black

cards;

2. at time t2 > t1, he also brings together all cards that have the same suit

in each group of cards that have the same colours;

3. at time t3 > t2, he divides each group of cards obtained at time t2 into

two stacks: the cards whose number is less than 7 and the cards whose

number is greater or equal to 7.

The classification made by Bob to cards of D at times t1, t2 and t3 is represented

in the following figure, where c(x) and s(x) respectively denote the colour and

the suit of card x.

{x ∈ D | c(x) = red}

{x ∈ D | s(x) = ♦} {x ∈ D | s(x) = ♥}

{x | x < 7} {x | x < 7}{x | x ≥ 7} {x | x ≥ 7}

{x ∈ D | c(x) = black}

{x ∈ D | s(x) = ♠} {x ∈ D | s(x) = ♣}

{x | x < 7} {x | x < 7}{x | x ≥ 7} {x | x ≥ 7}t3

t2

t1

Fig. 5.2: Forest of Bob’s classification at times t1, t2 and t3

We set B1 = {x ∈ D | c(x) = red}, B2 = {x ∈ D | c(x) = black}, B3 =

{x ∈ D | s(x) = ♦}, B4 = {x ∈ D | s(x) = ♥}, B5 = {x ∈ D | s(x) =

♠}, B6 = {x ∈ D | s(x) = ♣}, B7 = {x ∈ D | s(x) = ♦ and x < 7},

B8 = {x ∈ D | s(x) = ♦ and x ≥ 7}, B9 = {x ∈ D | s(x) = ♥ and x < 7},

B10 = {x ∈ D | s(x) = ♥ and x ≥ 7}, B11 = {x ∈ D | s(x) = ♠ and x < 7},

B12 = {x ∈ D | s(x) = ♠ and x ≥ 7}, B13 = {x ∈ D | s(x) = ♣ and x < 7},

B14 = {x ∈ D | s(x) = ♣ and x ≥ 7}.

We also assume that, let i ∈ {1, 2, 3}, at time ti, Bob informs Alice about the

properties that characterize each cards group corresponding to ti. For example,

at time t2, he says to Alice that the cards of B4 are all cards of D whose suit is

♥ (then they are also red). Consequently, when Alice chooses a card x in Bi,

despite she does not know the identity of x, she knows that x has the proprieties

characterizing Bi. Thus, if she chooses a card x at time t2 in B4, then she knows

that the suit of x is ♥, and so that the colour of x is red.
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In this framework, Alice represents the agent of the knowledge, and D is the

universe of possible worlds of the Kripke frame assigned to Alice. We notice

that each block of the forest in the previous figure is a set of cards which are

indistinguishable for Alice at the respective time. For example, at time t2, she

still does not have enough information to distinguish 2♥ from 8♥. Moreover,

it is easy to notice that the information that Bob gives to Alice defines three

equivalence relations on D, one for each time in (t1, t2, t3), as follows: let

x, y ∈ D

- xR1y ⇔ c(x) = c(y),

- xR2y ⇔ s(x) = s(y),

- xR3y ⇔ xR2y and {max(x, y) < 7 or min(x, y) ≥ 7}.

Now, we imagine that at time t2, in order to further help Alice, Bob removes

from D a group D2 of cards. Again, at time t3, he removes from D \ D2 the

group D3 of cards. We suppose that He also informs Alice what cards belong to

D2 (at time t2) and D3 (at time t3). These actions allow us to define three new

equivalent relations, R′
1, R′

2 and R′
3, as follows. Let x, y ∈ D

- xR′
1y ⇔ xR1y

- xR′
2y ⇔











xR2y, if x, y /∈ D2

x = y, otherwise

- xR′
3y ⇔











xR3y, if x, y /∈ D2 ∪ D3

x = y, otherwise

We suppose that Bob chooses D2 and D3 so that each group Bi without the cards

of D2 ∪ D3 is not made of one card.

Then, we can observe that, let i ∈ {1, 2, 3}, a cards is removed from D at time ti

if and only if its equivalent class with respect to R′
i is a singleton.
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From now on, we indicate the card with number or face i, and suit j with ij, and

we write [ij]k to denote the equivalence class of ij with respect to R′
k. Therefore,

let ϕ be the proposition “the card is black”, trivially, we have that

i♦, i♥ |= �1¬ϕ and i♠, i♣ |= �1ϕ,

for each i ∈ {1, . . . , 10} ∪ {J, Q, K}. We respectively read the previous expres-

sions as follows.

• “At time t1, Alice knows that i♦ is not black”;

• “at time t1, Alice knows that i♥ is not black”;

• “at time t1, Alice knows that i♠ is black”;

• “at time t1, Alice knows that i♣ is black”.

On the other hand, if ϕ′ is the proposition “the card is a two” and j ∈

{♦, ♥, ♠, ♣}, we have that

2j |= ¬�1ϕ
′,

since [2j]1 is equal to {ij ∈ D | c(ij) = red} or {ij ∈ D | c(ij) = black}, and

both are not contained in ||ϕ′|| = {2j | j ∈ {♦, ♥, ♠, ♣}}. Then, 2j |= ¬�1ϕ
′

means that

“at time t1, Alice does not know that the number of 2j is a two”.

We recall that all cards od D are left face down, and so Alice does not know

the identity of 2j. The previous sentences correspond to the fact that, at time

t1, Alice only knows the colour of all cards of D, but she does not have more

information about them; for example, she knows that 2♥ is red, but no that

it is a two. We suppose that D2 is made of all cards of D with face J, Q, K.

Consequently, let ψ be the proposition “the suit of the card is a spade”, the

sentence

K♠ |= ¬�2ψ

that we read as follows,

“at time t2, Alice does not know that the suit of card is a spade”,
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is true, since [K♠]2 is a singleton.

Moreover, the sentence

K♠ |= ¬ ©2 ψ

that we read as follows,

“the suit of card is a spade, but at time t2, Alice is not interested in knowing it”,

is also true.

The latter two propositions correspond to the fact that at time t2 Alice has

information on suit of cards of D, but she ignores K♠, since it is removed from

the deck.

Furthermore,

5♥ |= ©2¬ϕ

holds, and we read it as “the card is not black and at time t2 Alice is interested

to know it”.

At this point, we assume that at time t3 Bob removes 1♦, 2♦, 6♦, 8♦, 10♦, 2♥,

4♥, 5♥, 6♥, 7♥, 1♠, 2♠, 3♠, 7♠, 10♠, 3♣, 5♣, 6♣, 7♠ and 8♠ from D \ D2.

Then, let ψ′ be the proposition “the number of the card is greater than or equal

to 7”, these sentences hold:

7♦ |= �3ψ
′ and 9♠ |= ©3ψ

′.

On the other hand, we have that

9♠ |= ¬�2ψ
′ and 7♥ |= ¬ ©3 ψ′.

They say that

• “at time t3, Alice knows that the number of 7♦ is greater than or equal to

7”,

• the number of 9♠ is greater than or equal to 7, and at time t3, Alice is

interested in knowing it”,
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• “at time t2, Alice does not know that the number of 9♠ is greater than or

equal to 7”,

• “7♥ is greater than or equal to 7, but at time t3, Alice is not interested in

knowing it”.

The pair (D, (R′
1, R′

2, R′
3)) is a Kripke frame of SO3 logic, and it is assigned to

Alice and to the sequence (t1, t2, t3). Furthermore, (D, (R′
1, R′

2, R′
3)) corresponds

to the refinement sequence whose forest is represented in the following figure.

{ij ∈ D | c(ij) = red}

{i♦ | i ∈ {1, . . . , 10}} {i♥ | i ∈ {1, . . . , 10}}

{3♦, 4♦, 5♦} {1♥, 3♥}{7♦, 9♦} {8♥, 9♥, 10♥}

{ij ∈ D | c(ij) = black}

{i♠ | i ∈ {1, . . . , 10}} {i♣ | i ∈ {1, . . . , 10}}

{4♠, 5♠, 6♠} {1♣, 2♣, 4♣}{8♠, 9♠} {9♣, 10♣}t3

t2

t1

Fig. 5.3: Forest corresponding to (D, (R′
1, R′

2, R′
3))

The next proposition states that at time ti, Alice has the information acquired

at time ti, plus all information acquired at previous times.

Proposition 17. Let ϕ be a formula, for each i ≥ j, ⊢ �i�jϕ ↔ �jϕ.

Finally, we can notice that by using theorems of SOn, we can investigate on

the properties of the knowledge of Alice during the sequence (t1, t2, t3). For

example, by Schema �iϕ → ©iϕ, we can deduce that “at time ti, if Alice

knows ϕ, then she is also interested in knowing it”.
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6Conclusions and future

directions

„I hope that we continue with exploration

— Margaret H. Hamilton

In this thesis, we developed and studied a generalization of the rough set

theory. In detail, we introduced the sequences of orthopairs generated by

refinement sequences, that are special sequences of coverings representing

situations where new information is gradually provided on smaller and

smaller sets of objects. Refinement sequences can be seen as formal contexts,

so in the future, we propose to explore the connections between sequences of

orthopairs and the fuzzy concept lattices [103]. Moreover, we want to consider

fuzzy sequences of orthopairs, by generalizing the notion of fuzzy rough sets

[40]. Another way to introduce novel sequences of orthopairs is to consider

pairs of disjoint upsets such that intersection between their components has

cardinality equal to an integer k ≥ 0. In this case, the identity KO(C) = K(C)

could also hold for a refinement sequence C that is not complete and safe.

In Chapter 4, we investigated several operations between sequences of ortho-

pairs, that allowed us to provide concrete representations of the following

classes of many-valued structure: finite centered Kleene algebras with in-

terpolation property, finite centered Nelson algebras with the interpolation

property, finite centered Nelson lattices with the interpolation property, fi-

nite IUML-algebras and finite KLI∗-algebras with the interpolation property.

Consequently, we found a way to interpret the operations in this algebraic

structure in terms of approximations of sets. As a future direction, we intend

to discover other algebraic structures that can be interpreted as sequences of

orthopairs. Also, given the refinement sequences C1 and C2 of the universes

U1 and U2, respectively, it would be interesting to consider the product of

the Kleene algebras KO(C1) and KO(C2), and to discover the universe and

the class of refinement sequences corresponding it. Moreover, we can notice

that rough sets can also be interpreted by a temporal semantics, as done for

NM-algebras in [12]. Therefore, another topic of future works is to provide a

pure logical temporal semantics in these structures and their related logics.
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Furthermore, we will focus on the novel operations ⊙4 and →֒4 defined by

4.8 and 4.9 between orthopairs, and in particular, in order to connect them

with a three-valued propositional logic having a no-deterministic semantics

[34].

In the previous chapter, we presented the original modal logic SOn, with

semantics based on sequences of orthopairs. The Kripke models of SOn

are characterized by a sequence (R1, . . . , Rn) of equivalence relations corres-

ponding to a refinement sequence of partitions. In the future, we intend to

consider a new modal logic, that extends SOn, since the sequences of the

accessibility relations of its Kripke models are related to refinement sequences

of coverings.

Sequences of orthopairs corresponds to decision trees with three outcomes,

so we could investigate their relationship. Also, we could employ operations

between sequences of orthopairs to combine several decision trees.

Eventually, we interpreted SOn logic as an epistemic logic; namely, we used

SOn to represent the knowledge of an agent that increases over time, as new

information is provided. Then, we also wish to compare SOn with some

other existing epistemic logics, especially the logics where time and multiple

epistemic operators are involved [42], and to investigate the potential exten-

sions of SOn. As a future application, we also intend to study SOn to predict

the interest of users of a social network for a given piece of advertisement

in a given time window. Indeed, in this case, each block of a partition can

represent topics that received the same amount of interest by a user [18, 38].

By refining the information about the user, it is possible to obtain a refine-

ment sequence of partitions. The logic hence permits to express complex

sentences about the user’s interests and to tailor advertisements in a very

effective way.
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2.4 Sobociński conjunction . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Nelson implication . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Łukasiewicz implication . . . . . . . . . . . . . . . . . . . . . . 16
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