
Secure information sharing on
Decentralized Social Networks

University of Insubria
Department of Theoretical and Applied Sciences

Davide Alberto Albertini

Supervisor:

Prof.ssa Barbara Carminati

External Reviewers:

Prof. George Pallis
Dr. Sergio Mascetti

This dissertation is submitted for the degree of

Doctor of Philosophy in Computer Science

17th March 2017

Ai miei genitori, a Elisa e a tutta la mia famiglia,

grazie ai quali sono la persona che sono

e ai quali posso dire solo un sincero grazie.

Acknowledgements

Say thank to someone after such a long journey is never easy; the most of the times it

happens that the people who have been really important stay unmentioned only because

of the amount of time had together made their presence implied.

For this reason I believe that the first mention should be to my family and to all my

dearest. Parents, relatives, friends, acquaintances, and any person from which I learnt

even a slight aspect of my behaviour deserve to be mentioned, since their presence in

my life made me the man that I am now.

Among these, I will always be grateful to my Ph.D supervisor, Dr. Barbara Carminati,

who patiently pushed my career with honesty and candour. I may have not been the

best of your students, but I will always bring your teachings with me.

As well, I must also thank all the people with whom I spent most of the last four years

in Varese. Alberto, Mauro, and Pietro (and anyone else who I am forgotting), your com-

pany and our cheerful conversations made valuable every day spent at the first floor.

A special and particular acknowledgement has to be given to Elisa, my girlfriend,

who always tried to make the best out of me, to Giuseppe and Milena, my parents, who

have been source of unconditional support in all of my life, and to Ljuba, my sister, who -

somehow- inspired me in pursuing my dreams with hers stubbornness and hers obstinacy.

To all of you, I will never be able to thank you enough.

Abstract

Decentralized Social Networks (DSNs) are web-based platforms built on distributed sys-

tems (federations) composed of multiple providers (pods) that run the same social net-

working service. DSNs have been presented as a valid alternative to Online Social

Networks (OSNs), replacing the centralized paradigm of OSNs with a decentralized dis-

tribution of the features offered by the social networking platform.

Similarly to commercial OSNs, DSNs offer to their subscribed users a number of distinc-

tive features, such as the possibility to share resources with other subscribed users or the

possibility to establish virtual relationships with other DSN users. On the other hand,

each DSN user takes part in the service, choosing to store personal data on his/her own

trusted provider inside the federation or to deploy his/her own provider on a private

machine. This, thus, gives each DSN user direct control of his/hers data and prevents

the social network provider from performing data mining analysis over these information.

Unfortunately, the deployment of a personal DSN pod is not as simple as it sounds.

Indeed, each pod’s owner has to maintain the security, integrity, and reliability of all

the data stored in that provider. Furthermore, given the amount of data produced each

day in a social network service, it is reasonable to assume that the majority of users

cannot afford the upkeep of an hardware capable of handling such amount of informa-

tion. As a result, it has been shown that most of DSN users prefer to subscribe to

an existing provider despite setting up a new one, bringing to an indirect centralization

of data that leads DSNs to suffer of the same issues as centralized social network services.

In order to overcome this issue in this thesis we have investigated the possibility for

DSN providers to lean on modern cloud-based storage services so as to offer a cloud-

based information sharing service. This has required to deal with many challenges.

As such, we have investigated the definition of cryptographic protocols enabling DSN

users to securely store their resources in the public cloud, along with the definition of

communication protocols ensuring that decryption keys are distributed only to autho-

rized users, that is users that satisfy at least one of the access control policies specified

by data owner according to Relationship-based access control model (RelBAC) [20, 34].

In addition, it has emerged that even DSN users have the same difficulties as OSN users

in defining RelBAC rules that properly express their attitude towards their own privacy.

Indeed, it is nowadays well accepted that the definition of access control policies is an

error-prone task. Then, since misconfigured RelBAC policies may lead to harmful data

release and may expose the privacy of others as well, we believe that DSN users should

be assisted in the RelBAC policy definition process. At this purpose, we have designed

a RelBAC policy recommendation system such that it can learn from DSN users their

own attitude towards privacy, and exploits all the learned data to assist DSN users in

the definition of RelBAC policies by suggesting customized privacy rules.

Nevertheless, despite the presence of the above mentioned policy recommender, it is

reasonable to assume that misconfigured RelBAC rules may appear in the system. How-

ever, rather than considering all misconfigured policies as leading to potentially harmful

situations, we have considered that they might even lead to an exacerbated data re-

striction that brings to a loss of utility to DSN users. As an example, assuming that a

low resolution and an high resolution version of the same picture are uploaded in the

network, we believe that the low-res version should be granted to all those users who

are granted to access the hi-res version, even though, due to a misconfiurated system,

no policy explicitly authorizes them on the low-res picture. As such, we have designed a

technique capable of exploiting all the existing data dependencies (i.e., any correlation

between data) as a mean for increasing the system utility, that is, the number of queries

that can be safely answered. Then, we have defined a query rewriting technique capable

of extending defined access control policy authorizations by exploiting data dependen-

cies, in order to authorize unauthorized but inferable data.

In this thesis we present a complete description of the above mentioned proposals, along

with the experimental results of the tests that have been carried out so as to verify the

feasibility of the presented techniques.

Contents

Contents i

List of Figures iii

List of Tables v

List of Algorithms vii

1 Introduction 1

1.1 Motivations . 4

1.2 Objective . 7

1.3 Contributions . 9

1.3.1 Cloud-based secure information sharing. 9

1.3.2 Privacy settings recommender . 10

1.3.3 Enhance system utility through query rewriting 11

1.4 Thesis Organization . 12

1.5 Related Publications . 12

2 Cloud-based Secure Information Sharing 15

2.1 Reference Model . 16

2.1.1 Social Graph model . 17

2.1.2 Access control model . 18

2.2 Cloud-based DSN . 20

2.3 Collaborative Graph Anonymization . 21

2.4 Relationship-based Information Sharing 23

2.5 Security Analysis . 26

2.5.1 Relationship-based Resource Sharing 26

2.5.2 Relationship Information Leakage 27

2.6 SocialCloudShare . 31

2.6.1 Communication Protocols . 31

2.6.2 Cipher Service - Browser Plugin 38

2.6.3 Path Finder Service Implementation 40

i

2.6.4 SocialCloudShare Implementation 41

2.6.5 Key Manager Service Implementation 44

2.7 Experimental Evaluations . 45

3 Privacy Settings Recommender 53

3.1 Reference Model . 54

3.1.1 Association rules . 55

3.2 Learning Privacy Preferences . 55

3.2.1 Learning Process . 56

3.2.2 Itemsets lookup . 58

3.2.3 Association Rule Extraction . 59

3.3 Policy Recommendation . 61

3.4 Experimental results . 66

4 Enhance System Utility through Query Rewriting 71

4.1 Reference Model . 73

4.1.1 Data Dependencies . 73

4.1.2 Architecture . 74

4.2 Implicit Authorizations . 77

4.3 Avoiding Correlations . 82

4.3.1 Correlation Control . 86

4.4 Query Rewriting Procedure . 90

4.5 Security Analysis . 91

4.6 Truman & Non-Truman Models . 93

4.7 Experimental Evaluation . 94

5 Review of Literature 99

5.1 Secure information sharing in Social Networks 99

5.2 Social privacy recommender . 101

5.2.1 Access control enforcement by query rewriting 103

6 Conclusion 105

7 Appendices 109

A Query Rewriting Correctness Proof . 110

B Query Rewriting Completeness Proof . 110

Bibliography 113

List of Figures

1.1 OSN reference architecture . 3

1.2 DSN reference architecture . 4

2.1 Example of labeled directed social graph 17

2.2 Cloud-based DSN reference architecture 20

2.3 ACL Tables structure . 23

2.4 Inference Scenario Scheme . 30

2.5 Login phase: messages exchange . 32

2.6 Registration phase: messages Exchange 33

2.7 Contact list update: messages exchange 34

2.8 Resource upload phase: messages exchange 36

2.9 Resource download phase: messages exchange 37

2.10 Javascript AES encipher . 39

2.11 Javascript AES decipher . 39

2.12 Facebook JS-SDK Load Phase . 40

2.13 Time for new user insertion based on relationships coverage 51

2.14 Access Control Rules Evaluation, by varying depth 52

2.15 messages Encryption Size Overhead . 52

4.1 DBMS reference architecture . 76

4.2 Correlation hypergraph for the schema depicted in Table 4.1 85

4.3 Example of user correlation hypergraph for the schema depicted in Table

4.1 . 87

4.4 Experimental results . 95

iii

List of Tables

2.1 Resource upload protocol . 25

2.2 Resource download protocol . 26

2.3 Average time required for PFS operations 46

2.4 Time required for message encryption . 48

2.5 Time required for message decryption . 48

2.6 Time required for resource encryption . 49

3.1 Suggestion procedure success ratio . 68

4.1 An example of relational schema . 75

v

List of Algorithms

1 Anonymized Contact List Propagation Procedure 42

2 Iterative suggestion procedure . 64

3 Query Rewriting Procedure . 89

vii

1
Introduction

In recent years Online Social Networks (OSNs) emerged as one of the most promising

platforms for information sharing on the Web, with remarkable impact on people’s ev-

eryday life.

The variety of currently available OSNs platforms does not allow to give a precise def-

inition of this type of information sharing platforms. Nevertheless, most of the OSNs

share a number of common features, such as the possibility to upload and share files,

pictures, and any other kind of user-generated content (UGC), or the necessity for OSN

users to create a platform-specific account (i.e., a digital identity) so as to access the

OSN services. These aspects, like other features common to many commercial OSNs,

rely on the existence of a centralized entity entity managing all users’ information (e.g.,

UGCs, users’ real identities, etc), as depicted in Figure 1.1. This represents the weakest

point for OSNs for several reasons. At first, as properly emphasized in [71], companies

providing centralized social networking services have the sole authority to manage and

control any kind of users’ data; despite OSN users are required to approve legal agree-

ments that regulate how their data can be exploited by the OSN provider, this does not

give OSN users direct control over their own information.

As an example, even though a given user decides to delete all of his/hers information

from the OSN, these data are not removed from the OSN realm but they remain stored

in the OSN repositories. Thus, when a certain user chooses to delete something he/she

shared on Facebook, the OSN provider removes it from the site. Some of this informa-

tion is permanently deleted from provider’s servers; however, some things can only be

1

2 Introduction

deleted when the user chooses to permanently delete his/hers account1. In Twitter, sim-

ilarly, log data (i.e., usernames, IP addresses, email addresses, phone numbers) are kept

by the service provider as much as needed and deleted after a maximum of 18 months.

If a certain user chooses to delete his/hers account, the OSN provider may keep all of

his/hers data up to one week2. Nevertheless, search engines and other third parties may

still retain copies of users’ public information even after users deleted their own OSN

accounts. Indeed, in the most of the cases, the legal ownership of any data changes

from the uploading user to the OSN provider as soon as these data are uploaded in the

OSN realm, without any possibility for the uploading user to control how these data are

treated by the social network provider.

As such, we believe that this lack of control over personal information is an excessive

price to be paid from users in return for OSN services subscriptions. Then, we believe

that users’ privacy in social network realms should be preserved by giving each user

complete control over his/hers own data, as stated by Charles Fried in [35]:

“Privacy is not simply an absence of information about us in the minds of others;

rather it is the control we have over information about ourselves.”

Moreover, beyond privacy issues, data centralization currently implemented by OSN

providers often leads to security issues as well. Indeed, storing a massive amount of

personal information into a centralized data repository creates, in the OSN architecture,

an entity that can be easily target for extracting a large number of information with a

relatively low effort. As an example, it is reasonable to assume that a malicious entity

(e.g., an expert attacker, or a competitor OSN company) may be interested in extracting

data from the profiles repository, that is where the OSN accounts are stored along with

the corresponding real people identities. At the same time, the social graph representing

all the relationships existing in the OSN and the personal information repository could

be an interesting target for a malicious entity too, given the amount of information they

gather.

As a countermeasure to protect such information, OSN providers deploy many of the

most secure protocols for data protection, such as TLS over HTTP (HTTPS) for en-

crypted data transmission or OAuth for authorized data release, but it has been proved

[39] that such strategy is not effective as it sounds. Indeed, not all the information

collected in the OSN repositories can be transmitted to the OSN users as encrypted

data, making the transmission channel a weak point in the the OSN architecture. As an

example, accessing an OSN by means of a web browser requires that an HTML page is

transmitted from the OSN server to the connecting user. This web page, which contains

a remarkable amount of information about the connecting user and his/hers contacts, is

1https://www.facebook.com/about/privacy
2https://twitter.com/privacy?lang=en

3

solely protected by HTTPS that can be intercepted and broken by malicious entities.

Figure 1.1: OSN reference architecture

However, protecting users’ privacy from malicious entities does not prevent OSN

providers to exploit the information collected in the OSN repositories disregarding users’

privacy. Indeed, as introduced before, in order to implement the above mentioned fea-

tures OSN providers rely on a centralized architecture, where all users’ information is

collected. Then, this grants OSN providers a direct access on every user information

and enables them to exploit data mining and user profiling techniques so as to monetize

users’ information by selling such data to advertising or marketing companies.

As such, it emerged the necessity to protect OSN users’ privacy, preventing social network

providers to exploit their centralized architecture by monetizing from users’ personal in-

formation. Indeed, as emphasized in [59], techniques like the separation of users’ profile

data from the social graph or social graph anonymization are not enough to avoid that

the OSN manager is able to perform marketing research on users’ personal data or access

users sensitive information.

Decentralized Online Social Networks (DSNs), also known as Federated Social Net-

4 Introduction

work, have been presented in [71] as a valid alternative to OSNs, replacing the centralized

paradigm of OSN with a decentralized distribution of the features offered by the social

networking platform.

1.1 Motivations

As highlighted by Tim Berners-Lee et al. in [71], DSNs emerged as promising solution

for moving users’ personal data out from OSN realms. A DSN consists in a distributed

system (federation) composed of multiple providers (pods) that run the same social net-

working service. In a DSN, each subscribed user takes part in the service, choosing to

store personal data on his/her own trusted provider inside the federation or to deploy

his/her own provider on a private machine. Notable examples of federated social net-

works are Diaspora [2, 11] or OneSocialWeb [3], whereas other examples can be found

in Persona [6], SafeBook [24, 23], PeerSoN [16], Vegas [29], Vis-à-Vis [61] and DECENT

[44]. Figure 1.2 depicts a DSN reference model.

Figure 1.2: DSN reference architecture

Inspired by authors in [71] and their presentation of the decentralized paradigm,

DSNs have been the main research topic of all the proposals gathered in this thesis. By

analyzing real DSNs implementation we noticed that the most of them suffer of precise

and significant issues that limit their potentialities. As such, our researches have been

1.1 Motivations 5

conducted so as to tackle these issues in order to provide novel technologies for DSN

providers.

As an example, it has been shown that few DSN users are able to set up their own

provider. This brings to an indirect centralization of data, since users prefer to sub-

scribe to an existing provider despite setting up a new one (e.g., the 70% of Diaspora

users are subscribed at the same provider [11]). As such, this leads DSNs to suffer of

the same issues highlighted before for centralized social network services.

In addition to this, given the amount of data produced each day in a social network

service, it is reasonable to assume that the majority of users cannot afford the upkeep

of an hardware capable of handling such amount of information. Indeed, as an exam-

ple, in 2014 Facebook claimed to produce up to 600 TB of data each day, with a data

warehouse capable of storing up to 300 PB of data.3 Then, it emerged the necessity to

implement new technologies enabling DSN architecture to lay on modern cloud-based

storage services (e.g., Dropbox, Google Drive, OneDrive, etc.) in order not to burden

on DSN users’. Although, this feature is not as simple as it sounds. Indeed, enforcing

access control rules in a cloud-based DSN leads to deal with many challenges.

As a first challenge to be dealt with, we believe that the design of a cloud-based

DSN should have to follow the same principles that regulates the information sharing

in actual OSNs. In particular, OSN providers let their users specify their own access

control rules (i.e., the principles according to which a resource should be released or not)

by means of simple and intuitive tools. It is nowadays well accepted that in this domain

information is released according to relationship-based access control model (RelBAC)

[20, 34]. In general, by means of RelBAC rules, information owner can pose conditions

on the relationship(s) (e.g., on its type, depth, and possible trust value) the requestor

has to fulfill in order to be authorized to access his/her resources. As a result, then, OSN

providers are required to release information only to those requestor users that satisfy

the constraints defined by the information owner, ensuring information owner that no

data will be released to those requestors that do not satisfy any rule.

Another remarkable challenge that have to be tackled is that a cloud-based DSN plat-

form has to provide cryptographic protocols suitable for the considered scenario, in that

users’ data should be encrypted prior to be stored in the cloud but, at the same time,

only those users who fulfill access control rules should be able to decrypt them. Then,

this requires to release the decryption key of a certain resource only to those DSN users

who fulfill the constraints posed in the access control rule defined for that considered

resource.

Additionally, as mentioned before, verifying an access control rule in a DSN scenario

3https://code.facebook.com/posts/229861827208629/scaling-the-facebook-data-warehouse-to-300-

pb/

6 Introduction

requires to check the existence of a connection between two given nodes of the social

graph. However, this verification should be carried out preserving both users’ privacy

and the privacy of existing relationships. Thus, despite users’ data can be encrypted in

order to preserve users’ privacy, this is not a feasible approach for what concerns the

social graph. Nevertheless, social graph anonymization techniques represent a valuable

alternative. Current literature offers several techniques for graph anonymization. How-

ever, most of the presented techniques anonymize the graph by either clustering nodes

(e.g., [10, 17, 42]) or modifying the number of edges in the graph (e.g., [31, 43, 48]), and

this is not a feasible approach for enforcing RelBAC policies. Moreover, the majority of

the graph anonymization proposal have been designed under the assumption that the

anonymization process is carried out on the whole graph. This approach, thus, requires

to memorize the social graph in a centralized entity and, as mentioned before, this does

not protect users’ privacy since it leads to situations in which users do not have direct

control over their own information. As such, it emerges the necessity to define a novel

privacy-preserving anonymization technique for the social graph that leaves the possi-

bility to verify the existence of a connection between two given nodes without disclosing

any users’ information, and giving users direct control over their own relationships data.

As a result, implementing a privacy preserving information sharing in a cloud-based

DSN scenario requires to deal with all the above mentioned challenges.

In addition to the above illustrated issues, it emerged that social network users have

difficulties in defining RelBAC rules that properly express their attitude towards their

own privacy, mainly for two reasons.

The first reason is due to the fact that many of the most popular OSN providers do

not implement in their platforms access control models fully compliant with RelBAC, as

properly emphasized in [19]. In some cases fine-grained configurations are supported by

giving users the possibility to define customized lists of contacts to which assign access

privileges. In other cases, though, users are only asked to choice whether a resource

should be private or public (i.e., released to anyone in the social network). This fact,

thus, limits the users’ capability to define access control policies such that these reflect

their own attitude towards privacy.

Moreover, average users might have difficulties in properly setting, potentially, complex

access control policies. As results, as underlined in [39, 50], it emerged that users do

not put much attention on customizing RelBAC rules, delegating to the social network

provider the task to handle automatically their configurations by exploiting pre-defined

policies. As such, given the above mentioned issues, it emerges the necessity to investi-

gate the definition of tools that help users in configuring their own privacy settings.

The second reason is given by the fact that, sometimes, users misconfigure their

own RelBAC rules, leading to potentially harmful situations. Indeed, it has been shown

1.2 Objective 7

that misconfigured access control policies may lead to sensitive data release. Then, in a

scenario where always more frequently personal and sensitive information is exchanged

among users, this could even cause to expose other users’ privacy. As an example, if a

certain users shares a picture setting erroneously its RelBAC policy as public, then even

the privacy of every person depicted in such picture would be exposed.

On the other hand, though, misconfigured access control policies may even lead to an

exacerbated data restriction that brings to a loss of utility to the OSN users. As such,

let assume that a certain OSN users authorizes a precise set of users to see the value of

his/hers birth date, but he/she forgets to extends the mentioned authorized “age” value.

Then, according to RelBAC model, none of the above mentioned users would be able to

access the value of the “age” field, even though this information is implicitly released by

releasing the birth date. In general, thus, it emerged the necessity to define techniques

with the aim of handling misconfigured RelBAC policies.

As such, we believe that new proposals should be presented to offer OSN users valid

alternatives to centralized architectures, by exploiting the potential of modern cloud-

based storage services. At the same time, though, we think that even DSN providers

require new and more flexible strategies helping them in the management of RelBAC

policies.

For the above described reasons, then, we found it necessary to improve the DSN archi-

tecture, offering novel and secure technologies that lead DSN users to a more aware and

self-conscious usage of DSN platforms.

1.2 Objective

As introduced in previous Section 1.1, we are aware that current DSN providers suffer

of precise limitations. Whereas some of these are due to the decentralized architecture

exploited by service providers, other limitations are due to the implementation of the

RelBAC model.

Inspired by Charles Fried’s statement we tried to pursue the definition of novel technolo-

gies for DSN providers enabling their users to have a more safe and complete control

over the information that they share in the social network realm.

As such, with regard to the previously described problems, in the following we high-

light the topics that we consider well-worthy of further studies.

Cloud-based secure information sharing. In order to enable current DSN architec-

ture to lay on modern cloud-based storage services, we believe that the DSN architecture,

as depicted in Figure 1.2, needs to be extended by introducing new entities. These en-

tities, acting as a bridge between the current DSN architecture and cloud-based storage

8 Introduction

services, should implement cryptographic primitives to encipher users’ resources.

Along with the introduction of new entities in the architecture, DSN providers require

the definition of an ad-hoc communication protocol ensuring that resources decryption

keys are delivered only to those users who are effectively authorized to access the con-

sidered resource (i.e., those who fulfills the constraints posed in RelBAC policy).

Nevertheless, we believe that encrypting users’ resources is not enough in order to

implement a cloud-based secure information sharing in a DSN. Indeed, as properly em-

phasized in [59], social network providers are able to perform data mining and user

profiling analyzing the social graph as well. As such, so as to properly protect users’

privacy, it is necessary to define strategies that hide the social graph from the social

network provider. However, at the same time, these strategies have to leave to the social

network provider the possibility to enforce RelBAC policies and such enforcement, triv-

ially, requires to check the existence of connections in the social graph. Then, we believe

it is necessary to define a decentralized anonymization technique for the social graph

such that it both protects users’ privacy and it allows the DSN provider to perform

privacy-preserving analysis over it.

RelBAC policy recommender. In order to limit the RelBAC policies misconfigu-

ration, we believe that DSN users should be assisted in the RelBAC policy definition

process. Indeed, as highlighted in previous Section 1.1, misconfigured RelBAC policy

may lead to harmful data release and may expose the privacy of others as well. Thus,

we believe it is necessary to define a tool that guides DSN users in the definition of

their RelBAC policies, offering customized suggestions tailored on each user’s attitude

towards his/hers own privacy.

Unfortunately, the definition of a RelBAC policy is influenced by many factors. In-

deed, each user has a different attitude towards his/hers own privacy and this influences

the RelBAC policies that he/she defines. Thus, to define a technology capable of helping

users in their RelBAC policies definition, it is required to learn and model each user’s

privacy attitude (i.e., his/hers attitude towards his/hers own privacy), so as to exploit

the learned preferences to define precise and customized RelBAC policies.

RelBAC flexible enforcement. As introduced before, misconfigured policies may

lead to an improper data release as well as to deny someone the access over information

that he/she should be, somehow, authorized. Whenever this occurs, then, the DSN

provider is not able to fulfill requests coming from legitimate requestors.

Since a RelBAC policy recommender may not be enough to solve the policy mis-

1.3 Contributions 9

configuration problem, we believe that the DSN RelBAC enforcement engine should

be augmented with a flexible and secure strategy capable of releasing information even

when an explicit authorization is not granted. At first, it is necessary to extend the

DSN RelBAC enforcement engine so as to recognize any possible “implicit authoriza-

tion”, that is, the presence of information that can be harmlessly released in absence of

an explicit authorization. Then, we plan to define a strategy to enhance the DSN Rel-

BAC enforcement engine by exploiting these implicit authorization, making the engine

capable of releasing harmlessly data for which no explicit authorization exists. However,

our proposed approach does not plan to release any information for which there exist

an explicit denial or any other kind of data whose release may lead to harmful situations.

For all the above discussed reasons, we based our researches on the improvement of

the DSN reference architecture, as depicted in Figure 1.2, trying to overcome the above

mentioned issues. In particular, working on a distributed and decentralized architecture,

we set up our researches on the definition of tools and techniques that could be easily

integrated with existing technologies.

1.3 Contributions

In this thesis we present our research contributions that we developed so as to enhance

the DSN architecture. Our principal contributions are gathered in the followings.

1.3.1 Cloud-based secure information sharing.

As a first step we have been working on the definition of tools and protocols capable of

integrating a cloud-based secure relationship-based information sharing model inside a

DSN. As introduced in Section 1.2 we believe that a DSN should offer the following fea-

tures, with which we had to deal with the definition of a cloud-based secure information

sharing system:

Cloud-based encrypted data repository: DSN users’ resources (e.g., UGCs, users’

profiles, social graph) have to be stored as encrypted data into the public cloud,

in that DSN users have to securely store their data.

Cloud-based anonymized social graph: The social graph has to be protected so as

to prevent the social network provider to perform user profiling over such data.

Then, it is necessary to define an anonymization technique such that it both

protects the users’ privacy and it allows the DSN provider to perform privacy-

preserving analysis over it. As such, it is required to define a social graph anonymiza-

tion strategy which:

(i) enables each DSN user to anonymize his/hers local view of the social graph

10 Introduction

(i.e., his/hers direct contacts);

(ii) gives the possibility to combine privately all the anonymized views of the social

graph into a deeper view of the anonymized social graph;

(iii) preserves the possibility to verify the existence of a certain connection between

DSN users.

Privacy-preserving RelBAC enforcement: Besides protecting users’ resources and

the social graph, the RelBAC enforcement has to be performed so as to prevent

any harmful information release. As such, the DSN provider cannot infer any infor-

mation concerning the resource owner or the requestor user during the evaluation

of a RelBAC policy.

In order to realize the above mentioned requirements, we extended the current DSN

architecture by means of a 4-party architecture (see Figure 1.2). By means of these 4

entities, then, we realized the above introduced requirements as described in the follow-

ings.

At first, in order to let the DSN provider perform a privacy-preserving RelBAC enforce-

ment, we designed a collaborative anonymization technique for the social graph. This

technique allows to model as an algebraic polynomial the local view that every user has

of the social graph, hiding a users’s relationships in the polynomial’s coefficients. The

composition of this polynomial enable each DSN user to represent, in an anonymized

form, all of his direct contacts and, at the same time, makes it easy to verify wether a

connection between two users exists or not.

Combining together all the polynomials computed by the DSN users into a centralized

party is then possible to reconstruct the social graph without any information leakage.

The centralization of these data, which is performed into a dedicated entity stored into

the public cloud, allows the DSN provider to perform a privacy-preserving RelBAC en-

forcement on the obtained data structure that represents an anonymized form of the

social graph.

We then extended this collaborative anonymization technique with a distributed encryp-

tion protocol so as to define a secure system in which users’ data (i.e., both relationship

information, UGCs and users’ resources) are securely transmitted and data can be ex-

changed without any information leakage. More details concerning the realization of the

above introduced architecture along with the description of the communication protocols

between the entities is gathered in Chapter 2.

1.3.2 Privacy settings recommender

After the formalization of the above described architecture, we have been researching

over the definition of a technique capable of helping DSN users in defining RelBAC

policies that fully reflects their own attitude towards privacy. As such, we have been

1.3 Contributions 11

working on a privacy settings recommender able to assist users in defining tailored and

customized RelBAC policies. As briefly presented in Section 1.2, we planned to design

a RelBAC policies recommendation system such that it can learn from DSN users their

own attitude towards privacy, and exploits all the learned data to assist DSN users in

the definition of RelBAC policies by suggesting customized privacy rules.

Our target, then, consisted in learning users’ habits and preferences with respect to

privacy management, so as to suggest customized access control policies. In achieving

this goal, we had to keep into account that each individual performs a different decision

process to decide how a resource has to be released in DSN. In addition to this subjective

aspect, we also acknowledged that the decision an individual might take on resource

release is greatly impacted by resource’s contents. Based on these observations, we

designed a recommendation system such that, given a certain DSN user, at first it learns

the correlation that exists between a resource properties and the RelBAC policy that

he/she is used to define for sharing resources with that property values. Then, each

time a DSN user wants to upload a new resource into the platform, the recommender

exploits the learned correlations to select the policies that are related to topics of the new

resource. Finally, it generates a new access control policy by combining the retrieved

ones, returning to the considered user as a customized suggestion. A detailed discussion

over our proposed policy recommendation system is gathered in Chapter 3.

1.3.3 Enhance system utility through query rewriting

Although, beside exposing DSN users information, misconfigured RelBAC policies may

also lead to situations in which certain data are not released to users which, under given

circumstances, are able to discover them anyway. Whenever this occurs, then, the DSN

provider is not able to fulfill requests coming from legitimate requestors. Then, in order

to increase the DSN users utility, in terms of resources correctly released to legitimate

requestors, we decided to cope with the RelBAC misconfiguration problem from a dif-

ferent point of view.

With more details, we first defined the concept of “implicit authorization” so as

to denote all those information that could be safely released. As such, we defined as

implicitly authorizable all those data for which do not exists an explicit access control

policy authorizing their release but they can be harmlessly released nonetheless. Thus,

this harmless release is realized by means of the existence of implications able to extend

an existing access control policy from some explicitly authorized data to the implicitly

authorized data. Then, we designed a technique capable of exploiting all the existing

data dependencies (i.e., any correlation between elements) as a mean for increasing the

system utility, that is, the number of queries that can be safely answered. As such, we

12 Introduction

defined a query rewriting technique capable of extending defined access control policy

authorizations by exploiting data dependencies, in order to authorize unauthorized but

inferable data.

1.4 Thesis Organization

Whereas this chapter summarizes the objectives and the contributions of our researches

about the improvement of DSN architecture, additional details concerning the intro-

duced techniques are provided in the following chapters. Details concerning our imple-

mentation of a cloud-based secure information sharing protocol for DSN are collected in

Chapter 2. As such, Section 2.2 presents the reference decentralized architecture, Sec-

tion 2.4 presents the introduced communication protocols whereas Section 2.3 includes

a technical discussion about the collaborative anonymization technique. In Section 2.5

is provided a security analysis concerning the presented techniques, Section 2.6 presents

SocialCloudShare, a sample implementation of the proposal presented in the Chapter,

and Section 2.7 includes the results of the experiments provided for our proposal.

Chapter 3 provides a further extension of the tools presented in Chapter 2, introducing

and detailing our contributions for what concerns the realization of a RelBAC recom-

mendation system. With more details, Section 3.2 describes the learning techniques

underlying the proposed recommender, which is presented in details in Section 3.3. At

last, Section 3.4 collects the experimental results concerning the policy recommender.

Then, Chapter 4 includes the results of our researches that have been developed with

the aim to increase DSN users utility, in terms of released information. As such, Chapter

4 describes query rewriting techniques designed to increase the amount of information

correctly released by the DSN provider. Thus, Section 4.2 describes in detail the concept

of implicit authorization and Section 4.3 presents the approach which prevents to release

harmful information. The presented query rewriting technique is described in Section

4.4 whereas Section 4.5 with a technical discussion concerning its security, along with

a discussion comparing the Truman and the non-Truman models, included in Section

4.6 Section 4.7 concludes the Chapter, collecting the results of the experiments with

highlight the feasibility of the presented query rewriting technique.

At last, then, Chapter 5 revises the state of the art for all the topics treated in this thesis,

whereas Chapter 6 concludes this thesis recapitulating our achievements and introducing

our plans for future extensions of our work.

1.5 Related Publications

Davide Alberto Albertini and Barbara Carminati. (2014). Relationship-based

information sharing in cloud-based decentralized social networks. In Proceedings of

1.5 Related Publications 13

the 4th ACM conference on Data and application security and privacy (CODASPY

’14), pages 297-304. March 3-5, 2014. San Antonio, TX, USA. ACM.

Davide Alberto Albertini, Barbara Carminati, and Elena Ferrari. (2014). Social-

CloudShare: a Facebook Application for a Relationship-based Information Sharing

in the Cloud. EAI Endorsed Transactions on Collaborative Computing, Volume 1,

Issue 2. EAI.

Davide Alberto Albertini, Barbara Carminati, and Elena Ferrari. (2016). An

extended access control mechanism exploiting data dependencies. International

Journal of Information Security (IJS), pages 1-15. Springer.

Davide Alberto Albertini, Barbara Carminati, and Elena Ferrari. (2016). Pri-

vacy Settings Recommender for Online Social Network. Workshop on Privacy

in Collaborative & Social Computing (PiCSoC ’16) - Co-located with 2nd IEEE

International Conference on Collaboration and Internet Computing (CIC 2016).

November 1-3, 2016. Pittsburgh, PA, USA. IEEE.

2
Cloud-based Secure Information Sharing

As introduced in 1.3.1, our first investigation concerned the possibility to extend current

DSN architecture, as depicted in Figure 1.2, so as to implement a cloud-based privacy

preserving information sharing for DSN services.

As such, as emphasized in Section 1.1, this lead to deal with several challenges.

At first, a cloud-based DSN should follow the same principles regulating the informa-

tion sharing in actual OSNs, such as the possibility for DSN users to specify their own

RelBAC rules by means of simple and intuitive tools. Then, in order to protect users’

resources and users’ privacy, it is necessary to provide cryptographic protocols suitable

for a cloud-based RelBAC enforcement. This implies that, along with these protocols,

it is necessary to define a key management technique which, given a certain encrypted

resource, ensures that the resource decryption key can be accessed only by those users

that fulfill the constrains posed in the RelBAC policy assigned to the considered re-

source. Moreover, we have to ensure DSN users that no one except authorized users are

able to decrypt their resources. Additionally, we found it necessary to define a novel

privacy-preserving anonymization technique for the social graph that leaves the possi-

bility to verify the existence of a connection between two given nodes without disclosing

any users’ information. Indeed, despite users’ data can be encrypted in order to preserve

users’ privacy, this is not a feasible approach for what concerns the social graph. More-

over, the graph anonymization already present in literature are not feasible for a RelBAC

information sharing, in that they modify the graph topology by either clustering nodes

15

16 Cloud-based Secure Information Sharing

or modifying the number of edges in the graph.

At such, in order to let the DSN provider perform a privacy-preserving RelBAC

enforcement, we designed a collaborative anonymization technique for the social graph.

This technique allows to store into a polynomial the local view that every user has of the

social graph. The composition of this polynomial enable each DSN user to represent, in

an anonymized form, all of his direct contacts and, at the same time, makes it easy to

verify wether a connection between two users exists or not. These anonymized contact

lists, then, can be combined together into an anonymized social graph that fully reflects

the original social graph without any information leakage. Moreover, the anonymized

social graph leaves the DSN provider the possibility to perform a privacy-preserving

RelBAC enforcement.

Along with the above mentioned collaborative anonymization process, we extended

the current DSN architecture by means of a 4-party architecture, so as to fulfill the above

mentioned requirements.

As such, for what concerns the implementation of a secure and cloud-based encrypted

data repository, we decided to (i) encipher any user resource directly at client-side by

means of a Cipher Service (CS) and to (ii) split the process of generation of the en-

cryption keys between two separate additional entities of the extended architecture. In

particular, the key generation scheme implies that only CS is able to compute the key,

whereas the two entities which generates the parameters from which the encryption key

is derived are not able to compute it. Moreover these two entities, which are the Rule

Manager Service (RMS) and the Key Manager Service (KMS), are in charge of, respec-

tively, storing the users’ RelBAC policies and storing into the cloud-based storage service

the users’ resources. At last, we introduced an entity named Path Finder Service (PFS)

in charge of creating the anonymized social graph as well as inquiring it.

Furthermore, we run a set of experiments on Facebook OSN that gave encouraging

feedbacks from what concerns user experience in a real life usage of our proposals.

2.1 Reference Model

Before presenting details of our proposal, we need to introduce some background knowl-

edge that we will exploit throughout this thesis. Since the reference scenarios for our

proposal are Decentralized Social Network platforms, in order to clarify the notation

that we will use in this thesis, we summarize here the most relevant concepts of a DSN .

2.1 Reference Model 17

2.1.1 Social Graph model

In general, an Social Network platform is based on a Social Graph SG that models

the users’ relationships. In our model we exploit a directed labeled weighted graph

SG = (V,E,R) defined as follows:

V is a set of vertices, where each vertex vu ∈ V uniquely represents a certain DSN user

u;

E ⊆ (V × V ×R× (0, 1]) is a set of edges, where each edge e ∈ E models the existence

of a relationship of type r ∈ R leading from vfrom to vto, to which vfrom assigned

a trust value in (0, 1];

R is a set of relationship type labels, denoting the nature of the relationships to which

the label r is assigned.

Over a SG as defined above, we are interested in handling the paths connecting two

non adjacent vertices. As such, we denote a path p(x, y) which leads from vx to vy as

a finite list of edges (e0, ..., en) ⊆ En such that the first edge e0 starts from vx, the last

edge en leads to vy, each couple of edges (ei, ei+1) shares one vertex (i.e., ei leads to

the vertex v which ei+1 starts from), and all the edges composing p(x, y) have the same

relationship type label r. With reference to Figure 2.1, as example, node A is connected

to G with direct friendship and to L with a friendship path of length 3. For each path

Figure 2.1: Example of labeled directed social graph

p existing in SG we can compute its length (i.e., the number of edges that compose

18 Cloud-based Secure Information Sharing

the path) and the trust value of the path, which can be calculated according to several

algorithms present in literature (e.g., TidalTrust [37], EigenTrust [46], Advogato [47], et

al.).

To keep the notation as light as possible, in the remainder of this thesis we will exploit

a dot notation so as to denote the values of the 3 components of a given path p(x, y),

i.e. p.head ≡ x, p.tail ≡ y, and p.trust.

2.1.2 Access control model

In general, an access control policy specifies who is authorized to access, i.e., Subject,

which is the authorized resource, i.e., Object and under which mode the access is au-

thorized. In the following, we formalize an access control policy for OSN, according to

the XACML standard [1] and by acknowledging that relationship based access control

model (RelBAC) [20, 34] is the reference paradigm for controlled information sharing in

Social Network platforms.

Definition 2.1.1 An access control policy acp is defined as following:

acp = 〈Grantor, Subject, Object, Permission, Sign〉

where:

Grantor is the OSN user who defined acp;

Subject specifies users that satisfy acp. These can be represented as: 1) a list of OSN

user identifiers, denoted as Subids; 2) based on RelBAC model proposed in [21],

a tuple Subtuple=〈RelType,MinTrust,MaxDepth〉 that represents all those users

that hold a relationship (i.e., an edge over SG) with Grantor of type specified by

RelType, with a trust value greater or equal than MinTrust and represented on

SG by a path with length less or equal than MaxDepth;

Object is the identifier of resource protected by acp;

Permission specifies which actions (e.g., read, write, delete) are granted/denied over

Object by means of acp;

Sign identifies whether acp is a positive or negative policy (e.g., ⊕ identifies a positive

policy, 	 identifies a negative policy).1

1To keep the notation as light as possible, throughout this thesis we will denote the components of

a given access control policy acp, respectively, as acp.Grt, acp.Sbj, acp.Obj, acp.Per, and acp.Sign. In

the remainder of this chapter, for simplicity, we will not take into account the Permission component

2.2 Cloud-based DSN 19

Notice that we introduce the authorization sign, that in RelBAC model [21] has not

been considered, as all authorizations are implicitly positive. Indeed, we take this de-

cision based on the fact that in many commercial social network services it is possible

to define negative policies (e.g., “I authorize all of my friends but one”). In the remain-

der of this thesis we will assume deny-override paradigm, according to which a given

requester v is granted to access a requested resource r iff there exists an access control

policy acp which explicitly grants him/her and, at the same time, there exists no other

access control policy acp′ that explicitly forbids v to access the same resource.

Example 2.1.1 Let Bob be a user subscribed to a given OSN. Let assume that Bob is

used to share his pictures in the OSN with access control policies that in compliance

with the followings:

acp1 =〈Bob, 〈“friends”, 0.6, 1〉, ·, READ,⊕〉 (2.1)

acp2 =〈Bob, 〈“colleagues”, 0.5, 1〉, ·, READ,	〉 (2.2)

acp3 =〈Bob, 〈“relative”, 0.7, 1〉, ·, READ,⊕〉 (2.3)

where the pictures to be uploaded are specified each time in the policies. As such acp1 au-

thorizes Bob’s friend to access the uploaded pictures, acp2 prevents that Bob’s colleagues

see the pictures, and acp3 authorizes Bob’s close relatives (trust ≥ 0.7 ∧ distance ≤ 1)

to see Bob’s pictures.

As well, a meaningful example of negative policies can be found in the followings:

acp4 =〈Bob, 〈“friends”, 0.6, 1〉, ·, READ,⊕〉 (2.4)

acp5 =〈Bob, 〈&Alice〉, ·, READ,	〉 (2.5)

where the picture uploaded by Bob are granted by means of acp1 to Bob’s friends whose

trust value is ≥ than 0.6, but in no case Alice (identified in the social network realm by

hers identifier, here denoted as &Alice) is authorized to see Bob’s pictures.

Given a resource rsc, its owner specifies a rule R according to which rsc has to be

released in the OSN community. More precisely, a rule R is a finite set of access control

policies defined according to Definition 2.1.1. For simplicity, hereafter, we assume that

access rules consist of a unique access control policy acp, i.e., R = {acp}.

20 Cloud-based Secure Information Sharing

Figure 2.2: Cloud-based DSN reference architecture

2.2 Cloud-based DSN

According to the proposed architecture (see Figure 2.2), resources to be shared are locally

encrypted by owners and stored into cloud storage (i.e., Encrypted Resources repository

in Figure 2.2). In support of this, we assume that at the user is provided with the Cipher

Service (CS) browser plugin, which is mainly in charge of owner’s resources encryption

and generation of anonymized owner’s contact lists. Rule enforcement is carried out

by releasing encryption keys only to requestors that satisfy at least one of the owner

access rules. This enforcement requires the presence of two more entities: Rule Manager

Service (RMS) to handle access control requests and Key Manager Service (KMS) for

the keys management. As it will be discussed in Section 2.5, protocols regulating the

resources release have been designed so that no one of RMS and KMS can decrypt

owner resources as well as infer any information on owner relationships. This holds

under the assumption that RMS and KMS do not collude together. In support of

this assumption, we assume that RMS is implemented as a service in a DSN server;

whereas KMS is an external trusted entity, whose role could be played by a Certificate

Authority.

Moreover, to determine if a rule is satisfied, it is required to find those paths in the

social network graph that connect owner to requestor. To protect relationship privacy,

this path finding is carried out on anonymized data structures stored in the cloud (i.e.,

Anonymized Contact Lists (ACLs) in Figure 2.2). These data structures consist of an

of access control policies, assuming it to be unique and equal for any access control policy. However,

the proposal presented in this chapter can be easily extended so as to consider and handle any possible

value for this component.

2.3 Collaborative Graph Anonymization 21

entry for each user storing, in a private way (i.e., as polynomials), the list of users that

are connected with him/her at different depths. As described in Section 2.3, these data

structures are computed by a collaborative anonymization process where each user sends

an anonymized version of its direct contact list (i.e., a polynomial) that is then privately

combined with other anonymized contact list at cloud side so as to obtain ACLs. This

task is performed by the Path Finder Service (PFS) at cloud side.

2.3 Collaborative Graph Anonymization

The goal is to design an anonymization strategy such that given a requestor r and a rule

R = (t, d) it is possible to verify if it exists a path of type t and length less or equal

than d connecting the resource owner to r. In order to support this query, we define

a set of anonymized data structures that organize users’ contacts by relationship type

and length of the connecting paths. More precisely, given a relationship type t and a

user u, the proposed anonymized contact list ACLdt (u) privately encodes identifiers of

those users that are connected with u by a path of t type and length equal to d. Before

presenting its definition, let us introduce some needed notations.

We assume that with each user is assigned a set of identifiers based on the types of the

relationships he/she involved. More precisely, given a user u ∈ V in G, and a relationship

type t, the unique type-based identifier for u is defined as uidu = h(idu||t), where idu
is the unique identifier associated with u in the DSN realm.2 Moreover, given a user

u ∈ V in G, we denote with CLnt (u) ⊂ V the set of users that have with u a relationship

of type t and depth n. Hereafter, we denote with UIDn
t (u) =

⋃
v∈CLnt (u)

{uidv} the set

containing all the identifiers of these users.

Definition 2.3.1 The Anonymized Contacts List for CLnt (u), denoted as ACLnt (u),

is the set of coefficients of the polynomial PCLnt (u) of degree |CLnt (u)|, computed as

follows:

PCLnt (u)(x) =
∏

uid∈UIDnt (u)

(x− uid). (2.6)

As such, uid ∈ UIDn
t (u) are all and the only possible roots of PCLnt (u), and PCLnt (u)

results as a complete monic polynomial.

Example 2.3.1 Based on social graph depicted in Figure 2.1, user A generates
CL1

friend(A)={D,G,H, I}, CL1
relative(A) ={B,C} and CL1

colleague(A)={M,N,O}. Ac-
cording to Definition 2.3.1, the ACLs for user A are defined as the coefficients of the

2This relies on the assumption that inside DSN each user is uniquely identified by an unique id, which

is true in each commercial Social Network.

22 Cloud-based Secure Information Sharing

following polynomials:

PCL1
friend(A)(x) =(x− h(idD||friend)) · (x− h(idG||friend))·

· (x− h(idH ||friend)) · (x− h(idI ||friend))

PCL1
relative(A)(x) =(x− h(idB ||relative)) · (x− h(idC ||relative))

PCL1
colleague(A)(x) =(x− h(idM ||colleague)) · (x− h(idN ||colleague)) · (x− h(idO||colleague))

Based on Definition 2.3.1, it is easy to verify if a node v satisfies an access rule

ac = (t, d) defined by user u. Indeed, it is required only to evaluate whether v’s identifier,

i.e., h(idv||t), is a root of at least a polynomial PCLnt (u)(x), with n ≤ d. In contrast,

under the assumption of a high degree of P it is hard to find all uids (see Section 2.5).

As Example 2.3.1 highlights, ACL1
t can be easily computed at user side. Unfortu-

nately this does not hold for ACLnt with n > 1, since it requires to know uids of each

indirectly connected users, whereas in this proposal we assume that users have only a

local view (i.e., they only know their direct neighbors). To overcome this limitation, we

propose a solution where ACLs for n > 1 are privately generated directly at cloud side

by PFS.

The basic idea is that, given a certain ACL1
t (u) generated by u on his own, if v is

a direct contact of type t for u,3 then, for the same relationship type t, v’s contacts at

distance d have to be considered (d+1)-hops contacts of u and vice versa, for any d¿1.

Thus, if u ∈ CL1
t (v), ∀d¿1, then CLdt (u) ⊆ CLd+1

t (v). As consequence, ACLd+1
t (v) has

to contain uids encoded in ACLdt (u) and ACLd+1
t (u) has to contain those which are

encoded in ACLdt (v).

To privately insert ACLdt (v)’s roots into ACLd+1
t (u), we exploit the polynomial prop-

erty that, given P (x) and P ′(x), the roots of the polynomial Q(x)=P (x) · P ′(x) are all

and only values in the union set of roots satisfying P (x) and roots satisfying P ′(x).

As such, we assume that each time a anonymized contact list ACL1
t (u) for a new

user u is received, PFS first verifies which of the already registered users, i.e., their

uids, satisfy the new uploaded polynomial. That is, it determines the subset S ⊂ V

such that ∀p ∈ V, PCL1
t (u)

(uidp) = 0 ⇐⇒ p ∈ S. Then, ∀p ∈ S: (1) it inserts the p’s

direct contacts into anonymized 2-hop contact list of u, that is, it stores into ACL2
t (u)

the coefficients of polynomial resulting by the multiplication of PCL2
t (u)

(x) · PCL1
t (p)

(x);

(2) it inserts the p’s indirect contacts of distance n into anonymized (n+1)-hop contact

list of u, i.e., ACLn+1
t (u), as coefficients of polynomial resulting by the multiplication of

PCLn+1
t (u)(x) · PCLnt (p)(x).

It is important to note that, step (2) could be performed for any n value. However, we

limit this computation at threshold MaxDepth, which indeed constraints the maximum

3That is, uidv = h(idv||t) satisfies PCL1
t (u)

(x = uidv) = 0.

2.4 Relationship-based Information Sharing 23

distance between two nodes in the anomyzed graph. As such, this value limits the length

of the paths over which searches have to be performed. We believe this does not represent

a limitation. Indeed, according to the small world property and other studies (e.g., [25])

we expect that every pair of users (u,v) is connected by a limited number of edges in

the SN community.

Example 2.3.2 Let us consider the generation of ACL encoding a indirect friends list

at 2-hops distance. Given PCL1
fr(A)

(x) of Example 2.3.1, the polynomial PCL2
fr(A)

(x) is

generated as follows:

PCL2
friend(A)

(x) =PCL1
friend(D)(x) · PCL1

friend(G)(x) · PCL1
friend(H)(x) · PCL1

friend(I)
(x) =

=[(x− uidA) · (x− uidG)]·
·[(x− uidA) · (x− uidD) · (x− uidI)]·
·[(x− uidA) · (x− uidF)]·
·[(x− uidA) · (x− uidG)] =

= (x−uidA)4 · (x− uidD) · (x− uidF) · (x− uidG)2 · (x− uidI).

We assume that ACLs are stored into a set of tables, one for each supported relation-

ship type. More precisely, for each relationship type t ∈ RT , the corresponding Tablet
contains an entry for each user u storing into MaxDepth columns the corresponding

ACLnt (u), with 1 ≤ n ≤MaxDepth.

h(idu||friend) ACL1
friend(u) ACL2

friend(u) . . . ACLMaxDepth
friend (u)

h(idu||relative) ACL1
relative(u) ACL2

relative(u) . . . ACLMaxDepth
relative (u)

h(idu||colleague) ACL1
colleague(u) ACL2

colleague(u) . . . ACLMaxDepth
colleague (u)

Figure 2.3: ACL Tables structure

2.4 Relationship-based Information Sharing

Let us now introduce how the proposed framework enforces the relationship-based in-

formation sharing by illustrating protocols for resource upload and download. In doing

24 Cloud-based Secure Information Sharing

that, we assume that communication between entities is transmitted over secure chan-

nels.4 We assume that the public key of CS, K+
CS , is known by RMS and KMS as it

will be used to encipher messages directed to CS.

Resource Upload Given a resource rsc, before uploading it in the cloud, its owner,

say user u, has to encrypt it using a symmetric key Krsc. This key is computed as com-

bination of two secrets, i.e. Krsc= F(secretu, secretrsc), which are separately generated

by RMS and KMS.5 These secrets are defined such that: secretu is uniquely associated

with user u by RMS; secretrsc is uniquely associated with rsc by KMS.

Thus, before any upload, resource owner has to interact with RMS and KMS so

as to retrieve the corresponding secretu and secretrsc. The protocol underling this

message exchange is represented in Table 2.1. Note that, as depicted also in Figure 2.2,

CS communicates with KMS by means of RMS. Indeed, we adapted the structure of

Needham-Schroeder protocol. As such, CS creates a message for RMS, by encapsulating

inside it the message directed to KMS. Assuming that only KMS has the private key

K−KMS , RMS cannot decrypt the encapsulated message, but just forward to KMS.

Thus, once the secrets are generated by RMS and KMS (messages 2, 4 in Table

2.1) and received by u (message 6 in Table 2.1, encrypted with CS public key), the

user is able to compute Krsc. Hence, u composes a message including the encrypted

resource (to be transmitted to KMS) and the set of access control rules Rrsc that RMS

has to store. As depicted, CS sends all messages to RMS, which then forwards nested

encrypted messages to KMS. After the execution of protocol depicted in Table 2.1, the

cloud data storage service contains the encrypted resource, whereas RMS and KMS

contain only resource metadata. In particular, KMS stores idrsc and secretrsc, whereas

RMS saves idrsc along with the resource access control rules Rrsc.

Resource Download If a requestor req wishes to download and decrypt rsc, it sends a

message to RMS with the corresponding ids (i.e., message 1 in Table 2.2). This retrieves

the corresponding access rules Rrsc, the id of rsc’s owner (i.e., idown). Then, assuming

Rrsc = ac = (t, d), it inquires PFS to search for a path connecting the requestor to the

owner, with all edges labeled with t and length less than d (i.e., messages 3-4 in Table

2.2). It is important to note that if PFS sends the yes/not answer back directly to

RMS, this might bring to some information leakage. Indeed, for some particular access

rules, knowing whether this is satisfied gives exact information on existing paths.

4If available and certificated, the CS uses the user’s private-public key to encrypt messages; otherwise

when a new CS instance is created, the KMS generates and certifies a couple of asymmetric keys

〈K+
CS ,K

−
CS〉 which are then communicated to the CS.

5Several F functions can be adopted. In actual implementation, we make use of XOR.

2.4 Relationship-based Information Sharing 25

1. CS → RMS: {idu, N1, {idu, idrsc, N2}K+
KMS
}K+

RMS

2. RMS: Retrieve secretu, if any, or generate a new one

3. RMS → KMS: {idu, idrsc, N2}K+
KMS

4. KMS: Compute new unique secretrsc
5. KMS → RMS: {secretrsc, N2 + 1}K+

CS

6. RMS → CS: {secretu, N1 + 1, {secretrsc, N2 + 1}K+
CS
}K+

CS

7. CS: Compute Krsc = F(secretu, secretrsc)

8. CS → RMS: {idu, N1 + 2, idrsc,Rrsc,
{idu, idrsc, {rsc}Krsc , N2 + 2}K+

KMS
}K+

RMS

9. RMS: Store Rrsc
10. RMS → KMS: {idu, idrsc, {rsc}Krsc , N2 + 2}K+

KMS

11. KMS: Store rscKrsc in cloud storage service

Table 2.1: Resource upload protocol

As example, let assume that A in Figure 2.1 has set up the rule ac = (friend, 1)

for a given resource. If D requests this resource, RMS will receive a positive answer

from PFS, which makes RMS able to understand that between D and A there exists a

direct friendship. In order to avoid this leakage PFS answers are sent only to KMS (i.e.,

message 5 in Table 2.2). Based on the answer, then KMS generates a token containing

the secretrsc if the answer is a positive, i.e., there exists a path satisfying the rule, or a

random number for negative answer. Together with the URL from which resource can be

downloaded, the token is then encrypted with CS public key and send it to RMS (i.e.,

message 6 in Table 2.2).

The URL sent from KMS to CS is a temporarily valid URL provided by cloud storage

service at KMS requests. The rsc to be downloaded is reachable at this URL only for

a small and fixed lapse of time, afterwards rsc is moved back to the private realm of

the storage service, without any public access.6 RMS adds secretown into the received

message, encrypts with CS public key, and forwards it to CS (i.e., message 7 in Table

2.2). Then, user decrypts secretown and token values, and generates F(secretown, token),

which returns the correct encryption key Krsc only if the token = secretrsc, that is, only

if KMS receives positive answer from PFS, confirming the existence of a path satisfying

the rule.

6Moving resources on temporary URL is a common approach used by several cloud storage services

(e.g., Dropbox) to limit access at requested resources.

26 Cloud-based Secure Information Sharing

1. CS → RMS: {idreq, idrsc, N1}K+
RMS

2. RMS: Retrieve acrsc and id of rsc’s owner, i.e., idown
3. RMS → PFS: {h(idown||acrsc.type), h(idreq||acrsc.type),

arrsc, {idreq, idrsc}K+
KMS
}K+

PFS

4. PFS: Check if path (own, req) fulfills acrsc
5. PFS → KMS: {found, {idreq, idrsc}K+

KMS
}K+

KMS

6. KMS → RMS: {token, URLrsc}KCS+
where token=secretrsc if found ≡ true,

token=random otherwise;

7. RMS → CS: {secretown, N1 + 1, {token, URLrsc}K+
CS
}K+

CS

8. CS: Compute Krsc with received secrets, then download and de-

crypt resource, if possible.

Table 2.2: Resource download protocol

2.5 Security Analysis

Except of KMS, which is assumed to be trusted, the framework is evaluated in a honest-

but-curios adversary model, as such CS, PFS, andRMS parties are assumed to properly

follow the protocols, by trying at the same time to infer sensitive information.

2.5.1 Relationship-based Resource Sharing

Given a resource rsc owned by own, and the corresponding set of access rules Rrsc, the

framework has to ensure that a requestor req ∈ V can access (i.e., decrypt) rsc if and

only if at least an access condition ac ∈ Rrsc is satisfied, that is, if there exists at least

a path connecting req and own whose relationship type and depth satisfy at least an

access condition acrsc ∈ Rrsc.
According the proposed architecture a user can access a resource rsc if it has the

corresponding decryption key Krsc. Let us show that secrets are distributed only to

authorized users, i.e., users satisfying at least an access condition. Let assume that user

req does not satisfy any of the access conditions in Rrsc, but after the execution of

protocol in Table 2.2, it received the correct secrets to compute Krsc. Since req does not

satisfy any rule and assuming that the protocol is fairly executed, at the end of execution

req receives secretown and token=random (see messages 6,7 in Table 2.2). This does

not allow him to compute the encryption key Krsc 6= F(secretown, random). Under the

assumption that F(·, ·) is collusion-free F(secretown, random) 6= F(secretown, secretrsc),

2.5 Security Analysis 27

as such a contradiction arises.

Note that the above statement considers only malicious internal users of DSN. For

other attackers, the only way to access resources is to decrypt it. At this purpose an

attacker has to obtain both the secrets. From Table 2.1, we can see that these secrets are

locally generated by RMS and KMS, and securely transmitted to CS in message 8 (or,

similarly, in message 7 of Table 2.2). As such, to achieve secretown, the message has to

be decrypted with private key of requestor, whereas to access secretrsc, two decryptions

have to be performed. Under a honest-but-curios model we need to consider also the

involved parties (i.e., PFS, and RMS, as KMS is trusted). However, the considera-

tions made above for external attackers still hold, with the difference that RMS already

knows secretown. Moreover, it is not able to decrypt {secretrsc, N2 + 1}K+
CS

in message

5 of Table 2.1, hence it cannot retrieve secretrsc and build Krsc.

Further relevant analysis is related to key reuse and resources update. Let suppose

that a granted user req, following the protocol of Table 2.2, is authorized to download

and decrypt rsc. Even if req knows the value of Krsc, he cannot obtain the new URL

value that is sent in message 6 of Table 2.2. Moreover, in case the resource or the

corresponding access rule is changed, the framework considers the modified resource

rsc′ as a new resource, with the consequent generation of new secretrsc′ .

2.5.2 Relationship Information Leakage

According to the proposed framework, relationship information is stored at cloud side

in the form of ACLs. As such, under the assumption that all messages are securely

exchanged, we see only two ways to infer information on existing relationships: (1)

inferring roots, i.e., uids, directly from ACLs, and (2) inferring information from the

access request evaluation. Let see in more details both these two attacks.

Inference from ACLs

Tracing ACLs insertions. A first attack can be performed by PFS service. This

service receives directly from users the ACLs for their direct contacts, ACL1. Then to

built/update ACLn with n≥2, PFS tries all possible uids for finding users with mutual

friends, so as to propagate them in other ACLs. According to an honest-but-curious

behavior, PFS could trace every computation result, obtaining thus roots/uids for each

uploaded ACL1. Having these uids, PFS could rebuild a set of graphs G=
⋃
t∈RT {Gt}.

All these graphs are, topologically, subgraphs of the original graph G, except for their

nodes’ ids that are different from the one in G. Thus, under the assumption of a collusion-

free h(·) function, PFS is not able to merge together the graphs in G, since the same

user appears in these graphs with different uids.

28 Cloud-based Secure Information Sharing

As firstly discussed in [5], a graph where only ids are anonymized (i.e., randomized)

cannot provide enough privacy protection, as it can suffer of re-identification attacks.

This kind of attack is possible under the assumption that the attacker knows the exis-

tence of given structures H, such as Hamiltonian graphs, in the actual graph. As such,

since the graph topology is preserved, if the attacker finds H in a graph Gt, he/she can

use this match to re-identify all nodes connected with that structure and, in turn, their

contacts of relationship type t and so on. With respect to this attack, thus, we have

to make two considerations. The first is that is hard for an attacker to identify these

structures when the original structures can be split in more substructures. A further

consideration is that, in order to perform the attack, that is, in order to search of a

given structure in subgraphs Gt, if possible, the PFS has to know which structure it

has to look for. This would require to access to some information of the real graph G,

as example, by registering in the social platform (as in the attack discussed in [5]) or by

colluding with some existing social network users. However, this is not possible under

the assumption that PFS is curious but honest.

Direct uids computation from ACLs. This kind of attacks can be run: by an

external entity that maliciously retrieved Tablet from the cloud storage; by the cloud

manager that gets malicious access to Tablet, under the assumption of untrusted public

cloud. Given ACLs tables, the attackers can try the following two approaches: solving

polynomial or extracting their roots by brute force. For both aspects, thus, it’s important

to emphasize a common aspect of these approaches, that is the ground field over which

the polynomials are built.

Solving polynomials. According to Definition 2.3.1, polynomials in Tablet are gen-

erated such that they are in a complete monic form. This allows us to refer to the

Abel-Ruffini Theorem that states that for equations with degree greater or equal than 5

there is no algebraic formula for root-finding. Note that we can reasonably assume that

all our polynomials have a degree greater than 5, that is, all ACLs encode more than 5

contacts.7

Despite this, there exist both numerical and arithmetical ways for the polynomial root-

finding problem [56]. But almost all of them are inefficient with high degree polynomi-

als. For example, given a polynomial P of degree n, Vincent-Akritas-Strzeboński (VAS)

method requires to compute at least n variable substitutions and transformations in a

recursive approach. Furthermore, it is relevant to observe that polynomials in Definition

2.3.1 are similar to Wilkinson’s polynomials [69], in that they are complete monic poly-

nomial. As such, it also holds the Wilkinson property stating that root finding problem

7For those polynomials with a lower degree, we can assume that CS adds some fake roots.

2.5 Security Analysis 29

is generally ill-conditioned. Finally, since our polynomials are in the form

P (x) =
n∏
i=0

(x− ai)⇒ P (x) =
n∑
i=0

bix
n−i, b0 = 1, bn 6= 0

the last coefficient bn is defined as the multiplication of all the roots. As such, an

alternative approach for root-finding requires to factorize bn. Still, both root finding

problem and integer factorization problem are well known to be hard problems. To

the best of our knowledge, the most efficient ways to retrieve polynomial roots are

the deterministic algorithms or randomized algorithms presented in [36], which have

polynomial-time complexity. The required time, thus, may become really significant

once the ground field over the problem are defined increases in space.

However, if an attacker exploits one of these techniques, the time and computational

resources needed to retrieve the real graph make this kind of attack infeasible. Indeed,

as previously discussed, retrieving roots is only the first step, that is, it only allows the

attacker to find the set of anonymized graphs G. Then the re-identification attack in

[5] has to be performed. As such, we believe the time needed to carry out the overall

re-identification attack is greater than the possible graph lifespan and utility time.

Brute force. To retrieve uids from an ACL, attackers can have a brute force approach

trying all possible uids so as to verify which of them satisfy the ACL polynomial. A

first thing to emphasize is that the time estimation for this attack highly depends on

the dimension of the social network. More precisely, let assume that all edges have the

same relationship type, as such all relationships are encoded in an unique table with

an entry for each user in G. This brings to a scenario where the ACL table contains

|V | ·MaxDepth polynomials. In order to reconstruct the social graph it is enough to find

the solutions for polynomials that encode users’ direct contats, that is, |V | polynomials.

To retrieve direct contacts of a target user u, that is, to find the roots of polynomial

PCL1(u)(x) it is required, in the worst-case, (|V | − 1) · teval, where V is set of users in

G and teval is the time of polynomial evaluation. In fact, to solve a single polynomial

out of |V |, the attacker has to evaluate such polynomial with |V | − 1 possible uids . To

reconstruct the whole graph, this process has to be repeated for every other user in V ,

without repetition. This brings to a time estimation of

|V |−1∑
i=1

[
(|V | − i) · teval

]
= teval

|V |−1∑
i=1

(|V | − i) =

= teval

|V |−1∑
i=1

(i) =
|V |(|V | − 1)

2
teval ∼ O(|V |2)teval.

As example, in a DSN with |V | = 1 · 106 and with teval = 10ms (see Table 2.3), the

attack requires ∼ 3.17 · 102years. As such, we believe this attack is not feasible.

30 Cloud-based Secure Information Sharing

A final note holding for solving polynomials attack as well as for the brute force is

about the ground field over which the polynomials are built. Indeed, h(·) has to be

selected such to have a codomain large enough to contain, at least, |V | · |RT | different

values. It is expected that h(·) generates up to 1012, as example, which are then used

for uids. Even though most of calculators may compute values up to log2(1012) < 64

bit, it is not true that they are able to perform a polynomial evaluation, e.g., during a

brute force attack, since these operations imply several exponentiations.

Inference from access rule enforcement.

For some particular access rules, knowing if this is satisfied gives exact information on

existing paths. To avoid this possible leakage, the resource download protocol has been

designed such that neither KMS or RMS know both the query path and the answer.

However, inference from access rule evaluation could be exploited by external attacker.

As example, with reference to Figure 2.4, let’s assume that an attacker wishes to know

whether between u and v there exists a relationship of type t. The attacker has to:

Figure 2.4: Inference Scenario Scheme

(1) create two fake social network users A and B; (2) A invites u to establish a new

relationship, and B to v; (3) if both the relationships have been established, according

to protocol in Table 2.1, A uploads a certain resource rsc with the following access rule

ac = (t, 3); (4) according to protocol in Table 2.2, B requests rsc: if the access is granted

the attacker will know that between u and v it exists a direct relationship of type t.

Unfortunately this attack is possible as this information gain is intrinsic in the prob-

lem we are addressing (i.e., an information release regulated by existence of given rela-

tionships). However, there are some important considerations: (1) in order to accomplish

the attack, both relationship requests have to be confirmed. This is less likely (i.e., half

percentage) than to those attacks, like [5, 48] that assume to insert a subgraph H in G

by connecting only a fake user with a real user; (2) with no clue on u and v, this attacks

becomes really expensive. Indeed the attacker needs to successfully establish 2 · |E| · |RT |
new relationships to discover the whole graph topology. Moreover, in a real scenario,

2.6 SocialCloudShare 31

a social network user confirms only a small percentage of relationship requests he/she

receives from unknown people, and a refused relationship request cannot be replayed

endlessly. Thus, a malicious entity needs an overwhelming effort to perform his attack.

2.6 SocialCloudShare

In order to evaluate the effectiveness of the hereby introduced techniques, we developed

SocialCloudShare (SCS). SCS has beed designed as a Facebook application able to act,

according to the above described architecture, as a Rule Manager Service.

Since both the RMS and the others architecture entities were designed to act in

a decentralized architecture, we had to modify some details while implementing them.

Nevertheless, though, we tried to keep each entity as compliant as possible to its decen-

tralized declaration. We decided to implement SCS as a Facebook application instead

of making a proper decentralized example architecture so as to collect the more data as

possible concerning a real life usage of the platform. Moreover, thanks to the Facebook

API system, such implementation required much less efforts than implementing a com-

plete decentralized example. All the data collected by our example, then, are gathered

in Section 2.7.

2.6.1 Communication Protocols

As a first step, we will introduce how the communication protocols between the architec-

ture entities have been implemented, illustrating the messages exchanged in each step.

Although this is not declared explicitly, we assume that each communication between

entities is transmitted over secure channels. Beyond encryption primitives present in

messages schemas, we assume that HTTPS connections can be instantiated before com-

municating, so that an additional security layer can be granted.

To keep the notation as light as possible, we will denote with K a symmetric encryp-

tion key, with K+ and K− a public and private key, and with Ksession a session key

valid only for the current communication session. For any key, we report as subscript

the framework component for which the key has been generated (e.g., K+
SCS denotes a

public key generated for SocialCloudShare). Moreover, we denote with Krsc a resource

encryption key, whereas secretowner and secretrsc denote the secret tokens that are used

for the generation of the resource encryption keys. Finally, with such defined keys, we

denote with {message}K a message that is encrypted exploiting K as encryption key.

Login Phase

Since we assumed that no CS instance is aware of SocialCloudShare and KMS public

keys when firstly initialized, the communication is initalized by requesting K+
SCS , K+

KM ,

32 Cloud-based Secure Information Sharing

where K+
SCS and K+

KM respectively denote the public keys of SocialCloudShare and the

Key Manager (see messages 1-4 in Figure 2.5).

1. {iduser, “PUBLIC KEYS REQ”}
2. {iduser, “PUBLIC KEYS REQ”}
3. {iduser,K+

KM}
4. {iduser,K+

KM ,K
+
SCS}

5. {iduser,Ksession
SCS , {iduser,Ksession

KM }
K+

KM
}
K+

SCS

6. {iduser,Ksession
KM }

K+
KM

7. {iduser, “SESSION KEY RECEIVED”}
K−

KM

8. {iduser, “SESSION KEY RECEIVED”, {iduser, “SESSION KEY RECEIVED”}
K−

KM
}
K−

SCS

Figure 2.5: Login phase: messages exchange

Once the user has received them, the CS generates a pair of 128 bit random keys,

denoted as Ksession
SCS and Ksession

KM , that will be exploited as session keys for the user

current session. Note that, as depicted by the architecture in Figure 2.2, CS commu-

nicates with KMS relying only on SocialCloudShare (which is acting as RMS), since

there exist no direct communication channel between the CS and the KMS. Indeed,

we adapted the structure of Needham-Schroeder protocol (see [55]). As such, when the

CS has to communicate with the KMS, it creates a message for SocialCloudShare

and encapsulates inside this the message directed to KMS. SocialCloudShare, when

receives such message, forwards to KMS the encapsulated chunk (e.g., messages 5,6 in

Figure 2.5). Assuming that only KMS has the private key K−KM , SocialCloudShare

cannot decrypt the encapsulated message, but it has just to forward it to the KMS.8

Once both SocialCloudShare and KMS correctly receive the session key, they reply to

the user with messages 7-8 in Figure 2.5.

2.6 SocialCloudShare 33

1. FB.api{ ‘me/friends’, {fields: ‘id’} }
2. JSON-formatted CL1

3. ACL1 := anonymize(CL1)

4. {iduser, ACL1}K+
PFS

5. storeAndPropagate(iduser, ACL
1)

6. { “ACK” }K−PFS

Figure 2.6: Registration phase: messages Exchange

User Registration

Figure 2.6 depicts the message exchange when users execute the application for the first

time. Exploiting Facebook JavaScript SDK, the user’s contact list is requested (message

1) and gathered directly from the social network provider (message 2) with no need to

rely on any intermediate service. The anonymization process (message 3 in Figure 2.6)

produces ACL1, taking as input the direct contact list CL1, at user side; as such, no

relationship data are sent to the provider before being anonymized. The anonymized

contact list is then sent to the PFS, which stores it and propagates in all the ACLs (see

message 5 in Figure 2.6).

The message exchange is ended with a response message produced by the PFS, i.e.

message 6, to notify the CS that the protocol has been properly executed by both parties

and the sent data have been successfully handled.

34 Cloud-based Secure Information Sharing

1. {’id’: ’user id’, ’changed fields’: ’friends’ }
2. storeUpdate(user id, “CL OUT OF DATE”)

3. { “CL OUT OF DATE” }
4. FB.api{ ’me/friends’, {fields: ’id’} }
5. JSON-formatted CL1

6. ACL1−new := anonymize(CL1−new)

ACL1−removed := anonymize(CL1−removed)

7. {iduser, ACL1−new, ACL1−removed}K+
PFS

8. updateAndPropagate(iduser, ACL
1−new, ACL1−removed)

9. { “ACK” }K−PFS
10. { “CL UPDATE DONE” }Ksession

SCS

11. { “ACK” }Ksession
SCS

Figure 2.7: Contact list update: messages exchange

Contact List Update

Figure 2.7 summarizes the messages exchange when the users’ contact lists are mod-

ified (i.e., by adding or removing relationships). In the current implementation, we

exploit Facebook Real Time Updates (RTU).9 RTU is a feature of Facebook Graph

8This still relies on the assumption that SocialCloudShare and KMS do not collude.
9https://developers.facebook.com/docs/graph-api/real-time-updates/v2.0 .

2.6 SocialCloudShare 35

API10 which allows Facebook thirdy-party Social Apps to be informed, directly from

the OSN provider, when certain pieces of data change (e.g., new profile pictures, new

friendship requests). With this functionality, SocialCloudShare does not need to con-

tinuously keep syncronized with the social graph, because a callback function is called,

by means of an HTTP POST request, every time a user changes his/her own contact

list (see message 1 in Figure 2.7).

Unfortunately, the OSN only notifies SocialCloudShare about the changed fields,

without revealing any other information. As such, it is then necessary to fetch from

the OSN social graph all the data about new or removed friends. For this reason,

we designed SocialCloudShare to keep track of all those users whose contact lists are

not syncronized with the ACLs stored at Cloud side. Then, when each of those users

make use of SocialCloudShare, he/she receives a message that informs the CS that the

contact list has to be syncronized (see messages 2,3 in Figure 2.7). Exploiting JavaScript

functions, the current contact list is fetched from the social graph and new users (or,

equivalently, removed users) are detected. CL1−new and CL1−removed denote the two

contact lists computed by the CS representing the lists of the new contacts and the

removed contacts. By exploiting the anonymize function in message 6 of Figure 2.6,

CL1−new and CL1−removed are anonymized.

Then, the user sends to the PFS these two separate ACLs (or just one of them, in

case the other one results in an empty list) (see message 7 in Figure 2.7). The PFS runs

again the process of ACL propagation, adding the new information whenever these data

are missing, or removing old information in case of relationship removal (i.e., by dividing

polynomials instead of multiplying them). The messages flow is concluded with a special

flag (see messages 9-11), in order to inform both the PFS and SocialCloudShare that

the protocol has been properly executed.

Resource Upload

The messages exchange for the resource upload phase follows the same schema as the

one depicted in Figure 2.5, whereas the messages content is depicted in Figure 2.8.

Before uploading a certain resource rsc in Dropbox, its owner, say user u, has to

encrypt it using a symmetric key, that is, Krsc. This key is computed as combination

of two secrets, i.e. Krsc= F(secretowner, secretrsc), which are separately generated by

SocialCloudShare and the KMS.11 In the given implementation, we choose to encrypt

resources exploiting AES-256 algorithm [54], operating in Cipher Block Chaining (CBC)

mode [30], where the plaintext is padded according to PKCS#7 [45]; for this reason

we designed the two secrets with length of 256 bit. As it will be discussed later, these

secrets are released to a requestor by SocialCloudShare and KMS if and only if he/she

10https://developers.facebook.com/docs/graph-api/ .
11Several F functions can be adopted. In our implementation, we make use of XOR.

36 Cloud-based Secure Information Sharing

1. {iduser, idrsc, “RSC UPLOAD REQ”, . . .

. . . {iduser, idrsc, “RSC UPLOAD REQ”}Ksession
KM

}Ksession
SCS

2. {iduser, idrsc, “RSC UPLOAD REQ”}Ksession
KM

3. {iduser, idrsc, secretrsc}Ksession
KM

4. {iduser, secretuser, {iduser, idrsc, secretrsc}Ksession
KM

}Ksession
SCS

5. {iduser, idrsc,Rrsc, {iduser, idrsc, {rsc}Krsc}Ksession
KM

}Ksession
SCS

6. {iduser, idrsc, {rsc}Krsc}Ksession
KM

7. {iduser, idrsc, “RSC STORED”}Ksession
KM

8. {iduser, idrsc, “ACR STORED”, {iduser, idrsc“RSC STORED”}Ksession
KM

}Ksession
SCS

Figure 2.8: Resource upload phase: messages exchange

satisfies at least one access rule condition associated with rsc.

Thus, before any upload, resource owner has to interact with both SocialCloudShare

and the KMS so as to retrieve the corresponding secretowner and secretrsc. Assuming

the user shares a symmetric session key only with KMS, negotiated during the login

phase, SocialCloudShare cannot decrypt the encapsulated message and thus cannot

discover secretrsc. Once the secrets have been generated by SocialCloudShare and the

KMS, they are received by u encrypted with pre-shared session key (see message 4 in

Figure 2.8); as such, the user is able to compute Krsc. Hence, u composes a message

including the encrypted resource (to be transmitted to KMS) and the set of access

control rules Rrsc that SocialCloudShare has to store. In our implementation Rrsc is a

1 byte value; the 5 more significant bits translate the relationship type (with a maximum

of possible relationship types equal to 32) and the 3 less significant bits translate the

maximum depth value of the access control condition. Even though our implementation

currently supports only “friend” relationships, this implementative choice leaves the

framework ready to further improvements.

As depicted in Figure 2.8, the CS sends all messages to SocialCloudShare, which

then forwards nested encrypted messages to the KMS. After the execution of the

protocol illustrated in Figure 2.8, the Cloud data storage service contains the encrypted

resource, whereas SocialCloudShare and the KMS contain only resource metadata. In

particular, the KMS stores idrsc and secretrsc, whereas SocialCloudShare saves idrsc
along with the resource access control rules Rrsc, where idrsc denotes a unique identifier

for the resource.

2.6 SocialCloudShare 37

Resource Download

In order to enforce a relationship-based resource sharing, the framework has to release

encryption keys only to requestors satisfying at least an access control rule associated

with the requested resources. To determine if an access rule is satisfied, the PFS service

is inquired. To protect the communication between SocialCloudShare, the KMS, and

the PFS we assume there exists a symmetric encryption key, denoted as KPFS , shared

between those three entities. By using this key, the communication encrypted with

KPFS cannot be decrypted by anyone unless the components of the framework.

If a requestor req wishes to download and decrypt rsc, it has to send a message to

SocialCloudShare with the related ids (message 1 in Figure 2.9). SocialCloudShare

retrieves the corresponding access rulesRrsc and the id of rsc’s owner (i.e., idown). Then,

assuming for simplicity Rrsc contains only one access control condition acc = (t, d), it

inquires the PFS to search for a path connecting the requestor to the owner, with all

edges labeled with t and length less than d (i.e., message 2 in Figure 2.9). It is important

to note that if the PFS sends the yes/no answer back directly to SocialCloudShare,

this might bring to some information leakage. Indeed, for some particular access rules,

knowing whether the rule is satisfied gives exact information on existing paths. As such,

the answer produced by the PFS is sent to the KMS (see message 3 in Figure 2.9).

1. {idreq, idown, idrsc, “RSC DWNLD REQ”, . . .

. . . {idown, idrsc, “RSC DWNLD REQ”}Ksession
KM

}Ksession
SCS

2. {h(idreq||accrsc.type), h(idown||accrsc.type), accrsc.depth . . .
. . . {idown, idrsc, “RSC DWNLD REQ”}Ksession

KM
}KPFS

3. {result, {idown, idrsc, “RSC DWNLD REQ”}Ksession
KM

}KPFS
4. {tokensecret, URLrsc}Ksession

KM

5. {idreq, secretown, {tokensecret, URLrsc}Ksession
KM

}Ksession
SCS

Figure 2.9: Resource download phase: messages exchange

The URL sent from the KMS (see message 4 in Figure 2.9) is a temporarily valid

URL provided by the Cloud storage service upon KMS requests. The rsc to be down-

38 Cloud-based Secure Information Sharing

loaded is reachable at this URL only for a small and fixed interval of time, afterwards

rsc is moved back to the private realm of the storage service, without any public ac-

cess.12 Message 4 (see Figure 2.9) contains, along with the above mentioned URL, the

value of tokensecret, which is tokensecret = secretrsc in case the PFS sent a positive

answer, or a random value otherwise. SocialCloudShare inserts secretown into the re-

ceived message, encrypts it with pre-shared session key and forwards it to the user (i.e.,

message 5 in Figure 2.9). Then, the user decrypts secretown and tokensecret values and

generates F(secretown, tokensecret), which returns the correct encryption key Krsc only

if tokensecret = secretrsc, that is, only if the KMS receives a positive answer from the

PFS, confirming the existence of a path satisfying the rule.

2.6.2 Cipher Service - Browser Plugin

The Cipher Service (CS) is the component in charge of client-side resource encryp-

tion and of anonymized contact lists generation. We choose to implement the aboved-

mentioned functionalities with a set of JavaScript functions, in order to achieve a better

usability than a customized software and to give users the possibility to make use of it

with no restriction given by his/her operative system.

By exploiting jQuery library13 and AJAX-like14 techniques, CS is able to pro-

cess user actions (e.g., mouse clicks, page requests, upload/download requests) inside

SocialCloudShare. The most important functionalities offered by CS are the encryp-

tion primitives for resources/messages encryption/decryption. For what concerns the

resource encryption/decryption phase, the CS can be seen as a cipher black box. Thus,

plaintext resource is taken as input and coded into a ciphertext resource and vice versa.

As such, no entity except the CS takes part in these processes. At this purpose, we de-

cided to exploit an existing library, named Crypto-JS,15 available under BSD-3 License

on Google Code, offering several encryption primitives ready to be used. In particu-

lar, for resources encryption, we exploit AES-256 algorithm applied according to Cipher

Block Chaining (CBC) mode, where the plaintext is padded according to PKCS#7.

In order to exploit CBC mode, an Initialization Vector iv is necessary during the en-

cryption and decryption phases. For this reason, the CS generates each time a random

value as initalization vector (by exploiting CryptoJS.lib.WordArray.random(128/8)),

which is added prior to the ciphertext, such that the iv itself can be securely stored

along with the encrypted resource.

12Moving resources on temporary URL is a common approach used by several Cloud storage services

(e.g., Dropbox, in this implementation) to limit access of requested resources.
13http://jquery.com/ .
14http://www.w3schools.com/ajax/default.ASP .
15https://code.google.com/p/crypto-js/ .

2.6 SocialCloudShare 39

Figures 2.10 and 2.11 depict the functions used in the CS implementation.

CryptoJS.AES.encrypt(

’Resource-Stream’,

’Resource-Secret-Key’,

{ iv: ’iv’,

mode: CryptoJS.mode.CBC,

padding: CryptoJS.pad.Pkcs7

}

);

Figure 2.10: Javascript AES encipher

CryptoJS.AES.decrypt(

’Encrypted-Resource-Stream’,

’Resource-Secret-Key’,

{ iv: ’iv’,

mode: CryptoJS.mode.CBC,

padding: CryptoJS.pad.Pkcs7

}

);

Figure 2.11: Javascript AES decipher

Another important feature handled by CS is the generation of ACL1. To compute

such ACL1, the JavaScript library contains functions implementing the polynomial mul-

tiplication, i.e., computing the discrete convolution bewteen number sequences. As first

step, the direct contacts list is fetched from Facebook social graph, by means of Facebook

JavaScript SDK. As depicted in Figure 2.12, the JavaScript SDK needs to be initalized

with a valid Social-App-Id, which is the identifier assigned by Facebook when registering

a Social App in the OSN realm.

The CS can request to Facebook, by means of the Javascript FB Object, the logged

user’s friend list (e.g., see messages 1,2 in Figure 2.6) so that it can receive the current

user’s direct contacts identifiers. By having these identifiers, the CS can generate the

user’s ACL1. Once this ACL1 is fully computed, it is sent to the Path Finder Service,

which is the component in charge of handling the anonymized social graph.

40 Cloud-based Secure Information Sharing

<script type=’text/javascript’>

$(document).ready(function() {

$.ajaxSetup({ cache: true });

$.getScript(’//connect.facebook.net/en_UK/all.js’,

function(){ FB.init({

appId: ’Social-App-Id’,

});

});

});

</script>

Figure 2.12: Facebook JS-SDK Load Phase

2.6.3 Path Finder Service Implementation

As outlined above, the Path Finder Service (PFS) is the component of SocialCloudShare

that handles the anonymized social graph. All the ACLs are stored into the ACL Reposi-

tory table, where the record is in the form [idu, ACL
1(u), ACL2(u), . . . , ACLMaxDepth(u)],

that is, it contains the user identifier and all his/her ACLs of different path length (e.g.,

see Figure 2.3).

The PFS is implemented as a web service, by means of a Java servlet that handles

HTTP requests. The request received from EM instances are encrypted with the PFS

public key, i.e., K+
PFS . On the other hand, requests received from SocialCloudShare

entity are encrypted with a pre-shared session key, denoted as KPFS , that grants a lower

overhead than an asymmetric-key encryption.

Such component, like SocialCloudShare and KMS entities presented in the follow-

ing sections, has been developed inside the Spring framework16 and exploiting STS17,

an eclipse-based IDE.18

Algorithm 1 describes the procedure executed each time a new ACL1 is received from

a SocialCloudShare user. This algorithm makes use of the ACL Repository, denoted

with R, and of a boolean matrix, updates, that keeps track of the ACLs that have been

modified during the propagation procedure.

Each time a new ACL1 is received, along with the user id, the PFS stores inside the

16http://projects.spring.io/spring-framework/ .
17http://spring.io/tools .
18Spring is an application framework with built-in modules that facilitate Java application develop-

ment, in which code dependecies are directly handled by Apache Maven (http://maven.apache.org/)

and Gradle (http://www.gradle.org/) at build-time, generating a .jar archive that can run under, for

example, an Apache Tomcat (http://tomcat.apache.org/) web server.

2.6 SocialCloudShare 41

ACL Repository those new information (see Line 3 in Algorithm 1) and sets as true the

corresponding cell of the updates matrix (see Line 4). Once the data have been stored,

the procedure analyzes, from the shallowest level to the deepest, the ACL Repository

record (see Lines 5,7). We denote with e.id the user identifier stored in the repository

entry e, and with e.ACLd, the ACLd stored in the same reporitory entry.

For each record e, the procedure performs a second iteration over all different record

e′ (see Line 8). If the updates matrix contains true in the cell corresponding to e′, the

procedure performs a polynomial evaluation, where the polynomial is the ACL taken

from e′ and the user identifier is taken from e (see Line 9). In case the polynomial

evalutation results 0, and each polynomial evaluation for smallest path length (see Lines

10, 11) result in a value different from 0, the information carried by e.ACL1 and e′.ACL1

is cross-propagated to level d + 1, where d is the variable iterated over the path depth

values (see Lines 12, 13). Along with the cross-propagation, the procedure updates the

values of the updates matrix, that is, it keeps track of the above modified entries. Finally,

a boolean variable stop, initally set with true (see Line 6), is set with false (see Line

16).

The above described procedure terminates when, given a path depth d, ACLs are

no more modified throughout the whole iteration over the repository record, that is, the

boolean value of the variable stop is true when the loop cycle at Line 7 ends, and the

procedure is forced to terminate (see Line 18).

2.6.4 SocialCloudShare Implementation

Differently from PFS and KMS, SocialCloudShare has been developed with both

a back-end system and a graphical interface, which is displayed when users access

SocialCloudShare application inside Facebook.

SocialCloudShare back-end is implemented as a web application, designed according to

the Model-View-Controller architectural pattern, such that a precise HTTP request on

a given URL calls a certain method of the underlying servlet. The most relevant methods

offered by SocialCloudShare are called by handling HTTP requests incoming on the

following URLs:

SCS/ : A request to the base URL of the web application generates and returns So-

cialCloudShare homepage. The underlying controller, when necessary, fetches and

stores some of the users’ data (e.g., full name, profile picture). These data are

collected interacting directly with the OSN provider, exploiting Facebook Graph

API in order to receive users’ profile information.

SCS/key/broadcast : This URL is requested automatically when the CS detects that

the public keys of SocialCloudShare and the KMS are not stored at client-side.

42 Cloud-based Secure Information Sharing

Input: idu, ACL
1(u), ACL Repository R

1 begin

2 boolean[][] updates;

3 R.push({ idu, ACL1(u), 1, 1, . . . });
4 updates[1][u] = true;

5 foreach d ∈ {1, 2, . . . ,MaxDepth} do

6 boolean stop = true;

7 foreach entry e ∈ R do

8 foreach entry e′ > e do

9 if (updates[d][e′.id]) AND (e′.ACLd(x = e.id) == 0) then

10 foreach d′ < d do

11 if e′.ACLd
′
(x = e.id) 6= 0 then

12 e.ACLd+1 = e.ACLd+1 · e′.ACL1;

13 e′.ACLd+1 = e′.ACLd+1 · e.ACL1;

14 updates[d+1][e.id]=true;

15 updates[d+1][e’id]=true;

16 stop = false;

17 end

18 end

19 end

20 end

21 end

22 if stop then

23 exit;

24 end

25 end

26 end
Algorithm 1: Anonymized Contact List Propagation Procedure

2.6 SocialCloudShare 43

It represents the arrival point of message 1 in Figure 2.5. The controller forwards

the received parameters to the KMS on its URL KM/key/broadcast.

SCS/key/negotiate : This URL is requested automatically when the CS detects

that the session keys for communicating with SocialCloudShare and KMS are

not stored at client-side. It represents the arrival point of message 5 in Figure 2.5.

The controller forwards the message that is encapsulated in the received one, that

is the message from CS to the KMS, on the URL KM/key/negotiate.

SCS/fb updates : This URL is reachable both with HTTP GET and HTTP POST

requests, but it is supposed to be requested only from Facebook provider. The

application listens to information from the OSN, waiting for Real Time Updates

(RTU). Once an HTTP GET request has been received, the application commu-

nicates with Facebook in order to control and regulate the subscription for RTU.

HTTP POST requests, on the other hand, are assumed to include information

about the user activity in the OSN (e.g., a new profile picture, a new friendship

in the social graph). The controller underlying these requests keeps track of those

users that have a contact list that is not syncronyzed with the ACLs stored in the

PFS (e.g., see message 1 in Figure 2.7).

SCS/upload : The controller that handles HTTP requests to this URL is the one re-

sponsible of starting the resource upload procedure. The received message is de-

crypted with the corresponding session key, and the encapsulated message (that

cannot be decrypted by SocialCloudShare) is forwarded to the KMS on its URL

KM/upload. Once the message is forwarded, the controller holds and waits for a

response from the KMS.

SCS/upload/finalize : A request done to this URL finalizes an upload procedure al-

ready started. As such, the underlying controller waits for the answer and, once

received, the message is decrypted and the encapsulated part is forwarded to the

KMS. The remainder of the message, thus, includes the access control rule Rrsc
of the uploaded resource. As such, Rrsc is stored by SocialCloudShare along with

the resource owner identifier and the resource identifier.

SCS/download : The controller that handles the incoming requests to this URL is the

one in charge of listening to download requests, representing the initialization of a

download process. As such, this message gathers information about the requestor,

the owner, and the resource involved in the download process. These data are

sent to the PFS that, after checking the existence of a path on ACLs, sends the

corresponding result to the KMS on its URL KM/download.

44 Cloud-based Secure Information Sharing

2.6.5 Key Manager Service Implementation

Similar to SocialCloudShare, the KMS has been developed as a web application, ex-

ploiting the STS IDE. On the other hand, KMS is sligthly different from the previously

presented SocialCloudShare. The KMS is designed to listen to communication ex-

clusively coming from SocialCloudShare, PFS, and Dropbox; as such the application

performs an IP filtering prior to accept incoming data. In case some data are received

by a peer that is not regognized as belonging to one of those three parties, its requests

are rejected and the communication channel closed. Then, the KMS is designed with-

out any front-end interface; any incoming message that is identified as valid brings the

KMS to perform some data processing and the output is directly sent as response to

the message sender. The main methods offered by KMS are called by handling HTTP

requests incoming on the following URLs:

KM/key/broadcast : This URL can only be requested by SocialCloudShare (e.g.,

via IP filtering) and it is requested only when CS detects that the public keys of

SocialCloudShare and the KMS are not stored at client-side. It represents the

arrival point of message 2 in Figure 2.5.

KM/key/negotiate : This URL is requested automatically when the CS detects that

the session keys for communicating with SocialCloudShare and KMS are not

present at client-side. It represents the arrival point of message 5 in Figure 2.5.

KM/upload : The procedures that are run when this controller is called are the ones

responsible of generating and storing the resource secret secretrsc, where rsc rep-

resents the identifier of the resource that is going to be uploaded .

KM/upload/finalize : The underlying controller includes the methods for resources

upload to the Cloud Storage Service (e.g., Dropbox). Once a resource is stored into

Dropbox, the KMS locally stores certain resource metadata, such as the name,

the filetype, and the last modification date. Those data are then displayed to users,

through the SocialCloudShare GUI.

KM/download : This URL is listening only to requests coming from PFS. Indeed,

the underlying controller is listening to messages resulting from a path search on

the anonymized graph. Messages received at this URL not only contain the result

of the path search performed by PFS, but they include pieces of data that were

included in the dowload request sent from the requestor. With these information,

the KMS is able to ask Dropbox to generate URLrsc, that is a temporary valid

URL for the encrypted resource download. URLrsc is included in the response along

with tokensecret, that may be a randomly generated value, in case the path finding

returns a negative answer, or the value of secretrsc otherwise, where rsc is the

downloaded resource.

2.7 Experimental Evaluations 45

2.7 Experimental Evaluations

To evaluate the framework performance, we carried out several tests. At this purpose,

we set up Java classes to run the experiment exploiting java.Math.BigInteger package

for instantiating polynomials coefficients to overcome the limitation due to blown of val-

ues dimension; polynomials and users data are then stored in a MySQL database. The

workstation used is an Intel Core 2 Quad Q6600 @ 2.40 GHz × 4, with 8GB RAM. Each

experiment ran exploiting Stanford SNAP datasets for Facebook.19

Our first experiment estimates the time required for the joining a new user to

the anonymized graph. We recall that this implies that the new user u submits the

anonymized list of its direct contacts, which is then elaborated by PFS to: (1) verify

which of already registered users p are direct contacts of u; (2) propagate contacts of

u in p’s contact lists, and vice versa. As such, a parameter that greatly impacts this

performance is the number of users that have been already registered in the graph.

For this reason, the SNAP dataset has been split into two chunks of data: a X% of

nodes for which the graph joining has to be performed, whereas the remaining are con-

sidered as already registered users. Experiments are carried out with 10%, 20% and

30% of the nodes to be inserted, which is a collection of about 1200 and 800 adjacency

lists, selected out of the dataset randomly. As reported in Figure 2.13, for each exper-

iments users are organized according their coverage in the graph (i.e., x-axis). More

precisely, the experiment is carried out as follows. (1) First, a new user u is randomly

selected. (2) Then, it is computed the number of nodes that are connected with u with

a path of MaxDepth distance,20 we refer to this value as RelTree(u)MaxDepth. Based

on this value, it is computed the coverage of u’s relationships in SNAP graph GSNAP ,

as c = RelTree(u)MaxDepth/|GSNAP .V |.21 We limit the MaxDepth value to 5.22 (3)

We then insert u in the anonymzed graph, tracking the time t required to complete the

insertion procedure. The resulting couples (coverage, t) are collected in Figure 2.13.

From the result we can infer that the time required to insert u, in its worst-case is:

tinsert(u) ∼MaxDepth · (|N |·(|N |+1)
2 · teval · 2tmult).

Moreover, assuming the time necessary to perform a polynomial evaluation (teval) and

a multiplication between polynomials (tmult) approximated with constant values, this

time is ∼ O(|N |2), where N is set of users that have been already successfully inserted

before u.

19http://snap.stanford.edu/data/index.html#socnets
20The nodes are counted without repetition, since a certain node may be repeated at different depths
21Where |GSNAP .V | is the set of nodes in SNAP, which is about 4000.
22This value has been selected also based on SNAP Dataset statistics that point the value 4.7 as the

90-percentile effective longest shortest path.

46 Cloud-based Secure Information Sharing

To give more details on PFS performance, Table 2.3 presents the average time re-

quired for computing polynomial evaluations and multiplications during the user inser-

tion. The values are divided, row by row, per depth d. These values may highlight how

a polynomial evaluation requires generally short time, whereas a multiplication between

polynomials requires more resources.

Level/depth
Polynomial Polynomial

Evaluation [ms] Multiplication [s]

1 10.777 20.072

2 498.921 110.972

3 1340.344 240.653

4 3207.567 305.899

5 6185.483 535.360

Table 2.3: Average time required for PFS operations

This result is encouraging, since we expect the system to perform much more polyno-

mial evaluations than multiplications, in that we expect that a resource download should

happen much more time than a user subscription in a legitimate scenario. Moreover,

since an access control rule evaluation requires just a polynomial evaluation, Table 2.3

(i.e., the second column) represents also the average time for rule enforcement. This is

further confirmed by the final experiment represented in Figure 2.14. We estimate the

time required to evaluate several, randomly generated, access control rules, by varying

the condition on maximum depth. As expected, the time increases with higher depth

value, as this requires to find more path, that is, to perform more polynomial multipli-

cations. The polynomial evaluation column in Table 2.3 represents also the average time

required for an access control rule evaluation, since this requires a single polynomial

evaluation.

At a final note, since users’ relationships are grouped by their relationship types, the

computational load of PFS due to multiplication is expected to be limited. Moreover

this approach perfectly suits the cloud-based paradigm, because PFS can be replicated

with small effort. Thus, a load-balancer entity may support PFS entities, and redirect

requests to a non-locked service.

On the other hand, for what concerns the data gathered through SocialCloudShare,

we have been able to depict the overhead introduced by our architecture on the social

network usage experience. As such, in the following we gather information concerning

messages encryption size, messages encryption average time, and resource encryption

average time.

2.7 Experimental Evaluations 47

Message Encryption Size

Figure 2.15 depicts the overhead, in terms of length of messages, implied by messages

encryption. The considered messages are those exchanged during the login, upload, and

download phases (see Figures 2.5, 2.8, 2.9).

Each bar in Figure 2.15 represents a single message, in term of message size. Each

message is denoted by a message plaintext size, that is, the size of the message before

encryption and a message overhead, that is, the size of the message once encrypted.

Some message includes an encapsulated message (see message 5 in Figure 2.5, messages

1,2 in Figure 2.8, and message 1 in Figure 2.9) that requires a further encryption phase

prior to message encryption. For those messages, Figure 2.15 reports the encapsulated

message plaintext size as well as the encapsulated message overhead. As such, the mes-

sage plaintext size for those messages is composed of the message plaintext size, the

encapsulated message plaintext size, and the encapsulated message overhead.

Finally, it is important to note that messages in the login phase (see Figure 2.5)

are encrypted using an asymmetric key encryption scheme.23 This motivates the higher

overhead introduced by messages encryption in such phase. Messages exchanged during

upload and download phases, on the other hand, are encrypted exploiting AES-128 al-

gorithm.

Message Encryption/Decryption Average Time

Tables 2.4 and 2.5 report the time consumption given by messages encryption. This

experiment has been carried out monitoring the time required by encryption primitives

to encrypt/decrypt the corresponding messages; for each message the encryption/de-

cryption phase has been repeated 10 times. As such Tables 2.4, 2.5 report the minimum

and the maximum time obtained in this experiment, along with the time average and

the standard deviation.

With the exception of the 5th message of the resource upload phase, the encryp-

tion/decryption primitives completed the execution in less than 40 milliseconds. In this

experiment, we used a 64byte text file as uploaded resource to keep the simulation as

light as possible. The average time for all messages encryption/decryption, thus, never

reached a value higher than 30 milliseconds; as such this result let us state that the

protocols may run with no impact on the user experience over the OSN.

23In particular, we exploit RSA-1024 for this phase .

48 Cloud-based Secure Information Sharing

Protocol Msg
Time [ms] Standard

Min Avg Max Deviation

Login

5 3.0 6.0 9.0 1.89

7 1.0 2.2 3.0 0.6

8 2.0 3.0 6.0 1.61

Upload

1 6.0 14.4 24.0 7.68

3 3.0 8.1 12.0 3.01

4 6.0 15.0 24.0 8.16

5 14.0 28.0 56.0 16.57

7 2.0 5.2 8.0 2.4

8 4.0 8.0 16.0 4.0

Download

1 6.0 16.2 24.0 7.61

2 5.0 8.0 20.0 4.58

3 3.0 8.1 12.0 3.01

4 6.0 13.2 24.0 7.96

5 9.0 26.1 36.0 10.22

Table 2.4: Time required for message encryption

Protocol Msg
Time [ms] Standard

Min Avg Max Deviation

Login 6 4.0 4.8 6.0 0.98

Upload
2 4.0 10.0 16.0 4.1

6 8.0 21.6 32.0 8.8

Download

2 4.0 9.2 16.0 4.02

3 5.0 11.0 20.0 6.63

4 5.0 10.8 20.0 6.38

Table 2.5: Time required for message decryption

Resource Encryption Average Time

Finally, Table 2.6 reports the results of the experiment to estimate the encryption time

necessary to prepare a resource to be uploaded. Unlike messages, which are encrypted

exploiting AES-128 algorithm, resources are encrypted exploiting AES-256 algorithm, in

order to achieve a better security for resources, that have to be stored in the public

Cloud. The first column in Table 2.6 reports the size (in Mbytes) of the resource to be

encrypted, while the other columns gather the time interval, in seconds, necessary to

perform the encryption. In this experiment, we used random-generated ASCII strings,

with pre-determined lengths. The encryption phase has been repeated 10 times for each

2.7 Experimental Evaluations 49

File Size Time [s] Standard

[Mb] Min Avg Max Deviation

0.2 1.92 2.01 2.08 0.05

0.4 3.66 3.94 4.14 0.15

0.6 5.76 5.94 6.16 0.13

0.8 7.2 8.07 8.72 0.56

1.0 9.71 9.99 10.3 0.18

1.2 11.47 12.03 12.58 0.41

1.4 13.8 14.05 14.28 0.16

1.6 14.77 16.05 17.36 0.85

1.8 17.16 17.83 18.57 0.46

2.0 19.54 20.01 20.59 0.33

2.5 23.53 25.34 26.45 0.96

3.0 28.3 30.33 32.34 1.25

3.5 32.53 34.79 38.08 1.96

4.0 36.62 39.69 43.43 2.56

4.5 41.34 45.74 48.62 1.96

5.0 48.07 49.64 51.51 0.98

5.5 52.86 54.23 56.88 1.18

6.0 57.5 60.12 62.65 1.76

6.5 60.79 64.33 68.89 2.27

7.0 68.89 69.88 70.94 0.66

7.5 69.58 74.74 80.77 4.16

8.0 77.33 79.99 83.43 2.03

8.5 77.47 83.77 92.24 5.05

9.0 87.06 90.06 92.98 1.85

9.5 90.64 95.26 98.39 2.80

10.0 91.11 99.35 108.1 5.42

Table 2.6: Time required for resource encryption

resource; as such Table 2.6 reports the minimum and the maximum time recorded dur-

ing the experiment, along with the time consumption average and the standard deviation.

The results of the experiments collected in this Section gave us encouraging feed-

backs about the presented architecture. Indeed, thanks to the data collected through

SocialCloudShare, we can state that the presented architecture is able to enhance secu-

rity and privacy in Social Networks, without affecting users’ experience. As such, The

decentralized architecture presented in this chapter have been our reference model for

50 Cloud-based Secure Information Sharing

all the researches developed after this work.

2.7 Experimental Evaluations 51

Figure 2.13: Time for new user insertion based on relationships coverage

52 Cloud-based Secure Information Sharing

Figure 2.14: Access Control Rules Evaluation, by varying depth

Figure 2.15: messages Encryption Size Overhead

3
Privacy Settings Recommender

As previously mentioned in Section 1.1, we are aware that many of the most popular

OSN providers do not implement in their platforms access control models fully compliant

with RelBAC, as properly emphasized in [19]. In some cases fine-grained configurations

are supported by giving users the possibility to define customized lists of contacts to

which assign access privileges. In other cases, though, users are only asked to choice

whether a resource should be private or public (i.e., released to anyone in the social

network). This fact, thus, limits the users’ capability to define access control policies

such that these reflect their own attitude towards privacy.

Given the encouraging results collected from the architecture presented in Chapter

2, we decided to continue our researches on privacy and security in DSN scenarios. As

such, for what concerns the above introduced issues, we have been researching over the

definition of a technique capable of helping DSN users in defining RelBAC policies that

fully reflects their own attitude towards privacy.

As underlined in [39, 50], average users have difficulties in properly setting their RelBAC

policies, delegating to the social network provider the task to handle automatically their

configurations by exploiting pre-defined policies. Then, we found it necessary to inves-

tigate the definition of tools that help users in configuring their own privacy settings,

limiting the possibility that misconfigured RelBAC policies lead to harmful data release

and expose the privacy of others.

53

54 Privacy Settings Recommender

Thus, we believe it is necessary to define a tool that guides DSN users in the defi-

nition of their RelBAC policies, offering customized suggestions tailored on each user’s

attitude towards his/hers own privacy.

Unfortunately, the definition of a RelBAC policy is influenced by many factors. Indeed,

each user has a different attitude towards his/hers own privacy and this influences the

RelBAC policies that he/she defines. Thus, to define a technology capable of helping

users in their RelBAC policies definition, it is required to learn and model each user’s

privacy attitude (i.e., his/hers attitude towards his/hers own privacy), so as to exploit

the learned preferences to define precise and customized RelBAC policies. At first, then,

we decided to denote as “privacy preferences” all the subjective variables that influence

a users’ RelBAC policy definition. A privacy preference, thus, represents a correlation

between certain properties that data may have (i.e., those properties that make the user

decide if it is sensitive data or not) and the RelBAC policy that the considered user is

used to assigned to any resources that show these data properties.

Then, we have been working on the definition a privacy settings recommender ca-

pable of learning users’ privacy preferences so as to exploit them so as to suggest DSN

users customized RelBAC policies, tailored on their own habits. With more details, we

designed a recommendation system such that, given a certain DSN user, at first it learns

the correlation that exists between a resource properties and the RelBAC policy that

he/she is used to define for sharing resources with that property values. Then, each

time a DSN user wants to upload a new resource into the platform, the recommender

exploits the learned correlations to select the policies that are related to topics of the new

resource. Finally, it generates a new access control policy by combining the retrieved

ones, returning to the considered user as a customized suggestion.

According to our initial expectations, we initially designed the above introduced

recommendation service as part of the architecture introduced in Chapter 2. As such,

the recommender tool described in this chapter was meant to be as an additional service

inside the RMS, which exploited the CS as a front-end interface with which the user

interaction was realized. Although, we then decided to pursue the declaration of the

presented technique for any social network service. As such, in the remainder of this

Chapter, we will denote with OSN any online social network service, without making a

distinction between centralized or federated architectures.

3.1 Reference Model

Despite most of the fundamental reference concepts have already been presented in 2.1,

we still need to introduce association rules, since they play a fundamental role in the

3.2 Learning Privacy Preferences 55

development of our recommender system.

3.1.1 Association rules

Association rules, as firstly defined by Agrawal et al. [4], are another key-feature for the

work gathered in this chapter. As such, given a set of items I = {i1, i2, . . . , in}, a set

S = {s1, s2, . . . , sn} of subsets of I (i.e., si ⊆ I), and two sets X,Y such that X, Y ⊆ I,

X ∩ Y = ∅, an association rule X ⇒ Y is an implication which points out that, each

time a certain si includes X (i.e., si contains the items that are contained in X), then

Y ⊂ si as well. In the remainder of this chapter we will then denote the association

rule itemsets X and Y , respectively, as the left-hand-side (LHS) and the right-hand-side

(RHS) of the rule. More details concerning association rules and the respective learning

process are gathered in Section 3.2.

3.2 Learning Privacy Preferences

As a first step, we need first to formalize the concept of user’s privacy preferences, as

these will be the reference structure over which performing the data mining process.

We recall that privacy preferences aim at modeling the users’s preferences in terms of

how his resources have to be shared in OSN and that, in general, information sharing is

regulated according access control policies specified by grantor (data owner). As such,

privacy preferences could be modeled by the same formalism adopted for access con-

trol policy in OSN (see Definition 2.1.1). However, we have to keep it in account that

we expect user’s preferences depend on resource’s properties. Indeed, learning on raw

access control policies, where resources are simply identified by their ids, would do not

allow to learn dependence between resource properties and privacy preferences. As such,

we present here the reference model for privacy preferences, which comes from a slight

modification to Definition 2.1.1.

Definition 3.2.1 Let u be an OSN user, let ACP be an access control policies catalog,

and let ACPu be the catalog of the access control policies defined by u, that is

ACPu = {acp ∈ ACP | acp.Grt = u}.

Then, the set of the privacy preferences of user u, which is denoted as PPu, contains,

for each acp in ACPu, a privacy preference pp in the following form

pp = 〈acp.Subject, des(acp.Object), acp.Sign〉1 (3.1)

1We recall that the policy component represented by acp.Per is given as implicit.

56 Privacy Settings Recommender

where des(acp.Object) is a function which takes as input an access control policy object

(i.e., a resource) and produces as output a finite list of resource descriptors.2

As such, the difference between Definition 2.1.1 to Definition 3.2.1 consists in that

access control policy objects are mapped to a finite space of labels, e.g. resource descrip-

tors, which describe and represent the resource type (e.g., text, picture, music) and the

resource content.

Example 3.2.1 Let ACPBob a catalog containing access control policies defined by Bob,

according to the ones presented in Example2.1.1. Then, PPBob contains the following

privacy preferences:

pp1 =〈〈“friends”, 0.6, 1〉, {Picture, Seaside, Sun, Boat},⊕〉 (3.2)

pp2 =〈〈“colleagues”, 0.5, 1〉, {Picture, Ballroom, Balloon},	〉 (3.3)

pp3 =〈〈“relative”, 0.7, 1〉, {Picture, Family, Cake, Party},⊕〉 (3.4)

where the resources descriptors represent properties of 3 distinct pictures.

From Definitions 2.1.1 and 3.2.1 we recognize that the privacy preferences of a certain

user consists of the access control policies that he/her has defined in time. More precisely,

assuming that all the access control policies defined in the OSN platform are stored in

a catalog denoted as ACP, we can project the set ACPu as the set of the access control

policies defined by a given user u. This set represents the u’s privacy preferences. Indeed,

by extracting the resource descriptors from each object of the policies collected in ACPu,

we can turn those policies into u’s privacy preferences. We denote this set as PPu.

It is reasonably clear that our target, then, is to search inside the catalog PPu for

patterns that represent users habits for what concerns their own privacy, so as to exploit

those patterns while composing new and customized access control policies.

3.2.1 Learning Process

Now that is clear that the target of this proposal is to exploit association rules while

analyzing privacy preferences is order to learn users’ habits, more details about the data

mining process can be given.

It is relevant to note that we are not interested in learning any kind of association rule,

but only those which lead to a Subject component, or to one of its sub-components, as

2We assume that with each resource is associated a set of resource descriptors, describing meaningful

properties, like content type, data of creations, and most importantly content topics. As such, we

assume that the recommender presented in this chapter is coupled with content analysis tools, such as

IBM AlchemyAPI or Google Cloud Vision API (https://cloud.google.com/vision/)

3.2 Learning Privacy Preferences 57

the following example clarifies.

Indeed we are interested to learn, given a certain user u and a certain resource r , how

he/she is used to share over the OSN that very resource, that is, we are interested to

learn the implication that underlies between the couple (u, r) and the constraints that

u poses over the sharing of r.

Example 3.2.2 Let PPBob the privacy preferences catalog introduced in Example 3.2.1.

Analyzing all the privacy preferences in PPBob the following association rules are de-

tected:

{Picture, Seaside, Boat} → “friends” (3.5)

{Picture, Family} → “relative” (3.6)

{Picture} → ⊕ (3.7)

{Cake} → {Party} (3.8)

It is important to note that association rules 3.5, 3.6, or 3.7 lead to information

which is significant in the recommendation process, whereas rule 3.8 is useless to our

purpose, since it gathers no information to be exploited by the proposed recommender.

For what concerns the association rule mining process, we decided to exploit Apriori al-

gorithm [4], which is one of the most common algorithm for what concern the association

rule mining. Although we are aware that such algorithm suffers of some limitations and

many other algorithms, such as Eclat [72] or FP-Growth [41], could be exploited instead

of Apriori algorithm, in this Chapter we preferred to adopt the simpler one, postponing

as future work a detailed comparison with other algorithms. The choice to exploit the

Apriori algorithm instead of other solutions has been mainly given by the fact that the

Apriori algorithm can be seen as the execution of two sub-procedures that run one after

the other, as properly described in details in Sections 3.2.2 and 3.2.3. The first is the

frequent itemset lookup procedure that analyzes the input catalog searching for tuples

of items (i.e., the itemsets) that occur with a significant frequency. The second is the

association rules extraction, that analyzes the detected itemsets and verifies the pres-

ence of association rules among them. By separating the two sub-procedures one from

the other we have been able to design an optimized strategy in which each procedure

is run only when necessary, avoiding an unnecessary resources (i.e., time and memory)

consumption. Moreover, by separating the frequent itemset lookup procedure from the

association rules extraction phase, we have been able to treat the information learnt

by each user separately keeping the possibility, at the same time, to rejoin all the data

together if necessary.

As an example for what concerns the two sub-routines of the Apriori algorithm, while

58 Privacy Settings Recommender

analyzing PPBob, the frequent itemset lookup procedure would probably detect the fol-

lowing tuples with a relevant frequency

{Picture, Seaside, Boat, “friends”}
{Picture, Seaside, Boat}

since association rule 3.5 in Example 3.2.2 is deduced from them, whereas itemsets like

{Picture, Seaside, Boat} or {Boat, 0.6} appear in PPu with lower frequency, bringing

to deduce no association rule from them.

In our proposal, we consider the frequent itemset lookup and association rules ex-

traction sub-procedures as two distinct algorithms, so as to store in a repository all the

information returned by the itemset lookup phase, and to run the association rule ex-

traction routine each time new data is available, updating the frequencies of the found

itemsets. This modification gives us the benefits of storing any found itemset, and not

only those with a remarkable frequency, as the original algorithm does. As such, when

new access control policies are defined and, then, new privacy preferences are available,

the catalog of the found itemsets can be easily and quickly updated, with no need to

compute all of them from scratch.

Indeed, given a certain privacy preference pp computed from a newly defined acp, with

this modification it is possible to increase by one the frequency of all the itemsets ex-

tracted from pp.

Nevertheless, we can state that, despite our modification about the execution of the

lookup phase, the behavior of the Apriori algorithm is not changed. Thus, before start-

ing the association rule extraction procedure, a threshold on a minimum frequency value

is applied so as to skim the unfrequent itemsets and run the mining process only on se-

lected itemset. The association rule mining process is then executed over those extracted

itemsets only when necessary, that is, only when is necessary to extract new implication,

so as to limit the computational impact of the procedures on the user experience.

In the following we discuss both the phases.

3.2.2 Itemsets lookup

Let u be an OSN user and let PPu be the catalog of the privacy preferences of u. For

each ppi ∈ PPu, we transform the privacy preference into a set, denoted as Ippi , of

atomic items, one for each pp component. More precisely, the pp elements acp.Sign and

acp.Sbj are melted together, so as to be able to recognize a negative constraint from a

positive constraint even in a de-structured privacy preference.

3.2 Learning Privacy Preferences 59

Example 3.2.3 Let PPBob the privacy preferences catalog introduced in Example 3.2.1.

The itemsets extracted from each of these privacy preferences are defined as follows:

I1 ={Picture, Seaside, Sun, Boat,⊕friends,⊕0.6,⊕1}
I2 ={Picture, Ballroom, Balloon,	colleagues,	0.5,	1}
I3 ={Picture, Family, Cake, Party,⊕relative,⊕0.7,⊕1}

When the association rules relative to a given user u are not known, a first lookup

procedure is performed over PPu. The procedure, then, computes a new catalog Iu
that contains all the itemsets that can be extracted from the preferences, along with the

frequency with which each itemset is found. Those frequency values, thus, become the

support value of the corresponding itemset.

Example 3.2.4 Let PPBob the privacy preferences catalog introduced in Example 3.2.1,

and I1, I2, and I3 the itemsets introduced in Example 3.2.3. The itemset catalog IBob
will contain, for what concerns the 3 above mentioned itemsets, an entry for any possible

combination of the items contained in each itemset. As such, the catalog IBob would look

like follows:

{Picture} 3

{Picture,⊕1} 2

{Picture, Seaside} 1

{Picture, Seaside, Sun} 1

{Picture, Seaside, Sun, Boat} 1

. . .

The itemset catalog Iu can be updated any time the user defines a new acp without

starting from scratch every time. As such, we can state that, given a certain user u, the

catalog Iu dynamically grows with the number of access control policy that u defines,

keeping updated all the support values respectively to the several itemsets.

3.2.3 Association Rule Extraction

Regarding the association rule extraction, our proposal does not deviate significantly

from the standard Apriori algorithm. As such, when the association rule extraction

procedure has to run, that is, when there is necessity to detect new rules or update

previously found rules, the following steps are executed.

At first, given a user u and the corresponding catalog of itemsets Iu, the procedure

prunes the catalog so as to ignore all those itemsets which support is less than a minimum

support threshold δ.3 It is important to note that the itemsets whose support is below

3The minimum support threshold value δ has to be defined, trivially, prior to the execution of the

procedure. It can be defined empirically evaluating the execution results.

60 Privacy Settings Recommender

the threshold are not deleted, since the catalog Iu can be updated and, then, it may

occur that these support value pass the threshold.

For each itemset X in Iu, the procedure takes into account, one per time, all the other

itemsets Z such that X ⊆ Z. As an example, given the itemset X={Picture, Seaside,

Boat}, the association rule extraction procedure searches in Iu all those itemsets such

that they contain X, like, as example, Z={Picture, Seaside, Boat, “friends”}. Then,

for each couple (X,Z) the procedure computes the association rule X ⇒ Y , where

Y = Z \ X along with its confidence value conf(X ⇒ Y), which is computed as the

ratio between the support of the X ∪ Y = Z itemset and the support of X itemset. In

association rule mining processes, the confidence value of an association rule represents

how much the considered rule can be taken into account as a meaningful rule, and gives a

measure of the importance of the rule. As example, a confidence value equals to 1 means

that any time the left part of a rule (i.e., the itemset X) is contained in larger itemsets,

then also the right part (i.e., itemset Y) is present in those itemsets; a confidence value

equals to 0.5, though, means that the right part occurs only in halves of the occurrences

of the left part. With more details, then, the confidence value is computed as follows

conf(X ⇒ Y) =
supp(X ∪ Y)

supp(X)
=
supp(Z)

supp(X)
. (3.9)

As such, assuming that X={Picture, Seaside, Boat} appears in Iu with a support value

of 9 and assuming that Z={Picture, Seaside, Boat, “friends”} has a support value of 7,

the association rule resulting from the couple (X,Z) would be {Picture, Seaside, Boat} →
“friends”.

Each time a new rule is found, the rule is returned along with its confidence value, unless

the confidence value is less than a minimum confidence value threshold ε. As such, we

can state that the procedure returns a catalog ARu of all the association rules, along

with their confidence value, corresponding to the habits of user u. Differently from the

itemset catalog, though, ARu is returned by this procedure is deleted prior to any ex-

ecution of the procedure, in that support values that changes from one run to another

cause that confidence value change as well, but also may bring to detect rules that were

not previously found. We have to remark that in our proposal, we are interested only

those association rules in ARu for which the right part contains an acp.Sbj, or one of

its components at least.

Example 3.2.5 Let ARBob the catalog gathering the association rules detected for OSN

user Bob. ARBob contains, among other things, the association rules previously pre-

sented in Example 3.2.2, and can be represented as follows:

3.3 Policy Recommendation 61

{Picture, Seaside, Boat} → “friends” 0.77̄

{Picture, Family} → “relative” 0.63

{Picture} → ⊕ 0.65

{Picture} → 	 0.35

{Cake} → {Party} 0.89

{Picture, Family, Cake} → 〈“relative”, 0.7, 1〉 0.72

. . .

where each association rule is coupled with the corresponding confidence value. As an

example, the rule {Cake} → {Party}, appears as a meaningless rule at our purpose,

since the right part of the rule gathers information useless to compose an access control

policy. Association rule {Picture} → 	, on the other hand, appears to be meaningful

at our purpose, but it will be probably be discarded due its low confidence value. Associ-

ation rules like {Picture, Seaside, Boat} → “friends” or {Picture, Family, Cake} →
〈“relative”, 0.7, 1〉, then, are likely to be those rules which are taken into account in the

recommendation process.

Nevertheless, it might be the case that there not exists enough association rules to gen-

erated a new complete policy subject. As example, rule 3.7 presented in Example 3.2.2

gathers no information enough so as to recommend a complete access control policy. As

it will be explained in the following sections, to manage this case we propose a strategy

that helps in combining values from available association rules together.

3.3 Policy Recommendation

As introduced at the beginning of this chapter, our proposal aims also at suggesting

new and customized access control policies to any OSN user. As such, it is necessary

to define a procedure that helps in converting the information gathered by association

rules, extracted as explained in Section 3.2.3, into access control policies.

Preliminary setup phase

Given a user u and the catalog ARu of the learned association rules, the suggestion

process takes place every time u wishes to upload a new resource r into the Online So-

cial Network platform. Thus, prior to execute the suggestion process, the resource r is

analyzed and the set of its descriptors, denoted as des(r), is extracted. Since this upload

and extraction process is necessary to be executed prior to any computational process

with the aim to produce an access control policy, it will be taken as implied, and in

the remainder of the chapter we will prevent to repeat any reference to this preliminary

phase.

Moreover, we recall that we are not interested in all the association rules that the mining

62 Privacy Settings Recommender

process returns, but only in those which contain, in the right part, at least a component

of the access control policy subject. As such, we have interest in selecting from ARu
those rules for which their right part contains one or more of the components of acp.Sbj,

that is acp.Sbj = Subids | Subtuple. Unfortunately, though, it may happen that the rules

in ARu contain only one of the components that we are looking for; for this reason,

then, we need to define a technique that helps us in combining the single pieces into a

complete access control policy subject. This will be discussed in the following.

Policies combination-based suggestion

Since our target is to exploit association rules in ARu so as to combine the information

gathered from them into an access control policy, we need to define how the values of

the policy component are selected. The values that have to be assigned to Grt and

Obj of the new suggested access control policy, denoted as Sacp, are specified so as to

be, respectively, a pointer to the user to who the policy is suggested and a pointer to

the resource he/she is willing to upload to the OSN . Since Sacp.Sign may have two

distinct values, it is unlikely to believe that the association rules in ARu would all im-

ply a positive policy or a negative policy. It is more likely to believe, thus, that ARu
contains a number of rules implying a positive policy and another set of rules which

imply a negative one. For this reason we expect that under some circumstances two

distinct policies have to be suggested: a new positive policy, denoted as Sacp⊕, and a

new negative policy, denoted as Sacp	.

For what concerns the values for Sbj of these two new policies, though, we have to note

that the component may have two forms: the first is the one which directly includes the

list Subids of the users for whom the policy have been defined; the second one contains

the values of the tuple Subtuple. As such, returning two access control policies may not

be enough, in that the association rules may lead to infer the values for both Subids
and Subtuple. As such, we will have to return up to 4 distinct suggested access control

policies, respectively denoted as Sacp⊕Subtuple , Sacp
	
Subtuple

, Sacp⊕Subids , and Sacp	Subids ,

where the first two policies will have the Subject component made up of the Subtuple
constraints, whereas the latter will have the Subject component containing the Subids
users list.

As such, the suggestion process starts by taking as input the catalog of the association

rules produced by the learning process, that is ARu. The first step done by the proce-

dure consists in looking inside ARu for all the rules for which the right part of the rule

is one, or more, pointer to other OSN users. Then, if those pointers have the ⊕ prefix,

such pointers are added to Sacp⊕Sbjids .Sbj; otherwise if the prefix to the pointer is 	 those

are added to Sacp	Sbjids .Sbj. In order to complete the values for Sacp⊕Subtuple .Sbj and

Sacp	Subtuple .Sbj, though, a more sophisticated procedure is necessary. For the explana-

3.3 Policy Recommendation 63

tion of such procedure, though, we will not take into account the difference between the

two above-mentioned policies but we will consider a generic suggested policy Sacp; the

extension of the procedure to consider the positive and negative policies is then implied.

Thus, the procedure starts by initializing a local variable s as an empty Sacp.Sbj, that

is s = 〈⊥,⊥,⊥〉. At first, then, we consider those association rules for which their right

part contains the complete triplet of values. If more than one triplets of values are

available, only the more restrictive triplet is considered, that is the one that realizes the

smallest set of OSN users.4 If no association rule implies a complete triplet of value,

the procedure starts in analyzing those rules for which their right part contains 2 values

out of 3 of the triplet. Again, the couples of values are sorted, and the one with the

more restrictive values is selected. We have to note that this sort operation is possible

in that the couples found ad this stage of the procedure are all heterogeneous. Indeed,

if two distinct couples c and c′ would include values for different variables, than this

would imply that there must exist an association rule that implies the complete triplet

of values. Although, a more detailed discussion about this scenario is gathered in next

Section 3.3.

At last, since the suggested policy subject Sacp.Sbj cannot be complete, the procedure

analyzes the remaining rules, that are those which right part contain only one value. All

the found values are grouped per type and then sorted from the more restrictive to the

less restrictive. In case that a couple of values, if any, were stored in the local variable

s, the procedure tries to complete the policy subject by adding the missing value to s.

Otherwise, in case s still contains no values at this step, the procedure tries to fill the

triplets with the found values.

At this point, in case the subject of Sacp has been completed, that is, all the 3 values

of the triplet have been selected, the suggested access control policy is returned to the

final user; otherwise, if some value is still missing, the procedure continues as described

in the following.

Iterative power set-based suggestion

Although, it may occur that the policy suggestion procedure, as described in previous

Section, does not return any suggested access control policy to the final user u. Indeed,

as seen in Section 3.3, the resource to be uploaded to the OSN is firstly analyzed and its

content descriptors are extracted. Then, with the set of descriptor des(r), the procedure

extracts from the catalog ARu those rules for which their left part contains all those

descriptors. Thus, if those association rules in ARu do not gather enough information

so as to compose an access control policy subject, no output can be produced. As such,

4In the complete implementation of the procedure, trivially, the more restrictive triplet is considered

for the positive policy, whereas the less restrictive triplet is considered for the negative policy.

64 Privacy Settings Recommender

a more flexible but robust technique is necessary, so as to maximize the production of

valid output.

As such, we present an iterative procedure that, each time a valid output is not pro-

duced by the suggestion procedure of Section 3.3, tries to enlarge the set of association

rules passed as input by considering subsets of des(r) with size decreasesing each iter-

ation. With the power set of the set of resource descriptors denoted as P(des(r)), and

P(des(r))/i that denotes the list of the subsets of such power set with cardinality i, the

iterative suggestion algorithm is presented in Algorithm 2.

Input: user u, resource r, association rules catalog ARu.

1 begin

2 var i ← |des(r)|;
3 Sacp.Sbj← 〈⊥,⊥,⊥〉;
4 repeat

5 var rules ← {ar ∈ ARu, ar.LeftPart ∈ P(des(r))/i};
6 Sacp.Sbj ← suggest(Sacp.Sbj, rules);

7 i ← (i-1);

8 if ⊥ /∈ Sacp.Sbj then

9 return Sacp.Sbj

10 end

11 until i ≥ 0 ;

12 end
Algorithm 2: Iterative suggestion procedure

The suggest procedure mentioned in Algorithm 2 is nothing but the policy sugges-

tion procedure, as described in Section 3.3. As such, the suggest procedure has the task

to analyze the input catalog of association rules and divide it into 3 groups: (i) those

rules whose right part contains the values for the triplet of Social Graph constraints,

(ii) those rules for which their right part contains 2 out of 3 values of the triplet, and

(iii) those rules whose right part contains only one of the 3 values. Those groups are,

then, combined as described in Section 3.3. This step aims to complete, if possible, the

missing values of Sacp.Sbj with the right part of the rules passed as input, but without

modifying any value previously set in Sacp.Sbj. As such, as soon as the access control

policy subject does not contain empty value anymore, the suggested access control policy

is returned to the final user.

Suggestion exploiting other users’ experience

The technique described in Section 3.3, though, may not be enough to produce a valid

output for the final user under given circumstances. Indeed, when a certain user u makes

3.3 Policy Recommendation 65

use of the procedures presented in this chapter but he/she has never put attention over

his/hers privacy, it may occur that the information extracted from the association rules

catalog, that is the information learnable from the already defined access control policies,

is not enough to deduce the user’s habits. As well, in case the users’ habits are very

heterogeneous, the learning process described in Section 3.2 hardly returns a catalog of

association rules. Similarly, even in case a newly subscribed user wants to exploit the

recommendation system presented in this Chapter, the proposed privacy recommender

may not be able to return a valuable catalog of association rules. This problem, indeed,

is common to any recommendation system and it is known as “cold start problem”. In-

deed, given a recommender that is based on previously learnt information, it is required

for the system to define a set of strategies to be exploited when the background informa-

tion is not available. As such, it is necessary to have a technique that helps in producing

an access control policy to be suggested to the final user in case no information about

his/hers habits is available.

In this chapter, then, we present two distinct techniques to be run in case the sug-

gestion procedure, as presented in Section 3.3, does not produce a valid and complete

access control policy to be suggested. The two presented techniques are both based on

the definition of a support set of users, denoted as SupportUsers, that are computed

in two different ways. The Social Network users that are included in SupportUsers are

exploited to select a set of association rules wider than ARu, so as to have more data

to represents users’ habits.

The first technique consists in directly ask to the involved user u to elect a set OSN user

that he/she considers trusted for the topics contained in the descriptors of the uploaded

resource r. Those other users are then directly inserted into SupportUsers. Moreover

all the tagged users contained in r, if any, and the considered user u are automatically

added to the set as well. As such, SupportUsers contains those users that have been

directly pointed out by u as trusted and reliable users.

The second alternative that we consider consists in an automated procedure that inde-

pendently retrieves the users that have to be included in SupportUsers, given a set of

user defined threshold parameters. As such, we directly ask to u to define a threshold

value for the relationship type, the minimum trust value, and the maximum path depth

value. Then, the proposed tool selects from the Social Graph those users which respects

the minimum constraints posed by u and inserts them into SupportUsers, along with u

himself.

66 Privacy Settings Recommender

3.4 Experimental results

In order to prove the suitability of the techniques presented in this chapter, and with

the aim to evaluate their performances under multiple circumstances, we set up an ex-

periment based on different phases. Given the difficulty to access to the background

knowledge necessary for our proposal, that is, given a OSN user u, the history of all the

resources that he/she published on the OSN and the respective access control policies,

we set up an online platform tailored for such experiment. It is important to emphasize,

though, that this does not imply that the techniques presented in this chapter are not

suitable to be used in a social network; indeed, as mentioned in 3.2.2, as an example

Facebook gives developer the possibility to access the list of posts (i.e., the resources)

published by a given user u, along with all the details on the access control constraints

posed by u. The difficulty in implementing directly this experimental prototype on Face-

book, thus, comes from the necessity to convince unknown users to grant us to access,

without limitations, to such data.

As such, for this experiment, we set up a small fake OSN , based on a small Social

Graph containing 33 nodes (i.e., the OSN users) and 52 edges (i.e., the relationships).

We considered 5 relationship types when setting up the graph, that are friends, close

relatives, relatives, colleagues, and schoolmates.

Our experiments, then, consisted in asking a set of human evaluators to fill up a ques-

tionnaire composed as follows. At each step we asked the evaluator j to impersonate an

OSN user u as the owner of the resource r, and to define, according to the social graph

and to the nature of the resource, which would be the best access control policy to share

such resource, according to his/hers habits.

With more details, then, we asked to 30 human evaluators, heterogeneously dis-

tributed among authors’ relatives, colleagues and friends, to analyze a resource r that

were shown them and to define, according to their habits, which would it be the best

access control policy for r. When defining the RelBAC access control policy acp, each

evaluator has been asked to choose a policy sign acp.Sign and to define the subject

acp.Sbj, in compliance with the definition given in Definition 3.2.1. Moreover, we left

evaluators the possibility to express their will to publish a certain resource as private,

that is equal to define an access control policy that authorizes no user. At last, then,

we gave evaluators the possibility to skip the evaluation due to a lack of information, so

as to express a sense of uncertainty. The resources to be evaluated, at last, have been

extracted from a set made up of 52 files, of which 13 pictures, 13 links, 13 Twitter-like

short text posts, and 13 text posts of about 500 characters each. Even pictures and

links, then, were paired with short sentences describing the resource owner’s opinion on

the represented topic. Despite the selection process of the resource r to be analyzed by

3.4 Experimental results 67

the evaluator j were random-based, such process have been designed so as to ensure that

all the resources were evaluated the same number of times.

Then, since each evaluator was asked to defined 25 access control policies for 25 distinct

resources, we had a set of about 700 access control policies to compose our background

knowledge. Over this set of policies to compose the catalog ACP, we run the second

part of experiment. In the second part, we first associated each resource with a set of

descriptors, so as to generate PP. At this purpose, we generate descriptors according

different strategies, with the result of different sets of PP. In particular, a first set

of resource descriptors has been generated by human using the following descriptors:

{Alcohol, School, Health, Sex, Holiday, Sport, Politics, Work, Religion, None}. The

resulting privacy preferences catalog is denoted as PP?. Other three privacy preferences

catalogs are generated by exploiting AlchemyAPI5, that is an automatic text analyzer.

As such, PPkeyword, PPconcept, and PPtaxonomy have been composed by replacing each

resource with the descriptors returned by, respectively, AlchemyAPI keyword extrac-

tor, AlchemyAPI concept tagger and AlchemyAPI taxonomy classifier. The human-

composed catalog PP? have been composed, then, so as to compare the results coming

from an automatic text analyzer tool and human expertiseness.

With more details, PPkeyword have been composed exploiting the Keyword Extraction

API6, the PPconcept have been composed thanks to the Concept Tagging API7, and

PPtaxonomy have been composed exploiting the Taxonomy API8. For what concerns the

PPtaxonomy catalog, actually, since the API returned labels of the form

super-category/category/ . . . /sub-category

where the category hierarchy is clear, we decided to split the returned label, so as to

represent with a label every category, without considering the hierarchy.

With these privacy preferences catalogs, then, we computed, for each evaluator

j, the corresponding sets of association rules that are, respectively, AR?j , AR
keyword
j ,

ARtaxonomyj , and ARconceptj setting the minimum support threshold to 19 and the mini-

mum confidence threshold to 75%. Then, thanks to this set of association rules catalogs,

we have been able to test the suggestion procedure presented in this chapter. As such,

we submitted to the policy suggestion procedure, for each evaluator j and for each re-

source r for which j defined an access control policy, the set of resource descriptors of r

according to the extraction technique that composed the considered catalog. As exam-

5http://alchemyapi.com
6http://www.alchemyapi.com/products/alchemylanguage/keyword-extraction
7http://www.alchemyapi.com/products/alchemylanguage/concept-tagging
8http://www.alchemyapi.com/products/alchemylanguage/taxonomy
9In our experiment, with a base dataset composed of 25 evaluations, we had to keep this threshold

to the minimum value so as to obtain remarkable outputs.

68 Privacy Settings Recommender

Input catalog
without with

SupportUsers SupportUsers

AR? 36,46% 32,62%

ARkeyword 53,70% 55,27%

ARconcept 73,36% 75,78%

ARtaxonomy 68,66% 71,65%

Table 3.1: Suggestion procedure success ratio

ple, when the suggestion procedure was set up so as to exploit the association rules in

ARkeywordj , we exploit the set of descriptors des(r) returned by the keyword extraction

API as input to the procedure described in Algorithm 2.

In our experiment we decided to test the capability of our proposal to produce valid out-

puts, without particular remarks on its accuracy and precision, which is postponed for

further investigation. This is equivalent, then, to compute the ratio between the number

of produced output, i.e., the access control policies to be suggested, and the number

of received input, i.e., sets of resource descriptors, as metric to evaluate the submitted

task. Though, as described in Section 12, we described a procedure with the aim to

produce as much valid output as possible; to achieve this task, then, we introduced the

SupportUsers set as a way to increase the number of available association rules, that

is, to increase the size of the background knowledge necessary to our proposal in order

to produce output policies. Asking human judges to select a set of trusted judges or

making the procedure to compose the SupportUsers set, though, would not have been

significant; indeed, among the judges did not exists an exploitable Social Graph and,

unfortunately, many of the judges did not even know each other in the real life. As such,

we decided to exploit the whole set of judges as SupportUsers set. Thus, in case the

procedure was not able to produce output with ARkeywordj as background knowledge

catalog, we designed the experiment so as to exploit the whole ARkeyword catalog as

background knowledge.

Given an evaluator j, then, a background knowledge catalog AR and a resource r, we

repeated every suggestion process twice, so as to check the correctness of the output

produced by the procedure.10 Table 3.1 resumes the average results of the suggestion

experiment, as described above.

After the preliminary phase described above, in which the recommender system is fed

up with the information collected by human evaluator, the experiment is completed by a

second phase. In this second phase each evaluator is asked to give a qualitative feedback

10The procedure presented in 2, indeed, is a simple procedural algorithm; as such, in case the input

values to the procedure keeps unchanged, the respective output keeps unchanged as well.

3.4 Experimental results 69

over a given suggested policy. As such, given a human evaluator j and a resource r′

that was not prompt to j in the first phase, we ask j to evaluate some suggested policies

computed for r′ and tailored over j’s learnt data. Then, every evaluator is asked to give

a qualitative label from 0 (“don’t agree”) to 5 (“agree”) for any suggested policy, so as

to give us the possibility to analyze the accuracy of the suggested policies.

Unfortunately, at the time this thesis have been composed, we have not been able to

include the results of this second phase, since this part of the experiment is currently

running.

In Table 3.1, then, we have been able only to collect a quantitative evaluation of the

approach presented in this chapter. With more details, Table 3.1 collects, as percentages,

the ratio between the number of times that the policy recommender system returned a

policy to be suggested and the number of resources for which a suggestion have been

asked.

Despite the lack of a qualitative analysis of the policy recommender system, though,

from the data gathered in Table 3.1 it emerges that the presented recommendation

system as remarkable potentialities and it is well worthy of further studies. Indeed, es-

pecially the datasets produced thanks to the Alchemy API, returned encouraging data,

with a number of successful suggestion up to 532 on 702 requests. From Table 3.1 it

even emerges that the process of categorization and description of the resources is not

a trivial task that can be done superficially; indeed, an expert and precise process with

a wide background ontology from which extracting descriptor labels appears to be the

more suitable solution, as remarked by the results gathered with ARkeyword, ARconcept,
and ARtaxonomy. On the other hand, the results produced exploiting AR? proved that,

even in scenario with a small set of descriptors, the presented technique is able to pro-

duce a valid output which encourages us about the validity of the presented technique

in a real life scenario. Indeed, as mentioned before, many OSN users are used to only

exploit default access control policy, without specifying their own privacy preferences.

Even the proposal presented in Section 12, that enlarges the set of association rules by

including even the ones learned from people different from the current user, emerges as

a valid proposal. Indeed, despite such technique brought only small increments of about

2-4%, the rising trend of such values is encouraging. Indeed, we have to note that in our

experiment the SupportUsers was composed just by considering the habits learnt from

other 29 judges plus the considered one. As such, when few keywords were exploited to

describe the different resources, similarly to PP?, having a larger association rules cat-

alog brought to have a confuse dataset, from which the association rule extraction was

not as successful as before, leading to have a AR? with less association rules than before.

Nevertheless, the results of our experiment gave encouraging results that put in

70 Privacy Settings Recommender

evidence both the actual potential of such proposal and clarified the strategies to imple-

ment for the future developments of the presented techniques. Moreover, as introduced

at the beginning of the current chapter, the presented techniques are suitable to be im-

plemented in any social network service. As such, with reference to the decentralized

architecture presented in Chapter 2, we currently plan to develop a running example of

the introduced Rule Manager Service such that it implements the recommender system

described in this chapter.

4
Enhance System Utility through Query Rewriting

In addition to the issues illustrated in Chapter 3, we are aware that misconfigured Rel-

BAC policies may lead to harmful situations, different from the ones described in Chapter

3. As such, besides the exposure of sensitive information, misconfigured access control

policies may even lead to an exacerbated data restriction that brings to a loss of utility

to the OSN users. As an example, let assume that a certain OSN users authorizes a

precise set of users to see the value of his/hers birth date, but he/she forgets to extends

the mentioned authorized “age” value. Then, according to RelBAC model, none of the

above mentioned users would be able to access the value of the “age” field, even though

this information is implicitly released by releasing the birth date.

In general, thus, it emerged the necessity to define more flexibles techniques with the

aim of handling misconfigured RelBAC policies, so as to limit the disclosure of situations

like the one described above.

As such, we found it necessary to tackle the possibility for misconfigured policies to

deny someone the access over information that he/she should be, somehow, authorized.

Indeed, we believe that, whenever this occurs, the DSN provider cannot be able to fulfill

requests coming from legitimate requestors, reducing the amount of information that

he/she could access. Then, in order to increase the DSN users utility, in terms of re-

sources correctly released to legitimate requestors, we decided to cope with the RelBAC

misconfiguration problem with a different point of view from the one describe in Chapter

3.

71

72 Enhance System Utility through Query Rewriting

As such, we investigated the possibility to define techniques capable of releasing

precise information even in absence of explicit access control policies. For this reason,

we found it necessary to define the concept of “implicit authorization” so as to denote

all those information that could be safely released even when no access control policy

authorizing these data is defined. With more details, we defined as implicitly authoriz-

able all those data for which do not exists an explicit access control policy authorizing

their release, but they can be harmlessly released, since they can be easily discovered

nonetheless. Then, this harmless release is realized by means of the existence of impli-

cations able to extend an existing access control policy from some explicitly authorized

data to the implicitly authorized data. It is important to emphasize that the concept

of implicit authorization described in this Chapter does not clash with existing neg-

ative policies or with other security measures with the aim to prevent the release of

sensitive information. Indeed our sole purpose is to release information for which do

not exist an explicit access control policy but, at the same time, it can be retrieved by

DSN users exploiting some knowledge external to the access control enforcement system.

In order to take advantage by these implications, we designed a technique capable

of exploiting all the existing data dependencies (i.e., any correlation between elements)

as a mean for increasing the system utility, that is, the number of queries that can be

safely answered. As such, we defined a query rewriting technique capable of extending

defined access control policy authorizations by exploiting data dependencies, in order to

authorize unauthorized but inferable data.

More precisely, given a query q submitted by a user u requesting attributes not covered

by an access control policy, the proposed extended authorization model authorizes q

if the following conditions hold: (i) there exists one or more data dependencies (e.g.,

X → Y) whose attributes in the determinant set (i.e. X) include all attributes requested

by q, and (ii) there exists one or more access control policies that explicitly authorize u

to access attributes specified in the determinant set of the dependencies (e.g., X). Be-

sides the above mentioned query rewriting technique, we propose a mechanism to avoid

users to infer additional non-authorized data by linking implicitly authorized attributes

returned by a rewritten query. Indeed, when evaluating the implicit authorizability of

certain information it is necessary to consider that even their release may lead to dis-

close harmful data (i.e., the correlation between distinct data). As such, to overcome

this problem, we exploit an hypergraph structure to represent all possible correlations

between data and to assure that the rewriting procedure does not allow any information

leakage.

Along with the query rewriting algorithm, we give a formal proof of its correctness and

completeness. Finally, we show how the proposed approach can indeed improve data

4.1 Reference Model 73

management systems by testing the presented technique over a real data schema and

corresponding access control policies. In particular, this has been done using the Face-

book data schema.

Similarly to the discussion brought introducing Chapter 3, we recognized that our

developed model could be applied to any data management system, and was not suit-

able only for social network service providers. Moreover, as emphasized in [22], RelBAC

model can be applied beyond social networking services. Then, we found it useful to

enlarge our reference model beyond DSNs so as to increase the possibility for the pre-

sented techniques to be applied in a larger set of systems. As such, in the remainder

of this chapter, we will introduce our proposal having a general database management

system (DBMS) as a reference model.

4.1 Reference Model

As sketched out before, a generic DBMS will be exploited as a reference model for this

chapter. As such, given that most of the commercial DBMS implement access control

models slightly different from one another, in this chapter we will present our proposal

exploiting a simplified access control model. In particular, we will refer to DBMSs en-

forcing a simplified discretionary access control, where an access control policy acp is

defined as a tuple (sbj, obj, priv), with the semantics that any user whose identifiers

are contained into sbj are authorized to execute privilege priv over the object whose

name is specified in obj.

Furthermore, it is important to denote that the above presented model can even be

seen as a simplification of the RelBAC model, as presented in Section 2.1.2. Thus, the

discussion gathered in this chapter does not limit the possibilities to apply the described

technique to a social network provider.

4.1.1 Data Dependencies

A relevant concept is the one of data dependency in a relational database schema. In

general, a data dependency between two sets of attributes Det and Dep, denoted as

Det→ Dep, is a constraint stating that if values of the determinant (i.e., Det) are known,

then the values of the dependent (i.e., Dep) can be univocally determined. This has been

investigated in the form of functional dependencies [12, 13], foreign key constraints [57]

and knowledge-based implications [26, 40]. Differently from functional dependencies and

foreign key constraints, a knowledge-based implication is a data dependency such that

it is possible to uniquely determine the values of dependent attributes by knowing the

values of determinant attributes plus some external knowledge, which can be easily

74 Enhance System Utility through Query Rewriting

discovered by anyone. An example of knowledge-based implication is given by that fact

that one could easily discover the zip code of a certain address when the address, the

city, and the country are given.

In our proposal, we exploit indifferently these three types of dependencies. As such, we

introduce a unified definition for data dependencies. This definition specifies to which

relations the determinant and dependent of the dependency belong to, as these might be

different (e.g., in case of foreign key constraints). In this case, the dependency definition

should clearly denote how relations specified in determinant and dependent have to be

combined together in order to reconstruct the view over which the data dependency

holds. As such, it is necessary to make explicit an expression ψ to build the view.

Moreover, it may occur that the implication represented by a dependency is verified

only by a subset of the tuples of the involved relations. As such, it is necessary to

specify the scope of the dependency, in the form of an expression ϕ selecting tuples for

which the implication holds. Based on the above-mentioned considerations, we adopt

the following formalization for data dependencies.

Definition 4.1.1 (Data Dependency) Let S be a relational schema, let R1, Rn be

relations defined in S. A data dependency dd between R1 and Rn is defined as:

dd : R1.Det
R;ψ;ϕ−−−−→ Rn.Dep

where: R = {R1, . . . , Rn} is a finite and non empty set of relations in S, R1.Det ⊆
schema(R1) is the determinant set of attributes of dd, Rn.Dep ⊆ schema(Rn) is the

dependent set of attributes of dd, ψ is the expression implementing the join among rela-

tions in R, and ϕ is a boolean expression denoting the dependency scope. We denote by

schema(Ri) the set of attributes contained in relation Ri.

According to Definition 4.1.1, given the view built on the relations in R through the join

predicates in ψ, those tuples that satisfy ϕ have values of attributes in R1.Det implying

values of attributes Rn.Dep.

4.1.2 Architecture

We plan to enhance the functionalities offered by DBMSs. In particular, we refer to

DBMSs enforcing discretionary access control, where an access control policy acp is

defined as a tuple (sbj, obj, priv), with the semantics that users, whose identifiers are

contained into sbj, are authorized to execute privilege priv (e.g., INSERT, SELECT,

UPDATE, DELETE) over the relation/view whose name is specified in obj.1 Moreover, we

1We assume that access control policies are stored into a unique authorization catalog, denoted as

SysAuth, whereas we denote with SysAuthu all the access control policies that apply to a user u, i.e.,

4.1 Reference Model 75

Employees

Eid RegNr Name Surname Role Dept

0 001978 Alice Smith Secretary Accounting

1 710632 Bob Taylor Boss Development

2 548235 Carl Williams Manager Development

3 167459 Daisy Jones Secretary Accounting

4 348612 Earl Brown Programmer Development

5 783145 Frank Wood Programmer Development

. . .

Projects

Pid ProjName SupervisorEmployees

1 Hologram 2

2 LightSaber 2

3 FluxCapacitor 7

4 Tardis 7
Wages

ProjProjects EmplEmployees HireDate SalaryPerHour SickHours VacationHours WorkedHours

1 1 01/03/2002 160 0 0 40

1 2 01/03/2002 100 0 0 40

1 4 01/03/2002 90 0 40 0

1 0 01/03/2002 50 8 0 32

1 5 05/10/2006 50 0 0 40

2 3 08/07/2009 35 24 0 16

. . .

V1:= SELECT RegNr,Role,HireDate FROM Employee e,Wages w WHERE e.Eid=w.Empl

AND Dept=‘Development’

V2:= SELECT SickHours, V acationHours FROM Projects p,Wages w WHERE

p.P id=w.Proj AND ProjName=‘Hologram’

Table 4.1: An example of relational schema

assume that DBMSs makes use of inference control monitoring tools to avoid inference

attacks.

In general, literature identifies two categories of countermeasures to prevent inference

attacks over database systems. The first category gathers those proposals, such as the

ones presented in [15, 40], where inference channels are detected at design time. The sec-

ond category groups those proposals where inference channels are monitored throughout

SysAuthu = {acp ∈ SysAuth | idu ∈ acp.sbj}, where idu denotes the id of user u. Moreover, we use dot

notation to specify the components of a tuple, that is, we denote as acp.sbj, acp.obj, and acp.priv

respectively the subject, the object and the privilege of a given access control policy acp.

76 Enhance System Utility through Query Rewriting

DBMS

SysAuth Data File Data File Schema
Catalog

Extended Access Control
Reference Monitor

Non-harmful
Data
Dependencies

Inference Detection Monitor Data
Dependencies

User

Query

Figure 4.1: DBMS reference architecture

the database lifetime (e.g., [26, 66]). In both the cases, these proposals rely on an in-

ference detection monitor that analyzes and finds all possible data dependencies. These

dependencies are stored into a repository, as depicted in Figure 4.1. According to our

solution, we assume that the security administrator checks the data dependencies found

by the inference control monitoring tools, so as to select only those that can be consid-

ered as non-harmful. This task could be performed manually by the administrator, by

just simply labeling as “non-harmful” all the data dependency for which their depen-

dent set does not contain any sensitive information.2 These labelled data dependencies

are stored into a separate repository and are exploited in order to extend actual users’

authorizations. In contrast, the dependencies, not specified as non harmful, are trivially

considered harmful for the database system, and are used by the inference detection

monitor in order to prevent sensitive data release.

2More sophisticated approaches could be investigated as well, aiming at automatically identifying the

non-harmful dependencies. This could be reached, as an example, by exploiting security labels describing

the data sensitiveness, as done in the mandatory access control model.

4.2 Implicit Authorizations 77

4.2 Implicit Authorizations

Throughout the chapter, then, we consider the following example so as to offer specific

examples that clarifies our proposal.

Example 4.2.1 Let us consider a relational schema modeling information about a com-

pany’s projects. As depicted in Table 4.1, the schema consists of relations collecting

information about employees and projects, and general information about employees’

salaries. As reported in Table 4.1, views V1 and V2 are also defined. The underlined

attribute names denote the relation primary keys, whereas foreign key constraints are

denoted with the referenced table as superscript.

We also assume that two access control policies, namely, acp1 and acp2 have been spec-

ified, such that they authorize user u the SELECT privilege on V1 and V2, respectively.

Finally, we assume that the DB security administrator has specified that the following

data dependencies are non-harmful:

dd1 : Role,HireDate
R1,ψ1,ϕ1−−−−−−→ SalaryPerHour (4.1)

dd2 : SickHours, V acationHours

R2,ψ2,ϕ2−−−−−−→WorkedHours
(4.2)

where:

R1 := {Employees,Wages}, ψ1 := Employees.Eid = Wages.Empl, ϕ1 := Role <> ‘Boss’

R2 := {Wages}, ψ2 := true, ϕ2 := true

Let us assume that user u submits the following query:

SELECT HireDate, SalaryPerHour

FROM Wages
(Q.1)

The DBMS would forbid this access due to a lack of authorizations over the Wages

relation. Nevertheless, attributes Role and HireDate are explicitly authorized by acp1

and these would make u able to infer attribute SalaryPerHour by exploiting the data

dependency 4.1.

To overcome this limitation and improve the database system utility, in terms of suc-

cessfully answered queries, this chapter presents a more flexible access control mechanism

leveraging on non-harmful data dependencies. The key idea is to exploit a non-harmful

dependency to extend the access rights that users have on attributes in determinant

part over attributes in dependent. We refer to this extended authorization as implicit

authorization. To this purpose, we first introduce the concept of implicitly authorizable

attribute.

78 Enhance System Utility through Query Rewriting

Definition 4.2.1 (Implicitly authorizable attribute).

Let Ri be a relation in the relational schema S. The attribute a ∈ schema(Ri) is said

to be an implicitly authorizable attribute for user u if the following two conditions

hold:

(i) there exists a non-harmful data dependency dd such that a ∈ dd.Dep;

(ii) there exists an access control policy acp ∈ SysAuthu such that dd.Det ⊆ schema(acp.obj),

where acp.obj denotes either a relation in S or a view defined over relations in S.

The above definition only states whether an attribute is implicitly authorizable for

a user u, but it does not specify under which conditions. Indeed, since an access control

policy may have a SQL view as object, the policy exploited for an implicitly authorizable

attribute may pose constraints on tuples over which the grant can be extended. Given a

data dependency dd, extending the authorization holding for attributes in dd.Det over

attributes in dd.Dep without considering these limitations would lead to the release

of sensitive pieces of information As an example, policy acp1 in Example 4.2.1 autho-

rizes the access to RegNr, Role, HireDate only for a subset of tuples (e.g., those with

Dept =‘Development’). If query Q.1 was just authorized as it is, its result set would

include tuples that acp1 does not authorize, that is, those for which the department

attribute has a value different from ‘Development’. This even if Role, HireDate are ex-

plicitly authorized and SalaryPerHour is an implicitly authorizable attribute. As such,

when an authorization extension is granted by exploiting data dependencies, the con-

straints holding for dependency determinant set of attributes have to be extended over

the attributes in the dependency dependent set as well.

In order to ensure only safe implicit authorizations we propose a query rewriting

procedure so as to include additional constraints imposed by access control policies ex-

ploited for the implicitly authorizable attributes. More precisely, the proposed query

rewriting technique first exploits non-harmful data dependencies to compute those ad-

ditional attributes, as the following example clarifies.

Example 4.2.2 Let us assume that query Q.1 is rewritten by using data dependency

dd1 defined in Example 4.2.1. In this case, the constraints associated in the release of

the implicitly authorizable attribute SalaryPerHour are computed as follows:

SELECT SalaryPerHour FROM R1 WHERE ψ1 AND ϕ1,

where ψ1 and ϕ1 are the constraints posed by the data dependency (see Definition 4.1.1).

Then, query rewriting procedure adds further constraints in the where clause to imple-

4.2 Implicit Authorizations 79

ment acp1. Thus, query Q.1 is rewritten as follows:

SELECT HireDate, SalaryPerHour

FROM Wages

WHERE SalaryPerHour IN (

SELECT SalaryPerHour FROM R1

WHERE ψ1 AND ϕ1

AND (Role,HireDate) IN (

SELECT Role,HireDate FROM V1

))

(Q.2)

Query Q.2 assures that Role and HireDate attributes are selected out of V1, which is

the authorized object of acp1. The inner query ensures that only those values of dd1.Det

(i.e., Role,HireDate) that are explicitly authorized by acp1 are returned.

Let us assume that the rewritten query Q.2 is executed over the schema depicted in

Table 4.1. The nested query implementing acp1 (i.e., SELECT Role,HireDate FROM V1)

returns the following result set:

Role HireDate

Boss 01/03/2002

Manager 01/03/2002

Programmer 01/03/2002

Programmer 05/10/2006

where only information of employees in the “Development” department is returned, as

required by acp1. The outer subquery implements the data dependency over these values,

with the following result set:

Role HireDate . . . SalaryPerHour

Manager 01/03/2002 . . . 100

Programmer 01/03/2002 . . . 90

Programmer 05/10/2006 . . . 50

where the tuple corresponding to the employee named ‘Bob Taylor’ has been removed due

to the limitations contained in ϕ1.

It is relevant to note that even if this rewritten query implements the acp1 constraints

it might bring to release unauthorized data. Indeed, there is the possibility that distinct

tuples share the same value for the dependent of data dependency dd1 (i.e., SalaryPer-

Hour), with the consequence that they are all returned to the user, possibly leading

to a data release that is not compliant with the defined access control policies. As an

example, the execution of the rewritten query Q.2 would return the following result set:

80 Enhance System Utility through Query Rewriting

HireDate SalaryPerHour

01/03/2002 100

01/03/2002 90

01/03/2002 50

05/10/2006 50

where two tuples share the same value for the implicitly authorized attribute in dd1.Dep

(i.e., 50) but, actually, only one of them is authorized by acp1. This behavior leads to an

inference channel, as such, a more articulated rewriting technique is necessary. In order

to avoid this situation, we revise the query rewriting strategy so that the outer subquery

(i.e., the query implementing the data dependency) selects tuples based on primary key

values rather than dd.Dep values of those tuples returned by the inner subquery (i.e.,

the query implementing the acp).

Example 4.2.3 The following query represents an improvement of the rewritten query

Q.2:

SELECT HireDate, SalaryPerHour

FROM Wages

WHERE (Proj, Empl) IN (

SELECT Proj, Empl FROM R1

WHERE ψ1 AND ϕ1

AND (Role,HireDate) IN (

SELECT Role,HireDate FROM V1

))

(Q.3)

The clause appended to the original query (i.e., query Q.1) ensures not only that the

values of the attributes in dd1.Det are selected in compliance with the defined access

control policy, but it assures as well that the returned values are all and only those values

relative to the authorized tuples. In query Q.3 tuples selection is performed according to

primary key values instead of dd1.Dep attribute values, so as to prevent the release of

information that exceeds the constraints defined by the access control policies.

Without loss of generality, query Q.3 can be equivalently formulated as follows:

SELECT HireDate, SalaryPerHour

FROM Wages

WHERE Wages.pk IN V ?

(Q.4)

4.2 Implicit Authorizations 81

where Wages.pk denotes the primary key of Wages and V ? is a SQL view implementing

both the data dependency and the considered access control policy. More precisely, for

each implicitly authorizable attribute a, we can define a SQL view denoted as V(dd,acp)

where dd and acp are, respectively, the data dependency and the access control policy

exploited for the implicitly authorizable attribute a. V(dd,acp) projects all and only

the primary keys of relation Rn for those tuples authorized by acp, where dd.Dep ⊆
schema(Rn), as the following definition states.

Definition 4.2.2 (Implicit authorization view). Let Rn be a relation in schema S,

let a be an attribute in schema(Rn), and let u be a user. Let dd be a data dependency

such that a ∈ dd.Dep and let acp be an access control policy applied to u such that

dd.Det ⊆ schema(acp.obj). The primary keys of the tuples containing the implicitly

authorized values for attribute a are gathered in a view, denoted as V(dd,acp), defined as

follows:

SELECT Rn.pk FROM dd.R
WHERE dd.ψ AND dd.ϕ

AND dd.Det IN (SELECT dd.Det FROM acp.obj)

(4.3)

where Rn.pk is the primary key of relation Rn.

Example 4.2.4 Let u be a user satisfying policy acp1, that grants the view V1 to user

u, as depicted in Table 4.1. Let dd1 a data dependency as defined in Example 4.1. Let

us assume that u submits the query q, as defined in Example 4.2.1. q is rewritten as

follows:

SELECT HireDate, SalaryPerHour FROM Wages

WHERE Wages.pk IN V(dd1,acp1)

where V(dd1,acp1) is defined as follows:

SELECT Wages.pk FROM R1 WHERE ψ1 AND ϕ1

AND (Role,HireDate) IN (

SELECT Role,HireDate FROM V1

)

As it will be described in Section 4.4, whenever a user u submits a query q, the proposed

mechanism determines the set of implicitly authorizable attributes, if any. Then, for

each of them, the query rewriting procedure inserts additional conditions in the WHERE

clause enforcing constraints so as to select values for implicitly authorized attributes out

of the corresponding view V(dd,acp).

82 Enhance System Utility through Query Rewriting

It is important to underline that, even though in some cases the authorization ex-

tension is equivalent to a new access control policy definition, in general this is not true.

Indeed, assuming that a non harmful dependency X → Y is detected, the extending the

existing authorizations from X to Y requires that, for each user u that is granted over

X, a new policy has to be defined such that it grants u over Y as well, with the same

limitations defined in the first policy. Otherwise, the existing policy that grants u to

access X can be updated including Y in the policy object. Nevertheless, in a real-life

scenario, this would be an error-prone task, since it requires to modify already existing,

and working, elements of the access control system. In our proposal, thus, the autho-

rization is extended only for the lifetime of a single task via input query modification,

without editing the access control catalog.

4.3 Avoiding Correlations

The query rewriting approach presented in the previous section solves the problem of

duplicates dd.Dep values. However, it does not avoid possible unauthorized attribute

correlations as the following example clarifies.

Example 4.3.1 Let assume that u submits the following query on relations depicted in

Table 4.1:

SELECT SalaryPerHour,WorkedHours

FROM Wages
(Q.5)

Moreover, let assume that along with data dependency 4.1 the schema holds also the

non-harmful data dependency 4.2. This dependency states that by knowing the amount

of hours that one employee has to work each week, the number of hours effectively worked

can be discovered when the amount of sick hours and the amount of vacation hours are

known. As such, dependency 4.2 is a knowledge-based implication, since it requires some

external knowledge (i.e., the amount of hours to work per week). Since u is authorized

to access SickHours and V acationHours by acp2, both attributes queried in Q.5 are

implicitly authorizable attributes. Thus, according to the technique presented in Section

4.3 Avoiding Correlations 83

4.2, the rewritten query is defined as follows:

SELECT SalaryPerHour,WorkedHours

FROM Wages

WHERE (Proj, Empl) IN (

SELECT Proj, Empl FROM R1 WHERE ψ1 AND ϕ1

AND (Role,HireDate) IN (

SELECT Role,HireDate FROM V1

)) (Q.6)

AND (Proj, Empl) IN (

SELECT Proj, Empl FROM R2 WHERE ψ2 AND ϕ2

AND (SickHours, V acationHours) IN (

SELECT SickHours, V acationHours FROM V2

))

where the first subquery implements the data dependency 4.1 and acp1 whereas the second

subquery implements dd2 and acp2.

Query Q.6, thus, allows u to correlate two distinct attributes (i.e., SalaryPerHour

and WorkedHours) that were supposed to be released according to two separate policies

(i.e., acp1 and acp2). As such, even though user u could separately compute the val-

ues for both attributes, query Q.6 discloses the correlation existing between the queried

attributes. As such, the result set of query Q.6 enables user u to pair each value of

SalaryPerHour with the corresponding value of WorkedHours.

In the scope of this chapter, we denote the leakage illustrated in the previous example

as correlation leakage, since the user who submits query Q.5 gains information about

the correlation that exists between the queried attributes.

Then, it is fundamental to have the possibility to detect possible correlation leakages

before a rewritten query is returned to the user. In particular, we aim at avoiding

correlations among attributes: (i) that belong to the same relation/view; (ii) connected

by a foreign key constraint or by a chain of foreign key constraints. In order to illustrate

query rewriting avoiding such correlations, we first formally define them. In particular, in

the following we denote a foreign key constraint as fk: Ri.Rng → Rj .Rnd, where Ri and

Rj are relations over the schema S, Ri.Rng is the referencing set of attributes, whereas

Rj .Rnd is the referenced set of attributes. This is equivalent to the SQL statement

Rj .Rnd REFERENCES Ri.Rng.

Inspired by [40], we exploit an hypergraph representation to model correlations

among data. An hypergraph is defined as G = (N,E), where N is a set of hypern-

odes and E is a set of hyperedges, which are defined as non-empty subsets of N . In

84 Enhance System Utility through Query Rewriting

general, a correlation between two given nodes n, n′ ∈ N can be modeled with an hyper-

path. Formally, given an hypergraph G and a couple of nodes n, n′ ∈ N , we say there

exists an hyperpath hpath(n, n′) between n and n′ if there exists a finite ordered list of

hyperedges L=[e1, . . . em], ei ∈ E, i ∈ [1..m] such that: (i) n ∈ e1∧n′ ∈ em; (ii) ∀ei, ei+1,

ei ∩ ei+1 6= ∅, where i ∈ [1,m− 1].

Literature offers several examples of how to map a relational schema into a graph

[40, 57]. Unfortunately these mappings do not fit our requirements, since they do not

represent multiple-attribute keys, which play a fundamental role in certain foreign key

constraints. As such, for the purpose of this chapter, we define a correlation hypergraph

as follows:

Definition 4.3.1 (Correlation hypergraph). Given a relational schema S, the cor-

responding correlation hypergraph is a labeled hypergraph GS =
(
N,E,Σ, l(·)

)
, where N

is the set of hypernodes, E is the set of hyperedges, Σ is a set of labels, defined such

that it contains the names of all relations, all views, all attributes defined in the schema,

plus an additional label “fk”, and l(·) is a labeling function, defined such that it assigns

a label s ∈ Σ to all the hypernodes and to all the hyperedges of GS. With more details,

- N is defined such that there exists a node for each attribute in the schema S, and

the node is labeled with the name of the attribute itself. More formally:

∀Ri ∈ S, ∀a ∈ schema(Ri),∃n ∈ N ∧ l(n) = a.

In what follows, given an attribute a ∈ schema(Ri), we denote as na the corresponding

node in N .

- E is defined as E = ER ∪ EV ∪ Efk ∪ Efk′, where:

∀Ri ∈ S, ∃e ∈ ER s.t. ∀aj ∈ schema(Ri), naj ∈ e;
∀Vi ∈ S,∃e ∈ EV s.t. ∀aj ∈ schema(Vi), naj ∈ e;
∀fk : Ri.Rng → Rj .Rnd, Ri, Rj ∈ S,∃e ∈ Efk s.t.

∀ak ∈ (Ri.Rng ∪Rj .Rnd), nak ∈ e;
∀E = {e1, . . . en} ⊆ Efk s.t. ∀ei, ei+1 ∈ E , ei ∩ ei+1 6= ∅,

∃e ∈ Efk′ ∧ e = ∪ni=1(ei) \ ∪n−1i=1 (ei ∩ ei+1).

We consider here only the subsets of Efk whose cardinality is greater or equal than 2; as

such, n ≥ 1. Hyperedges in E are labeled such that l(e) is the relation or the view name,

in case e ∈ (ER ∪ EV), or label “fk” in case e ∈ (Efk ∪ Efk′).

It is important to note that Efk′ contains those hyperedges modeling a combination

of two or more foreign key constraints. This set is necessary to represent the correlation

4.3 Avoiding Correlations 85

V2

Employees

Projects

Pid

ProjName

Supervisor

Wages

Proj

HireDate

SickHours

Empl

SalaryPerHour

V1

VacationHours

WorkedHours

Eid

Surname

Role

RegNr

Dept

Name

Figure 4.2: Correlation hypergraph for the schema depicted in Table 4.1

between attribute sets that are not directly connected by a foreign key constraint, but

they are linked by means of two or more different constraints. For example, given a cou-

ple of foreign keys fk : Ri.A → Rj .B, fk′ : Rj .B → Rk.C, Efk′ contains an hyperedge

e including the nodes representing attributes in Ri.A and Rk.C.

Figure 4.2 depicts the correlation hypergraph for the relational schema presented in

Table 4.1, where solid lines represent those hyperedges which are labeled with a relation

or view name, whereas dashed lines represent those hyperedges that are labeled as “fk”.

The correlation hypergraph is useful to detect whether a query brings to unveil a cor-

relation, i.e., an hyperedge, that the user is not authorized to access. As such, it is

necessary to identify which hyperedges of the hypergraph GS can be actually exploited

by user u. At this purpose, given a relational schema S, we introduce an hypergraph,

denoted as GS(u), which includes all and only the elements of GS which are actually

authorized to user u.

More precisely, the user correlation hypergraph GS(u) is a section hypergraph of

the correlation hypergraph GS.3 Hypergraph GS(u) is built combining the information

in SysAuthu with the correlation hypergraph GS. As such, for each acp∈SysAuthu and

for each attribute a∈schema(acp.obj), the user correlation hypergraph GS(u) contains

all the nodes na and the hyperedges e ∈ E such that l(e) = acp.obj. Moreover, for each

hyperedge e∗ ∈ E such that l(e?)=“fk”, e∗ is included in GS(u) iff all the attributes

corresponding to the nodes in e∗ are authorized to u. More formally, a user correlation

hypergraph is defined as follows:

Definition 4.3.2 (User correlation hypergraph). Given a user u, a relational

schema S and the view of the access control catalog SysAuthu, the user correlation hy-

3A section hypergraph of an hypergraph G = (N,E) is defined as an hypergraph G′ = (N ′, E′) such

that N ′ ⊆ N and E′ = {e′ | e′ ⊆ N ′}.

86 Enhance System Utility through Query Rewriting

pergraph for u is a labeled hypergraph GS(u) = (N(u), E(u),Σ, l(·)) defined as follows:4

(i) ∀e ∈ (GS.ER ∪GS.EV), e ∈ GS(u).E iff ∃acp ∈ SysAuthu

such that acp.obj ≡ Ri in case the object is a relation Ri of the schema or acp.obj

≡ Vi in case it is a view;

(ii) ∀e ∈ (GS.Efk ∪GS.Efk′), e ∈ GS(u).E iff ∀nai ∈ e,∃acp ∈ SysAuthu

such that ai ∈ schema(acp.obj);

(iii) ∀n ∈ GS.N, n ∈ GS(u).N iff ∃e ∈ GS(u).E

such that e contains n.

As illustrated in the next section, by using the user correlation hypergraph it is

possible to verify whether attributes in a query q are connected only by hyperpaths

defined in GS(u). If this is not case, the rewritten query is not returned to the user, as

a correlation leakage might occur.

Example 4.3.2 Let u be a user and suppose that SysAuthu contains the following access

control policies:

subject object privilege

u V1 SELECT

u Wages SELECT

u Projects SELECT

A representation of the user correlation hypergraph tailored to user u over the schema

in Table 4.1 is depicted in Figure 4.3. It is important to underline how the hyperedge

that connects Projects.Supervisor with Wages. Empl still holds in GS(u), even though

the node which represents the referenced attribute Employees.Eid is not present. In

this way GS(u) keeps the possibility to track the existing correlation between those two

attributes, that is performed by a chain of foreign key constraints.

4.3.1 Correlation Control

When u submits a query q, a correlation control has to be performed in order to allow

to rewrite q only in case that the rewritten query qrw does not lead u to infer any other

data than those explicitly or implicitly authorized. This check is done by verifying the

existence of hyperpaths connecting any two authorized attributes, that is, two attributes

4Thereafter, we use dot notation to distinguish components of GS and GS(u). As an example, GS.E

and GS(u).E denotes the set of hyperedges of, respectively, the correlation hypergraph and the user

correlation hypergraph.

4.3 Avoiding Correlations 87

Projects

Pid

ProjName

Supervisor

Wages

Proj

HireDate

SickHours

Empl

SalaryPerHour

V1

VacationHours

WorkedHours

Role

RegNr

Figure 4.3: Example of user correlation hypergraph for the schema depicted in Table 4.1

for which there exists an access control policy granting u the access.

Given a SQL query “SELECT Sq FROM Fq WHERE Wq GROUP BY Gq HAVING Hq ORDER

BY Oq”, the queried attributes are the ones defined either in Sq or in Wq. As such

we can define the set requestedAttributesq as the union (Sq ∪ Wq). In this set we

can distinguish the attributes for which there exists an access control policy authorizing

them from those which are not authorized; thus we can denote as authorizedAttributesq
the set of those attributes a ∈ requestedAttributesq such that ∃ acp∈SysAuthu, a ∈
schema(acp.obj). Therefore, given an input query q, the query rewriting procedure

returns qrw to user u only if, for any (a, a′) ∈ authorizedAttributesq, in case there

exists an hyperpath connecting a and a′ in GS, there exists an hyperpath connecting a

and a′ in GS(u) as well. As such, we perform a correlation control defined as follows:

Definition 4.3.3 (Correlation control). Given a query q submitted by a user u, the

query is said to be correlation safe if the following holds:

∀a, a′ ∈ authorizedAttributesq, (4.4)

if ∃hpath(na, na′) ∈ GS then ∃hpath(na, na′) ∈ GS(u)

where hpath(na, na′) is an hyperpath connecting na with na′ in the considered hypergraph.

A correlation control, as defined in Definition 4.3.3, does not need to consider implic-

itly authorizable attributes. As such, in case there exists an hyperpath hpath(na, na′)

such that a is authorized and a′ is implicitly authorizable, there must exist as well an

88 Enhance System Utility through Query Rewriting

hyperpath between a and attributes in dd.Det, where dd is a data dependency implying

a′. As such, without loss of generality, we can consider only explicitly authorizable at-

tributes in order to determine if a query q is correlation safe or not. Clearly, given two

attributes a, a′ of a relational schema S, there may exist more than one hpath(na, na′)

in the schema correlation hyperpath GS. However, we are not interested in detecting

one particular hyperpath, but we only look for the existence of an hyperpath between

two given nodes.

4.3 Avoiding Correlations 89

Data: u, GS, GS(u), DD, SysAuthu.

Input: query q = “ SELECT Sq FROM Fq WHERE Wq GROUP BY Gq HAVING Hq ORDER BY Oq”.

1 begin

2 requestedAttributesq ← (Sq ∪Wq);

3 authorizedAttributesq ←
{x ∈ requestedAttributesq | ∃acp ∈ SysAuthu, acp.obj ∈ Fq ∧ x ∈ schema(acp.obj)};

4 requestedAttributesq ← requestedAttributesq \ authorizedAttributesq ;
5 Wqrw ←Wq ;

6 foreach Ti ∈ Fq do

7 if ({acp ∈ SysAuthu | Ti ≡ acp.obj} ≡ ∅) then

8 unauthorizedAttributesq ← requestedAttributesq ∩ schema(Ti);

9 foreach a ∈ unauthorizedAttributesq do

10 dependenciesForAttribute← {dd ∈ DD, dd : dd.Det
R;ψ;ϕ−−−−→ dd.Dep, a ∈ dd.Dep};

11 if (dependenciesForAttribute 6= ∅) then

12 foreach dependency dd ∈ dependenciesForAttribute do

13 PoliciesForDeterminant← {acp ∈ SysAuthu | dd.Det ⊆ schema(acp.obj)};
14 if (PoliciesForDeterminant ≡ ∅) then

15 dependenciesForAttribute← dependenciesForAttribute \ {dd};
16 end

17 end

18 if (dependenciesForAttribute 6= ∅) then

19 dd? := pop(dependenciesForAttribute);

20 policiesForDeterminant← {acp ∈ SysAuthu | dd?.Det ⊆ schema(acp.obj)};
21 acp? ← combinePolicies(policiesForDeterminant);

22 primaryKey ← Rj .pk, a ∈ schema(Rj);

23 if (Wqrw ≡ “ ”) then

24 clause← “WHERE primaryKey IN V(dd?,acp?)”;

25 else

26 clause← “AND primaryKey IN V(dd?,acp?)”;

27 end

28 else

29 return unauth;

30 end

31 else

32 return unauth;

33 end

34 Wqrw ←Wqrw ‖ clause;
35 end

36 end

37 end

38 authorizedAttributesq ← {x ∈ (Sq∪Wqrw) | ∃acp ∈ SysAuthu, acp.obj ∈ Fq∧x ∈ schema(acp.obj)};
39 foreach a ∈ authorizedAttributesq do

40 foreach a′ ∈ authorizedAttributesq , a′ 6= a do

41 if (exists hpath(na, na′) in GS) then

42 if (not exists hpath(na, na′) in GS(u)) then

43 return correlation fail;

44 end

45 end

46 end

47 end

48 return qrw ← “ SELECT Sq FROM Fq WHERE Wqrw GROUP BY Gq HAVING Hq ORDER BY Oq” ;

49 end

Algorithm 3: Query Rewriting Procedure

90 Enhance System Utility through Query Rewriting

4.4 Query Rewriting Procedure

The query rewriting procedure as illustrated in previous sections is implemented by

Algorithm 3. For simplicity, we only consider queries without any subquery. However,

note that queries containing subqueries can be processed by Algorithm 3 by applying

the procedure first to the inner queries, and then to the outer query. Without loss of

generality, to keep the notation simple, Algorithm 3 considers only authorizations for

the SELECT privilege.

Algorithm 3 receives as input the submitted query q, the set of access control policies

which applies to the requestor user u (i.e., SysAuthu), the set of non-harmful data

dependencies DD, the correlation hypergraph GS and the corresponding GS(u).

As a first step, Algorithm computes the set requestedAttributesq (Line 2). Then,

Algorithm 3 verifies which of the attributes in this set are authorized to u. In doing this,

it checks which attributes in requestedAttributesq belong to a relation specified in the

FROM clause Fq that is authorized to u, and stores them in authorizedAttributesq (Line

3).

Then, attributes in authorizedAttributesq are removed from requestedAttributesq
(Line 4) so as to leave in requestedAttributesq only those attributes that are not explic-

itly authorized. Afterwards, the WHERE clause is stored into a temporary variable (Line

5). Then, for each queried table T (i.e., for each table contained in the FROM clause) the

procedure detects all the access control policies whose object is T (Line 6). In case access

to table T is not explicitly authorized by any access control policy (Line 7), the procedure

computes the intersection between requestedAttributesq and the set of attributes of the

table schema, to detect any possible implicitly authorizable attribute for T . These at-

tributes, if any, are stored into a variable denoted as unauthorizedAttributesq (Line 8).

Then, Algorithm 3 verifies which attributes in unauthorizedAttributesq are implicitly

authorizable for u. Thus, for each attribute a in unauthorizedAttributesq, Algorithm 3

computes the subset of data dependencies having a in the right part of the implication

(Line 10). If no data dependency implying a is available, the algorithm returns an error

message (Line 32).

If at least one dependency dd is found, Algorithm 3 starts an iteration over all the

detected dependencies (Line 12). As mentioned above, the determinant of the depen-

dency must be explicitly authorized to u, that is, there must exist an access control

policy acp whose object is the table containing the data dependency determinant. All

the eligible policies are stored into a variable named PoliciesForDeterminant (Line 13).

Whether no acp in SysAuthu authorizes the dependency determinant, the dependency

is discarded and removed from dependenciesForAttribute (Line 15).

Once all suitable dependencies have been considered, the set dependenciesForAttributes

contains the dependencies that implicitly make a authorizable. In case there is no data

4.5 Security Analysis 91

dependency in the set dependenciesForAttributes, the algorithm returns an error mes-

sage (Line 29). Otherwise, in case that dependenciesForAttributes is not empty, under

the assumption that there exists only one dependency that determine the iterated at-

tribute a, the procedure denotes as dd? the dependency contained in the set (Line 19).

All the access control policies authorizing u to access the attributes in dd?.Det are col-

lected in policiesForDeterminant (Line 20). The set policiesForDeterminant is then

passed to a function, denoted as combinePolicies. In case policiesForDeterminant

contains only one access control policy acp, the function returns the policy itself; as

such, acp? ≡acp (Line 21). In case more than one access control policy grants u, the

access over attributes in dd.Det, combinePolicies returns a temporary access control

policy acp? defined such that acp?.sub = u, acp?.priv = SELECT, and acp?.obj = V ?,

where V ? is a temporary view defined as the union of the projection of the attributes in

dd.Det from all the acp.obj. More formally,

V ? =
⋃

∀acp∈policiesForDeterminant

(
πdd.Det(acp.obj)

)
.

Here we adopt the algebraic operator πA(T) to denote the projection of a set of attributes

A out of a table T . Once Algorithm 3 has selected both the dependency and the access

control policy, it computes the view V(dd?,acp?) (see Section 4.2). Then, Algorithm 3

generates additional conditions that have to be appended in AND to the original WHERE

clause, if any (Line 23).

Once all the additional constraints have been computed and appended to Wqrw ,

authorizedAttributesq is computed again, considering the attributes added by the rewrit-

ing procedure as well (Line 38). Afterwards, Algorithm 3 performs a correlation control,

as described in Definition 4.3.3 (Lines 39-43). If the control fails, Algorithm 3 returns

an error message. Otherwise, the input query is rewritten by replacing the previously

WHERE clause with the newly computed Wqrw (Line 48). Finally, qrw is executed over

the database.

4.5 Security Analysis

In this section, we illustrate the correctness and the completeness properties of Algorithm

3. According to [68], correctness ensures that for each tuple returned by qrw it exists

an access control policy authorizing the requestor user to gain access to it. In contrast,

the completeness property ensures that each tuple returned by the original query and

authorized to the requestor is also included in the result set of qrw.

However, supporting implicit authorizable attributes requires to revise the traditional

properties definition introduced in [68]. Moreover, it is relevant to note that, since the

proposed rewriting strategy composes the rewritten query by processing at attribute level

(i.e., explicitly authorized attribute and implicitly authorized attribute), the correctness

92 Enhance System Utility through Query Rewriting

property has to be proved at attribute level. Thus, for the correctness property we

have to show that for each tuple t returned by qrw there exists either an access control

policy authorizing the requestor user to gain access to, or there exists a non-harmful

data dependency and an access control policy that makes each attribute in t implicitly

authorizable.

Theorem 4.5.1 (Correctness.) Let q be the query submitted by user u, let qrw be

the rewritten query returned by Algorithm 3. Let Rs(q) and Rs(qrw) denote the result

set returned by q and qrw, respectively. Let DD be the set of non-harmful data depen-

dencies defined in the system. For each tuple t ∈ Rs(qrw) and for each attribute a ∈
schema(Rs(qrw)):

∃acp ∈ SysAuthu, such that

a ∈ schema(acp.obj) ∧ t[a] ∈ πa(acp.obj)5
(P.1)

or

∃dd? ∈ DD ∧ ∃acp? ∈ SysAuthu, such that

dd?.Det ⊆ schema(acp?.obj) ∧
∧ t[a] ∈ πa(V(dd?,acp?.obj)).

(P.2)

The formal proof of Theorem 4.5.1 is provided in Appendix A.

Similarly to correctness, also completeness definition has to be revised to consider

the implicitly authorization concept.

Theorem 4.5.2 (Completeness). Let q be the query submitted by user u, let qrw

be the rewritten query returned by Algorithm 3, where Rs(q) and Rs(qrw) denote the

result set returned by q and qrw, respectively. Let DD be the set of non-harmful data

dependencies defined in the system. For each tuple t ∈ Rs(qrw) and for each attribute a

∈ schema(Rs(qrw)) such that:

∃acp ∈ SysAuthu, such that

a ∈ schema(acp.obj) ∧ t[a] ∈ πa(acp.obj)
(P.1)

or

∃dd? ∈ DD ∧ ∃acp? ∈ SysAuthu, such that

dd?.Det ⊆ schema(acp?.obj) ∧
∧ t[a] ∈ πa(V(dd?,acp?.obj))

(P.2)

then t ∈ Rs(qrw).

Appendix B provides the formal proof of Theorem 4.5.2.

5We denote as t[a] the value of attribute a in the tuple t.

4.6 Truman & Non-Truman Models 93

4.6 Truman & Non-Truman Models

The Truman model has been firstly presented for query rewriting techniques by Rizvi

et al. in [60]. The truman model, as presented by authors, relies on the fact that, once

a certain user query is modified due to security constraints regulating the application

scenario, the outcoming result set is returned to the user without informing him/her

of the query modification. As such, the user would reasonably think that the received

result set gathers data retrieved from the whole database, not only from an authorized

portion of it. On the other hand, this model is weak in case users can discover, from

external data sources, some information about the data stored in the database; as such,

for example, if a certain user is aware that a database relation contains a tuple t for

which the value of an attribute a is t[a] = 5, a result set where that tuple t is removed

due to a lack of policies is inconsistent with the user query, and the user would detect

an inconsistence between the received information and the reality. For this reason Rizvi

et al. defined the non-Truman model for authorization-transparent access control. In

the original proposal, under the non-Truman model, a query has to pass a validity test

prior to the database submission; in case the query would be compliant with user’s au-

thorization, and no modification is necessary, than the query is executed normally but

rejected otherwise.

Thus, the working scenario is much more complex for our current proposal. There-

fore, our rewriting process aims to extend a current authorization policy over pieces of

data that are unauthorized; as such a validity test prior to query submission would imply

to reject all those query that the system could rewrite. Nevertheless, the rewriting pro-

cedure presented in this chapter can operate both in compliance with the truman model

with few modifications to Algorithm 3. As such, given a user u and an input query q

submitted by u, the main idea is to check whether the result set coming as output from

Algorithm 3, that is Rs(qrw), contains a different set of data rather than the expected

result set Rs(q). In this case we have to remind that the rewriting procedure runs as

a black box for users. As such, given a result set Rs(·), system users are not able to

discover whether a submitted query q has been rewritten or not, that is, to discover

whether Rs(·) ≡ Rs(q) or Rs(·) ≡ Rs(qrw).

At last we should consider that, given a user u and an input query q, if the received

result set comes from the rewriting procedure, that is, if Rs(q′) is produced as output,

this would imply that Rs(q) ≡ ∅ due to a lack of authorizations in case q would be

processed without the presented techniques. Then, we introduce the following validity

test for the non-Truman model.

Definition 4.6.1 (Validity test).

94 Enhance System Utility through Query Rewriting

The validity test vt : (user, query) 7→ {true, false} for the rewriting procedure described

in Algorithm 3 takes as input a user and a query submitted by the user itself and produces

as output a boolean value computed as follows:

validity(u, q) =

{
true if Rs(q) ≡ Rs(qrw)

false otherwise
(4.5)

where Rs(q) and Rs(q′) are the result sets relative to query q prior and after the rewriting

procedure, both computed by a root-level super user.

As such, given a user u and an input query q, the query q is said to be valid under

the non-Truman model in case the validity test validity(u, q) = true, that is, the result

set produced by the rewriting procedure Rs(qrw) contains the same information as the

result set Rs(q) obtained by bypassing the authorization controls for user u and without

modifying the input query. Then, for what concerns Algorithm 3, a query q is said to be

valid according to the non-Truman model for user u in case the clauses introduced by

rewriting procedure doesn’t modify the output result set respective to the query itself.

Finally, we can state that the procedure described in Section 4.4 is able to run according

the non-Truman model if, when the procedure rewrites an input query q, the rewritten

query q′ is returned only in case validity(u, q) = true, where u is the current system

user.

4.7 Experimental Evaluation

In order to prove the suitability of the presented proposal within existing DBMS scenar-

ios, we carried out an intensive suite of tests over real database schemas. All experiments

described in this section have been carried out by exploiting Java programming language

and the relational DBMS MySQL. Experiments run on a MacBook Pro equipped with

a 2.6 GHz Intel i7 and 8 GB of RAM. In order to be as close as possible to a real-life

scenario, we select a real database schema and related access control policies as well.

Thanks to authors in [8], who exploited a dataset extracted from FQL reference schema,

we have been able to test our rewriting procedure on a dataset composed by both real

entities and real access control policies.

The test schema is composed of 19 relations, coming from FQL entities6, and 75

access control permissions, that represent the Facebook standard permissions over the

schema entities. These have been translated into authorization on SQL views over the

considered relations. As such, the test schema gathers tables for picture albums, applica-

tion interactions, check-in into places, event participations, friendship relations, groups,

6Facebook Query Language:

https://developers.facebook.com/docs/reference/fql

4.7 Experimental Evaluation 95

0,2 0,7 1 ,2 1 ,7 2 ,2 2 ,7 3 ,2 3 ,7 4,2 4,7

R
e
w
r
i
t
ii
n
g
s

[%]

1 6

1 4

1 2

1 0

8

6

4

2

0

80%
60%

40%

2 0%

1 00%

Q u ery Com plexity [λ]

(a) Successful rewritings

Q u ery Com plexity [λ]
0,2 0,7 1,2 1,7 2,2 2,7 3,2 3,7 4 ,2 4 ,7

6

5

4

3

2

1

00

C
o
r
r
e
l
aa
t
i
o
n
L
e
aa
k
a
g
e

[%]

20%

4 0%

60%

80%

100%

(b) Discovered correlation leakages

0 ,2 0 ,7 1,2 1,7 2,2 2,7 3,2 3,7 4 ,2 4 ,7
Q uery Com plexity [λ]

16

14

12

10

8

6

44

2

0
12,5 %

25 %

37,5 %
5 0 %

62,5 %

75 %

87,5 %

10 0 %

(c) Data dependency impact

Figure 4.4: Experimental results

text notes, videos and users data. Authorization views, such as “a user can see all public

pictures” or “a user can see all the pictures of his friends, where the visibility is set to

‘only friends’ or ‘public’ ” have been translated into authorization on SQL views like the

followings:

· SELECT * FROM photo WHERE visible=‘everyone’;

· SELECT * FROM photo WHERE visible=‘everyone’

OR visible=‘friends’ AND photo.owner IN (

SELECT uid1 FROM friends WHERE uid2=me()

);

The test users have been granted access only over these 75 views, whereas it has no

authorizations on the 19 base relations.

Analyzing the FQL relational schema, we have been able to define a set of 56 data

dependencies, including functional dependencies, foreign key constraints, and knowledge-

based implications. The system have been tested with randomly generated queries, ex-

ploiting the query generator presented in [8]. This query generator takes as input a

96 Enhance System Utility through Query Rewriting

relational schema and a parameter λ, which regulates the generated query complexity

in terms of number of selected attributes and queried tables, following a Poisson distri-

bution. The queries are generated following a template file that contains simple queries,

nested queries and correlated queries that exploit EXISTS operator. All tests have been

carried out by varying λ in [0.2, 5.0] with steps of 0.2. Given the value of λ and the num-

ber n of access control policies granted to the test users, every test has been repeated

100 times.

The first experiment concerned the output produced by Algorithm 3 by varying the

number of applicable access control policies. In each round, n out of the 75 views have

been randomly authorized for the test user, and the input dataset has been composed

of 500 randomly generated queries. We considered only the average of the number of

successful rewritings obtained at each round.

Figure 4.4a depicts the results of such experiments for what concerns the number

of successfully rewritten queries out of the 500 input queries. Figure 4.4b depicts the

number of correlation leakages detected by Algorithm 3. In both figures, we report the

results obtained with different number of authorized policies. The graphs depict the re-

sults obtained with, respectively, 75, 60, 45, 30, and 15 authorized policies. The results

are given in terms of percentages.

Comparing Figures 4.4a and 4.4b, we can note how the number of authorized access

control policies have much more impact over the correlation detection than over the

successfully rewritings. On the other hand, for what concerns the number of successful

rewritings, the highest impact is given by the query complexity. Therefore, the higher

the number of queried attribute is, the more chances we have that at least one of these

attributes is neither explicitly nor implicitly authorizable.

The second experiment has been carried out in order to investigate the impact of

available data dependencies over Algorithm 3. This experiment has been carried out

following the same method as the first experiment; as such, the λ parameter is made

vary in [0.2, 5.0] and the round are repeated 100 times. Each round of this experiment

has been run with a different set of data dependencies, randomly selected out of the

56 data dependencies detected in the FQL schema. Results are summarized in Figure

4.4c by considering, respectively, 56, 49, 42, 35, 28, 21, 14, and 7 data dependencies.

From the graph in Figure 4.4c we can note the key role are data dependencies in the

query rewriting process. As such, the more dependencies are available at runtime, the

better the results are, for what concerns successful query rewritings. Even thought the

best results are given on simple queries (e.g., selection of one attribute from one table),

when an adequate number of data dependencies is available the presented procedure

successfully rewrites about 10% out of the input queries even for non trivial queries.

4.7 Experimental Evaluation 97

Given the obtained results, we believe that our proposal may be easily implemented

as part of the DBMS itself without any sensible impact over performance and users’

experience. Moreover, the obtained results (see Figures 4.4a, 4.4b, and 4.4c) convince

us that the impact of these techniques on a real-life scenario could significantly increase

the DBMS utility, in terms of ability to successfully answer input queries.

5
Review of Literature

Decentralized Social Networks, since firstly presented in [71], have been thoroughly stud-

ied from different point of views. Nevertheless, many of the topics treated in our works

were already discussed in literature. As such, this chapter gathers a comprehensive re-

vision of the topics encountered in our research, providing dedicated sections in which

any single topics is analyzed in details.

5.1 Secure information sharing in Social Networks

In recent years Decentralized Social Networks continuously grew in interest thanks to

their potentialities. Indeed, the federated paradigm upon which DSN are built ensures

DSN users’ much more protection over sensitive information rather than centralized

social networks.

Protect users’ resources

Despite Tim Berners-Lee et al. presented in [71] only a theoretical model for DSNs,

literature gathers several examples for a practical DSN implementation. Without gath-

ering practical details concerning each implementation, among these it is important to

mention Diaspora [2, 11] and OneSocialWeb [3].

Whereas Diaspora has been designed as an alternative to commercial social networks

and it plans to replace them, OneSocialWeb has a wider target and it allows in its feder-

ation any kind of application. As such, one could imagine Diaspora like a decentralized

99

100 Review of Literature

version of Facebook; on the other hand, though, OneSocialWeb implements both the

classical social features (e.g., user profiles, wallboards, activity streams, etc.) and tech-

nical novelties such as fine-grained access control. Moreover, it offers any developer a

suite of APIs with which any application can be integrated into OneSocialWeb.

Other remarkable examples of federated social networks are Persona [6], SafeBook [24,

23], PeerSoN [16], Vegas [29], Vis-à-Vis [61] and DECENT [44].

Given the lack of commercial interests for DSN, though, literature contains proposals

tailored for centralized social networks as well. Among these we mention Scramble! [7],

FaceCloak [49], Lockr [67] or Trust&Share [18]. Proposals like Scramble!, FaceCloak or

Trust&Share exploit third-party storage services to replace the OSN standard storage

and offer OSN users access control models that extend the one implemented by the OSN

provider. As example Scramble! let OSN users define access control lists of authorised

users for each piece of data, based on their preferences. Trust&Share, differently, let

OSN users assign trust values to the relationships existing on the social graph and let

them define access control policies based on such trust values. Similarly, FaceCloak

provides a browser plug-in pushing fake information to the OSN providers and storing

any sensitive data on a separated data storage.

Social graph anonymization

Differently from the above mentioned proposals, whose target is to protect users’ re-

sources such as personal profiles or UGCs, in order to protect the information gathered

by the social graph requires a different approach, such as by anonymizing the social

graph. The literature offers several techniques for graph anonymization, where most of

them anonymize the graph by either clustering nodes (e.g., [10, 17, 42]) or graph modi-

fication (e.g., [31, 43, 48]).

However, all of them have been designed under two common assumptions. The first is

that the anonymization process is carried out on the whole graph. The second consists

in anonymizing the graph by modifying its topology (i.e., adding/deleting edges).

Unfortunately, these techniques cannot be applied to our scenario, since they either as-

sume that the social graph is centralized in the social network provider or they bring to a

data loss that is not acceptable for a relationship-based access control. In fact, adding a

fake edge between existing nodes might create a new path satisfying some relationship-

based rules, with the serious consequence of improper resource release. In contrast,

deleting an edge might delete some real path making some rules no more satisfied and,

as consequence, making the corresponding resource no more available to authorized users.

To the best of our knowledge the only work that assumes a decentralized scenario is

the one by Terzi et al. [31]. Authors in [31], indeed, present a technique able to recon-

struct a graph exploiting neighborhood information by exploiting a biadjacency matrix

5.2 Social privacy recommender 101

that underlies the social graph. This data structure, thus, may represent a structure

with a slightly different topology from the original graph, and does not appear suitable

to be coupled with a RelBAC enforcement. Furthermore it is important to mention

[14] since, to the best of our knowledge, is the only work proposing a collaboration

among users for computing privacy-preserving operations over graphs, without editing

their topology. Unfortunately, algorithms presented in [14] are suitable only to solve

path-finding problem on path of length ≤ 2.

5.2 Social privacy recommender

To the best of our knowledge, Fang and LeFevre [32] were the first to analyze the prob-

lem of privacy recommendation in a social network scenario. As such, they presented

an automated wizard with the aim to assist OSN users in defining their own privacy

settings, by learning OSN users’ attitude towards their own privacy. By means of a

survey, each user is asked to explicitly select which of his/hers contacts should see given

pieces of information (e.g., date of birth, address). User’s choices are then exploited to

feed a binary classifier, which is capable of learning even from publicly available data

(e.g., public relationships, public user’s profiles). With those data, then, the wizard

presented in [32] suggests either to grant or deny other OSN users to see the considered

user’s information.

After the proposals by Fang and LeFevre, then, many other authors followed their foot-

steps, proposing novel and inspiring recommender systems with the aim to help social

network users in making their decisions.

Social networks recommendation tools

For what concerns social recommender many authors mainly focused on suggesting users

to establish new relationships, but without focusing on the possible privacy issues that

this would bring to others. Authors in [63], as example, proposed a recommendation

system for signed social networks, that is, those networks in which there exists both pos-

itive and negative connections between users. As such, by labeling relationships only as

“friend” or “foe”, authors analyze the social network so as to infer, and suggest, missing

links with the more proper label.

Zhao et al. in [73] presented a remarkable proposal for what concerns social recommen-

dation; indeed, to the best of our knowledge, authors were the first to analyze trust

values and topics along with a recommender system. Authors, then, tried to solve the

cold start problem by enlarging the base knowledge of a certain user with the people

trusted by him/her and according the considered topics. Unfortunately, authors’ atten-

tion is limited in anaylizing the social graph, without focusing on other social features.

Another notable work is gathered in [38], in which Gou et al. present SFViz, an interac-

102 Review of Literature

tive tool to visualize the existing relationships that a given user has in a Social Network.

All the relationships of a given users are separated and visualized per interest, that is, per

community. Authors in [38] present as well a recommendation procedure that is based

on the analysis of users’ profile and topological similarity. Thus, the recommendation

system presented in [38] suggests users new potential relationships to be estabilished in

the social network.

Privacy settings recommendation tools

Munemasa et al., in [52], proposed a system that recommends social network users in

changing their privacy settings. As such, the recommendation system presented in [52]

aims to help users in define which of their information could be visible to other users

and which data should be kept as private. Unlike [32], though, authors in [52] base

their learning process on a widespread analysis of OSN users profiles, analyzing how

these users protect their information (i.e., how they set their privacy settings) based on

some profile attribute values, such as age, gender or relationship status. Unfortunately,

Munemasa et al. do not take into account to extend such process to protect other kind

of resources but they only aim to protect profile information.

Shehab et al. [62] proposed a policy recommendation system based on an iterative

semi-supervised learning approach. In this proposal, social network users are asked to

manually label a set of their contacts, specifying whether these contacts should be allowed

or not to see their information. Thanks to these information, then, Shehab et al. propose

to propagate the labels throughout the social graph, so as to reduce users’s efforts. Unlike

[32] or other previous works, Shehab et al. introduce a recommendation process that

exploit the properties of the social graph in the recommendation phase. Nevertheless,

the techniques presented in [62] only focuses on privacy labels (e.g., “allow”/“deny”) to

be assigned to other users so as to authorize or not their requests.

Another remarkable proposal provided by [70], in which authors focus on a proper and

secure information release concentrating on the dynamics that underlies users’ location

sharing privacy preferences. Indeed, [70] gathers a thoughtful analysis on how people

are keen on sharing their own location. With more details, Xie et al. are concerned with

studying how users are used to share their physical location (e.g., airport, restaurant,

etc.) according to the time of the day, companion and emotion. Moreover, thanks to

the results of such analysis, authors present a location sharing recommendation system

with the aim to help users in sharing their location. Furthermore, the learning process

in [70] analyzes the similarity between users and between scenarios (i.e., locations) and

tries to extract, given a user u and a scenario s, the most accurate privacy policy.

At last we mention [58], whose authors propose an approach that turns out to be very

close to our proposal. Indeed, Reinhardt et al. recognized that OSN users should

be helped in defined proper access control policies for each resource they share in the

5.2 Social privacy recommender 103

network. Authors’ approach consist in analyzing the sensitiveness of the resource to be

posted on the social network and the strength of the relationships in the social graph

so as to combine a privacy policy to be suggested. Though, one of the limits of the

proposal presented in [58] consists in recommend social network users privacy policies

represented simply by list of authorized users.

5.2.1 Access control enforcement by query rewriting

Part of our researches have been related to define a query rewriting technique capable

of safely extending authorizations granted by access control policies, exploiting data de-

pendencies. These works have been extensively inspired by many proposals concerning

inference channel detection.

Security models to protect data management systems from inference channels have

been thoughroly investigated since early ’80s by Denning[27, 28], by Thuraisingham

[64, 65], and, more recently, by Bertino [9].

As highlighted by Farkas and Jajodia in [33], techniques for detecting and removing in-

ference channels can be grouped into two main categories: (i) those removing inference

channels at design time, and (ii) those that eliminate inference channels at query time.

Among the first group of proposals it is worth to mention [40], which introduces

the concept of catalytic relation to model those inference channels arising from exter-

nal knowledge. To the best of our knowledge, this paper is the first that presents an

hypergraph-based model to analyze and detect inference channels. Hinke and Delugach,

in [26], present Wizard, an automated system capable of detecting inference channels

over a structured set of data. They exploit a conceptual graph, rather then an hyper-

graph, to model the inference channels.

Similarly to [40], also [26] considers to merge the provided data structures with human-

supplied external information, in order to detect the more inference channels as possible.

[51] defines the concept of sphere of influence (SOI) as a tool to analyze all possible in-

ferences that can arise from a given core, that is, a piece of information. In defining

the sphere of influence, authors considers the provided data structures, user external

knowledge, and additional data that may be derivable or inferrable. By means of these

information, then, authors highlight any possible inference channel so as to inform any

system administrator about their existence.

The second category, thus, collects those proposal that enforces checks at query

time. Denning proposes in [27] a filter-based technique that acts as a proxy between

the users and the data management system, avoiding any unauthorized data disclosure

by means of authorization views. The proposed technique consists in comparing the

104 Review of Literature

result set coming from a data management filter, that returns only authorized data,

and the result set coming from the database. In case the result sets are equivalent,

then, the response is sent to users. [65] proposes a query modification technique aiming

at preventing unauthorized data inference, considering external knowledge as well. It

exploits a logic-based architecture where an inference detection engine working with an

inference rules repository supports system administrator in detecting possible inference

channels existing in the data management system. These above mentioned proposals

analyze the structure of the submitted query and, if an inference channel is detected,

the query is then rejected or modified, avoiding any unauthorized data release.

6
Conclusion

Decentralized Online Social Networks (DSNs), as firstly presented by Tim Berners-Lee

et al. in [71], emerged as a valid and promising solution for moving users’ personal data

out from OSN realms. However, as properly emphasized in [11], it has been shown that

DSNs suffer of given limitations that lead them to suffer of the same issues as centralized

OSNs.

In this thesis we present the proposals we have developed to tackle some of the most

significative problems that Decentralized Social Networks (DSNs) suffer of.

Summary

First of all, we have investigated the possibility to implement new technologies enabling

DSN architecture to lay on modern cloud-based storage services in order not to burden

on DSN users’ offering, at the same time, a safe and secure social networking service.

Then, so as to implement a cloud-based privacy-preserving information sharing service,

we had to deal with many challenges.

As such, in order to let the DSN provider perform a privacy-preserving RelBAC

enforcement, we have designed a collaborative anonymization technique for the social

graph.

We are aware that current literature offers several techniques for graph anonymization

(e.g., [10, 17, 42, 31, 43, 48]). Unfortunately, none of these fulfilled our requirements,

that is, a decentralized anonymization process and the possibility to verify the existence

105

106 Conclusion

of a given connection between nodes without exposing users’ privacy.

The presented technique allows to store into a polynomial the local view that every user

has of the social graph. The composition of this polynomial enable each DSN user to

represent, in an anonymized form, all of his direct contacts and, at the same time, makes

it easy to verify wether a connection between two users exists or not.

Along with this anonymization technique, we have extended the current DSN architec-

ture by means of a 4-party architecture, so as to implement a secure management of

users’ resources stored in the public cloud. With more details, we have decided to (i)

encipher any user resource directly at client-side by means of a Cipher Service (CS)

and to (ii) split the process of generation of the encryption keys between two separate

additional entities of the extended architecture. In particular, the key generation scheme

implies that only CS is able to compute the key, whereas the two entities which gener-

ates the parameters from which the encryption key is derived are not able to compute

it. Moreover these two entities, which are the Rule Manager Service (RMS) and

the Key Manager Service (KMS), are in charge of, respectively, storing the users’

RelBAC policies and storing into the cloud-based storage service the users’ resources.

After the definition of the above illustrated proposals, we have worked on the defi-

nition of novel techniques with the aim of handling misconfigured RelBAC policies.

Indeed, it is nowadays well accepted that the definition of access control policies is an

error-prone task. As such, in a scenario where always more frequently personal and sen-

sitive information is exchanged among users, misconfigured access control policies may

cause to expose other users’ privacy. As an example, if a certain users shares a picture

setting erroneously its RelBAC policy as public, then even the privacy of every person

depicted in such picture would be exposed.

Moreover, it emerged that social network users have difficulties in defining RelBAC rules

that properly express their attitude towards their own privacy, as underlined in [39, 50].

For these reasons, in order to limit the RelBAC policies misconfiguration issue, we have

worked on a privacy settings recommender able to assist users in defining tailored and

customized RelBAC policies.

Unfortunately, since the definition of a RelBAC policy is influenced by many factors, we

had to keep into account that each individual performs a different decision process to

decide how a resource has to be released in DSN. In addition to this subjective aspect,

we have also acknowledged that the decision an individual might take on resource re-

lease is greatly impacted by resource’s contents. Based on these observations, we have

designed a recommendation system such that, given a certain DSN user, at first it learns

the correlation that exists between a resource properties and the RelBAC policy that

he/she is used to define for sharing resources with that property values. Then, each

time a DSN user wants to upload a new resource into the platform, the recommender

107

exploits the learned correlations to select the policies that are related to topics of the new

resource. Finally, it generates a new access control policy by combining the retrieved

ones, returning to the considered user as a customized suggestion.

On the other hand, misconfigured RelBAC policies may even lead to an exacerbated

data restriction that brings to a loss of utility to the DSN users. As an example, let

assume that a certain DSN user uploads in the network a given picture, both in low and

high resolution version. In case the considered user defines a RelBAC policy authorizing,

erroneously, only the hi-res version of the picture, no user would be granted to access

the low-res one, even though the authorization over a larger set of information (i.e., the

hi-res picture) exists.

As such, we have investigated the possibility to augment the RelBAC enforcement engine

with a flexible and secure strategy capable of releasing information even when an explicit

authorization are not granted.

With more details, we have first defined the concept of “implicit authorization” so as to

denote all those information that could be safely released. As such, we have defined as

implicitly authorizable all those data for which do not exists an explicit access control

policy authorizing their release but they can be harmlessly released nonetheless. Thus,

this harmless release is realized by means of the existence of implications able to extend

an existing access control policy from some explicitly authorized data to the implicitly

authorized data. Then, we have designed a technique capable of exploiting all the existing

data dependencies (i.e., any correlation between elements) as a mean for increasing the

system utility, that is, the number of queries that can be safely answered. As last, we have

defined a query rewriting technique capable of extending defined access control policy

authorizations by exploiting data dependencies, in order to authorize unauthorized but

inferable data.

Future Developments

Cloud-based secure information sharing. Despite our proposed techniques have al-

ready been tested in a real life scenario by means of a Facebook application, we

believe that further extensions can be developed. For instance, we plan to imple-

ment a plugin for any DSN provider so as to enable any existing DSN service to

exploit our proposal.

Moreover, we plan to enhance the privacy preserving RelBAC evaluation so as to

support more expressive access control rules. We also wish to enhance our studies

of oblivious polynomial evaluation techniques [53], and introduce them in the col-

laborative graph construction process to avoid the information leakage presented

in Section 2.5.2.

108 Conclusion

Privacy settings recommender. As briefly described in Section 3.2.1, we are aware

that there have been proposed data mining algorithms with better performances

rather than the Apriori algorithm. As such, we plan to refine the presented tech-

niques so as to support these algorithms (e.g., Eclat, FP-Growth) so as to improve

the quality of the suggestion techniques and to enhance the support techniques.

Moreover, plan to cope with the cold start problem of the recommender feeding

the system with more information, as example, taken from OSN communities by

exploiting techniques like the ones presented [38]. As another fundamental exten-

sion, it is required to analyze different techniques to evaluate the accuracy of the

presented recommender. As such, we plan to consider a ReBAC similarity metric

so as to evaluate the soundness of the recommended policies. At last, we would like

to implement the presented technologies directly inside the architecture presented

in Chapter 2.

Query rewriting engine. For what concerns the proposed query rewriting techniques,

we plan to extend it following different directions. At first, as mentioned for our

privacy settings recommender, we plan to implement a RelBAC enforcement engine

that supports the presented query rewriting technique inside the plugin mentioned

before.

Moreover, as highlighted by Rizvi et al. in [60], query rewriting techniques may

return user misleading or incomplete data. As such, we plan to broaden the scope

of our proposal to consider malformed access control policies so as to increase even

more the intrinsic utility of the implementing system.

Then, by implementing the above introduced DSN-plugin, this would enable any

current DSN provider to easily exploit the presented techniques, without any particular

development issue leading, thus, DSN users to a more aware and self-conscious usage of

DSN platforms.

7
Appendices

109

110 Appendices

A Query Rewriting Correctness Proof

Proof: We proof Theorem 4.5.1 by showing that if ∃t? ∈ Rs(qrw) such that ∃a ∈
schema(Rs(qrw)), for which neither P.1 nor P.2 hold, then a contradiction arises.

If P.1 does not hold, it means that there is no policy authorizing t?, thus a? is not

contained into authorizedAttributesq but it is still in requestedAttributesq computed in

Line 4 of Algorithm 3. The algorithm then checks each table specified in Fq. When the

one, say T ?, to which t? belongs is considered, the if condition in Line 7 is satisfied. After

the execution of Line 8, unauthorizedAttributesq contains a?. When a? is considered in

for cycle in Line 10, since P.2 does not hold, we might have two cases: (i) there exists

no data dependency that implies attribute a?; (ii) there exists no data dependency that

implies attribute a? such that the dependency determinant is explicitly authorized for

u.

Let us consider the first case (i), that is, that no data dependency in DD implies

attribute a?. As such, the dependenciesForAttribute set computed at Line 10 is empty.

Thereby, the conditional statement at Line 11 is not verified and the computation goes

at Line 32, where the algorithm stops and returns a message to inform that the query

is not authorized. Thus, a contradiction arises.

In the second case (ii), there exists at least one data dependency dd? with a? ∈ dd?.Dep
but there is no access control policy authorizing u to access dd?.Det. In this case,

the condition in Line 11 is satisfied (i.e., dependenciesForAttribute 6= ∅), but the

PoliciesForDeterminant set is empty. This brings the algorithm to remove dd? from

dependenciesForAttribute, thus making the if condition in Line 18 false. As such,

algorithm jumps to line 29, stops and returns an unauthorized message. Thus, a con-

tradiction arises. �

B Query Rewriting Completeness Proof

Proof: Similarly to Theorem 4.5.1, we proof Theorem 4.5.2 by contradiction. In par-

ticular, we show that if there exists a tuple t? ∈ Rs(q) such that there exists an attribute

a? ∈ schema(Rs(q)) to which properties P.1 and P.2 do not apply and t? ∈ Rs(qrw),

then a contradiction arises.

If P.1 does not hold for a?, it implies that there is no policy authorizing t?. Thus,

similarly to the proof of Theorem 4.5.1, the if condition in Line 7 is satisfied. However,

since P.2 does not apply, it means that: (i) there exists no data dependency that implies

attribute a?; (ii) there exists no data dependency that implies attribute a? such that the

B Query Rewriting Completeness Proof 111

dependency determinant is explicitly authorized for u.

Let us consider the first case (i). Since no data dependency is available, the if

condition in Line 11 is not satisfied, thus Algorithm jumps to Line 32, stops and returns

an unauthorized message. As such a contradiction arises, since the assumption that

t? ∈ Rs(qrw) implies that a rewritten query is returned.

In the second case (ii), we have that there exists at least one data dependency dd? with

a? ∈ dd?.Dep but there is no access control policy authorizing u to access dd?.Det. In

this case, the if condition in Line 11 is satisfied (i.e., dependenciesForAttribute 6= ∅),
but the PoliciesForDeterminant set is empty. This brings the algorithm to remove

dd? from dependenciesForAttribute, thus making the if condition in Line 18 false. As

such, algorithm jumps to line 29, stops and returns an unauthorized message. Thus,

a contradiction arises, since the assumption that t? ∈ Rs(qrw) implies that a rewritten

query is returned. �

Bibliography

[1] Oasis XACML 3.0 Standard. http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-

spec-os-en.pdf.

[2] The Diaspora* Blog. https://blog.diasporafoundation.org/.

[3] The OneSocialWeb Project Website. http://onesocialweb.org/.

[4] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. Mining association rules

between sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD

International Conference on Management of Data, SIGMOD ’93, pages 207–216,

New York, NY, USA, 1993. ACM.

[5] Lars Backstrom, Cynthia Dwork, and Jon Kleinberg. Wherefore art thou r3579x?:

Anonymized social networks, hidden patterns, and structural steganography. In

Proceedings of the 16th International Conference on World Wide Web, WWW ’07,

pages 181–190, New York, NY, USA, 2007. ACM.

[6] Randy Baden, Adam Bender, Neil Spring, Bobby Bhattacharjee, and Daniel Starin.

Persona: An online social network with user-defined privacy. In Proceedings of the

ACM SIGCOMM 2009 Conference on Data Communication, SIGCOMM ’09, pages

135–146, New York, NY, USA, 2009. ACM.

[7] Filipe Beato, Markulf Kohlweiss, and Karel Wouters. Scramble! your social network

data. In Proceedings of the 11th International Conference on Privacy Enhancing

Technologies, PETS’11, pages 211–225, Berlin, Heidelberg, 2011. Springer-Verlag.

[8] Gabriel Bender, Lucja Kot, and Johannes Gehrke. Explainable security for rela-

tional databases. In Proceedings of the 2014 ACM SIGMOD International Con-

ference on Management of Data, SIGMOD ’14, pages 1411–1422, New York, NY,

USA, 2014. ACM.

[9] Elisa Bertino. Data protection from insider threats, volume 4. Morgan & Claypool

Publishers, 2012.

113

114 BIBLIOGRAPHY

[10] Smriti Bhagat, Graham Cormode, Balachander Krishnamurthy, and Divesh Sri-

vastava. Class-based graph anonymization for social network data. Proc. VLDB

Endow., 2(1):766–777, August 2009.

[11] A. Bielenberg, L. Helm, A. Gentilucci, D. Stefanescu, and Honggang Zhang. The

growth of diaspora - a decentralized online social network in the wild. In 2012

Proceedings IEEE INFOCOM Workshops, pages 13–18, March 2012.

[12] Joachim Biskup, David W. Embley, and Jan-Hendrik Lochner. Reducing infer-

ence control to access control for normalized database schemas. Inf. Process. Lett.,

106(1):8–12, March 2008.

[13] Joachim Biskup, Sven Hartmann, Sebastian Link, and Jan-Hendrik Lochner. Effi-

cient inference control for open relational queries. In Proceedings of the 24th Annual

IFIP WG 11.3 Working Conference on Data and Applications Security and Privacy,

DBSec’10, pages 162–176, Berlin, Heidelberg, 2010. Springer-Verlag.

[14] Justin Brickell and Vitaly Shmatikov. Privacy-preserving graph algorithms in the

semi-honest model. In Proceedings of the 11th International Conference on Theory

and Application of Cryptology and Information Security, ASIACRYPT’05, pages

236–252, Berlin, Heidelberg, 2005. Springer-Verlag.

[15] Alexander Brodsky, Csilla Farkas, and Sushil Jajodia. Secure databases: Con-

straints, inference channels, and monitoring disclosures. IEEE Trans. on Knowl.

and Data Eng., 12(6):900–919, November 2000.

[16] Sonja Buchegger, Doris Schiöberg, Le-Hung Vu, and Anwitaman Datta. Peerson:

P2p social networking: Early experiences and insights. In Proceedings of the Second

ACM EuroSys Workshop on Social Network Systems, SNS ’09, pages 46–52, New

York, NY, USA, 2009. ACM.

[17] A. Campan and T. M. Truta. A clustering approach for data and structural

anonymity in social networks. In Proceedings of the 2nd ACM SIGKDD Interna-

tional Workshop on Privacy, Security, and Trust in KDD (PinKDD’08), in Con-

junction with KDD’08, 2008.

[18] B. Carminati, E. Ferrari, and J. Girardi. Trust and share: Trusted information

sharing in online social networks. In 2012 IEEE 28th International Conference on

Data Engineering, pages 1281–1284, April 2012.

[19] Barbara Carminati and Elena Ferrari. Access control and privacy in web-based

social networks. International Journal of Web Information Systems, 4(4):395–415,

11 2008.

BIBLIOGRAPHY 115

[20] Barbara Carminati, Elena Ferrari, and Andrea Perego. Rule-based access control

for social networks. In Proceedings of the 2006 International Conference on On the

Move to Meaningful Internet Systems: AWeSOMe, CAMS, COMINF, IS, KSin-

BIT, MIOS-CIAO, MONET - Volume Part II, OTM’06, pages 1734–1744, Berlin,

Heidelberg, 2006. Springer-Verlag.

[21] Barbara Carminati, Elena Ferrari, and Andrea Perego. Enforcing access control in

web-based social networks. ACM Trans. Inf. Syst. Secur., 13(1):6:1–6:38, November

2009.

[22] Yuan Cheng, Khalid Bijon, and Ravi Sandhu. Extended rebac administrative mod-

els with cascading revocation and provenance support. In Proceedings of the 21st

ACM on Symposium on Access Control Models and Technologies, SACMAT ’16,

pages 161–170, New York, NY, USA, 2016. ACM.

[23] L. A. Cutillo, R. Molva, and M. Önen. Safebook: A distributed privacy preserv-

ing online social network. In 2011 IEEE International Symposium on a World of

Wireless, Mobile and Multimedia Networks, pages 1–3, June 2011.

[24] L. A. Cutillo, R. Molva, and T. Strufe. Safebook: A privacy-preserving online social

network leveraging on real-life trust. IEEE Communications Magazine, 47(12):94–

101, Dec 2009.

[25] Eman Yasser Daraghmi and Yuan Shyan Ming. Using graph theory to re-verify the

small world theory in an online social network word. In Proceedings of the 14th

International Conference on Information Integration and Web-based Applications

& Services, IIWAS ’12, pages 407–410, New York, NY, USA, 2012. ACM.

[26] Harry S. Delugach and Thomas H. Hinke. Wizard: A database inference analysis

and detection system. IEEE Trans. on Knowl. and Data Eng., 8(1):56–66, February

1996.

[27] D. E. Denning. Commutative filters for reducing inference threats in multilevel

database systems. In 1985 IEEE Symposium on Security and Privacy, pages 134–

134, April 1985.

[28] Dorothy E. Denning. Annual review of computer science: Vol. 3, 1988. chapter

Database Security, pages 1–22. Annual Reviews Inc., Palo Alto, CA, USA, 1988.

[29] M. Dürr, M. Maier, and F. Dorfmeister. Vegas – a secure and privacy-preserving

peer-to-peer online social network. In 2012 International Conference on Privacy,

Security, Risk and Trust and 2012 International Confernece on Social Computing,

pages 868–874, Sept 2012.

116 BIBLIOGRAPHY

[30] W. F. Ehrsam, C. H. W. Meyer, J. L. Smith, and Tuchman W. L. Message ver-

ification and transmission error detection by block chaining. US Patent 4074066,

1976.

[31] Dóra Erdős, Rainer Gemulla, and Evimaria Terzi. Reconstructing graphs from

neighborhood data. ACM Trans. Knowl. Discov. Data, 8(4):23:1–23:22, August

2014.

[32] Lujun Fang and Kristen LeFevre. Privacy wizards for social networking sites. In

Proceedings of the 19th International Conference on World Wide Web, WWW ’10,

pages 351–360, New York, NY, USA, 2010. ACM.

[33] Csilla Farkas and Sushil Jajodia. The inference problem: A survey. SIGKDD

Explor. Newsl., 4(2):6–11, December 2002.

[34] Philip W.L. Fong. Relationship-based access control: Protection model and policy

language. In Proceedings of the First ACM Conference on Data and Application

Security and Privacy, CODASPY ’11, pages 191–202, New York, NY, USA, 2011.

ACM.

[35] Charles Fried. Privacy. The Yale Law Journal, 77(3):475–493, 1968.

[36] Joachim von zur Gathen and Jrgen Gerhard. Modern Computer Algebra. Cambridge

University Press, New York, NY, USA, 3rd edition, 2013.

[37] Jennifer Golbeck. Using trust and provenance for content filtering on the semantic

web. In Proceedings of the Workshop on Models of Trust on the Web, at the 15th

World Wide Web conference, 2006.

[38] Liang Gou, Fang You, Jun Guo, Luqi Wu, and Xiaolong (Luke) Zhang. Sfviz:

Interest-based friends exploration and recommendation in social networks. In Pro-

ceedings of the 2011 Visual Information Communication - International Symposium,

VINCI ’11, pages 15:1–15:10, New York, NY, USA, 2011. ACM.

[39] Ralph Gross and Alessandro Acquisti. Information revelation and privacy in online

social networks. In Proceedings of the 2005 ACM Workshop on Privacy in the

Electronic Society, WPES ’05, pages 71–80, New York, NY, USA, 2005. ACM.

[40] John Hale and Sujeet Shenoi. Catalytic inference analysis: Detecting inference

threats due to knowledge discovery. In Proceedings of the 1997 IEEE Symposium

on Security and Privacy, SP ’97, pages 188–, Washington, DC, USA, 1997. IEEE

Computer Society.

BIBLIOGRAPHY 117

[41] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without candidate

generation. In Proceedings of the 2000 ACM SIGMOD International Conference on

Management of Data, SIGMOD ’00, pages 1–12, New York, NY, USA, 2000. ACM.

[42] Michael Hay, Gerome Miklau, David Jensen, Don Towsley, and Philipp Weis. Resist-

ing structural re-identification in anonymized social networks. Proc. VLDB Endow.,

1(1):102–114, August 2008.

[43] Michael Hay, Gerome Miklau, David Jensen, Philipp Weis, and Siddharth Srivas-

tava. Anonymizing social networks. Technical report, 2007.

[44] S. Jahid, S. Nilizadeh, P. Mittal, N. Borisov, and A. Kapadia. Decent: A decentral-

ized architecture for enforcing privacy in online social networks. In 2012 IEEE In-

ternational Conference on Pervasive Computing and Communications Workshops,

pages 326–332, March 2012.

[45] B. Kaliski. RFC 2315. http://tools.ietf.org/html/rfc2315, 1998.

[46] Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina. The eigentrust

algorithm for reputation management in p2p networks. In Proceedings of the 12th

International Conference on World Wide Web, WWW ’03, pages 640–651, New

York, NY, USA, 2003. ACM.

[47] Ralph Levien. PhD. Thesis: Attack Resistant Trust Metrics.

http://www.levien.com/thesis/compact.pdf, 2004.

[48] Kun Liu and Evimaria Terzi. Towards identity anonymization on graphs. In Pro-

ceedings of the 2008 ACM SIGMOD International Conference on Management of

Data, SIGMOD ’08, pages 93–106, New York, NY, USA, 2008. ACM.

[49] Wanying Luo, Qi Xie, and Urs Hengartner. Facecloak: An architecture for user

privacy on social networking sites. In Proceedings of the 2009 International Con-

ference on Computational Science and Engineering - Volume 03, CSE ’09, pages

26–33, Washington, DC, USA, 2009. IEEE Computer Society.

[50] M. Madejski, M. Johnson, and S. M. Bellovin. A study of privacy settings errors

in an online social network. In 2012 IEEE International Conference on Pervasive

Computing and Communications Workshops, pages 340–345, March 2012.

[51] Matthew Morgenstern. Controlling logical inference in multilevel database systems.

In Proceedings of the 1988 IEEE Conference on Security and Privacy, SP’88, pages

245–255, Washington, DC, USA, 1988. IEEE Computer Society.

118 BIBLIOGRAPHY

[52] Toshikazu Munemasa and Mizuho Iwaihara. Trend analysis and recommendation

of users’ privacy settings on social networking services. In Proceedings of the Third

International Conference on Social Informatics, SocInfo’11, pages 184–197, Berlin,

Heidelberg, 2011. Springer-Verlag.

[53] Moni Naor and Benny Pinkas. Oblivious transfer and polynomial evaluation. In

Proceedings of the Thirty-first Annual ACM Symposium on Theory of Computing,

STOC ’99, pages 245–254, New York, NY, USA, 1999. ACM.

[54] National Institute of Standards and Technology. Announcing the Advanced Encryp-

tion Standard (AES). http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf,

2001.

[55] Roger M. Needham and Michael D. Schroeder. Using encryption for authentication

in large networks of computers. Commun. ACM, 21(12):993–999, December 1978.

[56] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flan-

nery. Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge

University Press, New York, NY, USA, 3 edition, 2007.

[57] Xiaolei Qian, Mark E. Stickel, Peter D. Karp, Teresa F. Lunt, and Thomas D.

Carvey. Detection and elimination of inference channels in multilevel relational

database systems. In Proceedings of the 1993 IEEE Symposium on Security and

Privacy, SP ’93, pages 196–, Washington, DC, USA, 1993. IEEE Computer Society.

[58] Delphine Reinhardt, Franziska Engelmann, and Matthias Hollick. Can i help you

setting your privacy? a survey-based exploration of users’ attitudes towards privacy

suggestions. In Proceedings of the 13th International Conference on Advances in

Mobile Computing and Multimedia, MoMM 2015, pages 347–356, New York, NY,

USA, 2015. ACM.

[59] Christopher Riederer, Vijay Erramilli, Augustin Chaintreau, Balachander Krishna-

murthy, and Pablo Rodriguez. For sale : Your data: By : You. In Proceedings of

the 10th ACM Workshop on Hot Topics in Networks, HotNets-X, pages 13:1–13:6,

New York, NY, USA, 2011. ACM.

[60] Shariq Rizvi, Alberto Mendelzon, S. Sudarshan, and Prasan Roy. Extending query

rewriting techniques for fine-grained access control. In Proceedings of the 2004 ACM

SIGMOD International Conference on Management of Data, SIGMOD ’04, pages

551–562, New York, NY, USA, 2004. ACM.

[61] A. Shakimov, H. Lim, R. Cáceres, L. P. Cox, K. Li, D. Liu, and A. Varshavsky.

Vis-á-vis: Privacy-preserving online social networking via virtual individual servers.

BIBLIOGRAPHY 119

In 2011 Third International Conference on Communication Systems and Networks

(COMSNETS 2011), pages 1–10, Jan 2011.

[62] Mohamed Shehab and Hakim Touati. Semi-supervised policy recommendation for

online social networks. In Proceedings of the 2012 International Conference on

Advances in Social Networks Analysis and Mining (ASONAM 2012), ASONAM

’12, pages 360–367, Washington, DC, USA, 2012. IEEE Computer Society.

[63] Jiliang Tang, Charu Aggarwal, and Huan Liu. Recommendations in signed social

networks. In Proceedings of the 25th International Conference on World Wide

Web, WWW ’16, pages 31–40, Republic and Canton of Geneva, Switzerland, 2016.

International World Wide Web Conferences Steering Committee.

[64] B. M. Thuraisingham. Security issues for data warehousing and data mining. In

Proceedings of the Tenth Annual IFIP TC11/WG11.3 International Conference on

Database Security: Volume X : Status and Prospects: Status and Prospects, pages

11–20, London, UK, UK, 1997. Chapman & Hall, Ltd.

[65] M. B. Thuraisingham. Security checking in relational database management systems

augmented with inference engines. Comput. Secur., 6(6):479–492, December 1987.

[66] Tyrone S. Toland, Csilla Farkas, and Caroline M. Eastman. The inference problem:

Maintaining maximal availability in the presence of database updates. Comput.

Secur., 29(1):88–103, February 2010.

[67] Amin Tootoonchian, Stefan Saroiu, Yashar Ganjali, and Alec Wolman. Lockr: Bet-

ter privacy for social networks. In Proceedings of the 5th International Conference

on Emerging Networking Experiments and Technologies, CoNEXT ’09, pages 169–

180, New York, NY, USA, 2009. ACM.

[68] Qihua Wang, Ting Yu, Ninghui Li, Jorge Lobo, Elisa Bertino, Keith Irwin, and

Ji-Won Byun. On the correctness criteria of fine-grained access control in relational

databases. In Proceedings of the 33rd International Conference on Very Large Data

Bases, VLDB ’07, pages 555–566. VLDB Endowment, 2007.

[69] J. H. Wilkinson. The evaluation of the zeros of ill-conditioned polynomials. part i.

Numer. Math., 1(1):150–166, December 1959.

[70] Jierui Xie, Bart Piet Knijnenburg, and Hongxia Jin. Location sharing privacy

preference: Analysis and personalized recommendation. In Proceedings of the 19th

International Conference on Intelligent User Interfaces, IUI ’14, pages 189–198,

New York, NY, USA, 2014. ACM.

120 BIBLIOGRAPHY

[71] Ching-man Au Yeung, Ilaria Liccardi, Kanghao Lu, Oshani Seneviratne, and Tim

Berners-Lee. Decentralization: The future of online social networking. In W3C

Workshop on the Future of Social Networking Position Papers, volume 2, pages

2–7, 2009.

[72] Mohammed J. Zaki. Scalable algorithms for association mining. IEEE Trans. on

Knowl. and Data Eng., 12(3):372–390, May 2000.

[73] Tong Zhao, Chunping Li, Mengya Li, Qiang Ding, and Li Li. Social recommendation

incorporating topic mining and social trust analysis. In Proceedings of the 22Nd

ACM International Conference on Information & Knowledge Management, CIKM

’13, pages 1643–1648, New York, NY, USA, 2013. ACM.

	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Motivations
	Objective
	Contributions
	Cloud-based secure information sharing.
	Privacy settings recommender
	Enhance system utility through query rewriting

	Thesis Organization
	Related Publications

	Cloud-based Secure Information Sharing
	Reference Model
	Social Graph model
	Access control model

	Cloud-based DSN
	Collaborative Graph Anonymization
	Relationship-based Information Sharing
	Security Analysis
	Relationship-based Resource Sharing
	Relationship Information Leakage

	SocialCloudShare
	Communication Protocols
	Cipher Service - Browser Plugin
	Path Finder Service Implementation
	SocialCloudShare Implementation
	Key Manager Service Implementation

	Experimental Evaluations

	Privacy Settings Recommender
	Reference Model
	Association rules

	Learning Privacy Preferences
	Learning Process
	Itemsets lookup
	Association Rule Extraction

	Policy Recommendation
	Experimental results

	Enhance System Utility through Query Rewriting
	Reference Model
	Data Dependencies
	Architecture

	Implicit Authorizations
	Avoiding Correlations
	Correlation Control

	Query Rewriting Procedure
	Security Analysis
	Truman & Non-Truman Models
	Experimental Evaluation

	Review of Literature
	Secure information sharing in Social Networks
	Social privacy recommender
	Access control enforcement by query rewriting

	Conclusion
	Appendices
	Query Rewriting Correctness Proof
	Query Rewriting Completeness Proof

	Bibliography

