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Abstract

Black holes (BHs) are a very important class of astrophysical objects. They

are the most compact objects in the Universe, hence they represent the most

extreme sources of gravity. BHs come in two flavours: the stellar mass BHs

(SBHs) relic of young massive stars (1−20M⊙) and the massive BHs (MBHs),

with masses of 106−109M⊙, dwelling in the nuclei of the most massive galax-

ies. While the formation mechanisms of SBHs are well understood, no clear

consensus exists about MBH formation. According to the Soltan arguments

(Soltan, 1982), MBHs gain the largest fraction of their mass via radiative effi-

cient accretion of gas. As a consequence, we expect that MBH formed early

in the Universe as smaller mass seeds. Recently, observations of high redshift

quasars (e.g.; Mortlock et al., 2011; Fan et al., 2006) showed that MBHs with

masses above 109M⊙ were already in place when the Universe was less than

1 Gyr old and posed tight constraints on the models for the formation and

growth of MBHs. Two main scenarios have been developed for MBH seed

formation: the light seed scenario, where seeds formed as relic of the first

generation of stars with masses of up to few hundred solar masses (Madau &

Rees, 2001), and the heavy seed scenarios, where seeds formed from the direct

collapse of massive gas clouds in primordial haloes with masses of up to few

105M⊙ (Haehnelt & Rees, 1993). Despite the large number of studies about

MBH formation models, each model still has its own caveats, which make the

study of MBH formation worth of further investigations.

According to the Λ-CDM cosmology, galaxies form when gas cools down

within dark matter haloes, which assembly in a hierarchical fashion from small

density perturbations. Galaxies grow via accretion and mergers, and the cen-

tral MBHs evolve in the same way. So, when a galaxy merger occur, the MBHs

hosted in the nucleus of the galaxy progenitors can sink towards the centre of
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the merger remnant, forming a MBH binary (MBHB). Despite galaxy merg-

ers are usually observed, no clear detections of MBHBs exist to date. The

formation and evolution of MBHBs is a complex process, since it occurs in

a rapidly varying environment where gas, star formation and SNa feedback

play a pivotal role. Several studies have been performed to date, but a clear

understanding of the whole process is still far from being reached.

In this thesis I cover both aspects of MBH formation and evolution. In

the first study I consider an alternative route for seed BH formation. Using

two different codes, the AMR code RAMSES (Teyssier, 2002) and the mesh-

free code GIZMO (Hopkins, 2015), I studied the evolution of a single massive

circum-nuclear gaseous disc embedding a population of SBHs. The disc was

subject to radiative cooling, star formation and supernova feedback and be-

comes unstable to fragmentation, which led to the formation of clumps as

massive as 104 − 105M⊙. My simulations showed that during the disc evo-

lution, some SBHs can be gravitationally captured by a clump. Within the

clumps, such BHs can experience episodes of super-critical accretion, which

make them grow up to 103 − 104M⊙ in few Myr. Thanks to the very low

radiative efficiency associated to the slim accretion disc (Abramowicz et al.,

1988), the energy released to the surrounding gas is too small to halt the accre-

tion flow, hence BHs can accrete almost unimpeded until one of these events

occur: the clump is totally accreted by the BH, the clump is consumed by star

formation or the clump is destroyed by supernova explosions.

In the second study, instead, I consider the intermediate stages of a galaxy

merger, when the MBHs originally dwelling in the centre of their own progen-

itor galaxies reach few hundred separations in the nucleus of the merger rem-

nant. I assumed that each MBH was embedded in a self-gravitating circum-

nuclear gaseous disc. With the code RAMSES I studied the evolution of the

MBHs and their surrounding discs, including physical processes like radia-

tive cooling, star formation and supernova feedback, which are implemented

in the code as sub-grid recipes. First, I implemented a new refinement pre-

scription aimed at improving the orbital evolution of massive particles, an al-

ready known major issue in AMR codes, like observed by Gabor & Bournaud

(2013); Dubois et al. (2014). Secondly, I evolved the discs assuming different

sub-grid recipes to study how the MBH and gas dynamics could be affected

by the different choices. I found that the MBH dynamics is almost indepen-

dent of the physical modelling, if one assumes that no previous star formation
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occurred in the discs, while the gas evolution and its final distribution can be

significantly affected. On the other side, if one assumes that star formation

was already ongoing, even the BH dynamics can be modified, if supernovae

are powerful enough to disrupt gas clumps forming in the discs.

A general introduction to the work is reported in Chapter 1. In Chapter 3

I discuss the first study about an alternative model for seed BH formation. In

Chapter 4, instead, I describe the second study concerning the evolution of the

MBH pair in the intermediate stages of a galaxy merger. The reader interested

in the main results of the work can directly move to Chapters 3 and 4. Finally,

Chapter 5 reports my conclusions.
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Chapter 1
Introduction

Black holes (BHs) are a very important class of astrophysical objects and they

are simple objects which can be described with only two parameters: mass and

spin. They are the most compact objects in the Universe, hence they represent

the most extreme sources of gravity. BHs come in two flavours: the stellar

mass BHs (SBHs) relic of young massive stars (1 − 20M⊙) and the massive

BHs (MBHs), with masses of 106−109M⊙, dwelling in the nuclei of the most

massive galaxies. The observed BH mass function can be represented as two

disjoint intervals, as shown in Fig. 1.1 for the local population of BHs.

Since the discovery of Cygnus X-1 (Bowyer et al., 1965), the first con-

firmed SBH, and Sagittarius A* , (Balick & Brown, 1974) , the 4 × 106M⊙

BH inhabiting our Galaxy, we got compelling evidences of the presence of this

class of objects in our Universe. In particular, we know that all nearby mas-

sive galaxies (corresponding to Mgalaxy ∼> 1011 M⊙) house a supermassive

BH (SMBH) in their core, while nothing can be said yet about less massive

galaxies. SBHs are observed in X-ray binaries as they accrete gas from a com-

panion star, while SMBHs shine as bright quasi-stellar objects (QSOs) or less

luminous active galactic nuclei (AGNs). SMBHs are also observed during qui-

escent phases as massive dark objects in the centre of nearby galaxy spheroids

(the Milky Way case; Kormendy & Ho, 2013).

The missing interval between 102 and 105M⊙, namely that of Intermedi-

ate Mass BHs (IMBHs) is supposed to exist, but to date evidences of this BH

population are still poor.
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Figure 1.1: Mass function of the local population of BHs. The SBH peak has been

drawn assuming a log-normal distribution with mean mass equal to 5M⊙, width

of 0.1 dex and a normalisation yielding a density of about 1.1 × 107 M⊙ · Mpc−3

(Fukugita & Peebles, 2004). The SMBH peak, instead, contributes to an overall den-

sity of about 4.3× 105 M⊙ ·Mpc−3. Figure taken from Merloni (2008).
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The discovery of tight correlations between the BH mass and the stellar ve-

locity dispersion1 of the hot stellar component (see Fig. 1.2, Ferrarese & Mer-

ritt, 2000; Gültekin et al., 2009; McConnell et al., 2011) and between the BH

mass and the host galaxy spheroidal component, i.e. MBH ∼ 10−3Mspheroid

(Magorrian et al., 1998; Häring & Rix, 2004), suggests that over time galaxies

and MBHs co-exist and undergo a symbiotic evolution.

Galaxies form following the baryonic infall of gas into collapsing dark

matter haloes and build up their mass via accretion and mergers. During this

hierarchical assembly of structure, MBHs co-evolve with their galaxy hosts

through accretion of inflowing gas and coalescences driven by galaxy merg-

ers. As a consequence, we expect that MBHs formed early in the Universe as

smaller mass seeds.

In order to understand the origin of these correlations we should look at

the early Universe. Recent observations demonstrate that MBHs must form

very early and grow rapidly up to 109M⊙ within 1 Gyr from the Big Bang,

like in the case of ULAS J1120+0641 (Mortlock et al., 2011) and a handful of

bright quasars observed by the Sloan Digital Sky Survey at z ∼> 6 (Fan et al.,

2006), and set tight constraints on any model for the formation and growth of

MBH at early epochs.

However, these massive quasars are only the high mass tail of the MBH

mass function, and we totally lack a consensus about the low luminosity pop-

ulation, which would determine whether these correlations can be extended

to lower mass galaxies (Treister et al., 2011; Fiore et al., 2012). According

to these correlations, lower mass galaxies are expected to host lighter MBHs

and would be the best candidates for the search of IMBHs and even of MBH

seeds.

Thanks to recents efforts we have some hints about the evolution of the

quasar and galaxy luminosity function with time, which strengthen the idea

of a MBH-galaxy symbiotic evolution. Moreover, the direct formation of

SMBHs from the collapse of a ∼ 109 M⊙ gas cloud is also unlikely from

theoretical arguments and observational constraints which indicate that gas

dynamics in galaxies tends to halt the global collapse and to fragment into

clouds that further fragment to form stars.

1The velocity dispersion is the root mean square of the stellar velocities and gives an esti-

mate of the stellar motion due to the galaxy gravitational potential.
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Figure 1.2: M − σ relation for galaxies with dynamical measurements from

(Gültekin et al., 2009). The symbol indicates the method of BH mass measurement:

stellar dynamical (pentagrams), gas dynamical (circles), masers (asterisks). Arrows

indicate upper limits to BH mass. The colour of the error ellipse indicates the Hubble

type of the host galaxy: elliptical (red), S0 (green), and spiral (blue). The saturation

of the colours in the error ellipses or boxes is inversely proportional to the area of the

ellipse or box. Squares are galaxies not included in the fit. The line is the best fit

relation to the full sample: MBH = 108.12 M⊙(σ/200 km s−1)4.24.
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From all these evidences some crucial questions arise, concerning when

and how MBH seed form, how efficiently a MBH grows in mass with time

and what is the frequency of MBH within galaxies. While a good agreement

on the formation mechanisms of the stellar population has been reached, with

SBHs forming at the end of the life of stars with masses ∼> 20M⊙ or when

an already formed neutron star living in a binary systems exceeds the critical

mass for stability2, the formation of MBH seeds is still poorly understood.

Several mechanisms have been proposed, from the collapse of the first

generations of stars (PopIII stars) to dynamical processes in nuclear stellar

clusters, from the runaway merger of SBHs to the direct collapse of a massive

gas cloud. All these models can be summarised in the “flow chart”, initially

proposed by Rees (1978) and updated in Fig. 1.3 to comprehend more recent

models.

1.1 MBH formation and growth

The observation of high redshift quasars up to redshift ∼ 7 tells us that MBHs

were already in place when the Universe was less than 1 Gyr old and im-

plies masses larger than 109M⊙ to explain the observed luminosities of ∼
1048 erg/s (Barth et al., 2003; Willott et al., 2005). This huge luminosity is

produced through accretion of gas on to the BH and can be written as

LBH = ηṀinc
2, (1.1)

where Ṁin is the gas accretion rate, c is the speed of light and η is an effi-

ciency parameter corresponding to the fraction of the rest-mass energy of the

inflowing gas which is radiated away. Typically it is assumed that accretion

can occur only when the emitted luminosity is below the so-called ‘Eddington

limit’, defined as the maximum luminosity for which radiation pressure does

not overcome gravity. The Eddington luminosity can be written as

LEdd =
4πcmpMBH

σT
, (1.2)

2The critical mass for neutron stars, also known as the Tolman-Oppenheimer-Volkoff limit

(TOV limit) is the maximum mass a neutron star can have to balance gravity with the neutron

degeneration pressure. It is the analogous of the Chandrasekaar mass for white dwarves and

it assumes values in the range 1.5 − 3M⊙, where the uncertainties are related to the poorly

known equation of state for very dense matter.
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Figure 1.3: Possible channels for MBH formation in isolated haloes (tree on the

left) or through galaxy mergers (tree on the right). Updated version of the chart in

Volonteri (2010).
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where mp is the proton mass and σT is the Thomson scattering cross-section.

Above this limit, gas is expelled instead of being accreted and the BH growth is

halted. If one considers that only a fraction 1− η of the inflowing mass Min is

actually accreted, the mass growth rate can be written as dMBH

dt = (1−η)Ṁin.

According to General Relativity, the expected radiative efficiency in the case

of a test particle which is spiralling towards the BH on nearly circular orbits

depends on the BH spin a, and varies between 0.057 for a Schwarzchild BH

(a = 0) and 0.42 for a maximally rotating Kerr BH (a = 1). The typical as-

sumed value is η = 0.1 (according to the Soltan argument; see section §1.1.5).

Therefore, the mass growth for a BH accreting at the Eddington limit is an ex-

ponential function with an e-folding timescale tSalpeter = η
1−η

σTc
4πGmp

∼ 45
Myr. Considering a BH with an initial mass M0, the growth time is then de-

fined as

tgrowth = tSalpeter ln
MBH

M0

. (1.3)

A BH with an initial mass in the range 102−105M⊙ would need ∼ 0.5 Gyr to

reach 109M⊙, hence we need already massive seeds to explain the observed

MBH at high redshift.

According to the current paradigm of the Λ-CDM cosmology, structures

form via gravitational amplification of small perturbations in a cold dark mat-

ter, dark energy dominated Universe where ‘baryons’ account for 10% only of

the total matter budget. During the cosmic history, the small dark matter per-

turbations grow to larger and larger scales in a hierarchical fashion, until they

reach the critical point for collapse and virialization and form a self-gravitating

halo. Baryons within these virialized haloes cool down and condense, even-

tually becoming dense enough to fragment into clumps which subsequently

form stars.

This is the framework where MBH seeds form, and the mechanisms re-

sponsible for their formation necessarily depend on the halo conditions. For

example, in a halo where star formation is suppressed, the gas could flow

towards the centre forming an already massive object, while, in a halo with

efficient star formation, one needs a dynamical process able to build a massive

object from the coalescence of stellar objects (stars of SBHs) before a large

fraction of the system is ejected in the so-called ‘evaporation’ process.
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1.1.1 Pop III scenario

One of the most popular scenarios for MBH formation asserts that seeds form

as remnants of Population III stars (PopIII), i.e. stars formed from zero metal-

licity gas3 (Madau & Rees, 2001). These stars are expected to form at z ∼
20 − 25 in ‘minihaloes’, haloes with masses ≈ 106M⊙ and a virial tempera-

ture of ∼ 103 K (Tegmark et al., 1997; Madau & Rees, 2001; Haiman & Loeb,

2001; Volonteri, Haardt & Madau, 2003; Madau et al., 2004).

All models of PopIII star formation predict initial stellar masses larger

than today’s stars (up to few hundreds solar masses; Couchman & Rees, 1986;

Omukai & Nishi, 1998; Bromm & Larson, 2004). The fate of these massive

stars, if they retain all their mass until death, depends on their exact mass

after a very short lifetime (i.e. few Myr). Fig. 1.4 shows the stellar remnant

for different initial stellar masses and metallicities, as reported in Heger et al.

(2003).

Low-metallicity stars between 25 and 140M⊙ are expected to collapse

into a BH via fallback of gas ejected by a faint SNa explosion. The corre-

sponding mass of the BH would be between 10 and 40M⊙. However, such

small BHs would be dynamically unstable in the galaxy potential well and then

would wander within its host, interacting with other stars, without settling in

the galaxy centre.

More massive stars, between 140 and 260M⊙ lie in the pair-instability

regime, in which the production of electron-positron pairs would lead to the

complete disruption of the star.

If stars with masses above 260M⊙ exist, they would directly collapse into

a BH without triggering a SNa explosion.

Though the first studies predicted the formation of these very massive

stars, recent simulations including more detailed physics and higher resolu-

tion seemed to change this picture. Indeed, the inclusion of turbulence, radia-

tive feedback and also new numerical techniques showed that fragmentation

in the primordial gas is stronger than previously thought and would lead to the

formation of binaries and/or clusters of smaller mass PopIII stars (. 100M⊙;

Clark et al., 2011; Greif et al., 2011; Stacy, Greif & Bromm, 2012). Additional

constraints come from the works of McKee & Tan (2008); Trenti, Stiavelli &

Michael Shull (2009), where different conditions like the feedback produced

3All elements above Helium are globally considered as metals.
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by the accretion of the envelope on to a pre-formed small mass core or the

presence of a UV background field could limit the effective mass of the newly

formed PopIII star.

If one consider Eddington-limited gas accretion, these lighter seeds could

grow to the supermassive variety by z ∼ 6 only if (i) gas accretion continued

unimpeded at the Eddington rate for ∼> 0.6 Gyr, and if (ii) the mass-to-light

conversion efficiency of the accretion process was not high, ǫ ∼< 0.1 (Tanaka

& Haiman, 2009). The first condition seems hard to satisfy in the shallow

potential of low-mass dark matter haloes, as radiative feedback from the pro-

genitor and from BH accretion itself dramatically affects the gas inflow and its

supply to the hole, resulting in sub-Eddington rates, therefore negligible mass

growth (e.g., Wise, Turk & Abel, 2008; Milosavljević et al., 2009; Alvarez,

Wise & Abel, 2009). The second condition is problematic too, as it requires

a radiative efficiency well below that proper of accretion onto rapidly rotating

black holes. Indeed, there are mounting evidences that the most massive holes

at high redshifts power radio-loud AGNs (see, e.g., Ghisellini et al., 2014).

These are thought to be associated with Kerr holes - though observational ev-

idences of the widely accepted jet-spin connection are, at best, scarce, even in

the well studied Galactic stellar black hole candidates (see, e.g., Russell, Gallo

& Fender, 2013).

It has also been proposed that dark matter (as weakly-interacting massive

particles, WIMPs) could affect the formation of the first stars in the centre of

galaxies (Ripamonti, Mapelli & Ferrara, 2007; Iocco, 2008). The condition for

this to occur is that the halo profile is sufficiently steep to provide an additional

heating source through WIMP annihilation when dark matter is compressed by

the inflowing gas and this would result in the formation of a ‘dark’ star (Freese,

Spolyar & Aguirre, 2008), another MBH formation mechanism.

1.1.2 Direct collapse

Another important model to date is the direct collapse of a massive gas cloud

into a single MBH (Haehnelt & Rees, 1993; Bromm & Loeb, 2003; Begelman,

Volonteri & Rees, 2006; Lodato & Natarajan, 2006). The high density con-

ditions required by this model can be only fulfilled in the centre of galaxies,

and only in primordial haloes where fragmentation (highly enhanced by the

efficient cooling of metals) is suppressed and the collection of large amount of
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Figure 1.4: Remnants of massive single stars as a function of initial metallicity (y −
axis; qualitatively) and initial mass (x − axis). The thick green line separates the

regimes where the stars keep their hydrogen envelope (left and lower right) from those

where the hydrogen envelope is lost (upper right and small strip at the bottom between

100 and 140M⊙). The dashed blue line indicates the border of the regime of direct

black hole formation (black). This domain is interrupted by a strip of pair-instability

supernovae that leave no remnant (white). Outside the direct black hole regime, at

lower mass and higher metallicity, follows the regime of BH formation by fallback

(red cross-hatching and bordered by a black dot-dashed line). Outside of this, green

cross-hatching indicates the formation of neutron stars. The lowest mass neutron stars

may be made by O/Ne/Mg core collapse instead of iron core collapse (vertical dot-

dashed lines at the left). At even lower mass, the cores do not collapse and only white

dwarfs are made (white strip at the very left). Figure taken from Heger et al. (2003)
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gas in galaxy nuclei is favoured. These haloes have typical virial temperature

of ∼ 104 K and a mass Mhalo ∼ 108M⊙. However, in order to inhibit frag-

mentation and funnel this large amount of gas towards the centre, one needs

a dissociating background able to dissociate molecular hydrogen (the other

coolant responsible for fragmentation; Bromm & Loeb, 2003) and an efficient

transfer of angular momentum.

Since the Lyman-Werner background is very high compared to the average

value at the considered redshift, suppression can only occur if the halo lives

very close to another halo where PopIII star formation produces the necessary

flux (Dijkstra et al., 2008) or if the radiated Lyman α photons can be trapped

within the high density collapsing cloud (Spaans & Silk, 2006).

Recent studies also suggested that in a highly turbulent medium fragmen-

tation is automatically reduced, even in metal enriched systems (Begelman &

Shlosman, 2009), hence loosing this constraint.

If the conditions to avoid dissociation are fulfilled, cooling via atomic hy-

drogen can continue until the temperature reaches ∼ 4000 K and then contrac-

tion proceeds nearly adiabatically.

The second issue is the angular momentum barrier. Dark matter haloes,

and their gas component, both posses angular momentum, which tends to

counteract gravity, then halting the collapse and leading to the formation of

a rotationally supported disc (Mo, Mao & White, 1998; Oh & Haiman, 2002).

Some authors studied the direct collapse in haloes with very low angular mo-

mentum (Eisenstein & Loeb, 1995) or by considering only the low angular

momentum material in efficiently cooling haloes (Koushiappas, Bullock &

Dekel, 2004). However, even in these models, substantial angular momentum

transport is required.

Another possible path has been proposed by Lodato & Natarajan (2006),

where authors discuss how a marginally stable self-gravitating disc develops

spiral structures which redistribute angular momentum, causing mass inflows

without triggering extended fragmentation in the disc. The maximum inflow

rate sustainable by the disc is Ṁin = 2αc
c3s
G , where αc ∼ 0.12 is the viscosity.

The most appealing route to efficiently transfer angular momentum out-

wards is the so-called ‘bars within bars’ instability (Shlosman, Frank & Begel-

man, 1989; Begelman, Volonteri & Rees, 2006). Bar formation in galaxies

is particularly efficient in transferring angular momentum outwards, through

gravitational and hydrodynamical torques. Begelman, Volonteri & Rees (2006)
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suggests that when gas exceeds a certain threshold a bar instability arises,

which funnels the gas inwards. If the inflowing gas is able to cool, another

phase of bar instability on smaller scales is triggered, and the process cas-

cades. The most attractive aspect of this mechanism is the very short timescale

required, i.e. the galaxy dynamical time. However, the inflow rate required by

this cascade to emerge is very high, with values of roughly 1M⊙/yr (e.g,

Ferrara, Haardt & Salvaterra, 2013; Latif et al., 2015).

In this extreme conditions, the gas can trap its own radiation, forming a

supermassive quasi-static object supported by radiation pressure, which burns

hydrogen for about 1 Myr and grows up to 106M⊙ (Begelman, Volonteri &

Rees, 2006; Begelman, 2010) before collapsing into a BH. After the collapse,

the BH, still embedded in the massive envelope accreted, starts swallowing

the available gas reservoir at rates corresponding to the Eddington limit for

the envelope (which are hundreds of times the Eddington limit for the BH

itself). This object, named ’quasistar’ appears as a red giant star with a lumi-

nosity comparable to that of an AGN. When accretion stops, the residual gas

disperses, leaving behind a naked MBH with a typical mass between 104 and

105M⊙.

If the gas inflow rate is lower, the evolution is different. Gas contracts

forming a supermassive stars (SMS, with masses ∼> 5 · 104M⊙). Uniformly

rotating supermassive stars can evolve in isolation, cooling and contracting

until the collapse conditions are reached (Baumgarte & Shapiro, 1999; Zel-

dovich & Novikov, 1971). Saijo et al. (2002) also included post-Newtonian

correction to investigate whether the fast rotation can result in disc formation

or if it the SMS can collapse into a BH. Numerical experiments of a maximally

rotating SMS have been performed by Shibata & Shapiro (2002), who found

a Kerr-like BH with 90% of the initial SMS mass.

Another possible route for direct collapse has been proposed by (Mayer

et al., 2010, 2015), where a massive (108M⊙) unstable gas cloud forms at the

end of a major merger between two gas-rich galaxies. Such a massive clouds

could evolve as a VMS and then collapse in a MBH.

1.1.3 Stellar dynamics

Many galaxies host in the centre both a MBH and a nuclear stellar cluster

(NSC). Though the link between them is not yet understood, one can con-
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sider the formation of MBH seeds from the evolution of a pre-existent NSC at

high redshift. As before described, one needs to prevent efficient star forma-

tion to form seeds via direct collapse. However, if one consider small mini-

haloes where PopIII stars form, at the time more massive haloes virialize the

environment will have been enriched with metals released by SNe. In these

conditions, efficient formation of PopII stars starts, possibly leading to the for-

mation of a NSC of ‘normal’ low mass stars (Omukai, Schneider & Haiman,

2008). If the NSC is particularly compact, stellar collisions can lead to the

formation of a very massive star (VMS), which could then evolve into a MBH

seed with a mass in the range 102 − 104M⊙ (Devecchi & Volonteri, 2009).

Seed formation via stellar dynamical processes has been initially proposed by

Begelman & Rees (1978) and then studied by several authors (e.g., Quinlan &

Shapiro, 1987; Portegies Zwart & McMillan, 2002; Gürkan, Fregeau & Rasio,

2006).

The bottom line of all these models is the dynamical relaxation of the

NSC. Two-body interactions between stars attempt to produce equipartition

of the kinetic energy in the system. However, as a result, energy conserva-

tion leads to the contraction of the cluster’s core and the evaporation of the

less bound stars. The contraction proceeds until the core decouples from the

system (Spitzer, 1987). If this process occurs on very short timescales, the

decoupled core becomes so dense that stellar collision lead to the formation of

a VMS (Portegies Zwart et al., 1999; Devecchi et al., 2010, 2012).

Another model not relying on low metallicity NSCs has been proposed by

Davies, Miller & Bellovary (2011). In this model, a NSC invested by a mas-

sive gas inflow will experience rapid deepening of its potential well. When

the escape velocity from the NSC exceeds ∼ 1000 km/s, the heating accom-

plished by binaries in the core becomes ineffective and the core collapse can

proceeds until SBH-SBH mergers occur in a runaway fashion, leading to the

formation of a single MBH seed. Because of the high escape velocity, the

BH merger remnant cannot recoil out of the cluster, even in the most extreme

conditions (vkick ∼ 4000 km/s). This model has been investigated in a cos-

mological context by Lupi et al. (2014), where authors found a maximum seed

mass of 103M⊙.
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1.1.4 Primordial black holes

Primordial BHs have been postulated by several authors (Zel’dovich & Novikov,

1967; Hawking, 1971; Khlopov, Rubin & Sakharov, 2005) with masses rang-

ing from the Planck mass (formed at the Planck epoch) to ∼ M⊙ (formed

at the QCD transition) and up to 105M⊙. However, constraints from Hawk-

ing radiation predictions and observations of the gamma-ray background and

micro-lensing techniques put into questions the abundance of this class of

BHs.

1.1.5 MBH growth across cosmic epochs

All the observations of MBHs in the Universe come from the electromagnetic

emission associated with an ‘active’ phase of the galaxy nucleus. Observations

of quiescent BHs at high redshift are unfeasible with the current facilities, and

we must wait the upcoming gravitational waves detectors like the Einstein

Telescope and the eLISA observatory to find them. Moreover, these upcoming

facilities will give us the ability to investigate in detail the population of BHs

at high redshift, and hopefully will allow us to recognise the correct model for

seed formation. Though each model predicts different mass functions, forma-

tion redshifts and formation efficiency and we could in principle discriminate

between them by means of constraints on these parameters, this information is

typically smeared out during the cosmic evolution because of the BH growth

(via accretion and mergers).

A viable route to find unevolved BH seeds is to look at low mass galax-

ies. Though the low redshift MBH-host correlations are well established, their

evolution at high redshift is still under debate. While the high mass tail is al-

ready present at early epochs and it is well traced by AGNs (where the central

MBH has already grown significantly), the low mass tail is the most sensitive

to the original seeding mechanism. If the first seeds were light, they would

start below the correlations and migrate toward them via sustained accretion

unaffected by self-regulation. On the other side, massive seeds would lie above

the correlations and then experience limited growth to match the correlations

at later epochs.

Considering the MBH-host relations in dwarf galaxies, we expect that

IMBH would inhabit their nuclei, and that their mass today is close to the orig-

inal seed mass. However, due to the small region of influence of these BHs
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and the low accretion rates, they would be unlikely to be observed (Volonteri

et al., 2011). Moreover, the stellar density in dwarf galaxy is small, so that

measures based on stellar dynamics are challenging (van Wassenhove et al.,

2010), the galaxy centre is often not constrained and the IMBH could be wan-

dering around within the galaxy core, making its identification extremely dif-

ficult. Anyway, observations of the low mass end of the galaxy mass func-

tion would be very attracting to find imprints of the seeding mechanisms for

MBHs.

An alternative route to detect these low mass MBHs would be via radiation

produced in tidal disruption events, but we have to wait the new generation

telescopes like ELT and JWST to increase our sensitivity up to the level at

which these events will be observable.

Thanks to the Soltan argument (Soltan, 1982; Novak, 2013; Comastri et al.,

2015) we know that most of the BH mass has been accreted via radiatively ef-

ficient accretion (rather than via mergers or radiatively inefficient accretion),

while only a small fraction of the BH mass (∼ 10%) can be accreted via

radiatively inefficient accretion at early times. This evidence is very impor-

tant, since a radiatively inefficient accretion at early epochs would limit the

detectability of this kind of objects.

The rapid growth of MBH needed to explain high redshift quasars at z ≃
7 is still an open question (Haiman, 2004; Volonteri & Rees, 2006; Tanaka

& Haiman, 2009) and several studies have been conducted to investigate the

maximum accretion rates on to MBHs taking into account internal and external

effects. The external effect is due to the net amount of gas which could flow

downwards to the MBH, while the internal effect is determined by the AGN

feedback, i.e. the energy released upon gas accretion by the MBH (Silk &

Rees, 1998).

There are mounting evidences that MBHs in high redshift quasars experi-

enced very fast accretion up to billion solar masses. Studies by Ghisellini et al.

(2009, 2015), for example, find that all blazars4 at high redshift have masses

above billion solar masses. Being the jet emission collimated, we expect that

for each observed blazar ∼ 2Γ2 unobserved jetted quasars should exist. If one

takes into account this population, the estimated MBH density at z ∼> 6 cor-

responds to the total MBH density predicted by the cosmological model. The

presence of these ‘monsters’ implies that the ‘standard’ AGN feedback mech-

4A blazar is a quasar powered by a rotating BH emitting a powerful jet pointing to us.
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anism cannot play a role in their growth and very high accretion rates might be

possible. In these conditions radiation would be trapped and advected inwards,

making radiative efficiency to drop (Abramowicz & Lasota, 1980). Radiation

trapping would decrease the disc luminosity, and the presence of the jet would

dissipate angular momentum, favouring sustained accretion at super-critical

rates.

Apart from these peculiar cases, AGN feedback has been advocated as

a responsible for the evolution of star forming galaxies to elliptical ‘red and

dead’, which would explain the underabundance of star forming galaxies with

respect to many predictions of theoretical models of galaxy formation (Schaw-

inski et al., 2007). In massive galaxies AGN feedback could blow gas out of

the halo, decreasing the star forming potential of galaxies.

However, the picture is more complex, since star formation and SNe can

limit the MBH growth at early times (Davies et al., 2007; Schawinski et al.,

2009) but stellar mass loss can also help fuelling the MBH itself (Ciotti et al.,

1991; Ciotti & Ostriker, 1997, 2007; Wild, Heckman & Charlot, 2010). The

MBH self-regulation due to alternating active and quiescent phases and the

AGN feedback effect on to the galactic medium are considered as the main

driver of the establishment of the MBH-host correlations observed.

To study the interplay between galaxies and MBHs, with the goal of under-

standing how and when the correlations arise, astronomers rely on secondary

indicators like the occupation fraction the masses in dwarf galaxies. Theo-

rists, on the other side, use numerical simulations and semi-analytical models,

in which they try to include different physical processes which enable to trace

the evolution across cosmic time of the baryonic component within galaxies.

However, both techniques barely resolve the scales on which the MBH forma-

tion and evolution processes operate (Di Matteo, Springel & Hernquist, 2005;

Dotti et al., 2007; Johnson & Bromm, 2007; Booth & Schaye, 2009; Debuhr

et al., 2010; Power, Nayakshin & King, 2011; Kim et al., 2011; Dubois et al.,

2014). Moreover, since galaxies and MBH, as well, evolve via a ‘merger

driven’ scenario (Volonteri & Natarajan, 2009), the memory of the initial con-

ditions when seeds formed is rapidly erased.

Therefore, accurate models for star formation, MBH accretion, stellar and

AGN feedback are fundamental to compare numerical results with observa-

tions and then discriminate the right path for MBH formation and subsequent

evolution. From an observational point of view, upcoming facilities like JWST,
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Euclid and ALMA will be essential to zoom in on the nuclear region of quasars

and to extend our limit to the edge of Dark Ages, when the first galaxies, and

their embedded BH seeds, started to form.

As already discussed, a promising alternative route to electromagnetic sig-

natures of MBH formation and evolution is that of gravitational waves, which

will enable us to look for infant BHs during galaxy mergers at z ∼> 10, just be-

fore the reionisation of the intergalactic medium takes place and immediately

after the end of the Dark Ages. Studies bySesana, Volonteri & Haardt (2007)

and Arun et al. (2009) show that the mass ratio distribution for coalescing

MBHBs depends on the seeding mechanism and the binary evolution con-

sidered. In a direct collapse scenario, where seeds are massive, the detected

events would involve equal mass binaries. In a low mass scenario, instead, all

the events at high redshift would be undetectable with the upcoming facilities

and we have to wait for mergers at lower redshift, when BHs have already

experienced large accretion and the mass ratio has become more uniformly

distributed. Fig. 1.5 shows the rate of binary mergers detectable by eLISA for

both ‘light seed’ and ‘heavy seed’ scenarios, as reported in Volonteri (2010).

A more detailed discussion of MBH formation and evolution at early epochs

can be found in Volonteri (2010); Volonteri & Bellovary (2012).

1.2 Binary black holes

According to our ‘merger driven’ scenario galaxies assembly hierarchically

through mergers of smaller units. BH seeds growing in these pristine merg-

ing haloes pair in a MBH binary (MBHB) and definitively undergo coales-

cence (Volonteri, Haardt & Madau, 2003). The coalescence is driven by grav-

itational wave emission, which offers a unique environment to measure the

MBH masses and spins with exquisite precision. Therefore, understanding the

MBHB formation path in galaxy mergers is a key step towards understanding

the mode of assembly of MBHs across cosmic history (Di Matteo, Springel &

Hernquist, 2005; Sesana et al., 2014; Dubois, Volonteri & Silk, 2014).

An example of the characteristics tracks of BHs along cosmic history com-

puted from semi-analytical models of galaxy formation is reported in Fig. 1.6

(Volonteri & Natarajan, 2009).
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Figure 1.5: Merger rate of MBHs for two different seed models. Top: ‘light seeds’

from PopIII remnants. Bottom: ‘heavy seeds’ from gas-dynamical collapse. Black:

all mergers. Red: mergers detectable with S/N > 10 in eLISA’s baseline configura-

tion. Blue: mergers detectable with S/N > 10 in the old 6-link configuration (three

independent channels). Figures taken from Volonteri (2010).
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Figure 1.6: Paths of black holes forming at high redshift from light (102−3 M⊙) and

heavy (105−6 M⊙) seeds. The black holes evolve along tracks, in the mass versus

redshift diagram, as they experience accretion episodes and coalescences with other

black holes. Circles mark the loci of black hole coalescences. Four paths are selected:

two ending with a black hole powering a z ∼ 6 QSO (starting from a massive seed,

blue curve, and from a seed resulting from the collapse of a massive metal-free star,

yellow curve); a third ending with a typical 109 M⊙ black hole in a giant elliptical

galaxy (red curve); and finally the fourth ending with the formation of a Milky Way-

like black hole (green curve). The tracks are obtained using state-of-the-art semi-

analytical merger tree models. The grey transparent area in the bottom right corner

roughly identifies the parameter space accessible by future electromagnetic probes

which will observe black holes powered by accretion. Over-lied are contour levels

of constant sky and polarisation angle-averaged Signal-to-Noise-Ratios (SNRs) for

eLISA, for equal mass non-spinning binaries as a function of their total rest frame

mass (Amaro-Seoane et al., 2013). It is remarkable that black hole mergers can be

detected by eLISA with a very high SNR across all cosmic ages. Figure taken from

Amaro-Seoane et al. (2013).
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1.2.1 Binary black holes: formation and evolution

In a seminal work Begelman, Blandford & Rees (1980) discussed how the

bending and apparent precession of radio jets observed in a number of galactic

nuclei could be related to the presence of a MBH binary and explored the

dynamics of its formation.

They depicted the existence of three main phases along the way to coales-

cence:

• (I) an early phase of pairing under the dynamical friction by stars of

the merger remnant, resulting in the formation of a Keplerian binary.

As dynamical friction is proportional to the background density of stars

and to the square of the MBH mass (it acts on each MBH individually),

the more massive the BHs and denser the environments are, the more

rapidly they sink. Moreover, being the dynamical friction timescale a

function of the distance from the galaxy nucleus r (τDF ∝ M−1
BHr

2σ∗,
where σ∗ is the 1D stellar velocity dispersion), the process becomes

ever more rapid with orbital decay. A binary forms approximatively

when the mass in stars enclosed in their orbits becomes smaller than two

times the binary total mass. During the inspiral the eccentricity does not

vary significantly. As the acquired velocity of the BHs becomes large,

the effect of dynamical friction weakens, leading to the end of the first

phase;

• (II) a migration/hardening phase during which the binary shrinks due

to energy loss by close encounters with single stars and gas torques (if

gas is present) (Amaro-Seoane, Brem & Cuadra, 2013). Each encounter

with a star can extract a fraction ∼ εm∗/MMBHB of the MBHB energy

(where ε ∼ 0.2− 1 is obtained from averaging over many interactions,

m∗ is the stellar mass and MMBHB is the binary mass), hence a large

number of scattering is required to significantly reduce the binary sep-

aration. Unlikely the first phase, the timescale for the second phase

increases with decreasing separation, and indicate that hardening pro-

ceeds more slowly with orbital decay.

The transition to the third phase occurs when the timescale for gravita-
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tional wave emission drops below the hardening timescale

a∗II→III =

(

256G2

5πc5

)1/5(
σ∗
ρ∗

)1/5

f1/5(e)

[

q

(1 + q)2

]1/5

M
3/5
MBHB,

(1.4)

where ρ∗ is the stellar density around the binary, q is the mass ratio be-

tween the two BHs and f(e) = [1+(73/24)e2+(37/96)e4](1−e2)−7/2.

In order to observe the binary coalescence the transition must occur in

less than a Hubble time, and this typically occurs for separations of

1.4 · 104(MMBHB/10
6)−1/4rg for an equal mass circular binary (where

rg is the Schwarzchild radius associated to the binary 2GMMBHB/c
2).

Though in principle the stellar environment conditions are compatible

with rapid coalescence of the binary, nature operates in a different way.

Indeed, close encounters only occur with stars orbiting within the so-

called ‘loss cone’, i.e. the domain, in phase-space, with sufficiently

low angular momentum to interact with the binary. Since in typical

spheroids the loss cone is not enough populated and stars interacting

with the binary are ejected from it, the binary finally stalls at ∼ 0.1− 1
pc. At this separation the coalescence cannot occur in a Hubble time,

and this is referred to as ‘last parsec problem’. The ejection of stars from

the loss cone results in the formation of a stellar core around the binary,

which has been observed in some core, missing-light elliptical galaxies

(Milosavljević & Merritt, 2001; Kormendy, 2013; Merritt, 2013).

• (III) a gravitational wave driven inspiral phase ending with the coales-

cence of the two black holes due to the emission of gravitational waves.

At the coalescence, the BH grows in mass, acquire a new spin according

to mass/energy conservation and can receive a recoil up . 5000 km/s,
which depends on the orientation and magnitude of the BH spins and

orbital angular momentum.

After Begelman, Blandford & Rees (1980), the last parsec problem has

been investigated in detail, representing a bottleneck to the path to coales-

cence, at least for MBHs with masses larger than ∼ 2 × 106M⊙ (see e.g.,

Merritt & Milosavljević, 2005; Merritt, Mikkola & Szell, 2007). However, in

the case of not spherically symmetric systems, like those obtained in recent

galaxy merger’s simulations (Berczik et al., 2006; Khan et al., 2013; Wang
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Figure 1.7: Evolution of MBH separation during a galaxy merger, as depicted by

Begelman, Blandford & Rees (1980). In phase (i) dynamical friction brings the MBHs

together in a Keplerian binary. In phase (ii) the MBHB slowly shrinks via three-body

scattering with stars in the loss-cone. Finally, when the two MBHs are sufficiently

close, the loss of orbital energy and angular momentum via gravitational radiation

leads to rapid coalescence. Figure taken from Backer, Jaffe & Lommen (2004).

et al., 2014), this problem can be alleviated (Yu, 2002; Merritt & Poon, 2004;

Vasiliev, Antonini & Merritt, 2015; Sesana & Khan, 2015). As a byproduct

of these less simplified assumptions, also the eccentricity has been seen to

increase to ∼ 1 (Preto et al., 2011; Khan, Just & Merritt, 2011), indicating

rapid transfer of angular momentum to stars via scattering. Finally, additional

mechanisms like recycling of stars ejected by the binary on returning eccentric

orbits or perturbers as massive clouds can accelerate the hardening phase. A

schematic picture of the three phases is depicted in Fig. 1.7.

The study of these three phases is particularly interesting for IMBHs, since

these objects are the primary sources for the eLISA observatory and, as already

discussed, the best candidates to find an imprint of seed formation mecha-

nisms. However, to reach the separations for IMBH binary coalescence at

high redshift high stellar densities and low velocity dispersions are essential,

and it is unclear whether these conditions can be fulfilled in the high redshift

NSCs where IMBHs are supposed to live.
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1.2.2 Black hole dynamics in mergers

While the study of black hole binary formation and evolution in purely stellar

systems has been explored in detail with direct N -body codes (e.g., Khan

et al., 2013), black hole dynamics in mergers between disc galaxies (especially

gas rich galaxies) has been studied from cosmologically motivated orbits down

to scales of . 10 pc when a Keplerian binary forms (Mayer et al., 2007; Colpi

et al., 2009; Chapon, Mayer & Teyssier, 2013; Mayer, 2013). The subsequent

hardening phase has been later investigated with dedicated simulations (e.g.,

Escala et al., 2005; Dotti et al., 2007; Fiacconi et al., 2013).

Disc galaxies are multi-component systems comprising a dark matter halo,

a stellar disc coexisting with a multi-phase gas disc, a central stellar bulge (if

any) and also a MBH, if present. The study of the dynamical evolution of

MBHs in the time-varying environment of a galaxy merger is complex as it

occurs on the same time-scales on which stars and gas, turning into new stars

stars, evolve (see Colpi, 2014, for a review). Despite the large number of

simulations of galaxy mergers, only few of them follow the BHs down to pc

scales, while most of the simulations assume prompt BH coalescence.

A leap in understanding the role of gas during the pairing phase has been

taken when studying minor mergers, i.e. mergers with nominal 1:4 mass ra-

tios and less. Early works on collisionless mergers of unequal-mass spherical

dark matter haloes indicated that besides dynamical friction other mechanisms

are at play: (i) tidal stripping of the secondary, which delays the sinking by

dynamical friction; (ii) tidal heating, which (partially) dissolves the system

(Taffoni et al., 2003). Depending on the parameters of the orbit and the halo

properties, the encounter can lead to a rapid orbital decay, disruption or sur-

vival of the secondary halo. These results show that under certain conditions

the secondary BH can orbit in the galaxy periphery for more than a Hubble

time, without forming a binary with the primary BH.

It has been recently highlighted that gas can play a pivotal role in unequal-

mass galaxy mergers. In wet mergers (where the gas fraction is above 10%)

tidal torques during the last peri-centre passage before merging triggers in-

flows towards the nucleus of the secondary, giving rise to a starburst which

deepens the potential well in the BH neighbourhood, thus reducing the action

of tides by the primary (Kazantzidis et al., 2005). This prevents the wander-

ing to the lighter MBH in the periphery of the primary when sufficient gas is
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present in the host galaxy, raising the question as to whether minor mergers

lead in general to binary formation (Callegari et al., 2009, 2011; Khan et al.,

2012). Fig. 1.8 shows two examples of unequal-mass wet mergers (one with

1:4 mass ratio and one with 1:10).

An additional effect which must be considered to have a clearer picture of

the fate of BHs in minor mergers is accretion. Indeed, in wet mergers both BHs

can accrete from the surrounding gas and increase their mass. Since higher

masses correspond to shorter dynamical friction timescales, the secondary BH

can sink more rapidly towards the primary BH. Moreover, the interaction with

the gas of the main galaxy, can trigger episodes of accretion, whose result is to

decrease the mass ratio between the two BHs, sometimes giving rise to equal

mass binaries.

Follow-up studies have indicated that the dividing line from success and

failure in forming an MBHB is around 1:10 mass ratios (Bellovary et al., 2010;

Van Wassenhove et al., 2012), but still depends on details such as the encounter

geometry and gas content. In summary, the fate of BHs in minor mergers

depends on several parameters and the boundary between failure and success

is poorly constrained.

On the other side, major mergers among gas-rich galaxies represent a nat-

ural path for MBH pairing and binary formation. The orbital braking is in

these cases driven by gas-dynamical friction which is faster than dynamical

friction from stars (Escala et al., 2005; Dotti, Colpi & Haardt, 2006; Mayer

et al., 2007; Chapon, Mayer & Teyssier, 2013). During the merger, the two

progenitor galaxies first experience a close fly-by, which triggers the forma-

tion of tails and plumes due to tidal forces. The discs sink via dynamical

friction against the dark matter halo, dragging the central MBHs with them,

collide and develop strong shocks which redistribute/cancel angular momen-

tum. This process triggers a large inflow towards the centre, leading to the

formation of a turbulent, rotationally supported, massive circum-nuclear disc

of 109M⊙ with a radius of . 100 pc (Chapon, Mayer & Teyssier, 2013). The

gravo-turbulence in the disc is large enough to make the disc Toomre stable5,

thus preventing gas fragmentation and star formation, and helps the MBH to

5The Toomre criterion is a stability criterion for discs, the analogous of Jeans criterion

for spherical systems. The parameter used to describe the disc stability is called ‘Toomre

parameter’ and it is defined as

QToomre =
csk

πGΣ
, (1.5)



1.2. BINARY BLACK HOLES 25

sink and form a Keplerian binary on typical timescales of few Myr after the

completion of the merger.

The limit and drawback of these high-resolution simulations is that gas

is treated as a single phase medium described by a polytropic equation of

state (with index 7/5) which mimics the thermodynamics of a generic star-

forming region. Only recently state-of-the-art simulations of major mergers

have achieved enough resolution to detail the MBH dynamics down parsec

scales, in presence of a multiphase gas (Capelo et al., 2015; Roškar et al.,

2015). Capelo et al. (2015) studied the large-scale dynamics of MBH in a

variety of mergers with mass ratio 1:1 down to 1:10 to explore the black hole

accretion history and their dynamics during the pairing phase, down to sepa-

rations of several parsecs. Their focus was mainly in exploring the possibility

of triggering ‘dual’ AGN activity along the course of the merger. Thanks to

improved recipes for cooling, SF and SNa feedback and the increased the reso-

lution through excised zoom-in techniques on the nuclear region of the merger

remnant, Roškar et al. (2015) accurately describe the pairing phase of MBHs

during the major merger between two galaxies with moderate gas fractions,

finding that gas is mostly evacuated by the strong starburst triggered by the

merger and the galactic disc is rebuild in ∼ 10 Myr. Even when the disc re-

forms, it exhibit non axisymmetric features like spiral arms and a population of

stochastically distributed clumps. MBHs moving in this environment experi-

ence gas torquing and scattering (due to massive clumps) whose net effect is to

delay the binary formation. However, despite the delay, the typical timescale

for the inspiral is ∼ 100 Myr, which is shorter than what found in collisionless

simulations. This result is in agreement with what found by Fiacconi et al.

(2013), who describes BH dynamics in clumpy nuclear discs.

1.2.3 Black hole dynamics on nuclear scales

Besides the ab initio simulations of entire galaxy mergers, a good benchmark

for studying the binary formation and the path to coalescence is through sim-

where cs is the sound speed, k = 2Ω

R

d

dR
(R2Ω) is epicyclic frequency, Ω is the orbital fre-

quency, R is the cylindrical radius and Σ is the disc surface density. It has been named after

Toomre (1964), who discussed the stability of stellar discs (the stability criterion for gaseous

flattened systems has been studied by Safronov, 1960) and it asserts that gravitational instabil-

ities can develop in a disc when gravity exceeds the stabilising support of both pressure and

rotation.
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ulations of massive circum-nuclear gaseous discs, like in Escala et al. (2005);

Dotti et al. (2009); Fiacconi et al. (2013); del Valle et al. (2015).

Gaseous discs can cool down, develop turbulence and inhomogeneities

like massive clumps which will then form stars. Gas can also dissipate the

kinetic energy of the moving black holes via radiative cooling in a nearly Ke-

plerian circum-binary disc (Amaro-Seoane, Brem & Cuadra, 2013). A com-

pelling question is whether angular momentum transfer via gas-BH interac-

tions is faster than that from star-BH scattering.

In a number of studies (Escala et al., 2005; Dotti et al., 2007, 2009; Fiac-

coni et al., 2013; del Valle et al., 2015), the massive disc has been modelled as

a self-gravitating axisymmetric Mestel disc (Mestel, 1963). The disc is pres-

sure supported vertically and the Toomre parameter is everywhere greater than

3, preventing the development of gravitational instabilities. In order to model

the innermost region of the galactic bulge the disc is embedded in a stellar

spherical background, modelled as a Plummer sphere (Plummer, 1911). The

primary BH resides in the centre of the disc, and a secondary BH is assumed

to wander in the outer region of the disc.

These studies have highlighted key differences in the BH dynamics with

respect to collisionless studies, especially the dragging of the secondary BH in

a co-rotating co-planar circular orbit. The simulations showed that any orbit

with large initial eccentricity is forced into circular rotation in the disc and

that circularisation is faster the cooler is the disc. Moreover, if the initial orbit

of the secondary is counter-rotating with respect to the disc, dynamical fric-

tion acts against the secondary, turning counter-rotating orbits into co-rotating

ones.

The limit of these studies is that smooth, stable discs are ideal. Gas can

cool and fragment, forming stars, and the feedback associated to SNa explo-

sions and stellar winds can feed back energy into the gas, inducing the forma-

tion of a multi-phase medium. Due to the complex interplay between cool-

ing, SF and feedback from SNe and stellar winds, a first attempt has been to

insert a phenomenological prescription for radiative cooling to allow the con-

trolled formation of clumps (Fiacconi et al., 2013). Clumps forming in the

disc have masses between 105 and 107M⊙ and radii of few pc and evolve via

mass segregation, mergers with other clumps and collisions with clumps or the

secondary BH. They act as massive perturbers and disturb the smooth orbital

decay of the BH due to not coherent torques. Because of these torques, the BH
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deviates from its original orbit, moving inwards or outwards, or also out of the

disc plane. Depending on the interactions experienced the orbital decay can

be either accelerated or delayed. In a number of interactions, a temporary BH-

clump pair form, which rapidly sinks towards the centre. This stochasticity

of the BH dynamical evolution in a clumpy medium suggests that a detailed

description of the multi-phase interstellar medium on nuclear scale is essential

to achieve a clearer understanding of the BH pairing process.

When the mass enclosed within the binary orbit becomes smaller than the

binary total mass, a Keplerian binary forms, surrounded by a less massive

disc, named circum-binary disc. At this stage, the tidal force exerted by the

binary excites non axisymmetric density perturbations in the disc, resulting in

the formation of a cavity, called gap (e.g., Pringle, 1991; Cuadra et al., 2009;

Roedig et al., 2012; Farris et al., 2014, 2015), with a radius close to ∼ 2a(t),
where a is the binary semi-major axis. Under these conditions, the orbital

decay proceeds at a slow rate (Gould & Rix, 2000; Armitage, 2013), set by

the viscous time of the gas flowing within the cavity to accrete on the BHs.

However, recent 2D and 3D simulations suggested that as many as three discs

exist in the binary+disc system, i.e. the circum-binary disc plus two mini-

discs around each BH of the binary, and that these discs persist being fed by

gas flowing through the gap. Fig. 1.9 shows an example of a circum-binary

disc with the two associated mini-discs, taken from Roedig et al. (2012).

The eccentricity e tends to increase during the binary shrinking (Armitage

& Natarajan, 2005) due to vicinity of the secondary BH to the cavity’s edge,

where a trailing density wave induced by the BH reduces the BH tangential

velocity, leading to an increase of e. This process proceeds until the BH ve-

locity at the apocentre becomes smaller than the gas velocity. In these con-

ditions, the density trail moves ahead the BH and increases its velocity. The

process reaches saturation at e ∼ 0.6− 0.8. During this phase, also the binary

mass tends to increase, due to repeated accretion episodes from the mini-discs

around the BHs, modulated by the orbital period of the binary. This process is

particularly interesting, since it can produce electromagnetic signatures of the

binary shrinking before the transition to the gravitational wave driven phase.
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Figure 1.8: Upper panel: black hole separation as a function of time for a 1:4 merger.

The thin and thick lines refer to the dry (gas free) and wet (with gas fraction of 10%)

cases, respectively. The inset shows the colour-coded density of stars (left) and gas

(right) for the wet case at t = 5.75 Gyr (marked with a red dot on the curve); each

image is 12 kpc on a side, and colours code the range 10−2−1 M⊙ pc−3 for stars, and

10−3 − 10−1 M⊙ pc−3 for the gas. Lower panel: black hole separation as a function

of time for a 1:10 merger (upper panel). The thin and thick line refer to the dry and

wet (with gas fraction of 30%) cases, respectively. The inset shows density maps at

t = 1.35 Gyr for the wet merger: images are 4 kpc on a side (colour coding as in

upper panel). Figure taken from Callegari et al. (2009).
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Figure 1.9: Colour-coded gas surface density of two Newtonian, self-gravitating

circum-binary discs, showing the presence of a binary region with the two black holes

and their mini-discs, a porous cavity filled with streams, the inner rim or edge working

as a dam, and the body disc. Left (right) panel refers to a run with gas in the cavity

treated with an isothermal (adiabatic) equation of state. Figures taken from Roedig

et al. (2012).
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Chapter 2
Numerical techniques

Numerical methods are becoming ever more important in astrophysics. The

interplay among the fundamental physical processes describing our Universe

cannot be reduced to simple analytical estimates, unless one limits to highly

approximated treatments. The key feature of the computer is its capability

to solve complex systems of equations, which allows us to have a powerful

complementary tool to the analytic reasoning. In this chapter I will describe

the two codes I used for the simulations performed in this work, based on two

different approaches: the Eulerian technique, used in mesh-based codes and

the Lagrangian technique, used in particle-based technique.

In the mesh-based approach the fluid properties are discretised on a regular

mesh fixed in time. Collisionless components like dark matter, stars and BHs

are mapped on to the grid as well, via suitably build deposition schemes, in

order to build a density field. Gravity is then computed on the mesh by solving

the Poisson equation and then the accelerations are calculated at the original

particle positions. Fluid, instead, is followed by solving the Euler equations

for hydrodynamics. Being the Euler equations a system of hyperbolic partial

differential equations, a solution is found solving a Riemann problem at the

cell interfaces through the so-called Godunov methods (Godunov, 1959). The

Godunov schemes are conservative finite volume methods able to track the

fluid properties even when shocks occur in the gas flow.
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One of the main limits of mesh-based codes is that the grid is fixed in

time, thus they suffer from numerical diffusion and poor angular momentum

conservation.

In the particle-based approach, instead, fluid is sampled with a discrete set

of tracers. In the smoothed particle hydrodynamics (SPH) scheme the tracers

represent particles of the fluid, while in the recently developed unstructured

mesh schemes they represent the centre of a set of cells which can move with

the fluid. Gravity is typically computed for both fluid tracers and collisionless

particles via a hierarchical multipole method (often called ‘tree method’ be-

cause of the geometrical structure used to represent the particle distribution),

where the contribution of a distant group to the acceleration is described via

a multipole expansion of the group’s gravity instead of the using each particle

like in direct N -body codes.

In SPH schemes, fluid evolution is followed by solving the Euler equa-

tions in Lagrangian form. Because of the intrinsically local validity of the

Lagrangian form, shocks are poorly resolved, and one needs to add an artifi-

cial viscosity term to take them into account.

In the recently developed moving mesh or mesh-free methods, instead,

particles are only tracers of a set of moving cells, hence the Euler equations

are solved as in mesh-based codes, avoiding the use of artificial viscosity.

These new methods have been developed with the aim at capturing the ad-

vantages of both SPH and mesh-based codes, i.e. the intrinsic adaptivity, no

preferred directions (hence perfect conservation of angular momentum) and

optimal gravity coupling from SPH codes and the very accurate description of

shocks, fluid instabilities and shear flows from mesh codes.

The reader interested in a more detailed discussion of the numerical meth-

ods used in both mesh-based and particle-based codes to describe gravity and

hydrodynamics can read appendix A.

In the next sections I will describe the codes used in this work, RAMSES

and GIZMO, focussing on the details of the sub-grid physics implementations

and on the differences from the standard schemes just presented.
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2.1 A Eulerian case: the AMR code RAMSES

RAMSES (Teyssier, 2002) is a mesh-based code with an additional adaptive

refinement scheme. The idea behind the refinement technique is to adaptively

increase the resolution of the coarse grid when and where required by speci-

fied properties of the fluid (Berger & Oliger, 1984; Berger & Colella, 1989).

When a cell’s refinement criterion is satisfied, a new grid level is created with

a resolution 2ν (with ν the number of dimensions) times better than the un-

derlying one and the cell’s quantities are interpolated to map the coarse values

to higher resolution. On the other side, when a refinement criterion is not ful-

filled anymore, cells are de-refined, reducing resolution if not needed. Each

level is evolved in time in an iterative fashion, interpolating and projecting

quantities between adjacent levels to preserve consistency. Such a scheme re-

sults in a reduced computational cost with respect to a fixed grid simulation,

and allows for a better description of phenomena occurring on very different

scales (like, for example, the clustering of galaxies on scales of tens of Mpc

and the formation of stars within the molecular clouds with radii of few pc).

Despite the great advantages of the AMR technique, some spurious effects can

arise, especially for massive particle orbits. I will discuss them in Chapter 4.

Gravity is computed in the code through a spectral method at the coarse

level and a multi-grid approach for refined levels. The gravitational contribu-

tion of dark matter and stellar particles is consistently included in the code by

means of a PM scheme (see section §A.1.1).

Hydrodynamics is computed with a Godunov-type scheme at each level,

and a sub-stepping algorithm is also implemented for refined levels to improve

the accuracy of hydrodynamical processes.

The code has been released to the scientific community and also imple-

ments some simple recipes aimed at modelling physical processes which can-

not be resolved on the simulated scales (the so-called sub-grid physics). The

processes implemented in the code are:

• Optically thin radiative cooling, with the cooling function from Suther-

land & Dopita (1993) for primordial composition gas and also taking

into account metal line cooling;

• Star formation (SF), enabled for low-temperature (T < 2 × 104 K)

and high-density gas (ρ > ρthr, where ρthr is a user-defined value).
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Since simulations on galactic scales cannot resolve the molecular clouds

where star forms, SF is implemented converting a fraction of the gas

within a cell into a discrete number of stellar particles, through a Poisson

sampling procedure aimed at recovering the Kennicutt-Schmidt relation

(Kennicutt, 1998). This procedure is described in details in Rasera &

Teyssier (2006);

• Supernova (SNa) feedback, driven by stellar particles that are allowed to

explode as type II SNae releasing mass and energy into the surrounding

medium. In the standard implementation a fixed mass fraction of the

stellar particle explodes after a typical life-time of 10 Myr and releases

into the cell hosting the SNa progenitor 1050 erg/M⊙ as thermal energy

only. The SNa yield can be arbitrarily chosen to model a stellar popu-

lation described by a given initial mass function (IMF). Such a thermal

prescription, however, cannot properly describe the momentum-driven

blast wave typically associated with SNae. In order to model the non-

thermal processes energising the blast wave an alternative model has

been also implemented, termed “blast wave-like feedback”, in which

the released energy is decoupled from the gas thermal budget for a typi-

cal time-scale τdelay = 20 Myr, so that it cannot be immediately lost via

radiative cooling, inhibiting the SNa effect (Teyssier et al., 2013).

• accretion on to sink particles, implemented with three different pre-

scriptions (Bleuler & Teyssier, 2014): (i) a fraction of the total gas

mass within the accretion radius is accreted when the gas density ex-

ceeds a user-defined threshold (“threshold accretion”), (ii) gas is contin-

uously accreted with a rate estimated through the Bondi-Hoyle formula

(“Bondi-Hoyle accretion”) or (iii) the accretion rate is computed as the

net mass flux flowing within the accretion radius of the sink particle

(“flux accretion”). For all of these prescriptions the accretion radius is

set to 4 cells and the accretion rate is capped at the Eddington limit.

• BH thermal feedback (Dubois et al., 2014), in which the radiation pro-

duced by accretion is stored until the total budget is large enough to

heat up the surrounding gas to at least 107 K. This prescription has

been initially proposed by Booth & Schaye (2009) to prevent the gas

to immediately loose the small amount of additional thermal energy
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gained after each time-step, which would result in an ineffective feed-

back. The RAMSES prescription assumes a fixed accretion radiative effi-

ciency ǫ = 0.1 (the standard value used for the optically thin Shakura &

Sunyaev accretion disc; Shakura & Sunyaev, 1973) and a fixed fraction

= 15% of the accretion energy to be released to gas.

2.2 A Lagrangian case: the mesh-free code GIZMO

With respect to standard Lagrangian codes based on the SPH formalism, GIZMO

implements the new mesh-free Godunov-type method described in section

§A.2.2.

Gravity is computed using a tree-based algorithm derived from the gravity

algorithm used in GADGET2.

The code has been publicly released to the scientific community in a ba-

sic version, where only hydrodynamics and gravity are available. Since our

studies also need additional sub-grid physical processes, I implemented in the

code the additional recipes necessary to model gas cooling, SF, type II SNa

feedback, gas accretion onto BHs and BH feedback, in a fashion similar to

RAMSES :

• I included radiative cooling by means of the GRACKLE
1 chemistry and

cooling library, which provides both equilibrium and non-equilibrium

chemistry (The Enzo Collaboration et al., 2014; Kim et al., 2014). In my

runs I employed the equilibrium cooling curve for primordial species

(atomic H and HE), and tabulated metal cooling and heating from CLOUDY

(Ferland et al., 2013), in order to be consistent with RAMSES prescrip-

tions.

• Gas particles are eligible to star formation when they match the same

criteria for density and temperature adopted in RAMSES and belong to a

converging flow (i.e., ∇ · v < 0). Resulting star particles are generated

locally according to the Kennicutt-Schmidt law (Kennicutt, 1998), and

using a stochastic prescription as described in Stinson et al. (2006).

• My implementation of SNa feedback slightly differs from RAMSES one.

While in RAMSES energy is wholly released within the cell hosting

1http://grackle.readthedocs.org



36 CHAPTER 2. NUMERICAL TECHNIQUES

the progenitor, in GIZMO I distributed it among the gas particles ly-

ing within the SNa maximum extension radius RE
2 (Chevalier, 1974),

according to their distance from the SNa, weighted through the kernel

function used in the code. For the SNa blast wave-like model I imple-

mented a “delayed cooling” prescription, in which I temporarily inhibit

radiative cooling for gas particles within RE. Because of these differ-

ences one must be careful in choosing the cooling shut-off time, in order

to get consistent results.

• I enabled gas accretion onto sink particles from gas particles lying within

a distance encompassing an effective number of neighbours N = 32,

weighted through the kernel function used in the code, so that the accre-

tion zone implicitly adapts following the sink particle motion with the

flow, unlike in RAMSES . Though this choice allows for better resolu-

tion in very high-density regions (where the kernel size becomes very

small), spurious accretion events could in principle occur when the par-

ticle moves in a low-density environment, i.e. when the kernel size is

very large. In order to prevent this undesired effect I enabled accre-

tion only for sink particles with a kernel radius smaller than 10 times

the softening length associated with the sink particles themselves. The

accretion rate is then computed following RAMSES recipes.

• My recipe for BH thermal feedback strictly follows RAMSES implemen-

tation.

2The SNa maximum extension radius is defined as RE = 101.74E0.32
51 n−0.16

0 P̃−0.20
04 pc,

where ESN = E5110
51 erg, n0 is the ambient hydrogen density and P̃04 = 10−4P0k

−1
B with

P0 the ambient pressure



Chapter 3
Massive black hole seed

formation: stellar mass black hole

growth via super-critical accretion

As already described in Chapter 1, MBHs are typically observed as AGNs

(or high redshift quasars) powered by the gas accretion process on to the

hole. Mass estimates show that along cosmic history MBHs coevolve with

the galaxy host, as highlighted by the MBH − σ and the MBH − Mspheroid

relations (Gültekin et al., 2009; Häring & Rix, 2004).

According to the Λ-CDM cosmology paradigm, galaxies form via accre-

tion and mergers with smaller sub-units, and MBHs grow in symbiosis with

them. Therefore, we expect that the first BHs were lighter, and then they have

grown up to billion solar masses. Some of them must have grown very rapidly,

in order to explain the high redshift quasars observed (up to z ∼ 7), powered

by ∼ 109M⊙ MBHs (Mortlock et al., 2011). Different models for seed forma-

tion have been proposed to date, from the collapse of PopIII stars (Madau &

Rees, 2001) to dynamical processes in stellar clusters (Devecchi & Volonteri,

2009; Davies, Miller & Bellovary, 2011), to the direct collapse of a massive

gas cloud (Haehnelt & Rees, 1993). Each model carries its own pros and cons,

and a clear consensus about the correct one is still missing, in particular be-

cause of the technical limits of our observations (both the electromagnetic and
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gravitational ones).

Recently Madau, Haardt & Dotti (2014) proposed an alternative scenario,

in which super-critical (i.e., super-Eddington) accretion episodes onto stel-

lar mass seeds could help to bypass the difficulties associated with all the

other scenarios. They considered the radiatively-inefficient “slim-disc” solu-

tion (Abramowicz et al., 1988) - advective, optically thick flows that generalise

the standard Shakura & Sunyaev solution (Shakura & Sunyaev, 1973) - and

showed how mildly super-Eddington accretion significantly eases the problem

of assembling MBHs in less than a billion year. Because of the (accretion-

rate dependent) low radiative efficiencies of slim discs around non-rotating as

well as rapidly rotating holes, the accretion time-scale in this regime is almost

independent of the spin parameter. It is this unique feature of slim discs that

makes such models so appealing. In the paper, they briefly discussed (see

also Volonteri, Silk & Dubus, 2015) how conditions for super-critical accre-

tion could be physically plausible in the dense environment of high redshift

massive protogalaxies.

Here, I elaborate upon this concept by means of high resolution simula-

tions of a cluster of stellar mass black holes orbiting the central ∼ 200 pc

of a gas-rich galaxy. I will focus on the effect of a radiatively inefficient BH

feedback on the growth of SBHs embedded in a circum-nuclear gaseous disc,

showing how the interplay between gas dynamics and the black holes can

easily lead to the formation of a massive MBH seed in the centre of the sys-

tem within few million years. Though these simulations are highly idealised

and should be thought as a proof-of-concept of the proposed scenario, they

highlight the basic point, i.e. that super-Eddington accretion in well-formed,

evolved galaxies is an attractive route to the formation of MBH seeds. In fact,

a population of SBHs is expected to reside in the inner ∼ 200 pc, the circum-

nuclear disc can provide enough gas to be accreted, and negative feedback is

negligible in the high-density clumps developed in the disc.

3.1 Initial conditions

I considered the nuclear region of a high-redshift massive spiral galaxy, assum-

ing that it hosts a gaseous circum-nuclear disc (CND hereafter). I modelled

the CND following an exponential surface density profile (see Fig. 3.1, top

panel), with total mass 108M⊙ and scale radius 50 pc. The disc has been em-
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bedded in a stellar spherical background following an Hernquist profile, with

scale radius 100 pc and total mass 2×108M⊙. Note that the adopted gas mass

from the CND is at the lower end of that of CNDs observed in low z merger

remnants (e.g., Medling et al., 2014), and should thus be regarded as a conser-

vative choice for the purpose of the investigation. At high redshift galaxies are

indeed expected to be more gas rich, which is supported by both theoretical

arguments and observational evidence.

The disc, modelled as an ideal gas with polytropic index γ = 5/3, has been

set in hydrostatic equilibrium in the global potential with an initial temperature

T = 104 K. In Fig. 3.1 I report the surface density (top panel) and the velocity

profile (bottom panel) of the gas component in the disc.

I assumed that previous star-formation episodes left a population of stellar

mass black holes in the galaxy nucleus. The mass of such “black hole seeds”

MBH has been alternatively set 20 or 100M⊙. I initially distributed the BHs

uniformly within the inner 150 pc of the CND. The BHs laid in the disc plane

and had an initial velocity equal to the local circular velocity. I added a ran-

domly oriented velocity component sampled from a normal distribution with

standard deviation σ ∼ 20% of the maximum circular velocity.

In order to create the initial conditions for this study I developed a code,

named GD BASIC
1. The code computes the density and velocity profiles for

both gas and stellar components to guarantee global equilibrium. The code

produces two kinds of output, suitable for both grid and particle based codes.

The output for particle based codes is stored in the standard GADGET2 binary

format, while in the case of grid codes, the gas must be initialised from the

computed density and velocity profiles, with the addition of the stellar particles

extracted from the standard binary output. The code has also been described

in Lupi, Haardt & Dotti (2015).

1The name is an acronym for ‘Gas disc, BH and stars initial conditions’.The code is publicly

available on my personal webpage http://www.dfm.uninsubria.it/alupi/software.

html
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Figure 3.1: Initial surface density (top panel) and circular velocity (bottom panel)

profiles of the circum-nuclear disc.
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3.2 GD BASIC: A Montecarlo code to model circum-

nuclear discs in galactic nuclei

I assume that a galactic nucleus is constituted by three different components:

• a stellar spherical structure (termed “nucleus” hereinafter) described by

an Hernquist profile (Hernquist, 1990), defined in spherical coordinates

as

ρb(r) =
Mb

2π

a

r (r + a)3
, (3.1)

where ρb(r) is the density as a function of radius r, Mb = 2× 108M⊙

the total nucleus mass, and a = 100 pc the nucleus scale radius.

• an exponential gaseous disc with surface density profile defined in cylin-

drical coordinates as

Σd(R) =
Md

2πR2
d

exp(−R/Rd), (3.2)

where R is the disc radius, Rd = 50 pc the disc scale radius, and Md =
108M⊙ the total disc mass.

• a MBH with mass MBH = 107M⊙, at rest in the centre of the disc.

This last component will be included in the study described in Chapter

4 only.

GD BASIC solves the disc hydrostatic equilibrium equations for a user-

defined surface density profile subject to the additional potentials of the Hern-

quist nucleus and of the MBH (if present). Defining the gas pressure as

Pd = (γ − 1)ρdu, (3.3)

where γ and u are the gas polytropic index and internal energy respectively,

and assuming a single temperature disc, the vertical equilibrium equation can

then be written as

1

ρd(R, z)

∂Pd(R, z)

∂z
= −

∂φ(R, z)

∂z
, (3.4)
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where φ(R, z) is the global gravitational potential of the system. Using eq. 3.3,

eq. 3.4 can be solved for the disc surface density:

Σd(R) = ρd(R, 0)

∫ +∞

−∞

exp

[

−
φz(R, z)

(γ − 1)u

]

dz, (3.5)

where φz(R, z) ≡ φ(R, z) − φ(R, 0) is the vertical component of the global

potential.

Assuming the thin disc approximation, the Poisson equation can be sim-

plified to

∂2φd
∂z2

+∇2φb = 4πG[ρd(R, z) + ρb(r)], (3.6)

where φd and φb are the disc and the nucleus potentials, respectively. Since

∇2φb = 4πGρb, we can write

∂2φd,z
∂z2

= 4πGρd(R, z) = 4πGρd(R, 0) exp

[

−
φz(R, z)

(γ − 1)u

]

, (3.7)

where we defined φd,z ≡ φd(R, z) − φd(R, 0) as the vertical component of

the disc potential.

To obtain the density profile we must solve the above equations, which

force the vertical hydrostatic equilibrium of the disc, assuming a surface den-

sity profile as boundary condition. We start solving eq. 3.7 for φd,z by guessing

an initial equatorial profile ρd(R, 0). Then, we compute the total vertical po-

tential φz , and by means of eq. 3.5, a new value for ρd(R, 0) that satisfies the

boundary condition Σd is derived. The procedure is iterated until convergence.

From eq. 3.7 we obtain φd,z and, from eq. 3.4, ρd(R, z). As in the iterative

procedure φd(R, 0) is a free parameter, we assume a razor thin exponential

disc (equation 2-168 in Binney & Tremaine). Finally, the velocity of the disc

particles is evaluated by setting the radial component of the velocity equal to

0 (hydrostatic equilibrium assures that the vertical component is null as well),

while the tangential velocity is obtained from the Euler equation in the case of

a rotationally supported disc.

Concerning stellar-like particles, we evaluate the distribution function f in

the 6-dimensional phase-space. We initially consider the Hernquist spherical

structure subject only to its own potential and to the MBH potential (i.e., φ =
φb + φMBH), implying that f depends only on the particle total energy in this
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case. From the Eddington’s formula (equation 4-140a in Binney & Tremaine)

we have

f(ǫ) =
1

23/2π2
d

dǫ

∫ 0

ǫ

dρb
dφ

dφ

(φ− ǫ)1/2
, (3.8)

where ǫ is the particle energy per unit of mass, and ρb can be expressed as a

function of φ (being φ a monotonic function of r). The distribution function is

numerically evaluated and used to sample the nucleus particle energy density.

We then derive the particle speed v =
√

2(ǫ− φ), where φ is computed at the

particle position. In order to correct for the neglected contribution of the disc

to the global potential, we add to the spherically symmetric component of the

potential the approximate contribution of the disc in the form φd = GMd(<
r)/(3r), where Md(< r) is the mass of gas particles within r.

3.2.1 Code test

In order to test the stability of the initial conditions, we try to initialise and

evolve an isolated galactic nucleus (with all the three components) for 10 Myr.

We assumed an exponential surface density profile, which reproduces the ob-

served profiles of disc galaxies. We adopted a fiducial value for the initial

gas temperature of 2 × 104 K. The evolved disc surface density is shown in

fig. 3.2 at different times. The profile changes in the inner ≃ 20 pc because

of a gas instability developing after ≃ 2 Myr from the start. In order to assess

the origin of such instability, we numerically estimate the Toomre parameter

of the disc Q at initial time t = 0 (Q ≡ kcs/(πΣ), where k is the epicyclic

frequency and cs is the gas sound speed). Note that, strictly speaking, the ini-

tialised disc is not infinitesimally thin, so that Q as defined above represents

a lower limit. Fig. 3.3 shows the Toomre parameter at t = 0 as a function of

the radial distance R. We find Q > 2 everywhere, with the notable exception

of the region 10 ∼< R ∼< 150 pc, where 1 ∼< Q ∼< 2. The formation of tran-

sient spiral arms in this region, clearly seen during the disc evolution, suggests

a genuinely physical origin of the disc instability. Such instability results in

small changes in the surface density profile in the 10 ∼< R ∼< 150 pc region.

The system, now slightly out of equilibrium, undergoes a re-adjustment of the

gas distribution down to the very central region of the disc, as observable in

fig. 3.2 down to 5–10 pc from the MBH.
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Finally, no evidence of any fragmentation instability during the overall

evolution is seen, in agreement with Q being always ∼> 1.

1 10 100
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⊙
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Figure 3.2: Surface density profile for a disc evolved in isolation using gadget2 -2.

The solid black, dashed red and solid cyan curves are obtained from the gas particle

distribution at t = 0, 5 and 10 Myr, respectively. The dash–dotted blue curve is the

profile calculated with the algorithm described in the text.

3.3 Simulation setup

I performed a suite of 6 simulations, using two different codes, the AMR code

RAMSES (Teyssier, 2002) (“ R” runs) and the mesh-free code GIZMO (Hop-

kins, 2015) (“ G” runs). The use of two different powerful numerical tech-

niques is aimed at checking the robustness and reproducibility of our results.

3.3.1 RAMSES Eulerian simulations

I performed two simulations with RAMSES at two different spatial resolutions,

namely 0.4 pc (“low” runs) and 0.1 pc (“med” runs). The mass resolution was
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Figure 3.3: Toomre parameter at t = 0 Myr for the isolated disc using the thin disc

approximation. The dashed red line corresponds to Q = 1, while the dash–dotted

blue one to Q = 2. The y-axis has been limited in the interval between 0 and 10 to

highlight the instability interval, corresponding toQ < 2. The region within the inner

1 pc is not visible because of the very large values assumed by Q, outside the axis

limits considered.

103M⊙ at the quasi-Lagrangian threshold for refinement. I included the ra-

diative cooling of the gas adopting the standard prescriptions employed in the

code (see Teyssier et al., 2013, for details). In order to prevent spurious frag-

mentation at the highest refinement level I added a polytropic pressure term to

the gas component (described as a polytrope with γ = 5/3 and temperature

103 K at 2 × 105 cm−3), ensuring to resolve the Jeans length with at least 4

cells at the highest refinement level.

I set a star formation density and temperature threshold of ρthr = 2× 105

cm−3 and Tthr = 2× 104 K, and a typical star formation time-scale of 1 Myr.

I also assumed a time delay between star formation and the corresponding

SNa explosion event of 1 Myr, with a SNa yield of 0.15 (corresponding to

stars with masses above 8M⊙ for a Salpeter IMF). In order to model non

thermal processes associated with SNa events, I included the blast-wave like
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feedback described in Teyssier et al. (2013). In this feedback recipe the SNa

energy budget is decoupled from the thermal energy of the gas, preventing, for

a typical timescale ≃ 20 Myr, the gas to radiatively cool. In our runs I assumed

a primordial gas composition and included subsequent metal pollution due to

SNe.

3.3.2 GIZMO Lagrangian simulations

I used the same prescriptions of my RAMSES runs for both cooling and SF.

Regarding SNa feedback, in GIZMO runs I limited the cooling delay time to 5

Myr only (i.e., 4 times smaller than what assumed in RAMSES runs). I checked

that this set up provided consistent results between RAMSES and GIZMO feed-

back implementations.

I performed three simulations allowing for two different gravitational res-

olutions, i.e., 0.16 pc (“low” runs) and 0.02 pc (“high” run). I set the same

gravitational resolution for gas particles and BH particles. I used 105 parti-

cles for the “low” runs and 107 for the “high” run, corresponding to a mass

resolution of 103M⊙ and 10M⊙, respectively. In these runs I used the finite

mass mode available in the code, in which mass transfer between particles is

forbidden, so that our simulations were purely Lagrangian.

3.3.3 BH accretion

In both RAMSES and GIZMO runs I evaluated the accretion onto the stellar

mass BHs using the so-called “flux accretion” prescription. In such a scheme

the accretion rate is the mass flux rate within the BH accretion zone (see sec-

tions §2.1 and §2.2), i.e.,

Ṁacc =

∫

−∇ · [ρ∆v]d3x, (3.9)

where the integral is over the volume of the accretion zone and ∆v is the gas-

BH relative velocity (see Bleuler & Teyssier, 2014, for a detailed description

of the implementation).

In order to get a more accurate BH dynamics and to best resolve the ac-

cretion rate in RAMSES runs, I forced the region near to each BH to always

be at the maximum refinement level, as described in section §4.3. Forcing the

resolution close to the BHs at the highest possible level guaranteed that nearby
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cells owned a mass ∼< 5 ×MBH during the whole BH accretion history. This

allowed me to set 20M⊙ as the initial mass of the BHs in RAMSES runs.

In GIZMO runs, instead, the large mass of gas particles did not allow me to

properly resolve the dynamics of BHs as light as 20M⊙. Therefore, I started

from a larger initial BH mass, i.e., MBH = 100M⊙. With such a choice,

BHs in the “high” runs had resolved dynamics since the very beginning of the

simulation. In the “low” case, the initial BH dynamics and growth was instead

affected by the lack of mass resolution. However, as will be discussed in the

next section, some BHs grew above 1000M⊙ in a very short time, making

dynamics quickly reliable.

With respect to the standard Bondi-Hoyle model, the “flux accretion”

recipe does not make any geometrical assumption for the gas flow, allowing

for a more accurate estimation of the accretion rate, where the effect of angular

momentum on the resolved scales is taken into account. However, despite the

high resolution reached with the “high G” run, I was unable to properly follow

the gas from sub-parsec scales down to the accretion disc scale. This resolu-

tion limit could lead to overestimated and more efficient accretion. However,

such a convergence study is beyond the scope of this study.

3.3.4 BH feedback

In these simulations I suitably modified the standard recipe for BH feedback

to include the effects of accretion in the fashion of slim disc (Sa̧dowski et al.,

2014). To this aim, I estimated ǫ using the analytical fit to the numerical results

by Sa̧dowski et al. (2014) provided by Madau, Haardt & Dotti (2014):

ǫ =
r

16
A(a)

[

0.985

r +B(a)
+

0.015

r + C(a)

]

, (3.10)

where r = ṀE/Ṁ . Here ṀE = 16LE/c
2 where LE is the Eddington lumi-

nosity. A,B,C are fitting functions scaling with the BH spin a as

A(a) = (0.9663− 0.9292a)−0.5639, (3.11)

B(a) = (4.627− 4.445a)−0.5524, (3.12)

C(a) = (827.3− 718.1a)−0.7060. (3.13)
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At each accretion event I computed the released energy allowed to feed-

back on nearby particles/cells (in GIZMO runs) or cells (in RAMSES runs) using

this new value for ǫ instead of the fixed value 0.1, while the BH spin has al-

ways been fixed at a = 0.99 for all BHs. In all simulations I did not include

other possible forms of BH feedback, e.g., momentum-driven.

Finally, in order to check whether super-critical accretion is instrumental

in leading to very large MBH in a short time, I performed two GIZMO runs

setting the radiative efficiency to its custom value, ǫ = 0.1 (low G 0.1 and

high G 0.1 runs). The details of these six simulations are reported in table 3.1.

Run Resolution BH mass Accretion radius ǫ
(pc) (M⊙) (pc)

low R 0.40 20 1.6 Slim

med R 0.10 20 0.4 Slim

low G 0.16 100 < 1.6 Slim

high G 0.02 100 < 0.2 Slim

low G 0.1 0.16 100 < 1.6 0.1

high G 0.1 0.02 100 < 0.2 0.1

Table 3.1: Settings of our simulation suite. The second column reports the gravi-

tational resolution (for G runs) and the highest refinement level resolution (for R

runs). The fourth column is the accretion radius, which is fixed to 4 cells for R runs

and depends on the smoothing length for G runs. The last column indicates the type

of accretion recipe used.

3.4 Results

Figure 3.4 shows the comparison between the low resolution GIZMO runs with

(low G) and without (low G 0.1) the slim disc implementation. All the other

simulation parameters are the same in the two simulations. It is immediately

clear from the comparison that whenever a BH undergoes an intense accre-

tion episode, the large feedback energy available in the radiatively efficient

low G 0.1 case evacuates the BH surroundings, efficiently limiting further

BH growth. In the low G case, on the contrary, even accretion rates signif-

icantly higher than ṀE result in moderate luminosities that do not impact on

the densest gas clumps, and therefore BHs can grow considerably faster. As
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an example, in the low G run the most mass growing BH (that will be referred

to as BHtop in all runs hereafter, red line in the bottom-left panel of figure 3.4)

reaches a mass larger by up to 2 order of magnitudes compared to the cor-

responding BHtop in the radiative efficient case at the end of the simulation

(red line in the top-left panel panel). The low radiative efficiency of slim discs

has then a double effect: first, for any given accretion rate BHs grow faster

simply because less mass is lost as radiation (the “(1− ǫ)-effect”); second, the

reduced radiative efficiency results in a reduced feedback on the accreting gas,

and larger accretion rates are therefore possible (the “Ṁ -effect”).

In order to asses how numerical resolution affects the results, I analysed

the two high resolution GIZMO runs (high G and high G 0.1), and compared

the outputs to the low resolution cases discussed above. Figure 3.5 shows the

accretion history of BHs (left panels) and the effect the accretion feedback

has on the gas (right panels). Because of the higher resolution the accretion

region around each BH which can be resolved is smaller, and this has the net

effect of reducing the BH mass growth compared to the corresponding low

resolution runs. Nevertheless, it is apparent how, also in these high resolution

simulations, BH mass growth is strongly suppressed in the radiatively efficient

case (top panels). Indeed, for ǫ = 0.1, BHtop increases its mass by only

≃ 50% of its initial value. I want to stress again that the different radiative

efficiency is only marginally responsible of the different accreted mass in the

two cases. As clearly shown in the right panels of Figure 3.5, the largest effect

is played by the accretion feedback that, in the standard high-efficiency case,

evacuates the region closer to the BHs, hence inhibiting further gas accretion.
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Figure 3.4: Left panels: BH masses as a function of time for runs low G 0.1 (top panel) and low G (bottom panel). The

red lines correspond to the most massive BHs (BHtop) at the end of the runs, while the blue dashed lines trace accretion

histories at fixed Eddington ratios of 500, 400, 300, 200 and 100, respectively. Central and right panels: gas density maps

for the two runs at t = 0.2 and 0.64 Myr, respectively. The white dots mark the positions of the BHs.
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Figure 3.5: Left panels: BH masses as a function of time for runs high G 0.1 (top panel) and high G (bottom panel). The

red lines correspond to the most massive BHs (BHtop) at the end of the runs, while the blue dashed lines trace accretion

histories at fixed Eddington ratios of 500, 400, 300, 200 and 100, respectively. Central panels: gas density maps for the two

runs at t = 0.73 Myr. Right panels: zoom in of a region heated by BH feedback. The white dots mark the positions of the

BHs.
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The implementation of a physically motivated radiative inefficient accre-

tion mode is then a necessary condition for a fast, highly super-Eddington

growth of BHs in my simulations, but, as I will show next, is not sufficient.

In the following I will focus only on runs including the slim disc prescription,

in order to link episodes of super-Eddington growth with the physical state of

the BHs and of the nuclear disc, with the ultimate aim of understanding the

processes that can possibly lead to high accretion rates.

Figure 3.6 shows the results of the highest resolution RAMSES run med R.

The upper left panel reports the mass evolution of the 20 BHs as a function of

time. As for the low G simulation discussed above, the implementation of the

slim disc efficiency prescription allows BHtop (shown as a red line) to grow

within 3 Myr by up to ∼ 3 orders of magnitude in mass. Note that BHtop is

not necessary the earliest growing BH of the cluster.

The upper right panel of figure 3.6 focuses on BHtop alone, showing the

time evolution of the accretion rate, and the corresponding distance from the

gas clump the BH bounds to during the peak of its mass growth. The ac-

creting clump forms out of a spiral stream developing in the cooling disc,

and can not be clearly identified as a bound structure before t ≈ 1 Myr, as

shown in the middle left panel. BHtop passes a first time through the over-

dense stream (middle right panel), and experiences a short ∼< 0.1 Myr super-

Eddington accretion episode, but the radial component of its velocity quickly

is large enough to displace it from the overdensity (as observed in the ṁBH

plot, upper right panel). As the clump grows in mass (up to a maximum of

∼ 3× 104M⊙ in gas), the BHtop feels its gravitational attraction, and is even-

tually captured by the clump. At this time BHtop undergoes a longer (∼ 0.5
Myr) intense super-Eddington accretion phase. Being the initially small BH

surrounded by an overwhelmingly large and cold gas cloud, the BH accretes

at the maximum rate allowed by the code (i.e. 500× ṀE) until almost all gas

is turned into stars. At this point BHtop (already grown by 3 order of magni-

tudes in mass), together with stars exploding as SNe, can evacuate the residual

gas condensation (lower right panel). Note that BHs (including BHtop) ac-

crete most of their mass from, essentially, a single dense clump they randomly

come across during the dynamical evolution of the system.

It is important to realise that the gravitational capture of a BH by a dense

gas clump is intrinsically stochastic, as clumps form in the disc via gravita-

tional instabilities of cooling gas independently of the presence of seed holes.
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While the BH-capture process is common in all the performed simulations, the

number and mass distributions of gas clumps and, consequently, the fraction

of BHs that bind to them, in fact depend upon the spatial and mass resolution

achieved. Figure 3.7 shows a comparison between runs with different spatial

resolution. Among the runs including the slim disc implementation, only run

med R (already shown in Figure 3.6) is left out of the direct comparison.

A first clear difference is observable at early times. The runs with lower

resolution show a faster initial growth of each individual BH, and the num-

ber of growing BHs right after the beginning of the runs (t ∼< 0.5 Myr) also

increases with decreasing resolution. These trends are caused by the larger

accretion radius implemented in the lower resolution runs. In these simula-

tions the BHs can start accreting well before the disc develops any significant

overdensity. For this reason the feedback of the early BH accretion onto the

gas is more efficient, as a larger energy is injected in a lower density medium.

As the resolution increases and the accretion radius can be decreased, fewer

BHs have an early start, as in the med R run (upper left panel of Figure 3.6)

and, more evidently, in the high G run (lower left panel of Figure 3.7).

The high G run, thanks to the exquisite mass and spatial resolutions achieved,

shows a richness of structures observable directly in the density map (see the

lower right panel of Figure 3.7 in particular), in which the formation of dense

clumps as well as the feedback exerted by the ongoing SF are clearly visible.

The gas particles tracing the gas evolution allow us to follow the formation

of the massive clump from which BHtop gains its mass. Figure 3.8 reports

two different projections of BHtop orbit along with the trajectories of 50 gas

particles randomly extracted from those forming the massive clump BHtop

binds to and accretes from. The clump formation clearly proceeds out of a

gas gravitational instability within the dense disc, and starts interacting with

BHtop only when their orbits intersect. Strong gravitational perturbations to

the BH orbit are clearly seen when the two systems bind gravitationally. The

BH growth then exerts a feedback onto the gas particles, that, together with

stars exploding as SNe, results in a partial ejection of particles from the BH

neighbourhoods and out of the disc plane (as clearly see in Figure 3.8 lower

panel).

In summary, I want to note that in these idealised runs the growth of the

BHs is finally halted by the star formation-driven gas consumption, and by gas

ejection triggered by SNe. However, in a cosmological perspective, the galaxy
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nucleus would be replenished of gas coming from large scale filaments and/or

galaxy mergers. The very short duration of the super-Eddington accretion

bursts allows for the growth of stellar mass BHs up to ∼> 104M⊙ or more on

a time comparable (or even shorter) than the star-formation timescale.
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ṁ
B
H
/ṁ
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Figure 3.6: Run med R. Upper left panel: BH masses vs time for all the 20 BHs.

The dashed lines show the slope of accretion episodes at 500, 400, 300, 200 and 100

ṀE. Upper right panel: accretion rate for BHtop, and distance from the clump BHtop

bounds to during the peak of its mass growth. Middle and lower panels show the

density in the equatorial disc plane of the gas at t = 0.75, 1.2, 1.67 and 2.33 Myr

(corresponding to the times highlighted by the dotted lines in the upper upper right

panel). The BHtop is reported as large white ring, while the other BHs are shown as

smaller white dots.
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Figure 3.7: Upper panels: Mass as a function of time of the BHs (left panel), gas

density at t = 0.73 Myr (central panel) and t = 1.76 Myr for the low R run. The

positions of the BHs are shown as white dots. The growth of BHtop is highlighted in

the left panel with a red line, and its position in the central and right panels is marked

with a large white ring. Middle and lower panels, the same as the upper panels for

run low G and high G, respectively.
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Figure 3.8: Solid red lines show the face-on (top panel) and edge-on (bottom panel)

projections of the trajectory of BHtop in run high G. Black dotted lines trace the orbits

of a sample of the gas particles forming the gas clump BHtop binds to. The accretion

burst due to the BHtop-clump interaction is highlighted in cyan.
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Chapter 4
Massive black hole binaries in

gas-rich galaxy mergers:

formation and evolution

Along the cosmic history galaxies assemble their mass via accretion and merg-

ers of smaller units. As described in Chapter 1, MBHs harbouring the centre

of these galaxies sink towards the centre of the merger remnant (when the

mass ratio between the colliding galaxies is ∼> 1 : 10) forming a Keplerian

binary. The MBHB shrinks via gas torques (if gas is present) and three-body

interactions with stars in the galaxy nucleus and finally undergo coalescence,

driven by gravitational wave emission.

To simulate MBHs in galaxy mergers we need a detailed treatment of the

dynamics from hundred kpc scales, when galaxies start interacting, down to

few 10−3 pc, when gravitational wave emission becomes dominant, since it

influences the MBH ability to accrete gas (hence, its mass evolution and pos-

sible onset of AGN activity), the MBH spin evolution (e.g., Dotti et al., 2010),

and the formation and fate of MBHBs. Because of the large dynamic range

involved, our ability of describing the whole process is strongly limited. To by-

pass this problem, different solutions have been proposed, aimed at investigate

different phases of the BH route to coalescence: (i) galaxy merger simulations

with resolution of . 10 pc, which describe the BH pairing under the action of
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gravitational torques by dark matter, gas and stars; (ii) idealised simulation of

a single massive circum-nuclear disc in the merger remnant nucleus; (iii) sim-

ulations of a pair of circum-nuclear discs, each hosting a MBH in its nucleus,

which collide on scales of few hundred pc.

With the smoothed particle hydrodynamics (SPH) code GASOLINE, case

(i) was explored by Roškar et al. (2015) who simulated a prograde in-plane

1:1 merger of two late-type galaxies (Milky Way like) where star formation

and feedback were turned on at the onset of the simulation to generate a multi-

phase medium. 5 Gyr after the start of the simulation, particle-splitting of the

baryonic particles was performed in an excised zoom-in region to follow the

last 100 Myr of evolution when the galaxy’s cores touch on scales of ∼ 5 kpc.

The nature of the multiphase gas which develops clumps affects the MBH dy-

namics. The MBHs undergo gravitational encounters with massive gas clouds

and stochastic torquing by both clouds and spiral modes in the disc relents the

pairing process. The MBHs are kicked out of the plane due to their interaction

with clumps and this delays the time of binary formation which now is ∼ 100
Myr, about two orders of magnitude longer than in the idealised mergers with

one-component gas. Thanks to the adaptive mesh refinement technique, in-

stead, a number of grid-based hydro simulations of galaxy mergers have been

performed to date (Chapon, Mayer & Teyssier, 2013; Dubois et al., 2014). The

two papers assume quite different prescriptions. Chapon, Mayer & Teyssier

(2013) assume a smoother IGM, not affected by cooling, star formation (SF)

and supernova (SNa) feedback, while these effects are considered in Dubois

et al. (2014).

Type (ii) investigations have been performed by del Valle et al. (2015),

who recently simulated with an SPH code the sinking of two MBHs in a

massive 109 M⊙ circum-nuclear disc with gas forming stars. The orbits of

the MBHs are erratically perturbed by the gravitational interaction with the

clumps that form as a result of disc’s fragmentation, delaying the orbital de-

cay of the MBHs if compared with similar runs with a one-component gas:

typical decay times are found close to 10 Myr, when the MBHs are seeded in

the disc initially at ∼ 200−100 pc scales. The key result which emerges from

these new studies is that the MBH dynamics is sensitive not only to the time

varying gravitational background of a merger itself, but also on how fragmen-

tation of gas clouds, star formation and supernova (SNa) feedback shape and

change the thermodynamical state of the gas, considered to play a key role
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in guiding the orbital decay of the MBH. The mass distribution of the star-

forming clumps appears to be a relevant parameter which affects the degree of

stochastic forcing of the MBH orbit and the distribution of the sinking times

from ∼ 100 pc scale down to 0.1 pc.

In this study I used type (iii) simulations, in the aim at describing the inter-

mediate stages of a gas-rich galaxy merger, in which both progenitor galaxies

hosted a MBH surrounded by a circum-nuclear disc, which is in the verge of

merging within the inner kpc of the merger remnant. The key question of my

study was understanding the MBH dynamics in a multiphase gas shaped by

cooling, SF and SNa feedback and the role of SNa feedback in shaping the

gas mass distribution around the MBHB. The transit from the binary phase II

to phase III of gravitational wave inspiral depends on the strength of gas-driven

migration in a circum-binary disc surrounding the MBHB (Cuadra et al., 2009;

Shi et al., 2012; Roedig et al., 2011, 2012; del Valle & Escala, 2012). My first

attempt was to explore under which conditions a circum-binary disc forms

around the two MBHs and how this depends on the recipes adopted to model

the physics of star-forming regions. The simulations have been performed

with the AMR code RAMSES , due to the better treatment of gas shocks with

respect to SPH codes (Agertz et al., 2007) which allowed me to accurately

describe the gas dynamics when the two gaseous discs collide.

4.1 Initial conditions

I initialised each of the two merging nuclei following the procedure described

in section §3.2, by means of the code GD BASIC. I built two equal mass co-

rotating gaseous discs, each described by 105 particles, with an initial gas tem-

perature of 2 × 104 K and a polytropic equation of state with index γ = 7/5.

I initially relaxed them adiabatically for about 10 Myr to ensure stability. The

discs were initially set at 300 pc on an elliptical orbit with eccentricity e = 0.3,

and with orbital angular momentum antiparallel to the angular momentum of

the discs. I stress that each galaxy disc plane is in principle uncorrelated to

the orbital plane of the merger, and, to the first order, the same is valid for

the CNDs1. I arbitrarily chose the geometry that maximises the impact of the

1Here I neglect the possible tidal effect exerted by one disc onto the other. This effect

would tend to align (or antialign) the two discs, enhancing the chances of having an orientation
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two discs along their orbit and that ensures the highest cancellation of angu-

lar momentum, enhancing the inflows toward the centremost regions. Such a

geometry has not been explored in the literature yet.

Since the system considered was more complex than in the case of sin-

gle CND, the initial conditions for the AMR runs were obtained by mapping

the gas particle distribution produced by GD BASIC on a grid using the pub-

licly available code TIPGRID.2 The maximum spatial resolution (at the highest

refinement level) for all my simulations was ∼ 0.39 pc and the mass resolu-

tion for particles forming the stabilising stellar nucleus was 2 × 103M⊙. I

used the standard Quasi-Lagrangian and Jeans criteria already implemented

in RAMSES, as described below. The Quasi-Lagrangian criterion allowed me

to resolve a minimum gas mass of 103M⊙ everywhere. The standard Jeans

criterion, on the other hand, ensured that the Jeans length was resolved with

at least 4 cells everywhere, so to avoid the formation of spurious clumps due

to resolution limits. I also added a pressure support term, modelled as a poly-

trope with γ = 5/3 and temperature 2×103 K at the star formation threshold,

in order to avoid the formation of spurious clumps due to resolution limits.

4.2 Sub-grid physics

In these runs I assumed gas with primordial composition, optically thin and

I allowed the gas to cool down under lines and continuum emission. I also

included stellar particle creation for gas matching two criteria: (i) the gas

temperature dropped below 2 × 104 K, and ii), the gas density in a cell ex-

ceeded a pre-defined value. I assumed a typical star formation (SF) timescale

of 1.0 Myr and I set the SF density threshold alternatively to nH = 2 × 105

or nH = 2 × 106 cm−3, where nH is the local hydrogen number density. In

order to model SNa explosions, I considered each stellar particle as a stellar

population following a Salpeter IMF, and a SNa yield of 15%. I further em-

ployed two different recipes for SNa feedback. In both SNa feedback recipes

the energy budget associated (1050 erg/M⊙) is completely released in the par-

ent cell as purely thermal energy. The first recipe (termed “thermal feedback”)

between the two CNDs similar to the one I assumed as initial conditions.
2The code is available at http://www.astrosim.net/code/doku.php?id=home:

code:analysistools:misctools.
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assumes that the heated gas starts cooling right after the SNa event; the sec-

ond recipe (termed “blast wave feedback”) assumes instead that the energy

released by SNe is decoupled from the gas radiative cooling, i.e., it is not radi-

ated away for ∼ 20 Myr (Teyssier et al., 2013) and this triggers the formation

of a momentum-driven blast wave. This latter scheme is aimed at modelling

non-thermal processes energising the blast wave, which are characterised by

timescales longer than thermal processes (see e.g, Enßlin et al., 2007). I usu-

ally assumed that no star formation occurred within the two discs before the

merger, and that SNe exploded after a time ∆tSN = 10 Myr. Stellar mass

particles forming the stabilising bulge were not allowed to release energy as

SNe. No gas accretion on to the MBHs and AGN feedback has been included

in any of the runs.

4.3 Massive particle dynamics in RAMSES

As described above, for this study I used the AMR code RAMSES , which be-

haves very well when one needs to resolve hydrodynamics, especially when

shock occur in the gas. However, the scheme used in grid codes to solve

gravitational interactions suffers from numerical noise when single massive

particles are considered. These effects have been already observed in galaxy

merger simulations (Chapon, Mayer & Teyssier, 2013; Dubois et al., 2014). In

Chapon, Mayer & Teyssier (2013) the MBH dynamics depends strongly on the

maximal resolution of the simulation. In lower resolution runs (∆xmin = 3
pc) the MBH evolution was significantly slower (because of the underesti-

mated effect of the resolution dependent dynamical friction), and considerably

more noisy (well above the resolution level) than in the higher resolution cases

(∆xmin = 0.1 pc). A similar noisy evolution of the MBH orbits has been ob-

served by Dubois et al. (2014). In order to prevent spurious oscillations of the

MBH due to finite resolution effects, authors introduced an additional drag

force onto the MBHs.

Interestingly, a noisy evolution of collisionless particle dynamics (and, in

particular, of MBHs) has been also observed in high-resolution AMR simu-

lations of single isolated galaxies, in which the gas is only subject to internal

processes such as star formation, SNa feedback, etc. (e.g. Gabor & Bournaud,

2013). In their work, in order to limit numerical MBH wandering, the authors

proposed two different approaches. The first one consisted in modelling the
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MBH as an extend spherical structure, using few thousands evolving particles.

Such BH-forming particles were regenerated over a secondary, coarse time

grid. In this case the MBH moved out of the geometrical centre of the galaxy

by hundreds to thousands of pc depending on the amount of gas simulated

and the noisy effect was only reduced. The second one, instead, consisted in

adding an artificial velocity component directed toward the stellar centre of

mass, which forced the MBH to orbit close to the galaxy centre.

As noted by Gabor & Bournaud (2013), the noisy evolution of the MBH

could be either numerical (due to the limited and time varying spatial resolu-

tion), or physical, if caused by interactions with massive and dense gas clouds.

This last possibility was particularly interesting when the gas was allowed to

cool and actually formed significant compact overdensities, as in the simula-

tions discussed in Gabor & Bournaud (2013) and Dubois et al. (2014). Indeed,

a physically motivated noisy orbital evolution of MBHs has been observed in

SPH simulations (see e.g. Fiacconi et al., 2013, for a detailed and extensive

discussion). It is important to notice that the effects of massive gas clumps on

the MBH dynamics are severely altered by the corrections proposed in works

discussed above. In this study I considered an alternative solution, which does

not alter the MBH dynamics and allows for a more accurate dynamical evolu-

tion of both MBHs and gas in their surroundings.

I developed a new refinement criterion aimed at ensuring a fixed accuracy

when computing the gravitational force acting on the two MBHs. The new re-

finement criterion is based on the identity and positions of selected particles,

rather than on the global geometry of the system. In my new implementa-

tion, refined grids follow the positions of the two MBHs at each time-step.

Surrounding cells within two specified, MBH-centred volumes are flagged for

further multi-level refinement. Up to Nlevel concentric regions of increasing

resolution, where Nlevel is the number of refinement levels used, can be user-

defined by setting the corresponding radii. For example, in the runs I will dis-

cuss later I enforced the maximum level of refinement, with single cell linear

sizes of 0.39 pc, within 10 pc from each MBH, using seven levels of refine-

ment above the coarse resolution level. At larger distances from the MBHs the

resolution degrades smoothly unless another refinement criterion is matched.
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4.3.1 Simulation suite

I performed a total of five simulations, in order to compare the new refinement

criterion with the standard one, and to test the reliability of the dynamical evo-

lution of the MBH binary under different assumptions regarding the sub-grid

physics. I also carried out a single simulation with GADGET2 , assuming the

same polytropic equation of state with index γ = 7/5 as in RAMSES runs. The

spatial resolution for the SPH simulation was 0.2 pc, while the mass resolution

was 103M⊙ and 2× 103M⊙ for gas and collision-less particles, respectively,

equal to the mass resolution in the AMR runs.

Star SNa New

Run Cooling Formation feedback Refinement

Plain No No No No

Plain+ No No No Yes

Noblast Yes Yes Yes No

Blast Yes Yes Yes No

Blast+ Yes Yes Yes Yes

Table 4.1: The suite of ramses runs.

Table 4.1 shows the suite of RAMSES simulations with the main features

highlighted.

In runs “Plain” and “Plain+” no sub-grid physics has been included, while

in the following three runs, termed “Noblast”, “Blast” and “Blast+”, I included

both gas cooling and star formation (see section §4.2 for details). I assumed

a density threshold for SF of 2 × 106 cm−3. In “Noblast” runs I used the

“thermal feedback” recipe, while in the “Blast” and “Blast+” runs I used the

“blast wave feedback” one. I want to note that the typical timescale for the

onset of SNe is much longer compared to the typical gas inflow timescale in

my simulations, i.e., SNe would have little/negligible effects on MBH and gas

dynamics. In order to enhance feedback effects, I assumed no time delay for

the onset of SNe after star formation. The new dynamic refinement criterion

has been implemented in the two “+” runs.
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4.3.2 Results

The upper panels of Figure 4.2 show the MBH pair orbit in run Plain compared

to the SPH run. While the orbital evolution computed by GADGET2 -2 shows

a smooth orbital decay of the pair, run Plain shows an abrupt change in the

direction of motion of the two MBHs after ∼ 2 − 3 Myr from the beginning

of the run. At this time the MBHs suddenly leave the gas (upper panels in

Figure 4.3) and stellar overdensities they inhabited. Such an abrupt accelera-

tion could, in principle, have a physical explanation. For example, the sudden

swerve could be the outcome of short range encounters between the MBHs

and compact massive clumps or stellar clusters. I want note, however, that

such an interpretation is unlikely because of two reasons: (i) a strong gravita-

tional perturbation would have affected the gas and stellar nuclei as well as the

MBHs, and (ii) as described in Section 3.2.1, the gaseous discs in my simula-

tions were initially stable against fragmentation, and the gas distribution was

expected to remain smooth during the entire evolution in run Plain, in which

no cooling prescription is implemented. A search for gas and stellar clumps

in the snapshots of run Plain confirmed this expectation.

The peculiar and unexpected dynamical evolution of the MBHs in run

Plain could be a numerical artefact, due to the rapid variation of the spatial

resolution around the two MBHs. Figure 4.1 shows the number of cells at the

maximum refinement level within 5 pc from each MBH. The sudden drop of

resolution is caused by a density drop during the first stages of the simula-

tion. Such a gas readjustment was expected, since the initial conditions were

stable in isolation, and the two circum-nuclear discs were initially set at a fi-

nite separation. I stress that, although this initial gas evolution is driven by

the procedure used to generate the initial conditions, similar sudden resolution

changes are expected also due to the evolution of the gas subject to additional

physics, such as SNa explosions, as discussed below.

To check if the unexpected behaviour of the MBHs was a pure numerical

effect I ran the same simulation forcing the code to keep a high resolution

close to the moving MBHs, through the new refinement implementation. The

MBH orbital evolution resulting from this check (run Plain+) is shown in fig-

ure 4.2. Run Plain+ shows a dynamical evolution closer to that obtained in

the SPH run, that by construction is not affected by any significant fluctua-

tion of the gravitational spatial resolution. Figure 4.3 shows that with the new
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Figure 4.1: Number of cells for the highest refinement level around each of the two

MBHs versus time for simulations Plain (blue dashed line), Noblast (red solid line)

and Blast (black dotted line).

refinement implementation the MBHs do not decouple from the gas structure

they are hosted in. I further stress that an enhanced resolution close to the

MBHs would facilitate the formation of gas clumps as well as maximise the

effect of their gravitational interaction (if clumps would form) with the MBHs.

The absence of abrupt kicks in the MBH dynamics in run Plain+ proves that

the MBH noisy motion observe in run Plain is numerical and it is caused by

poor/rapidly changing resolution in the region surrounding the MBHs. Still

some differences in the orbital evolution of the MBHs in run Plain+ and SPH

are observable. The initial difference in the vertical motion is probably caused

by the resolution increase occurring in the very early stages of the simulation,

when the initial conditions (with a maximum resolution of ∼ 1.5 pc) are fur-

ther refined to reach the desired resolution of ∼ 0.39 pc. Furthermore, the

MBH orbital decay after the first 3 Myr is faster in the the Plain+ run with

respect to the SPH run. I checked that this is due to the different magnitude of

the gas inflow toward the geometrical centre of the system. Such inflows are

caused by the angular momentum removal associated with the shocks develop-

ing at the contact surface between the two merging CNDs. The two numerical

implementations (SPH and AMR) differ significantly in their treatment of the

shocks, resulting in a different MBH dynamics.
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To study the effect of the refinement prescriptions onto the MBH dynam-

ics in less idealised simulations, I performed three runs (Noblast, Blast and

Blast+) allowing the gas to radiatively cool and form stars. As shown in the

following, the orbital evolution strongly depends on the different implemen-

tation for the SNa feedback. Figure 4.4 shows the MBH orbital evolution in

run Noblast. The MBH dynamics does not show anything similar to the huge

kicks that decouple the MBH dynamics from the gas distribution observed in

run Plain. On the contrary, figure 4.5 demonstrates that the MBHs are still well

within the gas and stellar overdensities close to the centres of the dramatically

perturbed nuclear discs.

However, smaller swerves mainly limited to the disc plane are still ob-

servable in the MBH orbits (figure 4.4). Figure 4.1 demonstrates that, in run

Noblast, the wiggles in the orbits are not related to a decrease of the spatial

resolution. Indeed the resolution around each MBH remains almost constant

during the entire run, with a high number of cells populating the maximum

refinement level. Such a high resolution is ensured by the formation of high

density condensation of cooling gas around the MBHs.

The peculiarities in the MBH orbits in run Noblast are due to close inter-

actions with massive clumps, forming in the disc when the gas is allowed to

cool. Indeed a large number of massive clumps form during the first stages of

the merger, especially along the gas shock surface between the two gaseous

discs, as observable in the left panel of figure 4.5. These clumps can lead to

very energetic kicks to MBHs, unless they are destroyed before the interaction

by SNe. This is not the case for run Noblast, in which the large thermal en-

ergy injected by SNe in the gas immediately starts to cool, thus leaving clumps

nearly unperturbed. As discussed above, this boosts the probability of having

a strong cloud/MBH interaction, and results in a high resolution close to the

MBHs (preventing spurious numerical wandering of the MBHs). Figure 4.6

highlights a strong interaction between each MBH and a massive cloud in run

Noblast, taking place at t = 5.8 Myr. Figure 4.7 shows a later stage (t = 9
Myr) of the evolution, when the two MBHs evolve in a smoother environment.

In both cases the clouds have been identified extracting the cells with a den-

sity exceeding 8 × 105 H/cc and then grouping together the adjacent cells.

The detailed analysis of the interactions between MBHs and clouds as well

as a broader study of the effect of the gas dynamics onto the MBH pairing is

deferred to section §4.4.
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If instead the gas is unable to rapidly get rid of the energy injected by SNe I

expect a smaller incidence of MBH-cloud interactions, but at the same time the

SNe can strongly affect the densest and intensely star-forming regions close

to the MBHs. A SNa driven gas depletion may result in a decreasing force

resolution when the new refinement discussed here is not implemented. Fig-

ure 4.8 shows a comparison between the MBH dynamical evolution observed

in runs Blast and Blast+. A peculiar wandering of the two MBHs in the three

dimensions is observed in run Blast, similarly to what happens in run Plain.

I stopped the run after 2 Myr only, when the MBH motion had already been

affected by the numerical effect and MBHs had been scattered very far from

the disc plane.

Again, the peculiar motion of MBHs in run Blast could either be a nu-

merical artefact or have a physical origin. I note that in both runs Blast and

Blast+ the clumps are disrupted on short timescales by SNe. Hence, gas over-

densities are not expected to perturb significantly the dynamical evolution of

MBHs. Furthermore, the feedback is energetic enough to deplete the gas from

the nuclear regions of both discs, leaving the MBHs in an under-dense region

(see figure 4.9). The time evolution of the number of cells at high resolution

levels in the MBH vicinities is shown in Figure 4.1. This confirms that the

energy injection from SNe drives a significant resolution drop during the first

3 Myr, as also observed in run Plain. In run Blast, however, the loss of resolu-

tion does not directly depends on our realisation of the initial conditions, but

it is a consequence of the physical evolution of the system.

The different dynamical evolution observed in run Blast+ (lower panels

in figure 4.8) finally proves that the jerks in the MBHs paths are numerical

artefacts. In facts, in this last case, the MBHs follows a very smooth evolution

over multiple orbital timescales, due to the little effect of the transient gas

overdensities onto the MBHs. The comparison between the results of run

Blast and run Blast+ proves the effectiveness of refinement implementation

discussed here in modelling massive particle dynamics in rapidly evolving

backgrounds.
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Figure 4.2: Orbits for the two MBHs from ramses runs Plain and Plain+ , compared

with the SPH run. The panels on top show the orbits projected in the face-on (on the

left) and edge-on (on the right) views for run Plain, plotted as red dashed lines and

the SPH run, plotted as black solid lines. The panels at the bottom are the same plots

obtained from run Plain+ and the SPH run. The points mark the MBH positions at

t = 1 and 3 Myr for the runs considered.
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Figure 4.3: Upper panels: Gas density map at t = 1 Myr (left panels) and t = 3 Myr

(right panels) for run Plain. The MBH positions are identified by the black bullseye

symbols. Lower panel: same as upper panel for run Plain+.
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Figure 4.4: Same as figure 4.2 for the Noblast/SPH runs comparison.



4.3. MASSIVE PARTICLE DYNAMICS IN RAMSES 73

Figure 4.5: Upper (lower) panel: gas (stellar) density map at t = 1 and 3 Myr

(left and right panel respectively) in run Noblast. All the notation is the same as in

figure 4.3
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Figure 4.6: Strong interactions between the MBHs and massive gas clouds in run

Noblast at time 5.8 Myr. The MBHs orbital path and current positions are marked

with green lines and blue dots. The black regions highlight the cells forming the

clouds, whose centre of mass is marked by the red empty circles (only for clouds

formed by at least 10 cells).
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Figure 4.7: Same as figure 4.6, but at time t = 9 Myr. The figure shows a final stage

of the orbital evolution, when the MBHs are surrounded by gas overdensities and no

significant MBH/cloud interactions are taking place.
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Figure 4.8: Same as figure 4.2 for the comparison between run SPH and runs Blast

and Blast+.
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Figure 4.9: Same as figure 4.3 for runs Blast and Blast+.
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4.4 Gas and MBH evolution: effects of different sub-

grid models

In order to survey how the implementation of sub-grid physics could affect the

evolution of the system I performed a suite of six simulations, where I changed

the prescriptions regarding gas cooling, SF and SNa feedback.

To achieve the best possible treatment of MBH dynamics, I adopted the

additional refinement criterion described in section §4.3. In these runs I as-

sumed the two different fiducial values for the SF density threshold already

described, i.e., nH = 2 × 105 and nH = 2 × 106 cm−3. The resulting aver-

age mass of stellar particles was ∼ 300 M⊙. Such value is significantly more

massive than, e.g., what employed in Amaro-Seoane, Brem & Cuadra (2013),

who however simulated a lighter and more compact system. I checked that the

prescription used resulted in a gas-to-stellar mass conversion rate not lower

than the local Kennicutt-Schmidt law.

I ran two further simulations at the highest density threshold for star for-

mation (termed “ThFBh prompt” and “BWFBh prompt”) assuming no time-

lag between star formation and SNa explosion. The aim of these runs was

to test the effects on the global (gas and BHs) dynamics of a maximally fast

SNa feedback, comparing the results to the standard ∆tS = 10 Myr case.

While simulations with standard delay were meant to model star formation as

triggered by the merger of the two circum-nuclear discs, the 0-lag case might

represent a situation where sustained star formation was already in progress at

the time of the merger. Finally, in order to avoid inaccurate integration of the

orbits, all runs have been stopped when the MBH separation was approxima-

tively 3 − 4 times the cell length. Table 4.2 summarises the six simulations

with the parameter used.

4.4.1 Black hole dynamics

I start by describing the MBH dynamics for the two simulations characterised

by standard thermal SNa feedback and a typical time for SNa explosions of

10 Myr (runs “ThFBl” and “ThFBh”). These two runs are meant to represent

a case where star formation is indeed triggered by the merger event, while gas

thermodynamics is governed by standard thermal processes. The two different
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Run nH ∆tSN Feedback

(cm−3) (Myr)

ThFBl 2× 105 10.0 thermal

ThFBh 2× 106 10.0 thermal

BWFBl 2× 105 10.0 blast wave

BWFBh 2× 106 10.0 blast wave

ThFBh prompt 2× 106 0.0 thermal

BWFBh prompt 2× 106 0.0 blast wave

Table 4.2: The complete suite of runs. The second column shows the density thresh-

old for SF, the third column the lifetime of massive stars, the fourth column the type

of feedback employed.

density thresholds for SF are used to asses the effects that the efficiency of gas

conversion into stars has on the MBH dynamical evolution.

In Fig. 4.10 I show the MBH projected orbits (left panel), and MBH sep-

aration versus time (right panel). The two MBHs exhibit a peculiar orbital

motion, which can be explained when considering the gravitational interac-

tions between the MBHs and massive gas/star clumps forming in the merging

discs. Such interactions typically accelerate the orbital decay of the MBHs,

and a gravitationally bound MBHB forms after ∼ 10 Myr (the binary forma-

tion time is indicated as a blue dot in the right panel). In the case of ThFBh

run (dashed red lines), the MBH orbits appear more perturbed, and the orbital

decay is somewhat faster.

Fragmentation of gas, occurring just after the simulation starts, tends to

form massive gas clumps, especially in the high density regions surrounding

the two MBHs. In high density clumps star formation is very effective, and

overall, a large fraction of the initial disc gas is converted into stellar mass

within 10 Myr. This is apparent from Fig. 4.11 (left panel), where the stellar

mass and the residual gas mass are shown as a function of time. The right

panel of Fig. 4.11, instead, shows the star formation rate versus time. A fast

increase of star formation occurs initially since gas shocked during the disc

collision fragments into small clumps which immediately convert into stellar

particles. After ∼ 2 Myr, only low density gas survives. Hence, star formation

is no longer efficient and almost steadily decreases in time. In Fig. 4.12 we
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plot the mass-weighted gas density map at time t = 2.1 Myr, defined as the

time of the peak in star formation rate (see Fig. 4.11, right panel).

In order to quantify the impact of gas clumps on MBH dynamics, I esti-

mated the total mass in gas/star clumps, along with the clump mass distribu-

tion. I identify as “clumps” those gravitationally bound regions that feature a

single peak in the 3-D density field. Fig. 4.13 shows the total mass in clumps

as a function of time for run “ThFBl”. Two distinct phases can be observed,

with a peak in the total mass of clumps occurring after a time tpeak ∼ 2.5
Myr. The initial fast growth of the gas locked in clumps is the result of the

collision between the two unperturbed gaseous discs. Indeed, gas fragmen-

tation is promoted along the shock surface (resulting also in the peak of star

formation rate, see Fig. 4.11, right panel).

Fig. 4.14 shows, for the same “ThFBl” run, the mass distribution of clumps

at four different selected times marked as red dots in Fig. 4.13. I selected two

times corresponding to a relatively low total clump mass (∼ 1.8 × 107 M⊙,

left panel) and two times corresponding to a larger mass value (∼ 5×107 M⊙,

right panel), respectively one before and one after tpeak. The mass distribution

lies in the range 105−7M⊙, with few clumps as massive as the MBHs. These

very massive clumps typically form after tpeak, most probably due to gas ac-

cretion from low density regions and to mergers between less massive clumps,

and eventually will merge with the gas overdensity surrounding each MBHs.

When one of these more massive clumps manages to approach a MBH at close

range, then a transient MBH-clump binary system forms, strong gravitational

perturbations develop, and the MBH orbit greatly deviates from its original

path. This is the reason behind the “wiggling orbits” seen in Fig. 4.10, right

panel. The typical BH-clump distance when the transient binary system forms

is ∼ 10−20 pc, which is always resolved with a number of cells ∼> 10, thanks

to our new refinement prescription, allowing us to accurately resolve the BH-

clump close interaction.

In the case of run “ThFBh”, because of the relatively higher density thresh-

old for SF, a slightly larger number of more massive clumps forms, resulting

in the more disturbed orbits (and faster decay) seen in Fig. 4.10.

I then compared the above analysis regarding the MBH dynamics with

runs employing the aforementioned blast wave like feedback from SNe (BWFB-

like runs). As discussed before, this feedback implementation aims at describ-

ing non-thermal processes in the aftermath of SNa explosions. I found that the
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Figure 4.10: MBH dynamical evolution for runs “ThFBl” (solid black lines) and

“ThFBh” (dashed red lines). Left panel: projected orbital evolution. Right panel:

MBH separation versus time. The blue dots correspond to the time of binary forma-

tion.
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Figure 4.11: Star formation in run “ThFBl”. Left panel: total stellar mass (solid red

line) in units of the initial disc mass Md, and the residual gas mass in units of Md

(dashed blue line) as a function of time. Right panel: star formation rate versus time.
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Figure 4.12: Face-on gas density map for run “ThFBl” at time t = 2.1 Myr (i.e.,

when the star formation rate is maximum, see Fig. 4.11). The gas shocked after the

first disc collision fragments into a large number of small clumps which very rapidly

convert gas into new stellar mass. The black dots correspond to the positions of the

two MBHs.
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dynamical evolution of the MBHs was largely independent upon the details

of the SNa feedback employed, making MBH dynamics results fairly robust

against the different implementations of sub-grid physics.

4.4.2 Gas dynamics

I discuss here the dynamics of the gas during the merger event. I will focus on

the case with the low density threshold for SF (run “ThFBl”), keeping in mind

that the higher density case produces a qualitatively and quantitatively similar

outcome.

Fig. 4.15 shows the gas distribution around the MBHB after t = 11 Myr.

On large scale (top panel), the relic disc resulting from the collision of the

progenitor discs is almost totally disrupted because of SNa feedback. This

residual structure is counter-rotating relative to the MBHB orbit. On scales of

order of few pc (bottom panel), the gas which has not been converted into stel-

lar particles settles in a circum-binary disc, with a total mass of few 105M⊙.

The small disc co-rotates with the MBHB thanks to the dragging of gas by the

MBHs during their inspiral toward the centre. Note that this implies that the

angular momentum of the residual gas changed sign during the evolution of

the system.

I reported in Fig. 4.16 the evolution of the modulus of MBH orbital angular

momentum and compared it to the modulus of the total angular momentum of

the gas which is the closest to the MBHs in the simulation, defined as the gas

within a sphere of radius equal to 0.5 times the MBH separation. I observed

that at the beginning of the simulation the angular momentum of the gas was

larger than that of the MBHs, and I remind that the gas is counter-rotating.

After ∼> 4 Myr, the angular momentum associated to the MBH orbit exceeds

that of the gas and in principle there are the conditions for a change in the sign

of the gas angular momentum, being dragged by the MBHs. The gas angular

momentum actually changes sign after ∼ 9 Myr, when the MBH separation

is ∼ 45 pc. At this evolutionary stage, a large fraction (∼> 90%) of the initial

gas mass is already converted in stellar particles. After ≃ 10 Myr, when SNe

start to explode, the released energy is radiated away by the small amount

of residual gas, which is however unable to form further stellar mass at a

comparable rate. In other words, star formation is not halted by SNa feedback,

rather by gas consumption.
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Concerning the impact of blast wave feedback (BWFB-type runs), as ex-

pected it does not alter the gas dynamics for a time ∼ ∆tSN (at that point the

two MBHs have already reached the centre of the system). After that time, the

almost simultaneous SNa events release a fairly large amount of energy which

heats the gas up but is not radiated away. The net result is that the remaining

gas is pushed at very large distances from the MBHB (up to ∼ 500 pc) by the

increased pressure. The MBHB lives then in a very low density environment,

and no circum-binary disc is formed on any scale.

Figure 4.13: Total mass in clumps for run “ThFBl”. The red diamonds correspond

to the times at which we computed the clump mass distribution shown in Fig. 4.14.

4.4.3 Prompt SNa explosions

Both the MBH and gas dynamics are unaffected by feedback for the first 10

Myr as this is the assumed life time of massive stars (and hence for the onset of

SNa feedback). To test how the results depend upon such choice, I considered

the extreme case of ∆tSN = 0 Myr, i.e, massive stars explode as soon as they

form.
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Figure 4.14: Mass distribution of clumps in run “ThFBl”. Left panel: mass distribu-

tion at two selected times when the number of clumps is relatively small. Right panel:

same as left panel, but at two times when the number of clumps is larger. The four

selected times are marked as red dots in Fig. 4.13.

I found that, as long as the SNa feedback is governed by thermal pro-

cesses, only small differences in the MBH dynamics exist compared to the

standard delay case previously discussed. This similarity occurs because the

SNa energy is mostly released in high density clumps, where gas cools down

very rapidly, and the clumps can survive the explosion. As a consequence, star

formation can proceed until almost all clump gas is consumed.

Large differences occur instead when, along the ∆tSN = 0 assumption, I

employed the blast wave recipe for SNa feedback. In Fig. 4.18 I compared the

projected MBH orbits (left panel) and the MBH separation versus time (right

panel) for runs BWFBh prompt and ThFBh prompt. In the case of blast wave

like feedback, the orbital decay was slower, with a typical binary formation

timescale of ∼> 13 Myr. The difference is due to the early SNa explosions

that, coupled with the blast wave like feedback, tend to disrupt the gas clumps

and to deplete the gas reservoir progressively forming around the MBHs. As

a consequence, the two MBHs evolved in a lower density, smoother environ-

ment, where low mass clumps were typically unable to induce strong orbital

perturbations. The net result is a less disturbed orbital decay (Fig. 4.18, left

panel).
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Figure 4.15: Face-on gas density maps for run “ThFBl” around the MBHB at the

end of the simulation (t ∼ 11 Myr). Top panel: on large scales the disc is almost

totally disrupted because of SNa explosions. Bottom panel: zoom in of the nuclear

region where an inner co-rotating gas disc forms.
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Figure 4.17: Same as Fig. 4.10 but for runs “BWFBl” (solid black lines) and

“BWFBh” (dashed red lines).
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I therefore conclude that in the case of prompt SNa explosions, contrary

to the standard delay case, the dynamical evolution of the MBHs is strongly

affected by the feedback mechanism employed. The SF density threshold in-

stead does not result in relevant differences anyway.

While MBH dynamics is basically unaffected by the value of ∆tSN in the

case of thermal SNa feedback, substantial differences occur in the dynamics of

the gas component. Along with a small scale co-rotating circum-binary disc, I

observed a further, much larger disc/ring-like structure on ∼ 100 pc scale (see

Fig 4.19). Indeed, feedback from SNe did not occur suddenly after 10 Myr

but it was instead diluted in time, so that the (rapidly cooling) gas had time

to readjust in a disc-like structure. Though several other possible explanations

exist (e.g., secular evolution of the Galactic disc), it is tempting to associate

such structure to the central molecular zone of the Milky Way (Jones et al.,

2011). It is interesting to note that the larger scale disc keeps memory of the

initial angular momentum, and it is then counter-rotating with respect to the

small inner circum-binary disc which is, as discussed above, dragged by the

MBHB.

The case of blast wave like feedback is still different. I did not observe a

disc like structure, rather I found a massive triaxial gas distribution surround-

ing the MBHB with density of few 105 cm−3 (see Fig. 4.20). This difference

is produced by the different nature of the SNa feedback, which is in this case

able to heat the gas and provide a pressure support large enough to prevent gas

contraction.

Because of the large fraction of gas available (due to the SNa feedback

which reduces the net star formation by destroying gas clumps, as discussed

above) the gas will continue to cool down, resulting in alternated phases of

star formation (due to gas cooling and contraction) and re-heating (due to SNa

feedback). I observed a large number of dense gas streams flowing from low

density regions toward the centre where the MBHB resides. This large inflow

will result in a burst of star formation in the nucleus and in a following phase

of SNa explosions. The energy provided by SNe will then reheat the gas,

stopping the contraction and eventually expand the entire gas structure into a

less dense state. These alternated phases, if occurring for enough time, could

convert a large fraction of gas into new stellar mass, which could eventually

form a massive nuclear stellar cluster surrounding the MBHB.
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Figure 4.18: Same as Fig. 4.10 but for runs “ThFBh prompt” (solid black lines) and

“BWFBh prompt” (dashed red lines). The blue dots correspond to the time of binary

formation.
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Figure 4.19: Same as Fig. 4.15 but for run “ThFBh prompt” at time t ∼ 10 Myr.

Top panel: gas settles in a disc/ring like structure which is counter-rotating relative to

the MBHs. Bottom panel: zoom in of the region where an inner co-rotating gas disc

forms around the MBHB visible on the east side of the left panel.
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Figure 4.20: Gas density maps for run “BWFBh prompt” around the MBHB at the

end of the simulation (t ∼ 20 Myr). The gas settles in a triaxial structure with a

denser central core. The core mass is ∼ 107 M⊙ within a radius ∼ 25 pc. The upper

panel shows the face-on view, while the central and the bottom ones show the edge-on

views of the triaxial gas configuration.
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Chapter 5
Conclusions

In my thesis I investigated the formation and evolution of MBHs in galac-

tic nuclei, focusing on two main aspects: the formation of MBH seeds via

super-critical accretion on to SBHs and the formation and evolution of MB-

HBs during gas-rich galaxy mergers. Both aspects are still very debated and a

clear consensus is far from being reached. In my studies I considered highly

idealised setups, aimed at better resolving the processes acting on the nuclear

scale of a galaxy without being influenced by large scale effects.

5.1 MBH seed formation

By means of high resolution numerical simulations I studied the accretion of

stellar mass BHs in nuclear gaseous discs, to investigate whether phases of

super-critical accretion on to SBHs could loose the tight constraints on the ini-

tial BH seed mass. I implemented a new BH thermal feedback prescription,

that takes into account the possible occurrence of radiatively inefficient accre-

tion bursts during which the BHs can actually increase their masses at a sig-

nificantly super–Eddington pace. I have employed both AMR and Lagrangian

mesh-free simulations, achieving comparable results, which strengthen greatly

my conclusions and help to disentangle the numerical limits of each code tech-

nique and the physical processes involved.
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I supposed that a population of SBHs was already in place in a well formed

gaseous disc. The latter, at the beginning of the simulation, started cooling and

eventually formed stars. Furthermore, these simulations have been evolved in

complete isolation, i.e., no gas flew into the nuclear disc from larger scales

(e.g., from outer regions of the host galaxy, from cosmological filaments, or

through galaxy mergers). As a consequence, every accretion episode halted

when star formation and SNa–driven gas consumption evacuated the central

disc regions.

The prescriptions adopted in the simulations regarding SF and SNa feed-

back could, in principle, have affected the growth of BHs. Indeed, a too in-

efficient SF would have prevented gas consumption, and a too long timescale

for SNa explosions would have prevented the clumps from being disrupted,

thus leaving large amount of gas available for BH accretion. Nonetheless, my

prescriptions are conservative for what concerns BH accretion. First, the SF

rate in a sphere of radius ≃ 1 pc (corresponding to the average clump radius)

around BHtop was ≃ 0.1M⊙/yr, much larger than the average BH accretion

rate (≃ 10−3M⊙/yr). Hence, I can be confident that in my simulations the gas

was mostly consumed by SF rather than by accretion. Second, the assumed

timescale for SNa explosions (1 Myr) was shorter than the typical lifetime of

low metallicity stars in the mass range 8 − 40M⊙ (∼> 4 Myr; Hurley, Pols &

Tout (2000)). The resulting SNa feedback was then highly efficient. In this

context, I found that SNe produced a high velocity wind (vej . 3000 km/s),
which could expand up to 5 kpc above the disc plane. In principle such gas

could form a galactic fountain falling back on to the disc, allowing for a new

phase of super-critical accretion. Anyway, the modelling of the large scale

galactic potential (essential to asses the fate of the SNa driven wind) was be-

yond the scope of this study.

Regardless the spatial/mass resolution and the kind of hydrodynamical

code used, a coherent picture emerged. If BHs have to grow by 2-3 order

of magnitudes in mass, radiative inefficient accretion is a necessary condition,

but not a sufficient one. BHs must find themselves embedded in gas structures

that need to be: (i) massive enough to provide the gas reservoir, and (ii) dense

enough to survive feedback. This may occur when the cooling gas fragments

in clumps, and some of the BHs bind to them. Such process allows some of
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the BHs to reach masses as high as 103 - 104M⊙ on Myr timescales, making

them viable candidates as seeds of the supermassive variety of BHs powering

high redshift quasars.

Mass accretion onto the BHs depends upon the number, mass and density

of the clumps forming in the disc. I showed that these parameters are affected

by the numerical resolution achieved in the different runs and, as discussed in

Section 3.4, different resolutions result in different BH accretion histories. I

was unable to describe gas dynamics down to the accretion disc scales, even

at the highest spatial resolution reached, and this limited my ability to achieve

firm estimates of accretion rate and mass growth of the BHs. Yet, the dy-

namics of gas leading to the formation of dense clouds I observed in all the

runs is strongly independent of sub–grid recipes. The gas within the accretion

radius of BHs was far from being rotationally supported. Since the relative

gas-BH velocity became negligible after the capture process, the gas in fact

experienced almost radial inflow toward the BHs. My estimate of the accre-

tion rate is of the same order of the Bondi accretion rate given the temperature

and density of the medium surrounding the BHs.

Therefore, despite the accretion histories are not accurate enough from a

quantitative point of view, I can be confident about the reliability of the BH-

clumps-capture process observed. My study should be considered as a proof

of concept, robust enough to understand under which conditions and through

which processes a cluster of stellar mass BHs can actually experience episodes

of super–Eddington growth, and what are the effects on the environment.

The key point of the study is that a radiatively inefficient accretion, to-

gether with the aforementioned BH-clumps-capture process, can result in mass

growths 10-100 times larger than in the radiatively efficient case, making this

mechanism a viable candidate to grow massive BH seeds from stellar mass

BHs.

The process I studied can result in a prolonged super–Eddington accretion

phase only as long as the masses of the clumps are comparable or larger than

the masses of the accreting BHs. While the gravitational capture itself easily

binds small clumps to comparatively massive BHs, the available gas reservoir

is not sufficient for significant BH growth. Moreover, even feedback from

radiative inefficient accretion severely affects such small clumps.

Other feedback processes, e.g., momentum-driven feedback, might be im-

portant, and could be explored in the future. If, however, such processes turn
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out to be inefficient, this could naturally allow the galaxy to remain highly

star–forming despite the fast growth of the MBH, perhaps explaining the new

puzzling observation of a high-z star forming galaxy hosting an SMBH well

overweight for its stellar mass (Trakhtenbrot et al., 2015).

In addition, as soon as a BH becomes significantly heavier than typical

gas clumps, it starts migrating toward the centre of the disc via dynamical

friction. This process will naturally bring the most massive BH (the one that

by chance had the largest mass growth, i.e., BHtop) to the centre of the host

galaxy, where MBHs are commonly observed. At this point, however, further

clumps forming in the disc no longer interact with the central BH.

In order for the large nuclear gas reservoir assumed in the initial condi-

tions to be present in the galactic nucleus disc angular momentum needs to be

removed well before gas turns into stars, so that inflowing material can be, at

least partially, accreted by the central BH. This is of course the longstanding

fuelling problem of MBH debated in the community (e.g., Hicks et al., 2013,

and references therein), and its discussion is beyond the goal of my study.

I finally note that, whenever inflowing gas refills the circum–nuclear disc,

the whole simulated process is rejuvenated: a new massive BH seed will be

formed, sinking to the centre of the galaxy and eventually forming an inter-

mediate massive black hole binary bound to coalesce owing to gravitational

radiation losses. This kind of systems may be a perfect target for the planned

eLISA observatory (Amaro-Seoane et al., 2013).

5.2 MBHB formation and evolution

By means of high resolution, adaptive mesh refinement hydrodynamical sim-

ulations, I explored the evolution of two massive gas discs hosting at their

centre a MBH. The two discs had been set on an elliptic orbit and merged, to

mimic the encounter between two very gas–rich disc galaxies. To maximise

the strength of the interaction, the orbital angular momentum had been chosen

to be antiparallel to the disc’s angular momenta. Strong shocks that developed

during the merger of the two discs became sites of intense star formation, and

stellar feedback altered significantly the thermal and dynamical state of the

gas which underwent a major transformation. Most of the gas was turned into

new stellar particles through the formation of clumps of mass . 106M⊙. Only

few clumps formed as massive as the MBHs, weighing 107M⊙. In this kind
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of environment, where both gaseous and stellar background evolve on short

time-scales, a detailed study of the MBH pairing and the subsequent MBHB

shrinking require great accuracy in the gravity force computation, to correctly

model the orbital decay due to interactions with gas clumps and to the dynam-

ical friction exerted by gas and stars. However, the gravity force accuracy in

AMR codes strictly depends on the local resolution and thus on changes in

the physical properties of gas and particles during the runs. Since the refine-

ment prescriptions already implemented in RAMSES did not ensure a proper

description of the orbit of massive particles, I implemented a new refinement

criterion aimed at following in details the orbit of massive particle. In order

to trust the simulation results a different refinement criterion, which forces a

high and constant resolution near the MBHs, is required. The prescription I

designed enforces the region around each massive particle to remain at the

maximum resolution allowed. Such region follows the MBHs along their or-

bits, reducing the computational cost of the runs, and avoiding the spurious

effect caused by the resolution changes. In the runs I explored different su-

pernova feedback recipes: the thermal and blast wave feedback, assuming a

lifetime of ∼ 10 Myr for the massive stars. Furthermore, I considered a case

in which prompt SNa explosion was coupled with both thermal and blast wave

feedback. I found that the orbits of the two MBHs were perturbed due to their

interaction with single clumps during the paring phase I, resulting in impulsive

kicks that imprinted sudden changes in the direction and velocity of the orbit.

Sinking times of ∼ 10 − 20 Myr have been found, considering the set of pa-

rameters used. The pairing phase terminated with the formation of a Keplerian

binary.

The MBH orbit observed was stochastic due to the presence of gas clumps.

However, I did not see a sizeable delay or spreading in the sinking time due

to gas clumpiness, contrary to what found in Fiacconi et al. (2013), where the

level of stochasticity of the orbit was higher. I interpreted this difference as

due to the geometry of the collision that mainly confined star formation along

the oblique shock forming at the time of impact of the two discs, and to the fact

that in the investigated case the mass distribution of the clumps evolved as gas

was turned into stellar mass which spreaded due to dynamical relaxation. The

simulated MBHs did not leave the orbital plane due to clump–induced kicks,

contrary to what seen in Roškar et al. (2015), as my simulations were strictly

co–planar. I expect that an inclined encounter would lead to a change in the
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orbital plane also in our case, and this could be explored in future. During

the pairing phase, the MBH dynamics is mostly affected by the presence of

clumps and not by the recipe used to model the feedback processes.

I note that, on the contrary, the gas distribution around the MBHs is sig-

nificantly affected by feedback. Thermal feedback left no large scale disc

around the MBHB. Yet a residual co–rotating circum–binary disc of mass

much smaller than the MBH mass formed around the two black holes which I

expect will control the further spiral-in via migration like mechanisms.

Blast wave feedback is a way to model the expansion of SNa–driven bub-

bles. With the code it was then possible to mimic the ballistic phase of the

shock triggered by the SNa explosion. As cooling was shut off in this phase,

a multi–phase gas formed and the sweeping of the gas induced by the blast

wave led to the almost complete evacuation of gas. The MBHB thus inhabited

a region completely devoid of gas. Blast wave feedback in the prompt scenario

led instead to a configuration in which the MBHB was surrounded by a gas

cloud with little angular momentum and triaxial in shape.

The lesson to learn is that star formation in merging gaseous discs is a key

process which affects the physical state of the gas in the surroundings of the

MBHs. Under these circumstances it is difficult to predict the actual distri-

bution of gas when the most active phase of the merger has subsided, as the

outcome depends upon the modelling and on sub-grid physics, and firm con-

clusions should be taken with caution. Still, the presence of cool gas has deep

implications for the evolution and observability of close MBHBs. First, the

evolution of a binary on sub-pc scales toward the coalescence is strongly de-

pendent on the gaseous and stellar distribution in its immediate surroundings

(Colpi & Dotti, 2011, for a review). The timescale of the MBHs shrinking on

sub–pc scales is of fundamental importance as it affects the expected rate of

binaries possibly observable as gravitational wave sources. This is particularly

true in mergers between gas rich galaxies, a fraction of which can host binaries

detectable by future space based gravitational wave detectors such as eLISA

(Amaro-Seoane et al., 2013). Second, the presence of gas is a necessary condi-

tion for the possible detection of the binary during the hardening phase (Dotti,

Sesana & Decarli, 2012) as well as for pinpointing an electromagnetic coun-

terpart of the MBHB coalescence (see, e.g., Schnittman, 2013; Bogdanović,

2015). The lack of a clear consensus on the processes shaping the environment

of MBHBs, whose evolution actually depends on the physical modelling, and
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the lack of observations available on the small scales I considered in this work

witness the need of investigating a wider range of parameters.

5.2.1 Future prospects

Both the studies discussed in this work are worth of future investigations. Dif-

ferent lines can be followed for each of them. In the following paragraphs I

briefly discuss some possible prospects.

MBH seed formation

In order to better constrain whether the conditions considered in this study

could be plausible in an already evolved massive high redshift galaxy, I will

try to study the formation of such a galaxy by means of state-of-the-art zoom-

in cosmological simulations (Fiacconi et al. in preparation). I started this in-

vestigation together with a group in Zurich and we aim at studying the nuclear

properties and gas inflows in a galaxy at z ∼ 6−10 which by z = 3 will have a

mass comparable to that of the observed clumpy star forming discs. This will

allow us to place the model considered more properly in the context of galaxy

formation and test its assumptions and outcomes. Preliminary analysis have

shown that the mass enclosed within a hundred pc scale fluctuates between a

few times 107M⊙ and just above 108M⊙. So, as mentioned in section 3.1, my

initial conditions seem to be well motivated.

As a possible subsequent study, I would consider a small cosmological box

around the massive galaxy just described, to study in better detail the nuclear

inflow and gas accretion on to the formed seed MBH.

MBHB formation and evolution

In this study I described a single setup, where the two discs were equal masses,

co-rotating and the interaction was coplanar. In a possible future study I would

investigate in more detail the binary formation and shrinking for unequal mass

systems and inclined initial configuration, with the goal of better understand-

ing whether the orbital decay can be delayed when less idealised conditions

are considered.
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Appendix A
Numerical modelling

In this chapter I will discuss the most important techniques used to study astro-

physical systems through numerical simulations, aimed at describing gravity

and hydrodynamics.

A.1 Gravity

The main fundamental force shaping cosmic structures is gravity. Accord-

ing to In order to the ΛCDM cosmology the matter density in our Universe

is dominate by dark matter, composed by yet unidentified non-baryonic ele-

mentary particles. In order to treat the evolution of this component one needs

to model gravitational interaction between particles. In principle, one should

follow each particle’s orbit, and this could be achieved solving a hugeN -body

problem. Unfortunately, this is still unfeasible due to the computer technical

limitations, so one needs to sample the matter density distribution with fewer

particles (obtaining a set of fiducial macro-particles).

In order to describe the particle motion one can compute the gravitational

acceleration due to the discrete set of particles, in the form

r̈i = −G

N
∑

j=1

mj

[(ri − rj)2 + ε2]3/2
(ri − rj), (A.1)

101
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where ri and rj are the particle positions and ε is the so-called gravitational

softening. The purpose of the softening length is to avoid short distance in-

teractions, which needs excessively large accuracy in the orbit integration and

could result in bound particle pairs with manifestly correlated evolution. 1

This calculation is exact, but becomes prohibitive for large N , since N
partial forces must be computed for each of the N particles. The total com-

putational cost would then be of order O(N2). A possible solution is to ap-

proximate the force calculation through faster, dedicated schemes, which can

be summarised in:

• Particle-mesh (PM) algorithm

• Fourier-transform based solvers of Poisson’s equations

• Multigrid methods

• Tree algorithms

• TreePM methods

In addition, such methods can also be combined together to increase accu-

racy.

A.1.1 Particle-mesh technique

This approach uses an auxiliary mesh to reduce the number of elements needed

to compute the gravitational forces. It involves four steps:

1. Construction of a density field ρ on the mesh

The N particles with masses mi and coordinates ri (i=1,2,...,N) are put onto a

cubical mesh with uniform spacing h = L/Ng, where L is the mesh size. and

a normalised shape function S(x) is associated to each particle. One assigns

to each cell a fraction Wp(xi) of particle i’s mass falling within the cell with

index p. Wp(xi) corresponds to the overlap of the particle shape function with

the cell and it is defined as

Wp(xi) =

∫ xp+h/2

xp−h/2

S(xi − xp)dx (A.2)

1A system showing this kind of behaviour is called ‘collisional’, while a system with un-

correlated particle orbits is called ‘collisionless’.
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The density field on the mesh can then be written as

ρp =
1

h3

N
∑

i=1

miWp(xi), (A.3)

which depends on the chosen shape function. The most common functions

used are (i) the Nearest grid point assignment, (ii) the Clouds in Cell assign-

ment and (iii) the Triangular Shaped Clouds assignment. For a more detailed

description see Springel (2014).

2. Computation of the potential on the mesh by solving the Poisson’s equation

With the density field just obtained one then computes the potential, discretised

on the mesh, by solving the Poisson’s equation

∇2Φ = 4πGρ. (A.4)

The most used methods for this are the Fourier-transform methods and the

iterative solvers (which will be described in sections §A.1.2 and §A.1.3).

3. Calculation of the gravitational field from the potential

After having obtained the gravitational potential, the acceleration is computed

from the Newton equation

a = −∇Φ. (A.5)

The simplest way to achieve it is by finite differencing the potential to obtain a

numerical derivative. Depending on the stencil length assumed the estimations

of the acceleration on the mesh can be more or less accurate, at greater or lower

computational cost. I report here only the 4th order case along the x direction,

which needs a 5× 5 cube centred at the cell of interest:

a(i,j,k)x = −
1

2h

{

4

3

[

Φ(i+1,j,k) − Φ(i−1,j,k)
]

−

1

6

[

Φ(i+2,j,k) − Φ(i−2,j,k)
]

}

+O(h4), (A.6)

where i, j and k are the cell indexes along the x, y and z axes, respectively.

We want to stress that a more accurate estimate is also more computationally

expensive, but a general solution does not exist for all simulation setups, since

other source of errors present in the simulation could be dominant.

4. Calculation of the forces at the original particle location

Once the force at the mesh cells are obtained, one needs to de-project them

back to the particle locations. To this purpose one must use the same shape
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function as used in the density field construction step, since a different choice

would result in a non-vanishing self-force and asymmetric forces between par-

ticle pairs (Hockney & Eastwood, 1988). Therefore, the acceleration for a

given particle with mass m and coordinates x can be computed as

F(x) = m
∑

p

apWp(x), (A.7)

with Wp(x) defined in eq. (A.2).

A.1.2 Fourier techniques

The Fourier transform is a very powerful tool to solve certain kinds of partial

differential equations. One of the most important examples which could take

advantage of this technique is the Poisson’s equation. One starts considering a

non-periodic space, where the Newtonian potential generated by a distribution

of masses can be written, in the continuum, as

Φ(x) = −

∫

G
ρ(x′)dx′

|x− x′|
. (A.8)

The previous equation can be recognised as the convolution integral

Φ(x) = −

∫

g(x− x′)ρ(x′)dx′, (A.9)

where g(x) = −G/|x| is the Green’s function of Newtonian gravity. From the

convolution theorem, one can compute the potential as

Φ(x) = F−1 [F(g) ⋆ F(ρ)] , (A.10)

which in Fourier space is

Φ̂(k) = ĝ(k) · ρ̂(k). (A.11)

where ĝ = F(g) and ρ̂ = F(ρ). In practice, to solve this equation in Fourier space,

one needs to know the Fourier’s transforms of both the density field and the Green’s

function. The problem can be solved both for periodic and non-periodic boundaries,

but for sake of simplicity, I only describe the periodic solution, referring to Springel

(2005) for a more detailed discussion. In a periodic box of size L, the density field

can be expanded as Fourier’s series

ρ(x) =
∑

k

ρk exp
ikx, (A.12)



A.1. GRAVITY 105

where k extends on a discrete spectrum of wave vectors and is defined as

k ∈
2π

L





n1

n2

n3



 (A.13)

with n1, n2 and n3 positive and negative integer numbers. Since ρ is a real field,

the Fourier’s series coefficients fulfil ρk = ρ⋆−k. The Fourier’s coefficients can be

computed as

ρk =
1

L3

∫

V

ρ(x) exp−ikx dx (A.14)

over a single instance of the box. Then, by inserting the Fourier’s series expansion of

ρ and Φ in the Poisson’s equation, one obtains

Φk = −
4πG

k2
ρk, (A.15)

since the Poisson’s equation should be valid for each of the Fourier modes separately.

From eq. (A.15) we can infer that gk = −4πG/k2. With this definition and the den-

sity field Fourier’s coefficients (obtained with a discrete Fourier transform algorithm),

it is straightforward to compute the gravitational potential on the mesh.

A.1.3 Multigrid techniques

Another possible approach to solve Poisson’s equation is the so-called multigrid tech-

nique. First, the 3D Poisson’s equation is split in 3 separate 1D problems, i.e.

∂2Φ

∂x2
= 4πGρ(x). (A.16)

Assuming that the potential is discretised on a regular mesh of size L with spacing

h, one can approximate this expression by finite differences up to the second order,

finding
(

∂2Φ

∂x2

)

i

≃
Φi+1 − 2Φi +Φi−1

h2
, (A.17)

where i is the cell index. By inserting this definition in the Poisson’s equation, one

obtains
Φi+1 − 2Φi +Φi−1

h2
= 4πGρi. (A.18)

Since the considered mesh is regular, this equation is valid for all the N points of the

mesh (L = Nh) and this results in a system with N equations and N unknowns Φi

which could in principle be solved algebraically. It can be written as

Ax = b, (A.19)
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where x = (Φi), b = 4πG
h2 ρ and A is the coefficient matrix obtained from eq. (A.18).

In order to obtain an exact solution one should use the LU decomposition or the Gauss

elimination with pivoting (e.g. Press et al., 1992), but these procedures would become

prohibitive for large N , because of their scaling as O(N3). An alternative approach

is based on ’approximate’ iterative solvers, like the Jacobi and the Gauss-Seidel iter-

ations, which are much faster.

Jacobi iteration

First, one considers the following matrix decomposition

A = D− (L+U), (A.20)

where D is the diagonal part of A and L and U are the negative lower and upper

diagonal parts, respectively. With few straightforward steps one obtains

x = D−1b+D−1(L+U)x, (A.21)

which can be used to define an iterative sequence of vectors x(n):

x(n+1) = D−1b+D−1(L+U)x(n). (A.22)

Note that D−1 is trivially obtained, since D is diagonal, i.e. D−1
ii = 1/Aii. This

sequence is called Jacobi iteration (Saad, 2003), and converges only when the eigen-

values of the convergence matrix M = D−1(L+U) are less than 1.

Gauss-Seidel (GS) iteration

The GS iteration relies on the same decomposition used in the Jacobi scheme, but

with a different iteration scheme, defined as

(D− L)x
(n+1)

= Ux(n) + b. (A.23)

After few adjustments, the iteration becomes

x(n+1) = D−1Ux(n) +D−1Lx(n+1) +D−1b. (A.24)

In principle, a problem could arise, since the n state depends on the (n + 1) state.

However, it can be noted that if one starts to compute the elements from the first

row i = 1, the n state does not depend on the (n + 1) state anymore, since L has

only elements below the diagonal. Then, when one moves to i = 2, 3, ..., only the

(n + 1) values of the already computed rows are needed. This procedure speeds

up convergence, with one GS step being close to two Jacobi steps. A problematic

point about GS iteration is that it is strictly sequential and then cannot be parallelised.

To overcome this problem one can use the so-called red-black ordering, which is a

compromise between Jacobi and GS schemes (see Springel, 2014).
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The multigrid technique

Since in every iteration only neighbours cells communicate, the information can only

propagate at one cell per step, thus reducing the convergence speed for low frequency

errors, which need more than one travels over the whole domain. In order to speed

up the convergence, one can use an improved initial guess, obtained by solving the

Poisson’s equation on a coarser mesh. The main idea behind the multigrid technique

is then to prolong and restrict the mesh in the so-called V-cycle to find an optimal

guess to solve the Poisson’s equation on the finest mesh. A schematic diagram of the

multigrid cycle is shown in Fig. A.1.

Figure A.1: The typical V-cycle of a multigrid iteration scheme using 6 levels. The

solution on a fine mesh is restricted down to the coarsest level (levels are represented

as ω and h is the fine mesh spacing). The corrections found on the coarser levels are

prolonged back to finer meshes, interleaving a Jacobi or GS iteration to find a solution

for the corresponding level. Figure taken from Sampath, Barai & Nukala (2010).

The computational cost of a single V-cycle is O(Ngrid), where Ngrid is the num-

ber of grid cells on the fine mesh. Since a convergence to machine precision requires

several cycles, the total computational cost becomes O(Ngrid lnNgrid). At the coars-

est grid, however, the problem must be solved without a guess. This leads to the full

multigrid cycle (see Fig. A.20, which can be summarised as:

1. Initialise the right-hand side on all levels, down to the coarsest grid

2. Solve the problem on the coarsest grid exactly (i)

3. Interpolate the solution to the (i + 1) level, obtaining an initial guess for this

level

4. Solve the problem at the (i+ 1) level with a full V-cycle
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Figure A.2: The full multigrid cycle aimed at addressing the problem of finding an

adequate initial guess. Figure taken from Springel (2014).

5. Repeat from step 3 until the finest level is reached.

The total computational cost of this scheme is still of the order of the number of

mesh cells. This approach is used in the AMR RAMSES (Teyssier, 2002), which has

been presented in section §2.1.

A.1.4 Hierarchical multipole methods: “Tree” codes

Another approach to compute the gravitational potential in real space is the so-called

“tree algorithm” (Barnes & Hut, 1986).

The central idea is to use multipole expansion of a distant group of particles to

describe its gravity, instead of each individual particle like in direct N -body codes.

The potential of the group can be written as

Φ(r) = −G
∑

i

mi

|r− xi|
= −G

∑

i

mi

|r− s+ s− xi|
, (A.25)

where s is the position of the group’s centre of mass and xi is the i-th particle position.

The denominator can be Taylor expanded assuming |xi−s| << |r− s|, which means

that the angle θ under which the group is seen is small, i.e. θ ≃ l/y << 1, where l is

the mean size of the group. The first 2 expansion terms are written as

1

|y + s− xi|
=

1

|y|
+

1

2

yT
[

3(s− xi)(s− xi)
T − (s− xi)

2
]

y

|y|5
+ ..., (A.26)

where y ≡ r− s. The first term is the ‘monopole’ moment and the second one is the

‘quadrupole’ moment. The ‘dipole’ moment is not reported since it vanishes when the
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expansion is relative to the group’s centre of mass. In order to implement this particle

grouping scheme one must rely on a suitable geometrical structure, i.e. a tree-like

data structure, which gives the name to this kind of algorithms. After distributing the

particles in a tree, the force computation is performed by means of a tree walk, where

one starts from the root node and checks the node opening angle. If the node opening

angle is larger than a tolerance value θc the node is opened and all its sub-nodes must

be considered, otherwise the multipole expansion is accepted and the walk along this

branch is stopped. The computational cost of this algorithm is O(N lnN), where N
is the number of particles. These schemes are used, for example, in the SPH code

GADGET2 (Springel, 2005) and in the new mesh-free Lagrangian code GIZMO (Hop-

kins, 2015), which descends from GADGET3, itself being a private modified version

of GADGET2.

A.1.5 TreePM methods

This approach is at half-way between mesh and tree algorithms and it tries to capture

the advantages associated to both of these methods. Indeed, while tree algorithms are

the best choice for strongly clustered structures, mesh techniques work particularly

well on almost homogeneous coarse grids. These methods have been initially pro-

posed by Xu (1995) and Bagla (2002) and a version similar to this last one has been

implemented in GADGET2 (and all codes descending from it). The main idea is to

split the gravitational potential in Fourier space in two distinct components, a long-

range and a short-range forces, and then use a PM approach to estimate the potential

on large scales (r >> rs, where rs is the scale of the force split, which should be few

times the mesh cell size) and a tree algorithm for the potential on scales smaller than

rs.

Φk = Φlong
k +Φshort

k (A.27)

A.2 Hydrodynamics solvers

Galaxies are mainly composed by gas, stars and DM, each of them being intrinsically

different from the others. From a purely gravitational point of view (which can be

applied when we look at the basic laws describing cosmic structure formation) all of

them are equivalent, but when one looks at small scales, the differences cannot be

neglected anymore. In particular, we know that the gas component is a fluid and, if
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we neglect magnetic fields, it can be described by the Navier-Stokes equations:























∂ρ
∂t +∇(ρv) = 0

∂(ρv)
∂t +∇(ρvvT + P ) = ∇Π

∂(ρe)
∂t +∇ [(ρe+ P )v] = ∇(Πv)

(A.28)

where e = u+v2/2 is the total energy per unit mass, u is the internal energy per units

mass and Π is the viscous stress tensor, which is a material property. Each of them

corresponds to a continuity equation, for mass, momentum and energy, respectively,

and they form a set of hyperbolic conservation laws. However, we should note that

this is an open system which cannot be solved, unless we introduce a fundamental

closure relation, i.e. the gas equation of state. For typical astrophysical flows, where

the gas has extremely low-density, the internal friction could become very small and

then could be neglected (Π = 0). If this is the case, the equations can be simplified to

give the ideal gas dynamics described by the Euler equations:























∂ρ
∂t +∇(ρv) = 0

∂(ρv)
∂t +∇(ρvvT + P ) = 0

∂(ρe)
∂t +∇ [(ρe+ P )v] = 0

(A.29)

For an ideal gas, the equation of state is written as P = (γ − 1)ρu, where γ = cp/cv
is the ratio of specific heats.

The Euler equations are commonly used to describe the gas component in astro-

physics, but one should take into account that in certain regimes, like the hot plasma

of rich galaxy clusters, the internal viscosity can become important, thus requiring

the more general Navier-Stokes equations, which describe ‘real’ fluids. In this brief

discussion of the main methods used for hydrodynamics I will only consider ideal gas

and refer to Springel (2014) for additional details on Navier-Stokes equations.

In order to describe the gas evolution two approaches must be considered: an

Eulerian approach, mainly used in mesh-based codes like RAMSES , and a Lagrangian

approach, mainly used in SPH codes like GADGET2.

A.2.1 Eulerian hydrodynamics

Euler equations are expressed as partial differential equations (PDEs), a class of dif-

ferential equations for which a general solution cannot be found. Rather, each PDE

has its own class of solvers, suitably built to address it.
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In order to solve the Euler equations, which form a system of non-linear equation,

one needs a Riemann solver, a scheme devised to solve a Riemann problem, an initial

value problem for hyperbolic PDEs where two constant half-spaces meet at a plane

at t = 0 and for which one wants a solution for t > 0. In a Riemann problem, the

solution typically contains three self-similar waves, i.e. a contact discontinuity (which

marks the original fluid phases), a shock wave and a rarefaction wave. However, in

some cases, also two shock waves or two rarefaction waves can be found, instead

of one of both.

Different solution schemes aimed at solving PDEs have been developed, but I will

only consider here the Finite Volume Method, which is probably the most common

technique used in astrophysics.

Finite volume discretisation

I describe here how to derive an update scheme which takes advantage of Riemann

solvers using a finite volume discretisation of the space. In this scheme the mesh used

is fixed in time, that is why this is an example of Eulerian hydrodynamics. One starts

defining the initial state U and the fluxes F as

U =





ρ
ρv
ρe



 , F =





ρv
ρvvT + P
(ρe+ P )v



 , (A.30)

where e is the total energy per unit mass and u the internal energy per unit mass. In a

finite volume scheme the system is described through an averaged state over a set of

finite cells. The state is then defined as

Ui =
1

Vi

∫

celli

U(x)dV. (A.31)

By integrating the Euler equation over a cell and over a finite time interval, one obtains

(after few steps)

∆x
[

U
(n+1)
i −U

(n)
i

]

+

∫ tn+1

tn

dt
[

F(xi+1/2, t)− F(xi−1/2, t)
]

= 0. (A.32)

Now, F(xi+1/2, t) for t > tn is given by the solution of the Riemann problem on the

cell’s “right” side. At the interface, the solution is independent of time, so one can

write

F(xi+1/2, t) = F⋆
i+1/2. (A.33)

The update scheme can then be written as

U
(n+1)
i = U

(n)
i +

∆t

∆x

[

F⋆
i+1/2 − F⋆

i−1/2

]

. (A.34)



112 APPENDIX A. NUMERICAL MODELLING

The idea behind the use of a Riemann solution in the update step is due to Godunov

(Godunov, 1959) (Godunov schemes). A caveat of the procedure is that the obtained

solution is no longer valid when the emanated waves cross the cell boundaries. This

constraint leads to the so-called Courant-Friedrichs-Levy time-step criterion (∆t ≤
∆x/cmax, where cmax is the maximum wave-speed), which needs to be satisfied to

get a correct solution to the problem.

The Godunov methods can be defined with a 3-step procedure called REA (Re-

construct, Evolve, Average): (i) Reconstruct step, when the cell-averaged quantities

are used to define the quantities everywhere in the cell; (ii) Evolve step, when each

cell’s state is evolved forward in time by ∆t; (iii) Average step, when the wave struc-

ture resulting from the Riemann problem solution is spatially averaged in a conser-

vative fashion to compute the new states. This is implicitly obtained from the update

scheme described above. Then the cycle is repeated again.

This scheme can be extended to multiple spatial dimensions and also to higher

order integration accuracy both in space and time. The extension to multiple spatial

dimensions can be done via:

• Dimensional splitting, where we split the 3D problem in three 1D problems.

An example of a second order accurate operator in 3D is:

U(n+1) = X (∆t/2)Y(∆t/2)Z(∆t)Y(∆t/2)X (∆t/2)U(n), (A.35)

where each operator leads to an update of U, thus requiring that fluxes have

to be recomputed before the next time-evolution operator is applied. Each of

these 1D operators is called sweep.

• Unsplit schemes, where all the flux updates are computed simultaneously to a

cell. The update step can be used also for irregular shaped cells and is defined

as

U(n+1) = U(n) −
∆t

V

∫

F · dS, (A.36)

where the integration is over the whole cell surface, defined by the surface

vectors dS.

In order to extend the scheme to higher order of integration one needs to improve

the reconstruction of the cell quantities. Different schemes have been developed for

different orders, like the MUSCL-Hancock solver (piece-wise linear reconstruction,

used in RAMSES ), the PPM solver (with parabolic shapes instead of linear recon-

struction), and so on.

A.2.2 Lagrangian hydrodynamics

In Lagrangian hydrodynamics the fluid is approximated through a set of “tracer” par-

ticles. Different techniques have been developed to describe the fluid in such a mesh-
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free fashion. The fundamental technique is the so-called SPH. Recently new tech-

niques have been developed to solve some of the known problems associated with the

SPH formalism, like the new Godunov mesh-free algorithms implemented in the code

GIZMO by Hopkins(2015; see also Springel, 2010, for the moving-mesh technique).

SPH formalism

Hydrodynamical equation of motions are derived for particles, leading to a simple and

intuitive formulation of gas dynamics. This technique also shows excellent conser-

vation properties. Moreover, the scheme does not show advection errors and is also

Galilean invariant, unlike mesh-based Eulerian techniques.

The core of the SPH scheme is the kernel, an interpolation function used to es-

timate the fluid properties necessary to determine the rest of SPH equations through

variational formalism. For any field one can define a smoothed interpolated version

obtained through convolution with a kernel W (r, h), where h is the kernel size. The

kernel is normalised to unity and approximates a δ-function for h → 0. Another

requirement is that the kernel is symmetric and sufficiently smooth to make it differ-

entiable twice. The usually adopted kernel function by SPH codes is the cubic spline,

which has finite support, defined in 3D as

W (r;h) =
8

πh3























1 + 6
(

r
h

)2 ( r
h − 1

)

, 0 < r
h ≤ 1

2

2
(

1− r
h

)3
, 1

2 <
r
h ≤ 1

0, r
h > 1

(A.37)

Alternative kernels have also been considered (Read, Hayfield & Agertz, 2010; Dehnen

& Aly, 2012). In order to get an accurate property estimation, one needs at least a

minimum number of neighbours ∼ 33, corresponding to the number of points on a

Cartesian mesh with spacing d included in a sphere of radius 2h. The fluid properties

in SPH schemes can then be computed as

F (r) ≃
∑

j

mj

ρj
FjW (r− rj , h), (A.38)

where the sum is performed over neighbour particles. As an example, the i-th particle

density is

ρi =

N
∑

j=1

mjW (ri − rj , hi). (A.39)

Since the chosen kernel is differentiable, one can define a derivative operator on the

fluid quantities, taking into account that the interpolation error would be higher than
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that on the smoothed quantity. In general, the smoothing kernel can vary in space,

and this is one of the key advantages of SPH, as it allows for intrinsically adaptive

resolution.

The variability of the kernel size can be included in two different ways: a ‘scatter’

approach where the kernel function is W (r− rj , h(r)) with h evaluated at the neigh-

bour’s location (Hernquist & Katz, 1989) or a ‘gather’ approach, whereW (r− rj , h(ri))
where h is evaluated at the reference particle location. In the last approach the equa-

tions of motion implicitly include the variation of h in a self-consistent fashion. An-

other issue related to the kernel is how one determines h. Some codes like GASOLINE

(Wadsley, Stadel & Quinn, 2004) use a discrete number of neighbours, while others

like GADGET2 use a constant mass in the kernel volume, i.e. 4π
3 ρih

3
i = NNGBm̄,

where m̄ is the average particle mass and NNGB is an ‘effective’ number of neigh-

bours.

SPH equations of motion
The SPH equations of motion can be then derived starting from the Euler equations

written in a Lagrangian formulation:























dρ
dt + ρ∇ · v = 0

dv
dt + ∇P

ρ = 0

du
dt + P

ρ ∇ · v = 0

(A.40)

where d/dt = ∂/∂t+v · ∇ is the convective derivative. This formulation manifestly

expresses conservation of mass, momentum and energy. Following Eckart (1960) the

equations of motion can be derived discretising the fluid Lagrangian, written as

LSPH =
∑

i

(

1

2
miv

2
i −miui

)

, (A.41)

where ui is the internal energy per unit mass, which is expressed as an entropic func-

tion which implicitly relates it to the particle pressure P . The equations of motion

can be obtained using the Euler-Lagrange equations, which give

mi
dvi

dt
= −

N
∑

j=1

mj
Pj

ρ2j

∂ρj
∂ri

. (A.42)

Depending on the formulation used for the smoothing kernel (constant mass in the

volume, discrete number of particles, etc...) the formulation is different. However, it
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can be generally written as

dv

dt
= −

N
∑

j=1

mj

[

fi
Pi

ρ2i
∇iW (ri − rj , hi) + fj

Pj

ρ2j
∇jW (ri − rj , hj)

]

, (A.43)

where f is a coefficient related to the formalism (Wadsley, Stadel & Quinn, 2004;

Springel, Yoshida & White, 2001; Springel, 2005). Due to the intrinsic relation be-

tween the P, u and ρ, this equation can also be formulated in different ways, like

pressure-entropy, density-energy, and so on. Note that the above formulation exhibits

perfect energy, momentum and angular momentum conservation. From the entropic

function equation one can also derive the time evolution for u, which gives

dui
dt

= fi
Pi

ρ2i

N
∑

j=1

mj(vivj) · ∇W (ri − rj , hi). (A.44)

Artificial viscosity
A problem with the Lagrangian formalism is that it is based on the differential form

of Euler equations, which break down when gas experiences shocks, i.e. real disconti-

nuities. When a shock occurs, entropy is not conserved anymore and the conservation

laws must be described through the integral form of Eulerian equations. Therefore,

the SPH formalism needs to be corrected to account for these effects, which typically

occur in gas dynamics and lead to energy dissipation. The solution is provided by

an artificial viscosity term, added to the SPH equations of motion to convert kinetic

energy into heat when a shock occurs. The actual effect of artificial viscosity is to

broaden the shock surface, so that the shock is resolved with a finite number of parti-

cles and thus described with the differential form of Euler equations. The additional

terms can then be written as

dvi

dt

∣

∣

∣

∣

visc

= −
∑N

j=1mjΠij∇W ij (A.45)

dui
dt

∣

∣

∣

∣

visc

= 1
2

∑N
j=1mjΠij(vi − vj) · ∇iW ij , (A.46)

where W ij is the average kernel between i and j particles (or, in some cases, the

kernel computed with the average smoothing length hij = 1/2(hi + jj)). In order to

avoid spurious dissipation outside a shock, the viscosity term Π is usually defined as

a piece-wise function given by

Πij =

{ [

−αcijµij + βµ2
ij

]

/ρij vi · vj < 0
0 otherwise,

(A.47)
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where µih =
hij(vi−vj)·(ri−rj)

|ri−rj |2+ǫh2
ij

, ρij = 1/2(ρi+ρj), cij = 1/2(ci+cj) and ǫ ≃ 0.01

to avoid singularities. The viscosity parameters α and β are typically chosen in the

range α ≃ 0.5− 1.0 and β = 2α.

Godunov mesh-free methods

In the last years a great effort has been done in the scientific community to improve

Lagrangian methods, trying to solve the different problems affecting both mesh-based

and SPH methods, with the purpose of capturing the advantages of both techniques.

One of these new approaches is the “moving-mesh method” implemented by Springel

(2010) in the new code AREPO, while another one has been proposed by Hopkins

(2015) in the code GIZMO . While AREPO is not publicly available, GIZMO has been

publicly released in a basic version. I here present the idea behind this second one

only, since we employed it in my studies.

The scheme is derived considering the integral form of Euler equations (this is

the first fundamental difference with SPH) in a frame moving with velocity vframe,

i.e.
dU

dt
+∇ · (F− vframe ⊗U) = 0, (A.48)

where dU
dt = ∂U

∂t + vframe∇⊗U with ⊗ the tensor product. To solve the equations

ensuring that shocks are correctly taken into account, it relies on a Galerkin-type

method, where a weak solution is found by multiplying the equations by a test func-

tion φ (assumed to be Lagrangian, i.e. dφ/dt = 0) and then integrating the result over

a volume ω, obtaining

∫

Ω

φ

(

dU

dt
+∇ · F̃

)

dΩ = 0, (A.49)

where F̃ = F− vframe ⊗U. Integrating by parts and assuming that the fluxes or φ
vanish at infinity, one gets

d

dt

∫

Ω

U(x, t)φ dνx−

∫

Ω

F̃(U,x, t) · ∇φ dνx = 0, (A.50)

where the boundary term has been eliminated and the time derivative has been pulled

out of the integral. If one wants to discretise this integral, it is necessary to choose

a discretisation scheme for the domain. The idea is to consider a volume partition

scheme in which a differential volume dνx at coordinates x is fractionally associated

to the nearest cells (defined by their central tracer particle) through a weighting func-

tion W . In order to get a second-order accurate method conserving energy, linear and

angular momentum W should be continuous, symmetric and with compact support.

Based on these constraints, a good choice for such a function is the cubic spline kernel
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usually adopted in SPH codes, even if the purpose of W is totally different from that

of SPH schemes. According to the weighting function, the fraction associated to a

particle i is

ψi(x) =
1

ω(x)
W (x− xi, h(x)) (A.51)

of the volume dνx, where ω(x) is the sum of W over all the particles and h(x) is the

‘kernel’ size, a continuous function defined all over the domain aimed at describing

how many particles the volume is assigned to (if one defines W as a δ-function the

Voronoi tessellation used in AREPO is recovered). Including the partition scheme into

the volume integral and Taylor expanding all terms up to second-order, one obtains

∑

i

φi





d

dt
(ViUi) +

∑

j

(F̃ij ·Aij)



 = 0, (A.52)

where Vi =
∫

ψi(x)d
νx ≃ ω(xi)

−1 is the particle volume,F̃ij is the flux solution of

a time-centred Riemann problem and Aij is an ‘effective face area’ associated with

the particle pair(see Hopkins, 2015, for details). The equation above must be valid for

an arbitrary test function φ, so the term in bracket must vanish itself, giving

d

dt
(ViUi) +

∑

j

(F̃ij ·Aij) = 0, (A.53)

which is the form of traditional Godunov-type methods. The kernel size is obtained

as in the SPH code GADGET2, as the length encompassing an effective number of

neighbours, but with a formulation depending on the number density instead of the

mass density, so that it only depends on the particle coordinates and not on the fluid

properties.
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Milosavljević M., Merritt D., 2001, ApJ, 563, 34

Mo H. J., Mao S., White S. D. M., 1998, MNRAS, 295, 319

Mortlock D. J. et al., 2011, Nature, 474, 616

Novak G. S., 2013, ArXiv e-prints

Oh S. P., Haiman Z., 2002, ApJ, 569, 558

Omukai K., Nishi R., 1998, ApJ, 508, 141

Omukai K., Schneider R., Haiman Z., 2008, ApJ, 686, 801

Plummer H. C., 1911, MNRAS, 71, 460

Portegies Zwart S. F., Makino J., McMillan S. L. W., Hut P., 1999, A&A, 348,

117

Portegies Zwart S. F., McMillan S. L. W., 2002, ApJ, 576, 899

Power C., Nayakshin S., King A., 2011, MNRAS, 412, 269

Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P., 1992, Numer-

ical recipes in C. The art of scientific computing. Cambridge: University

Press

Preto M., Berentzen I., Berczik P., Spurzem R., 2011, ApJ, 732, L26



BIBLIOGRAPHY 127

Pringle J. E., 1991, MNRAS, 248, 754

Quinlan G. D., Shapiro S. L., 1987, ApJ, 321, 199

Rasera Y., Teyssier R., 2006, A&A, 445, 1

Read J. I., Hayfield T., Agertz O., 2010, MNRAS, 405, 1513

Rees M. J., 1978, in IAU Symposium, Vol. 77, Structure and Properties of

Nearby Galaxies, Berkhuijsen E. M., Wielebinski R., eds., pp. 237–242

Ripamonti E., Mapelli M., Ferrara A., 2007, MNRAS, 375, 1399

Roedig C., Dotti M., Sesana A., Cuadra J., Colpi M., 2011, MNRAS, 415,

3033

Roedig C., Sesana A., Dotti M., Cuadra J., Amaro-Seoane P., Haardt F., 2012,

A&A, 545, A127
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