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ABSTRACT  

 

Inward rectifier potassium (Kir) channels are important for neuronal signalling 

and membrane excitability. In this work, patch-clamp techniques were used to 

characterize Kir channels in mouse dopaminergic (DA) periglomerular (PG) cells. 

These interneurons are critically placed at the entry of the bulbar circuitry, in 

contact with terminals of olfactory sensory neurons and with dendrites of projection 

neurons.  

Perforated-patch configuration was adopted to record Kir current in DA-PG cells 

in thin slice. IKir could be distinguished from the hyperpolarization-activated current 

by showing full activation in < 10 ms, no inactivation, suppression by Ba2+ in a 

typical voltage-dependent manner and reversal potential nearly coincident with EK.  

DA-PG cells are autorhythmic and are target of numerous afferents releasing a 

variety of neurotransmitters, although their properties and role remain elusive. 

Depolarization induced by Ba2+ blocks spontaneous activity, although the Kir 

current is not an essential component of the pacemaker machinery. 

The current is negatively modulated by intracellular cAMP, as shown by a 

decrease of its amplitude induced by forskolin. Several neuromodulatory effects 

were tested on the Kir current of DA-PG cell. Activation of metabotropic receptors - 

known to be present on these cells - shows that the current can be modulated by a 

multiplicity of pathways. The Kir current can be increased, as observed with 

agonists of muscarinic, α1 noradrenergic and GABAA receptors, or IKir modulation 

can caused the opposite effect, i.e. agonists of D2, 5-HT and histamine receptors.  

These characteristics of the Kir currents provide the basis for additional flexibility 

of DA-PG cells signaling and function. 
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Introduction 1 

 

Sensory perception is a process by which information from the external world is 

reformatted into an internal state. A number of very different but elegant ways, 

based on distinct sensory channels, have risen according to the phylogenetic 

position of the species. Among them, communication with the environment and 

other organisms through chemical cues is an essential process for the survival of all 

multicellular systems. 

The olfactory system recognizes a great numbers of odour substance and 

discriminates chemical signals with fine differences in their structural properties, 

which come from outdoor environment and can profoundly influence animal 

behaviour; so olfactory system provides essential information for animal survival. 

The mammalian olfactory system regulates a wide range of multiple and 

integrative functions such as physiological regulation, emotional responses (anxiety, 

fear, pleasure), reproductive functions (sexual and maternal behaviours), and social 

behaviours (recognition of conspecifics, family, clan, or outsiders) (Lledo et al. 

2005). 

To achieve all these function, anatomically and functionally separate sensory 

organs are required (fig. 1.1). In mammals, the main olfactory system includes the 

olfactory epithelium, which represents the sensory organ recognizing more than a 

thousand airborne volatile molecules, called odorant compounds (or odorants). This 

neuroepithelium is connected to the next central station for processing olfactory 

information: the main olfactory bulb (OB). The olfactory epithelium contains several 

thousands of bipolar olfactory sensory neurons, each projecting to one of several 

modules in the olfactory bulb. These discrete and spherical structures, called 

olfactory glomeruli, are considered to be both morphological and functional units 

made of distinctive bundles of neuropil (Shipley & Ennis 1996). So, sensory inputs 

received by the cells in the glomerular unit result homogeneous, and this 

organization shows the degree to which the neurons in the same glomerular unit 

are interconnected.  

In different species the number of olfactory glomeruli are different: rodent 

olfactory bulbs contain several thousand glomeruli, whereas fish and insects have 

10-fold fewer, and glomerular structure can result from the convergence of 5,000 to 

40,000 axon terminals that establish synapses with dendrites of bulbar output 

neurons and different local bulbar interneurons. Moreover, several and different 

mechanisms have evolved to ensure that only a single odorant receptor is expressed 

per sensory cell. In rodents, strict transcriptional control results in the choice of 

one among a possible thousand odorant receptor genes (Malnic et al. 1999).  
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Figure 1.1 The olfactory system in rodent. In green the main olfactory 
system, in red the accessory one. Axons of sensory neurons in main 
olfactory epithelium (MOE) project to main olfactory bulb (MOB), whose 
projections target the primary cortex: olfactory nucleus (AON), piriform 
cortex (PC), olfactory tubercle (OT), lateral part of the cortical amygdala 
(LA), and entorhinal cortex (EC). Axons of sensory neurons in vomeronasal 
organ (VNO) project to accessory olfactory bulb (AOB), than to vomeronasal 
amygdala (VA) and to specific nuclei of hypothalamus (H). Top: Axons of 
olfactory sensory neurons project to specific glomeruli (Gl) in MOB, where 
they synapse with the dendrite periglomerular interneurons (Pg) and mitral 
cells (M). The lateral dendrites of M contact the apical dendrites of granule 
cells (Gr). Short axon cell interneurons (SAC) contact both apical and lateral 
dendrites of M. Bottom: schematic illustration of the olfactory epithelium, 
with the three main population of cells. From Lledo et al., Phyisiol.Rev 2005 
 

After processing in the olfactory bulb, physiological signals are delivered directly 

to the secondary sensory centres in the primary olfactory cortex.  

 

  

The accessory olfactory system comprises the vomeronasal organ, which is 

specialized to sense chemical compounds (pheromones), and transfers information 

through the accessory olfactory bulb; this sensory organ provides information about 

the social and sexual status of other individuals within the species (Lledo et al. 

2005).  

However, recent evidence also suggests some cross-talk between the main and 

accessory systems. Indeed, the vomeronasal organ does not have an exclusive 

function with regard to pheromone recognition, but in rodents, it responds also to 

other molecules than pheromones (Luo et al. 2003).  

  



 

Introduction 3 

 

1.1  The Main Olfactory System 

The main olfactory system (referred to below simply as olfactory system) 

interfaces environment and central nervous system. It is responsible for correctly 

coding sensory information from thousands of odorous stimuli, which are processed 

throughout distinct levels. Each information processing level plays an important 

role in stimuli coding from the odorant receptors up to the level of the olfactory 

cortex (Lledo et al. 2005).  

From Neuroepithelium to Olfactory Bulb 

In mammals, the initial event of odor detection takes place at the periphery of 

olfactory system, the olfactory epithelium of the nasal cavity, which is located at the 

posterior end of the nose. This turbinate reach area detects an immense variety of 

volatile molecules of differing shapes and sizes present in the environment (Buck 

1996, Firestein 1996). Olfactory transduction starts with about a thousand different 

types of odorant receptors located on the cilia of sensory neurons that comprise the 

olfactory neuroepithelium (Zhang & Firestein 2002). Three major cell types form 

this epithelium: sensory neurons, supporting cells, and several types of basal cells 

including the olfactory stem cells (fig. 1.1, bottom). Once mature, the sensory 

bipolar neurons extend a single dendrite to the neuroepithelial surface from the 

apical pole.  

Sensory neurons dendrites present numerous cilia, which extensively invade the 

mucus layer of the nasal cavity. It appends in the nasal mucus that odor molecules 

bind to specific receptors on the cilia. Odorant receptors belong to the family of the 

G protein-coupled seven-transmembrane proteins, and in order to mediate odor 

detection tissue-specific downstream components are involved, such as the 

heterotrimeric G protein subunit (Golf), type III adenylyl cyclase, and cyclic 

nucleotide-gated ion channels. In addition, several other second messenger 

cascades, which may involve Ca2+, inositol trisphosphate (IP3), or cyclic guanosine 

monophosphate (cGMP) regulate secondary events such as odorant adaptation. 

Activation of olfactory receptors induces a cascade of intracellular events resulting 

in an influx of both Na+ and Ca2+ that depolarizes the sensory neuron (Lledo et al. 

2005).  

On the other hand, each sensory neuron lengthens a single unmyelinated axon 

across the basal lamina and cribriform plate (of the ethmoid bone) in the olfactory 

bulb, through the olfactory nerve, where axons pack in fascicles, which transmit 

the electrical signals to the bulb. Throughout the olfactory pathway, a unique 

population of glia forms the bundles of axons that make up the olfactory nerve. 
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Upon reaching the olfactory bulb, axon terminals from olfactory sensory neurons 

expressing the same odorant receptor converge on a specific glomerulus (Lledo et al. 

2005).  

There is no strict spatial relationship between the arrangement of excitatory 

projections of the olfactory sensory neurons in the olfactory bulb and the regions of 

mucosa from which they originate, also bulbar outputs do not have point-to-point 

topographical projections to their target structures. This  feature contrasts with the 

spatial organization of sensory systems in general, where afferent inputs are 

organized in a topographical mode. An activity-dependent mechanism seems rather 

to be responsible of bulbar extensive organization and targeting (Lledo et al. 2005). 

Recent reports highlight further mechanisms based on spontaneous and odorant-

evoked neuronal activity in the establishment and maintenance of the sensory 

projections (Zou et al. 2004, Yu et al. 2004).  

From Olfactory Bulb to Primary Cortex 

Before the transmission to upstream centres odor information received by the 

olfactory bulb is processed and refined. According to the topographical organization 

of the bulbar circuit, two odor processing sites are involved: the glomeruli, where 

inputs arrived from sensory neurons, and the external plexiform where dendrite of 

output neurons stand.  

Next processing occurs in primary and accessory olfactory cortex. These higher 

centers include the anterior olfactory nucleus, which connects the two olfactory 

bulbs through a portion of the anterior commissure, the olfactory tubercle, the 

piriform cortex (considered to be the primary olfactory cortex), the cortical nucleus 

of the amygdala, and the entorhinal area (Shipley & Ennis 1996).  

The olfactory tubercle projects to the medial dorsal nucleus of the thalamus, 

which in turn projects to the orbitofrontal cortex, the region of cortex thought to be 

involved in the conscious perception of smell (Rolls 2001). Olfactory information 

must be relayed from convergent synapses in the olfactory bulb to higher brain 

centers, where it is decoded to yield a coherent odor image.  
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1.1.1 Neuronal Replacement in the Adult Olfactory System 

The olfactory system is considered a good model for the study of adult 

neurogenesis because it exhibits lifelong turnover of peripheral sensory neurons 

and bulbar interneurons.  Adult neurogenesis is present both in olfactory 

epithelium, where cell renewal persists throughout adult life to replace olfactory 

sensory neurons (Graziadei et al. 1978, Calof et al. 1998, Moulton 1974) and in the 

subventricular zone (SVZ), an area near the ventricle of the forebrain.  

Globose and horizontal basal cells, deeply located in the olfactory epithelium are 

responsible of epithelial adult neurogenesis. Neurogenesis in the olfactory 

epithelium is tightly regulated by environmental factors: ablation of the olfactory 

bulb enhances neurogenesis (Carr & Farbman 1993), while blocking airflow 

through one side of the nasal cavity causes an ipsilateral reduction in cell 

proliferation. Also, differentiated neurons contribute to maintain cell population 

equilibrium sending back regulatory signals to inform progenitor cells about the 

number of new neurons that need to be produced. For this reason, studying 

mechanisms that control the rate of neuronal production is particularly interesting 

here.  

In adult mammalian brain, the subventricular zone, which lines the lateral walls 

of the ventricles (LV), and the subgranular zone (SGV) of the dentate gyrus (DG) of 

the hippocampus constitute two sites of neuronal production (Altman 1963). 

Bulbar interneurons are derived from neuronal precursor cells that migrate from 

the lateral ganglionic eminences, in embryo (Wichterle et al. 2001). Postnatally, they 

derive from neuronal precursor cells of SVZ that migrate in the rostral migratory 

stream (RMS) (Temple & Alvarez-Buylla 1999). Within the SVZ, the neural precursor 

cells are considered as stem cells since they proliferate and give rise to neuronal 

lineage cells: astrocytes, oligodendrocytes and neurons (Temple & Alvarez-Buylla 

1999, Peretto et al. 1999). Mammalians continuous generation of SVZ neurons has 

been found not only in rodents (Lois & Alvarez-Buylla 1994, Altman & Das 1965, 

Hinds 1968) but also in primates (Kaplan 1983, Kobal & Kettenmann 2000, 

Kendrick et al. 1988, Pencea et al. 2001), and humans (Kukekov et al. 1999, 

Weickert et al. 2000).  

It is still unknown the potency degree of SVZ neuronal stem cells: in vitro studies 

indicate forebrain periventricular stem cells as multipotency ones, controversial in 

vivo approaches underline the rather limited fate of this cells, which express 

neuronal markers(Gage 2000, Temple 2001). In addition, precursor cells of the SVZ 

can migrate tangentially, going on dividing during their migration along the RMS, to 

populate the olfactory bulb, where they differentiate into local neurons (Lois & 
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Alvarez-Buylla 1994(Luskin 1993). For this reason there is a prominent interest in 

studying chemical factors (fig.1.2) that inhibit or promote neurogenesis, neuronal 

differentiation and migration, or actively produce apoptotic cascades, since 

apoptosis seems to play an important role in controlling neuron numbers (Lledo et 

al. 2006). When neuroblasts reach the olfactory bulb, they migrate radially, and 

90% differentiate into GABAergic and 10% into dopaminergic interneurons of the 

glomerular and granule cell layers (Betarbet et al. 1996). 

Figure 1.2 Neurogenesis in adult olfactory bulb Proliferation in the subventricular zone (SVZ) takes place in the medial 
wall of the lateral ventricle (LV), where stem cells divide to generate transit amplifying cells. In turn, they give rise to 
neuroblasts that migrate in the rostral migratory stream (RMS) to their final destination in the olfactory bulb (OB). 
Intrinsic and external factors control newborn cell proliferation and fate. The tangential migration along the RMS is 
regulated by contact-mediated repulsion or attraction interactions between neuroblasts and the microenvironment. 
Chain detachment and radial migration are regulated by external factors reelin, tenascin-R, and prokineticin 2 (PK2). 
When neuroblasts reach their last localization, radial migration trough  the different layer of the olfactory bulb stops. 
Here they differentiate into two local interneuron subtypes: granule cells  and periglomerular neurons. Sensory input 
establish cells survival and fate. 
5-HT, 5-hydroxytryptamine (serotonin); ACh, acetylcholine; APP, amyloid precursor protein; BDNF, brain-derived 
neurotrophic factor; BL, basal lamina; BMI1, polycomb family transcriptional repressor; BMP, bone morphogenetic 
protein; CNTF, ciliary neurotrophic factor; DA, dopamine; DG, dentate gyrus; E, epidermal cell; E2F1, E2F transcription 
factor 1; EGF, epidermal growth factor; EPL, external plexiform layer; FGF, fibroblast growth factor; GABA, gamma-
aminobutyric acid; GCL, granular cell layer; GL, glomerular layer; HB-EGF, heparin-binding EGF; Hipp, hippocampus; 
MASH1, mammalian achaete-scute homologue 1; MCD24, glycosylphosphatidyl-inositol-anchored highly glycosylated 
molecule; NO, nitric oxide; OLIG2, oligodendrocyte transcription factor 2; PACAP, pituitary adenylate cyclase-activating 
polypeptide; PAX6, paired box 6; PSA-NCAM, polysialic acid–neuronal cell adhesion molecule; SHH, sonic hedgehog; 
TGFalpha, transforming growth factor-alpha; TXL, thioredoxin-like 1; VEGF, vascular endothelial growth factor.  
From Lledo PM et al., Neurosci. 2006. 
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1.2  Olfactory Bulb 

Olfactory bulb, one of the most interesting parts of the brain, is an excellent 

model for understanding the neural mechanisms of sensory information processing, 

moreover it constitutes a site in which interneurons are added in postnatal and 

adult life.  

Since first studies, it has known that “the olfactory bulb is not merely a ‘ganglion’ 

in which the olfactory pathway is synaptically interrupted, but is indeed a centre of 

great complexity containing associative connections at several levels, intrinsic 

neuronal circuits of varying length, and a ‘centrifugal’ as well as the sensory input” 

(Nieuwenhuys 1967). 

The first relay station for transmission of olfactory information is, indeed, olfactory 

bulb, which receives and processes the information from the olfactory sensory 

neurons in the nasal mucosa and it sends this information to different parts of the 

primary olfactory cortex in the forebrain. 

Axonal termini of olfactory sensory neurons (OSNs) from the olfactory epithelium  

synapse directly onto second order neurons within the forebrain. In the olfactory 

bulb, OSNs form both synapses with output (second order) neurons and local 

interneurons in the glomerular layer (GL). Sensory neurons expressing a given 

receptor project to a specific subset of glomeruli, making a topographical 

organization highly conserved in different species across phyla (Lledo et al. 2006).  

A given glomerulus can respond to multiple odorants, and a given odorant 

activates multiple glomeruli. As a result, odor identity is represented by patterns of 

glomerular activation, depending on properties of synaptic transmission between 

sensory neurons and their postsynaptic targets in OB.  

In the glomeruli, OSN termini form excitatory glutamatergic synapses with the 

apical dendrites of the bulbar output cells (Aroniadou-Anderjaska et al. 1997), and 

with periglomerular interneurons (Keller et al. 1998). These types of olfactory nerve-

evoked excitatory response comprise fast AMPA and slow NMDA components  

(Aroniadou-Anderjaska et al. 1997, Berkowicz et al. 1994, Chen & Shepherd 1997). 

Complex mechanisms take place in order to reliably transmit information contained 

in the odorant-evoke firing of sensory neurons to the brain. Under normal 

condition, glutamate release from OSN termini is high (Aroniadou-Anderjaska et al. 

2000, Hsia et al. 1999); this feature makes the olfactory system able to detect 

extremely faint sensory signals. In presence of threshold odorant concentration, the 

ability of amplify low signals of olfactory nerve-evoked excitatory responses, by high 

glutamate release, ensures transmission of information contained in sparse sensory 
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neuron firing and it provides a mechanism by which afferent inputs to the bulb are 

highly reliable (Murphy & Isaacson 2003, Murphy et al. 2005). On the other hand, 

at high concentration of odorants expected burst response does not take place due 

to the strong paired-pulse depression, which avoids system saturation ensuring 

system modulation. High level of odorants reduce but never strengthen the synaptic 

transmission between olfactory sensory neurons and olfactory bulb (Ennis et al. 

1996, Aroniadou-Anderjaska et al. 2000), by activation of presynaptic metabotropic 

receptors present on olfactory sensory neurons. In this mechanism, periglomerular 

local neurons play a key role releasing dopamine and GABA within olfactory bulb 

glomeruli (McLean & Shipley 1988, Smith & Jahr 2002). These local 

neuromodulators reduce both the transmitter release from olfactory nerve terminals 

and paired-pulse depression - via activation of presynaptic D2 dopamine and 

GABAB receptors. They could further maintain relative response magnitudes across 

a wide range of input intensities, reducing sensory noise and improving contrast 

between neighbour-activated glomeruli (Aroniadou-Anderjaska et al. 2000, Ennis et 

al. 1996) (Hsia et al. 1999, Lledo & Gheusi 2003).  

 

1.2.1 Synaptic Processing within the Olfactory Bulb 

Although, odorants induce a well-organized pattern of activation in glomeruli 

across the surface of the olfactory bulb, transduction mechanisms, which transform 

input signals into a specific odor code, remain still unclear. 

Principal output neurons 

The main output neurons are located in a single lamina (figure 1.3), the mitral 

cell layer (MCL), and they extend the primary dendrite vertically to contact one 

glomerulus, where interactions with bulbar interneurons and olfactory nerve 

terminals occur (Mori et al. 1999). Mitral cell secondary (or basal) dendrites (two to 

nine) radiate horizontally the bulb branching in the external plexiform layer (EPL). 

Two type of mitral cells (M) are identified (Orona et al. 1984, Mori et al. 1983, 

Macrides & Schneider 1982). More numerous type I mitral cell have basal dendrites 

in deep EPL, displaced type II mitral cells have basal dendrites near the middle of 

EPL and their somata lie more superficially than type I. 

The other kind of output neuron, Tufted cells (T), can be separated in three 

groups as a function of their cell body location: middle and internal tufted cells 

have their somata in the EPL, near the middle and in deep respectively, while 

external tufted cells stand in the glomerular layer. Middle and internal tufted cells 

present basal dendrites and an apical dendrite that terminates within a single 
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Figure 1.3 Basic circuit diagram of olfactory bulb.  
In two different colors are showed glomerular modules 
representing two different types of odorant receptors. White 
arrows denote excitatory synapses, while black arrows denote 
inhibitory synapses. Mitral cells (M) and tufted cells (T) are 
output neurons, and granule cells (Gr) and periglomerular cells 
(PG) are local interneurons. OSN, olfactory sensory neuron, 
ONL, olfactory nerve layer; GL, glomerular layer; EPL, external 
plexiform layer; MCL, mitral cell layer; IPL, internal plexiform 
layer; GRL granule cell layer. 
 From Mori K. et al., Science 1999 

glomerulus. Axons of these cells 

project to the primary olfactory 

cortex. An external tufted cell has 

short apical dendrite, which 

terminates in a glomerulus, and 

basal dendrites extending below 

glomerular layer. Some external 

tufted cells send their axon to the 

cortex, whereas axons of others 

terminate in the bulb (Macrides & 

Schneider 1982, Macrides & Davis 

1983).  

Mitral and tufted cells show 

several differences starting from the 

position of their cell bodies, the 

distribution of basal dendrites and 

their specificity for transmitters. 

They have different projection 

pattern in the olfactory cortex, and 

they are connected to different particular groups of granule cells (Schoenfeld & 

Macrides 1984, Schoenfeld et al. 1985, Scott et al. 1980).  

The external plexiform layer presents relatively few cell bodies, but it is a very 

dense neuropil layer, where basal dendrites of principal cells have synaptic contacts 

with peripheral dendrites of granule cells. 

Local interneurons  

Both sensory excitatory inputs and intra-bulbar circuit stimuli control tightly the 

firing activity of output neurons. Two distinct connections are implied in the intra-

bulbar circuit stimuli: the first occurs between primary dendrites and 

periglomerular cells (PG), the second between secondary dendrites and granule cells 

(Gr) (Shipley & Ennis 1996). Granule cells and periglomerular cells are 

interneurons which extend their projections within the olfactory bulb. 

Most of the periglomerular interneurons have dendrites restricted to one 

glomerulus and contact olfactory nerve terminals or mitral cell primary dendrites, 

so the glomerulus becomes a complex structure consisting of axonal and dendritic 

compartments (Kosaka et al. 1997, Kasowski et al. 1999). 

Each glomerulus is surrounded by numerous periglomerular cells with small 

somata (6-8 µm). PG cell dendrite ramifies and terminates within one or two 
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glomeruli, and they take contact with olfactory axons and dendrites of principal 

cells; PG cell axon can extend across three to five glomeruli (Pinching & Powell 

1971, Macrides & Davis 1983, Halasz & Greer 1993). PG cells constitute a 

heterogeneous population, which differs in neurochemical, morphological and 

physiological features (Kosaka et al. 1995, Kosaka et al. 1997, Puopolo & Belluzzi 

1998, Toida et al. 1998, Toida et al. 2000).  

In the external plexiform layer, principal cells interact with axonless interneurons 

named granule cells, the most numerous cellular populations within the bulb. 

Granule cells are densely packed in the Granule cell layer (GRL). They can present a 

rounded or fusiform somata and they constitute aggregates of three to five cells 

each ones, in which gap junctions are present as their activity can be synchronized. 

Each cell gives rise to a thick peripheral dendrite, that ramifies and terminate in the 

EPL and to fine deep (one to four) dendrites which terminates within the GRL (Price 

& Powell 1970). The main difference between periglomerular and granule cells is 

that the former mediate mostly interactions between cells within the same 

glomerulus, while granule cells mediate interactions between output neurons 

projecting to many different glomeruli.  

 

Neuronal communication within the olfactory bulb has some unusual features. 

Many bulbar neurons present reciprocal dendrodendritic synapses. In addition, 

several bulbar neuronal type can modulate their own activity through the 

transmitter that they themselves release. The reciprocal circuit via dendrodendritic 

synapses provides a spatially localized inhibition. It is suggested that a mechanism 

for lateral inhibition is provided between output neurons that innervate different 

glomeruli. Indeed, the projection field of interneuron is large enough to contact 

dendrites of several output cells. Bulbar principal neurons are connected to 

different glomeruli and they respond to a wide range of odor molecules, moreover 

they receive inhibitory inputs from neighbouring glomerular units - via lateral 

inhibition at dendrodendritic connections. This inhibition is proposed to refine the 

process of odor information. These features make the olfactory bulb a structure 

where information is transmitted vertically, across the glomerular relay between 

sensory neurons and output neurons, and horizontally through local interneuron 

connections, which are activated in odor-specific patterns (Lledo et al. 2005). 

This kind of inter-glomerular communication is also mediated by a distinct 

interneuronal population: the so called “short axon” cells (SA). Short axon cells 

located in the glomerular layer have an oval cell body and dendrites ramifying 

between or around glomeruli. Their inter-glomerular axons extend from one to three 
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glomeruli to excite inhibitory PG cells (Aungst et al. 2003). Really, short axon 

interneurons are equivalently spread along bulbar layers, so they are also present 

in EPL, MCL, IPL and they are relatively numerous in granule cell layer. Thanks to 

Golgi impregnation technique several type of SA are identified; this neurons have an 

intermediate size between Gr and M and they present three to eight dendrites 

(Ramon y Cajal 1911, Price & Powell 1970, Pinching & Powell 1971, Schneider & 

Macrides 1978, Shepherd & Greer 1998). 

In view of the above, glomeruli can respond to a wide range of related odorants 

but also receive inhibitory inputs from neighbouring glomerular units through 

lateral inhibition. Odor perception quality is firstly ensured by sensory neuron 

termini transmitting sensory inputs to glomeruli. Following improvements in odor 

stimulus refinement are encoded by mitral cell activity patterns, in other words by a 

specific combination of activated mitral cells, that in turn critically depend on 

GABAergic inhibition.  

1.3  Periglomerular Cells 

In the Olfactory Bulb, interneurons are generated continuously in the postnatal 

and adult periods from the progenitor cells located in the subventricular zone of the 

lateral ventricle. These new generated cells  migrate tangentially through the rostral 

migratory stream, then radially across bulbar layers until they find their final 

position building the right synaptic interactions (Altman 1969, Lledo et al. 2008).  

Periglomerular layer is populated by three types of interneurons (as seen above): 

periglomerular cells, short axon cells and external tufted cells (Halász 1990). Among 

these interneurons, periglomerular cells and external tufted cells send dendrites 

into glomeruli, while superficial short axon cells are believed to send dendrites in 

the periglomerular region but not into glomeruli (Kosaka et al. 1998).  

PG cells constitute high chemically heterogeneous cell population as T. Kosaka 

and K. Kosaka morphological and immunocytochemical studies reveal. 

Glutamic acid decarboxylase (GAD), γ-aminobutyric acid (GABA), tyrosine 

hydroxylase (TH), calretinin and calbindin D28k characterize the four major 

chemically identified groups of PG cells, in main olfactory bulb of C57B/6J strain 

mice (Kosaka & Kosaka 2007). 

Each glomerulus is regarded to consist of two compartments (or zones): the 

olfactory nerve (ON) zone and the non-olfactory nerve (non-ON) zone (Kosaka et al. 

1997). The borders of these compartments cannot be strictly define. The ON zone is 

mainly occupied by olfactory nerve terminals as well as fine dendritic processes of 



 

Introduction 12 

 

intrinsic neurons, so the ON zone is the site where olfactory receptor cells make 

synapses on their targets. The non-ON zone is occupied by dendritic processes of 

intrinsic neurons, where dendrodendritic interactions between intrinsic neurons 

mainly occur. PG cells can be classified into two types - type 1 and type 2 - on the 

basis of the distribution of their intraglomerular dendrites. Type 1 cell dendrites 

(the blue ones in figure 1.4) are located both in the ON and the non-ON zones, 

whereas type 2 cell dendrites (the green ones) are located in non-ON zone but rarely 

in the ON zone (Kosaka et al. 1998). However, it is required to keep in mind that 

this scheme simplifies the classification of PG neurons. Considering the high 

heterogeneous PG population some cells might overcome this representation.  

In mouse olfactory bulb, type 1 PG cells include both GAD/GABA-positive and 

tyrosine hydroxylase-positive cells and type 2 PG cells include both calretinin-

positive and calbindin D28k-positive cells.  

All of the tyrosine hydroxylase positive neurons exhibited GAD/GABA 

immunoreactivity, but neither are calretinin-positive nor calbindin D28k-positive. 

These tyrosine hydroxylase-positive neurons varied in size, and also in the intensity 

of the tyrosine hydroxylase immunoreactivity and GAD/GABA immunoreactivity. 

This suggest that GAD/GABA- and TH-positive group may consist of two or more 

subgroups of neurons with different sizes.  

All of the calbindin D28k-positive somata are GAD/GABA-positive.  

 

In the mouse olfactory bulb, these calbindin D28k positive somata usually 

exhibite strong calbindin D28k immunoreactivity and intermediate GAD/GABA 

immunoreactivity.  

Figure 1.4 On the left: type 1 (blue) and 2 (green) PG cells. Simplified scheme of the neuronal organization in the 
glomerular unit. In red the ON zone and in yellow the non-ON zone of a glomerulus (A,B). (C): Synaptic connections of 
types 1 and 2 PG cells in the glomerulus. ON, olfactory nerve; M/T mitral/tufted cell.  
From Kosaka et al., Neurosci. Res 1998.  
On the right: Cellular composition in the juxtaglomerular region of mouse OB. Total cells in the juxtaglomerular 
region are represented by dashed rectangle. All TH-positive cells, CB-positive cells and about 65% of the CR-positive 
cells are included in the GAD/GABA-positive cells. TH, CB and CR characterize groups of PG cells.  
From Kosaka K. et al., Brain Res. 2007. 
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A large part but not all, of the calretinin positive somata are also GAD/GABA-

positive. Some of these GAD/GABA-positive calretinin-positive somata exhibit a 

faint calretinin immunoreactivity and an intermediate GAD/GABA 

immunoreactivity, whereas others show a strong calretinin immunoreactivity and a 

faint GAD/GABA immunoreactivity.  

None of the calbindin D28k-positive somata are calretinin-positive and vice versa.  

The TH-positive somata, which are always GAD/GABA-positive, consist of about 

20% of the GAD/GABA-positive somata. About 65%  of the calretinin-positive 

neurons and, all of the calbindin D28k-positive neurons, are also GAD/GABA-

positive. For the GAD/GABA-positive somata, the 35% are calretinin-positive and 

the 10% are calbindin D28k-positive. None of the somata expresses both calretinin 

and calbindin D28k immunoreactivities (Kosaka & Kosaka 2007).  

1.3.1 TH- and GABA-positive JG Cells 

There are two types of TH-positive juxtaglomerular (JG) neurons with different 

soma sizes, see figure 1.5 (Kosaka & Kosaka 2008, Halász et al. 1981, Pignatelli et 

al. 2005). As specified by Kosaka and Kosaka’s work, the term juxtaglomerular 

neuron “indicates neurons located around glomeruli irrespective of neuron types, 

including PG cells, external tufted cells and SA cells. 

Thus the term ‘JG neurons’ is usually used when 

the neuron types are not distinguished or un-

identified or controversial” (Kosaka & Kosaka 2011). 

Between the two TH-positive cell population 

distinguished by cell soma size, the biggest one 

seems to be the main source of the long inter-

glomerular connections in mouse olfactory bulb: 

DA - GABA periglomerular cells are candidate to 

play this role (Kosaka & Kosaka 2007). 

In literature (De Marchis et al. 2007, Ventura & 

Goldman 2007, Kohwi et al. 2007), TH-positive juxtaglomerular neurons are 

reported to be one of the major groups of juxtaglomerular neurons generated 

continuously in the postnatal and adult periods. Kosaka and Kosaka suppose that 

this TH+ JG neurons continuously supplied in adult life are different from those 

participating in the long inter-glomerular connections. In addition, those TH-

positive neuron postnatally generated appear to be the small type of TH-positive 

periglomerular cells rather than the large type of TH-positive ones (Kosaka & 

Kosaka 2008). 

Figure 1.5 TH+ cell soma size histogram. 
Two Gaussian curves (green and red) 
describe the TH-positive soma size 
histogram, as well as their combined 
curve in blue.  
From Kosaka T. et al., Neurosci Res 2008)  



 

Introduction 14 

 

1.3.1 Electrophysiological characterisation of TH-positive PG cells 

An estimated 10% of juxtaglomerular neurons in adulthood are positive for 

tyrosine hydroxylase (TH), which is the rate-limiting enzyme for dopamine synthesis 

(McLean & Shipley 1988, Kratskin & Belluzzi 2003). Moreover, DA cells are among 

interneurons added in adult life (Betarbet et al. 1996, Baker et al. 2001). In absence 

of synaptic inputs, as many DA neurons in the CNS can generate rhythmic action 

potentials (Grace & Onn 1989, Yung et al. 1991, Neuhoff et al. 2002), also DA cells 

in the glomerular layer of the olfactory bulb possess a pacemaker activity (Pignatelli 

et al. 2005).  

Thanks to use transgenic mice carrying green fluorescent protein (GFP) under 

the control of TH promoter (TH-GFP cells) (Sawamoto et al. 2001, Matsushita et al. 

2002) a first electrophysiological characterization of these cells was outline 

(Pignatelli et al. 2005). For the first time, the difficulty of discerning DA PG cells in 

living brain slice is overcome thanks to this animal model, which is an invaluable 

tool to obtain functional studies of DA cells in the OB. 

The main source of TH-GFP cells is in the glomerular layer of olfactory bulb, 

where it is possible to distinguish two population of TH-GFP cells basing on the 

distribution of the mean cell diameter of GFP+ cells. This result is confirmed by the 

frequency distribution of the membrane capacitances, although no significant 

differences in the properties of the two population is found (Pignatelli et al. 2005).  

 

About 80% of DA neurones are spontaneously active. This feature persists after 

blocking glutamatergic and GABAergic synaptic transmission. It is an intrinsic 

properties of the cell membrane and is independent from external synaptic input 

Figure 1.6 Spontaneous firing in TH-
GFP+ cells.  
The presence of autorhythmic activity 
is the most salient feature of DA cells in 
the olfactory bulb. Example of  action 
current recording is showed in A, in 
voltage-clamp cell-attached mode. 
In B, action potentials are showed in 
whole-cell mode and current-clamp 
configuration.  
In C, frequency distribution of the inter-
event time for the cell shown in B. The 
firing activity is rather constant in the 
most of cells. 
In D the frequency of spontaneous 
firing in TH-GFP cells is summarized  
under the indicated experimental 
conditions.  
CA, cell attached; WC, whole cell.  
From Pignatelli et al., J.Physiol 2005 
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presence. This result is further supported by the observation that also dissociated 

TH-GFP cells conserved their capacity of generating rhythmic activity, both in 

whole-cell and cell-attached mode (fig. 1.6). 

DA neurons in the mice OB have a complement of voltage-dependent currents, 

which have been kinetically characterized in order to understand the mechanism of 

spontaneous firing. The slow depolarization between spikes is sustained by the 

persistent tetrodotoxin-sensitive sodium current (INa(P)) and by the T-type calcium 

current (ICa(T)). Both INa(P) and ICa(T) are necessary to sustain spontaneous firing as the 

selective block of one or both abolish spontaneous activity. 

In these cells, five main voltage-dependent conductances are identified: the two 

having largest amplitude are a fast transient Na+ current and a delayed rectifier 

K+ current. In addition, three smaller inward currents, sustained by Na+ ions 

(persistent type) and by Ca2+ ions (LVA and HVA), are observed (Pignatelli et al. 

2005).  

Also two hyperpolarization-activated currents with inward rectifying properties 

are present in TH-GFP+ neurons. The recently characterized first type current is Ih 

(or If in cardiac tissue) hyperpolarization-activated current, a mixed cation current 

with a reversal potential substantially positive to EK. DA PG Ih has a relatively slow 

activation kinetics, and it is insensitive to Ba2+, while it is blocked by high selective 

drug such as ivabradine and ZD7288 (Pignatelli et al. 2013).  

The second has fast kinetics, is permeable primarily to K+, is blocked by 

extracellular barium and cesium, has a voltage-dependence on extracellular K+ 

concentration, and it has been identified as a classical potassium inward rectifier 

current (Kir).  

It  is the matter of my work. 
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1.4  Kir Channels 

Inwardly rectifying potassium (Kir) channels belong to potassium channel family 

which is expressed in many cell types and contribute to a wide range of 

physiological processes. Potassium channels are classified into three groups in 

terms of their predicted membrane topology. The first group includes six 

transmembrane domain (TMD) proteins such as voltage-gated and Ca2+-activated K+ 

channels, while the second group holds “Leak” K+ channels which are formed by 

four transmembrane domain proteins. Two transmembrane domain proteins belong 

to the third group, where you can find inward rectifier K+ channels. Each group of 

principal subunits is divided into families and further subdivided into several 

subfamilies based on structural properties, which are resumed in figure 1.7. In 

addition of principal  K+ channel subunits, many K+  channels present auxiliary 

proteins that can modify the channel properties. In some cases, principal subunits 

do not form functional homomultimeric channels: in order to give functional 

channels, they must coassemble with subunits belonging to a different subfamily. 

Figure 1.7 A also shows auxiliary subunits grouped together with the principal 

subunits with which they have been shown to interact (Coetzee et al. 1999).  

 

Inwardly rectifying potassium channels have a principal subunit of two TMDs 

(M1-M2) and a pore domain, analogous to S5-P-S6 of the 6TMD K+ channel 

subunits, and it is thought to assemble as tetrameric proteins to form functional 

channels (Coetzee et al. 1999, Hibino et al. 2010, Bichet et al. 2003, van der 

Heyden et al. 2013).  

Figure 1.7 A) Schematic representation of the three groups of K
+
 channel principal subunits. A functional classification 

places the voltage- and Ca 
2+

- regulated K
+
 channels in the 6TMD group, the “leak” K

+ 
channels in the 4TMD group, and the 

inward rectifier K
+
 channels in the 2TMD group. From Coetzee W.A.et al., Ann.N.Y.Acad.Sci.1999 

B) Kir channel phylogenetic tree. Phylogenetic analysis of the 15 known subunits of human Kir channels. These subunits 
can be classified into four functional groups. From Hibino H. et al., Physiol Rev 2010 
 

A B 
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Inwardly rectifying potassium currents were originally described as “anomalous” 

rectifier K+ currents that refers to the ability of an ion channel to allow greater 

influx than efflux of ions. In general, inward rectifier channels allow small amounts 

of outward current at membrane potential (VM) positive to the potassium 

equilibrium potential (EK) compared to currents generated at stimuli negative to the 

potassium equilibrium potential (Hibino et al. 2010).  

There are 15 Kir subunit genes, known to date, which are classified in seven 

subfamilies (Kir 1.x to Kir 7.x) in turn organised into four functional groups: 

1) Classical Kir channels 

2) G-protein gated Kir channels (GIRK) 

3) ATP-sensitive K+ channels 

4) K+-transport channels. 

Members of Kir 2, Kir 3, Kir 5 (having only a single member) and Kir 6 subfamilies 

fall into their own expected group, as shown in figure 1.7 B, on the other hand the 

remaining members of Kir 1, Kir 4, and Kir 7 subfamilies are all part of the fourth 

functional group (Hibino et al. 2010).  

A threshold identity values of > 55 % exists among members of individual Kir 

subfamilies (organised in the phylogenetic tree of 2 TMD inward rectifier potassium 

channels as shown in figure 1.7 B), except for Kir 1, Kir 4, and Kir 7 subfamilies 

which score an identity lower than 36%, suggesting that their genes might belong to 

different subfamilies. Moreover, ambiguity arose in the naming of these genes, so 

Kir 4.1 is also known as Kir 1.2, because of its apparent similarity to Kir 1.1; 

similarly there is a certain unclearness in the naming of Kir 4.2/Kir 1.3. The last 

cloned gene is supposed to be a new subfamily member and for this reason it is 

defined Kir 7.1, but it is also named as Kir 1.4 by others (Coetzee et al. 1999). 

1.4.1 Architecture of Kir Channels 

A four identical (homotetrameric) or homologous (heterotetrameric) Kir subunits 

tetrameric structure is organized on the membrane in order to surrounding a water-

fill pore, through which K+ ions can move following their electrochemical gradient. 

Each subunit includes two transmembrane helices, a pore forming region and a 

cytoplasmic domain formed by the ammino (N) and carboxy (C) termini, as 

schematically shown in figure 1.8 A. An interesting feature is that N and C termini, 

belonging to neighbouring subunits, interact through two parallel β-strands (figure 

1.8 B). 
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Figure 1.8 Overall architecture of inwardly rectifying K+ (Kir) channels. In a, schematic draw of a single channel 
subunit showing transmembrane helices (M1,M2) and the pore forming region (pore-helix, P). In b and c, above and 
side view of KirBac 1.1 tetrameric structure, where monomers are differently colored and K

+ 
ions are white.  

From Bichet D. et al., Nat.Rev.Neurosci 2003. 
 In d, structure of Kir 2.2 where two subunits have been remove for clarity; red spheres are K

+ 
ions and the bundle 

crossing region is shown by the red dot circle. SF: narrow selectivity filter region;  G-loop: a belt around the central 
pore (also known as H-I loop); CD- and EF-loop, coming from βstrands C and D and βstrands E and F, constitute the 
cytoplasmic pore permeation pathway. From Van der Heyden et al., Curr.Mol.Med.  2013. 
In e, selectivity filter of KcsA emphasizes the linear array of K

+
 binding sites. Only residues of the K

+
 channel signature 

sequence (TVGYG) are shown in ball-and-stick representation. At the enter of filter, K
+ 

ion hydration shell is 
progressively replaced by interactions with backbone carbonyls (positions 0 to 4). The filter can  contain two K

+
 ions 

simultaneously, either at positions 1 and 3 (green spheres), or at 2 and 4 (white spheres). Black arrows show 
mutations that affect selectivity filter. From Bichet D. et al., Nat.Rev.Neurosci 2003. 
 

Current Molecular Medicine, 2013, Vol.13, No.5 

d 
e 
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The transmembrane domain is formed by two transmembrane helices M1 and M2 

separated by an extracellular loop that form a K+ selectivity filter (van der Heyden et 

al. 2013). This pore loop, located between the M1 and the M2 helices, contains the 

descending pore helix and the ascending K+ channel signature sequence (figure 1.8) 

(Bichet et al. 2003). At the bound between membrane and cytoplasm the M2 forms 

a shrinkage the “bundle crossing region” in order to prevent ion flux when channel 

is closed. It is showed in figure 1.8 D by the red dot circle. The bundle crossing 

opens to 17 Ǻ. It moves in a kinking way, turning 25° around the helical axis and 

using as hinge a conserved glycine (van der Heyden et al. 2013).  

 

The intracellular domain is formed by two-third of the Kir channel ammino-acid 

sequence and it is organized in order to give the “cytoplasmic pore”, which is 30 Ǻ 

long and 7-15 Ǻ in diameter. The wall of β-sheets, containing many polar and 

charged and surrounding the pore channel, makes a crucial region for channel 

modulation by intracellular regulator and for establishing the strong voltage 

dependence of inward rectification (Bichet et al. 2003).  

 

1.4.2 Ion Selectivity 

Selectivity  for K+ is given by selectivity filter (SF)(figure 1.8 E), defined as the 

narrowest part of the conduction pathway in the open channel. The conserved K+ 

channels signature sequence (TXGYG or TXGFG) is located in the P-loop. The main 

chain carbonyl oxygens of the signature sequence form the selectivity filter (Bichet 

et al. 2003). Point mutations in the K+ channels signature sequence abolish K+ 

selectivity (Heginbotham et al. 1994). K+ channel signature sequence is conserved 

between all K+ channels and interestingly the bacterial KcsA pore can substitute for 

the pore of other K+ channels (Lu et al. 2001). This suggests that the mechanism of 

ion selectivity filter is similar in all K+ channels. In figure 1.8 E, a close-up view of 

the selectivity filter of KcsA is shown and the ball and stick representation defines 

the K+ channels signature sequence. At the extracellular and internal ends of the 

filter, K+ ions are surrounded by water molecules which are progressively replaced 

by interactions whit the backbone carbonyls of the selectivity filter. The filter can 

contains two K+ ions simultaneously either at position 1 and 3 or at 2 and 4 (Bichet 

et al. 2003). Other than the K+ channel signature sequence, structural features are 

also important for K+ selectivity in Kir channels. Differences in the residues that 

surround the selectivity filter account for the reduced K+ selectivity, as 

demonstrated in mutagenesis studies in the pore helix or in M2 of Kir 3 family 
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members (Lu et al. 2001, Slesinger 2001). The idea that the surrounding structure 

contributes to stabilize the SF is suggested by the presence  of a salt bridge between 

conserved charged residues. It seems to anchor and stabilize the K+ channel 

signature sequence in most Kir channels (Yang et al. 1997).  

 

1.4.3 Inward Rectification 

Inward rectification was originally termed anomalous rectification: indeed it is 

opposite to the normal outward rectification that is seen in delayed rectifier K 

channels (Nichols & Lopatin 1997). For K+ channels, inward rectification means 

that at any given driving force (voltage), the inward flow of K+ ions is greater than 

the outward flow for the opposite driving force (Nichols & Lopatin 1997). K+ ions 

could pass selectively in both direction in Kir channels, while cytoplasm Mg2+ and 

polyamines interact with pore channel, blocking K+ efflux at membrane potentials 

which are more positive than the EK (Bichet et al. 2003).  

The functional role of inward rectifier channels depends critically on their degree 

of rectification. The degree of rectification is correlated with the binding affinity of 

the channel for blocking cations. Among Kir family members, there are strong (Kir 2 

and Kir 3) and weak (Kir 1 and Kir 6) rectifiers (figure 1.9).  

Classical (Kir 2.X) strong inward 

rectification is present in skeletal 

muscle, in glial cells and neurons 

of central nervous system. It is 

essential for the stable resting 

potential and long plateau, which 

are features of the cardiac action 

potential. The high conductance at 

negative voltages allows cells to 

maintain a stable resting 

potential, while the greatly 

reduced conductance at positive 

potentials avoids short-circuiting 

the action potential. Others Kir channels display weak rectification and they allow 

substantial outward current to flow at positive potentials: this category involves Kir 

6.X family (also known as ATP-sensitive K+ (KATP) channels) which is present in all 

muscle cell types, in the brain, and in pancreatic cells where it is centrally involved 

in the regulation of insulin secretion. 

Figure 1.9 Inward rectification. Current traces and current–
voltage curves of a strong and a weak inward rectifier. The 
examples were obtained under a two-electrode voltage clamp of 
Xenopus oocytes expressing wild-type (left) Kir2.1 and 
E224G/E299S mutant (right) channels. The protocol consists of 
voltage steps of 10 mV increments from - 140 mV to 50 mV from 
a holding potential of - 50 mV.  
From Bichet D. et al., Nat.Rev.Neurosci 2003. 
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Between these extremes, you can find Kir channels that have intermediate 

rectification properties which populate in particularly the brain and many of these 

depend on ligand activation (Kir 3.X family), often through G proteins or other 

second messenger systems (Nichols & Lopatin 1997). 

Some specific terms are used to describe voltage-dependent transitions of a 

depolarization-activated channel: the term activation is used to describe the opening 

upon depolarization, inactivation to indicate the following closing of the channel at 

such voltage, deactivation to refer to the reversal process of activation at negative 

voltages, and recovery from inactivation to mean subsequent recovery of availability 

of channel at negative voltages. In Kir channels, the increase of current flow 

following hyperpolarisation is referred to as activation, while the reduction of 

channel current at positive potentials is generally described as rectification. 

 

Extrinsic Mg2+-induced gating 

Originally it is suggested that inward rectification might result from a positively 

charged substance blocking the channel in a voltage-dependent manner from the 

internal side of the membrane (Armstrong 1969). Indeed, it has been shown that 

the divalent magnesium (Mg2+) caused inward-rectification by blocking the channel 

pore in a voltage-dependent manner. Extensive work on native inwards rectifier 

channels from cardiomyocytes shows that in absence of the block by Mg2+ the 

channel conductance is ohmic: in I-V relations both inward and outward currents 

are measured and the fitted line crosses the voltage axis at around EK.  

On the other end internal Mg2+ on the cytoplasmic side at physiological 

concentrations blocks the outward current, and the channel remains close to value 

more positive than EK, without affecting the inward current (Matsuda et al. 1987, 

Matsuda & Stanfield 1989). Mg2+ ions prevent K+ efflux by moving into the inner 

mouth of the K+ channel, than they are driven intracellularly again by negative 

voltage by inward moving K+ (Matsuda 1991). 

Crystallographic and electrophysiological analyses show the existence of selective 

binding of cations at the cytoplasmic pore. This binding accelerates channel 

modification and lowers the probability the pore being open. Kir channel 

permeability is regulated by the membrane-embedded domain, which gates at the 

bundle crossing (formed by the inner helices near the cytoplasm) and at the 

selectivity filter (near the extracellular vestibule). The cytoplasmic domain plays a 

key role in channel gating too. Its conformational change alters the electrostatic 

field potential in the cytoplasmic pore (figure 1.10). In its closed state, the pore 

tends to bind Mg2+, and this prevents diffusion of K+ ions. When the channel is 
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open, expansion of the cytoplasmic pore lowers the electrostatic field potential and 

liberates bound Mg2+ to permit movement of K+  (Inanobe et al. 2011). 

 
Even in the absence of intracellular Mg2+ inward-rectification is present. This 

remaining voltage-dependent rectification was ascribed to a mechanism intrinsic to 

the channel protein and termed intrinsic gating to distinguish it from the extrinsic 

Mg2+-induced pore block (Oliver et al. 2000).  

 

Intrinsic gating 

Experiments (Lopatin et al. 1994) on Kir 2.3 channels (expressed in Xenopus 

oocytes) show the gradually disappearance of Kir 2.3 rectification after patch 

excision. Rectification is restored by placing excised membrane patches close to the 

surface of cells, confirming that it is caused by soluble intrinsic factors: polyamines.  

Polyamines (putrescine, cadaverine, spermidine and spermine) are organic 

compounds having two or more primary amino groups which can bind to DNA 

(Tabor & Tabor 1984). These molecules are essential for normal and neoplastic cell 

growth: if cellular polyamine synthesis is inhibited, cell growth is stopped or 

severely retarded. The provision of exogenous polyamines restores the growth of 

these cells. Most eukaryotic cells have a polyamine transporter system on their cell 

membrane that facilitates the internalization of exogenous polyamines. This system 

is highly active in rapidly proliferating cells and is the target of some 

chemotherapeutics currently under development (Wang et al. 2003). Although many 

other functions remain undefined, it is known they act as promoters of programmed 

ribosomal frameshift during translation (Rato et al. 2011), and they are important 

Figure 1.10 The cytoplasmic pore of Kir 3.2.  
Domain topology of Kir channels is represented. The 
indicated residues are involved in interactions 
between the cytoplasmic domains and cations.  
The ribbon representation shows the cytoplasmic 
domain of Kir 3.2, where the front subunit is omitted 
for clarity. Mg

2+
 ions are shown as green spheres.  

Below a schematic representation of conformational 
changes coupled to gating.  
From Inanobe A. et al., J. Biol. Chem. 2011 
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modulators of a variety of ion channels, including NMDA receptors and AMPA 

receptors.  

Spermine (SPM) and spermidine (SPD) are identified as the “rectifier substance” of 

Kir channels. These naturally intracellular polyamines are present at micromolar 

concentrations and block Kir current in a voltage-dependent manner steeper than 

Mg2+ (Oliver 2000).  

To block Kir channels, polyamines enter and occlude the central K+-selective pore 

of the channel. The affinity and voltage dependence of block varies with the identity 

of the blocking polyamine: spermine are the most potent and voltage-dependent 

blocker whereas shorter polyamines (e.g., spermidine, cadaverine, and putrescine) 

exhibit weaker affinity and voltage dependence (Nichols & Lopatin 1997, Lopatin et 

al. 1995, Guo & Lu 2003, Pearson & Nichols 1998). The steep voltage dependence of 

polyamine blockade arises in part from interactions of the blocking molecule with 

permeating ions. Movement of the blocker through the channel pore forces 

occupant permeating ions to traverse the membrane electric field (Pearson & 

Nichols 1998, Spassova & Lu 1998). 

Crystal structures have revealed that, the pores of inwardly rectifying potassium 

channels are considerably longer than an individual spermine molecule and are 

lined by multiple rings of negative charges (Kuo et al. 2003). 

Some studies have suggested a model of “shallow” spermine block of Kir channels: 

spermine binds between the “rectification 

controller” residue and several rings of 

negatively charged residues located in the 

cytoplasmic domain of the channel (figure 

1.11, Model A)(Guo & Lu 2003). Others have 

proposed a “deep” model of spermine block, 

suggesting that spermine binds between the 

“rectification controller” residues and the 

selectivity filter (figure 1.11, Model B)(Kurata 

et al. 2004, Kurata et al. 2006).  

More recent studies have shown that these 

shallow and deep sites are generally 

understood to be sequentially coupled: firstly, 

blockers interact with the cytoplasmic domain and subsequently they migrate 

towards the rectification controller site to generate steep voltage-dependence (Shin 

& Lu 2005). Results demonstrate polyamine block of Kir channels involves 

migration of blockers through the long Kir channel pore ( > 70 Ǻ). This way involves 

Figure 1.11 The polyamine binding site in the 
Kir channel pore. (A) Different model cartoons 
of shallow (Model A) versus deep spermine 
binding (Model B). Red bottom circles indicate 
rings of negative charges in the cytoplasmic 
domain, while the top circles show the inner 
cavity ones of strongly rectifying Kir channels. 
The black rectangle represents a spermine 
molecule in the Kir pore.  
From Kurata H.T. et al.,J. Gen. Physiol 2006. 



 

Introduction 24 

 

intermediate binding sites before the blocker reaches a stable binding site in the 

deep transmembrane region of the channel (Shin & Lu 2005, Kurata et al. 2006).  

Finally Kurata’s 2013 work solidifies  a  structural  interpretation  of  a  deep 

spermine  binding  site, thanks to inclusion of multiple cysteine substituted sites in 

Kir channels and progressively longer  blockers  tests (Kurata et al. 2013). 

 

1.4.4 Cytoplasmic Regulatory Factors 

Several cytoplasmic factors can modulate Kir channels activity: first of all 

phosphoinositides are critical determinants of ion channels activity. In particular 

phosphatidylinositol-4,5-bisphosphate (PI-4,5-P2 or PIP2) seems to be the most 

important in controlling all type of inward rectifier potassium channels (Hilgemann 

& Ball 1996, Fan & Makielski 1997), although trough different affinities and stereo-

specificities (Du et al. 2004, Rohacs et al. 2002).  

The direct interaction between negative phosphate head-groups of PIP2 and 

positively charged residues in N- and C- termini are essential for activation of 

channels (Fan & Makielski 1997, Shyng et al. 2000, Lopes et al. 2002). Each PIP2 

molecule consists of an inositol head group and fatty acid side chains. In contrast 

to naturally occurring PIP2 in the cell membrane, short chain water soluble diC4 

PIP2 does not activate Kir channels. This suggest that the long fatty acid chains are 

required to activate Kir channels by incorporating PIP2 into the membrane (Rohacs 

et al. 2002). The presence of channel-PIP2 interaction is particularly important for 

activation of Kir channels and it is considered as a final step in the transitions 

between the closed and the open state of Kir channels (Logothetis et al. 2007). 

Other modulators - such as phosphorylation, pH, heterotrimeric G proteins 

(specifically Gβγ subunit), and ATP - operate their regulatory role showing great 

dependence on strength of channel-PIP2 interaction. It seems that these modulators 

act by adjusting channel-PIP2 interaction (Du et al. 2004).  
 

Other negatively charged membrane lipids and derivates play a role in regulating 

the Kir channels. Long-chain acyl–coenzyme A (LC-CoA) esters and phosphatidic 

acid active KATP channels, whereas  LC-CoA  inhibits other Kir channels such as Kir 

1.1, Kir 2.1, Kir 3.4, and Kir 7.1.  

Biochemical studies show that PIP2 and LC-CoA bind competitively to the C-

terminal domains of Kir channels with similar affinity. Therefore the mechanism of 

LC-CoA inhibition of Kir channels - other than Kir 6.2 - is attributed to their 

competitive displacement of PIP2 (Logothetis et al. 2007).  
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Protein kinase phosphorylation regulates activity of various channel types 

including Kir channels. Protein kinase A has been shown to activate Kir 1.1 

channels in a PIP2-dependent manner.  

ATPγS is a useful tool to investigate the ATP-requiring steps, indeed it is an 

analog of ATP with a sulfur atom replacing one of the oxygen atoms in the γ 

phosphate area. Using this compound, it is possible to provide a substrate for PKA 

without activating phosphoinositide kinases and affecting PIP2 levels in membrane. 

To test the fully reactivation of Kir channels after their rundown in membrane 

depleted of PIP2, PIP2 and PKA + ATPγS are applicated separately. 10μM PIP2 is the 

required concentration to fully reactivate Kir 1.1, whereas PKA + ATPγS does not 

restore channel activity, but after a pretreatment with PKA + ATPγS the PIP2 

concentration required to reactivate the channel is reduced to 1μM. These data 

suggest that PKA phosphorylation alone is not sufficient for channel reactivation, 

but also that the sensivity of Kir channels to activation by PIP2 is increased in 

phosphorylated channels. The enhancement of PIP2–KIR1.1 interaction by PKA 

phosphorylation (Fig. 1.12) is likely due to an allosteric effect (Liou et al. 1999).  

It has also been reported that protein kinase C can regulate Kir 1.1 channels in a 

PIP2-dependent manner. Unlike PKA, PKC appears to inhibit Kir 1.1 channels by 

reducing membrane PIP2 levels (Zeng et al. 2003). 
 

Polyamine (PA) block has been most intensively studied in strong inward rectifier 

Kir 2.1 channels, and exhibits a complex dependence on both voltage and 

polyamine concentration (Lopatin et al. 1994, Lopatin et al. 1995, Guo & Lu 2003, 

Xie et al. 2002, Xie et al. 2003). Indeed, voltage-dependent block by intracellular 

polyamines and Mg2+ is the common mechanism underlying the inward rectification 

in all the Kir channels (Lopatin et al. 1994, Lopatin et al. 1995). It is known that 

positively charged polyamines can bind to the cytoplasmic region of Kir channels 

without occluding the pore. This kind of interaction facilitates entry of other 

polyamines into a deeper binding site located within the membrane pore (Xie et al. 

2002, Xie et al. 2003). Moreover, it was shown that long polyamines also strengthen 

the interaction of PIP2 with Kir 2.1 channels (figure 1.12), acting to maintain 

channel availability (Xie et al. 2005). 
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It has been suggested that PIP2 binding causes conformational changes at the 

bundle crossing formed by the M2 helix or the G-loop (girdle) near the junction 

between transmembrane pore and cytoplasmic pore domains. These changes in 

turn promote the open state. The channel closes when the interaction with PIP2 is 

lost. When long polyamines are present, they seems stabilize the bundle crossing in 

its open configuration, enhancing the interaction with PIP2 at the cytoplasmic side 

of the membrane. So long polyamines are capable of stabilizing the channel in an 

open configuration by strengthening channel–PIP2 binding affinity. Long polyamines 

serve a dual role as both blockers and co-activators (with PIP2) of Kir 2.1 channels 

(Xie et al. 2005).  
 

G protein βγ subunit plays a key role in Kir channels modulation. There is a whole 

Kir family (Kir 3.x) activated after the binding of Gβγ subunit (figure 1.12). They are 

named GIRK channels as G protein-coupled inward rectifier K+ channels (Walsh 

2011). Therefore G-proteins can modulate ion channels directly - through 

membrane delimited pathways - or indirectly via various second messenger 

signaling pathways. It is well accepted that a direct interaction between the N- and 

C-termini of Kir 3.x channels with Gβγ is necessary for G-protein modulation of the 

Figure 1.12 PIP2 activation and co-regulators of Kir channels. The scheme in the middle box shows transitions 
between open (O), close (C), and rundown (R) states in relation to the PIP2-channel interaction. Other 
regulators are shown above and below: in Kir 1.1, PKA phosphorylation of S219 and S313; in Kir 2.1, 
polyamines (PAs) interaction with D172; in Kir 3, Gβγ interaction with the N- and C-termini; in Kir 6.2, SUR 
interaction with N terminus. PIP2 affects  ATP sensitivity in the Kir 6.2 channel, and pH sensitivity in other 
numerous Kir channels. From Xie et al., Progress in Biophysics and Molecular Biology 2006. 
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channel. In addition, Kir 3.1 and Kir 3.4 subunits form an heterotetrameric 

channel, the KACh channel, which is activated after the direct binding of Gβγ to the 

N- and C-termini (Xie et al. 2007).  

Data suggest the necessary requirement of PIP2 for the Gβγ stimulation of the 

channel activity. Indeed, when Gβγ is directly applicate to the cytoplasmic side, it 

slows the inhibition effect of channel induced by the lack of available PIP2, and it 

increases the channel activation in presence of PIP2. When KACh channels run down 

completely, they cannot be activate by addition of Gβγ alone (Xie et al. 2007).  
 

Intracellular Na+ ions  

The most likely mechanism for Na+ activation of Kir 3 channels (3.2 and 3.4) is 

mediated by the interaction between Na+ ions and an aspartate residue within the  

C-termini region of channels. This interaction reduces the negative electrostatic 

potential in the vicinity of the PIP2 binding site and enhances the PIP2–channel 

interaction. Similar activation effect by Na+ is also suggested for  Kir 6.2 channel,  

and it implies a corresponding aspartate residue (Logothetis et al. 2007).  

Na+ activation of Kir 3 channels is a mechanism strictly linked to Gβγ subunit 

presence. It seems that there are two distinct gates at the channel pore, one 

sensitive to Gβγ/Na+ complex and another to PIP2. Data reveal that both PIP2 and 

Gβγ/Na+ are necessary to open the channel and to make it permeable to K+ ions 

(Logothetis et al. 2007). 
 

Sulfonylurea receptor and ATP sensitivity   

KATP channels are heteromultimers composed of the pore-forming Kir subunit Kir 

6.1/6.2 and the sulfonylurea receptor (SUR). SUR is a  member of the ATP-binding 

cassette (ABC) transporter family and has 17 transmembrane helices arranged in  

groups of 5, 6, and 6 which form the transmembrane domains 0, 1, and 2. SUR 

also has two  nucleotide binding domains (NBDs), which are large intracellular 

loops responsible for nucleotide binding and  hydrolysis (Xie et al. 2007).  

Due to the complexity of their organization, KATP channels are regulated by 

several compounds which interact with various subunits and binding sites - such 

as ligands, drug, K+ channel openers, nucleotides and sulfonylureas (Xie et al. 

2007). SUR subunits are the main responsible of KATP channel regulation. They 

mediate stimulation by K+ channel openers and block by sulfonylureas.   

Also the intracellular ATP modulates KATP channels activity, causing at high 

concentration the inhibition of the channel (Nichols & Lopatin 1997). In absence of 

PIP2, KATP channel is able to bind ATP, this cause the channel closure. On the other 

hand, the negatively charged head group of membrane PIP2 interacts with positive 
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charged residues in the cytoplasmic domain of the KATP channel: this interaction 

may distort the ATP-binding site and prevent ATP from binding and channel from 

closing (fig. 1.12). This regulatory system adjusts finely the in vivo response to 

various signaling pathways by modifying level of membrane PIP2. Data show that 

activation of phospholipase C (PLC), which breaks down PIP2 and decreases its 

intracellular concentration, increases the ATP mediated inhibition effect. 

Stimulation of PI-kinase, which increases PIP2 intracellular level, reduces KATP 

channel ATP sensivity (Xie et al. 2007). 
 

pH sensitivity 

Kir 1.1 and Kir 4.1 are the most sensible to pH changes than the others (2.3, 5.1, 

and 6.2). Intracellular acidification reduces Kir 1.1 probability to be in the open 

state. In Kir1.1 channels, this pH gating has been attributed to a discontinuous 

arginine-lysine-arginine triad in the N and C termini. It seems that the lysine in the 

N terminus plays the major role in pH regulation, and they are missing in pH-

insensitive Kir channels. In the Kir 4.1 channel, the equivalent lysine residue is 

critical for the pH sensitivity (Xie et al. 2007).  

PIP2 plays an important role in the pH regulation of Kir channels. It is suggested 

that PIP2 binding to Kir 1.1 alters the pKa for pH gating. Evidence indicates that low 

affinity PIP2 interaction is a prerequisite for pH sensitivity in some Kir channels and 

that the N-terminal PIP2 interaction site must be absent for pH gating in the 

physiological range. The PIP2 dependence for pH inhibition was also observed in Kir 

2.x (Du et al. 2004), heteromeric Kir 4.1–Kir 5.1 channels (Yang et al. 2000), and in 

Kir 6.2 channels (Schulze et al. 2003). Thus, channel–PIP2 interactions may act like 

a switch that controls pH-induced inhibition of Kir channels (Xie et al. 2007).  
 

Taken together, these findings on the regulation Kir 1.1 by PKA, Kir 2.1 by PA, 

Kir 3 by Gβγ, and Kir 6.2 by SUR suggests a mechanism, where various intracellular 

regulatory particles bind to, or interact with the N- and/or C-termini of these 

channels, causing a conformational change which modulates gating. These 

allosteric changes alter the structure or position of the PIP2 binding region and 

affect the channels interaction with PIP2.  
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Table 1 Inward rectifier family members.  *Although SUR subunits are not members of Kir family, they are shown in 
table, due to the essential role they play in KATP channel activity. 

1.5  Inward rectifier family members 

 Kir Family Alias Protein Gene 

Classical Kir Channels IRK 1 Kir 2.1 KCNJ 2 

 IRK 2 Kir 2.2 KCNJ 12 

 IRK 3 Kir 2.3 KCNJ 4 

 IRK 4 Kir 2.4 KCNJ 14 

G-protein gated Kir Channels GIRK 1 Kir 3.1 KCNJ 3 

 GIRK 2 Kir 3.2 KCNJ 6 

 GIRK 3 Kir 3.3 KCNJ 9 

 GIRK 4 Kir 3.4 KCNJ 5 

ATP-sensitive K+ channels KATP Kir 6.1 KCNJ 8 

 KATP Kir 6.2 KCNJ 11 

 SUR subunits* SUR 1 ABCC8 

 SUR subunits* SUR 2a ABCC9 

 SUR subunits* SUR 2b ABCC9 

K+-transport channels ROMK 1 Kir 1.1 KCNJ 1 

 KIR 1.2 Kir 4.1 KCNJ 10 

 KIR 1.3 Kir 4.2 KCNJ 15 

 KIR 1.4 Kir 7.1 KCNJ 13 

 BIR 9 Kir 5.1 KCNJ 16 
 

 

1.5.1  Classical Kir channels 

The classical K+ inward rectifier channels, also known as strongly rectifier, are 

formed by Kir 2 (Kir 2.1 – Kir 2.4) proteins, mainly as homotetramers but also they 

exist as heterotetramers. The differences within the Kir 2 family depend on both 

specific biophysical properties - such as single channel conductance, rectification, 

barium block - and regulatory pathway like phosphorylation and second messenger 

signalling (arachidonic acid or phosphatidyl inositol phosphates). Therefore, the 

properties of homo- and heteromeric Kir 2.x channels may strongly depend on the 

cellular coexpression of Kir 2 subunits (Pruss et al. 2005). 

 Dominant negative mutations in Kir 2.1 underlie Andersen–Tawil syndrome, an 

autosomal dominant desease characterized by periodic paralysis, cardiac 

ventricular arrhythmias related to prolonged QT interval and dysmorphic facial 

features. Thus, Kir 2.1 is an unlikely candidate for drug-development efforts (Bhave 

et al. 2010).  

Classical Kir channels are widely expressed in the working myocardium, but  

almost absent in nodal tissues. They sets the resting  membrane potential close to 

the potassium equilibrium potential, and contributes outward potassium current 
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during repolarisation (van der Heyden et al. 2013). The first three members of the 

Kir 2 family show expression in many different tissues and cell types, whereas Kir 

2.4 seems to be specific for neuronal cells (Pruss et al. 2005). 

Immunocytochemical localization and situ hybridization data show all four Kir 2 

subunits are expressed in the olfactory bulb. Kir 2.1 immunostaining is most 

prominent in the glomerular layer. Kir 2.2 immunoreactivity is also very prominent 

in the glomerular layer but only weakly detectable in the mitral cell layer. The 

external plexiform layer of olfactory bulb displays the highest Kir 2.3 signal, while 

the channel is virtually absent from the periglomerular cells (figure 1.13). Only a 

small subset of granular cells in the granule cell layer express the Kir 2.4 subunit, 

but many other olfactory bulb neurons display the Kir 2.4 channel with prominent 

immunostaining of mitral and tufted cells (Pruss et al. 2005). 

 

1.5.2   G - protein gated Kir channels (GIRK) 

Kir 3 channels are distinguished from other inward rectifiers because of their 

activity is critically regulated by G protein-coupled receptors (GPCRs). For this 

reason they are called GPCR-activated inward rectifier K+ channels (GIRK) (Bhave et 

al. 2010). GIRK channels responsible for G protein–coupled receptor-activated 

currents are important elements in controlling cellular excitability in heart, in 

central and peripheral nervous system. They play a key role controlling slow 

postsynaptic inhibitory  signaling and hormone secretion via pertussis toxin 

sensitive GPCRs in endocrine tissue (Sadja et al. 2003).  

These channels exhibit a low open-state probability under basal conditions, but 

are activated through a Gβγ-dependent pathway following GPCR stimulation (Nichols 

& Lopatin 1997). Upon GPCR stimulation, the α subunit of the G protein replaces 

its bound GDP with GTP. This causes the βγ subunits to dissociate from the α 

subunit; as a result Gβγ and Gα can act as two independent down-stream  signaling 

effectors. 

Figure 1.13 Kir2.x in the Olfactory Bulb. 
Focus on table 1 from Prüss H. et al., 
Brain Res.Mol.Brain Res., 2005.  
Data come from the use of polyclonal 
monospecific affinity purified antibodies 
against the less conserved carboxy-
terminal sequences of Kir 2.1, 2.2, 2.3, 
and 2.4. The detailed distribution of all 
members of the Kir 2 family in the rat 
central nervous system is given. 
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In the case of the GIRK channel, the Gβγ subunit direct binds and actives the 

channels. The Gβγ activation signal burns out when Gα-GTP is hydrolyzed into Gα-

GDP, which can reassemble G protein binding to Gβγ subunit. 

Regulators of G protein signaling (RGS) proteins, which accelerate the GTPase 

activity of the Gα subunit, are involved in important modulation of GIRK current. 

The expected decrease in current amplitude, after RGS induced GTPase activity, 

does not occur in experimental observations. For this reason a complex GPCR- G 

protein- RGS- GIRK interaction net has been proposed (fig 1.14)(Sadja et al. 2003). 

 

In mammals, the GIRK family is comprised of four members: Kir 3.1, 3.2, 3.3 and 

3.4. GIRK channels exist primarily as heterotetramers, with Kir 3.1/3.2 

predominating in the nervous system and Kir 3.1/3.4 in the heart (Bhave et al. 

2010). Expression of GIRK 2, GIRK 3, or GIRK 4 alone yield G protein–activated 

inwardly rectifying K+ conductances. On the other hand, when GIRK 1 subunit is 

expressed alone no channel activity can be detached, despite the protein 

expression. For this reason, it is suggested that GIRK 1 forms native channels 

together with the functional homologs GIRK2, GIRK3, and/or GIRK4, depending on 

which subunits are available in a given cell (Bhave et al. 2010). 

Kir 3.1/3.4 heteromeric channels are expressed primarily in atrial myocytes of 

the heart where they are functionally coupled to M2 muscarinic GPCRs. Release of 

acetylcholine onto M2 receptors, due to vagal nerve stimulation induces an outward 

K+ current through Kir 3.1/3.4 channels, which hyperpolarizes the cell membrane 

potential. The classical term for this acetylcholine-activated inward rectifier K+ 

current is IKACh (Bhave et al. 2010). The muscarinic-gated K+ (KAch) channel is so 

called because of the first identified agonist, although other several 

Figure 1.14  
Schematic representation GIRK channel 
signaling complex.  
GIRK channels gate after the activation of 
GPCRs. Pertussis toxin-sensitive G proteins 
(Gi/o) releases Gβγ dimers to directly gate the 
channel (blue). 
The phospholipid PIP2 is closely associated 
with the channel to stabilize its functional 
integrity. GPCRs that are associated with Gq 
proteins (green) can reduce channel activity 
through phospholipase C (PLC), which breaks 
down PIP2. On the other hand, GPCR linked to 
Gαs proteins (yellow) increase channel activity 
by protein kinase A (PKA). Both PLC and PKA 
may be soluble and thus do not have to 
directly associate with the GIRK channel 
activation complex. 
From Sadja et al., Neuron 2003. 
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neurotransmitters can active it, including somatostatin, GABA and adenosine 

(Bhave et al. 2010).  

Kir 3.1/3.2 heteromeric channels are broadly expressed in the nervous system, 

where they act as effectors for several neurotransmitter systems including GABA, 

opioid, glutamate, adenosine, and dopamine. GIRK activation leads to membrane 

hyperpolarization and weakening of postsynaptic excitation (Bhave et al. 2010). 

 

1.5.3  ATP-sensitive K+ channels   

Kir 6  (Kir 6.1 and Kir 6.2) constitute the pore-forming subunits of ATP-sensitive 

potassium (KATP) channel. It couples cellular metabolism to membrane excitability in 

several key cell types: in pancreatic β cells with insulin release control, in vascular 

smooth muscle whit blood flow control, in cardiac sarcolemma and in brain. 

KATP channels are extensively expressed in various regions of the mammalian 

brain, including the substantia nigra (SNr), neocortex, hippocampus, and 

hypothalamus. In the adult brain, Kir 6.2 subunits have been found in 

hippocampal, cortical, and hypothalamic neurons, as well as in the SNr pars 

reticulata. Immunohistochemical studies showed that Kir 6.2 subunits are mainly 

located in the somata and dendrites of the central neurons. 

 

 

  

Figure 1.15 Schematic illustration of KATP channels function in neurons and β cells.  
In neurons (right) KATP channels serve as metabolic sensors to couple electrical activity of neurons.  Under normal 
physiological conditions, KATP channels remain close, due to the high ATP/ADP ratio.  Reducing the ATP/ADP ratio opens 
the channel and allows K

+
 ions to exit the cells, thus hyperpolarizing the neurons. From Sun and Feng, Nature 2013. 

In pancreatic β cells (left) KATP channels contribute to insulin secretion. 
Under resting conditions, KATP channels are open, producing hyperpolarization of the β cell plasma membrane and so 
preventing insulin secretion. Glucose enters the β cell by way of the GLUT2 glucose transporter. Once inside the cell, 
glucose is metabolized, ATP level increases whereas Mg-ADP level decreases, causing KATP channels to close. This produces 
a membrane depolarization that activates voltage-gated Ca

2+
 channels, causing Ca

2+
 influx and a rise in cytosolic Ca

2+
 that 

triggers release of insulin granules. From Freeman et al.,2006.  
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The metabolic state of the cell can regulate membrane potential and excitability 

thanks to KATP channels, which are inhibited by ATP and stimulated by nucleotide 

diphosphates (figure 1.15). An increase in the ATP/ADP ratio closes KATP channels 

(leading to depolarization), whereas a decrease in the ATP/ADP ratio opens KATP 

channels (leading to hyperpolarization). 

The opening of KATP channels shifts the cell membrane potential more negatively 

(hyperpolarization) towards the EK, leading to suppression of neuronal activity and 

excitability. Thus, opening KATP channels under metabolic stress can protect 

neurons against neuronal injury during cerebral ischemia and stroke. 

The KATP channel contains four pore-lining subunits of the Kir 6 subfamily of 

inwardly rectifying potassium channels and four regulatory subunits the 

sulfonylurea receptor (SUR) proteins which confer channel sensitivity to numerous 

small-molecule inhibitors, such as adenosine triphosphate, and activators (Bhave et 

al. 2010). The SUR subunits are members of the ATP-binding cassette (ABC) protein 

superfamily and they are sensitive to the adenine nucleotides, Mg-ADP, so reducing 

the intracellular concentration of ATP or the ATP/ADP ratio gates the KATP channel. 

Differences in endogenous KATP channel properties and pharmacology account for 

differences in subunit composition: Kir 6.2 and SUR 1 in pancreatic β cells, Kir 6.2 

and SUR  2A in cardiac myocytes, Kir 6.2/Kir 6.1 and SUR 2B in vascular smooth 

muscles, or Kir 6.2 and SUR 1/2B in central neurons. SUR subunits are major 

pharmacological targets. KATP channels have distinctive pharmacology. 

Sulfonylureas are a type of potassium channel blocker that works by binding to 

SUR subunits. On the other hand KATP channels can be activated by a group of 

drugs called potassium channel openers. Some of these drugs are currently in use 

clinically for the treatment of a variety of disorders such as neonatal and adult-

onset diabetes, hyperinsulinism, hypertension, cardiac arrhythmia, angina, 

alopecia, cerebral ischemia and stroke (Bhave et al. 2010).  
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Figure 1.16 Major functions of ROMK in the kidney tubule.  
ROMK provides substrate K

+
 ions essential for transepithelial  NaCl reabsorption by NKCC2, in the thick ascending limb 

of Henle’s loop. NaCl reabsorption generates a hypertonic condition that promotes osmotic water reabsorption in the 
distal nephron. In the collecting duct, ROMK constitutes a key physiological pathway for K

+
 secretion into the urinary 

fltrate. BK: Big or large conductance calcium-activated K
+
 channel; ENaC: Epithelial Na

+
 channel; NKCC2: Na+-K+-2Cl co-

transporter intake. From Bhave et al., Future.Med.Chem. 2010. 

1.5.4  K+ - transport channels 

Kir 1.1  is the founding member of the inward rectifier family, and it is commonly 

referred to as the renal outer medullary K+ (ROMK) channel. Kir 1.1 cDNA is cloned 

from rat kidney outer medulla and is shown to encode a weakly rectifying K+ 

channel located in epithelial cells of the thick ascending limb and collecting duct. 

Kir 1.1 in renal tubule conveys  important function (figure 1.16): in thick ascending 

limb, luminal K+ recycling by Kir 1.1 catalyzes Na+ Cl- reabsorption through Na+ -K+ 

-2Cl− co-transporter (NKCC2), which in turn promotes osmotic water reabsorption 

in the distal nephron. In the connecting tubule and collecting duct, Kir 1.1 

constitutes a key physiological pathway for regulating K+ secretion to match dietary 

intake (Bhave et al. 2010). 

 

Kir 4 & Kir 5 

Simplicity and strong homology of the basic Kir channel subunit allow for both 

homomeric and heteromeric combinations. To form functional Kir channels, 

heteromerization generally occurs between members of the same subfamily (Hibino 

et al. 2010). An exception is the Kir 5 (Kir 5.1): it must co-assemble with Kir 4 to 

give a working ion channel. On the other hand, Kir 4 subunits (Kir 4.1 and 4.2) can 

form functional homomeric channels (Bhave et al. 2010).  
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Kir 4.x channels show an “intermediate” degree of inward rectification, different 

from the “strong” degree of Kir 2.x and Kir 3.x, and the “weak” one of Kir 1.1 and 

Kir 6.x. Moreover. Heteromeric assemblies confer distinct properties to particular 

channels, which can determine their location on a cell as well as extend the 

functional range of Kir channels in different cell types (Hibino et al. 2010). 

Kir 4 and Kir 5 family members are expressed primarily in central nervous 

system and retinal glial cells, inner ear cochlear cells and kidney distal tubular 

epithelial cells (Bhave et al. 2010).  In particular, Kir 4.1/5.1 channel is expressed 

in renal epithelial cells upon their basolateral membranes. The inwardly rectifying 

potassium channel Kir 4.1 is the principal K+ conductance of mammalian Müller 

cells and participates in the generation of field potentials and regulation of 

extracellular K+ in the retina (Hibino et al. 2010). 
 

 

Kir 7.1 is the newest member of the Kir family and is expressed primarily in 

brain, intestine, kidney and retina (Bhave et al. 2010).  

Its sequence is quite different from those of other types of Kir channel and shares 

only ∼38% homology with its closest relative, Kir 4.2. Its working properties are 

different: the single-channel conductance of Kir 7.1 is extremely small, the 

sensitivity of the channel to main blockers such as Ba2+ and Cs+ is very low, and 

inward rectification of Kir 7.1 is independent of [K+]o. Like other Kir channel 

subunits, Kir 7.1 is activated by PIP2 (Hibino et al. 2010).  

The physiological functions of Kir 7.1 are largely unknown, although their 

localization in diverse epithelial cells suggests a role in cellular ion transport 

mechanisms (Hibino et al. 2010). 

Kir 7 mutations are found in patients with Snowflake vitreoretinal degeneration, 

for this reason the physiological rule of  Kir 7 is being studied in K+ homeostasis of 

the retinal pigmented epithelium (RPE). In polarized epithelial cells of the intestine 

and nephron, Kir 7.1 expression appears to be limited to the basolateral membrane. 

Based on their subcellular co-localization in the gut, it has been postulated that Kir 

7.1 is functionally coupled to the Na+/K+-ATPase and Na+/K+/2Cl− co-transporter 

and thereby contributes to transepithelial Cl− secretion (Bhave et al. 2010).   
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2.1 Animals  

Experimental procedures were carried out so as to minimize animal suffering and 

the number of mice used. The procedures employed were in accordance with the 

Directive 86/609/EEC on the protection of animals used for experimental and other 

scientific purposes. 

All experiments were performed using the transgenic mice TH-GFP/21–31 line 

carrying the eGFP gene under the control of the TH promoter: the transgene 

construct contained the 9.0 kb 5’-flanking region of the rat tyrosine hydroxylase 

(TH) gene, the second intron of the rabbit β-globin gene, cDNA encoding GFP, and 

polyadenylation signals of the rabbit β-globin and simian virus 40 early genes 

(Sawamoto et al. 2001, Matsushita et al. 2002). Transgenic mice were identified, at 

postnatal day 3 or 4, looking at the fluorescence of the olfactory bulbs trans-

illuminated with a UV source (FBL/Basic-B & N-01; BLS, Hungary; FHS/F-01) and 

observed with an emission filter (FHS/EF-2G2; BLS, Budapest, Hungary) (fig.2.1). 

Transgenic lines were maintained as heterozygous by breeding with C57BL/6J 

inbred mice. 

2.2 Slice Preparation  

The assumption in studying neuronal behaviour in the brain slice is that, 

neurons in this in vitro preparation reflect electrophysiological and pharmacological 

responses similar to those in the intact nervous system (Suter et al. 1999). 

Once the animal is sacrificed, beheaded by laboratory guillotine, the brain is 

removed and submerged in ice-cold high sucrose carbogenated artificial 

cerebrospinal fluid (ACSF, see solutions). Keeping the tissue cold-throughout 

Figure 2.1 Transgenic mice identification. On the left UV source, and in the middle gloves with the emission filter used to 
detect GFP emission. On the right, picture of a P3 mouse: GFP+ olfactory bulbs are detect after directing UV source towards  
skull fontal bone. 
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sectioning minimizes damage from anoxia and improves the texture of the tissue for 

slicing. Brain is cut by hand caudally to the olfactory bulbs to maintain together the 

two ovoid structures. Tissue is embedded in agar (low gelling temperature agar, 

SIGMA-ALDRICH): the agar (4% dissolved in high sucrose ACSF) is cooled to below 

37 °C before including the tissue; agar inclusion gives to tissue the mechanical 

stability which is essential for making  thin slices. A thin film of  cyanoacrylate glue 

(3M™ Vetbond™ Tissue Adhesive) is used for the instant attachment of the agar 

cube to the stage of the slicer. The slicing chamber is filled with ice high sucrose 

ACSF while slicing. A  standard vibrating microslicer (Campden Instruments Ltd) is  

used  to  cut  slices  of 130 µm thickness. 

After sectioning, each slice is immediately placed in carbogenated high sucrose 

ACSF where it remains until use (figure 2.2). Slices are transferred into and out of 

the holding chamber using a cut and fire polished pasteur pipette. A holding 

chamber is placed in the middle of a 50 ml beaker. A bubbler inserted in the beaker 

oxygenates the slices. Once slice is placed in the recording chamber, it is held in 

place with a grid of parallel nylon threads. The U-shaped frame of the grid is made 

from 0.5 mm platinum wire flattened, and between the two arms of the grid 50 µm 

diameter nylon threads are tense. 

 

  

Figure 22 Olfactory bulb slice preparation.  After sectioning, slice 
were maintained in a carbogenated high sucrose ACSF where it 
remains until use (A). In B, and C the recording chamber is shown: you 
can see microscope water immersion objective, the patch clamp 
pipette and the grid used to fixed the slice. On the right, pictures 
show coronal slices of olfactory bulb in bright field and in 
epifluorescence. Periglomerular layer with TH-GFP+ cells can be noted 
on the border of the slice and inner the accessory olfactory bulb. 
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2.3 Recording Conditions 

One slice at a time is placed in the continuous perfusion recording chamber of 

microscope, where 2ml/min flux of saturated carbogenated solution perfuses slice. 

Continuously perfused chamber ensures constant oxygenation and heating and 

makes easily addition, and later washout of drugs. The recording chamber is fixed 

to the Olympus BX50WI microscope stage. The microscope focussing mechanism 

provides a moving objective and a fixed stage. A differential interference contrast 

optic technique (Nomarski optics) is used to enhance the contrast and to emphasize 

three-dimensional samples. Moreover, microscope was equipped of epifluorescence 

to detect GFP+ cells. 
 

Patch-clamp pipettes 

Patch pipettes were pulled from borosilicate glass with filament (Hilgenberg, 

Malsfeld, Germany): 1.5 mm outer diameter, 0.87 mm inner diameter and inner 

filament of 0.15 mm. Zeits-DMZ puller (Martinsried, Germany) produces two 5 cm 

long pipettes each pull, starting from 10 cm long glass capillary. These pipettes 

have a resistance of 4-5 MΩ when filled with standard intracellular solution (IC).  

Positive pressure through the pipette was applied while advancing to prevent 

contaminating the tip with debris. Contact with a membrane can be detected by a 

sudden increase in resistance. The release of positive pressure and subsequent 

application of gentle suction after a detected increase in resistance results in giga-

seal formation.  
 

Patch-clamp technique 

The patch-clamp technique, introduced by Erwin Neher and Bert Sakmann 

(Neher & Sakmann 1976) in the mid-1970s advanced the ability to study the 

membrane function of excitable cells, such as neurons. Ionic currents through 

single membrane channels were recorded after sealing a micropipette tip onto a 

clean membrane patch. 

 In the early 1980s, the technique evolved to allow recording of currents conveyed 

through membrane ionic channels in the whole cell: tight seals with high resistance 

in the GΩ range (giga-seal) were possible after drawing up a small patch of the 

membrane into the pipette tip by suction generated by application of gentle negative 

pressure (Hamill et al. 1981). Subsequent rupture of the patch with negative 

pressure or a voltage pulse allowed establishment of low-resistance electrical and 

physical access to the interior of the cell, thus allowing the recording of the entire 

population of ionic currents on the cellular membrane.  
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This constitutes the basis of the whole-cell patch-clamp technique. 

Application of the conventional whole-cell patch-clamp method leads to a 

replacement of the intracellular fluid with the intracellular pipet solution. The speed 

of this replacement depends on the cell volume and electrode tip diameter. Although 

this mechanism can be used advantageously in many experiments, in my work 

there are conditions where such a dialysis interferes with the current response to 

be tested. In particular, in order to prevent washing of intracellular molecules, such 

as cAMP, and to avoid the response disappearance within minutes, perforated 

patch-clamp was performed in all experiments reported below. This technique does 

not involve the breaking of the patch membrane, ensuring physiological 

intracellular environment maintenance (figure 2.3, left). Amphotericin B (polyene 

antibiotics, SIGMA-ALDRICH) was used in order to gain electrical access to the cell 

interior by forming channels in the membrane. The channels produced are 

permeable to monovalent cations and chlorine ions (Cl-) but do not allow passage of 

multivalent ions, such as Mg2+ or Ca2+. Because of its limited water solubility, 

amphotericin B stock solutions of 25 mg/ml are prepared in DMSO; it is prepared 

just before use due to its loss of activity on prolonged storage. Stock solution is 

added directly to the pipette filling (IC) solution to a final concentration of 200 

µg/ml, together with pluronic acid f-127 300 µg/ml. 

Because patch pipettes can be readily visualized, microscope provides a 40X 

water immersion objective; in this way specific cells are identified by GFP emission 

presence, morphology, anatomical location around glomeruli, and selected for 

electrophysiological recordings. 
 

 Current-clamp and voltage clamp configuration 

Changes in voltage underlie neuron excitability: action potentials, after 

potentials, and postsynaptic potentials can be determined thanks to the patch-

clamp technique. The membrane voltage changes associated with these events are 

studied with the current-clamp configuration, where a known current is applied and 

changes in membrane potential are measured. Also changes in waveform and 

frequency of action potentials can be studied in response to the input current.  

On the other hand, thanks to voltage-clamp recordings, examination of changes in 

voltage-dependent current is permitted. After the voltage step, the membrane 

potential changes rapidly and then there are no capacitative currents. Therefore, 

the remaining current is ionic and is proportional to the membrane conductance 

(figure 2.3, right). 
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2.4 Electrophysiological Experimental Set-up 

Electrophysiological set-up provides different instruments: 

- the optical microscope (Olympus BX50WI) with 5X and 40X moving objectives and 

a fixed stage; 

- the electromechanical micromanipulator (Patch Man, Eppendorf) with dynamic 

joystick control, which ensures extra fine movement being able to approach pipette 

tip at membrane cell; 

- the microelectrode amplifier (Axopatch™ 200B Capacitor Feedback Patch Clamp 

Amplifier, Axon Instrument, USA) optimizes membrane potential recordings. It 

allows correction for voltage errors due to pipette resistance, and it filters ultra-low 

noise of patch-clamp recordings. It permits some corrections such as pipette 

resistance compensation, cell capacitance compensation and in series resistance 

compensation. 

- The analog-to-digital- and digital-to-analog converter (Digidata 1320A, Axon 

Instruments, USA), designed for electrophysiology experiments, sends and receives 

signals from microelectrode amplifiers. 

- The Faraday cage blocks external static and non-static electric fields. It is formed 

by conducting material. All instruments used for electrophysiological recording were 

put inside the Faraday cage in order to prevent electrical noises. 

- The anti-vibration table, with pneumatic auto-levelling mounts, isolates set-up 

instruments from vibrations. 

- The temperature control system implies a Peltier element between the microscope 

stage and the recording chamber, and a temperature sensor put in the recording 

chamber. A  high sensible thermoresistance corrects temperature changes, 

maintaining  temperature in the recording chamber fixed to the set value.  

Figure 2.3 Patch-clamp technique. On the left, representation of perforated patch-clamp technique. On the right, Current 
response to a voltage-clamp pulse. Arrows indicate capacitative transients at the beginning and end of the pulse. Inward and 
outward currents follow the capacitative current. 
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2.5 Solutions 

Intracellular solution  

The standard pipette-filling intracellular (IC) solution used has the following 

composition (mM): 120 KCl, 10 NaCl, 2 MgCl2, 0.5 CaCl2, 5 EGTA (ethylene glycol 

tetraacetic acid), 10 HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid), 2 

Na-ATP, 10 glucose. The free calcium concentration with this internal solution was 

calculated to be 16 nM. The pH is set equal to value 7.2 with KOH, and the 

osmolarity is adjusted at 295 mOsm. 

 

Extracellular solution  

Five extracellular solutions were used in order to performed different 

experiments. Standard extracellular solution provides physiological potassium 

concentration, but in order to better characterize Kir current also experiments with 

high potassium concentration were performed. Moreover, when 

tetraethylammonium (TEA) is present in the solution, sodium chloride 

concentration is recalculated in order to maintain osmolarity at the physiological 

value. 

The solutions used had the following composition (mM):  

- Standard ACSF extracellular (EC) saline, namely also as EC0: 125 NaCl, 2.5 

KCl, 26 NaHCO3, 1.25 NaH2PO4, 2 CaCl2, 1 MgCl2, and 15 glucose;  

- High K+ extracellular saline solution, namely also as EC1: 95 NaCl, 32.5 KCl, 

26 NaHCO3, 1.25 NaH2PO4, 2 CaCl2, 1 MgCl2, and 15 glucose.  

- Standard K+ and TEA extracellular saline solution, namely also as EC2: 100 

NaCl, 2.5 KCl, 26 NaHCO3, 1.25 NaH2PO4, 2 CaCl2, 1 MgCl2, and 20 TEA, 

and 10 mM glucose. 

- High K+ and TEA extracellular saline solution, namely also as EC3: 70 NaCl, 

32.5 KCl, 26 NaHCO3, 1.25 NaH2PO4, 2 CaCl2, 1 MgCl2, and 20 TEA, and 10 

mM glucose. 

- Medium K+ and TEA extracellular saline solution, namely also as EC4: 90 

NaCl, 10 KCl, 26 NaHCO3, 1.25 NaH2PO4, 2 CaCl2, 1 MgCl2, and 20 TEA, and 

10 mM glucose. 

All extracellular saline solutions were continuously bubbled with 95% O2 and 5% 

CO2. Their composition were optimized to have pH set to the mammalian 

physiological value of 7.4, and solution osmolarity was adjusted at 305 mOsm with 

glucose. 
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The Kir current was recorded after blocking all other conductances active at the 

potentials of interest by adding at the external solution blockers (BL1) for the two 

main neurotransmitters in the OB, i.e. 1 mM kynurenic acid for glutamate and 10 

µM bicuculline for GABA, and blockers (BL2) for the main voltage-dependent 

channels, i.e. TEA 20 mM, TTX 0.6 µM, Cd2+ 100 µM and ivabradine 10 µM for 

potassium, sodium, calcium and h-channels, respectively. 

A particular extracellular solution was used during surgical procedures and slice 

preparation, which had the following composition:  

- High sucrose extracellular saline solution: 3 KCl, 21 NaHCO3, 1.25 NaH2PO4, 

1.6 CaCl2, 2 MgCl2, 10 glucose and 215 sucrose. 

2.6 Analysis of Current Recordings 

In order to investigate Kir current in DA-PG cells, and provide current recordings 

at different voltage inputs the main protocol used was a voltage clamp step protocol. 

This protocol provided a holding potential of - 40 mV followed by a series of 

hyperpolarization voltage pulses, ranging from - 60 mV to - 130 mV in increments 

of 10 mV. Thanks to this protocol differences in current amplitude between 

recordings in control condition and in presence of drugs were tested. To compare 

control and treated recordings obtained from the same cell, before and after adding 

drug of interest, values are considered at steady state (SS) current and obtained by 

mediating a tract of the recording trace in a define interval of time. Analysis were 

performed using the software Clampfit 10.3 (pCLAMP) at each tested membrane 

potential. 

To turn out rectification of Kir current in DA-PG cells, voltage clamp 220 mV/s 

ramp protocol has been used, starting from -180 mV to 40 mV, with a - 40 mV 

holding potential. In this way, I/V relation is obtained for a great range of potentials 

without stressing the cells. Currents were obtained by subtracting the perforated-

cell currents in presence of Ba2+ 2mM from recordings in absence of Ba2+, to isolate 

the barium sensitive component evoked by the ramp protocol and to exclude the 

leak component from analysis.  

In order to fit experimental data to a theoretical trend defined by mathematical 

function, different equations were used: such as logistic equation for barium 

sensitivity description, exponentially decay function for Ba2+ and Cs+ voltage 

dependent block, Bolzmann Curve for Kir conductance, and exponentially modified 

Gaussian function for prevailing membrane potential. All equations are reported 

and explained in text (Chapter 3, Results) when used. 
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In some cases, box and whiskers graphs were used to better resume data from 

samples: this kind of representation gives several information about measurements 

of central tendency and probably distribution indexes. In this work, box and 

whisker charts identify the mean values whit full colour squares and the median 

values whit lines crossing the box. Standard errors values define the box range and 

between whiskers 80% of data were reported. In the other cases, data are presented 

as means ± S.E.M (standard error of mean). 

Offline recording trace analysis was performed using version 10 of pClamp 

(Molecular Devices) and version 8 of Origin (OriginLab Corporation, Northampton, 

MA), and statistical analysis was performed using Prism 5 (GraphPad Software).  

 

2.7 Statistical Analysis  

D'Agostino-Pearson normality tests were used to determine if data sets are well-

modelled by a normal distribution and to measure the goodness of fit of a normal 

model to data. Once verified assumptions about normality and independent errors, 

statistical parametrical analysis was performed. 

Statistical significance of the results was assessed with Student’s t test for paired 

samples and with two-way repeated measure analysis of variance (ANOVA) as 

indicated. 

In order to compute post-tests following two-way ANOVA, multiple comparisons 

were performed using the Bonferroni method, as provided by Prism 5. The 

Bonferroni correction lowers the P value that one consider to be significant to 0.05 

divided by the number of comparisons. This correction ensures that the 5 % 

probability applies to the entire family of comparisons, and not separately to each 

individual comparison. 

 P value of < 0.05 was considered significant; in figures, 1 to 4 asterisks 

represent differences significant at the 0.05, 0.01, 0.001, 0.0001 level, respectively.  
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The data are based on recordings with patch-clamp technique in the perforated-

cell configuration obtained from 285 TH-GFP+ periglomerular neurons in the 

glomerular layer.  

Neurons are selected on the basis of their position around the glomeruli, 

dendritic arborization within the glomerular neuropil, membrane capacitance (8.54 

± 0.21 pF; n = 285) and input resistance (915.69 ± 31.31 MΩ; n = 248).  

Dopaminergic PG cells can be differentiated from external tufted cells not only 

because of their large difference in membrane capacitance and input resistance, but 

also for their different modality of firing, regular in DA-PG cells (Pignatelli et al. 

2005), in bursts in external tufted cells (Hayar et al. 2004).  

Short-axon cells have membrane capacitance and input resistance very similar to 

PG cells, but usually they can be recognized in slice for their position between 

glomeruli, their fusiform shape and dendrites extending to different glomeruli 

(Shipley & Ennis 1996). 

The transgenic mice used in these experiments express the green fluorescent 

protein under the tyrosine hydroxylase promoter (Sawamoto et al. 2001); it is a 

well-tested animal model for  the study of dopaminergic neurons (Saino-Saito et al. 

2004, Pignatelli et al. 2005, Pignatelli et al. 2009, Maher & Westbrook 2008) which 

provided a useful tool to examine dopaminergic cells  in the rodent central nervous 

system. 

3.1 Identification and Basic properties  

3.1.1 Hyperpolarizing Step: Two Current Components  

Hyperpolarizing steps evoke a measurable current in the experiments carried out 

using perforated-patch recordings, in slice at 34 °C. The used protocol, shown in 

figure 3.1, implies an holding potential of -40 mV and a series of hyperpolarizing 

steps ranging from -60 mV to -130 mV, with 10 mV increment to each step. 

As you can see in A, the current evoked has different components: the h-current, 

the Kir current and the leakage current. A recent study proves the presence of Ih in 

the dopaminergic periglomerular cells of the olfactory bulb (Pignatelli et al. 2013), 

arising in hyperpolarizing step protocols; the fraction of this current is suppressed 

by two organic compounds known as selective blockers of the h-current, ZD7288 30 

µM (BoSmith et al. 1993) and the bradycardic agent S-16257 (ivabradine, 10 µM) 

(Bucchi et al. 2002, Bucchi et al. 2006). In figure 2.1 B, ivabradine 10 µM is added 

in the extracellular solution in order to subtract Ih component. 
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After suppression of the h-current, the remaining current was identified as 

potassium inward rectifier (Kir) current, due to its time course, reversal potential 

and its sensitivity to Ba2+ (Hibino et al. 2010, Hibino et al. 2010) (figure 3.1 B).  

In presence of ivabradine 10 µM and Ba2+ 2mM, to suppress Ih and IKir respectively, 

only the leakage current is evoked by the used protocol (fig. 3.1C). 

 

Kir current presents different amplitudes and time courses, if measured at 

peak or at steady-state (Hibino et al. 2010); in D, two different voltage-current 

relationship report mean current amplitudes of 81 cell recordings, both at peak 

(blue dots) and at steady-state (green dots). 

In E the I/V relationship is obtained by 220 mV/s ramp protocol, which starts 

from an holding potential of -40 mV, than it forces the membrane from -180 mV to 

40 mV in a second. The recorded trace shows great inward current evoked by 

hyperpolarization, reversal potential indicated as red dot (near to the Nernstian EK 

Figure 3.1 General features. A) Representative currents obtained in response to hyperpolarizing voltage step protocol 
from -60 mV to -130 mV, at a holding potential of - 40 mV in 32.5 mM external K

+ 
solution, containing bicuculline (10 

µM), kynurenic acid (1 mM) for ligand-gated channels, TEA (20 mM), TTX (0.6 µM), Cd
2+

 (0.1 mM) for voltage-dependent 
channels, ivabradine (10 µM) in B and C in order to block Ih  current, and Ba

2+
 2mM in C to block Kir current. D) I-V 

relationship of peak (green dots) and steady-state (blue dots) current: mean current amplitude of 81 cell recordings are 
reported. Vertical error bars represent standard errors. E) Instantaneous I/V curve during application of a 220 mV/s 
ramp protocol (from -180 mV to 40mV) in a DA PG cell perfused with solution used in B, after subtraction of the ohmic 
leak. 
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Figure 3.2 Barium Sensitivity  
In A, recordings from the same cell are reported in different external barium concentration, as indicated by the legend 
of different color traces. The Kir current is evoked by a voltage step of - 120 mV with an holding potential of - 40 mV.   
In B, inhibition of Kir current in different external concentration of  Ba

2+
.  Data shown  represents the means (n = 5) of 

steady state current evoked at - 110 mV, in 2.5 mM [K
+
]out  at 32 °C.  

expected in this condition) and rectification, remarkable features of Kir current 

(Hibino et al. 2010). 

 

3.1.2 Barium Sensitivity 

Ba2+ cations are the most commonly used blockers to inhibit Kir channels, even if  

there are some differences between Kir subfamilies (Hibino et al. 2010). In order to 

verify barium sensitivity of TH-GFP+ Kir current, different concentrations of barium 

were added to the extracellular solution: some examples are reported in figure 3.2 

A. 

The Ba2+ dependent block of Kir current was assessed by measuring the decrease 

in steady-state current at − 120 mV. Each cell (n = 5) was exposed to bath solutions 

with external Ba2+ concentrations ranging from 1 µM to 10 mM; the inhibited 

current fraction is plotted against [Ba2+]o (figure 3.2 B). The mean data are fitted by 

the logistic equation: 

y	=	Imax	/	(1+	([Ba2+]o/Kd)p)	

where Imax is the maximum current block, Kd is the concentration at half-block, and 

p is the slope of the dose-response curve, or Hill coefficient. This gives a Kd of 0.21 ± 

0·10 mM and a p of 0.69 ± 0·229 (n = 5, −110 mV) for Ba2+ block of peak IKir. 
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3.1.3  Ba2+ and Cs+ Voltage Dependent Block 

Inorganic cations have been widely used to probe the permeation and gating 

mechanisms of potassium channels, indeed, it is well known that monovalent and 

divalent cations can bind Kir channels with high affinity (Hille 1992). 

Protons like Na+, Cs+, Rb+ and Ag+, and divalent cations, such as Ba2+, Mg2+, Ca2+ 

and Sr2+ block Kir channels  (Standen & Stanfield 1978, Ohmori 1978, Doring et al. 

1998, Dart et al. 1998). There are two different sites involved in the interaction of 

divalent cations with Kir channel: a shallow site that barely senses the membrane 

electric field, and a deeper one located approximately half-way within the 

membrane electrical field (Alagem et al. 2001).  

As expected for deep-site blockers, the Ba2+ and Cs+ block is highly voltage 

dependent: figure 3.3 shows the effect induced by the application of Ba2+ 1 mM in 

TH-GFP+ PG cells (A-B), and of Cs+ 1 mM (C-D).  

In E, the time required for the blocking reaction to reach steady state is calculated 

both in the case of barium and cesium by fitting the currents to an exponentially 

decaying function of the form: 

I	=	A	exp	(-t	⁄	τblock	)	+	C																																																									

where A is the current amplitude, t is the independent variable, τblock is the 

blocking time constant, and C is the steady-state current. The voltage dependence 

of the blocking time constants shows that Cs+ steady-state block is much faster 

than for Ba2+. These results are in line with those reported in literature (Shioya et 

al. 1993, Hagiwara et al. 1976, Oliver et al. 1998). 

 

Figure 3.3 Voltage dependent block.  
A - C: recordings obtained in response to steps 
from – 40 mV to - 120 mV in standard saline 
plus BL1 and BL2, and in the presence of 1 mM 
Ba

2+
 (B), or 1 mM Cs

+  
(D).   

E: voltage dependence of the blocking time 
constant; the data points were obtained in the 
presence of 1 mM Ba

2+
 (green) or Cs

+ 
(blue). 
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3.1.4 Potassium and Voltage Dependence of the IKIR 

Asymmetric channel pore block, which is caused by intracellular divalent cations 

and other molecules, is considered a hallmark of Kir current. Due to this feature Kir 

channels generate a large K+ conductance at potential negative to EK but less 

current flow is permitted at potential positive to EK (Hibino et al. 2010). In figure 3.4 

(A) are reported examples of ramp protocol recordings obtained in different external 

potassium concentration (each condition is represented by the mean of  8 ramp 

recordings). Currents were obtained by subtracting the perforated-cell currents in 

presence of Ba2+ 2mM from those in absence of Ba2+, all this was made with the 

purpose of isolating the barium sensitive component evoked by the ramp protocol 

and to exclude the leak component from analysis.  

 

Figure 3.4 K
+
 and Voltage dependence of barium sensitive current in DA PG cells 

A) I/V curves of perforated-cell currents induced in a DA - PG cell by 220 mV/S voltage ramps between - 180 mV and 40 
mV, starting from an holding potential of - 40 mV, at different external K

+ 
concentrations. Note that the inward currents 

increase in magnitude as well as slope conductances increase when the extracellular [K
+
] is raised.  

B) Reversal potentials of inwardly rectifying current calculated at different extracellular potassium concentration; box-
and-whisker charts identify the mean value with full color squares and the median value with lines crossing the box. 
Standard errors define the box range and whiskers represent the 10

th
 percentile and the 90

th
 percentile of data. Black 

arrow heads show expected reversal potential values which can be predicted by Nernst equation.  
C) In this graph, external potassium concentration is set in a logarithmic scale on x-axis; the three full color points 
represent reversal potentials obtained in  the three tested external potassium concentration, which are interpolated by 
black dashed line. Red line represents theoretical reversal potentials which are predicted by Nernst equation. Note the 
two lines are highly coincident. 
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The Kir conductance-voltage relationship shows an increase in its slope when 

the extracellular [K+] is increased (Hibino et al. 2010). This property is observed also 

in DA PG: note in figure 3.4 (A), the inward current increases in amplitude 

according to the extracellular potassium concentration. 

The current-voltage relationship of the Kir current depends on the driving force 

for K+ (as membrane potential minus equilibrium potential of K+) (Hibino et al. 

2010). In order to test K+ selectivity of the barium sensitive current in TH-GFP+ PG 

cells, the reversal potentials of the inwardly rectifying current were calculated at 

different extracellular potassium concentrations (data are shown in figure 3.4 B).  

When the [K+]o changed from 2.5 mM to 10 mM and to 32.5 mM, the reversal 

potentials respectively were -105.12 ± 3.67 mV (n = 15), -56.67 ± 9.78 mV (n = 9), 

and -36.78 mV ± 1.89 mV (n = 27), not significantly different from the expected 

values predicted by the following  Nernst equation: 

EK= −
����	(	[��]�/[��]�)

��
	

where EK is the theoretical membrane potential value expressed in volts, [K+]o is the 

extracellular concentration of potassium ion, [K+]i is the intracellular concentration 

of that ion, R is the ideal gas constant (joules per kelvin per mole), T is the 

temperature in kelvin, and F is Faraday's constant (coulombs per mole). 

The plot (fig. 3.4 C) of those values against the logarithmic [K+]o provides a linear 

relationship (r2 = 0.93), with a slope of -61.9 mV, that is close to the theoretical level 

of -61.12 mV predicted by the Nernst equation used for the experimental 

conditions. 

3.1.5 Kir Conductance  

A Boltzmann function well describes the voltage dependence of the conductance: 

at negative membrane potentials, conductance reaches the maximal values, while 

the slope conductance changes are maximal around EK, with gKir being 

approximately half maximal at EK; at potentials positive to EK conductance 

approaches to zero. In figure 3.5 conductance values are obtained using the 

equation: 

gKir	=	IKir	/	(VM	-	EK)	

 where	gKir is Kir conductance, IKir is the steady state current, VM is the membrane 

potential in mV, and EK is the Nernstian potassium equilibrium potential in mV.  

In addition to exhibiting a K+ selectivity, the voltage dependence of the Kir 

conductance is influenced by the potassium equilibrium potential. For this reason, 

the conductance (gKir) is examined at various external K+ concentrations, from 
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physiological (2.5 mM) to high (32.5 mM), with an intermediate point (10 mM) as 

shown in figure 3.5 by different colour curves. When the external potassium 

concentration increases, also the maximal conductance raises, while the voltage-

conductance relationship shifts to more depolarised potentials.  

Fitting the experimental points with the Boltzman equation we obtained  

inflection points equal to -106.67 ± 1.29 mV, -74.54 ± 0.98 mV and -46.07 ± 1.81 

mV, for 2.5 mM, 10 mM and 32.5 mM external potassium concentration 

respectively (fig. 3.5 A).  

In figure 3.5 B, conductance is plotted as a function of the driving force (test 

potential (VM) minus the measured EK). Adopting this representation, for each [K+]o  

the conductance curves become half maximal around zero value, reaching their 

minima and maxima at approximately the same voltage levels; that is to say, 

inflexion points of conductance curves are aligned at zero, i.e. at their own 

potassium equilibrium potentials, although there are differences in conductance 

magnitude. 

In conclusion, the external potassium concentration affects both amplitude 

and voltage-dependence of the Kir conductance in DA PG cells. This result is similar 

to that found for Kir current in starfish egg cells (Hagiwara et al. 1976, Hagiwara & 

Jaffe 1979), frog skeletal muscle (Hestrin 1981, Leech & Stanfield 1981) and cat 

ventricular myocytes (Harvey & Ten Eick 1988). 

Figure 3.5  K
+
- and voltage-dependence of Kir chord conductance (gKir) 

The chord conductance is calculated using the equation gKir = IKir / (Vm - EK), where IKir is the steady state current. 
A: gKir plotted as a function of voltage-clamp tested potentials. Three are the studied conditions: 2.5, 10, and 32.5 mM 
[K

+
]o. B: Data in A are plotted again as a function of the driving force. Data points are fitted by Boltzmann curve using a 

least-squares method. 
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Since external potassium concentration influences the Kir current amplitude, 

modulation experiments were performed in a high (32.5 mM) external potassium 

concentration to obtain larger currents for a better characterization. Although this 

choice allows a more precise measure of the current amplitudes, it should be kept 

in mind that this manipulation causes a depolarizing shift of the reversal potential, 

as seen above.  

 

3.1.6 Effect of IKIR on Membrane Potential and Input Resistance 

Barium sensitive inward current, in DA PG cells of olfactory bulb, presents 

properties that are coherent with a Kir current, such as potassium and voltage 

dependence of Kir current. 

Once verified Kir current presence in TH-GFP+ periglomerular interneurons, how 

Kir current influences cell electrophysiological features has been studied. 

It is of particular interest to understand how input resistance and resting potential 

could change after blocking Kir current with Ba2+. Indeed, if Kir current is active at 

rest, modifications on Kir current conductances have great consequences on 

cellular electrophysiological profile. 

 A first verification is obtained by measuring the membrane impedance in 

response to hyperpolarizing current pulses in presence and absence of 0.3 and 2 

mM Ba2+. In these conditions, an increase in the membrane impedance  and a  large 

depolarization can be noticed in both cases.  

Input Resistence 

Current-clamp recordings are shown in figure 3.6: extracellular standard solution 

in presence of BL1 and BL2 is added of Ba2+ 0.3 mM (A), and Ba2+ 2 mM (B and D). 

In these examples, hyperpolarizing current is applied in order to cause a step of at 

least 40 mV at regular time intervals of 10 seconds. For clarity, in A and B are 

shown only the control trace and the trace of maximum effect; in both cases the 

depolarization and also the rise in input resistance can be observed.  

In figure 3.6 D, the experiment can be followed in time using all traces recorded 

each 10 seconds; input resistant values of D, calculated at the end of the step using 

Ohm law, are reported in E. This graph shows increase in input resistance caused 

by barium 2 mM application, starting from 120 s as indicated in figure by dot 

vertical line. 

 Membrane impedance changes significantly in Ba2+ 0.3 mM from 1079.65 ± 

163.93 MΩ to 1260.86 ± 186.45 MΩ  (n = 12, p = 0.00033, Paired Student t test), 
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and in Ba2+ 2 mM from 1061.55 ± 202.00 MΩ to 1621.23 ± 284.24  MΩ (n = 10, p = 

0.0018, Paired Student t test) as shown in figure 3.6 C.  

 

Membrane potential 

As seen before, Ba2+ induces important membrane depolarization correlating 

barium application with a Kir conductance closure. DA PG cells have spontaneous 

activity in a relatively strict range of membrane potentials: in a firing TH-GFP+ cell, 

2 mM Ba2+ application induces a rapid and strong depolarization. In presence of 

depolarization, firing frequency increases before the complete disappearance of 

autorhythmic activity. Figure 3.7 A shows representative experiment in a cell.  

Kir current is not essential to the pacemaker process, as the injection of 

hyperpolarizing current restores completely firing activity: fig. 3.7 A shows the 

injection of -40 pA at the time marked with a downward arrow. 

Figure 3.6 Effect of different concentrations of Ba
2+

 on input resistance. A, B: Sample tracings showing the response to 
the injection of - 40 pA in current-clamp conditions at different [Ba

2+
]o. C: input resistance increase of 17.8 ± 3.2 %, n = 

12, and 58.7 ± 14.2 %, n = 10 in barium 0.3, and 2 mM respect to controls. The data are summarized in a box structure. 
The square in the center of the box represents the mean value of the condition analyzed, the line that crosses the box 
indicates the median value of the data, the range of the box represents error standard and the whiskers define the 10 - 
90% range of data sample. D: Family of tracings obtained in response to hyperpolarizing current pulses; green and blue 
traces are taken at the beginning and at the end of a 5’ test. E: Time course of the variation of input resistance for the 
experiment shown in D. Green and blue dots mark the resistance of the traces with the same color in panel D. 
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Graphs B and D represent firing frequency and prevailing membrane potential of 

cell in A followed in time: the vertical dashed line indicates Ba2+ 2mM application, 

while yellow dots identify a condition similar to control obtained after injection of 

hyperpolarizing current. 

To calculate the membrane potential in a cell characterized by autorhythmicity, 

we use the method illustrated in 3.7 C: frequency count histograms of the 

membrane potential were realized at 10 s intervals, and the distributions are fitted 

by an exponentially modified Gaussian function with the form: 
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and y0 is the offset, A is the amplitude, xc is the center of the peak (i.e. the 

prevailing potential, red dot in figure 3.7 C), w is the width of the peak and t0 is the 

modification factor (skewness, t0 > 0). Using this method, the variation of the 

prevailing membrane potential for two different external Ba2+ concentrations (0.3 

and 2 mM) is measured. 

In Ba2+ 0.3 mM the membrane potential increases from -59.06 ± 4.09 mV to -45.94 

± 3.95 mV (n = 14, p = 0.000025); and in Ba2+ 2 mM the mean value changes from -

52.32 ± 3.73 mV  to -16.18 ± 4.85 mV (n = 7 p = 0.0006 using Paired Student t 

test). Data are shown in figure 3.7 E. 
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Figure 3.7 Effect of Ba
2+

 on membrane potential. 
A: Perforated patch recording in standard saline (EC1 solution). The blue bar indicates the application of 2 mM Ba

2+
 into 

the bath; the downward arrow indicates the injection of a 40 pA hyperpolarizing current. B: Frequency analysis of action 
potentials (spike per second) for the experiment shown in panel A. The dashed line marks the time at which Ba

2+
 has 

been applied, while the yellow point (after the x-axis interruption) indicates the activity measured after the injection of a 
hyperpolarizing current. It corresponds to the time marked by a yellow point in panel A. 
C: Illustration of the method used for the calculation of the prevailing membrane potential. The frequency count 
histogram of the membrane potential is built of 10 s intervals, whose distribution is fitted by an exponentially modified 
Gaussian function. The point marked by the red dot indicates the prevailing membrane potential (xc). 
D: Depolarization showed in panel A is followed in time using the analysis of the prevailing membrane potential.  
E: Depolarization induced by two different concentrations of [Ba

2+
]o: 13. 33 ± 2.21 mV in barium 300 µM ( n = 7), and 

38.12 ± 6.01 mV in barium 2 mM (n = 14). 
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3.1.7 Effect of Temperature 

Both IKir amplitude and kinetics are affected by temperature at which 

electrophysiological recordings are made; for this reason, temperature is one of the 

limiting factors in comparing results. Therefore, in this study most of the recordings 

reported were made at controlled temperature conditions. Figure 3.8 A shows 

recording traces from the same TH-GFP+ cell at 27 °C and 37 °C; in B current-

voltage relationships, obtained from 8 cells, are presented for the two conditions.  

Temperature influences Kir current directly: current amplitude raises 1.22 ± 

0.0082 times with a 10°C temperature increase (Q10, in C).  

The Q10 coefficient measures the rate of change of a biological process as a 

consequence of increasing the temperature by 10 °C, and it is a useful way to 

express the temperature dependence of a physiological process. In our work, Q10 

coefficient gives a measure of the temperature sensitivity of Kir current amplitude 

in DA PG neurons and it is measured using the following equation:  

��� = 	 �
��

��
�

�� (���	��)⁄

										 

where R is the current amplitude, R1 current at 27 °C and R2 current at 37 °C, T is 

the temperature in Celsius degrees (T1 =27 °C and T2 =37 °C). 

Our results show that the effect of temperature on current is substantially stable 

at different voltages. 

Figure 3.8 Effect of temperature on IKir. A: Current elicited by hyperpolarizing pulses from - 60 mV negative to - 130 
mV starting from an holding potential of - 40 mV, recorded at 27 

o
C and 37 

o
C from DA periglomerular cell in slice. B: I-

V curves of IKir measured at 27 
o
C and 37 

o
C. C: Q10 at the different voltages calculated at steady state current (ss). The 

mean value is 1.22 ± 0.0082. Data in B and C represent results obtained from 8 cells. 
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3.2 Pharmacology 

3.2.1 Blockers 

The most commonly blockers of Kir channels are Ba2+ and Cs+ (Hibino et al. 

2010). In literature (Hagiwara et al. 1976, Orkand et al. 1966), 

Tetraethylammonium (TEA) and 4-aminopyridine (4-AP) are reported to have little 

effects on Kir channels, although they are main inhibitors of other potassium 

channels, such as Kv channels.  

On the bright side, Ba2+ and Cs+ block the majority of Kir channels: they 

suppress all Kir conductance without distinguishing between the several Kir 

subfamilies, for this reason they are often used to examine physiological roles of Kir 

channels in native cells and tissues. On the other hand, applications of Ba2+ and 

Cs+ suppress Kir currents in a voltage-dependent manner, to be precise they inhibit 

Kir channels more strongly when cell membrane is hyperpolarized. In addition, it is 

reported that the blocking effect of Cs+ and Ba2+ decreases substantially as [K+]o 

increases (Hagiwara et al. 1976, Hagiwara et al. 1978). Moreover, as seen before the 

time required to reach the state block is different for the two blockers, in particular 

it is faster for Cs+ than Ba2+. 

 In spite of a limited number of broad blockers of Kir channels, pharmacological 

and physiological assays have revealed other compounds that can affect particular 

types of Kir channels.  

 

Tertiapin 

Tertiapin is a toxic 21-amino acid peptide isolated from the honey bee (Apis 

mellifera). It binds specifically to different subunits of the inward rectifier potassium 

channel. Tertiapin acts as an inhibitor, it induces a dose-dependent block of the 

potassium current of two members of the inward-rectifier K+ channel family, namely 

GIRK1 (Kir 3.1), GIRK4 (Kir 3.4) and ROMK1 (Kir 1.1), although other closely 

related channel is insensitive to Tertiapin, such as IRK1 (Kir 2.1). The structure 

shows that tertiapin is a highly compact molecule with a high density of positively 

charged residues (Jin & Lu 1998). 

Both channel families have an important role in physiological activity: GIRK 1 

and GIRK 4 are subunits of the muscarinic potassium channels (KACh), they are 

important in the slowing down of the heart rate in response to parasympathetic 

stimulation via acetylcholine. An inhibition by tertiapin will result in a shorter 

cardiac action potential with loss of parasympathetic control, resulting in a faster 
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heart rate (Bhave et al. 2010). Moreover their presence is also reported in SNC, and 

in particular they are present in the periglomerular layer of the MOB (Karschin et 

al. 1996), for this reason it is of some interest to test the efficacy of the drug in our 

cells. 

ROMK is found in the kidneys where it contributes to K+ recycling. ROMK 

inhibition results in loss of potassium, as observed in Bartter syndrome caused by 

mutations in the ROMK channels (Asteria 1997). Due to their exclusive renal outer 

medullary potassium channels (Bhave et al. 2010), they are not issue of this study.  

 

 

 

Figure 3.9 Organic blockers of the Kir channels. 
A, B: Tertiapin-Q (1 µM) application in EC0. This GIRK channel blocker does not change the amplitude of 
hyperpolarization-activated (HPA) current when applied alone (A; n = 13). On the other hand, tertiapin completely 
suppresses the GIRK current fraction, which is activated by a cholinergic muscarinic agonist (oxotremorine 10 µM) (B; 
n = 11).  
C: Quinacrine (100 µM), a blocker of Kir 2.x channels, suppresses a 40.2 % of HPA current at - 100 mV (n = 15).   
D: With the KIR 2.x channels blocked by quinacrine, a muscarinic cholinergic agonist (oxotremorine 10 µM) can 
activate a GIRK current (yellow dots), and this fraction can be completely suppressed by tertiapin (green dots; n = 7). 
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When oxidation-resistant tertiapin-Q is added to extracellular bath in perforated-

patch recordings of DA PG cells, no significant changes in Kir current amplitude 

occur. Tertiapin-Q is ineffective on TH-GFP+ cell Kir current when tested alone at 

concentrations ranging from 100 nM to 3 µM (fig. 3.9 A).  

Voltage-clamp experiments, reported in figure 3.9, are obtained using a series of  

hyperpolarization pulses ranging from -60 mV to -130 mV in increments of 10 mV, 

and starting from an holding potential of -40 mV in EC2 external solution, at 34 °C. 

Statistical analysis was performed with a two-way repeated measure ANOVA, and 

Bonferroni test was used as post-hoc test.  

In rest condition, GIRK channels do not allow K+ ions movement, indeed their 

activation depends on the binding of the G protein βγ subunit. When G protein-

coupled receptor ligands are present, dissociation of G protein occur, and GIRK 

channels are active (Walsh 2011). For this reason, the effect of tertiapin is tested 

also after activation of GIRK dependent current with oxotremorine (Oxo). This 

metabotropic cholinergic receptor activator  is used to evoke KAch current (see also 

below). In presence of Oxo 10 µM, 1 µM tertiapin completely abolished the current 

increment promoted by the muscarinic receptor activation (fig. 3.9 B). These data 

suggest that functional GIRK channels are actually present in DA-PG cells. 

Moreover, in order to confirm that the inhibitor effect of tertiapin concerns the 

GIRK current fraction, the same experiment shown in B was reproduced in 

presence of quinacrine (100 µM) (fig. 3.9 D). These results reinforced the idea that 

current amplitude increase depends on GIRK channels activation. 

Quinacrine 

Quinacrine inhibits Kir channels, differentially Kir 6.2 ∼	Kir 2.3 > Kir 2.1 (Lopez-

Izquierdo et al. 2011). Quinacrine, a cationic amphiphilic molecule, is originally 

developed as anti-malarial agent, but it has also effect on different ionic currents, 

like the IA (Kehl 1991), the L-type Ca2+ current (Nagano et al. 1996), besides inward 

rectifier K+ current (Evans & Surprenant 1993). 

Quinacrine 100 µM suppresses a significant fraction of the hyperpolarization-

activated current in DA PG cells (fig. 3.9 C, D).  

As seen above, barium is a potent blocker of Kir current, in current clamp 

recordings it causes a depolarization of membrane potential until the complete 

disappearance of the spontaneous firing activity, which can be restored by applying 

a hyperpolarization current. The reappearance of the activity in the presence of a 

Kir blocker would suggest the absence of any role of the current in the pacemaker 

process, however the barium block is voltage-dependent. This result leaves open 
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question of whether the restore of spontaneous activity upon repolarization is due 

to barium block removal or not.  

We looked for an answer to this question using quinacrine, a drug exerting a non 

voltage-dependent block of the Kir current. 

Quinacrine  100 µM was applied in current-clamp recordings to verify its 

capacity to reproduce the barium effect on membrane potential, results are shown 

in figure 3.10. Like barium, quinacrine blocks the Kir current causing a large 

membrane depolarization leading also to a complete stop of firing activity. At the 

end of trace shown in A, the membrane was reported to a resting potential 

comparable to control conditions by injecting hyperpolarizing current. The activity 

was resumed: this result confirms that the Kir current plays an important role in 

maintaining membrane potential of DA PG cells, but is not an essential component 

of the pacemaker mechanism in these cells. 

  

Figure 3.10 Quinacrine effect on membrane potential. In A, current-clamp recording in EC1 external solution in 
presence of quinacrine 100 µM. In B and C are reported changes in prevailing membrane potential and spike frequency 
respectively, of the cell recorded in A followed in time. Points represent mean values each 10 seconds, and bars 
represent standard errors.  Quinacrine is applied after 60 second, as reported by red vertical dashed bars. 
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3.3 DA PG cell Kir current modulation 

Once the presence of an inwardly rectifying K+ current was verified in DA PG 

cells, both through the identification of the main electrophysiological properties of 

the Da PG cell barium sensitive current and using specific blockers, it was of some 

interest the study of current modulation. Cyclic AMP influence and the effects of 

different neurotransmitters or receptor agonists are studied on DA PG cell Kir 

current.  

In the following experiments, Kir current is evoked by hyperpolarizing voltage 

step protocol, and it is recorded with perforated patch-clamp technique, in 32 mM 

external K+ solution at controlled temperature conditions. The Kir current was 

recorded after blocking all the other conductances active at the potentials of 

interest by adding at the external solution blockers for the two main 

neurotransmitters in the OB, i.e. 1 mM kynurenic acid for glutamate and 10 µM 

bicuculline for GABA, and blockers for the main voltage-dependent channels, i.e. 

TEA 20 mM, TTX 0.6 µM, Cd2+ 100 µM and ivabradine 10 µM for potassium, 

sodium, calcium and h-channels, respectively. 

 The voltage clamp protocol provided a holding potential of -40 mV, followed 

by a series of hyperpolarization voltage pulses ranging from -60 mV to -130 mV in  

increments of 10 mV. Statistical analysis was performed with a two way repeated 

measure ANOVA, and Bonferroni test was used as post-hoc test. 

 

3.3.1 Kir modulation by cAMP 

The inward rectifier potassium current is modulated by cAMP, which can either 

inhibit (Xu et al. 2002, Podda et al. 2010)  or enhance the current (Bolton & Butt 

2006, Park et al. 2005).  

A first series of experiments  were performed in presence of 10 μM forskolin and 

0.1 mM IBMX, in order to test amplitude variation of DA PG cell current induced by 

change in intracellular concentration of cAMP. Forskolin is a classical activator of 

adenylyl cyclase (Seamon & Daly 1981). Moreover, IBMX (3-isobutyl-1-

methylxanthine) is added in the external solution in order to inhibit 

phosphodiesterase (Beavo et al. 1970). In this way, intracellular level of cAMP is 

increased and its half-life time is made longer. 

  High level of cAMP induces a decrease of the Kir current (fig. 3.11): the 

stimulation of the cAMP synthesis reduces the IKir amplitude of 12.3 ± 0.22 % in the 

range from -80 to -130 mV (n=12). 
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These data have been further enriched by reproducing the experiment using 10 

µM 8Br-cAMP. 8-Bromoadenosine 3',5'-cyclic monophosphate is a brominated 

derivative of cyclic adenosine monophosphate, which is a useful tool to investigate 

cAMP dependent effect. It is long-acting because it is resistant to degradation by 

cyclic AMP phosphodiesterase. The effect was more marked, with a 36.9 ± 0.15 % 

reduction of current amplitude (n=6). In both cases, the difference between control 

and test was significant in the range of potentials more negative than -80 mV. 

 

3.3.2 Kir modulation by Neurotransmitters 

Dopaminergic cells in the olfactory bulb are the target of numerous afferents 

releasing a variety of neurotransmitters, many of which are known to affect the 

cAMP pathway, and therefore potentially capable of a modulation of the Kir current. 

Among the others, there are serotoninergic afferents from the ventral and dorsal 

raphe nuclei (Araneda et al. 1980, Araneda et al. 1980, Halász et al. 1977), 

noradrenergic input from the locus cœruleus (Halász & Shepherd 1983, Macrides et 

al. 1981, McLean et al. 1989), cholinergic inputs from the nucleus of the horizontal 

limb of the diagonal band (Carson 1984, Carson 1984, Zaborszky et al. 1986, 

Figure 3.11 cAMP effect on DA PG cell Kir current amplitude. A and B: voltage-clamp perforated-patch recordings  in 
control and in the presence of forskolin and IBMX from the same cell.  
C: comparison of the I/V curves recorded in control (blue dots) and in the presence of 10 µM forskolin plus 100 µM 
IBMX (green dots); n=12.  
D and E: voltage-clamp perforated-patch recordings  in control and in the presence of 8Br-cAMP from the same cell. 
F: comparison of the I/V curves recorded in control (blue dots) and in the presence of 10 µM 8Br-cAMP (green dots); 
n=6. All recordings were realized in EC2 with the addition of BL1 and BL2, at 34 °C. 
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Carson 1984, Matsutani & Yamamoto 2008) , and histaminergic inputs from 

hypothalamus (Panula et al. 1989).  

Furthermore, bulbar dopaminergic cells have been shown to express D2 

receptors (Gutierrez-Mecinas et al. 2005), which could be activated by the dopamine 

released by the cell itself (Maher & Westbrook 2008).  

We tested the effects on the Kir current amplitude of 5-10 min applications of 5-

HT (50 µM), dopamine (100 µM, + 1 mM ascorbic acid), quinpirole (D2 agonist, 30 

µM), noradrenaline (100 µM, + 1 mM ascorbic acid), phenylephrine (α1 agonist, 10 

µM), clonidine (α2 agonist, 10 µM), histamine (10 µM), oxotremorine (muscarinic 

agonist, 10 µM), GABA (100 µM), muscimol (GABAA 50 µM) and baclofen (GABAB 

agonist, 30 µM), with protocol and in the conditions explained above. Results are 

shown in figure 3.12. 

 
Delta (pA/pF) S.E.  p-value % variation (pA/pF) S.E. N 

5HT 3.40 1.09 P < 0.01 - 15.83 3.51 18.00 

Histamine 4.89 1.71 P < 0.05 - 24.22 6.90 8.00 

DA - 2.96 0.66 P < 0.01 22.08 7.46 5.00 

DA (Ago D1) 0.15 0.46 P > 0.05 0.64 4.89 9.00 

DA (Ago D2) - 2.82 1.00 P < 0.05 19.32 7.51 9.00 

NA 4.30 0.81 P < 0.001 - 23.72 3.77 10.00 

Phenylephrine 3.11 2.62 P < 0.05 - 22.71 16.83 8.00 

Clonidine 1.03 1.07 P > 0.05 - 7.79 10.91 4.00 

Oxotremorine - 1.55 0.48 P < 0.01 17.80 5.95 13.00 

Baclofen 0.99 1.40 P > 0.05 - 3.85 3.87 11.00 

 

 

 

Noradrenaline  

Noradranaline (NA) is a catecholamine and it can acts both as hormone and  

neurotransmitter.  

Both α and β NA receptors are present in the olfactory bulb (Woo and Leon 1995, 

Shipley and Ennis 1996). It is reported that NA-containing fibers arise from locus 

coeruleus and terminate on granule cells in the internal plexiform layer (Macrides et 

al. 1981, Halász 1990). Moreover, it is note that α1 activated NA receptors inhibit 

rectifying and non-rectifying leak potassium currents (Nai et al. 2010, Pan et al. 

1994).  

In a first series of experiments (n=10), NA (100 µM) has been tested on DA-PG 

cells in slice at 31 °C. NA leads to a 24.6 % reduction of the Kir amplitude: the 

current evoked at -100 mV dropped from -17.51 ± 1.62 pA/pF in control conditions 

to -13.20 ± 1.23 pA/pF with NA. Data are shown in figure 3.12 A. 

Table 2 NT and agonist effects on DA PG cell Kir current. Data resume the analysis performed at – 100 mV.  
Delta defines changing in current amplitude caused by administration of NT and agonists in the extracellular solution. 
Percent variation estimates effects on Kir current caused by the different compounds. 
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A further characterization of the NA induced effect consisted in the identification 

the subtype of α-receptor involved. Clonidine 10 µM, an α2 agonist, was added to 

the external solution without causing significant effect: the current amplitude 

evoked at-100 mV was equal to -15.14 ± 1.40 pA/pF in control conditions and  

-14.11 ± 1.65 pA/pF in presence of clonidine (n = 4). On the other hand, 

phenylephrine 10 µM, a α1 agonist, induced a 24.1 % inhibition: at -100 mV, the 

evoked current amplitude changes from -12.88 ± 1.27 pA/pF in control conditions 

to -9.77 ± 0.92 pA/pF in presence of phenylephrine (n = 8); it should be observed 

that the phenylephrine dependent inhibition was quantitatively almost identical to 

that of NA. Data are shown in figure 3.12 (B and C). 

This kind of voltage-clamp experiments were conducted in high external 

potassium concentration (EC3), and in presence of BL1 and BL2 to isolate Kir 

current. In order to confirm these data and prove a physiological relevance of the 

effect induced by NA, experiments were performed in current clamp configuration. 

In particular, it is of some interest  to confirm that NA dependent reduction of Kir 

current causes some change in resting potential. 

7 cells were recorded in current-clamp configuration and in standard 

extracellular solution (EC0) in presence of only BL1, before and during 

phenylephrine application. Phenylephrine 10 µM induced a depolarization of 8.13 ± 

3.0 mV; this result confirms the expected depolarization following a reduction of a 

current which is hyperpolarizing. 

 

Dopamine  

Dopamine (DA) is an excitatory aminoacid released by centrifugal fibers termini. 

Dopaminergic neurons present autoreceptors, for this reason the effect of dopamine 

is tested in DA PG cells, in order to verify DA effect on Kir current. 

Dopamine (100 µM) induced an increase of the Kir current: in slice, at 34 °C a -

100 mV stimulus current amplitude changed from -16.96 ± 2.95 pA/pF (ctrl) to -

19.92 ± 2.33 pA/pF. This change is significant at 0.001 level (figure 3.12 D).  

The effect is mimicked by the D2 agonist quinpirole 30 µM (figure 3.12 E), which 

promotes an increase in current amplitude from -15.47 ± 0.85 pA/pF (ctrl)  to -

18.29 ± 1.20 pA/pF. This change is also significant at 0.001 level (Bonferroni post-

hoc test, n = 9); on the contrary, the D1 agonist SKF 38393 (Sibley & Monsma, Jr. 

1992) remains ineffective (15 µM, n= 4, fig. 3.12 F). 
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Figure 3.12 NT  effects on DA PG cell Kir current amplitude. On the left, voltage-clamp perforated-patch recordings  in 
control and in the presence of different NT or agonists (red), as specified in figure. On the right, comparison of the I/V 
curves recorded in control (black dots) and in the presence of the different compounds tested (red dots). 
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Acetylcholine  

Acetylcholine (ACh) is an ester of acetic acid and choline, which acts as 

neurotransmitter both on peripheral nervous system (PNS) and central nervous 

system (CNS). 

Extensive cholinergic fibers, from the horizontal limb of the diagonal band of 

Broca, project to all bulbar layers with the heaviest density occurring in the 

granular layer and external plexiform layer  (Macrides et al. 1981, Zaborszky et al. 

1986, El-Etri et al. 1999, Matsutani & Yamamoto 2008), while the existence of 

cholinergic interneurons in the OB has been controversial.  

Only recent studies provide clear evidence of the presence of a significant 

number of intrinsic cholinergic interneurons in the mouse OB: these experiments 

imply olfactory peduncle lesion in order to reduce cholinergic centrifugal projection 

to the OB, and to unmask intrinsic elements (Krosnowski et al. 2012). These results 

suggest that olfactory information processing is modulated by dual cholinergic 

systems of local interneuron networks and centrifugal projections (Krosnowski et al. 

2012). 

Both muscarinic and nicotinic ACh receptors are expressed in the olfactory bulb 

(Shipley & Ennis 1996), but in DA PG cells it is reported that the activation of M2 

metabotropic cholinergic receptors induce a hyperpolarization mediated by a K+ 

conductance (Pignatelli & Belluzzi 2008). Due to this previous evidence, the effect of 

the M2 agonist (oxotremorine, 10 µM) is only tested on the Kir current. The 

experiments shown in figure  3.12 G, confirm the involvement of  ACh M2 receptor 

in change of DA PG cell Kir current amplitude. 

Oxotremorine (10 µM) is added to the external solution EC3 in presence of BL1 

and BL2 to isolate Kir current. In voltage clamp recordings at -100 mV stimulus, 

oxotremorine increases current amplitude  from -10.83 ± 1.15 pA/pF (control)  to -

12.38 ± 1.14 pA/pF (n=11); change is significant with a  p < 0.001 (Bonferroni post-

hoc test). 

 In order to confirm that change in Kir current amplitude is dependent on ACh 

M2 receptor activation, current clamp recordings were made. In EC0 solution with 

BL1, oxotremorine (10 µM)  induced a change in prevailing membrane potential 

equal to a 4.52 ± 0.8 mV hyperpolarization (n = 9; p < 0.001 pair student t test). 
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GABA 

In the olfactory bulb, GABA (γ-aminobutiric acid) is a neurotransmitter released 

by centrifugal axons (Zaborszky et al. 1986), and by the majority of interneurons 

(Kosaka & Kosaka 2008). GABA is an important neurotransmitter in the OB, 

moreover GABAergic terminals impinge on DA-PG cells. 

Like other compounds tested, GABA 100 µM was added to the external solution 

(EC3) in presence of BL1 and BL2: GABA induces a large increase in Kir current 

amplitude, which changed from -19.16 ± 2.35 pA/pF to -32.35 ± 5.70 pA/pF, at -

100 mV input (figure 3.12 H) a difference statistically significant at the 0.01 level 

(Bonferroni post-hoc test, n = 13).  

There are two kind of GABA receptors: ligand-activated chloride channels 

(GABAA - GABAC) where the receptor and the ion channel are parts of the same 

complex, and, GABAB which are G protein-coupled metabotropic receptors. Due to 

the great change in Kir current amplitude following GABA application, it was of 

some interest to identify the receptor involved. 

Kir 3 channel family (GIRK) has been shown to be functionally regulated by 

GABAB receptors in numerous systems (Sodickson & Bean 1996, Tabata et al. 

2005), including dopaminergic neurons (Lacey et al. 1988).  

Following GABAB agonist baclofen (Bowery et al. 1980) 10 µM addition to the 

external solution we failed to observe any change in the current amplitude (from -

30.53 ± 4.68 pA/pF to -29.54 ± 5.03 pA/pF, n = 11; p > 0.5, figure 3.12 L). On the 

contrary, the GABA effect could be mimicked by the GABAA agonist muscimol 50 

µM (Johnston et al. 1968): at -100 mV, the Kir current changed from -15.26 ± 3.01 

pA/pF to -24.33 ± 5.31 pA/pF (figure 3.12 I), a change statistically significant (p < 

0.05, Bonferroni post-hoc test, n = 7).  

These data suggest that, contrary to the other neurotransmitters studied, there is 

not a metabotropic receptor mediated modulation of GABA on the Kir current. 

Moreover, the observed increase of the current more likely depends on GABAA 

channel opening, an effect which should be further studied using chloride channels 

blockers. 
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Serotonin 

Serotonin or 5-hydroxytryptamine (5-HT) is a monoamine neurotransmitter, 

which reachs the olfactory bulb only by the projection from the raphe nuclei 

(Araneda et al. 1980, McLean & Shipley 1987). 5-HT receptors are present both in 

bulbar interneurons, periglomerular and granular cells (Morilak et al. 1993), and in 

principal cells such as mitral and tufted cells (Pompeiano et al. 1994, McLean et al. 

1995). 

Serotonin (50 µM) induces a significant decrease of the Kir current amplitude: at -

100 mV the inward current is reduced from -22.83 ± 6.32 pA/pF (CTL)  to -19.43 ± 

5.37 pA/pF (5-HT; n=18,  p<0.01 Bonferroni post-hoc test). Data are shown in figure 

3.12 M. In order to confirm this result, and to emphasize the physiological role of 

DA PG cell Kir current current clamp experiments are recorded. In the same cell 

prevailing membrane potential is calculate before and in presence of 5-HT 50 µM: 

serotonin, which reduces Kir current amplitude, causes a depolarization of 12.8 ± 

3.2 mV (n=8, p < 0.001 Paired Student t test). 

 

Histamine 

Histamine is an organic nitrogen compound involved in local immune responses, 

as well as playing an important role as neurotransmitter . 

Olfactory bulb receives histaminergic inputs primarily from the caudal tuberal 

and postmammillary magnocellular hypothalamus (Auvinen & Panula 1988, Panula 

et al. 1989). Due to the presence of this innervation, it was of some interest to 

investigate the presence of a Kir current modulation depending on histamine. 

 In voltage-clamp conditions, histamine (10 µM) induces a significant reduction of 

the Kir current amplitude, which at -100 mV decreases from -19.03 ± 2.01 pA/pF 

(CTL)  to -14.13 ± 1.84 pA/pF. The presented mean values come from 8 recorded 

cells, and the difference is statistically significant with a p < 0.01, using Bonferroni 

post-test. Data are showed in figure 3.12 N. 

In current-clamp recordings, prevailing membrane potential changes from -69.11 

± 2.47 mV in control, to -58.22 ± 7.52 mV in presence of histamine 10 µM. This 

effect is coherent with the expected depolarization following a Kir conductance 

closure.  
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The olfactory system recognizes a great number of odor substances and 

discriminates chemical signals with fine differences in structural properties, which 

come from outdoor environment and can profoundly influence animal behavior, for 

this reason the olfactory system provides essential information for animal survival 

(Lledo et al. 2005). 

The olfactory bulb is an excellent model for understanding the neural 

mechanisms of sensory information processing, moreover it constitutes a site in 

which interneurons are added in postnatal and adult life. OB is the first relay 

station for the transmission of olfactory information, indeed, it receives and 

processes the information coming from the olfactory sensory neurons in the nasal 

mucosa, and it sends this information to different parts of the primary olfactory 

cortex in the forebrain (Lledo et al. 2005). 

In the olfactory bulb principal output neurons, such as mitral cells and tufted 

cells ensure a vertical flux of information. It arrives from the outdoor environment 

and is processed and refined within the olfactory bulb, before the transmission to 

upstream cortex centers (Lledo et al. 2005).  

Firing activity of output neurons is controlled both by sensory excitatory inputs 

and intra-bulbar circuit stimuli. Two distinct connections are implied in the intra-

bulbar circuit stimuli: the first occurs between primary dendrites and 

periglomerular cells (PG), the second between secondary dendrites and granule cells 

(Gr) (Shipley & Ennis 1996). Granule cells and periglomerular cells are 

interneurons which extend their projections within the olfactory bulb. 

PG cells constitute a high chemically heterogeneous cell population as T. Kosaka 

and K. Kosaka morphological and immunocytochemical studies reveal (Kosaka & 

Kosaka 2007). To recognize dopaminergic interneurons within the olfactory bulb in 

living preparations, transgenic mice have been used. The transgenic mouse strain 

harbours an eGFP (enhanced green fluorescent protein) reporter construct under 

the promoter of tyrosine hydroxylase, which is the rate-limiting enzyme for 

cathecolamine synthesis (Sawamoto et al. 2001, Matsushita et al. 2002). 

Electrophysiological and functional properties of TH-GFP+ PG cells in mouse 

olfactory bulb are mainly described in a Pignatelli’s work (Pignatelli et al. 2005): five 

voltage-dependent currents have been identified and kinetically characterized in 

order to understand the mechanism of spontaneous firing, which is considered a 

hallmark of these cells. Recently, two hyperpolarization-activated currents have 

been found in TH-GFP+ neurons: the first is the h current (also named If in cardiac 

tissue), a mixed cation current with a reversal potential substantially positive to EK, 
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insensitive to Ba2+, and  blocked by highly selective drugs such as ivabradine and 

ZD7288 (Pignatelli et al. 2013).  

The second hyperpolarization-activated current has fast kinetics, it is permeable 

primarily to K+, is blocked by extracellular Ba2+ and Cs+, has a voltage-dependence 

influenced by extracellular K+ concentration, and has been identified as a classical 

potassium inward rectifier current (Kir): this current is the subject of my work. 

For the first time Kir current is identified and characterized in dopaminergic 

periglomerular interneurons of the mouse olfactory bulb. The investigation of Kir 

current electrophysiological properties, provided with my studies, has been further 

enriched with the analysis of the effects on Kir current of several neuromodulators. 

The purpose of this research is to complete the electrophysiological 

characterization of DA PG cells in order to have a better understanding of their 

properties and to shed light on their physiological role, which still remain unknown.  

Although Kir current does not directly participate at the spontaneous firing, it 

has a key role in maintaining membrane potential in the proper range of values 

where spikes can occur. Moreover, this study points out that several 

neurotransmitters can regulate Kir current amplitude: an increment or decrease of 

potassium inward current has important consequences on cell membrane potential, 

and in turn on cell firing frequency. In this way, Kir current provides additional 

flexibility of DA-PG cell signaling.  

For this reason Kir current is important in these cells. 

 

4.1 Barium Sensitive Current in DA-PG Cells 

Kir current effect on membrane potential and input resistance 

Kir current first evidence in DA-PG cells is due to barium effect on membrane 

potential: barium, a potent blocker of Kir current, in current clamp recordings 

causes a depolarization of membrane potential until a complete disappearance of 

the spontaneous firing activity. The large depolarization caused by barium 

application suggested the presence of a barium sensitive current. The application of 

barium at the external bath solution causes a membrane potential depolarization of 

13. 33 ± 2.21 mV in 300 µM [Ba2+]o in 7 cells tested, and of 38.12 ± 6.01 mV in 2 

mM [Ba2+]o in 14 cells.  

The depolarization observed could be caused by the opening of a depolarizing 

conductance or by the closure of an hyperpolarizing conductance, active at rest.  

In order to discriminate between these two possibilities, analysis on input 

resistance was performed. Variations of DA-PG cell input resistance, in response to 
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hyperpolarizing current pulses, were tested in current clamp recordings in presence 

of the two barium concentrations seen before. In both cases membrane impedance 

increases: from 1079.6 ± 163.9 to 1260. ± 186.5 MΩ and from 1061.6 ± 202.0 MΩ 

to 1621.2 ± 284.2 MΩ in 0.3 mM and 2mM [Ba2+]o respectively. 

Membrane impedance increase agrees with a closure of hyperpolarizing 

conductance. 

Identification and basic properties of Kir current 

Inward rectification was originally termed anomalous rectification because it is 

opposite to the normal outward rectification that is seen in delayed rectifier K+ 

channels (Nichols & Lopatin 1997). In general, inward rectification refers to the 

ability of an ion channel to allow greater influx than efflux of ions. Inward rectifier 

potassium channels allow small amounts of outward current at membrane 

potential (VM) positive to the potassium equilibrium potential (EK) compared to 

currents generated at stimuli negative to the potassium equilibrium potential 

(Hibino et al. 2010).  

Although K+ ions could pass selectively in both direction in Kir channels, 

cytoplasm Mg2+ and polyamines with pore channel interactions block K+ efflux at 

membrane potentials, which are more positive than the EK (Bichet et al. 2003).  

Four identical (homotetrameric) or homologous (heterotetrameric) Kir subunits 

are organized in a tetrameric structure in the membrane in order to surround a 

water-fill pore, through which K+ ions can move following their electrochemical 

gradient. Each subunit includes two transmembrane helices, a pore forming region 

and a cytoplasmic domain formed by the amino (N) and carboxy (C) terminals 

(Bichet et al. 2003). 

The transmembrane domain is formed by two transmembrane helices M1 and 

M2 separated by an extracellular loop that form a K+ selectivity filter (van der 

Heyden et al. 2013). The intracellular domain is organized in order to give the 

“cytoplasmic pore”, which is 30 Ǻ long and 7-15 Ǻ in diameter (Bichet et al. 2003).  

Hyperpolarizing steps evoke a measurable current in experiments carried out 

using perforated-patch recordings, in slice at 34 °C. The voltage clamp protocol 

provides a holding potential of -40 mV followed by a series of hyperpolarization 

voltage pulses, ranging from -60 mV to -130 mV in  increments of 10 mV.  

The current evoked has different components: the h-current, the Kir current and 

the leakage current. After the suppression of the h-current in presence of 

ivabradine 10 µM, the remaining current was identified as potassium inward 

rectifier (Kir) current, thanks to its time course, reversal potential and sensitivity to 

Ba2+ (Hibino et al. 2010).  
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Due to asymmetric channel pore block, Kir channels generate a large K+ 

conductance at potentials negative to EK, but a less current flow is permitted at 

potential positive to EK (Hibino et al. 2010). With the purpose of turning out this 

feature in DA PG cells, current-to-voltage relationship was also investigated by 

eliciting Kir current whit a 220 mV/s voltage ramp protocol, from -180 mV to 40 

mV. In this way, I/V relation was obtained for a great range of potentials without 

stressing the cells. Moreover, the voltage ramp protocol has made possible the 

study of DA PG cell barium sensitive current in different potassium external 

concentration, to analyze  potassium and voltage dependence of this current. 

Current recordings from DA PG cells showed strong rectification at all external 

potassium concentrations examined (physiological 2.5 mM, high 32.5 mM, and 

intermediate 10 mM); In addition, for the three different tested conditions, the 

obtained reversal potentials agree whit values predicted for a pure K+ current by 

Nernst equation. Indeed, plotting those reversal potential values against the 

logarithmic [K+]o provided a linear relationship (r2 = 0.93) with a slope of -61.9 mV, 

close to the theoretical level of -61.12 mV predicted by the Nernst equation in the 

experimental conditions used. 

These results reinforce the idea that Kir current is present in DA-PG cells: Kir 

channels are selective for K+ ions, consequently the reversal potentials in different 

extracellular K+ concentrations should always follow the Nernstian equilibrium 

potential for potassium. 

What is more, in DA PG cells the inward current increases in amplitude 

according to the extracellular potassium concentration: this result agrees with a Kir 

conductance-voltage relationship, which shows an increase in its slope when the 

extracellular [K+] is increased (Hibino et al. 2010). Chord conductance of DA-PG 

neurons was further examined at various external K+ concentrations in order to 

prove voltage dependence of barium sensitive current of TH-GFP+ cells. 

The potential dependence of the cord conductance exhibited a sigmoidal 

relationship, increasing as the membrane potential became more negative, with gKir 

being approximately half-maximal at EK. Increasing [K+]o, Kir conductance increased 

at negative membrane potentials and shifted the voltage-conductance relationship 

to more positive potentials. When conductance is plotted as a function of the driving 

force (VM - EK: membrane potential minus Nernstian equilibrium potential for 

potassium), conductances at each selected [K+]o reach a minimum and a maximum 

at approximately the same voltage levels.  

This indicates that Kir current conductance in DA-PG cells depends on both [K+]o 

and membrane potential, where the membrane potential is described as VM - EK in 
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analogy to what has been found for Kir current in several other preparations 

(Hestrin 1981, Leech & Stanfield 1981, Harvey & Ten Eick 1988). 

From this series of experiments we can conclude that barium and cesium 

sensitive current of DA-PG cells is primarily permeable to K+. The external 

potassium concentration has a great effect on barium sensitive current of DA-PG 

cells affecting largely both amplitude and voltage-dependence of the inwardly 

conductance in DA PG cells. All these features suggest that the current described in 

this work belongs to inwardly potassium rectifier current family.  

 

4.2 Different Kir Channels in DA-PG Cells 

Although inward rectifier potassium channels have been postulated as 

therapeutic targets for several common disorders, including hypertension, cardiac 

arrhythmias and pain, the pharmacology of this family is virtually limited to 

barium, cesium, and few poorly selective cardiovascular and neurologic drugs with 

off-target activity toward inward rectifiers (Bhave et al. 2010, Hibino et al. 2010). 

Tertiapin and Quinacrine have been used to identify which Kir channel family 

members are present in DA-PG cells of the olfactory bulb.  

Tertiapin can inhibit GIRK 1 (Kir 3.1), GIRK 4 (Kir 3.4) and ROMK1(Kir 1.1)(Jin & 

Lu 1998, Jin & Lu 1999). In DA-PG cell barium sensitive current, the oxidation-

resistant form of the drug tertiapin-Q was ineffective when tested alone at 

concentrations ranging from 100 nM to 3 µM. If Kir 1.1 are present in DA-PG cells, 

and active at rest, Tertiapin blocks their contribute to Kir current when applied in 

extracellular bath. Moreover, you can exclude presence of ROMK 1 in DA-PG cells 

because they are commonly localized on renal outer medulla, where they convey 

important functions in regulating K+ secretion (Bhave et al. 2011). 

On the other hand, GIRK channels become activated only following the binding of 

ligands to their cognate G protein-coupled receptors, which causes the dissociation 

of the βγ subunits of pertussis toxin-sensitive G proteins which subsequently bind 

to and activate the GIRK channel (Walsh, 2011). For this reason, we tested the 

effect of tertiapin after activation of KACh current with oxotremorine. In these 

conditions, tertiapin completely abolished the current increment promoted by the 

muscarinic receptor activation suggesting that functional GIRK channels are 

actually present in DA-PG cells. 

Quinacrine is chosen in order to investigate the presence of strongly rectifier 

channel members such as Kir 2.x, also known as classical Kir channels. Quinacrine 

is reported to block Kir 6.2 ∼	Kir 2.3 > Kir 2.1 (Lopez-Izquierdo et al. 2011). Data 
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obtained from 15 cells show that Quinacrine 100 µM suppresses a significant 

fraction of the hyperpolarization-activated current in DA PG cells. Of the 2.x family, 

Kir 2.1 is highly expressed in periglomerular cells (Pruss et al. 2005), as well as Kir 

2.2 (Karschin et al. 1996). Kir 2.3 is also present in the OB (Inanobe et al. 2002); no 

immunoreactivity was found in the glomerular layer for this subunit (Inanobe et al. 

2002), but the Allen Brain Atlas shows a weak positivity. For this reason, it is 

thought that Quinacrine inhibits Kir 2.x channels present in DA-PG cells. Moreover, 

in DA-PG cells working  KATP channel presence can be excluded: although, 6.2 

subunit weak positivity is reported in PG layer, SURx proteins are not detected in 

the OB (Allen Brain Atlas). Kir 6.x subunits constitute the pore forming structure of 

KATP channel, which needs the presence of SUR subunits to work. 

In conclusion, at hyperpolarizing potentials negative to EK, DA-PG cells display a 

Ba2+ sensitive inward rectifying current supported by Kir 2.x channels, which 

contribute to the resting K+ conductance and are constitutively active. In presence 

of different neuromodulators, also Kir 3.x channels can open following G protein 

activation. 

4.3 Kir Current Role in DA-PG Cells Intrinsic Firing Activity 

Current clamp experiments prove the presence of a barium sensitive current. 

Ba2+ is a blocker commonly used for Kir channels. Adding barium to the 

extracellular solution causes changes of the electrical properties of the membrane. 

At first it was noted a significant membrane resistance increase in presence of 

barium, due to the closing of Kir conductance. Moreover, an important 

depolarization occurred after blocking Kir current. This depolarization causes the 

disappearance of spontaneous activity in dopaminergic periglomerular neurons. 

This effect is reversible, and it has been shown that in presence of the barium 

block, the injection of a hyperpolarizing current causes a temporary reactivation of 

spontaneous activity followed by a progressive depolarization that ends with a new 

block of the spontaneous activity. 

The reappearance of the activity in presence of a Kir blocker would suggest 

the absence of any role of the current in the pacemaker process, but the barium 

block is voltage-dependent, and this leaves open question of whether the restore of 

spontaneous activity upon repolarization is caused by the barium block removal or 

not.  

We searched an answer to this question using quinacrine, a drug exerting a 

non-voltage dependent block of the Kir current. Quinacrine  100 µM was applied in 

current-clamp recordings to verify its capacity to reproduce the barium effect on 
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membrane potential. Like barium, quinacrine blocks the Kir current causing a large 

membrane depolarization and also leading to a complete stop of firing activity. 

When the membrane was reported to a resting potential comparable to control 

conditions by injecting hyperpolarizing current, the activity was resumed. This 

result confirms that Kir current plays an important role in maintaining the 

membrane potential of DA PG cells, but it is not an essential component of the 

pacemaker mechanism in these cells. 

4.4 Effect of Kir Current Modulation on DA-PG Cells 

The OB is the first central relay station in the vertebrate olfactory system (Mori et 

al. 1999, Shepherd & Greer 1998). It receives rich afferent sensory information 

encoding odor molecule structure and concentration as well as spatiotemporal 

aspects of odor stimulation (Buck 1996, Wachowiak & Cohen 2001, Spors et al. 

2006). This sensory information is processed and refined substantially by a diverse 

array of local interneurons that differ in spatial distribution, neurochemical 

expression and synaptic connections (Wachowiak & Shipley 2006, Cave & Baker 

2009, Kosaka & Kosaka 2011). 

In the OB, different stimuli, which come from neurotransmitter release, modulate 

a great number of activities: such as glomerular microcircuits rearrangement, the 

dendrodendritic reciprocal synapses between interneurons and mitral/tufted cells, 

and excitability of principal neurons. These modulatory activities are important for 

odor discrimination, odor-guided behaviors and perceptual learning (Krosnowski et 

al. 2012). 

The olfactory bulb is unique among primary sensory centers in receiving 

centrifugal projection: SNC controls and adjusts the incoming flow of information 

and the processing of afferent signals via centrifugal projections. Two major groups 

of axons project to the bulb from brain: the first is composed by afferent fibers 

which arise from primary cortex, the second is given of axons originating in non-

olfactory structures of the basal forebrain and brainstem (Kratskin & Belluzzi 

2003). 

The most prominent projections to the olfactory bulb originate in the anterior 

olfactory nucleus (AON), whose afferents predominantly terminate in the granule 

cell layer, and in less extent in EPL and GL. The piriform cortex is another great 

source of projections to the olfactory bulb, whose axons terminate in granule cell 

layer. 

The nucleus of the horizontal limb of the diagonal band (NHDB) is the major 

source of bulbar centrifugal projection arising from non-olfactory brain structures. 
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NHDB innervates neocortex and hippocampus and plays an important role in 

learning and memory. NHDB projects to the glomerular layer, the granule cell layer 

and EPL. Also dorsal and median raphe nuclei are the source of bilateral projection 

to the olfactory bulb: these axons largely terminate around and within glomeruli 

(Kratskin & Belluzzi 2003). 

In general centrifugal innervation of mammalian OB implies centrifugal afferent 

fibers having both olfactory and non-olfactory brain structure origin. The position of 

centrifugal neurons in the brain does not correspond clearly to the location of its 

terminal field in the bulb. Centrifugal fiber axons largely project to the ipsilateral 

olfactory bulb. Fibers from all brain contact different parts of granule cells, while 

the projections from the AON and non-olfactory brain structures reach 

interneurons in the glomerular layer. 

Centrifugal inputs to the olfactory bulb may influence bulbar processing by 

modulating the activity of local interneurons (Linster & Gervais 1996, Linster & 

Hasselmo 1997). The presence of reciprocal connections between the bulb and 

secondary olfactory centers, thanks to multiple feedback loops, ensure a coordinate 

signaling processing and self-regulation in the olfactory system (Kratskin & Belluzzi 

2003); neuromodulator such as noradrenaline, acetylcholine, serotonin and 

dopamine serve important function in this kind of communication.  

Dopaminergic cells in the olfactory bulb are the target of numerous afferents 

releasing a variety of neurotransmitters: there are serotoninergic afferents from the 

ventral and dorsal raphe nuclei (Araneda et al. 1980, Araneda et al. 1980, Halász et 

al. 1977), noradrenergic input from the locus cœruleus (Halász & Shepherd 1983, 

Macrides et al. 1981, McLean et al. 1989), cholinergic inputs from the nucleus of 

the horizontal limb of the diagonal band (Carson 1984, Carson 1984, Zaborszky et 

al. 1986, Carson 1984, Matsutani & Yamamoto 2008), and histaminergic inputs 

from hypothalamus (Panula et al. 1989). Furthermore, bulbar dopaminergic cells 

have been shown to express D2 receptors (Gutierrez-Mecinas et al. 2005), which 

could be activated by the dopamine released by the cell itself (Maher & Westbrook 

2008).  

Many of these neurotransmitters are known to affect the cAMP pathway, and 

therefore they are potentially capable of a modulation of the Kir current. Moreover, 

data reported in this work show that in DA-PG cells neurotransmitter modulation 

on Kir channels is able to increase or decrease the amplitude of Kir current. For 

this reason, it is of some interest studying how a current, which plays such an 

important role in the resting membrane potential of DA-PG cells, is modulated by 

different neurotransmitters. 
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We tested the effects on the Kir current amplitude of 5-10 min applications of 

serotonin (50 µM), dopamine (100 µM and 1 mM ascorbic acid), quinpirole (D2 

agonist, 30 µM), SKF 38393 (D1 agonist, 15 µM), noradrenaline (100 µM and 1 mM 

ascorbic acid), phenylephrine (α1 agonist, 10 µM), clonidine (α2 agonist, 10 µM), 

histamine (10 µM), oxotremorine (muscarinic agonist, 10 µM), GABA (100 µM), 

muscimol (GABAA 50 µM) and baclofen (GABAB agonist, 30 µM) on Kir current. In 

these experiments we evoked the inward rectifier K+ current through 

hyperpolarizing voltage step protocol, and recorded it using the perforated patch 

clamp technique, in 32 mM external K+ solution and in controlled temperature 

conditions (fig.4.1). 

The responses induced by neurotransmitters shown and discussed in this work 

are the results of the direct activation of receptors on bulbar DA-PG cells, since all 

recordings were made in conditions of block of synaptic transmission. 

Data obtained in this work show that acetylcholine - via M2 muscarinic receptor 

activation, and dopamine - via D2 receptor activation increase the amplitude of Kir 

current in DA-PG cells.  

Acetylcholine present in the bulbar structure comes both from extensive 

cholinergic fibers of the horizontal limb of the diagonal band of Broca (Macrides et 

al. 1981, Zaborszky et al. 1986, El-Etri et al. 1999, Matsutani & Yamamoto 2008), 

and from cholinergic interneurons in the OB (Krosnowski et al. 2012). 

In olfactory bulb, the resulting effect of cholinergic modulation is excitatory 

(Elaagouby & Gervais 1992) and the multiple action of ACh seems to be 

orchestrated towards an enhancement of specificity and temporal precision of 

mitral cell responses to odors (Elaagouby & Gervais 1992, Mandairon et al. 2006, 

D'Souza & Vijayaraghavan 2012). 

The increase of Kir current amplitude, correlated with a 4.5 mV hyperpolarization 

in current clamp condition, can imply a variation on frequency of the firing activity 

of DA - PG cells, which in turn could inhibit principal neurons less intensely.  

Dopamine administration increases Kir current; this effect is mimicked by 

quinpirole: the compound acts as agonist for D2 receptor. DA-PG cells present 

autoreceptors, for this reason the increase of an hyperpolarizing conductance in 

presence of DA release is supposed to have great importance in excitatory self-

regulation. 

On the other hand, serotonin, histamine and noradrenaline administration present 

opposite effect on Kir current amplitude. 
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Figure 4.1 Effect of various neurotransmitters and agonists acting on Kir current.  
On the left, agonist and NT effects on current amplitude in voltage clamp conditions are resumed.  
On the right, effect on membrane potential in current clamp conditions are shown. 

 

Both α and β NA receptors are present in the olfactory bulb (Woo and Leon 1995, 

Shipley and Ennis 1996). NA, acting via α1 receptors, has been reported to inhibit 

inward rectifying potassium currents in several systems (Hayar et al. 2001, Nai et 

al. 2010). Also in DA-PG cells, NA - via α1 receptor agonist (phenylephrine) - 

induces a significant decrease of Kir current amplitude, an effect which is paralleled 

by a 8.13 mV depolarization in current-clamp conditions. 

A dense serotonergic innervation of the OB, and in particular of the glomerular 

region is provided by projections from the dorsal and median raphe nuclei (Araneda 

et al. 1980, McLean & Shipley 1987). 5-HT receptors are present both in bulbar 

interneurons, periglomerular and granular cells (Morilak et al. 1993), and in 

principal cells such as mitral and tufted cells (Pompeiano et al. 1994, McLean et al. 

1995). Data presented in this study show that serotonin administration, which 

decreases Kir current amplitude, causes a large depolarization of 12.8 mV. 

Serotonin has great effect on regulating DA-PG cells exitability profile. 

Hystaminergic inputs are also present in the olfactory bulb, which receives 

caudal tuberal and postmammillary magnocellular hypothalamus hystaminirgi 

centrifugal fibers (Auvinen & Panula 1988, Panula et al. 1989). In DA-PG cells, 

histamine reduces Kir current amplitude causing a depolarization of 10.89 mV. 

Data are coherent with a previous evidence: in a unidentified fraction of 

periglomerular cells, H1-receptor activation causes a block of a potassium current 

(Jahn et al. 1995). 

In order to confirm data obtained in voltage clamp recordings, and proving a 

physiological relevance of the effects induced by the neurotransmitters described 

above, experiments in current clamp configuration were performed. In particular, it 
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was interesting to analyze the changes occurred in the membrane potential induced 

by the neuromodulation of the Kir current, caused by drugs previously tested in 

voltage clamp. 

In conclusion, data provided from this work contribute to understand better how 

neurotransmitters modulate Kir current. The presence of two different ways to 

modulate potassium hyperpolarizing conductance, increasing or decreasing Kir 

current amplitude, suggests a fine regulatory pathway. Although Kir current is 

present at rest, several mechanisms contribute to refine the amplitude of Kir 

current, which can be largely change in different physiological conditions. 

Moreover, it is worth noting that Kir current deeply influences the resting 

potential. Pointed this, we should expect that any modification in the amplitude of 

the current is paralleled by a variation of the membrane potential. Data provided 

from this study show a close correlation between change of Kir current amplitude 

and the variation of membrane potential, this in turn produces a fine modulation of 

DA - PG cell excitatory profile. 
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Dopaminergic (DA) periglomerular (PG) neurons are critically placed at the entry 

of the bulbar circuitry, directly in contact with both the terminals of olfactory 

sensory neurons and the apical dendrites of projection neurons. They are 

autorhythmic and the target of numerous afferents releasing a variety of 

neurotransmitters. Despite the centrality of their position suggests a critical role in 

the sensory processing, their properties and their role remain elusive.  

In this study, the perforated-patch technique was adopted to record the current 

mediated by Kir channels in DA-PG cells in thin slice in order to preserve 

intracellular environment. Patch clamp recordings were performed both in current 

clamp and in voltage clamp configuration to show the presence of Kir current and 

describe its modulation in DA-PG cells. In controlled conditions, DA-PG cells 

display an inward rectifying current at hyperpolarizing potentials around EK. A first 

component is sustained by Ba2+-sensitive KIR2.x channels. On the other hand, this 

background activity could also receive the contribution of KIR3.x channels open in 

response to G protein activation by different neuromodulators.  

Dopamine has been shown to modulate several aspects of olfactory information 

processing, for this reason, it is important to understand the physiological role of 

dopaminergic periglomerular interneurons. Moreover, spontaneous firing activity of 

TH-GFP+ interneurons, which due to their location ensure horizontal flux of 

information in the bulbar structure, suggest a key role in processing sensory 

information. 

The study of the Kir current completes the electrophysiological characterization 

of these cells and reinforce the physiological importance of these bulbar 

interneurons: changes in firing frequency of DA-PG cells can regulate bulbar 

intrinsic neuron activity, and in turn, modulate signal transmission to high cortex 

centres. 

Although the absence of any role of the Kir current in the pacemaker process of 

TH-GFP+ PG cells, Kir current largely influences prevailing membrane potential of 

these cells, and in turn, IKir amplitude is widely influenced by several 

neurotransmitters. This characteristic of the Kir current provides the basis for 

additional flexibility and function of DA-PG cells. 

It is interesting to observe the important role of Kir current in DA-PG cells: 

resting membrane potential of cells - strategically placed at the entry of the bulbar 

circuitry - is highly influenced by Kir current and can be modulated in different 

directions by a variety of neurotransmitters. 
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