
Advanced security aspects on Industrial Control Network

PhD in Computer Science

Andrea Carcano

Advisor: Prof. Alberto Trombetta

Co-Advisor: Dr. Igor Nai Fovino

Università degli Studi dell’Insubria

Dipartimento di Scienze Teoriche e Applicate

February 2013

CORE Metadata, citation and similar papers at core.ac.uk

Provided by InsubriaSPACE - Thesis PhD Repository

https://core.ac.uk/display/294904484?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

c©2013 - Andrea Carcano

All rights reserved.

Contents

Title Page . i
Table of Contents . iii
List of Figures . v
List of Tables . vii

1 Introduction 1

2 Industrial Control Networks 5
2.1 Critical Infrastructure . 6
2.2 Industrial Control Network . 8

2.2.1 SCADA - Supervisory . 10

3 Industrial Network Protocols 17
3.1 Modbus protocol . 19

3.1.1 MODBUS Application Data Unit . 19
3.1.2 MODBUS Protocol Data Unit . 23
3.1.3 MODBUS Transactions . 24
3.1.4 MODBUS Data Model . 26
3.1.5 MODBUS Function Codes . 26
3.1.6 MODBUS Exception Code . 40

4 Related works 44

5 Threat Model 50
5.1 SCADA security properties . 51
5.2 Attacks . 53

5.2.1 Attacks in Hardware . 54
5.2.2 Attacks on Software . 54
5.2.3 Attacks in the communication stacks . 55

5.3 Modbus - Attack . 58

iii

iv Contents

5.3.1 Experimental environment . 58
5.3.2 Scada Malware and Attack Scenarios . 60

5.4 Conclusion . 66

6 Secure Modbus 68
6.1 Modbus Vulnerabilities . 69
6.2 Secure Modbus Protocol . 70
6.3 Secure Modbus Implementation . 74

6.3.1 Experimentals results . 76
6.4 Conclusion . 77

7 Intrusion Detection for Industrial control systems 78
7.1 Intrusion Detection Techniques . 79

7.1.1 Signature-based . 80
7.1.2 Anomaly-based . 81

7.2 State Analysis Technique . 83
7.2.1 System Description and Critical State Representation 84
7.2.2 State Evolution Monitor . 90
7.2.3 Critical State Detection . 90
7.2.4 Multidimensional metric for CS . 91
7.2.5 Threshold detection . 94

7.3 IDS Implementation . 98
7.3.1 Loader . 99
7.3.2 Scada Protocol Sensor (SPS) . 107
7.3.3 System Virtual Image (SVI) . 108
7.3.4 Analyzer . 112

8 Experimental results 114
8.1 Boiling Water Reactor Scenario . 116
8.2 Accuracy Analysis . 120
8.3 Performance Tests . 122

9 Conclusion 130

Bibliography 133

List of Figures

2.1 A firewalling architecture used to separate SCADA network and external networks. 9
2.2 Industrial Control Network Components . 11
2.3 A programmable logic controller . 12
2.4 The PLC system . 13
2.5 Signals: (a) discrete, (b) digital, (c) analogue . 14

3.1 MODBUS Communication Stack . 20
3.2 General MODBUS Frame . 20
3.3 Serial Application Data Unit (ADU) . 22
3.4 TCP/IP Application Data Unit (ADU) . 22
3.5 MODBUS transaction (error free) . 25
3.6 MODBUS transaction (exception response) . 25
3.7 Listen Only Mode . 37

5.1 SQL Injection Attack . 56
5.2 High level laboratory environment schema . 59

6.1 Modbus Application Data Unit . 71
6.2 Secure Modbus application data unit . 72
6.3 Modbus Secure Gateway . 73
6.4 High level architecture of the Secure-Modbus Module 75

7.1 Critical State Example . 83
7.2 MODBUS SCADA System Example . 85
7.3 Representation of the previous system. 86
7.4 SCADA System plus Critical State Situation. 89
7.5 “State Based IDS” Architecture . 99
7.6 MODBUS SCADA System Example . 102
7.7 SVI Stored in IDS Memory . 103

v

vi List of Figures

7.8 The “Binary Decision Tree (BDT)” data structure UML diagram 104
7.9 MODBUS Messages objects . 107
7.10 Request/Response Buffers . 110
7.11 Slave Update . 111

8.1 Power plant simulator . 115
8.2 Boiling Water Reactor Schema . 117
8.3 Day by day false positive and negative results . 121
8.4 Packet Capturing and Alerts Raised Tests . 125
8.5 Packet Capturing and Alerts Raised Tests . 125
8.6 Signature-Based Performance Test (average time in ms.) 126
8.7 Virtual System Update Performance Test and graph (Time in ms.) 127

List of Tables

2.1 Firewall rules table . 10

3.1 MPAB Header Fields . 23
3.2 Request Protocol Data Unit . 23
3.3 Response Protocol Data Unit . 24
3.4 Exception Response Protocol Data Unit . 24
3.5 MODBUS Data Model . 26
3.6 MODBUS function codes . 28
3.7 MODBUS Counters . 39
3.8 MODBUS Exception Codes . 42

6.1 Communication latency with Modbus and Secure Modbus with a master scan rate
of 500ms and a connection timeout of 1200ms . 76

6.2 Communication latency with Modbus and Secure Modbus with a master scan rate
of 200ms and a connection timeout of 500ms . 76

6.3 Modbus/TCP and Secure Modbus/TCP packets size, tested with different functions 77

7.1 MODBUS Slave Representation fields . 87
7.2 Distance from the current state C1 and the Critical State(CS1) 95
7.3 Evolution of the system during the learning phase 96
7.4 Distance d1 for each state included in X . 97

8.1 Boiling Water Reactor learning phase . 119
8.2 False positive and negative accuracy results. 121
8.3 PLC Memory Usage . 122
8.4 VS Memory Usage . 123
8.5 Single Rule Memory Usage . 123
8.6 Rules Set Memory Usage . 123
8.7 Packet Capturing and Alerts Raised Tests . 124

vii

viii List of Tables

8.8 Critical State Rule Analyzer Performance based on condition number 128
8.9 Critical State Rule Analyzer Performance based on number of rules (time in ms.) . 128
8.10 Distance Analyzer Performance Test . 129

Chapter 1

Introduction

1

2 Chapter 1: Introduction

Security threats are one of the main problems of this computer-based era. All systems
making use of information and communication technologies (ICT) are prone to failures and vul-
nerabilities that can be exploited by malicious software and agents. In the latest years, Industrial
Critical Installations started to use massively network interconnections as well, and what it is worst
they came in contact with the public network, i.e. with Internet. The net effect of such new trend, is
the introduction of a new interleaved and heterogeneous architecture combining typical information
system (e.g. data bases, web-servers, web-applications and web-activities), with real-time elements
implementing the control functions of industrial plants. If, from a certain point of view, the advan-
tages of such complex architectures are several (remote management functions, distributed control
and management systems, on the fly monitoring etc.), on the other hand they introduce a new layer
of exposure to malicious threats.

Industrial networks are responsible for process and manufacturing operations of almost
every scale, and as a result the successful penetration of a control system network can be used
to directly impact those processes. Consequences could potentially range from relatively benign
disruptions, such as the disruption of the operation (taking a facility offline), the alteration of an
operational process (changing the formula of a chemical process), all the way to deliberate acts of
sabotage that are intended to cause harm. For example, manipulating a certain processes could cause
pressure within a boiler to build beyond safe operating parameters. Cyber sabotage could result in
injury or loss of life, including the loss of critical services (blackouts, unavailability of vaccines, etc.)
or even catastrophic explosions. This happens due to the fact that most of the Critical Infrastructure
use industrial control systems.

Over the past decade, there have been numerous incidents that have been identified as
the result of a cyber incident. In 2000, a man in Australia who was rejected for a government job
was accused of using a radio transmitter to alter electronic data within a sewerage pumping station,
causing the release of over two hundred thousand gallons of raw sewage into nearby rivers.

In August 2006 the Browns Ferry nuclear plant in Alabama, U.S. was manually shut down
because a number of reactor recirculation pumps failed [2]. It was later found that this failure had
occurred due to an overload of network traffic. Some form of unspecified vulnerability existed
which allowed for the overload of traffic to cause the system to be unresponsive. Whether or not
the overload of network traffic was caused because of a Denial of Service (DoS) attack is not stated,
however it is a plausible cause.

In 2007, there was the Aurora Project: a controlled experiment by the Idaho National
Laboratories (INL) in United States, which successfully demonstrated that a controller could be

Chapter 1: Introduction 3

destroyed via a cyber attack. The vulnerability allowed hackers, which in this case were authorized
security researchers at the INL, to successfully open and close breakers on a diesel generator out of
synch, causing an explosive failure. In September 2007, CNN reported on the experiment, bringing
the security of our power infrastructure into the popular media.[23]

In 2009 it is reported that Chinese and Russian spies penetrated the U.S. electrical power
grid, leaving behind potentially disruptive software programs [3]. A senior, but unnamed U.S. offi-
cial, claimed that both Chinese and Russian spies had attempted to map U.S. critical infrastructure,
using network mapping tools. The U.S. Government has remained vague on technical details. In
2009 in Dallas, U.S, a hospital security guard, Jessie William McGraw (aka GhostExodus) took
advantage of his position to install malware on hospital machines and also control the heating,
ventilation and air-conditioning (HVAC) system. McGraw was caught as he uploaded videos and
images to numerous websites.

In June of 2010 the Stuxnet computer worm was identified by Belarus-based security
firm, VirusBlokAda. Stuxnet. Stuxnet is a threat targeting a specific industrial control system likely
in Iran, such as a gas pipeline or power plant. The goal of Stuxnet is to sabotage that facility by
reprogramming programmable logic controllers (PLCs). It uses four zero-days in total to infect and
spread, looking for SIMATIC WinCC and PCS 7 programs from Siemens, and then using default
SQL account credentials to infect connected Programmable Logic Controllers (PLCs) by injecting
a rootkit via the Siemens fieldbus protocol. Stuxnet then looks for automation devices using a
frequency converter that controls the speed of a motor. If it sees a controller operating within a
range of 8001200 Hz, it attempts to sabotage the operation. [25] Stuxnet drew the attention of
the mass media through the fall of 2010 and it immediately raised the industrys awareness and
illustrated exactly why industrial networks need to dramatically improve their security measures.

The aim of this thesis is to analyze the main vulnerabilities concerning Industrial Control
Systems and explore different solutions to protect them. The interconnectivity of Industrial Control
Systems with corporate networks and the Internet has significantly increased the threats to critical
infrastructure assets. Meanwhile, traditional IT security solutions such as firewalls, intrusion detec-
tion systems and antivirus software are relatively ineffective against attacks that specifically target
vulnerabilities in SCADA protocols. The thesis is organized as follows: the second chapter provides
a brief overview about Industrial Control Networks and Critical Infrastructures. In the third chapter
the details of the most important SCADA protocols, i.e. Modbus is presented. In the fourth chapter a
deep analysis of the related works is done. The fifth chapter presents a threat model from an attacker
point view with some experimental results about a malware developed for Modbus protocol. The

4 Chapter 1: Introduction

sixth chapter shows a secure version of the Modbus SCADA protocol that incorporates integrity,
authentication, non-repudiation and anti-replay mechanisms. In chapter seven is presented a new
intrusion detection approach called ”Critical State Approach” used to develop an Intrusion Detec-
tion System for Industrial Control Networks. In the eighth chapter, after describing our testbed, the
experimental results are presented and discussed.

Chapter 2

Industrial Control Networks

5

6 Chapter 2: Industrial Control Networks

Before attempting to secure an industrial network, it is important to understand what an
industrial network really is. Industrial Control Systems are often referred to in the media as SCADA,
for example, which is both inaccurate and misleading. An industrial network is most typically made
up of several distinct areas, which are simplified here as a business network or enterprise, business
operations, a supervisory network, and process and control networks. SCADA, or Supervisory
Control and Data Acquisition, is just one specific piece of an industrial network, separate from
the control systems themselves, which should be referred to as Industrial Control Systems (ICS)
or Distributed Control Systems (DCS) [5]. Each area has its own physical and logical security
considerations, and each has its own policies and concerns. In this work will focus our attention
only in that ICS referred as Critical Infrastructure considering all the aspect that are not considered
in a general IT environment.

2.1 Critical Infrastructure

European Commission(EC) define Critical infrastructures as those physical and informa-
tion technology facilities, networks, services and assets which, if disrupted or destroyed, would have
a serious impact on the health, safety, security or economic well-being of citizens or the effective
functioning of governments in European Union (EU) countries [1]. It’s easy to understand how for
example the production of energy is much more important in modern society than the production
of decorative object. The proper manufacture and distribution of electricity can directly impact our
safety by providing heat in winter or by powering irrigation pumps during a drought. The proper
manufacture and distribution of chemicals can mean the difference between the availability of flu
vaccines and pharmaceuticals and a direct health risk to the population. The European commission
presented detailed classifications where it’s possible to see how critical infrastructures extend across
many sectors: transport and distribution, energy, utilities, health, food supply and communications,
as well as key government services:

• Utilities: Water, gas, oil, electricity, and communications are critical infrastructures that rely
heavily on industrial networks and automated control systems. Because the disruption of
any of these systems could impact our society and our safety, they are listed as critical by
European Commission; because they use automated and distributed process control systems,
they are clear examples of industrial networks. Of the common utilities, electricity is often
separated as requiring more extensive security. In the United States, Canada and Europe, it is

Chapter 2: Industrial Control Networks 7

specifically regulated to standards of reliability and cyber security. Oil and gas refining and
distribution are systems that should be treated as both a chemical/hazardous material and as a
critical component of our infrastructures.

• Nuclear Facilities: Nuclear facilities represent unique safety and security challenges due to
their inherent danger in the fuelling and operation, as well as the national security implications
of the raw materials used. This makes nuclear facilities a prime target for cyber attack, and it
makes the consequences of a successful attack more severe. As such, nuclear energy is heav-
ily regulated in the European Commission by the European Nuclear Safety Regulators Group
(ENSREG). The ENSREG is an independent, authoritative expert body created in 2007 fol-
lowing a decision of the European Commission in an attempt to guarantee the safe operation
of nuclear facilities and to protect people and the environment. This includes regulating the
use of nuclear material including by-product, source, and special nuclear materials, as well as
nuclear power. Another organization operating actively on the nuclear field is the Intentional
Atomic Energy Agency (IAEA). The IAEA is the world’s center of cooperation in the nuclear
field. The IAEA was created in 1957 in response to the deep fears and expectations resulting
from the discovery of nuclear energy.

• Chemical: Manufacture and distribution represent specific challenges to securing an indus-
trial manufacturing network. Unlike the utility networks (electric, nuclear, water, gas), chemi-
cal facilities need to secure their intellectual property as much as they do their control systems
and manufacturing operations. This is because the product itself has a tangible value, both
financially and as a weapon. For example, the formula for a new pharmaceutical could be
worth a large sum of money on the black market. The disruption of the production of that
pharmaceutical could be used as a social attack against a country or nation, by impacting the
ability to produce a specific vaccine or antibody. Likewise, the theft of hazardous chemicals
can be used directly as weapons or to fuel illegal chemical weapons research or manufacture.
For this reason, chemical facilities need to also focus on securing the storage and transporta-
tion of the end product.

Some critical elements in these sectors are not strictly speaking ’infrastructure’, but are in fact,
networks or supply chains that support the delivery of an essential product or service. For example
the supply of food or water to the major urban areas is dependent on some key facilities, but also
a complex network of producers, processors, manufacturers, distributors and retailers. As claimed

8 Chapter 2: Industrial Control Networks

before the purpose of this work is to focus on the protection of Industrial Control network with a
particular attention of those considered Critical Infrastructure.

2.2 Industrial Control Network

The most notable trend regarding Industrial Network over the past five years is the move
towards networks at all levels. At lower levels networks provide higher reliability, visibility, and
diagnosability, and enable capabilities such as distributed control, diagnostics, safety, and device
interoperability. At higher levels, networks can leverage internet services to enable automated
scheduling, control, and diagnostics; improve data storage and visibility. During this work we had
the chance to collaborate with some of the most important companies regarding oil, gas, water and
electricity. In order to don’t reveal critical information regarding this companies in the following
section we present a general schema that take consideration all the information gathered in these
years. Figure 2.1

• Control Network: it contains all the PLCs. It is directly interfaced with the field network,
i.e. the network interconnecting the sensors, and the actuators which physically perform the
process tasks on the system. Additionally, it sends to the Process Network the data gathered
from field devices.

• Process Network: the scope of the process network is to allow the interconnection between
the different subsystems of the production process. Moreover, it must guarantee the remote
access to such systems from other networks, and the delivery of the process data to a dedicated
zone called DMZ. Process Network hosts the the SCADA system and all the operator station
where is possible manage the whole power plant: sending control commands, reading and
evaluate measurements and parameters. Such a network must satisfy the following goals:

– Quality of service: the packets sent through the network has to be delivered in time.

– Network survivability: the network must guarantee a minimum level of resilience against
failures.

• Demilitarized Zone(DMZ): this area hosts a set of “data exchange” servers called historians,
which receive data from the process network and make them available to the operators which
work in the Corporate Intranet.

Chapter 2: Industrial Control Networks 9

Internet

PLCPLC

Historian

Firewall

Process Network

Control Network

Remote Site

Intranet

Radius + VPN

Server

Radius + VPN

Server

Historian

DMZ Network

PLC

Fan ValvePump

Field Network

SCADA

Server
Operator

HMI SCADA

Server

Figure 2.1: A firewalling architecture used to separate SCADA network and external networks.

• Intranet: It is the generic Intranet of the Company that operates the Power Plant. It is usually
based on a classical Windows domain architecture.

• Firewall + VPN: it is used to separate the process network and the control network from the
rest of the world. In a similar configuration is important to define exactly the flow directions
allowed as shown in Table 2.1.

• Remote Site: The operators hosted into a remote site can connect themselves to the local In-
tranet through a site to site VPN, showing their credentials to a Radius authentication server.

10 Chapter 2: Industrial Control Networks

Due to the importance of the process and control network usually the design and configura-
tion of this networks is provided from third parties high specialized in automation i.e. (abb,
simens). In order to guarantee the full support in case of malfunctioning is always required a
direct access to the process network form this third parties. The VPN-firewall allow to create
an host-to site VPN connection between the PC of the operator and the firewall.

Direction Allowed
Intranet→ DMZ YES
Intranet→ Process network NO
Intranet→ Control network NO
DMZ→ Intranet No (allowed only replies to flows originally started

from the Intranet)
DMZ→ Process network NO (allowed only replies to flows originally

started from the Process Network) in the case in
which the SCADA server is separated from the
historian and is hosted into the process network
YES if historian and SCADA servers are hosted
all into the DMZ

DMZ→ Control network NO
Process network→ DMZ YES
Process network→ Intranet NO
Process network→ Control network YES
Control network it is allowed only the flow with the Process net-

work(in both direction); all the other flows are for-
bidden.

Table 2.1: Firewall rules table

2.2.1 SCADA - Supervisory

Process network is vendors including ABBconsidered the core of the industrial network
and is characterized by a typical architecture called Supervisory Control and Data Acquisition
(SCADA). SCADA is a technology that enables a user to collect data form one or more distant
facilities and/or send limited control instructions to those facilities. The architecture is mainly com-
posed by the elements in figure 2.2.

Chapter 2: Industrial Control Networks 11

Fan ValvePump

PLC PLC RTU RTU

Master Terminal Unit (MTU)

Remote Terminal Units (RTUs)

Field Network

Operator Human Machine Interface (HMI)

Process Network

Control Network

Figure 2.2: Industrial Control Network Components

In the following a description of all the elements composing the SCADA system is pro-
vided.

PLC - Programmable Logic Controller A programmable logic controller (PLC) [4] is a special
form of microprocessor-based controller that uses a programmable memory to store instructions

12 Chapter 2: Industrial Control Networks

and to implement functions such as logic, sequencing, timing, counting and arithmetic in order
to control machines and processes and are designed to be operated by engineers with perhaps a
limited knowledge of computers and computing languages. They are not designed so that only
computer programmers can set up or change the programs. Thus, the designers of the PLC have
pre-programmed it so that the control program can be entered using a simple, rather intuitive, form
of language [4]. PLCs are similar to computers but whereas computers are optimized for calculation

Program

PLC

Inputs Outputs

Figure 2.3: A programmable logic controller

and display tasks, PLCs are optimized for control tasks and the industrial environment:

1. Rugged and designed to withstand vibrations, temperature, humidity and noise.

2. Have interfacing for inputs and outputs already inside the controller.

3. Are easily programmed and have an easily understood programming language which is pri-
marily concerned with logic and switching operations.

The first PLC was developed in 1969. They are now widely used and extend from small self-
contained units for use with perhaps 20 digital inputs/outputs to modular systems which can be
used for large numbers of inputs/outputs, handle digital or analogue inputs/outputs, and also carry
out proportional-integral-derivative control modes. Typically a PLC system has composed by: pro-
cessor unit, memory, power supply unit, input/output interface section, communications interface
and the programming device.

• The processor unit or central processing unit (CPU) is the unit containing the microproces-
sor and this interprets the input signals and carries out the control actions, according to the
program stored in its memory, communicating the decisions as action signals to the outputs.

Chapter 2: Industrial Control Networks 13

Processor

Programming
device

Power supply

Input
inter-
face

Output
inter-
face

memory
Communications

interface
Program & data

Figure 2.4: The PLC system

• The power supply unit is needed to convert the mains a.c. voltage to the low d.c. voltage (5
V) necessary for the processor and the circuits in the input and output interface modules.

• The programming device is used to enter the required program into the memory of the pro-
cessor. The program is developed in the device and then transferred to the memory unit of the
PLC.

• The memory unit is where the program is stored that is to be used for the control actions to
be exercised by the microprocessor and data stored from the input for processing and for the
output for outputting. PLCs

• The input and output sections are where the processor receives information from external de-
vices and communicates information to external devices. The inputs might be from switches,
temperature sensor or flow sensor. The outputs might be to motor starter coils, solenoid
valves, etc. Input and output devices can be classified as giving signals which are discrete,
digital or analogue. Devices giving discrete or digital signals are ones where the signals are
either off or on; a switch is a device giving a discrete signal, either no voltage or a voltage.
Digital devices can be considered to be essentially discrete devices which give a sequence of
on-off signals. Analogue devices give signals whose size is proportional to the size of the
variable being monitored. For example, a temperature sensor may give a voltage proportional

14 Chapter 2: Industrial Control Networks

Time

egatlo
V

(a) Time

egatlo
V(b)

Time

egatlo
V

(c)

Figure 2.5: Signals: (a) discrete, (b) digital, (c) analogue

to the temperature.

• The communications interface is used to receive and transmit data on communication net-
works from or to other remote PLCs. It is concerned with such actions as device verification,
data acquisition, synchronization between user applications and connection management.

RTU - Remote Terminal Unit A Remote Terminal Unit (RTU) typically resides in a substation
or other remote location. RTUs monitor field parameters and transmit that data back to a central
monitoring stationtypically either a Master Terminal Unit (MTU), or a centrally located PLC, or
directly to an HMI system. RTUs, therefore, include remote communications capabilities, con-
sisting of a modem, cellular data connection, radio, or other wide area communication capability.
RTUs and PLCs continue to overlap in capability and functionality, with many RTUs integrating
programmable logic and control functions, to the point where an RTU can be thought of as a remote
PLC.

Human machine Interface(HMI) Human machine interfaces (HMIs) [5] are used as an operator
control panel to PLCs. HMIs replace manually activated switches, dials, and other controls with
graphical representations of the control process and digital controls to influence that process. HMIs
allow operators to start and stop cycles, adjust set points, and perform other functions required
to adjust and interact with a control process. Because the HMI is software based, they replace
physical wires and controls with software parameters, allowing them to be adapted and adjusted
very easily. HMIs are modern software applications running on modern operating systems, and
as such they are capable of performing many functions. They act as a bridge between the human

Chapter 2: Industrial Control Networks 15

operator and the complex logic of one or more PLCs, allowing the operator to function on the
process rather than on the underlying logic that performs the function and to control many functions
across distributed and potentially complex processes from a centralized location. To accomplish
this, the user interface will graphically represent the process being controlled, including sensor
values and other measurements, and visible representation of output states (which motors are on,
which pumps are activated, etc.). Humans interact with the HMI through a computer console, and
as such must authenticate to the HMI system using password protection. Because HMIs provide
supervisory data (visual representation of a control processs current state and values) as well as
control (i.e., set point changes), user access may lock out specific functions to specific users. The
security of the industrial process therefore relies heavily on access control and host security of the
HMI. The HMI, in turn, interacts with one or more PLCs and/or RTUs, typically using industrial
protocols.

Data Historians In some installations is possible to find the Data Historian Server in the Process
Network. A Data Historian is a specialized software system that collects point values and other
information from industrial devices and stores them in a purpose-built database. Most industrial
asset vendorsincluding ABB, Arreva, Emerson, GE, Rockwell, Siemens, and othersprovide their
own proprietary Data Historian systems. In addition, there are third-party industrial Data Histo-
rian vendors, such as Canary Labs (www.canarylabs.com), Modis (www.modius.com), and OSIsoft
(www.osisoft.com), which interoperate with third-party assets and even integrate with third-party
Data Historians in order to provide a common, centralized platform for data historization and anal-
ysis. Data points that are historized and stored within a Data Historian are referred to as tags and
can represent almost anythingthe current frequency of a motor or turbine, the rate of airflow through
an heating, ventilation, the total volume in a mixing tank, the specific volumes of injected chemical
catalysts in a tank, etc. Tags can even represent human-generated values, such as production targets
and acceptable loss margins.

As claimed at the beginning of this section because the information stored within a Data
Historian is used by both industrial operations and business management, Data Historians are often
replicated across an industrial network. This can represent a security risk, as a Data Historian in a
less secure zone (i.e., the business network) could be used as a vector into more secure zones (i.e.
DMZ).

At the time of this writing, OSIsoft holds a dominant position in the Historian market,
with 65% market penetration in global industrial automated systems.[6] The OSIsoft PI System

16 Chapter 2: Industrial Control Networks

integrates with many IT and OT systems including other Data Historians, and as such is a premium
target for attack.

Industrial networks operate differently from enterprise networks and use specialized de-
vices including RTUs and/or PLCs, HMIs, Supervisory Management Workstations, Data Historians,
etc. These devices utilize specialized protocols to provide the automation of control loops, which
in turn make up larger industrial control processes. In the next chapter we will examine the most
important SCADA protocols.

Chapter 3

Industrial Network Protocols

17

18 Chapter 3: Industrial Network Protocols

Understanding how industrial networks operate requires a basic understanding of the un-
derlying communications protocols that are used, where they are used, and why. There are many
highly specialized protocols used for industrial control system, most of which are designed for ef-
ficiency and reliability to support the operational requirements of SCADA systems. Unfortunately,
this means that most industrial protocols don’t include any feature or function that is not abso-
lutely necessary. In particular they don’t include any security features such as authentication and
encryption, both of which require additional overhead.

Industrial Network Protocols are often referred as SCADA and/or fieldbus protocols.
SCADA protocols are primarily used for the communication of supervisory systems, whereas field-
bus protocols are used for the communication of field devices. However, most of the protocols
have the ability to perform both functions, and so will be referred in this thesis more generically as
Industrial Network Protocols.

Industrial Network Protocols are real-time communications protocols, developed to inter-
connect the systems, interfaces, and instruments that make up an industrial control system. Most
were designed initially to communicate serially over RS-232, RS-485, or other serial connections
but have since evolved to operate over Ethernet networks using routable protocols such as TCP/IP.
There are literally dozens of industrial protocols, developed by specific manufacturers for specific
purposes. In this thesis we will go more in-depth with one of the most used Industrial protocol
called Modbus.

Chapter 3: Industrial Network Protocols 19

3.1 Modbus protocol

Modbus is the oldest and perhaps the most widely deployed industrial control communica-
tions protocol. It was designed in 1979 by Modicon (now part of Schneider Electric) that invented
the first Programmable Logic Controller (PLC). Modbus has been widely adopted as a de facto
standard and has been enhanced over the years into several distinct variants. Modbus success stems
from its relative ease of use: it communicates raw messages without restrictions of authentication
or excessive overhead. It is also an open standard, is freely distributed, and is widely supported by
members of the Modbus Organization, which still operates today.

Modbus is an application layer messaging protocol, meaning that it operates at layer 7 of
the OSI model. It allows for efficient communications between interconnected assets based on a
request/reply methodology. It can be used by extremely simple devices such as sensors or motors to
communicate with a more complex computer, which can read measurements and perform analysis
and control. o support a communication protocol on a simple device requires that the message
generation, transmission, and receipt all require very little processing overhead. This same quality
also makes Modbus suitable for use by PLCs and RTUs to communicate supervisory data to a
SCADA system. Because Modbus is a layer 7 protocol, it can operate independently of under-
lying network protocols, and it has allowed Modbus to be easily adapted to both serial and routable
network architectures. As shown in Figure 3.1, MODBUS is currently implemented using several
buses or networks:

• TCP/IP over Ethernet.

• Asynchronous serial transmission over a variety of media (wire : EIA/TIA-232-E, EIA-422,
EIA/TIA-485-A; fiber, radio, etc.).

• MODBUS PLUS, a high speed token passing network.

3.1.1 MODBUS Application Data Unit

The MODBUS protocol specification [20] defines the format of a MODBUS message
which is called Application Data Unit (ADU). Each Application Data Unit (ADU) is composed by
the following fields:

• Protocol Data Unit (PDU): it contains the core information for the MODBUS protocol and
it is independent of the underlying communication layers.

20 Chapter 3: Industrial Network Protocols

MODBUS APPLICATION LAYER

Modbus on TCP

TCP

IP

Ethernet

Physical layer

Ethernet II /802.3

EIA/TIA-232

EIA/TIA-485

Master / Slave

Physical layer

MODBUS+

Other

Other

Figure 3.1: MODBUS Communication Stack

• Additional fields: they are related to the communication protocol used by the layers below.

The Figure 6.1 shows a general MODBUS Frame regardless of the underlying layers.

Additional address Function code Data Error check

ADU (Application Data Unit)

PDU (Protocol Data Unit)

Figure 3.2: General MODBUS Frame

The original MODBUS specification included two possible transmission modes:

• RTU Mode: is the most common implementation, using binary coding and CRC error-
checking.

• ASCII Mode: is less efficient, uses ASCII coding and uses less effective LRC error checking.

Chapter 3: Industrial Network Protocols 21

The two modes are incompatible, so a device configured for ASCII mode cannot communicate with
one using RTU. MODBUS/TCP is a much more recent development, created to allow MODBUS
ASCII/RTU protocol to be carried over TCP/IP-based networks. MODBUS/TCP embeds MOD-
BUS messages inside TCP/IP frames.

22 Chapter 3: Industrial Network Protocols

MODBUS over Serial Line ADU

The MODBUS over Serial Line ADU has the fields in Figure 3.3.

Slave ID

1 byte

Function code

1 byte

Data

252 bytes

CRC

2 bytes

MODBUS SERIAL ADU (256 bytes)

PDU (253 bytes)

0 1 2 253 255

Figure 3.3: Serial Application Data Unit (ADU)

• Slave ID: Slave identificator (1 byte 28 = 256; from 0 to 255).

• Function Code: defines the type of action required (1 byte 28 = 256; from 0 to 255).

• Data: contains additional information that are used to take the action defined by the function
code. This can include items like discrete and register addresses, the quantity of items to be
handled, and the count of actual data bytes in the field.

• CRC: the cyclic redundancy check is an error control function.

MODBUS over TCP/IP network ADU

The MODBUS over TCP/IP network ADU has the fields in Figure 3.4.

MBAP Header

7 bytes

Function code

1 byte

Data

252 bytes

MODBUS TCP/IP ADU (260 bytes)

PDU (253 bytes)

0 6 7 259

Figure 3.4: TCP/IP Application Data Unit (ADU)

The Protocol Data Unit (PDU) is the same as in MODBUS over Serial Line, but there
is an additional header called MODBUS Application Protocol header (MBAP header). It contains

Chapter 3: Industrial Network Protocols 23

some useful fields for the TCP/IP protocol.
The header is 7 bytes long an it has the following structure:

Transaction
Identifier
2 bytes

Protocol
Identifier
2 bytes

Length

2 bytes

Unit
Identifier
1 byte

Table 3.1: MPAB Header Fields

• Transaction identifier: identification of a MODBUS Request/Response transaction. Initial-
ized by the master and recopied by the slave from the received request.

• Protocol Identifier: 0 = MODBUS protocol. Initialized by the master.

• Length: Number of following bytes.

• Unit Identifier: Identification of a remote slave. It is typically used to communicate to a
MODBUS serial line slave through a gateway between an Ethernet TCP-IP network and a
MODBUS serial line.

3.1.2 MODBUS Protocol Data Unit

The Protocol Data Unit (PDU) is the only part that does not change in the ADU because
it is independent of the underlying communication layers. The MODBUS protocol specification [?]
defines three PDUs:

Request Protocol Data Unit

Function Code
1 byte

Request Data
252 bytes

Table 3.2: Request Protocol Data Unit

• Function Code: defines the type of action required.

24 Chapter 3: Industrial Network Protocols

• Data: contains additional information used to take the action defined by the function code.

Response Protocol Data Unit

Function Code
1 byte

Response Data
252 bytes

Table 3.3: Response Protocol Data Unit

• Function Code: the function code corresponding to the request.

• Data: the response specific data.

Exception Response Protocol Data Unit

Exception Function Code
1 byte

Exception Code
1 bytes

Table 3.4: Exception Response Protocol Data Unit

• Exception Function Code: the function code corresponding to the request + 0x80 (128),
which means the most significant bit set to 1.

• Data: a code specifying the exception.

These Protocol Data Units (PDUs) are used in different MODBUS transactions as explained in the
next section.

3.1.3 MODBUS Transactions

The MODBUS protocol follows a master/slave (client/server) architecture where a master
will request data from the slave. The master can also ask the server to perform some actions. Only
the master can initiate transactions or queries. The other devices, slaves, respond by supplying the
requested data to the master or by taking the action requested in the query. There are two kinds of
transactions:

Chapter 3: Industrial Network Protocols 25

MODBUS Transactions (error free)

Master Slave

1. Initiate request

4. Perform the action

5. Initiate the response

2. Send request
Function code

1 byte

Data Request

252 bytes

6. Send response
Function code

1 byte

Data Response

252 bytes
7. Receive

response

3. Receive request

Figure 3.5: MODBUS transaction (error free)

The master node builds the request message, then sends it to the slave. The slave receives
the request than search the requested data or performs the requested action. After it builds the
response message and sends it to the slave.

MODBUS Transactions (exception response)

Master Slave

1. Initiate request

4. Error Detection

5. Initiate the exception

response

2. Send request
Function code

1 byte

Data Request

252 bytes

6. Send exception

response

ExceptionFunction code

1 byte

Exception Code

1 byte
7. Receive

response

3. Receive request

Figure 3.6: MODBUS transaction (exception response)

26 Chapter 3: Industrial Network Protocols

The master node builds the request message, then sends it to the slave. The slave receives
the request, but an exception occurs while processing the function code. The slaves will return a
function code that is equivalent to the original function code with the most significant bit set to logic
1 and an exception function code which specifying the exception occurred.

3.1.4 MODBUS Data Model

MODBUS transactions always perform a set of actions by reading or writing to a set of
four data types. Table 3.5 describes the four data formats used by the MODBUS application layer.

Primary Table Object Type Type of Comments
Discrete Input Single bit Read-Only can be provided by an

I/O system.
Coils Single bit Read-Write can be alterable by an ap-

plication program.
Input Registers 16-bit word Read-Only can be provided by an

I/O system.
Holding Registers 16-bit word Read-Write can be alterable by an ap-

plication program.

Table 3.5: MODBUS Data Model

The Table 3.1.4 explains the same data models, but from the point of view of the I/O
system:

Inputs
Digital Inputs Discrete Inputs 1 bit
Analog Inputs Input Registers 16 bits

Outputs
Digital Outputs Colis 1 bit
Analog Outputs Holding Registers 16 bits

3.1.5 MODBUS Function Codes

Function code field in the MODBUS ADU is 1 byte field. The MSB(Most Significant Bit)
is 0 for Request and Response and 1 for Exception Response so the function codes are 27 = 128

(0-127). There are three categories of MODBUS Functions codes. They are :

Chapter 3: Industrial Network Protocols 27

• Public Function Codes(1-65,72-100,110-127): well defined function codes, validated by the
MODBUS-IDA.org community, publicly documented, have available conformance test.

• User-Defined Function Codes(65-72,100-110): user can select and implement a function
code that is not supported by the specification.

• Reserved Function Codes: function Codes currently used by some companies for legacy
products and that are not available for public use.

The Table 3.6 shows the public function codes and sub-codes: In the following are presented some
important and illustrative function codes.

0x01 Read Coils (01)

Reads the ON/OFF status of discrete outputs (coils) in the slave.

Request
Function code 1 byte 0x01 01
Starting Address 2 bytes 0x0000-0xFFFF 00-65535
Quantity of coils 2 bytes 0x0001-0x07D0 1-2000

Response
Function code 1 byte 0x01 01
Byte Count 1 bytes n n
Coil Status n bytes values values

n = Quantity of coils / 8, if the reminder is 6= 0 then n=n+1

Exception Response
Function code 0x81 Function Code + 0x80
Exception code 0x01,02,03,04 Exception code

Read Coils Example:

Read Coils 20-36 example.

Request
Function code 0x01 01
Starting Address 0x0013 19
Quantity of coils 0x0013 17

28 Chapter 3: Industrial Network Protocols

01 0x01 Read Coils 1 bit
02 0x02 Read Discrete Inputs 1 bit
03 0x03 Read Holding Registers 16 bits
04 0x04 Read Input Registers 16 bits
05 0x05 Write Single Coil 1 bit
06 0x06 Write Single Register 16 bits
07 0x07 Read Exception Status
08 0x08 Diagnostics

00 (0x00) Return Query Data
01 (0x01) Restart Communications Option
02 (0x02) Return Diagnostic Register
03 (0x03) Change ASCII Input Delimiter
04 (0x04) Force Listen Only Mode
10 (0x0A) Clear Counters and Diagnostic Register
11 (0x0B) Return Bus Message Count
12 (0x0C) Return Bus Communication Error Count
13 (0x0D) Return Bus Exception Error Count
14 (0x0E) Return Slave Message Count
15 (0x0F) Return Slave No Response Count
16 (0x10) Return Slave NAK Count
17 (0x11) Return Slave Busy Count
18 (0x12) Return Bus Character Overrun Count
19 (0x14) Clear Overrun Counter and Flag

11 0x0B Get Comm Event Counter
12 0x0C Get Comm Event Log
15 0x0F Write Multiple Coils 1 bits
16 0x10 Write Multiple registers 16 bits
17 0x11 Report Slave ID
20 0x14 Read File Record
21 0x15 Write File Record
22 0x16 Mask Write Register 16 bits
23 0x17 Read/Write Multiple registers 16 bits
24 0x18 Read FIFO Queue 16 bits
43 0x2B Encapsulated Interface Transport

13 (0x0D) CANopen General Reference Req and Resp PDU
14 (0x0E) Device Identification

Table 3.6: MODBUS function codes

Chapter 3: Industrial Network Protocols 29

Response
Function code 0x01 01
Byte Count 0x03 3
Coil status(byte 1) 27-20 0xCD 1100 1101
Coil status(byte 2) 35-28 0x6B 0110 1011
Coil status(byte 3) 38-36 0x05 0000 0001

The registers values red by the master are:

27 26 25 24 23 22 21 20
1 1 0 0 1 1 0 1
35 34 33 32 31 30 29 28
0 1 1 0 1 0 1 1
* * * * * * * 36
0 0 0 0 0 0 0 1

The Function Code “0x02 Read Discrete Inputs (02)” has exactly the same message
format.

0x03 Read Holding Registers (03)

Reads the 16-bit values of holding registers in the slave.

Request
Function code 1 byte 0x03 03
Starting Address 2 bytes 0x0000-0xFFFF 00-65535
Quantity of Registers 2 bytes 0x0001-0x007D 1-125

Response
Function code 1 byte 0x03 03
Byte Count 1 bytes n n
Register Status n bytes values values

n = Quantity of Registers * 2

Exception Response
Function code 0x83 Function Code + 0x80
Exception code 0x01,02,03,04 Exception code

Read Holding Registers Example:

Read Holding Registers 108-110 example.

30 Chapter 3: Industrial Network Protocols

Request
Function code 0x03 03
Starting Address 0x006B 107
Quantity of registers 0x0003 3

Response
Function code 0x03 03
Byte Count 0x06 6
Register status(byte 1) 108 HI 0x02
Register status(byte 2) 108 LO 0x2B
Register status(byte 3) 109 HI 0x00
Register status(byte 1) 109 LO 0x00
Register status(byte 2) 110 HI 0x00
Register status(byte 3) 110 LO 0x64

The registers values red by the master are: HR[108] = 0x022B = 555, HR[109] = 0x0000
= 0, HR[108] = 0x0064 = 100.
The Function Code “0x04 Read Input Registers (04)” has exactly the same message format.

0x05 Write Single Coil (05)

Write a single coil to either ON or OFF in the slave.

Request
Function code 1 byte 0x05 05
Output Address 2 bytes 0x0000-0xFFFF 00-65535
Output value 2 bytes 0x0000-0xFF00 0-65280

Response
Function code 1 byte 0x05 05
Output Address 2 bytes 0x0000-0xFFFF 00-65535
Output value 2 bytes 0x0000-0xFF00 0-65280

Exception Response
Function code 0x85 Function Code + 0x80
Exception code 0x01,02,03,04 Exception code

Chapter 3: Industrial Network Protocols 31

Write Single Coil Example:

Write coil 173 ON example.

Request
Function code 0x05 05
Output Address 0x00AC 172
Output value 0xFF00 ON (0x0000 is OFF)

Response
Function code 0x05 05
Output Address 0x00AC 172
Output value 0xFF00 ON (0x0000 is OFF)

0x0F Write Multiple Coils (15)

This function code is used to write each coil in a sequence of coils to either ON or OFF.
The request message specifies the coil references to be written. The requested ON/OFF states are
specified by contents of the request data field. A logical ’1’ in a bit position of the field requests the
corresponding output to be ON. A logical ’0’ requests it to be OFF. The normal response returns the
function code, starting address, and quantity of coils written.

Request
Function code 1 byte 0x0F 15
Starting Address 2 byte 0x0000 to 0xFFFF
Quantity of Outputs 2 byte 0x0000 to 0x07B0 0-1968
Byte Count 1 byte n
Outputs Value n byte values values

n = Quantity of Outputs / 8, if the reminder is 6= 0 then n=n+1

Response
Function code 1 byte 0x0F 15
Starting Address 2 byte 0x0000 to 0xFFFF
Quantity of Outputs 2 byte 0x0000 to 0x07B0

Exception Response
Function code 0x8F Function Code + 0x80
Exception code 0x01,02,03,04 Exception code

32 Chapter 3: Industrial Network Protocols

Write Multiple Coil Example:

Request to write a series of 10 coils starting at coil 20.

Request
Function code 1 byte 0x0F 0F
Starting Address 2 bytes 0x0013 19
Quantity of Outputs 2 bytes 0x000A 10
Byte Count 1 bytes 0x02 2
Outputs Value (reg. 27-20) 1 bytes 0xCD 1100 1101
Outputs Value (reg. 29-28) 2 bytes 0x01 0000 0001

Response
Function code 1 byte 0x0F 0F
Starting Address 2 bytes 0x0013 19
Quantity of Outputs 2 bytes 0x000A 10

The binary bits correspond to the outputs in the following way:

27 26 25 24 23 22 21 20
1 1 0 0 1 1 0 1
* * * * * 30 29 28
0 0 0 0 0 0 0 1

0x06 Write Single Register (06)

Write a single 16-bit holding register in the slave.

Request
Function code 1 byte 0x06 06
Register Address 2 bytes 0x0000-0xFFFF 00-65535
Register value 2 bytes 0x0000-0xFFFF 0-65535

Response
Function code 1 byte 0x05 05
Register Address 2 bytes 0x0000-0xFFFF 00-65535
Register value 2 bytes 0x0000-0xFFFF 0-65535

Exception Response
Function code 0x86 Function Code + 0x80
Exception code 0x01,02,03,04 Exception code

Chapter 3: Industrial Network Protocols 33

Write Single Register Example:

Write the value 0x0003 in the holding register 2.

Request
Function code 0x06 06
Register Address 0x0001 1
Register value 0x0003 3

Response
Function code 0x06 06
Register Address 0x0001 1
Register value 0x0003 3

0x10 Write Multiple registers (16)

This function code is used to write a block of contiguous registers (1 to 123 registers) in a
remote device. The requested written values are specified in the request data field. Data is packed as
two bytes per register. The normal response returns the function code, starting address, and quantity
of registers written.

Request
Function code 1 byte 0x10 16
Starting Address 2 byte 0x0000 to 0xFFFF
Quantity of Registers 2 byte 0x0000 to 0x07B0 0-123
Byte Count 1 byte n n
Registers Value n byte values values

n = Quantity of Registers * 2

Response
Function code 1 byte 0x10 16
Starting Address 2 byte 0x0000 to 0xFFFF
Quantity of Registers 2 byte 0x0000 to 0x07B0

Exception Response
Function code 0x90 Function Code + 0x80
Exception code 0x01,02,03,04 Exception code

34 Chapter 3: Industrial Network Protocols

Write Multiple registers Example

Here is an example of a request to write two registers starting at 2 to 00 0A and 01 02 hex.

Request
Function code 1 byte 0x10 16
Starting Address 2 bytes 0x0001 1
Quantity of Registers 2 bytes 0x0002 2
Byte Count 1 bytes 0x04 4
Outputs Value (reg. 01) 2 bytes 0x000A
Outputs Value (reg. 02) 2 bytes 0x0102

Response
Function code 1 byte 0x10 16
Starting Address 2 bytes 0x0001 1
Quantity of Registers 2 bytes 0x0002 2

0x07 Read Exception Status (07)

This function code is used to read the contents of eight Exception Status Coils in a remote
device. Coils can be programmed by the user to hold information about the controller’s status,
for example, “machine ON/OFF”, “heads retracted”, “safeties satisfied”, “error conditions exists”,
or other user defined flags. The normal response contains the status of the eight Exception Status
outputs. The outputs are packed into one data byte, with one bit per output.

Request
Function code 1 byte 0x07 07

Response
Function code 1 byte 0x07 07
Output Data 1 bytes 0x00-0xFF 00-255

Exception Response
Function code 0x87 Function Code + 0x80
Exception code 0x01,04 Exception code

Example:

In the Modicon Controller 484 the 8 status coils are:

Chapter 3: Industrial Network Protocols 35

257 258-264
Battery Status User defined

The request/response to read the exception status coils is:

Request
Function code 0x07 07

Response
Function code 0x07 07
Output Data 0x6D 0110 1101

The coils values red by the master are:

264 263 262 261 260 259 258 257
0 1 1 0 1 1 0 1

In this example, coil 257 is ON, indicating that the controller’s battery is OK.

0x08 Diagnostics (08)

MODBUS function code 08 provides a series of tests for checking the communication
system between a Master device and a Slave, or for checking various internal error conditions within
a slave. The function uses a two bytes sub-function code field in the query to define the type of test
to be performed.

Request
Function code 1 byte 0x08 08
Sub-Function 2 bytes 0x0000-0xFFFF
Data n bytes values values

Response
Function code 1 byte 0x08 08
Sub-Function 2 bytes 0x0000-0xFFFF
Data n bytes values values

Response
Function code 0x88 Function Code + 0x80
Exception code 0x01,03,04 Exception code

36 Chapter 3: Industrial Network Protocols

Sub-function codes

In the following there are some of the most important sub-function codes.

0x00 Return Query Data (00)

The data passed in the request data field is to be returned (looped back) in the response.
The entire response message should be identical to the request.

Response
Sub-Function 2 bytes 0x0000 0
Data n bytes Any Any

Response
Sub-Function 2 bytes 0x0000 0
Data N x 2 bytes Echo Request Data Echo Request Data

0x04 Force Listen Only Mode (04) and 0x01 Restart Communications Option (01)

The function code “Force Listen Only Mode” forces the addressed remote device to en-
ter into the “Listen Only Mode”. When the remote device enters in Listen Only Mode, all active
communication controls are turned off. While the device is in this mode, any MODBUS messages
addressed to it or broadcast are monitored, but no actions will be taken and no responses will be sent.
The only function that will be processed after the mode is entered will be the Restart Communica-
tions Option function (function code 8, sub-function 1). The Figure 3.7 shows the two MODBUS
operational mode and how to pass from the normal “on-line mode” to the “Listen Only Mode”.

Chapter 3: Industrial Network Protocols 37

Online
Mode

Listen Only
 Mode

0x08 / 0x04
Force Listen Only Mode

0x08 / 0x01
Restart Communication Options

Figure 3.7: Listen Only Mode

The remote device could be re-activated by the command “Restart Communications Op-
tion”. When such device receives this command it performs a re-initialization: the remote device
port must be initialized and restarted, and all of its communications event counters are cleared. The
successful completion of the restart will bring the port on-line. This function is the only one that
brings the port out of Listen Only Mode. If the port is currently in Listen Only Mode, no response is
returned, otherwise if the port is not currently in Listen Only Mode, a normal response is returned.
The request message with the function code “Force Listen Only Mode” has the following structure
and response is not required.

Request
Sub-Function 2 bytes 0x0004 04
Data 1 byte 0x0000

The request/response message transaction for the function code “Restart Communications
Option” is shown below. A request data field contents of FF 00 hex causes the port’s Communica-
tions Event Log to be cleared. Contents of 00 00 leave the log as it was prior to the restart. The
response is only a request echo.

Request
Sub-Function 2 bytes 0x0001 01
Data N x 2 bytes 0x0000 or 0xFF00

38 Chapter 3: Industrial Network Protocols

Response
Sub-Function 2 bytes 0x0001 01
Data N x 2 bytes Echo Request Data (0x0000 or 0xFF00)

In the MODBUS slave device there is a flag to identify the current mode of the device.
For example in the Modicon 184/384 the 4thbit of the Diagnostic Register is called “Force Listen
Only Mode” and if it is ON the device is in Listen Only Mode and if it is OFF the device is in On
line Mode.

0x02 Return Diagnostic Register (02)

The diagnostic register is used in a MODBUS device to store some diagnostic information
about the device itself. The contents of the remote device’s 16-bit diagnostic register are returned in
the response.

Request
Sub-Function 2 bytes 0x0002 02
Data 2 byte 0x0000

Response
Sub-Function 2 bytes 0x0002 02
Data 2 byte Diagnostic Register Content

Return Diagnostic Register Example

The diagnostic register is a normal 16-bit register, but each bit has a special diagnostic
meaning. For example in the Modicon 184/384 the Diagnostic Register bits have the following
meanings:

Chapter 3: Industrial Network Protocols 39

0 Continue on Error
1 Run Light Failed
2 T-Bus Test Failed
3 Asynchronous Bus Test Failed
4 Force Listen Only Mode
5-6 Not Used
7 ROM Chip 0 Test Failed
8 Continuous ROM Checksum Test in Execution
9 ROM Chip 1 Test Failed
10 ROM Chip 2 Test Failed
11 ROM Chip 3 Test Failed
12 RAM Chip 5000-53FF Test Failed
13 RAM Chip 6000-67FF Test Failed, Even Addresses
14 RAM Chip 6000-67FF Test Failed, Odd Addresses
15 Timer Chip Test Failed

Counter Function Codes 0x0B(11) - 0x12(18)

The sub-function codes from 0x0B(11) to 0x12(18) are used to return the counter values.
Each counter counts a specific kind of messages. In the MODBUS specification [?] are defied eight
counters. The Table 3.7 shows a list of MODBUS counters.

N. Name Sub-fc Meaning
1 Bus Message Counter 0x0B(11) Quantity of messages that the slave has

detected
2 Bus Communication Error

Counter
0x0C(12) Quantity of CRC errors that the slave

has detected
3 Bus Exception Error Counter 0x0D(13) Quantity of MODBUS exception re-

sponses that the salve has returned
4 Slave Message Counter 0x0E(14) Quantity of messages that the slave has

processed
5 Slave No Response Counter 0x0F(15) Quantity of messages addressed to the

slave for which it returned no response.
6 Slave NAK Counter 0x10(16) Quantity of messages addressed to the

slave for which it returned a Negative
Acknowledge (NAK)

7 Slave Busy Counter 0x11(17) Quantity of messages addressed to the
slave for which it returned a Slave De-
vice Busy exception response

8 Overrun Counter 0x12(18) Quantity of messages addressed to the
slave that it could not handle due to a
character overrun condition

Table 3.7: MODBUS Counters

40 Chapter 3: Industrial Network Protocols

Each Sub-function code form 0x0B(11) to 0x12(18) has the same name: “Return Register
Name” and returns to the master the counter 16-bit value.
The request/response transaction is very simple: the response data field returns the quantity of
messages that the remote device has detected on the communication system since its last restart,
clear counters operation, or power up.

Request
Sub-Function 2 bytes 0x000B 12
Data 1 byte 0x0000

Response
Sub-Function 2 bytes 0x000B 12
Data 1 byte Total Message Count

Example Sub-function code

Here is an example of a request to remote device to Return Query Data. This uses a
subfunction code of zero (00 00 hex in the two-byte field). The data to be returned is sent in the
two-byte data field (A5 37 hex).

Request
Function code 1 byte 0x08 08
Sub-function code 2 byte 0x0000 00
Data 2 bytes 0xA537

Response
Function code 1 byte 0x08 08
Sub-function code 2 byte 0x0000 00
Data 2 bytes 0xA537

3.1.6 MODBUS Exception Code

When a master device sends a request to a slave device it expects a normal response. One
of four possible events can occur from the master’s query:

• If the slave device receives the request without a communication error, and can handle the
query normally, it returns a normal response.

Chapter 3: Industrial Network Protocols 41

• If the slave does not receive the request due to a communication error, no response is returned.
The master program will eventually process a timeout condition for the request.

• If the slave receives the request, but detects a communication error (parity, LRC, CRC, ...),
no response is returned. The master program will eventually process a timeout condition for
the request.

• If the slave receives the request without a communication error, but cannot handle it (for
example, if the request is to read a non-existent output or register), the slave will return an
exception response informing the master of the nature of the error.

The exception response message has two fields that differentiate it from a normal response:

Function Code Field: In a normal response, the slave echoes the function code of the original
request in the function code field of the response. All function codes have a most significant bit
(MSB) of 0 (their values are all below 80 hexadecimal). In an exception response, the slave sets the
MSB of the function code to 1. This makes the function code value in an exception response exactly
80 hexadecimal higher than the value would be for a normal response. With the function code MSB
set, the master’s application program can recognize the exception response and can examine the
data field for the exception code.

Data Field: In a normal response, the slave may return data or statistics in the data field. In an
exception response, the slave returns an exception code in the data field. This defines the slave
condition that caused the exception.

Exception Code Example:

Response
Function Code 1 byte 0x01(Read Coils) 01
Starting Address 2 byte 04A1 1185
Quantity of colis 1 byte 0x01

Exception Response
Function code 0x81 Function Code + 0x80
Exception code 0x02 Illegal Data Address

42 Chapter 3: Industrial Network Protocols

The master device sends a function code (01) “Read Coils”. It requests the status of the
output at address 1185 (04A1 hex). If the output address is non-existent in the server device, the
server will return the exception response with the exception code shown (02). This specifies an
illegal data address for the slave. The Table 3.8 shows the MODBUS exception codes list.

01 Illegal Function The function code received in the query is not an al-
lowable action for the slave. This may be because the
function code is not implemented in the unit selected

02 Illegal Data Address The data address received in the query is not an allow-
able address for the slave. More specifically, the com-
bination of reference number and transfer length is in-
valid.

03 Illegal Data Value A value contained in the query data field is not an al-
lowable value for the slave. This indicates a fault in the
structure of the remainder of a complex request, such
as that the implied length is incorrect.

04 Slave Device Failure An unrecoverable error occurred while the slave was
attempting to perform the requested action.

05 Acknowledge Specialized use in conjunction with programming com-
mands. The slave has accepted the request and is pro-
cessing it, but a long duration of time will be required
to do so. This response is returned to prevent a time-
out error from occurring in the client (or master). The
client (or master) can next issue a Poll Program Com-
plete message to determine if processing is completed.

06 Slave Device Busy Specialized use in conjunction with programming com-
mands. The slave is engaged in processing a long-
duration program command. The master should re-
transmit the message later when the slave is free.

08 Memory Parity Error Specialized use in conjunction with function codes 20
and 21 and reference type 6, to indicate that the ex-
tended file area failed to pass a consistency check. The
slave attempted to read record file, but detected a parity
error in the memory. The master can retry the request,
but service may be required on the slave device.

0A Gateway Path Unavailable Specialized use in conjunction with gateways, indicates
that the gateway was unable to allocate an internal com-
munication path from the input port to the output port
for processing the request. Usually means that the gate-
way is misconfigured or overloaded.

0B Gateway Target Device Failed
to Respond

Specialized use in conjunction with gateways, indicates
that no response was obtained from the target device.
Usually means that the device is not present on the net-
work.

Table 3.8: MODBUS Exception Codes

Chapter 3: Industrial Network Protocols 43

Industrial networks use a variety of specialized fieldbus protocols to accomplish specific
tasks, often with careful attention to synchronization and real-time operation. Each protocol has
varying degrees of inherent security and reliability, and these qualities should be considered when
attempting to secure these protocols. However, because industrial network protocols, in general,
lack sufficient authentication or encryption, all are susceptible to cyber attack using relatively simple
MITM attacks, which can be used to disrupt normal protocol operations or potentially to alter or
otherwise manipulate protocol messages to steal information, commit fraud, or potentially cause a
failure of the control process itself.

Chapter 4

Related works

44

Chapter 4: Related works 45

Critical infrastructures in the last ten years evolves from a close environment to a massive
interconnected environment but speaking from an attacker point of view they constitute a completely
separated world with its own vulnerabilities and attack patterns, different from the traditional ICT
world. Regarding the security of Critical Infrastructure Adam and Byres [7] presented an interesting
high level analysis of the possible threats of a power plant system, a categorization of the typical
hardware devices involved and some high level discussion about intrinsic vulnerabilities of the com-
mon power plant architectures. A more detailed work on the topic of SCADA security, is presented
by Chandia, Gonzalez, Kilpatrick, Papa and Shenoi [8]. In this work, the authors describe two pos-
sible strategies for securing SCADA networks, underlying that several aspects have to be improved
in order to secure that kind of architectures. What is evident in the mentioned article is that the
most evident lack, in SCADA networks, is the communication protocols used in such systems, (e.g.
MODBUS, DNP3 etc.), because they not consider ICT security aspects. Historically, this is due to
the fact that when they were designed, the world of industrial control systems was completely iso-
lated from the public networks, and then ICT based intrusion scenarios were considered completely
negligible.The recent history showed how is possible to perform complex attack against critical in-
stallation by taking advantage of all together security lack in SCADA. The attack was performed
not only to steal information but also to cause damage. Falliere, Murchu and Chien [9] presented
a detailed analysis of the Stuxnet worm. Stuxnet had as its main target industrial control systems
with the goal of modifying the code running in Programmable Logic Controllers (PLCs) in order to
make them deviate from their expected behavior. His deviation would be small and only noticeable
over a longer period of time. In parallel great effort was put by the Stuxnet creators in hiding those
changes from the operators, even imitating legitimate data. Nicholson, Webber, Patel and Janicke
[10] take in consideration fundamental aspects of SCADA system security, citing specific examples
of vulnerabilities that were discovered and patched in real world systems. The authors make an
interesting analysis about both researchers and vendors must propose more sophisticated solution
in order to protect critical installations. Cagalaban and Seoksoo [11] to address the limitations in
SCADA security, presented a vulnerability assessment methodologies to test the existing SCADA
security design and implementation. They provides a relevant analysis of most important issues and
a perspective on enhancing security of these systems. Further, they described key requirements and
features needed to improve the security of the current SCADA networks. Unfortunately in this work
they take in consideration only a really small subset of the possible attack scenarios. SCADA traffic
injection for example is one of the most dangerous attacks concerning ICS and must be considered
in order to have a complete analysis.

46 Chapter 4: Related works

There are currently many types of approaches to improve the security of industrial net-
works. In particular all of then can be grouped in two categories:

1. Industrial Network communications protection: this solutions regards the protection of the
direct communication between actuators and SCADA devices. In particular can be reached by
the introduction of tunnels around SCADA protocols or by other stander security mechanism.

2. Network monitoring: these solutions regard everything concerned the monitoring without
modify the configuration and the actual devices deployed inside industrial networks.

Industrial Network communications protection Some works have been done about the secu-
rity of industrial specialized communication protocols: for example, Majdalawieh, Parisi-Presicce
and Wije-sekera [12] presented an extension of the DNP3 protocol, called DNPsec, which tries to
address some of the known security problems of such Master-slave control protocols (i.e. integrity
of the commands, authentication, non repudiation etc.). Bagaria, Prabhakar, Saquib [13] propose
a mechanism to secure existing and future DNP3 networks. Unfortunately all the approach cited
above presented a solution that require to be implemented in embedded systems with limited com-
puting resources. Hong, Phuong and Lee [15] have made some interesting test about how securing
methods can affect the performance of embedded systems. In this work they propose a different
approach for securing SCADA modbus communication taking in consideration alle the physical
constraints regarding industrial networks such as low computational power and low latency. Lee
and Kim [14] proposed an encryption and decryption method of SCADA traffic. They choose to
encrypt the whole data itself and do not consider the aspect of protocol modification. This approach
unfortunately doesn’t prevent one of the most common issue: replay attack. exchanges keys and
uses those keys to encrypt the data flowing on the network. They used DNPSec as framework.
Shahzad and Musa proposed an Hybrid-based Cryptography: combination of Symmetric AES and
Asymmetric RSA in order to enable confidentiality and authentication. The hybrid cryptosystem is
constructed using two separate cryptosystems: (a) a key encapsulation scheme, which is a public-
key cryptosystem, and (b) a data encapsulation scheme, which is a symmetric-key cryptosystem.
For very long messages encryption/decryption is done by the more efficient symmetric-key scheme,
while the heavy processing public-key scheme is used only to encrypt/decrypt a short key value.
Considering a standard communication between the SCADA server and the RTU and assuming

1. SCADA server fetch the RTU public key from his table and then generates a fresh ses-
sion/symmetric key for the data encapsulation scheme.

Chapter 4: Related works 47

2. SCADA server encrypts the message under the data encapsulation scheme, using the ses-
sion/symmetric key just generated.

3. SCADA server again encrypt the session/symmetric under the key encapsulation scheme,
using RTU public key.

4. SCADA server send encrypted message and session/symmetric key to RTU.

5. RTU fetches the SCADA server record from RTU-key table and uses it private key to decrypt
the session/symmetric contained in the key encapsulation segment. If session/symmetric key
decrypted successful than RTU uses this key to decrypt the message contained in the data
encapsulation segment.

This method reaches some interesting results regarding encryption/decryption operation and total
delay but introduce a single point of failure. All keys, such as symmetric and public, are stored
locally in database using MySQL and all the devices in the industrial networks must be reconfigured
in order to reach the database.

Network monitoring The increasing usage of standard information and communication technolo-
gies (ICT) in SCADA systems enables to use common security. However, as proved in [18], tradi-
tional firewalls and Intrusion detection systems fail in detecting attack pattern specifically designed
for SCADA protocols. The primary limitation of the traditional intrusion detection and cyber secu-
rity monitoring solutions is that they have no knowledge or intelligence of SCADA applications and
protocols. While attacks against a Microsoft IIS web server using the http protocol are addressed
well, an attack on a SCADA control server using the Modbus protocol is not even considered. So
the current systems are excellent against script kiddie hackers and other novices that use exploits
easily available on the Internet; they are not adequate to detect attacks by a cyber terrorist, disgrun-
tled insider, or skilled hacker with knowledge of SCADA systems. Mander, Nabhani, Wang and
Cheung [17] presented a proxy filtering solution aiming at identifying and avoiding anomalous con-
trol traffic. The proposed solution is extremely interesting; however, it does not protect the system
against two particular scenarios:

1. The scenario in which an attacker is able to inject malicious packets directly in the network
segment between the proxy and the remote terminal unit

48 Chapter 4: Related works

2. The scenario in which both the proxy and the master have been corrupted and collaborate in
order to damage the process network.

Only recently a set of ad-hoc rules and preprocessing modules in particular for intrusion detection
systems [19] have been released with the capacity of detecting some attacks to SCADA protocols.
With these rules a Network Intrusion Detection System (NIDS) would be able to identify single
packet-based attacks. Unfortunately SCADA attacks are rarely based on the exploitation of a single
[26] consequently, an attack correlation mechanism would be needed. Gross [27] proposed a mech-
anism for collaborative intrusion detection (selecticast) that uses a centralized server in order to
dispatch among the ID sensors information about activities deriving from suspicious IP addresses.
This approach is useful for providing a broader picture regarding suspicious events happening in
the monitored system. However, it does not provide any kind of specific technique for identifying
high level and complex malicious actions. Ning et al. [28] proposed a model aiming at identifying
causal relationships between alerts on the basis of prerequisites and consequences. The approach
proposed by Cuppens and Miege in [29] adopts pre and postconditions; unfortunately this tech-
nique can generate spurious correlation rules, increasing the noise in the IDS alerting system. The
present work present a complete theoretical and applicative framework, introducing the concept of
critical state ranking prediction. The idea of detecting attacks by analyzing whether the system is
entering into a critical state has some similarities with what has been done in the Fault-Detection
and Diagnosis research field. More in detail, the most similar approach is the model-based fault
detection, which makes use of the so called limit-value-based supervisory functions, for monitoring
measurable variables in search for invalid values or, in case of automatic protection functions, for
triggering counteractions to protect the process. [30] [31] [32] These approaches cannot be adopted
to discriminate between cyber-attacks and accidental faults, and do not provide an easily computable
critical state proximity metric, in this PhD thesis a large section is dedicated to the calculation of
critical state proximity, in particular we propose different methodologies considering computational
performance. Situational awareness is another research field that brings some resemblance with the
work presented in this thesis. Situational awareness is a key component in critical environments
and a large number of academic works have investigated it. [33] Generally, the main drawback of
situation awareness approaches lies in the huge quantity of data to be processed and in the lack of
effective techniques for the subsequent evaluation of events that could be sources of threat. Sig-
nificant work in this area has been surveyed in [34]. Tailoring an intrusion detection system to the
specifics of critical infrastructures as claimed before can significantly improve the security of such

Chapter 4: Related works 49

systems. Considering that SCADA refers to a physical industrial process that follows well known
comportment is another key point for increase detection accuracy. Linda et al presented the first In-
trusion detection System for SCADA based on neural networks [35]. Thorough a learning phase and
two different neural networks algorithms they were able to learn the behavior of the the industrial
network and detect anomaly traffic. This approach is deeply applicable when the SCADA network
is small and heterogeneous. Unfortunately the real world cases show how in this field it’s easy
to find different technologies and protocols. Another issue regards the only use of network traffic
without any use of SCADA protocols parser to better understand the behavior of the system. In this
work we introduce the concept of learning phase based of the knowledge the SCADA protocols.

Chapter 5

Threat Model

50

Chapter 5: Threat Model 51

Control systems have many characteristics that are different from traditional IT systems in
terms of risks and operational priorities thus render unique performance and reliability requirements
besides the use of operating systems and applications being unconventional to typical IT personnel.
[36] Even where security is well defined, the primary goal in the Internet is to protect the central
server and not the edge client. In process control, an edge device, such as PLC or smart drive con-
troller, is not necessarily merited less importance than a central host such as data historian server
[37], as they are on the first frontier facing human lives and ecological environment. These differ-
ences between SCADA systems and IT systems demand an adjusted set of security property goals
and thus security and operational strategies. In the traditional IT community, the set of common
desirable security properties are confidentiality, integrity and availability, or CIA in short. The most
important in ITs world is confidentiality and integrity while in control systems is system availability
and data integrity as result of human and plant safety being its primary responsibility. In this thesis
we prioritize security properties of SCADA systems in the order of its importance and desirability
in industry, especially in utilities sector.

5.1 SCADA security properties

To evaluate the design of a secure information system, NIST compiled a set of engineering
principles for system security. These principles provide a foundation upon which a more consistent
and structured approach to the design, development, and implementation of IT security capabili-
ties can be constructed. However, in light to the difference from control systems and standard IT
systems, its necessary to analyze in a different way the securities proprieties.: [36]

1. Timeliness: explicitly expresses the time-criticality of control systems, a given resulted from
being real-time system, and the concurrencies in SCADA systems due to being widely dis-
persed distributed systems. It includes both the responsiveness aspect of the system, e.g. a
command from controller to a PLC should be executed in real time by the latter, and the
timeliness of any related data being delivered in its designated time period, by which, we
also mean the freshness of data, i.e., the data is only valid in its designated time period. In
a more general sense, this property describes that any queried, reported, issued and dissemi-
nated information shall not be stale but corresponding to the real-time and the system is able
and sensitive enough to process request, which may be of normal or of legitimate human in-
tervention in a timely fashion, such as within a sampling period. In reality, if arrives late or

52 Chapter 5: Threat Model

repeatedly to the specified node, a message is no longer any good, be it a correct command to
an actuator or a perfect measurement from a sensor with intact content. As a matter of fact,
any replay of data easily breaches this security goal. Moreover, this property also implicitly
implies the order of updates among peered sensors, especially if they are observing the same
process or correlated processes. The order of data arrival at central monitor room may play
an important factor in the representation of process dynamics and affect the correct decision
making of either the controlling algorithms or the supervising human operators.

2. Availability : means when any component of a SCADA system, may it be a sensory or servo-
mechanical device, communication or networking equipment, or radio channel; computation
resource and information such as sensor readings and controller commands etc. that trans-
mits or resides within the system should be ready for use when is needed. Most of SCADA
controlled processes are continuous in nature. Unexpected outages of systems that control
industrial processes are not acceptable. This desired property for both SCADA systems con-
trol performance and security goal requires that the security mechanism employed in SCADA
systems shall not degrade the maintainability, operability , and its accessibility at emergency,
of the original SCADA system without those security oriented add-ons.

3. Integrity: requires data generated, transmitted, displayed, stored within a SCADA system be-
ing genuine and intact without unauthorized intervention, including both its content, which
may also include the header for its source, destination and time information besides the pay-
load itself. We can image how disastrous the consequence can be, if a control command is
redirected to an actuator other than its intended receiver or fake or wrong source information
of a sensor measurement being reported to the central controller. The protocol must prevent
an adversary from constructing unauthentic messages, modifying messages that are in transit,
reordering messages, replaying old messages, or destroying messages without detection.

4. Confidentiality: refers to that unauthorized person should not have any access to information
related to the specific SCADA system. Confidentiality in SCADA system assume a lower
priority compared to Integrity. SCADA systems measure and control physical processes that
generally are of a continuous nature with commands and responses are simple and repetitive.
Thus the messages in SCADA systems are relatively easy to predict. Hence confidentiality is
secondary in importance to data integrity. However, the confidentiality of critical information
such as passwords, encryption keys, detailed system layout map and etc. shall rank high

Chapter 5: Threat Model 53

when it comes to security concerns in industry. Applicable reinforcement should be imposed
in this aspect. Also, the information regarding physical content flowed within the control
algorithm may be subject to leaking critical message to side channel attacks. The drastic
difference in the ordering of desired security properties is mostly due to that SCADA systems
are demanded to be real-time operating and continuously functioning.

5. Graceful Degradation: requires the system being capable of keeping the attack impact local
without a further escalating into a full scale or a full system cascading event. Again, all
these desired security properties are not mutual exclusive but closely related. For example,
by breaching integrity, an attacker can change control signals to cause a device malfunction
which might ultimately affect the availability of the network.

5.2 Attacks

Starting from the securities properties defined above we focus the attention on the cyber
attacks against SCADA system, assuming that the basic physical security is provided. In particular,
the SCADA server or Master Terminal Unit must be physically secure, i.e., we assume there are no
direct physical tampering on the server where the main control and estimation algorithms reside.
Brute force physical sabotage such as cutting wires and cables from communication and power
supply are not considered in this thesis. Furthermore, we assume that the PLCs are programmed
securely. Cyber attacks on SCADA system can take routes through Internet connections, intranet or
process network connections and or connections to other networks, to the layer of control networks
then down the level of field devices. More specifically, the common attack vectors are:

• Backdoors and holes in network perimeter

• Vulnerabilities in common protocols[38]

• Attacks on field devices

• Communications hijacking and Man-in-the-middle attacks

• Synchronization Attack

Starting from the vector infections described above we have analyzed attacks that can fall into the
following categories[36].

54 Chapter 5: Threat Model

5.2.1 Attacks in Hardware

Attacker might gain unauthenticated remote access to devices and change their data set
points. This can cause devices to fail at a very low threshold value or an alarm not to go off when it
should. Another possibility is that the attacker, after gaining unauthenticated access, could change
the operator display values so that when an alarm goes off, the human operator is not noticed of it.
This could affect the safety of people in the vicinity of the plant. The main issue in preventing cyber
attacks on hardware is access control.

5.2.2 Attacks on Software

SCADA system employs a variety of software to meet its functionality demands. Also
there are large databases reside in data historians besides many relational database applications used
in cooperate and plant sessions. Data historians contain vital and potentially confidential process
information2.2.1. These data are not only indispensable for technical reasons, but also for business
purposes, such as electricity or gas pricing. The most common implementation flaw in this kind
of software is buffer overflow such as format string, integer overflow and etc. The fact that most
control applications are written in C requires to take extra precaution with this vulnerability. In the
following we will see in details some attacks that direct impact this kind of software.

No Privilege Separation in Embedded Operating System

Most of the embedded Operating System run as a monolithic kernel with applications
implemented as kernel tasks, This means that all tasks generally run with the highest privileges and
there is little memory protection between these tasks. A example is VxWorks. VxWorks was the
most popular embedded operating system in 2005 and claimed 300 million devices in 2006 [39],
which is a platform developed by Wind River Systems and has since been acquired by Intel.

Buffer Overflow

Many attacks that use buffer overflow generate anomalies functionality inside the pro-
gram. Some general methods manipulating function pointer. The effect of such attacks can take
forms such as resetting passwords, modifying content, running malicious code and so on. The
buffer overflow problem in SCADA system takes two fronts. One front is on the workstations and

Chapter 5: Threat Model 55

servers which are similar to standard IT systems. For example, WellinTech KingView 6.53 Histo-
rySvr, an industrial automation software for historian, has a heap buffer overflow vulnerability that
could potentially become the risk of a Stuxnet type attack if not matched [40] . We have also to
consider that many field devices in SCADA systems run for years without rebooting and patching.
Therefore, these SCADA components, especially in legacy networks, are subject to accumulated
memory fragmentation, which leads to program stall.

SQL Injection

Most industrial database applications can be accessed using Structured Query Language
(SQL) statements for structural modification and content manipulation. In light of data historians
and web accessibility in current SCADA systems, SQL injection, one of the top Web attacks, has
a very strong implication on the security of SCADA system. SQL injection is a code injection
technique that exploits a security vulnerability in a website’s software. The vulnerability happens
when user input is either incorrectly filtered for string literal escape characters embedded in SQL
statements or user input is not strongly typed and unexpectedly executed. SQL commands are thus
injected from the web form into the database of an application (like queries) to change the database
content or dump the database information. In the case studied in this paper[41], where the store
procedure in SQL server (see figure 5.1) is enabled by default an attacker still can get into SCADA
system even though two LAN cards are installed. Intentionally malicious changes to databases can
cause catastrophic damage.

5.2.3 Attacks in the communication stacks

In this section we analyze the communication layer. In particular on network layer, trans-
port layer, application layer and the implementation of protocols. As we will see the most simple
and in the same time high impact attack regarding the application layer due to the implementation
protocol. In this thesis we present a malware tailored for SCADA system able to take advantage of
SCADA protocols problems.

Network Layer

1. Idle Scan: blind port scan by using a zombie host, often used as a preparation for attack.
Both MODBUS and DNP3 have scan functionalities prone to such attacks when they are

56 Chapter 5: Threat Model

Figure 5.1: SQL Injection Attack

encapsulated for running over TCP/IP.

2. Smurf : is a type of address spoofing, in general, by sending a continuous stream of modified
Internet Control message Protocol(ICMP) packets to the target network with the sending ad-
dress is identical to one of the target computer addresses. In the context of SCADA systems,
if a PLC acts on the modified message, it may either crash or dangerously send out wrong
commands to actuators.

Chapter 5: Threat Model 57

3. Address Resolution Protocol (ARP) Spoofing/Poisoning: The ARP is primarily used to trans-
late IP addresses to Ethernet Medium Access Control (MAC) addresses and to discover other
connected interfaced device on the LAN. The ARP spoofing attack is to modify the cached ad-
dress pair information. By sending fake ARP messages which contain false MAC addresses
in SCADA systems, an adversary can confuse network devices, such as network switches.
When these frames are falsefully sent to another node, packets can be sniffed; or to an un-
reachable host, DoS is launched; or intentionally to an host connected to different actuators,
then physical disasters of different scales are initiated. Static MAC address is one of the
counter measures. However, certain network switches do not allow static setting for a pair
of MAC and IP address. Segmentation of the network may also be a method to alleviate the
problem in that such attacks can only take place within same subnet.

4. Chain/Loop Attack: In a chain attack, there is a chain of connection through many nodes as
the adversary moves across multiple nodes to hide his origin and identity. In case of a loop
attack, the chain of connections is in a loop make it even harder to track down his origin in a
wide SCADA system.

Transport Layer

SYN flood is to saturate resources by sending TCP connection requests faster than a ma-
chine can process. SCADA protocols, particularly those running over top of transport protocols
such as TCP/IP have vulnerabilities that could be exploited by attacker through methodologies as
simple as injecting malformed packets to cause the receiving device to respond or communicate in
inappropriate ways and result in the operator losing complete view or control of the control device.

Application Layer

Currently, there is no strong security control in protocols used in SCADA systems, such
as DNP3, Modbus,Object Linking and Embedding (OLE) for Process Control (OPC), Inter-Control
Center Communications Protocol (ICCP). Practically there is no authentication on source and data
such that for those who have access to a device through a SCADA protocol, they can often read and
write as well. The write access and diagnostic functions of these protocols are particular vulnerable
to cyber and cyber induced physical attacks. In the next section 5.3 we discuss in details about
Application layer attacks, mainly for two reasons: (a) the potentiality of this kind of attacks in term

58 Chapter 5: Threat Model

of damage is considerably higher than in the other attacks, (b) the other attacks considered in this
section are in already well-known in literature. As claimed at the beginning of this thesis (section
3.1) we focus our attention on Modbus protocol.

5.3 Modbus - Attack

ModBUS is an application layer messaging protocol, positioned at level 7 of the Open
Systems Interconnection(OSI) model (in the case of ModBUS over TCP), that provides client/server
communication between devices connected on different types of buses or networks. Communica-
tions can be (i) query/response type (communication between a master and a slave), or (ii) broadcast
response type where the master send a command to all the slaves . A transaction comprises a single
query and single response frame or a single broadcast frame. A Modbus frame message contains
the address of the intended receiver, the command the receiver must execute and eventually the data
needed for the execution of such command. Modbus/TCP basically embeds a Modbus frame into a
TCP frame (see details in section 3.1). The ModBUS protocol, as the DNP3 and the ProfiBUS pro-
tocol, have been conceived when the subject of ICT security was not relevant for the process control
systems. For that reason, when designed, aspects as Integrity, Authentication, no-repudiation etc.
were not taken into consideration. More in details, such protocols presents security problems:

1. Do not apply any mechanism for checking the integrity of the command packets sent by a
master to a slave.

2. Do not perform any authentication mechanism between master and slaves.

3. Do not apply any anti-repudiation mechanisms to the master.

In the next section, in the light of such considerations, we will present some attack scenarios which
will take advantage of such lacks.

5.3.1 Experimental environment

In contrast to alternative works which use modeling approaches to reconstruct the under-
lying network, thanks to a collaboration project with a Power Company, we recreated in a protected
environment, as shown in 5.2, the architecture of a typical power plant plus a set of additional
infrastructures supporting the implementation of our tests in a systematic and scientific way.

More in detail, such an environment is constituted by:

Chapter 5: Threat Model 59

Figure 5.2: High level laboratory environment schema

Power Plant Backbone: it is composed of all the network devices which al- low the different sub-
net of the Power Plant to communicate(3Layer switches, Process Network Firewall, Routers,
Internet Firewall.

Field Network: it is the network interconnecting the sensors and the actu- ators which directly
interact with the Power Plant Electro-Mechanic devices.

Process Network: this network hosts all the SCADA systems. By using these systems, the Plant
Operators manage the whole Power Plant, sending control commands to such sensors in the
Field Network and reading Plant Measurements and Parameters.

Data Exchange Network: this area hosts a set of data exchange servers, which receive data from
the process network and make them available to the operators which work in the Power Plant

60 Chapter 5: Threat Model

Intranet.

Power Plant Intranet: this is the branch of the Company network that provides intranet services
to the Power Plant Operators. It is used not only in order to conduct office work, but also to
keep remotely under control the Power Plant, by accessing, through a VPN(Virtual Private
Network) authentication, the DMZ(Demilitarized Zone) and the Process Network of a target
Power Plant.

Public Network: this network simulates the rest of the world (i.e. Internet). In the latest years,
as stated before, several critical infrastructures have started to use, in order to provide new
services, the public network as communication channel. For that reason, the simulation of
such network, is extremely important in order to analyze possible new attack profiles.

Observer Network: its a network of sensors which is used in order to gather information about
the system during the experiments.

Horizontal Services network: it provides the usual feature of backup, disaster recovery etc.

Vulnerability and Attack repositories systems: it contains a set of DataBases and analysis sys-
tem allowing to analyze the collected data. The whole laboratory environment reproduce all
the relevant characteristics of a typical power plant; for example, the windows domain of the
Power Plant Intranet, has the same identical security and domain policies of a real one which
we had the chance to analyze during our research activity, the Process firewall is the same used
by default in the power plants of the power company with which we have collaborated, with
the same filtering rules and configurations, etc. Such complex testing architecture, has has
allowed us to test attack scenario too complex to be represented in a simulated environment
and too heavy to be realized in a production facility.

5.3.2 Scada Malware and Attack Scenarios

Starting from the considerations we have made in previous section we identified two pos-
sible scenarios in which a tailod made malware could be effective and create serious damages to a
critical control system. Since our experimental laboratory is at the moment tailored for recreating
the environment of a Power Plant, in the following, we will consider the effects of our attack tests
on such kind of systems. As we describe in the following, we concentrate our attention on a par-

Chapter 5: Threat Model 61

ticular SCADA protocol, ModBUS, and the malwares we have developed, take advantages of some
conceptual and architectural vulnerabilities of such protocol.

ModBUS Malware DoS Scenario

Originally ModBus was conceived in order to be used over serial cable. In such a context,
clearly, the risk of external interferences on the communication channel between the master and
the slave, were considered practically negligible (at least if we do not consider electromagnetic
interferences and physical interruption of the cables). In other words, under such constraints, this
closed systems was considered strongly reliable. The porting of the ModBUS protocol over TCP has
obviously introduced new layers of complexity in managing the reliable delivery of control packets
in an environment strongly real time and, moreover, has opened a new possibility for attackers really
motivated in causing damages to the target system.

Attack scope The scope of DoS attack is to desynchronize the communication between Master
and Slave and, if possible, completely avoid the communication stream between Master and Slaves.
In the light of what presented before, in order to damage the control communication stream, it
should be sufficient to per- form some sort of packet-storm against the Master or the set of slaves
of the control system. A generic packet storm generator could be normally identified by some
Network Intrusion Detection Sensor, or by some firewall anomaly de- tection engine. Ideally, if the
packet-storm recreates the same traffic shape of ModBUS traffic, it should be possible to circumvent
the monitoring systems, while reaching the scope of avoiding communication between master and
slaves.

Attack implementation We have implemented a particular kind of malware, which, once launched,
tries to discover the ModBus slaves connected to the same network of the infected machine, and
which starts to send them a huge set of ModBUS packets, trying to overload their network band-
width. More in detail, this malware is composed of the following logical unit:

• A Packet builder, which forges in the proper manner ModBUS over TCP packets.

• A Discovery engine, which explores the network in order to identify the IP addresses of the
Modbus slaves.

62 Chapter 5: Threat Model

• A Packet deliverer, which sends in an optimized way the previously forged packets to the
target slaves, in order to saturate the bandwidth as soon as possible.

Such a malware, without a proper infection trigger is only an optimized Mod- bus packet generator
which have as unique scope sending out a huge number of packets to all the slaves it is able to
identify. Such a malware could be effective only when the attacker is able to launch directly the
malicious code on a PC connected directly to the field or to the process network of a SCADA system.
This scenario is reasonably acceptable (for example the attacker could be simply a disgruntled
employee or operator having a direct access to the control system devices), however it will rarely be
the first attack option for an internal attacker. Here below we describe other scenarios which can be
used instead by an external attacker.

• E-mail based spreading Scenario: Some studies regarding the security policies usually im-
plemented in some Power Companies [42] show how the patching operations of PCs or em-
bedded systems in power plant process networks are e-mail based. In other words, a power
plant operator receives an e-mail from the ICT-Security team, containing the patching instruc-
tion and the patch to be installed; in such scenario the attacker, after gathering information
about the hierarchical organization of the ICT security Team, and about the process operators,
forges an e-mail identical to the one usually sent for updating purposes (identical not only in
the content, but also in term of headers), having attached the previously described malware
instead of a normal patch. In such e-mail the attacker asks the operator to install the attached
patch on a target Master, or on a PC in the same network. Once installed, the malware will
start to deliver massive amount of ModBus packet to the slave, since master and slave will be
desynchronized.

• Through Phishing Infection: Phishing attacks are typically mounted in one of the following
ways: by means of a faked e-mail, displaying a link which seems to point to a legitimate site,
but actually linking to a malicious website; or, by poisoning the victims DNS server, thus
making it possible to transparently connect to the malicious server. Usually the scope of such
attacks is to steal the user credentials. We modified slightly such scenario: In our case in
fact, the fake web-server contains a set of malicious scripts allowing to download and execute
our ModBUS malware on the local machine from which the web-page has been accessed.
The scenario develops as follows: (a) By the use of a fake e-mail or by poisoning the DNS
of the process network, an operator is forced to visit an ad-hoc created web-site (b) A set of

Chapter 5: Threat Model 63

scripts on the web-site, using some well known vulnerabilities of Microsoft Internet Explorer,
download and execute of the operator PC the ModBUS malware (c) the legal ModBUS traffic
is interrupted.

• ModBUS DOS Worm: A worm is a very effective technique for launching DoS attacks on
Modbus networks. We have used MAlSim [43] [44] to create worms similar to Slam- mer,
Nimda and Code Red; however, the payloads of these worms carry code that targets Modbus
networks. When- ever the worm infects a new machine in a Modbus network, it attempts to
spread using the resources of the new host and then executes the Modbus DoS code. This
Modbus worm is the first completely independent DoS malware that targets SCADA sys-
tems. The worm, initially located on the Internet, infects personal computers in the corporate
intranet. Specifically, the worm exploits all infected personal computers with open VPN
connections to the power plant process network (these connections are commonly used to
perform remote management operations). The worm then enters through the VPN and infects
personal computers in the process network. Finally, the worm targets Modbus slaves in the
process network by sending Modbus messages that disrupt masterslave communications.

Experimental results The following tables present the communication delays introduced in mas-
ter/slave communications by the Modbus DoS malware. The first table presents the effects for a
master scan rate of 500 ms and a connection timeout of 1200 ms. The second tables shows the
results for a master scan rate of 200 ms and a connection timeout of 500 ms. The Modbus DoS
worm is clearly dangerous. This is because the worm could simultaneously infect multiple comput-
ers in the process network, increasing the average bandwidth consumption and speeding up network
degradation. Our testbed closely models the configuration and countermeasures that are usually im-
plemented in a power plant. These include the operating system versions, firewall configurations,
anti-virus software and security policies. The operating systems of SCADA servers in a power plant
are rarely patched to avoid the risk of conflicts with SCADA applications software [45]. Also, the
process of updating anti-virus signatures is much slower than that in a typical corporate intranet
environment; many SCADA servers have old versions of operating systems for which anti-virus
software is not avail- able [3]. All the attack scenarios discussed above were executed successfully.
The main effect of each attack was to disrupt masterslave communications. Since the slaves usu-
ally have their own on-board logic, an interruption in the command and data flow generally has
negligible effects under normal operating conditions. However, if an incident occurs (e.g., un- ex-

64 Chapter 5: Threat Model

pected closing of a valve), the master would be unable to discover the problem because it does not
receive data from the slaves. Similarly, it would not be possible to take the appropriate countermea-
sures if an anomaly or fault were to occur in a control device (e.g., PLC/RTU) because the master
would be unable to send the required commands to the slaves. Thus, a disruption in masterslave
communications could lead to a potentially disastrous situation in a power plant. Our laboratory
testbed incorporates traditional intrusion detection sensors, but these sensors are incapable of de-
tecting Modbus attacks. Of course, the detection capabilities could be enhanced by introducing
Modbus-specific rules (e.g., identifying messages with rarely used or anomalous function codes).
However, these function codes correspond to valid Modbus commands that are used for diagnostic
and maintenance purposes. Consequently, it would be difficult to distinguish between false positives
and real attacks.

Modbus worm attack

As mentioned above, the Modbus protocol does not incorporate authentication and in-
tegrity mechanisms. When a master sends a message to a slave, the slave executes the command
without checking the identity of the sender and the integrity of the message contents. Thus, any

Chapter 5: Threat Model 65

attacker with access to the network segment hosting the slaves could send forged Modbus TCP
messages that force the slaves to execute unauthorized operations, potentially compromising the
system. In the case of a critical infrastructure component such as a power plant, the potential dam-
age could be catastrophic.

Attack scope The goal of the Modbus worm attack is to seize control of the slaves in the process
network by exploiting the lack of authentication and integrity mechanisms in the Modbus protocol.

Attack implementation The Modbus worm we implemented is a variant of the Modbus DoS
worm presented in Section 5.3.2. After discovering the slaves connected to the same network as the
infected machine, the worm sends the slaves a set of correlated Modbus messages with the goal of
driving the system to a critical state. The Modbus worm has the following components:

• Packet builder: This component fabricates Modbus TCP packets.

• Discovery engine: This component explores the network in order to identify Modbus slaves.
The information gathered is sent to the strategy and analysis module. The discovery engine
is similar to the one presented in the previous section.

• Strategy and analysis module: This module uses the information gathered by the discovery
engine and built-in heuristics to identify the appropriate attack strategy. The current proof-of-
concept strategy is simple; however, it is possible to enhance the module to create complex,
coordinated attacks that produce the maximum damage.

• Packet deliverer: This component sends fabricated messages to the targeted slaves.

The Modbus worm needs an infection trigger to enter the process network of the targeted SCADA
system and do its damage.

Experimental results The Modbus worm was tested in our power plant testbed. Three worm
implementations of increasing complexity were developed using MAlSim. In all cases, the worm
was able to identify and take control of the slaves.

• Worm Implementation 1: This worm uses Modbus messages with function code 15 to force
each coil in a slave to the ON or OFF state. The coil addresses range from 0 to 65,535.

66 Chapter 5: Threat Model

Closing or opening the coils can adversely impact the SCADA system and, consequently, the
industrial process being controlled.

• Worm Implementation 2: This worm targets the input registers of a Modbus slave. It uses
Modbus messages with function code 16 to write arbitrary data to a block of contiguous
input registers (1 to 123). Once again, this can adversely impact the SCADA system and the
industrial process being controlled.

• Worm Implementation 3: This worm uses a sequence of two Modbus messages. First, it
sends a message with function code 01 to read the state of a sequence of coils in a targeted
slave. Next, it sends a message with function code 15 to invert the values of the sequence of
coils (Worm Implementation 1). This attack modifies the coil configuration completely.

Our tests highlight the fact that, in order to implement an effective attack on SCADA systems,
the malware developer should know at least the high-level details of the system architecture. This
knowledge, coupled with the ability to send commands to slaves, enables the malware to potentially
seize control of a SCADA system. For example, in the case of a power plant, it would be possible to
control the valves that regulate the pressure in a steam cycle power generator, increasing the pressure
to a dangerous level or interfering with energy production, potentially causing a blackout. In the case
of a pipeline, it would be possible to reduce or block the delivery of gas, oil or water. Furthermore,
it is clear that general purpose intrusion detection systems would not be effective. As discussed in
the previous scenario, all the commands sent by the malware are legitimate commands. This makes
it a priority to develop intrusion detection systems that are cognizant of SCADA protocols, traffic
patterns and the operational context.

5.4 Conclusion

The interconnection and integration of ICT systems with SCADA systems in industrial
facilities expose critical infrastructure assets to serious threats. In this chapter we show the possible
attacks and we analyzed the consequence of each single attack. Starting from the security property
described in the section5.1 our experimental tests have shown that the most dangerous attack for a
SCADA system is a malware tailored for SCADA protocols that was able to completely circumvent
traditional security mechanisms by adopting ad hoc infection and attack strategies, enabling the
malware to disrupt or even seize control of vital sensors and actuators.

Chapter 5: Threat Model 67

Unfortunately, the traditional ICT security countermeasures employed in corporate envi-
ronments are incapable of dealing with SCADA-protocol-specific attacks. Integrity and confiden-
tiality are critical security proprieties concerning SCADA systems. In the next chapter we focus our
attention on solution regarding signature and authentication and we propose also a new Intrusion
Detection Approach able to detect and mitigate anomalous behavior.

Chapter 6

Secure Modbus

68

Chapter 6: Secure Modbus 69

Most SCADA protocols in use today were designed decades ago, when the technologi-
cal infrastructure and threat landscape were quite different from how they are today. For example,
Modbus was originally published in 1979 for a multidrop network with a master/slave architec-
ture. Because Modbus networks were isolated and free from security threats, key aspects such as
integrity, authentication and non-repudiation were not taken into consideration in the design of the
protocol. In order to guarantee integrity in the next section we focus on Modbus protocols and
we propose a new version of this protocol. We do not consider the confidentiality requirement for
Modbus messages for two reasons. First, enforcing confidentiality does not mitigate any of the at-
tack scenarios presented above. Second, confidentiality is generally implemented using encryption,
which is expensive and introduces considerable overhead that can impact real-time performance.

6.1 Modbus Vulnerabilities

The transportation of Modbus messages using TCP introduces new levels of complexity
with regard to managing the reliable delivery of control packets in a process control environment
with strong real-time constraints. In addition, it provides attackers with new avenues to target indus-
trial systems. Modbus TCP lacks mechanisms for protecting confidentiality and for verifying the
integrity of messages sent between a master and slaves (i.e., it is not possible to discover if the orig-
inal message contents have been modified by an attacker). Modbus TCP does not authenticate the
master and slaves (i.e., a compromised device could claim to be the master and send commands to
the slaves). Moreover, the protocol does not incorporate any anti-repudiation or anti-replay mecha-
nisms. The security limitations of Modbus can be exploited by attackers to wreak havoc on industrial
control systems. Some key attacks are:

• Unauthorized Command Execution: The lack of authentication of the master and slaves
means that an attacker can send forged Modbus messages to a pool of slaves. In order to
execute this attack, the attacker must be able to access the network that hosts the SCADA
servers or the field network that hosts the slaves. In the previous chapter [38] we show that
the attack can be launched by creating malware that infects the network and causes malicious
messages to be sent automatically to the slaves.

• Modbus Denial-of-Service Attacks: An example attack involves impersonating the master
and sending meaningless messages to RTUs that cause them to expend processing resources.

70 Chapter 6: Secure Modbus

• Man-in-the-Middle Attacks: The lack of integrity checks enables an attacker who has access
to the production network to modify legitimate messages or fabricate messages and send them
to slave devices.

• Replay Attacks: The lack of security mechanisms enables an attacker to reuse legitimate
Modbus messages sent to or from slave devices.

The best way to address the security threats is to solve them at their origin by attempting to repair
the security holes in the Modbus protocol. But such a solution is difficult to implement because
it requires significant changes to the control system architecture and configuration. Instead, we
adopt a practical approach in which a small number of security mechanisms are introduced into the
protocol to protect against the attacks described above.

6.2 Secure Modbus Protocol

A communications protocol is considered secure if it satisfies security requirements such
as confidentiality, integrity and non-repudiation. In other words, a secure Modbus protocol should
guarantee that:

• No unauthorized entity is allowed to access the content of a message.

• No unauthorized entity is allowed to modify the content of a message.

• No entity is allowed to impersonate another entity.

• No entity is allowed to negate a performed action.

• No entity is allowed to reuse a captured message to perform an unauthorized action.

The original Modbus Serial protocol defines a simple protocol data unit (PDU), which is indepen-
dent of the underlying communication layer (Figure 6.1). The mapping of Modbus messages to
specific buses or networks introduces additional fields in an application data unit (ADU). The Mod-
bus TCP protocol introduces a dedicated Modbus application protocol (MBAP) header. The Slave
Address field in a Modbus Serial message is replaced by a one-byte Unit Identifier in the MBAP
Header. Also, the error checking field is removed and additional length information is stored in
the MBAP header to enable the recipient to identify message boundaries when a message is split

Chapter 6: Secure Modbus 71

into multiple packets for transmission. All Modbus requests and responses are designed so that the
recipient can verify that the complete message is received. This is accomplished by simply refer-
ring to the function code for function codes whose Modbus PDUs have fixed lengths. Request and
response messages with function codes that can carry variable amounts of data incorporate a field
containing the byte count.

Figure 6.1: Modbus Application Data Unit

The proposed Secure Modbus protocol is intended to satisfy the integrity security re-
quirements defined in the chapter 5.1. in particular we present a details characteristic that must be
implemented in Secure Modbus to guarantee the integrity:

• Authentication: The integrity mechanism described above does not prevent an attacker from
creating a malicious Modbus packet, computing its SHA2 digest, and sending the malicious
packet and the digest to the receiver. To address this issue, the Secure Modbus protocol
employs an RSA-based signature scheme [46]. Specifically, the originator of the Secure
Modbus packet computes the SHA2 digest, signs the digest with its RSA private key, and
sends the packet and the signed digest to the receiver. The receiver verifies the authenticity of
the digest (and the packet) using the senders public key. Thus, the receiver can ensure that the
Secure Modbus packet was created by the purported sender and was not modified en route.

• Non-Repudiation: The RSA-based signature scheme also provides a non-repudiation mecha-
nism only the owner of the RSA private key could have sent the Secure Modbus packet.

• Replay Protection: The SHA2 hashing and RSA signature schemes do not prevent an attacker
from re-using a sniffed Modbus packet signed by an authorized sender. Thus, the Secure
Modbus protocol needs a mech- anism that enables the receiver to discriminate between a
new packet and a used packet. This is accomplished by incorporating a time stamp (TS)
in the Secure Modbus application data unit (Figure 6.2). The time stamp is used by the

72 Chapter 6: Secure Modbus

receiver in combination with an internal time win- dow to check the freshness of the received
packet. Our initial solution employed a simple two-byte sequence number and provided all
Modbus devices with time windows of limited size to verify freshness. However, this solution
was neither elegant nor completely secure. Consequently, our current implementation uses
NTP time stamps that facilitate the evaluation of freshness with high precision. Of course,
employing NTP time stamps requires an NTP server in the SCADA architecture to provide a
reliable clock for all communicating devices.

Figure 6.2: Secure Modbus application data unit

The Secure Modbus protocol satisfies the minimum requirements of a secure protocol. However, it
is just as important to ensure that the protocol can be implemented efficiently in real-world SCADA
environments. Secure Modbus can be readily deployed in SCADA systems with adequate comput-
ing resources, network bandwidth and modern, upgradeable slave devices. However, many critical
infrastructure assets employ decades-old equipment; therefore, it is important to ensure that legacy
systems can be retrofitted (at low cost) to support Secure Modbus. We designed the Modbus Secure
Gateway to facilitate the deployment of Secure Modbus in legacy SCADA environments. Figure
6.3 presents a schematic diagram of the Modbus Secure Gateway. It is a dedicated multi-homed
gateway that hosts a TCP/IP interface connected to the process network and a set of point-to-point
TCP or serial links connected to legacy slaves. The Modbus Secure Gateway operates as follows:

• When it receives a packet on the process network interface:

– It accepts only authenticated Secure-Modbus over TCP traffic from the allowed masters

– It extracts the Modbus packet from the Secure-Modbus packet.

– It forwards the packet to the proper slave using the related point-to-point link (serial or
tcp).

• When it receives a packet on one of the point-to-point links connected with a slave:

Chapter 6: Secure Modbus 73

Figure 6.3: Modbus Secure Gateway

– It builds a Secure-Modbus packet containing the received original Modbus packet

– It signs the packet’s digest with the private key associated to the related slave

– It forwards the new packet to the proper master through its process network interface

Obviously, since the MS-GW constitutes a “single point of failure” in the SCADA architecture, it
should be installed only when the “pure Secure Modbus” implementation is not feasible. Next, we
summarize the steps involved in sending and verifying a Secure Modbus request message:

1. The Master in accordance with the protocol specifications composes the Modbus request(Mreq)
with the time stamp and the serial slave address.

2. The Master calculates the Modbus request digest and authenticates it with his private key
PKm and sends it to the Slave (or to the MSGW)

C = [TS|Modbus]{SHA2(TS|Modbus)}pKm (6.1)

3. The slave (or the MSGW) validates the Modbus request with the Master’s public key (SKm)

Mreq = Dec {C, SKm} (6.2)

74 Chapter 6: Secure Modbus

4. If the packet has been delivered to a MSGW, it reads the Unit Identifier in the MBAP header
and sends the MosBUS request to the right Slave.

Note that after verifying that the request is genuine, the Modbus Secure Gateway reads the unit
identifier in the MBAP header and sends the Modbus request to the addressed slave. Similar steps
are involved when a slave sends a response to the master.

6.3 Secure Modbus Implementation

The basic communication layer between the operating system and the Modbus device is
guaranteed by a socket (Level1), which therefore is the basic building block for communication. A
Modbus communication is executed by sending and receiving data through sockets. The TCP/IP
library provides only stream sockets using TCP and a connection-based communication service.
The Sockets are created via the socket () function, which returns a number that is then used by the
creator to access the socket. In Figure 6.4 it is possible to the the Highe level architecture of the
developed Secure Modbus Module.

The main functions of the TCP/IP level are to manage the communication establishment
and ending, and to manage the data flow upon established TCP connections. Through the TCP
stream adapter we can set up all the connection parameters for adapting its behavior to the con-
straints of the system:

• KEEP-ALIVE: client-server applications uses KEEPALIVE to detect inactivity in order to
close a connection or to find some communication problem. Shorter timer can cause good
connections to be dropped.

• TCP-NODELAY: in order to have a real-time system

• TIME OUT CONNECTIONS: the default time limit before dropping the communicating and
establishing a TCP Connection is set to 75 seconds. This default value should be adapted to
the real time constraint of the particular application of each implementation case.

The Secure Modbus module is composed of four main parts:

• Modbus Stream Adapter: It extracts the Secure-Modbus packet contained in the TCP pay-
load by sending it to the RSA enc/dec, which will verify the authenticity of the SHA digest.

Chapter 6: Secure Modbus 75

Figure 6.4: High level architecture of the Secure-Modbus Module

The same module, will then send the SHA Digest to the SHA2 validator, to verify the in-
tegrity of the packet, and finally it will send the time-stamp to the TS Analyser to verify the
freshness of the received command. If all these conditions are satisfied, the module will send
the Modbus packet to the related PLC application.

• RSA enc/dec: It utilizes the public key of the sender to verify the digest authenticity and the
private key of the sender to sign the hash message.

• SHA2 validator: It calculates and validates the hash of the Modbus request/response.

• Modbus ADU Builder: It builds and manages the Modbus Application Data Unit, com-
municating with the SHA module and with the RSA enc/dec module for authenticating the

76 Chapter 6: Secure Modbus

packets.

• TS Analyser: It verifies the time stamp validity by using alternatively a time-window or an
NTP service (optional).

6.3.1 Experimentals results

We conducted two experiments to evaluate the performance of the Secure Modbus pro-
tocol. The first experiment examined the latency resulting from the use of the SHA2 hashing and
RSA-based signature schemes. The second examined the increased size of Secure Modbus packets
for various function codes.

Modbus Secure Modbus
Scan Rate 500ms Scan Rate 500ms
Connection Time Out 1200ms Connection Time Out 1200ms
Latency 26ms Latency 27ms

Table 6.1: Communication latency with Modbus and Secure Modbus with a master scan rate of
500ms and a connection timeout of 1200ms

Modbus Secure Modbus
Scan Rate 200ms Scan Rate 200ms
Connection Time Out 500ms Connection Time Out 500ms
Latency 29ms Latency 31ms

Table 6.2: Communication latency with Modbus and Secure Modbus with a master scan rate of
200ms and a connection timeout of 500ms

Table 6.3.1 compares the communication latency for Modbus TCP and Secure Modbus.
The first set of results, corresponding to a master scan rate of 500 ms and a connection timeout of
1,200 ms, show a latency of 26 ms for Modbus and 27 ms for Secure Modbus a negligible difference.
A negligible latency difference of 2 ms (29 ms for Modbus TCP and 31 ms for Secure Modbus) is
also observed for a master scan rate of 200 ms and a connection timeout of 500 ms. Table 6.3.1
compares the size of Modbus TCP and Secure Modbus packets for four function codes. Secure

Chapter 6: Secure Modbus 77

Function Modbus TCP/IP Sec Modbus Overhead
Write Coil (0x05) 11 bytes 43 bytes 291 %
Write Reg. (0x06) 12 bytes 44 bytes 267 %
Write Multiple coils (0x0F) 260 bytes 292 bytes 12 %
Write Multiple reg. (0x10) 260 bytes 292 bytes 12 %

Table 6.3: Modbus/TCP and Secure Modbus/TCP packets size, tested with different functions

Modbus packets are larger than the corresponding Modbus TCP packets. However, the increased
size is not a significant issue even for SCADA networks with low bandwidth.

6.4 Conclusion

Secure Gateway facilitates the deployment of Secure Modbus in legacy SCADA environ-
ments. While the new protocol helps protect against several attacks, it does not address scenarios
where an attacker seizes control of a master and sends malicious Modbus messages to slave devices,
or where an attacker captures the master units private key and forges malicious Modbus messages
that are signed with the stolen key. To address the first attack scenario, will be presented in the nedt
chapter a new Intrusion Detection System (IDS) that will identify suspect Modbus messages. Our
solution to the second scenario is to use a trusted computing platform to protect key rings.

Chapter 7

Intrusion Detection for Industrial
control systems

78

Chapter 7: Intrusion Detection for Industrial control systems 79

In general, security can be achieved in three phases: prevention, detection, and correction.
Prevention is the most ideal solution, but unfortunately the history shows us it cant be achieved per-
fectly. Even so, it is a very bad idea to entirely rely on prevention. Its because in case an attacker
somehow finds a way to make a security whole on prevention, the cost for fixing the vulnerability
and restoring the system back to normal condition must be incredibly expensive in the later phase
if there is no preparation for that especially considering critical environments as SCADA systems
are. Therefore, security protection systems are better off having ready-to-go correction mechanisms
as well. By well-designed correction mechanisms, compromised or malfunctioning systems can be
quickly repaired and restored to normal condition. Prevention is effective before successful intru-
sions. Correction is active after successful intrusions. However, once successful attacks eventually
manage to get through prevention, its a matter of time that the whole system is attacked, compro-
mised, and malfunctioned. Thus, we need to have an interim stage such as detection phase, which
is positive during intrusion. By a detection mechanism, even if prevention fails to stop intrusion, a
protected system can be at least aware of being attacked so that the system can take some actions to
reduce the probability of propagating damage and loss.

7.1 Intrusion Detection Techniques

Intrusion detection is the process of monitoring the events occurring in a computer sys-
tem or network and analyzing them for signs of possible incidents, which are violations or immi-
nent threats of violation of computer security policies, acceptable use policies, or standard security
practices. Incidents have many causes, such as malware (e.g., worms, spyware), attackers gaining
unauthorized access to systems from the Internet, and authorized users of systems who misuse their
privileges or attempt to gain additional privileges for which they are not authorized. Although many
incidents are malicious in nature, many others are not; for example, a person might mistype the ad-
dress of a computer and accidentally attempt to connect to a different system without authorization.
IDS technologies use many methodologies to detect incidents:

• Signature-based

• Anomaly-based

• Stateful protocol analysis

80 Chapter 7: Intrusion Detection for Industrial control systems

Most IDS technologies use multiple detection methodologies, either separately or integrated, to
provide more broad and accurate detection.

7.1.1 Signature-based

A signature is a pattern that corresponds to a known threat. Signature-based detection[47]
is the process of comparing signatures against observed events to identify possible incidents. Ex-
amples of signatures are as follows:

• A telnet attempt with a username of root, which is a violation of an organizations security
policy

• An e-mail with a subject of Free pictures! and an attachment filename of freepics.exe, which
are characteristics of a known form of malware

• An operating system log entry with a status code value of 645, which indicates that the hosts
auditing has been disabled.

Signature-based detection is very effective at detecting known threats but largely ineffective at de-
tecting previously unknown threats, threats disguised by the use of evasion techniques, and many
variants of known threats. For example, if an attacker modifies the malware in the previous ex-
ample to use a filename of freepics2.exe, a signature looking for freepics.exe would not match it.
Signature-based detection is the simplest detection method because it just compares the current unit
of activity, such as a packet or a log entry, to a list of signatures using string comparison operations.
Signature-based detection technologies have little understanding of many network or application
protocols and cannot track and understand the state of complex communications. For example, they
cannot pair a request with the corresponding response, such as knowing that a request to a Web
server for a particular page generated a response status code of 403, meaning that the server refused
to fill the request. They also lack the ability to remember previous requests when processing the cur-
rent request. This limitation prevents signature-based detection methods from detecting attacks that
comprise multiple events if none of the events contains a clear indication of an attack. In applying
a signature-based IDS to SCADA, the attack signature database must have different characteristics
than signatures in an IT-oriented database. In particular, the signatures have to be correlated with
SCAD Aprotocols such asFoundation fieldbus, Modbus, Profinet, ControlNet, and so on. Typical
SCADA IDS signature components include IP addresses, transmitted parameters, and protocols.

Chapter 7: Intrusion Detection for Industrial control systems 81

7.1.2 Anomaly-based

Anomaly-based detection is the process of comparing definitions of what activity is con-
sidered normal against observed events to identify significant deviations. An IDS using anomaly-
based detection has profiles that represent the normal behavior of such things as users, hosts, net-
work connections, or applications. The profiles are developed by monitoring the characteristics of
typical activity over a period of time. In particular regarding the network the important phase in
defining the network behavior is the IDS engine capability to cut through the various protocols at all
levels. The Engine must be able to process the protocols and understand its goal. Though this proto-
col analysis is computationally expensive, the benefits it generates like increasing the rule set helps
in less false positive alarms. The major drawback of anomaly detection is defining its rule set. The
efficiency of the system depends on how well it is implemented and tested on all protocols. Rule
defining process is also affected by various protocols used by various vendors. Apart from these,
custom protocols also make rule defining a difficult job. For detection to occur correctly, the de-
tailed knowledge about the accepted network behavior need to be developed by the administrators.
But once the rules are defined and protocol is built then anomaly detection systems works well.
Including malicious activity as part of a profile is a common problem with anomaly-based IDPS
products. (In some cases, administrators can modify the profile to exclude activity in the profile that
is known to be malicious.) Another problem with building profiles is that it can be very challenging
in some cases to make them accurate, because computing activity can be so complex. For example,
if a particular maintenance activity that performs large file transfers occurs only once a month, it
might not be observed during the training period; when the maintenance occurs, it is likely to be
considered a significant deviation from the profile and trigger an alert. Many distinct techniques are
used based on type of processing related to behavioral model.

Operational Model (or) Threshold Metric: The count of events that occur over a period of time
determines the alarm to be raised if fewer then ”m” or more than ”n” events occur. This can be
visualized in Win lock, where a user after n unsuccessful login attempts here lower limit is ”0”
and upper limit is n. Executable files size downloaded is restricted in some organizations about
4MB.The difficulty in this submodel is determining m and n.

Markov Process or Markov Model: The Intrusion detection in this model is done by investi-
gating the system at fixed intervals and keeping track of its state. The change of the state of the

82 Chapter 7: Intrusion Detection for Industrial control systems

system occurs when an event happens and the behavior is detected as anomaly if the probability of
occurrence of that state is low. The transitions between certain commands determine the anomaly
detection where command sequences were important.

Statistical Moments or Mean and Standard Deviation Model: In statistical mean, standard
deviation, or any other correlations are known as a moment. If the event that falls outside the set
interval above or below the moment is said to be anomalous. The system is subjected to change
by considering the aging data and making changes to the statistical rule data base. There are two
major advantages over an operational model. First, prior knowledge is not required determining
the normal activity in order to set limits; Second, determining the confidence intervals depends on
observed user data, as it varies from user to user. Threshold model lacks this flexibility. The major
variation on the mean and standard deviation model is to give higher weights for the recent activities.

Machine Learning Based Detection: Machine learning techniques to detect outliers in datasets
from a variety of fields were developed by Gardener (use a One-Class Support Vector Machine
(OCSVM) to detect anomalies in EEG data from epilepsy patients) and Barbara (proposed an algo-
rithm to detect outliers in noisy datasets where no information is available regarding ground truth,
based on a Transductive Confidence Machine (TCM) [48]).Unlike induction that uses all data points
to induce a model, transduction, an alternative, uses small subset of them to estimate unknown at-
tributes of test points. To perform online anomaly detection on time series data in [49], Ma and
Perkins presented an algorithm using support vector regression. Ihler et al. present an adaptive
anomaly detection algorithm that is based on a Markov-modulated Poisson process model, and use
Markov Chain Monte Carlo methods in a Bayesian approach to learn the model parameters [50].

Chapter 7: Intrusion Detection for Industrial control systems 83

7.2 State Analysis Technique

The State-Based Approach is not based on packet signatures techniques, as a classic IDS,
but it is based on a representation of the state of the SCADA system. This approach relies on the
assumption that the ultimate scope of an attacker is to put the target system into a critical state,
therefore by looking at the system evolution and by detecting the occurrence of critical states, it
would be possible to automatically detect an attack. Using this approach, the focus is primarily on
known variables (the system behavior), rather than on unknown variables (the attacker behavior),
which eliminates the risks of false positives and detecting also unknown attacks. This approach is
possible in the context of industrial settings, since the system behavior space is fully known and
finite. In order to achieve this goal, we have formally defined how to represent a SCADA system.
The representation of the system is useful for the creation and update of the System Virtual Image
(SVI). The image is a software copy of a real system and evolves in parallel with the real system.
The SVI is able to match his status with a list of critical states in order to recognize potential threats
to the system. In order to better understand the approach presented in this chapter we explain the
critical state concept. Consider the following example: we have a system with a pipe P1 in which
flows high pressure steam. The pressure is regulated by two valves: the valve VIN controls the pipe
incoming steam and the valve VOUT controls the pipe outcoming steam. The valve VIN is controlled
by the PLC1 and the valve VOUT is controlled by the PLC2. The Figure 7.1 shows such scenario.

P

V

1

OUT

V
IN

PLC

PLC 2

1

Figure 7.1: Critical State Example

84 Chapter 7: Intrusion Detection for Industrial control systems

A critical state could be generated by an attacker. For example he is able to send packets
on the process network and sends a command to the PLC2 controlling the valve VOUT in order
to force its complete closure, and a command to the PLC1 controlling the valve VIN in order to
maximize the incoming steam. This is a critical state because the pressure in the pipe P1 may
became too high soon and the pipe could explode.

From an operational point of view, the following elements are required for tracking and
analyzing the evolution of a system:

• A system representation language to describe in a formal way the system under analysis.

• A system state language to describe in a formal way the critical states associated to the system
under analysis.

• A state evolution monitorto follow the evolution of the system.

• A critical state detector to check whether the state of the system is evolving toward a defined
critical state.

• A critical state distance metric to compute how close any state is with respect to the critical
states.

7.2.1 System Description and Critical State Representation

A SCADA system, as we described in the chapter 1, is composed by an operator, a Human
machine Interface (HMI), one or more Master Terminal Unit (MTU) and some Remote Terminal
Units (RTUs) or PLCs. The intention is to represent a SCADA system, i.e. to create a virtual image
of the real system. The image of the entire SCADA system consists of the image of each single
component such as SCADA Masters or MTUs and SCADA Slaves or PLCs. Representation of the
operator and the HMI are of less importance, given the nature of the types of threats the system
is intended to protect against (i.e. external attacks). More formally, the system image is a set of
images:

SY STEMimage = {Masterimage, PLC 1image, ..., PLC nimage}

. The representation of each PLC or Master station must contain:

• The architecture of the item: it is important to represent the information to identify the item,
i.e. the IP address and the TCP port, and the information about the item architecture, i.e.

Chapter 7: Intrusion Detection for Industrial control systems 85

numbers and type of registers.

• The current status of the item: the status of a SCADA Slave is the current value of each
register. SCADA Masters don’t need information about the status.

In the following we present an example of a SCADA system, which uses the MODBUS protocol as
communication protocol between masters and slaves.

MODBUS SCADA System Example

Imagine to have the scenario shown in Figure 7.2 with one SCADA Master and three
PLCs or SCADA Slaves.

 Address: 10.0.0.3

 Port: 502

 ID: 3

 Address: 10.0.0.2

 Port: 502

 ID: 2

 Address: 10.0.0.1

 Port: 502

 ID: 1

 Address: 10.0.0.254

 Port: 502

PLC

Master

PLC PLC

DI

CO

IR

HR

100

100

100

100

DI

CO

IR

HR

200

200

200

200

DI

CO

IR

HR

300

300

300

300

1 2 3

Figure 7.2: MODBUS SCADA System Example

The shown system contains one SCADA Master with the IP address 10.0.0.254 and TCP
port 502 (MODBUS default port according to the modbus TCP specification [20]) and three SCADA
Slaves:

• The PLC1 with the IP address 10.0.0.1, TCP port 502 and ID = 1.

86 Chapter 7: Intrusion Detection for Industrial control systems

• The PLC2 with the IP address 10.0.0.2, TCP port 502 and ID = 2.

• The PLC3 with the IP address 10.0.0.3, TCP port 502 and ID = 3.

According to the MODBUS specification [20] each PLC contains Discrete Inputs (DI), Coils (CO),
Input Registers (IR) and Holding Registers (HR). In the previous scenario there are 100 DI, CO, IR,
HR in the PLC1, 200 in the PLC2 and 300 in the PLC3.
In a MODBUS SCADA Slave, as described in 3, there are also other registers and coils: the “Excep-
tion Status Coils”, the “Diagnostic Register” and some “Counters”, which are used for diagnostic
functions. In light of these consideration a possible representation of the SCADA system in figure
7.2 is shown in the UML diagram in Figure 7.3.

-address : string = 10.0.0.1

-port : int = 502

-id : byte = 1

-discrete inputs : bool

-coils : bool

-input registers : short

-holding registers : short

-exception status coils : bool

-diagnostic register : bool

-counters : short

PLC 1

[100]

[100]

[100]

[100]

[8]

[9]

-address : string = 10.0.0.2

-port : int = 502

-id : byte = 2

-discrete inputs : bool

-coils : bool

-input registers : short

-holding registers : short

-exception status coils : bool

-diagnostic register : bool

-counters : short

PLC 2

[200]

[200]

[200]

[200]

[8]

[9]

-address : string = 10.0.0.3

-port : int = 502

-id : byte = 3

-discrete inputs : bool

-coils : bool

-input registers : short

-holding registers : short

-exception status coils : bool

-diagnostic register : bool

-counters : short

PLC 3

[300]

[300]

[300]

[300]

[8]

[9]

-address : string = 10.0.0.254

-port : int = 502

Master
int : 32-bit number

short : 16-bit number

byte : 8-bit number

[16] [16] [16]

Figure 7.3: Representation of the previous system.

The UML diagram above could be implemented in an object oriented language such as
C++, C#, Java etc. Each entity in the diagram could be implemented with an object. The object
which represents the Master contains only two attributes: a string which represents the IP address
and an integer that represents the TCP port number. The other objects represent the Slaves contain
many attributes as shown in the Table 7.1

Chapter 7: Intrusion Detection for Industrial control systems 87

Slave Identification
address a string which contains the Slave IP Address
port a 32-bit number which contains the Slave TCP Port
id a 8-bit number which contains the Slave id

Registers and Coils
discrete inputs an array of boolean values which contains the value of

each discrete input
coils an array of boolean values which contains the value of

each coil
input registers an array of 16-bit numbers which contains the value of

each input register
holding registers an array of 16-bit numbers which contains the value of

each holding register
Diagnostic

exception status
coils

an array of boolean values which contains the value of
each exception status coil

diagnostic register a 16-bit number which contains the diagnostic register
value

counters an array of 16-bit numbers which contains the value of
each counter

Table 7.1: MODBUS Slave Representation fields

With the structure shown in Table 7.1 is possible to represent the architecture of a SCADA
MODBUS Slave and also the current status of the device. The architecture is represented by the
slave identification attributes (i.e. address, port and id), the numbers of coils and registers (i.e. array
sizes) and the current status is stored in each array cell.

Formal reppresentation

For the formal representation of industrial system states we have specifically defined a
new formalized language called Industrial State Modeling Language (ISML). This language sup-
ports SCADA systems that use the MODBUS protocol, but it can be easily extended in order to sup-
port other industrial protocols. A rule in the ISML has the form condition → action . Condition is
a boolean formula composed of conjunctions of predicates describing what values can be assumed
by the different critical components connected to the Programmable Logic Controllers (PLCs).
More in detail ISML is defined by a standard BNF notation:

88 Chapter 7: Intrusion Detection for Industrial control systems

〈rule〉 ::= 〈condition〉 → 〈action〉 : 〈level〉

〈level〉 ::= 1|...|5

〈condition〉 ::= 〈predicate〉 |〈predicate〉, 〈condition〉

〈predicate〉 ::= PLC[〈ID〉].〈comp〉[〈16bit integer〉] ./ 〈realvalue〉

〈ID〉 ::= IPaddress : Port ./∈ {6,>, <,>,=, 6=}

〈comp〉 ::= HR | IR |CO |DI|EX|DR|CTR 〈action〉 ::= Warning |Alert |Log

The system state is defined by the values of the system components. The ISML language has two
function:

• Provide a detailed description of the system to monitor, which will be used to generate the
virtual system used by the IDS

• Describe Critical States that correspond to dangerous or unwanted situations in the monitored
system.

For each Critical State it is possible to specify the risk level. The value 1 corresponds to a low risk
critical state (e.g. the system is running at less than optimum efficiency). The value 5 corresponds
to a critical state dangerous for the system. The system state is defined by the values of the system
components. Coils and digital outputs can assume digital values: 0 or 1. Input registers(IR) and
holding registers(HR) consist of 16 bit variables and can assume values from 0 to 65535.

In the following is considered the previous scenario where the system consists of one
master and three PLCs. In such scenario two valves and a pipe are added, in order to create the
critical state example explained in the beginning of this chapter. This would result in a situation
similar to that shown in Figure 7.4.

Chapter 7: Intrusion Detection for Industrial control systems 89

 Address: 10.0.0.3

 Port: 502

 ID: 3

 Address: 10.0.0.2

 Port: 502

 ID: 2

 Address: 10.0.0.1

 Port: 502

 ID: 1

 Address: 10.0.0.254

 Port: 502

PLC

Master

PLC PLC

HR[1] 50

1 2 3

HR[2] 50

VOUT
VIN

P
1

Figure 7.4: SCADA System plus Critical State Situation.

In this architecture we have added the pipe P1 in which flows steam, the valve VIN , which
controls the pipe incoming steam and the valve VOUT , which controls the pipe outcoming steam. In
such an example the valves are connected to the SCADA system in the following way:

• VIN (input steam): is connected to PLC 10.0.0.1 and the holding register HR[1] contains a
value which represents how much the valve is open, i.e. if HR[1] = 100 then VIN is com-
pletely open, if HR[1] = 0 then VIN is completely closed, if, like in the picture, HR[1] = 50
then VIN is half closed.

• VOUT (output steam):: is connected to PLC 10.0.0.2 and the holding register HR[2] contains
a value which represents how much the valve is open; it works in the same way as the valve
VIN .

The system is in a critical state when the valve VOUT is too far closed and the valve VIN is too far
open, because in a such situation the amount of steam entering the pipe exceeds the amount being
released, leading to an increase in pipe pressure and an increased chance of a pipe explosion. If we

90 Chapter 7: Intrusion Detection for Industrial control systems

define “too far closed” as a value of 20% for the valve VOUT and “too far open” as a value of 70%
for the valve VIN , then we can represent the system in a “critical state” using the following boolean
expression:

(
PLC[10.0.0.10 : 502].HR[1] < 1000,

PLC[10.0.0.22 : 502].IR[1] > 99

)
→ Alert : 4

The IDS raises an alert if this critical formula is satisfied.

7.2.2 State Evolution Monitor

A State Evolution Monitor (SEM) is a software artifact that keeps track of the evolution of
the system state. In the presented approach, the formal description of the system, defined by means
of the ISML language, is used to create a software virtual image of the monitored subsystem. Each
element is represented by a software object reproducing the classical memory map representation of
PLCs and Masters. The virtual image contained in SEM is fed using the control traffic exchanged
between Masters and Slaves. In other words, relying on the assumption that the control flow between
Master and Slaves contains a compact representation of the evolution of the system, by sniffing this
traffic it is possible to maintain in the SEM memory a reasonable reproduction of the real system
state. Moreover, to guarantee a tight synchronization between the virtual system and the real system,
the SEM contains a master emulator for directly querying the PLCs of the monitored system to limit
its interference with the system, it is possible to define an “aging time” for every register and coil
instantiated into the virtual system, after which the master emulator can perform a direct query. The
memory access for updating the virtual system could be potentially expensive. In the implemented
prototype all the virtual components are indexed using a hash table, for providing direct access to
each element.

7.2.3 Critical State Detection

Every possible state of the system is described by the values of the terms representing the
components of the system. A system state with n components can be represented by a vector. The
previous example can be represented with states s ∈ Rn, where the value of the turbine speed is
mapped to s1 and the value of the temperature sensor is mapped to s2. The set of critical states

Chapter 7: Intrusion Detection for Industrial control systems 91

CS ⊆ Rn is the set of states satisfying the critical conditions described as in the Subsection 7.2.1.
The SEM can be described by a function σ : N → Rn providing the state of the system at a certain
time t. Following these definitions, we can say that the monitored system is in a critical state iif
σ(t)s(t) ∈ CS .

Establishing whether a given state s is critical, means to verify if s satisfies any of the
critical formulas in CS . Given a state s and a critical formula φ, verifying whether s satisfies
φ corresponds to evaluating φ with the system components’ values represented by s. The time
complexity for evaluating φ is linear with respect to the number of predicates occurring in it. Even
if evaluating a formula can be easily achieved with a simple visit of its syntax tree, we use a different
representation in memory of the formula based on interval constraints, as described in Section ??.
Evaluating formulas using the constraint-based memory representation has the same complexity as
the syntax tree visit. From an operational point of view, the Critical State Analyzer checks if the
SEM status matches at least one of the specified critical states. If this is the case, it raises an alert,
storing the details about the command packets that caused the critical state (if they exist); in this
way it would be possible to discriminate between cyber-attacks and faults/physical attacks. It is
relevant to note that alerts are triggered by the occurrence of a critical state, and not by a particular
”attack pattern”; the critical state description acts as ”attack pattern aggregator”, by grouping with a
single critical state description all the different attacks patterns (known or unknown) that could lead
the system into the target critical state. Using this approach it is possible to detect zero-days attacks
(i.e. attack patterns not yet discovered) aiming at driving the SCADA system into known system
critical states.

7.2.4 Multidimensional metric for CS

In this section, we present a way of predicting whether the system is leading to a critical
state. The method is based on the notion of distance from critical states, capturing the concept of
critical state proximity. Predicting criticality can be achieved by tracking changes of the distance
between the current system state and the critical formulas. The virtual system image described
in ?? is used to track the current system state values, and the distance is calculated using these
values. The distance notion is parametric with respect to a metric on the system state space. Let
d : Rn × Rn → R+ be any metric on Rn. In other words, let d be any notion of distance between
two system states. In this work two distances are of particular interest:

92 Chapter 7: Intrusion Detection for Industrial control systems

d1(s, t) =
n∑
i=1

|si − ti|

dv(s, t) = #{i | si 6= ti}

The distance d1 is also known in literature as the Manhattan distance. The distance dv
counts the number of system components whose values differ among two states. In Example ??,
d1 computes how close the water temperatures and the fan speed are to critical values. Let s =

(80, 4000) be a critical state. Let u = (40, 4000) and v = (70, 4000) be two states. Values
d1(u, s) = 40 and d1(v, s) = 10 indicate that the state v is closer to s than u, i.e. u is more secure
than v. Instead, the distance values dv(u, s) = 1 and dv(v, s) = 1 indicate that u and v are equally
distant from s. Indeed only one system component (the temperature sensor) has a different value
from the state s in both the states u and v. The actual choice of d1 or dv depends on the notion of
the criticality that has to be captured. When only the number of critical system components matters,
the distance dv is more appropriate. When the actual value of system components is important in
order to establish the criticality of the system, then the distance d1 is more appropriate.

State-Critical States Distance

Given any distance function on Rn (e.g. as d1 or dv defined in Section ??), the notion of
distance between a state and a set of states can be defined as d(s, S) = inft∈S d(s, t)

1.

This definition mimics the common sense of distance between a point and a collection
of points. The notion of distance between a system state and the set of critical states is defined by
d(s,CS). It is crucial to stress that it is completely parametric with respect to the metrics chosen on
Rn.

Distance Evaluation

In the following the evaluation of the distance d(s,CS) defined in Section 7.2.4 is pre-
sented. It is based on the representation of critical formulas based on interval constraints.

1As standard in literature, the expression inf A, where A ⊆ R is a set of real numbers, denotes the greatest lower
bound of A, i.e. inf A = max{x ∈ R | ∀y ∈ A. x 6 y}. Moreover, inft∈S d(s, t) = inf{d(s, t) | t ∈ S} for any given
s ∈ S.

Chapter 7: Intrusion Detection for Industrial control systems 93

Computing the distance does not follow directly from its definition. For an efficient im-
plementation it is necessary to take advantage of the shape of the set of critical states. The language
of critical conditions implies that, for each rule condition, the critical values for every component
belong to intervals (bound or unbound) of real numbers. This information is used for computing the
distance efficiently as follows.

An interval constraint C = I1, . . . , In is a sequence of n intervals on R, where n is the
number of system components. A constraint specifies a critical range for each system component
value. A system state s is critical w.r.t. a constraint C if and only if for each i = 1 . . . n, the
i-th system component value si ∈ Ii. Every critical formula φ can be represented as one or more
interval constraints. A set of constraints {C1, . . . Ck} is equivalent to the formula φ if for every state
s satisfying φ there exists at least one constraint Cj such that s is critical w.r.t. Cj . Considering the
Example 1, let φ = PLC[10.0.2.31 : 502].HR[1] 6= 50 be a critical formula. It is not possible to
find an interval constraint equivalent to φ. However, let C1 = [−∞, 49], [−∞,+∞] and C2 =

[51,+∞], [−∞,+∞] be two constraints. The set of constraints {C1, C2} is equivalent to φ, indeed
any state satisfying φ also satisfies C1 or C2, and vice versa.

The notion of equivalent set of constraints is used as the basis for implementing a feasible
memory representation of critical formulas. It is possible to scan a critical formula φ in order to
easily build an equivalent set of constraints. This is done only once during the initialization phase.
Considering the Example showed in figure 7.4, let

φ =

PLC[10.0.2.31:502].HR[1] ≥ 60,

PLC[10.0.2.45:502].HR[1] < 5000,

PLC[10.0.2.31:502].HR[1] < 100

Scanning the formula φ allows to collect the critical ranges for each system component

identifier, and compute the final set of constraints equivalent to φ. In this case, the set of equivalent
constraints contains only the constraint C = [60, 100], [−∞, 5000].

Let {C1, . . . , Ck} be a set of constraints equivalent to a critical formula φ. The following
equations hold:

d(s, φ) = minki=1 d(s, Cj) (7.1)

d(s, C = I1 . . . In) =
∑n

i=1 d(si, Ii) (7.2)

94 Chapter 7: Intrusion Detection for Industrial control systems

The distance d(s,CS) = minφ d(s, φ) can be calculated using Equation (7.3) and (7.2),
implemented with nested iterations on the constraints computed in the initialization phase and on
the intervals of each constraint. Time complexity is linear in the number of predicates occurring in
the critical formulas.

Equation (7.2) is parametric w.r.t. the actual distance used. Precisely, the function d(si, Ii)
in the right hand side of the equation stands for both d1 and dv. The following definitions allow to
easily implement the distance calculation algorithm:

d1(x, I) =

x− sup I sup I ≤ x

inf I − x inf I ≥ x

0 otherwise

dv(x, I) =

1 x 6∈ I

0 x ∈ I

Where inf I and sup I are respectively the lowest and the highest endpoints of the interval
I . Summarizing, in order to calculate the distance d(s,CS) between a state and a set of critical
states, using the Manhattan distance d1 or the discrete distance dv on R, it is sufficient to calculate
a set of interval constraints equivalent to each critical formula during the initialization phase. During
the evolution of the system, both the criticality of the current state and the distance from the critical
states can be calculated implementing Equations (7.3) and (7.2). The actual choice of the dv or d1
depends on the chosen notion of distance.

7.2.5 Threshold detection

In the previous section we have introduced a multidimensional metric providing a para-
metric measure of the distance between a given state and the set of critical states. This metric can be
used for tracking the evolution of a system, indicating its proximity to the set of predefined critical
states. The concept of proximity is useful for understanding how close is a state to a critical state,
but it is not sufficient. Let’s consider the example where a scada system monitor a digital value and
a single register respectively a valve and a temperature. The critical formula φ defying the critical
state cs and a set of system state showed in table 7.2

Chapter 7: Intrusion Detection for Industrial control systems 95

φ1 =

(
PLC[10.0.0.1:502].HR[2] > 100,

PLC[10.0.0.3:502].CO[1] = 0

)

State 10.0.0.1 10.0.0.3 Distance(d1)
s1 500 1 1
s2 450 1 1
s3 60 0 40
s4 81 0 19
s5 75 0 25

Table 7.2: Distance from the current state C1 and the Critical State(CS1)

The formula φ defines a critical scenario where the temperature is more than 100degrees
and the drain valve is close. In this system the temperature could reach high value only if the drain
valve that let the gas go out is open, otherwise the system risks to explode due to an increasing
of the pressure. The states s1 and s2 are at distance 1 from the Critical state CS1 this is basically
correct in fact the value of the coil could potentially change from 1 to 0 in a really short timing.
This happen because as described in the previous chapter everyone in the network even a potential
attacker can send a simple command and change the coil value. The states s3, s4 and s5 show an
opposite situation where the drain valve is closed and the temperature is under the limit defined in
the cs. The Manhattan distance calculated using the formula d1 shows how the state s4 is the closest
to the critical state. This distance however doesn’t take in consideration the behavior of the system.
The temperature of 81 degrees reached in s4 can refer either to a normal or anomalous behavior of
the system. In order to detect which state is potentially anomalous compared with cs we introduce
the concept of Threshold calculated through a learning phase.

SCADA system as claimed before control and monitor industrial process that are less
dynamic than normal network system. More precisely due to the fact that are monitored physical
variable each industrial system is characterize by a similar behavior over a fixed amount of time.
This would permit us to calculate a threshold thorough a learning phase for each Critical Formula
defined. As claimed before the values of the process parameters, such as measurement and actuator
control data, are classified in two types: logical and numerical data. The logical data has two values,
namely ON/OFF that are already well considered in the distance calculation. The numerical data
represents continuous measurement data (such as motor speed and temperature values). Therefore,

96 Chapter 7: Intrusion Detection for Industrial control systems

the evolution of numerical values are the most significant in order to calculate a proper threshold.
The threshold of the critical state cs is performed than as the lower Manhattan distance calculated
for each system states reached during the learning phase, if and only if the discrete values satisfying
the critical formula. In the previous example the the threshold is set as 19.

Let the critical formula φ = φd ∩ φc where φd represents the critical formula concerning
the digital values and φc the critical formula regarding continuos values. We can define Xi as a
set of state occurred during the learning phase satisfying the critical formula φd. The threshold is
calculated as:

Threshold = infs∈X d1(s, φ) (7.3)

Considering the following example as the results of a learning phase, where the physical
process parameters P1, P2 and T1, T2 where Pi represents the status of the Pumpsi and the water
level in the Tankj .

P1 P2 T1 T2 Note
0 0 50 50 State1
0 0 25 95 State2
1 0 61 50 State3
1 0 35 60 State4
1 0 80 60 State5

P1 = 1 P2 = 0 T1 > 85 T2 > 90 Critical(φ)

Table 7.3: Evolution of the system during the learning phase

The State3, State4 and State5 are included in our sub-set X due to the fact that the
critical formula φd is satisfied. Considering the definition presented above the threshold concerning
the critical formula φ is calculated by perform the distance d1 all the state included in X . The
minimum distance is set as the threshold.

Chapter 7: Intrusion Detection for Industrial control systems 97

P1 P2 T1 T2 X d1
1 0 61 50 State3 64
1 0 35 60 State4 80
1 0 80 60 State5 35

Table 7.4: Distance d1 for each state included in X

In the next chapter we presents some example where the calculation of the threshold
through a learning phase permits us to reach interesting results.

98 Chapter 7: Intrusion Detection for Industrial control systems

7.3 IDS Implementation

We present in this section a detailed explanation about how the ”State Based Intrusion
Detection System” works. The IDS prototype has been implemented in C# (MS.NET framework
version 3.5) in an MS-Windows environment. From the architectural point of view, it was imple-
mented according to a modular approach. There are five big modules:

• Loader

• Scada Protocol Sensor (SPS)

• System Virtual Image (SVI)

• Analyzer

Each module is divided into many sub-modules with different functions. In what follow we will
explain in details all the modules and sub-modules and their functions. The Figure 7.5 shows a
diagram of the IDS architecture.

Chapter 7: Intrusion Detection for Industrial control systems 99

Loader

SCADA Protocol

Sensor (SPS)

Single

packet rules

DB (SPDB)

Critical State

Rules DB

(CSRDB)

DB Sender

Database

Analyzer

Virtual

System

Loader

Critical State

Analyzer

Basic

Analyzer

Basic

Rules

File

Critical

State

Rules

File

Virtual

System

Descriptor

File

System Virtual

Image (SVI)

Real System

Synchronizer

Update System

Manager

Protocol

Builder

Protocol

Discover

Real System

PLC 1 PLC 2

PLC n

Network

Capture

Module

Figure 7.5: “State Based IDS” Architecture

We have already shown some aspects of this architecture, but in this section we will
explain in detail how they were implemented.

7.3.1 Loader

The loader module is in charge to read the XML configuration files and to initialize the
whole system.

Virtual System Loader The “Virtual System Loader” reads the XML Virtual System File De-
scriptor and creates the data structure to represent the SCADA system. The XML file is written
by the IDS administrator following the SSML language rules (See Section ??) and it describes the

100 Chapter 7: Intrusion Detection for Industrial control systems

architecture of the real system. The IDS administrator can write the XML file manually or using
an IDS tool called “Critical Infrastructure Creator”. The structure of the XML Virtual System File
Descriptor is described by the following XML Schema:

Chapter 7: Intrusion Detection for Industrial control systems 101

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="infrastructure">

<xsd:complexType>

<xsd:sequence>

<xsd:choice>

<xsd:element name="master" type="masterType"/>

<xsd:element name="plc" type="plcType"/>

</xsd:choice>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:complexType name="masterType">

<xsd:attribute name="address" type="xsd:string"/>

<xsd:attribute name="port" type="xsd:unsignedInt"/>

</xsd:complexType>

<xsd:complexType name="plcType">

<xsd:attribute name="address" type="xsd:string"/>

<xsd:attribute name="port" type="xsd:unsignedInt"/>

<xsd:attribute name="id" type="xsd:unsignedByte"/>

<xsd:sequence>

<xsd:element name="discrete_inputs" type="coilType"/>

<xsd:element name="coils" type="coilType"/>

<xsd:element name="input_registers" type="regType"/>

<xsd:element name="holding_registers" type="regType"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="regType">

<xsd:attribute name="numbers" type="xsd:unsignedShort"/>

<xsd:attribute name="def_value" type="xsd:unsignedShort"/>

</xsd:complexType>

<xsd:complexType name="coilType">

<xsd:attribute name="numbers" type="xsd:unsignedShort"/>

<xsd:attribute name="def_value" type="xsd:boolean"/>

</xsd:complexType>

</xsd:schema>

The XML Schema contains a root node called ”infrastructure”.The root node contains a sequence of

102 Chapter 7: Intrusion Detection for Industrial control systems

sub-nodes, each sub-node could be a “master” or a “plc” node. A “master node” has two attributes,
address and port, while a “plc node” has address, port, id and four child nodes, i.e. discrete inputs,
coils, input registers and holding registers. In order to better understand, let’s consider the example
in Figure 7.6.

 Address: 10.0.0.3

 Port: 502

 ID: 3

 Address: 10.0.0.2

 Port: 502

 ID: 2

 Address: 10.0.0.1

 Port: 502

 ID: 1

 Address: 10.0.0.254

 Port: 502

PLC

Master

PLC PLC

DI

CO

IR

HR

100

100

100

100

DI

CO

IR

HR

200

200

200

200

DI

CO

IR

HR

300

300

300

300

1 2 3

Figure 7.6: MODBUS SCADA System Example

The XML Virtual System File Descriptor for such scenario is the following:

<infrastructure>

<master address="10.0.0.254" port="502" />

<plc address="10.0.0.1" port="502" id="1" >

<discrete_inputs numbers="100" def_value="false" />

...

<holding_registers numbers="100" def_value="0"/>

</plc>

<plc address="10.0.0.2" port="502" id="2" >

<discrete_inputs numbers="200" def_value="false" />

...

<holding_registers numbers="200" def_value="0" />

</plc>

<plc address="10.0.0.3" port="502" id="3" >

Chapter 7: Intrusion Detection for Industrial control systems 103

<discrete_inputs numbers="300" def_value="false" />

...

<holding_registers numbers="300" def_value="0" />

</plc>

</infrastructure>

The Virtual System Loader is an XML parser, which takes in input an XML file and
creates the data structure which represents the “Virtual System Image”. For Example the system
presented above generates the following data structure (Figure 7.7). The previous XML Virtual

-address : string = 10.0.0.1

-port : int = 502

-id : byte = 1

-discrete inputs : bool

-coils : bool

-input registers : short

-holding registers : short

-exception status coils : bool

-diagnostic register : short

-counters : short

PLC 1

[100]

[100]

[100]

[100]

[8]

[9]

-address : string = 10.0.0.2

-port : int = 502

-id : byte = 2

-discrete inputs : bool

-coils : bool

-input registers : short

-holding registers : short

-exception status coils : bool

-diagnostic register : short

-counters : short

PLC 2

[200]

[200]

[200]

[200]

[8]

[9]

-address : string = 10.0.0.3

-port : int = 502

-id : byte = 3

-discrete inputs : bool

-coils : bool

-input registers : short

-holding registers : short

-exception status coils : bool

-diagnostic register : short

-counters : short

PLC 3

[300]

[300]

[300]

[300]

[8]

[9]

-address : string = 10.0.0.254

-port : int = 502

Master

Figure 7.7: SVI Stored in IDS Memory

System File Descriptor generates a Virtual System with one “master object” and three “plc objects”.
The master class has only two attributes: address and port, while the plc class has address, port,
id and four arrays to store the values of discrete inputs, coils, input registers and holding registers.
Moreover the plc class contains arrays with pre-fixed size for exception status coils, counters and
the diagnostic register attribute.

Critical State Rule Loader The “Critical State Rule Loader” reads the Critical State Rules File
and creates the data structure to store the rules in IDS memory. As specified in Chapter 7 a critical

104 Chapter 7: Intrusion Detection for Industrial control systems

state rule is a boolean expression such as:

PLC[10.0.0.2 : 502].CO[1] == 0→ Alert : 3

The data structure used to represent boolean expression in memory is a sort of “Binary Decision
Tree (BDT)”. In such kind of BDT there are two types of nodes:

• Boolean Operator Node: it represents a boolean operator such as AND, NOT.

• Condition Node: it represents a condition like “PLC[10.0.0.2].CO[1] == 0” expressed whit
the ISML (See Section 7.2.1).

The data structure is a binary tree in which the internal nodes are only “Boolean Operator Node” and
the leaves are only “Condition Node”. The UML diagram in Figure 7.8 shows the classes involved
in the “Binary Decision Tree (BDT)” implementation.

Figure 7.8: The “Binary Decision Tree (BDT)” data structure UML diagram

Chapter 7: Intrusion Detection for Industrial control systems 105

BoolNode: this interface represents a general description of a tree node with a left and a right child
and two methods: “addChild” to add a child to the node and “eval” for the evaluation of the node,
i.e. it returns the boolean value of the node (true or false). Each node in the tree has to implement
the interface “Bool Node”.

AbstractBoolNode: this abstract class contains fields, properties and methods common to each
kind of node. For example every node has a left and right child and the methods “addChild” and
“ToString” are common method for any type of node.

AndBoolNode: this class represent the logic operator AND. The most important method in this
class is the “eval” for the evaluation of the and node.

The pseudo-code of such method is:

bool eval()

{

bool v1 = left.eval();

if (!v1)

return false;

else

{

bool v2 = right.eval();

if (!v2)

return false;

else

return true;

}

}

The method recursively calls the eval function on the left child. If the value returned by
the left child is false, is useless to check the right child and the function return false. If the value
returned by the left child is true, the method recursively calls the eval function on the right child. If
the value returned is false the method return false, otherwise the method return true. NotBoolNode:
this class represent the logic operator NOT. The “eval” method is very simple, in fact the pseudo-
code is:

bool eval()

{

if (left!=null)

106 Chapter 7: Intrusion Detection for Industrial control systems

return !left.eval();

else

throw new Exception();

}

ConditionBoolNode: this class represent a condition expressed with the ISML. The eval method is
completely different:

bool eval()

{

bool ret;

switch (condition_type)

{

case equal:

ret = (reg_val == comp_val);

break;

case lt:

ret = (reg_val < comp_val);

break;

case gt:

ret = (reg_val > comp_val);

break;

case lte:

ret = (reg_val <= comp_val);

break;

case gte:

ret = (reg_val >= comp_val);

break;

case neq:

ret = (reg_val != comp_val);

break;

}

return ret;

}

The method, depending on the type of condition, performs a comparison rather than another one
between the value in the registry and the value to be compared. The “Binary Decision Tree (BDT)”
data structure, which we have already presented is used to store in memory each rule in the Critical
State Rules File.

Chapter 7: Intrusion Detection for Industrial control systems 107

7.3.2 Scada Protocol Sensor (SPS)

The SCADA Protocol Sensor (SPS) is basically the equivalent of a normal network IDS
sensor, with the advantage of being able to directly support commonly used SCADA protocols.

Network Capture Module It receives the mirror of all the traffic to and from the field network
directly from the SPAN port of the field network switch. The traffic capture is preformed by using
the WinPcap [?] library. It allows applications to capture network packets bypassing the protocol
stack.

Protocol Discover The packets captured by the “Network Capture Module” are analyzed by the
“Protocol Discover” which is able to analyze the application level payload of the packet and to
recognize if it is a SCADA packet (only MODBUS and DNP are now supported by the IDS) or
another packet. If the packet is a SCADA protocol one, the protocol discover will sent it to the
“Protocol Builder” otherwise it will be discarded.

Protocol Builder The “Protocol Builder” receives only the SCADA traffic from the “Protocol
Discover” and analyzes each packets in order to recognize the packet type and to store the packet
information in a the proper object. As we claimed in the MODBUS section ??, there are two kind
of MODBUS packets: requests and responses.

+buildMessage() : [] byte

+parseMessage(in frame : [] byte)

-transactionID : short

-protocol : short

-length : short

-id : byte

-function_code : byte

-sub_function_code : short

-starting_address : short

-quantity : short

-short_values : [] short

-bool_values : [] bool

Messageint : 32-bit number

short : 16-bit number

byte : 8-bit number

+buildMessage() : [] byte

+parseMessage(in frame : [] byte)

Message::Request

+buildMessage() : [] byte

+parseMessage(in frame : [] byte)

Request::Response

Figure 7.9: MODBUS Messages objects

The Message class contains all the attributes of a MODBUS message, which are common

108 Chapter 7: Intrusion Detection for Industrial control systems

in request and response. The only difference between the two classes Request and Responses are
the two methods “buildMessage” and “parseMessage” because each request and response has a
different structure. There are also different constructors for every kind of request and response: for
example the “Read Coils” request is built with the constructor:

public Request(short tID, short protocol, short length, byte id,

byte function_code, short starting_address, short quantity)

While the “Read Exception Status Coils” request uses the constructor:

public Request(short tID, short protocol, short length, byte id,

byte function_code, short sub_function_code)

When the “Protocol Builder” receives a MODBUS packet, it checks if the message is a request or
a response, then it checks the function code to parse the message in the correct way. It recognizes
the type of message using the TCP source address and the information stored in the System Virtual
Image (SVI):

• If the TCP source address is the address of a Master Station (according to the SVI information)
then the message is a request.

• If the TCP source address is the address of a Slave Station (according to the SVI information)
then the message is a response.

Moreover, the “Protocol Builder” checks the message function code and parse the Request or the
Response in the right way.

7.3.3 System Virtual Image (SVI)

The System Virtual Image (SVI) contains the representation of the state of the system
under analysis. We have already explained in Section 7.2 how the SVI is build and how it works
,therefore we will not enter into details.

Real System Synchronizer The SVI is updated by periodically querying the real system. The
“Real System Synchronizer” contains a SCADA Master simulator which is able to forge MODBUS
requests and to parse the responses, then to update the SVI with the information contained in the
responses. In the XML Virtual System File Descriptor is possible to specify, for each PLC the
update time, e.g. each five seconds. The “Real System Synchronizer” queries the PLC every 5

Chapter 7: Intrusion Detection for Industrial control systems 109

seconds, asking all the discrete inputs, coils, input registers, holding register, diagnostic register,
exception status coils and counters values. Each query is optimized to store much information as
possible. For example, if a PLC has 4000 coils, the “Real System Synchronizer” will perform two
request: the first for the coils from 0 to 2000 (maximum value allowed for a “Read Coils” request
according to the modbus specification [?]) and the second from 2000 to 4000.

Update System Manager The “Update System Manager” is composed by two buffer and three
thread. There are a Request and a Response buffers and the following three thread:

• Add Packet Thread: it receives the request or response packets from the “Protocol Builder”
and put them into the right buffer (request or response buffer).

• System Update and Thread: it extracts the first request in the “RequestBuffer” and tries to
find the corresponding response in the “ResponseBuffer”; if it has found the response then it
updates the System Virtual Image (SVI) and checks if the system is in a critical state.

• Check Critical States Thread: it checks periodically if the SVI match with one or more
critical states in the Critical State Rules DB (CSRDB).

The “RequestBuffer” is a simple list of request objects, while the “ResponseBuffer” is an hash table
that maps the response object to associated keys. The keys used to uniquely identify a response
object are strings composed by:

key = source_address + ":" + source_port + ":" + transaction_id;

For example a response key could be:

key = "10.0.0.1:502:99";

The transaction id is not enough to uniquely identify a response object because the IDS captures
the traffic from different PLCs, so it is possible that two PLCs are using the same transaction id at
the same time. The “Add Packet Thread” is in charge only to puts the incoming packets in the right
buffer so it is really simple, but the “System Update” and the “Check Critical States” threads need a
detailed explanation;. For example take into consideration the scenario in Figure 7.10

110 Chapter 7: Intrusion Detection for Industrial control systems

Request Response

Request

10.0.0.1:502:2
Response

10.0.0.1:502:2

Request

10.0.0.1:502:3
Response

10.0.0.1:502:3

Requests Buffer Responses Buffer

HashTable<string, Response> responses;List<Request> requests;

request = requests.get();

key = Request.getId();

if (responses.ContainsKey(key))

{

response = responses[key];

requests.delete(request);

responses.delete(response);

}

10.0.0.1:502:1 10.0.0.1:502:1

Figure 7.10: Request/Response Buffers

In the example above, when the “System Update Thread” takes control there are three
packets in the RequestBuffer and three in the ResponseBuffer. The thread gets the first packet from
the RequestBuffer and reads the key calling the method getId(). Such method return the following
key:

key = dest_address + ":" + dest_port + ":" + transaction_id;

The key is build in a different way than in the ResponseBuffer because the destination address in
a request packet is equal to the source address in the corresponding response packet. When the
“System Update Thread” has obtained the key it checks if the ResponseBuffer contains such key.
If it is true the thread gets the proper response and delete the two messages form their respective
buffers.
Moreover the “System Update Thread” has to find and update the MODBUS slave or PLC involved
in the request/response transaction. The list of the MODBUS slaves is stored again ad an hash table.
The keys used to uniquely identify a slave object are strings composed by:

key = slave_address + ":" + slave_port + ":" + slave_id;

Chapter 7: Intrusion Detection for Industrial control systems 111

The “System Update Thread” finds and updates the slave object as shown in the example in Figure
7.11

Slave

Slave

10.0.0.2:502:2

Slave

10.0.0.3:502:3

Slaves

HashTable<string, Slave> slaves;

slave_id = request.dest_address + ":" +

request.dest_port + request.id;

if (slaves.ContainsKey(slave_id))

{

slave = slaves[slave_id];

updateSVI(request, response, slave);

}

10.0.0.1:502:1

Figure 7.11: Slave Update

The “System Update Thread” builds the key of the slave involved in the request/response
transaction using the following information contained in the request packet:

key = request.dest_address + ":" + request.dest_port + request.id;

When the “System Update Thread” has built the slave key it checks if the Slave hash table contains
such key. If it is true the thread gets the proper slave object and executes the updateSVI and the
checkCriticalStates methods. The updateSVI method uses the information in the request/response
objects to update the SVI. A part of the pseudo-code of this methods is shown below.

void updateSVI(Request req, Response res, ModbusSlave slave)

{

switch (res.function_code)

{

case read_coils:

short st = req.starting_address;

for (int i = 0; i < res.bool_values.Length; i++)

slave.coil[i + st] = res.bool_values[i];

break;

case read_discrete_inputs:

...

112 Chapter 7: Intrusion Detection for Industrial control systems

break;

...

}

}

The method reads the function code contained in the response object and executes the correct part
of code. For example if the function code is “01 Read Coils” the method reads the starting address
and the quantity of coils from the request and the values to updates from the response then perform
the proper update into the target slave. The “Check Critical States Thread” is a part of the Analyzer
Module, therefore it will be described in the following.

7.3.4 Analyzer

As discussed in the previous Section, the “Analyzer” performs the “Signature Based De-
tection” and the “State Based Detection”.

Basic Analyzer The ‘‘Basic Analyzer” is very similar to a normal NIDS analyzer. It receives in
input the captured packets, then it analyzes the packet and if it match with a signature in the Single
packet rules DB (SPDB) it raises an alert.

Critical State Analyzer The “Crtical State Analyzer” checks periodically the Virtual System, if
the SVI status match with a “Critical State” contained in the Critical State Rules DB (CSRDB) it
raises an alert. The “Crtical State Analyzer” is an object which contains an array of rules. Each
element in this array is a reference to the root node of a “Binary Decision Tree (BDT)”. The
most important method in the “Crtical State Analyzer” is the checkCriticalStates which control
if SVI status matches with the critical state rules. The pseudo code of such method is really sim-
ple because it uses the recursive function “eval” that we have already explained in section 7.3.1.

void checkCriticalStates()

{

for (int i = 0; i < rules.Count; i++)

if (rules[i].eval())

raiseAlert();

}

Chapter 7: Intrusion Detection for Industrial control systems 113

The method simply calls the eval function on each rule in the rules array. If the eval function returns
true it means that the system is in a critical state, so the method raises an alert.

Chapter 8

Experimental results

114

Chapter 8: Experimental results 115

The entire work presented in this thesis was developed with a deep interaction with some
of the most important European industry. Eni S.p.a. that is an Italian multinational oil and gas
company sponsored part of this research work and give us the possibility to use real industrial
installation in order to test the solution presented. The European commission and Enel provides its
own know-how and a test bed described in the section ??. Least but not last the University of Twente
in collaboration with Brabant Water one of the public water company in Netherlands, provides real
SCADA network traffic about production installation.

In this section several comparative tests on a prototype implementing the presented ap-
proach are described. The tests were performed using both real SCADA traffic and a dedicated
laboratory able to simulate a real SCADA installation.

Figure 8.1: Power plant simulator

This laboratory was created thanks to a cooperative research activity between the Research
Department of ENEL SPA and the Joint Research Centre of the European Commission. In this
protected environment, a complex electromechanical device consisting of pipes, valves, sensors,
pumps etc. is used to physically emulate the different states of a real power plant. For the following
tests, we have used the Modbus over TCP protocol and PLCs of the ABB AC800 family. Figure 8.1
shows a sketch of the physical electromechanical device used for the simulations, while a detailed

116 Chapter 8: Experimental results

description of the experimental environment can be found in [52]. A 3-layer switch is configured
with a set of monitor ports where the PLCs are connected. The IDS is linked to the monitor port
and it runs on a Windows machine with an AMD Athlon 2.8 GHz processor and 4 GB of memory.

8.1 Boiling Water Reactor Scenario

The Boiling Water Reactor (BWR) Scenario in Figure 8.2 shows a nuclear reactor for
generating electrical power. The BWR in figure is deliberately simplified. The Reactor Pressure
Vessel contains the fuel assemblies and control rods absorbed in light water. The fuel elements heat
the water to produce steam. The steam reaches the main turbine through the steam line and makes it
rotate. The unused steam is driven to the condenser where it is condensed into water. The resulting
water is pumped back to the reactor vessel. The cooling water is maintained at about 75 atm (7.6
MPa, 10001100 psi) so that it boils in the core at about 285 C (550 F).

The PLCs are programmed with the following logic:

PLC 1: it controls the temperature sensor of the water in the vessel and the speed of Pump2. The
former values is hold in the register IR1 and the latter in HR1. PLC 1 increases the Pump2 speed
if the temperature is too high in order to augment the cold water flow and to reduce the vessel
temperature.

PLC 2: it controls the pressure sensor connected to IR2 and the control valve VOUT connected
to CO24, which contains a value representing the valve opening (0 closed - 1 open). When the
pressure is too high, PLC 2 opens the valve VOUT to eject steam and to reduce the internal pressure.

PLC 3: it controls the temperature sensor of the condenser connected to IR3 and the speed of
Pump1 linked to HR3. As PLC1, when the condenser temperature it too high, PLC3 increases
Pump1 speed in order to augment the cold water flow and to condense the steam.

Chapter 8: Experimental results 117

IP: 10.0.0.4

Pump 1

Pump 2

Turbine

Generator

Pressure

Sensor

Temperature

Sensor

Fuel Condenser

Control

Rods

PLC

PLC

1

2

3

IR

HR

1

1

IR 1 HR
1

HR 1

VOUT

IR 1

Temperature

Sensor

Vessel

IP: 10.0.0.1

IP: 10.0.0.3

IP: 10.0.0.2
Master

PLC

Heater

CO1

Figure 8.2: Boiling Water Reactor Schema

The formal description of the system using the ISML language is a set of predicates
specifying the state of the system, e.g. Sys =

{PLC[10.0.0.1 : 502].IR[1] = 200, . . . ,PLC[10.0.0.1 : 502].HR[1] = 200,

.

PLC[10.0.0.3 : 502].IR[1] = 100, . . . ,PLC[10.0.0.3 : 502].HR[1] = 300}

where the values on the right side of the assignments are the initial values of the system, automati-
cally re-synchronized with the real system values thanks to the master emulator.

In the following a set of Critical State Rules representing some possible critical states of
the BWR scenario is showed. (

PLC [1].IR[1] > 120,

PLC [1].HR[1] < 40

)
→ Alert : 4 (R1)

118 Chapter 8: Experimental results

(
PLC [2].IR[2] > 200,

PLC [2].HR[9] < 10

)
→ Alert : 2 (R2)

(
PLC [3].IR[3] > 100,

PLC [3].HR[3] < 60

)
→ Alert : 2 (R3)

PLC [2].IR[1] < 70,

PLC [1].CO [1] = 0,

PLC [1].HR[1] < 1500

→ Alert : 1 (R4)

The rules state the following:

• R1 - If the temperature is > 120 degree and Pump2 speed is < 40 revolutions per second,
then the system is in a critical state because the water temperature is high, but the pump speed
is not enough to reduce the temperature in the vessel.

• R2 - If the pressure is > 200 bar and the valve is close, then the system is in a critical state
because the pressure is high, but the valve is not open to eject steam and reduce the internal
pressure.

• R3 - If the temperature is > 100 degree and Pump1 speed is < 60 revolutions per second,
then the system is in a critical state because the steam temperature is high, but the pump speed
is not enough to reduce the condenser temperature.

• R4 - If the pressure is under 70atm, the pre-heater system is turned off and the Pump2 speed
is > 1500 revolutions per second the system is in a critical state. In fact in a boiling water
reactor, the pressure is created to keep the water boils at the temperature of 285 C. So if the
pressure is under the limit and the pump is pumping too much cold water in the system the
standard fuel circle in the vessel could can be compromised.

Distance Example: In the following an example of the distance calculation is shown. Consider
rule (R1) and assume that PLC[1].IR[1] is mapped to s1 and PLC[1].HR[1] to s2. The equivalent
set of constraints is the singleton {C = [120,+∞], [−∞, 40]}. Let s = (100, 45) be the current

Chapter 8: Experimental results 119

state. The distance between s and the formula is calculated as follows:

d1(s1, [120,+∞]) = inf Ix − s1 = 120− 100 = 20

d1(s2, [−∞, 40]) = s2 − sup Iy = 45− 40 = 5

d1(s, C) =
∑
Ii∈C

d1(si, Ii) = 20 + 5 = 25

In this example the set of constraints equivalent to R1 contains only one constraint. If the set of
constraint has more constraints, the same calculation has to be repeated for every constraint and the
distance value is the minimum among the computed values.

Threshold example: Consider the critical states cs2 and cs4 defined respectively by the rules (R2)
and (R4). Consider also the 7 states occurred during the learning phase showed in the table 8.1

State PLC[2].CO[1] PLC[1].CO[1] PLC [2].IR[2] PLC [1].HR[1] d1(si, cs2) d1(si, cs4)

s1 0 0 80 1100 20 410
s2 1 0 81 1100 20 511
s3 0 0 85 900 15 615
s4 0 0 75 1200 25 305
s5 0 1 90 400 10 1121
s6 0 0 91 550 9 971
s7 1 1 110 600 1 41

Table 8.1: Boiling Water Reactor learning phase

In the last column the Manhattan distance(d1) between the critical states cs2, cs4 and the
current state si is calculated. Following the definition presented in the section the sub sets X are
Xcs2 = {s1, s3, s4, s5, s6} and Xcs2 = {s1, s2, s3, s4, s6}. For each critical states cs2 and cs4 the
threshold results respectively:

Thresholdcs2 = 9

Thresholdcs4 = 305

This example show how for each critical state is necessary to define a dedicated threshold
based on the behavior of the system.

120 Chapter 8: Experimental results

8.2 Accuracy Analysis

One of the most relevant parameters to be taken into consideration when evaluating an
IDS is accuracy, i.e. how well a binary classification test correctly identifies or excludes a condition
(in our case the occurrence of a critical state). In the scientific literature of Intrusion Detection,
accuracy is commonly measured in terms of False Positives and False Negatives, i.e. considering
how many false alerts are raised and how many attacks are not identified. To measure the accuracy
of the IDS, we set up the following experiment: a dataset was created by collecting private traffic
data in our laboratory for fifteen days. The dataset is made of standard SCADA traffic reflecting
normal industrial activities, plus traffic generated by simulating random malicious attacks targeting
critical states. The proposed approach is intended as an additional feature to be added to existing
IDS, to detect a particular class of attacks against SCADA systems. For that reason, we evaluated
its detection accuracy against such family of attacks, i.e. the attacks composed of chains of licit
SCADA commands. It is worth noting that the traffic congestion performance affects the accuracy
of the IDS. As stressed before, in cases of high network congestion, the virtual system image might
be slightly different from the current system state due to packet loss. When that happens, critical
state rules are evaluated against a not fully consistent system state, resulting in false positive or
false negative alerts. To capture this aspect, we randomly injected bursts of traffic activity with high
bandwidth rates.

Table 8.2 provides a clear picture of the number of true and false alarms generated per day.
In this example, it is obvious that the true alar highly outnumber the false alarms. Approximately
99% of alerts generated are true positives, while less than 1% of the total alerts are false positives.
We remark that accuracy here refers to the specific class of attacks (those composed by licit chains
of SCADA commands driving the system into a critical state), for which the critical state base
approach has been designed.

Chapter 8: Experimental results 121

Figure 8.3: Day by day false positive and negative results

Day Exp. Alerts False Pos False Neg Raised Alerts
1 19872 37 (0.186%) 3 (0.015%) 19906
2 14326 44 (0.307%) 4 (0.028%) 14366
3 17823 41 (0.230%) 7 (0.039%) 17857
4 22457 21 (0.094%) 2 (0.009%) 22476
5 20046 31 (0.155%) 2 (0.010%) 20075
6 18875 20 (0.106%) 9 (0.048%) 18886
7 13351 47 (0.352%) 7 (0.052%) 13391
8 20041 27 (0.135%) 6 (0.030%) 20062
9 22736 26 (0.114%) 7 (0.031%) 22755

10 9824 32 (0.326%) 1 (0.010%) 9855
11 18743 31 (0.165%) 10 (0.053%) 18764
12 24387 44 (0.180%) 7 (0.029%) 24424
13 14728 41 (0.278%) 2 (0.014%) 14767
14 12987 30 (0.231%) 9 (0.069%) 13008
15 19832 45 (0.227%) 10 (0.050%) 19867

Table 8.2: False positive and negative accuracy results.

By observing the system behavior with the CS approach without trying to follow the
attacker behavior, a false positive/negative might happen in the case of de-synchronization of the
virtual system with the real system. A relevant role is then played by the Master Emulator embedded
into the IDS: the faster its synchronization querying time, the lower the risk of de-synchronization
of the virtual system. In this respect the previous tests can be taken as a measure of the robustness
against false positives/negatives caused by system de-synchronization. On the other side, a faster
synchronization query time possibly means higher interference with the monitored system. The
trade-off between synchronization query time and system interference is strongly system dependent.
Parameters to be considered in defining the proper query time are: (a) the system architecture (e.g. if

122 Chapter 8: Experimental results

the system is composed of redundant network connections, the backup lines can be used by the IDS
for querying purposes); (b) the system hardware (e.g. the computational and network power of the
PLC); and (c) the real time requirements. The evaluation of the correct query time can be considered
as part of the usual “system tuning” of every IDS. The right tradeoff between synchronization query
time and system interference can be determined on the basis of ad-hoc experimentation.

8.3 Performance Tests

This section describes the tests carried out with a configuration we have denominated
“four sub-systems scenario” (FSS). This scenario was implemented for measuring the time delays
affecting the IDS. The FSS is composed of four masters connected to 16 PLCs configured with at
least 100 different analog and digital IO.

Memory Usage Tests
The evaluation of memory performance is shown in the following. There are two data structures
which have a considerable size in the CS IDS: the Virtual System Image and the Rules Represen-
tation. The Virtual System Data Structure is a hash table identifying each PLCs with a unique key.
The amount of memory required for each PLC object increases linearly with the number of registers
into the PLC. The required memory for the entire Virtual System increases linearly with the number
of PLC in the system. Table 8.3 shows the memory usage for each PLC and Table 8.4 shows the
memory usage for a Virtual System containing PLCs composed of 65535 registers (maximum value
allowed according to the Modbus specification [?]).

Registers Num Size (K/b)
1 0.422
10 1.056

100 1.583
1000 6.856

10000 59.591
30000 176.778
65535 384.991

Table 8.3: PLC Memory Usage

Chapter 8: Experimental results 123

PLCs Num Size (M/b)
1 0.378
2 0.754

10 3.762
50 18.800
100 37.599
500 187.986

1000 375.970

Table 8.4: VS Memory Usage

The growth is linear and a Virtual System composed of 1000 PLCs requires less than 400
Mbytes of memory. The other important data structure is used to represent the “Signature Based
and Critical State Based Rules”. This data structure is a list of lists where each sub-list represents
a rule. The required memory for each rule increases linearly with the number of conditions in the
rule, and the required memory for the entire rule set increases linearly with the number of rules.

Conditions Num Size (K/b)
1 0.086
10 0.859

100 8.594
500 42.969
1000 85.938
2000 171.875

Table 8.5: Single Rule Memory Usage

Rules Size (K/b)
1 0.344
10 3.438

100 34.375
500 171.875
1000 343.750
2000 687.500

Table 8.6: Rules Set Memory Usage

Table 8.5 shows the memory usage for each rule and Table 8.6 shows the memory usage
for an entire set of rules (from 1 to 2000 rules, each rule composed of 4 conditions). For both, i.e.
single rule and set of rules, the growth is linear and a set of 2000 rules requires less than 600 Kbytes.

124 Chapter 8: Experimental results

Packet Capturing Test
The “Packet Capturing” performance of the prototype was tested sending a high number of packets
with a very high bit rate. The results are shown in Table 8.7.

Avg. Avg. Pkts. Avg. Avg. Avg. Avg. Avg.
Mbit/s Captured Pkt. Pkt. Alerts Alert Alert

(out of Loss Loss Raised Loss Loss
400K) (%) (%)

1.215 400000 0 0.0000 200000 0 0.0000
1.476 399994.8 5.2 0.0013 199996.2 3.8 0.0019
1.712 399987.6 12.4 0.0031 199988.8 11.2 0.0056
2.022 399978 22 0.0055 199980.2 19.8 0.0099
2.405 399970.8 29.2 0.0073 199973.8 26.2 0.0131
2.77 399968.4 31.6 0.0079 199968.4 31.6 0.0158

Table 8.7: Packet Capturing and Alerts Raised Tests

In this scenario the IDS is stressed with bursts of 400.000 consecutive packets (with in-
creasing bit-rate). In our tests, the behavior of the IDS appeared reliable, since in the worst case
(traffic of 2,77 Mbit/sec) it only lost 0.0079 % of the packets and 0.0158 % of the alerts (in table
8.7 we showed only the alert missed due to packet loss). The packet loss and the alert loss increased
with the quantity of traffic as shown in the two charts in figure 8.4. When the traffic rate is un-
der 1.215 Mbit /sec there is no packet loss and when the traffic rate is high (over 2 Mbit/sec) the
percentage of packet loss is less than 0.008 %.

Chapter 8: Experimental results 125

0

5

10

15

20

25

30

35

40

1 1.5 2 2.5 3

P
ac
ke
t
Lo
ss

Average Rate (Mbit/sec)

Figure 8.4: Packet Capturing and Alerts Raised Tests

0

5

10

15

20

25

30

35

40

1 1.5 2 2.5 3

A
le

rt
 L

o
ss

Average Rate (Mbit/sec)

Figure 8.5: Packet Capturing and Alerts Raised Tests

Signature-Based Analyzer Test
The performance of the Signature-Based Analyzer depends on the quantity of rules. In order to
test the rule check performance the following experiment has been carried out: the Master Station
sends 1000 generic requests and the slave Station responds with the appropriate responses, the IDS
captures the messages and checks whether they are licit, according to a rules file containing n rules.

126 Chapter 8: Experimental results

After checking the rules, the IDS can either display a warning on the standard output, or (in a more
complex scenario than the one presented above) send the alert to the DB. The results are shown in
Figure 8.4 8.5..

Cond. Avg
Time

Avg
Time
Comm.

10 0.006 0.009
50 0.004 0.012
100 0.006 0.177
250 0.023 0.417
500 0.049 0.572
1000 0.096 0.709
2000 0.194 0.829Foglio1

Pagina 1

COMMIT

10 0.006 0.006

50 0.009 0.012

100 0.013 0.177

500 0.049 0.592

1000 0.096 0.710

2000 0.194 0.829

Num
Rules

Average
Time (on
1000
pkts)

0 500 1000 1500 2000 2500
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Avg Time Avg Time
with Commit

Rules Number

Ti
m

e
in

 m
s

Figure 8.6: Signature-Based Performance Test (average time in ms.)

The elapsed time increases with the quantity of rules as shown in Graph 8.6.

Virtual System Update Tests
The IDS updates the System Virtual Image (SVI) in two steps: it finds the PLC related to the content
of the packet and then it updates the Virtual Object which represents the PLC. The first step is not
relevant for the performance of the IDS, because the list of PLCs is implemented with a hash table,
so the time elapsed to find a PLC (around 0,0042 ms) is almost the same for tables of 1 or of 1000

Chapter 8: Experimental results 127

PLCs. The following test was used for checking the time needed for updating the PLC information:
the Master Station sends 1000 requests with the command “Read n coils”, the Slave Station answers
with responses that contains the n values and the IDS captures the request/response transactions and
updates the n values in the Virtual PLC.

N. Coils Avg. Time
1 0.003
50 0.005
100 0.006
500 0.019
1000 0.034
2000 0.068!"#$%"&

'(#%)(*&

& +,++-

.+ +,++.

&++ +,++/

.++ +,+0+

&+++ +,+-1

0+++ +,+/2

)34*5"%$6 (789(#8*:%48*%)*46*;")*&+++*<5=>

+ .++ &+++ &.++ 0+++ 0.++
+,++

+,+&

+,+0

+,+-

+,+1

+,+.

+,+/

+,+2

+,+?

!"#$%&'()*+,

-
#)
+
&#
.
&)
%

Figure 8.7: Virtual System Update Performance Test and graph (Time in ms.)

The results demonstrate the validity of the proposed approach because even in the worst
case, i.e. 2000 coils to update (maximum value allowed according to the Modbus specification [?]),
the IDS performance is under one millisecond. In addition, the elapsed time increases with the
number of coils to update in a linear way as shown in Graph 8.7.

Critical State Rules Analyzer Test
The performance of the Critical State Rules Analyzer depends on two factors: the size of each
rule and the quantity of rules. The rule size impact was measured as follows: the Master Station
sends 1000 generic requests and the Slave Station answers with the appropriate responses, the IDS
captures the request/response transactions and checks whether the Virtual System is entering into
a Critical State, according to a rules file that contains only one rule with n conditions (in this case

128 Chapter 8: Experimental results

2 conditions) The impact of the number of rules on the IDS performance was tested increasing the
number of rules while keeping fixed the size (2 conditions) of each single rule (results in Table 8.9).

N. Cond. Avg. Time
2 0.00035
4 0.0004

32 0.0062
128 0.031
256 0.0601
512 0.113

1024 0.246
2048 0.554

Table 8.8: Critical State Rule Analyzer Performance based on condition number

N. Rules Avg. Time
10 0.0038
50 0.0149

100 0.026
500 0.123
1000 0.329
2000 0.766

Table 8.9: Critical State Rule Analyzer Performance based on number of rules (time in ms.)

It is important to note that the time elapsed for a number of conditions up to 2048 is under
one millisecond. This result is satisfactory since it is unlikely to have rules with 2048 conditions.
In addition, these tests show that the bottleneck for the IDS performance is the Critical State Rules
Analyzer, especially when the quantity of rules is high. In any case the time elapsed is under one
millisecond with a number of rules up to 2000.

Distance Performance Test In light of the described implementation, we performed the
following tests:

1. Predicates Test: the rule set is composed of only one critical formula which has a variable
number of predicates (up to 2000) related to the same system component.

2. System Components Test: the rule set is composed of only one critical formula which has a
variable number of predicates (up to 2000) related to different system components.

Chapter 8: Experimental results 129

3. Rules Test: the rule set is composed of a variable number rules (up to 2000).

The results are shown in Table 8.10 for the three parts of the test.
All tests confirm that the time required for calculating the distance is linear with the num-

ber of predicates. In test 1, the time elapsed for calculating the distance (Table 8.10.A) is negligible,
considering also that a list of 2000 predicates for a single system component is improbable. In test
2, the time spent for calculating the distance (Table 8.10.B) is lower than 6ms which is a good re-
sult. In test 3, the time spent for calculating rule distances (Table 8.10.C) is relatively high, but the
growth is linear and the maximum time is less than 60ms for a number of rules up to 2000.

Table 8.10.A
Pred. Time (ms)
1 0.010
10 0.013
50 0.019
100 0.021
500 0.056
1000 0.093
2000 0.165

Table 8.10.B
Pred. Time (ms)
1 0.013
10 0.037
50 0.147
100 0.270
500 1.308
1000 2.547
2000 5.147

Table 8.10.C
Rules Time (ms)
1 0.040
10 0.277
50 1.332
100 2.632
500 13.542
1000 28.967
2000 57.386

Table 8.10: Distance Analyzer Performance Test

Chapter 9

Conclusion

130

Chapter 9: Conclusion 131

The connection of industrial systems to the public network has introduced new security
problems in an environment traditionally critical, and ICT security countermeasures are not able
to completely protect such systems. This thesis presented a new network detection approach for
the detection and mitigation of a particular class of cyberattacks against industrial installations.
This technique is based on monitoring the evolution of the state of the protected system and on the
analysis of the command packets between master and slaves of a SCADA architecture. The key
elements of this technique are the concept of critical state and the observation that an attacker, in
order to damage an industrial system, will have to modify its state from secure to critical. The critical
state validation, normally hardly applicable in traditional ICT systems, finds its natural application
in the industrial control field, where the critical states are generally well-known and limited in
number. Moreover, the introduction of the concept of critical state distance allowed to extend the
firewall features in the direction of a more complete early warning system.

The results of the tests conducted on a prototype implementing the described approach
demonstrated the feasibility and validity of the proposed method. This approach presents some
advantages with respect to traditional filtering techniques:

1. Since the network detection system is applied on the basis of the system evolution (something
known) and not on the basis of the attack evolution (something unknown), for predefined crit-
ical states, this approach allows to block also zero day attacks, i.e., attacks based on unknown
techniques.

2. The number of false positives results limited since the traffic is dropped only if the analyzed
command will drive the system into a described critical state. There are only two cases in
which we can have false positives or false negatives: the case in which a critical state has
not been described (and this is an error performed by who configured the intrusion detection
rules) or if the real system and its virtual image are desynchronized (and this is due eventually
to an error in the configuration of the auto- synchronization time between the real system and
the virtual system)

On the other hand, this technique, being conceived to protect strictly the SCADA devices,
cannot protect from more traditional ICT attacks such as virus attacks to general purpose ICT sys-
tems, etc. For that reason, we see the critical state-based filtering as a technique complementary to
the traditional firewall and IDS techniques, helping in enhancing the security of these systems. The
configuration of the ruleset is not cheap in term of effort. However, to facilitate this process, we

132 Chapter 9: Conclusion

are planning to develop a self-discovery engine able to automatically learn the configuration of the
system to be protected.

Bibliography

[1] COMMISSION OF THE EUROPEAN COMMUNITIES Communication form the commis-
sion to the council and the European parliament Critical Infrastructure Protection in the fight
against terrorism - Brussels, 20.10.2004 COM(2004) 702 final

[2] Nuclear Regulatory Commission. NRC information notice http://www.nrc.gov/ reading-
rm/doc-collections/gen-comm/info-notices/2007/ in200715.pdf (cited: November 23, 2012)

[3] Gorman S. Electricity grid in U.S. penetrated by spies The Wall Street Journal. URL:
http://online.wsj.com/article/ SB123914805204099085.html; (cited: November 23, 2012)

[4] Gordon Clarke Practical Modern SCADA Protocols - DNP3, IEC 60870.5 and Related Sys-
tems

[5] Eric Knapp Industrial Network Security - Securing Critical Infrastructure Networks for Smart
Grid, SCADA, and Other Industrial Control Systems

[6] OSIsoft OSIsoft company overview http://www.osisoft.com/ 2012 (cited: November 23,
2012).

[7] Creery A., Byres E. Industrial Cybersecurity for power system and SCADA net- works. IEEE
Industry Application Magazine (July-August 2007)

[8] Chandia R., Gonzalez J., Kilpatrick T., Papa M., Shenoi S. Security Strategies for Scada
Networks. First Annual IFIP Working Group 11.10 International Conference on Critical
Infrastructure Protection, Dartmouth College, Hanover, New Hampshire, USA, March 19-21
(2007)

133

134 Bibliography

[9] N. Falliere, L. O. Murchu, and E. Chien W32.stuxnet
dossier Symantec, Tech. Rep., Feb. 2011. [Online]. Available:
http://www.symantec.com/content/en/us/enterprise/media/securityresponse/whitepapers/w32
stuxnet dossier.pdf

[10] A. Nicholson, S. Webber, S. Dyer, T. Patel, H. Janicke SCADA security in the light of
Cyber-Warfare Computers & Security - Volume 31, Issue 4, June 2012, Pages 418436

[11] Giovanni Cagalaban, Seoksoo Kim Towards Improving SCADA Control Systems Security
with Vulnerability Analysis Parallel and Distributed Computing and Networks Communica-
tions in Computer and Information Science Volume 137, 2011, pp 27-32

[12] Majdalawieh M., Parisi-Presicce F., Wijesekera D. Distributed Network Protocol Security
(DNPSec) security framework. Proceedings of the 21st Annual Computer Security Applica-
tions Conference, Tucson, Arizona, December 5-9 (2005)

[13] Bagaria, S.; Prabhakar, S.B.; Saquib, Z. Flexi-DNP3: Flexible distributed network proto-
col version 3 (DNP3) for SCADA security International Conference on recent Trends in
Information Systems (ReTIS), 2011

[14] Kang, D.; Kim, H. A Proposal for Key Policy of Symmetric Encryption Application to cyber
security of KEPCO SCADA Network Future Generation Communication and Networking
(FGCN 2007)

[15] Hong, S.; Phuong, T. N.; Lee M. Development of Smart Devices for Secure Communication
in the SCADA system

[16] Azuwa, M.P.; Ahmad, R.; Sahib, S.; Shamsuddin, S. A propose technical security metrics
model for SCADA systems

[17] Mander, T.; Nabhani T.; Wang, L.; Cheung, R. Data object based security for DNP3 over
TCP/IP for increased utility commercial aspects security In Proceedings Power Eng. Soc.
Gen. Meeting, Tampa, FL, Jun. 2428, 2007, pp. 18.

[18] Nai Fovino, I.;j Masera M.; Leszczyna, R.; ICT security assessment of a power plant, a case
study in Proceedings 2nd Int. Conf. Critical Infrastructure Protect., Arlington, VA, Mar. 2008

Bibliography 135

[19] Online- Available: http : //www.snort.org/assets/114/SnortRH5SCADA.pdf last
access 07/10/2012

[20] Modbus-IDA Modbus Application Protocol Specification v1.1b http://www.modbus.org,
November 12, 2012

[21] Modbus-IDA MODBUS Messaging on TCP/IP Implementation Guide V1.0b
http://www.modbus.org, November 19, 2012

[22] T. Smith The Register. Hacker jailed for revenge sewage attacks
http://www.theregister.co.uk/2001/10/31/hacker jailed for revenge sewage/ October 31,
2001 (cited: November 3, 2012)

[23] J. Meserve CNN.com. Sources: Staged cyber attack reveals vulnerability in power
grid http://articles.cnn.com/2007-09-26/us/power.at.risk 1 generator-cyber-attack-electric-
infrastructure., September 26, 2007 (cited: November 3, 2012)

[24] Industrial Control Systems Cyber Emergency Response Team (ICS-CERT) ICSA-10-238-
01STUXNET MALWARE MITIGATION Department of Homeland Security, US-CERT,
Washington, DC, August 26, 2010.

[25] E. Chien, Symantec. Stuxnet: a breakthrough.
,http://www.symantec.com/connect/blogs/stuxnet-breakthrough November 2010 (cited:
November 16, 2012)

[26] Slay, S.; Miller, M.; Lessons Learned from the Maroochy Water Breach Springer, 2008, vol.
253, Critical Infrastructure Protection, pp. 7382, IFIP International Federation for Informa-
tion Processing.

[27] Gross, P.; Parekh, J.; Kaiser, G. Secure selecticast for collaborative intrusion detection sys-
tems In Proceedings at International Workshop on DEBS, 2004.

[28] Ning, P.; Cui, Y.; Reeves, D. S.; Constructing attack scenarios through correlation of intrusion
alerts In Proceedings at ACM Conference Comput. Commun. Security, Washington, D.C.,
Nov. 2002, pp. 245254.

[29] Cuppens, F.; Mige, A.; Alert correlation in a cooperative intrusion detection framework In
Proceeding 2002 IEEE Symp. Security and Privacy, Washington, DC, 2002, p. 202.

136 Bibliography

[30] Isermann, R.; Supervision, fault-detection and fault-diagnosis methods. An introduction,
Control Engineering Practice, vol. 5, no. 5, pp. 639652, 1997.

[31] Isermann, R.; Process fault detection based on modelling and estimation methodsA survey
Automatica, vol. 20, no. 4, pp. 12871298, 1984.

[32] Frank, P. M.; Advanced fault detection and isolation schemes using non linear and robust
observers In 10th IFAC Congress, Munich, Germany, 1987, vol. 3, pp. 6368.

[33] Dominguez, C.; Vidulich, M.; Vogel, E.; McMillan, G.; Situation Awareness: Papers and An-
notated Bibliography, Armstrong Laboratory, Human System Center, ref. AL/CF-TR-1994-
0085, 1994.

[34] Roman, R.; Alcaraz, C.; Lopez, J.; The role of wireless sensor net- works in the area of
critical information infrastructure protection Inf. Secur. Tech. Rep., vol. 12, no. 1, pp. 2431,
2007.

[35] Linda, O.; Vollmer, T. ; Manic, M. Neural Network based Intrusion Detection System for
critical infrastructures International Joint Conference on Neural Networks, 2009. IJCNN
2009.

[36] Bonnie Zhu, Anthony Joseph, and Shankar Sastry Taxonomy of Cyber Attacks on SCADA
Systems Proceedings of CPSCom 2011: The 4th IEEE International Conference on Cyber,
Physical and Social Computing, Dalian, China, October 19-22, 2011

[37] Eric Byres, Joel Carter, Amr Elramly, Dan Hoffman Worlds in Collision: Ethernet on the
Plant Floor ISA Emerging Technologies Conference, Instrumentation Systems and Automa-
tion Society, Chicago, October (2002).

[38] Andrea Carcano, Igor Nai Fovino, Marcelo Masera, Alberto Trombetta SCADA malware, a
proof of concept LNCS lecture notes in Computer Science, Springer Verlag 2008

[39] P.J. Pingree The Deep Impact Test Benches 8211 - Two Spacecraft, Twice the Fun Proceed-
ings of IEEE Aerospace Conference, Page 19, 2006

[40] NIST - National Institute of Standard Technology CVE-2011-0406
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2011-0406

Bibliography 137

[41] T. Paukatong SCADA Security: A New Concerning Issue of an In-house EGAT-SCADA
2005 IEEE/PES Transmission and Distribution Conference - Exhibition: Asia and Pacific
Dalian, China

[42] Igor Nai Fovino, Marcelo Masera, R. Leszczyna ICT Security Assessment of a Power Plant,
a Case Study In: Proceeding of the Second Annual IFIP Working Group 11.10 International
Conference on Critical Infrastructure Protection, George Manson University, Arlington, USA
2008

[43] Rafal Leszczyna, Igor Nai Fovino, Marcelo Masera MAlSim. Mobile Agent Malware Simu-
lator In Proceeding of the First International Conference on Simulation Tools and Techniques
for Communications, Networks and Systems, Marseille (2008)

[44] Rafal Leszczyna, Igor Nai Fovino, Marcelo Masera Simulating Malware with MAlSim In
Proceeding of the 17th EICAR Annual Conference 2008, Laval, France (2008)

[45] M.Masera,I.NaiFovino,R.Leszczyna Security assessmentof a turbo-gas power plant in: M.
Papa, S. Shenoi (Eds.), Critical Infrastructure Protection II, Springer, Boston, Massachusetts,
2008, pp. 3140.

[46] R. Rivest, A. Shamir and L. Adleman A method for obtaining digital signatures and public-
key cryptosystems, Communications of the ACM, vol. 21(2), pp. 120126, 1978.

[47] NIST - National Institute of Standard Technologies Guide to Intrusion Detection and Pre-
vention Systems Special Publication 800-94

[48] D. Barbara, C. Domeniconi and J. Rogers, Detecting outliers using transduction and statis-
tical testing ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD), Philadelphia, PA, Aug. 2003.

[49] J. Ma and S. Perkins Online novelty detection on temporal sequences ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining (KDD), Washington, DC,
Aug. 2003.

[50] A. Ihler, J. Hutchins, and P. Smyth Adaptive event detection with time-varying Poisson
processes ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD),
Philadelphia, PA, Aug. 2006.

138 Bibliography

[51] I. Nai Fovino, A. Carcano, M. Masera and T. de Lacheze Murel Modbus/DNP3 State-based
Intrusion Detection System In Proceeding of ANIA 2010 - the IEEE 24th International
Conference on Advanced Information Networking and Application, Perth, Australia, April
2010

[52] Igor Nai Fovino, Marcelo Masera, Luca Guidi and Giorgio Carpi An Experimental Platform
for Assessing SCADA Vulnerabilities and Countermeasures in Power Plants Conference on
Human System Interactions (HSI), 2010

Bibliography 139

	Title Page
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Industrial Control Networks
	Critical Infrastructure
	Industrial Control Network
	SCADA - Supervisory

	Industrial Network Protocols
	Modbus protocol
	MODBUS Application Data Unit
	MODBUS Protocol Data Unit
	MODBUS Transactions
	MODBUS Data Model
	MODBUS Function Codes
	MODBUS Exception Code

	Related works
	Threat Model
	SCADA security properties
	Attacks
	Attacks in Hardware
	Attacks on Software
	Attacks in the communication stacks

	Modbus - Attack
	Experimental environment
	Scada Malware and Attack Scenarios

	Conclusion

	Secure Modbus
	Modbus Vulnerabilities
	Secure Modbus Protocol
	Secure Modbus Implementation
	Experimentals results

	Conclusion

	Intrusion Detection for Industrial control systems
	Intrusion Detection Techniques
	Signature-based
	Anomaly-based

	State Analysis Technique
	System Description and Critical State Representation
	State Evolution Monitor
	Critical State Detection
	Multidimensional metric for CS
	Threshold detection

	IDS Implementation
	Loader
	Scada Protocol Sensor (SPS)
	System Virtual Image (SVI)
	Analyzer

	Experimental results
	Boiling Water Reactor Scenario
	Accuracy Analysis
	Performance Tests

	Conclusion
	Bibliography

