
Spectral/hp discontinuous Galerkin methods

for modelling 2D Boussinesq equations

Claes Eskilsson a, Spencer J. Sherwin b,∗

aDepartment of Civil and Environmental Engineering, Chalmers University of

Technology, SE–412 96 Gothenburg, Sweden

bDepartment of Aeronautics, Imperial College London, London SW7 2AZ, UK

Abstract

We present spectral/hp discontinuous Galerkin methods for modelling weakly non-

linear and dispersive water waves, described by a set of depth-integrated Boussi-

nesq equations, on unstructured triangular meshes. When solving the equations two

different formulations are considered: directly solving the coupled momentum equa-

tions and the ‘scalar method’, in which a wave continuity equation is solved as an

intermediate step. We demonstrate that the approaches are fully equivalent and

give identical results in terms of accuracy, convergence and restriction on the time

step. However, the scalar method is shown to be more CPU efficient for high order

expansions, in addition to requiring less storage.

Key words: nonlinear dispersive water waves, Boussinesq-type equations,

discontinuous Galerkin method, spectral/hp discretization

∗ Corresponding author.

Email addresses: claes.eskilsson@chalmers.se (Claes Eskilsson),

s.sherwin@imperial.ac.uk (Spencer J. Sherwin).

Preprint submitted to Journal of Computational Physics 29 October 2006

1 Introduction

Simulation of nonlinear and dispersive waves are routinely performed in coastal

and ocean engineering for solving problems in the nearshore zone, such as

harbour resonance and wave-induced circulation, e.g. [26,39,48]. This type of

simulation is increasingly carried out in the time-domain using numerical mod-

els based on Boussinesq-type equations, sometimes referred to as dispersive

shallow water systems. Over the last decade significant advancement has been

made in deriving more and more accurate – and more complex – Boussinesq-

type equations [29,33,31,19,32].

Boussinesq-type equations are higher order approximations to the nonlinear

shallow water equations (SWE). There is a growing body of work concerning

application of high-order Galerkin methods to the SWE. The motivation being

the potential savings in computational time – especially for large-scale prob-

lems involving long-time integration – in combination with the geometrical

flexibility of the Galerkin approach. In 1993, Ma [28] presented the first con-

tinuous spectral element model and was soon to be followed by other spectral

element modellers, including [21,41,17]. More recently spectral/hp discontinu-

ous Galerkin (DG) models have been suggested [12,18,14,16].

The salient feature in DG methods is that the solution is allowed to be discon-

tinuous over elemental boundaries, while the elements are coupled through the

use of continuous so-called numerical fluxes. See [8] for a general overview and

[9] for a review of the Runge-Kutta DG method. Lately DG methods has been

applied to nonlinear and dispersive wave equations, e.g. KdV-type equations

[51,49], Schrödinger equations [50] and Boussinesq-type equations [13,15].

2

In light of the interest in Boussinesq-type modelling in coastal engineering

spectral/hp element methods have received surprisingly little interest. Despite

the fact that the introduction of dispersive terms will require a higher spatial

resolution, typically low-order finite differences [29,33,45,38], or finite elements

[2,1,25,43,47,40] are used. The authors recently outlined a 2D spectral/hp DG

model for the Boussinesq equations [15] – with the restriction of constant

depth and periodic boundary conditions. In this work the concept of a ‘scalar

method’ was proposed for treating the dispersive terms arising in these equa-

tions. The motivation behind the scalar method is to reduce the size of the

matrix system by introducing the time rate of change of momentum diver-

gence as a dependent variable – resulting in an Ndof × Ndof scalar Helmholtz

problem (Ndof denoting total degrees of freedom). This can be compared to the

more traditional approach of solving the coupled momentum equations lead-

ing to an 2Ndof × 2Ndof matrix system. On the other hand, the scalar method

requires a variable recovery step and, for the present DG implementation,

several additional numerical flux evaluations.

Thus, in addition to extending the DG Boussinesq model to the more general

setting of variable depth and non-periodic boundary conditions, we in this

paper focus on investigating the effect on accuracy and efficiency of using the

scalar method rather than solving the coupled momentum equations. This is

done through examining the eigenspectra of the semi-discretized equations,

as well as through numerical experiments. Further, we: (i) consider different

elliptic DG formulations for the dispersive part, and (ii) compare the DG

model against a finite difference model in terms of efficiency.

The paper is organised as follows. In section 2 we present the governing equa-

tions. Section 3 is devoted to the numerical methods and is divided into several

3

subsections dealing with the discrete Galerkin approximations, the advective

and dispersive numerical fluxes, boundary conditions, expansion basis, the

time stepping scheme and eigenspectra. In section 4 we numerically evaluate

the accuracy and efficiency of the models by examining the case of a linear

standing wave. Here we also compare the DG model against the finite differ-

ence model. We present additional computational examples in section 5. The

findings of the work are then summarised in section 6.

2 Governing equations

For an incompressible, irrotational and inviscid fluid the wave motion is de-

scribed by the Laplace equation with appropriate boundary conditions. A

major difficulty in solving the full problem is that the location of the water

surface – which is a boundary – is a priori unknown, giving that the do-

main in which the equations are to be solved is also unknown. The moving

boundary problem of the free surface can be avoided by using the Boussinesq

approach, i.e. expanding the velocity potential in powers of the vertical coor-

dinate and integrating the Laplace equation over the water depth. By using

the Boussinesq approach a simpler problem that approximates the full prob-

lem, expressed only in the horizontal dimensions, is obtained. The Boussinesq

equations used in this study are valid for d/L0 ≤ 0.22, where d is the water

depth and L0 is the deep water wavelength [29] (the traditional deep water

limit corresponds to d/L0 = 0.5).

We write the Boussinesq equations [34] in terms of conservative variables as

∂tU + ∂tD(U) + ∇ · F(U) = S(U) , (1)

4

in which F(U) = [E(U),G(U)]T is the flux vector and

U =




H

Hu

Hv




, D =




0

(d3/6)∂x(∇ · (Hu/d)) − (d2/2)∂x(∇ · (Hu))

(d3/6)∂y(∇ · (Hu/d)) − (d2/2)∂y(∇ · (Hu))




,

(2a)

E =




Hu

Hu2 + gH2/2

Huv




, G =




Hv

Huv

Hv2 + gH2/2




. (2b)

The vector U contains the conserved variables, where H(x, y, t) = ζ(x, y, t) +

d(x, y) is the total water depth, d(x, y) is the still water depth and ζ(x, y, t)

is the free surface elevation. u = [u(x, y, t), v(x, y, t)]T denotes the depth-

averaged velocities in the x- and y-direction, respectively. The acceleration of

gravity is denoted by g. We note that the SWE are recovered if D ≡ 0. In this

paper the source term S(U) accounts for forcing due to bed slopes, i.e.

S =




0

gHSx
0

gHSy
0




, (2c)

where Sx
0 and Sy

0 are the bed slopes in the x- and y-direction, respectively.

5

Expanding the parenthesis in the dispersive terms, leads to

∂tD =




0

−(d2/3)∂x(∇ · ∂t(Hu)) − (d/6)∂xd (∇ · ∂t(Hu)) − (d3/6)∂x((∇d · ∂t(Hu))/d2)

−(d2/3)∂y(∇ · ∂t(Hu)) − (d/6)∂yd (∇ · ∂t(Hu)) − (d3/6)∂y((∇d · ∂t(Hu))/d2)




.

(3)

We write the dispersive term as ∂tD(U) = ∂tD
m(U) + Ds(U) where

Dm(U) =




0

−(d2/3)∂x(∇ · (Hu)) − (d/3)∂xd(∇ · (Hu))

−(d2/3)∂y(∇ · (Hu)) − (d/3)∂yd(∇ · (Hu))




, (4)

and, using the mild-slope assumption,

Ds(U) =




0

(d∂xd/6)∂yt(Hv) − (d∂yd/6)∂xt(Hv)

(d∂yd/6)∂xt(Hu) − (d∂xd/6)∂yt(Hu)




. (5)

Now we apply the linear long wave approximation

∂t(Hu) ≈ −gd∇ζ , (6)

to rewrite the Ds terms as

Ds(U) =




0

(d∂xd/6)∂y(−gd∂yζ) − (d∂yd/6)∂x(−gd∂yζ)

(d∂yd/6)∂x(−gd∂xζ) − (d∂xd/6)∂y(−gd∂xζ)




. (7)

6

3 Numerical schemes

The most obvious way to solve the Boussinesq equations is to directly dis-

cretize (1) and solve the coupled momentum equations (from here on referred

to as the coupled method) as outlined in §3.2. An alternative way is to use

the scalar method as discussed in §3.3

3.1 Preliminaries

Let Th be a partition of the domain Ω into N triangular elements Te. The

element Te has a boundary ∂Te. For each element we denote the diameter

of Te with he and set h = max(h1, h2, . . . , hN). We also define the following

discrete spaces

Vδ =
{
v ∈ L2(Ω) : v|Te

∈ PP (Te), ∀Te ∈ Th

}
, (8a)

Wδ =
{
w ∈ L2((Ω))2 : w|Te

∈ (PP (Te))
2, ∀Te ∈ Th

}
, (8b)

where PP (Te) is the space of polynomials of degree at most P in the element

Te.

The variables will be approximated using a polynomial expansion basis φpq(ξ1, ξ2).

For an arbitrary function f(x, t) the approximation fδ ∈ Vδ reads

fδ(x, t) =
P∑

p=0

P−p∑

q=0

f̃pq(t)φpq(ξ1, ξ2) , x ∈ Te , (9)

where f̃pq(t) are the local expansion coefficients. The orthogonal modal basis

φpq used in the current work is discussed in §3.6.

7

3.2 Coupled method

The variational form of eq. (1) is obtained by approximating U with a poly-

nomial expansion Uδ ∈ Vδ, multiplying with a test function qδ ∈ Vδ and

integrating over the element Te

∫

Te

qδ∂t (Uδ + Dm(Uδ)) dx +
∫

Te

qδD
s(Uδ)dx

+
∫

Te

qδ (∇ · F(Uδ)) dx =
∫

Te

qδS(Uδ)dx (10)

Integration by parts gives the weak formulation

∫

Te

qδ∂t (Uδ + Dm(Uδ)) dx +
∫

Te

qδD
s(Uδ)dx −

∫

Te

∇qδ · F(Uδ)dx

+
∫

∂Te

qδ (F(Uδ) · n) dS =
∫

Te

qδS(Uδ)dx , (11)

where n = [nx, ny]
T is the outward unit normal to ∂Te. We exchange the flux

F(Uδ) in the boundary term with a numerical flux denoted with a hat, F̂(Uδ),

defined in §3.4.1. Integrating by parts once more and we can write the discrete

DG formulation as: find Uδ ∈ Vδ such that for all qδ ∈ Vδ and for all Te ∈ Th

∫

Te

qδ∂t (Uδ + Dm(Uδ)) dx +
∫

Te

qδD
s(Uδ)dx +

∫

Te

qδ (∇ · F(Uδ)) dx

+
∫

∂Te

qδ
((

F̂(Uδ) − F(Uδ)
)
· n
)

dS =
∫

Te

qδS(Uδ)dx .

(12)

Introducing the auxiliary variable a = ∇·(Hu) we rewrite the Dm
(i) (i = 1, 2, 3)

term as a first-order system:

Dm
(2,3)(U) = −γ∇a− 2Γa , (13a)

a = ∇ · (Hu) , (13b)

8

where γ(x) = d(x)2/3 and Γ(x) = d(x)∇d(x)/6. The integral containing Dm

in equation (12) is thus evaluated as

∫

Te

qδD
m
(2,3)(Uδ)dx = −

∫

Te

qδγδ∇aδdx −
∫

∂Te

qδγδ(âδ − aδ)n dS − 2
∫

Te

qδΓδaδ dx ,

(14a)
∫

Te

qδaδdx =
∫

Te

qδ(∇ · (Hu)δ)dx +
∫

∂Te

qδ
((

(Ĥu)δ − (Hu)δ

)
· n
)

dS ,

(14b)

where the dispersive numerical fluxes âδ and (Ĥu)δ will be discussed in §3.4.2.

As an aside we note that at the discrete level aδ in (14b) is directly substituted

into (14a) and therefore does not need to be explicitly solved.

By introducing a further auxiliary variable b = −gd∇ζ we likewise rewrite

the Ds
i term as

Ds
(2)(U) = Γ(1)∂yb(2) − Γ(2)∂xb(2) , (15a)

Ds
(3)(U) = Γ(2)∂xb(1) − Γ(1)∂yb(1) , (15b)

b = −gd∇ζ . (15c)

Hence the integral containing Ds in eq. (12) is evaluated as

∫

Te

qδD
s
(2)(Uδ)dx =

∫

Te

qδΓ(1)δ∂yb(2)δdx +
∫

∂Te

qδΓ(1)δ(b̂(2)δ − b(2)δ)nydS

−
∫

Te

qδΓ(2)δ∂xb(2)δdx −
∫

∂Te

qδΓ(2)δ(b̂(2)δ − b(2)δ)nxdS ,

(16a)
∫

Te

qδD
s
(3)(Uδ)dx =

∫

Te

qδΓ(2)δ∂xb(1)δdx +
∫

∂Te

qδΓ(2)δ(b̂(1)δ − b(1)δ)nxdS

−
∫

Te

qδΓ(1)δ∂yb(1)δdx −
∫

∂Te

qδΓ(1)δ(b̂(1)δ − b(1)δ)nydS ,

(16b)
∫

Te

qδbδdx = −g
∫

Te

qδdδ∇ζδdx − g
∫

∂Te

qδdδ(ζ̂δ − ζδ)ndS , (16c)

9

where once again the additional dispersive fluxes ζ̂δ and b̂δ will be discussed

in §3.4.2.

Following the standard Galerkin formulation the test functions qδ are repre-

sented by φpq. We denote the global mass matrix with M and the global weak

derivative matrices with Dx and Dy. In the derivative matrices we incorpo-

rate the numerical fluxes, and the superscripts a and d are used to distinguish

between advective and dispersive numerical fluxes. If we for simplicity of pre-

sentation consider the constant depth case the coupled system can be written

in matrix form as




M 0 0

0 M− γDd
xx −γDd

xy

0 −γDd
yx M− γDd

yy







∂tH̃

∂t(H̃u)

∂t(H̃v)




=




−Da
xẼ(1) −Da

yG̃(1)

−Da
xẼ(2) −Da

yG̃(2)

−Da
xẼ(3) −Da

yG̃(3)




. (17)

Here Dd
xx = Dd

xM
−1Dd

x, Dd
xy = Dd

xM
−1Dd

y, Dd
yx = Dd

yM
−1Dd

x and Dd
yy =

Dd
yM

−1Dd
y. We observe that with a suitable choice of basis functions, see §3.6,

the mass matrix is diagonal for regular shaped triangles.

3.3 Scalar method

In the scalar method we begin by formally grouping the mixed derivatives

with the time derivatives. All terms not containing any time derivative are

collected into the term f(U). We write eq. (1) as

f(U) = −Ds(U) −∇ · F(U) + S(U) , (18a)

∂tU + ∂tD
m(U) = f(U) . (18b)

10

The DG method for computing f(U) is stated as: find f(Uδ) ∈ Vδ such that

for all qδ ∈ Vδ and for all Te ∈ Th

∫

Te

qδf(Uδ)dx = −
∫

Te

qδD
s(Uδ)dx −

∫

Te

qδ (∇ · F(Uδ)) dx

−
∫

∂Te

qδ
((

F̂(Uδ) − F(Uδ)
)
· n
)

dS +
∫

Te

qδS(Uδ)dx , (19)

where the dispersive Ds term is treated as in the coupled method in §3.2.

As there are no dispersive terms present in the continuity equation, we write

the remaining components of eq. (18b) as

∂t(Hu) − γ∇(∇ · ∂t(Hu)) − 2Γ∇ · ∂t(Hu) = f(2,3)(U) . (20)

Introducing the time rate of change of momentum divergence as a new scalar

variable, i.e. z = ∇ · ∂t(Hu), an equivalent statement to problem (20) is

∂t(Hu) = γ∇z + 2Γz + f(2,3)(U) , (21a)

z −∇ · ∂t(Hu) = 0 . (21b)

Substituting (21a) into (21b), we obtain an advection-diffusion type equation

∇ · (γ∇z) + ∇ · (2Γz) − z = −∇ · f(2,3)(U) . (22)

Equation (22) constitute a ‘wave continuity equation’ [27] for the Boussinesq

equations. To solve (22) we can rewrite the equation as a first-order system

by introducing the auxiliary variables w = γ∇z and v = 2Γz, i.e.

∇ · w + ∇ · v − z = −∇ · f(2,3)(U) , (23a)

w = γ∇z , (23b)

v = 2Γz . (23c)

11

The DG formulation finally reads: find (zδ,wδ,vδ) ∈ Vδ ×Wδ ×Wδ such that

for all (sδ, rδ, tδ) ∈ Vδ ×Wδ ×Wδ and for all Te ∈ Th

∫

Te

sδ(∇ · wδ)dx +
∫

∂Te

sδ((ŵδ − wδ) · n)dS +
∫

Te

sδ(∇ · vδ)dx

+
∫

∂Te

sδ((v̂δ − vδ) · n)dS −
∫

Te

sδzδdx (24a)

= −
∫

Te

sδ(∇ · f(2,3)(Uδ))dx −
∫

∂Te

sδ((f̂(2,3)(Uδ) − f(2,3)(Uδ)) · n)dS ,

∫

Te

rδ · wδdx =
∫

Te

rδ · γδ∇zδdx +
∫

∂Te

(rδγδ(ẑδ − zδ)) · ndS , (24b)

∫

Te

tδ · vδdx = 2
∫

Te

(tδ · Γδ)zδdx . (24c)

At the discrete level the right hand side of (24b) and (24c) are decoupled at the

elemental level and so the auxiliary variables wδ and vδ can be substituted

into (24a) to recover the primal form of the equation. The f(2,3)(Uδ) term

is discretely evaluated by the solution of eq. (19). We recover the original

variables by subsequently solving the discrete problem (21a): find (Hu)δ ∈ Wδ

such that for all tδ ∈ Wδ and for all Te ∈ Th

∫

Te

tδ · ∂t(Hu)δdx =
∫

Te

(tδ · γδ∇zδ)dx +
∫

∂Te

(tδγδ(ẑδ + zδ)) · ndS

+ 2
∫

Te

(tδ · Γδ)zδdx +
∫

Te

tδ · f(2,3)(Uδ)dx . (25)

To summarise the scalar method: at every time step (or sub step) nk do

• compute f(Uδ) from eq. (19);

• compute zδ using eqs. (24a-24b);

• return to ∂t(Hu)δ by eq. (25);

• advance to the next time level nk+1 using the explicit time stepping scheme

in §3.7.

As the mass matrix in general is diagonal, solving (19) and (25) are relatively

cheap.

12

For the constant depth case the scalar method corresponds to solving the

following global matrix systems




M 0 0

0 M 0

0 0 M







f̃(1)

f̃(2)

f̃(3)




=




−Da
xẼ(1) − Da

yG̃(1)

−Da
xẼ(2) − Da

yG̃(2)

−Da
xẼ(3) − Da

yG̃(3)




, (26a)

(
γDd

xx + γDd
yy −M

)
z̃ = −Dd

x f̃(2) − Dd
y f̃(3) , (26b)




M 0 0

0 M 0

0 0 M







∂tH̃

∂t(H̃u)

∂t(H̃v)




=




Mf̃(1)

γDd
xz̃ + Mf̃(2)

γDd
yz̃ + Mf̃(3)




. (26c)

3.4 Numerical fluxes

In order to enforce a suitable inter-elemental coupling the numerical fluxes

need to be defined. In doing so we distinguish between the advective numerical

flux and the dispersive numerical fluxes. We introduce a notation of subscripts

L and R. The subscript L stands for left-hand state of the element boundary,

which is assumed to be internal to the element. The subscript R denotes the

right-hand state, which is internal to the adjacent element.

3.4.1 Advective numerical flux

Throughout this study we use the contact wave modified Harten-Lax-van Leer

(HLLC) Riemann solver with the two-rarefaction assumption [42]. This flux

was numerically shown in Reference [14] to give optimal convergence of P + 1

13

for the SWE.

Introducing the rotation matrix and its inverse

T =




1 0 0

0 nx ny

0 −ny nx




, T−1 =




1 0 0

0 nx −ny

0 ny nx




, (27)

we can define Q = TUδ = [H,Hu⊥, Hu‖]T, where u⊥ and u‖ are the velocities

in the direction normal and tangential to the edge, respectively. The advective

flux can now be written as

F̂(Uδ) · n = T−1Ê(Q). (28)

The HLLC flux is given by [42]

Ê(Q) =





E(QL) if SL ≥ 0 ,

E(QL) + SL(Q∗L − QL) if SL ≤ 0 ≤ S∗ ,

E(QR) + SR(Q∗R −QR) if S∗ ≤ 0 ≤ SR ,

E(QR) if SR ≤ 0 ,

(29)

where Q∗L and Q∗R are obtained from

Q∗(L,R) = H(L,R)

(
S(L,R) − u⊥(L,R)

S(L,R) − S∗

)




1

S∗

u
‖
(L,R)




. (30)

14

The wave speeds are estimated as [42]

SL = u⊥L −
√
gHLsL , (31)

SR = u⊥R −
√
gHRsR , (32)

S∗ =
SLHR(u⊥R − SR)

HR

, (33)

where

s(L,R) =





√
(H2

∗ +H∗H(L,R))/(2H
2
(L,R)) if H∗ > H(L,R) ,

1 if H∗ ≤ H(L,R) .

(34)

The water depth in the star region,H∗, is approximated by the two-rarefaction

Riemann solver

H∗ =
1

g

(
1

2
(
√
gHL +

√
gHR) +

1

4
(u⊥L − u⊥R)

)2

. (35)

3.4.2 Dispersive numerical fluxes

In Reference [15] the scalar approach was used and the dispersive flux was eval-

uated using the Bassi-Rebay (BR) flux [4]. Although exponential convergence

was numerically demonstrated, for elliptic problems the BR flux is known to

give sub-optimal convergence for odd P [22]. Furthermore, the BR method

uses quite a wide stencil, 10 elements in the two-dimensional case.

In 1998, Cockburn and Shu [7] generalised the method of Bassi and Rebay

and constructed the local discontinuous Galerkin (LDG) method. The LDG

method employs a different flux and includes a penalty term. Setting the flux

to be alternating – i.e. upwinding ẑ and downwinding ŵ, or vice versa – the

method gives optimal convergence for both odd and even P and a stencil that

is at most 6 elements wide.

15

In this study we will examine the influence on different choices of dispersive

flux. In addition to the two methods mentioned above we will examine a

stabilized version of the BR flux (sBR), in which we have introduced a penalty

term.

We introduce the notation described in Reference [3], i.e. let { · } denote aver-

aging across the element boundary and [[·]] denote the jump over the element

boundary. For an arbitrary scalar function f we have

{f} =
1

2
(fL + fR) , [[f]] = (fL − fR)n , (36)

and for an arbitrary vector-valued function f

{f} =
1

2
(fL + fR) , [[f]] = (fL − fR) · n . (37)

The numerical fluxes associated with the different DG methods are presented

in Table 1. In the penalty terms η ≥ 0 denotes the stabilisation parameter. The

stability and conditioning of elliptic operators with respect to this parameter

has been investigated by Castillo [6] and Sherwin et al. [36]. We observe that

sBR is equal to LDG with β = 0, giving a 10 element stencil. Additionally,

setting η=0 gives the BR formulation. For an upwind/downwind LDG flux we

note that, as the Boussinesq equations allow multi-directional wave propaga-

tion, the stiffness matrix becomes time-dependent. We, however, disregard the

time dependency and construct the stiffness matrix as if the flow was constant

over time in a pre-defined direction ∆. Hence, the factor β in the LDG flux

is given by: if ∆ · n > 0, then β · n = 1/2; otherwise β · n = −1/2.

The additional dispersive numerical fluxes ζ̂δ and b̂δ present in the Ds term

(16a-16c) are evaluated using the BR flux. The f̂(2,3)(U)δ terms in equation

(24a) are calculated using averaging.

16

3.5 Boundary conditions

Generally, boundary conditions are imposed through the numerical fluxes by

setting the right-hand state to a specific value. We first note that all boundary

conditions arising from the Dm term are treated as Neumann conditions:

ŵδ = wN , v̂δ = vN , (Ĥu)δ = (Hu)N , ẑδ = zL , âδ = aL on ∂ΩN . (38)

At slip wall boundaries we have the impermeability condition u · n = 0, im-

plemented by setting the right-hand state to

HR = HL , ζR = ζL , u
⊥
R = −u⊥L , u

‖
R = u

‖
L , b

⊥
R = −b⊥L , b

‖
R = b

‖
L , (39)

as well as imposing wN = vN = (Hu)N = 0.

For inflow/outflow boundaries we can simply impose the a priori known val-

ues at the right-hand state and for wN , vN and (Hu)N . However, in many

cases the numerical model is ‘cold-started’ from a motionless initial condition.

Hence, in order to minimise the numerical noise created during the cold-start

we have adopted the approach of relaxation zones. This approach has been

reported to work satisfactorily for highly dispersive Boussinesq equations [32].

Inside the relaxation zones the primitive variables are given as:

ur = cruδ + (1 − cr)up , (40a)

ζ r = crζδ + (1 − cr)ζp , (40b)

where 0 ≤ cr(x) ≤ 1 is the relaxation coefficient, up(x, t) and ζp(x, t) are the

prescribed values and ur(x, t) while ζ r(x, t) are the redefined values inside the

relaxation zone. Open boundaries are given by (40a-40b) setting the prescribed

values to be zero.

17

3.6 Expansion basis

As mentioned above, the variables are approximated using a polynomial ex-

pansion basis φpq(ξ1, ξ2), such that

fδ(x, t) =
P∑

p=0

P−p∑

q=0

f̃pq(t)φpq(ξ1, ξ2) , x ∈ Te , (41)

where f̃pq(t) contains the local degrees of freedom expansion coefficients.

The orthogonal hierarchial basis φpq(ξ1, ξ2) in a standard triangular region

{−1 ≤ ξ1, ξ2; ξ1 + ξ2 ≤ 0} is based on a collapsed coordinate [22] which is

generated through the transformation (ξ1, ξ2) → (η1, η2) given by:

η1 = 2
(1 + ξ1)

(1 − ξ2)
− 1 , η2 = ξ2 . (42)

This collapsed coordinate transformation can be interpreted as a mapping to

a standard quadrilateral region from the standard triangular region.

An orthogonal basis on these coordinates has been independently derived in a

range of works including [35,23,11]. Following the formulation in [11,22], the

expansion modes φpq are defined in terms of principal functions ψ̃a
p(z) and

ψ̃b
pq(z) as

φpq(ξ1, ξ2) = ψ̃a
p(η1)ψ̃

b
pq(η2) . (43)

The principal functions are

ψ̃a
p(z) = P 0,0

p (z) , ψ̃b
pq(z) =

(
1 − z

2

)p

P 2p+1,0
q (z) , (44)

where P α,β
p (z) denotes the pth order Jacobi polynomial.

18

3.7 Time stepping and eigenspectra

In spectral/hp formulations advective terms are usually handled explicitly in

time, while diffusive terms typically are treated implicitly. This is due to the

rapid growth of the spectral radius, O(P 4), of the weak Laplacian opera-

tor [22]. This implies that the Ds term, which contains second-order spatial

derivatives, ought to be treated implicitly in time. However, the grouping of

the third-order mixed derivatives with the first-order time derivatives causes

the spectral radius to grow as O(P 2), as will be shown below. The restriction

on the explicit time step will therefore be of the same order as if only advec-

tive terms were present. Thus we can use a standard explicit time-stepping

scheme, in this work we have adopted the explicit third-order TVD Runge-

Kutta scheme [9].

We write the Boussinesq equations in quasi-linear form

∂t(U + Dm(U)) + Ds(U) + A(U)∂xU + B(U)∂yU = S(U) . (45)

Here A(U) and B(U) are the Jacobians of the flux functions

A(U) =




0 1 0

c2 − u2 2u 0

−uv v u




, B(U) =




0 0 1

−uv v u

c2 − v2 0 2v




, (46)

in which c =
√
gH is the long-wave speed. Writing eq. (45) as X∂tŨδ = YŨδ

we are interested in the behaviour of the eigenvalues, λ, of the semi-discrete

operator X−1Y (in order to simplify the procedure we evaluate the advective

flux in this section by component-wise averaging).

19

We will consider the case of a sinusoidal wave in a periodic domain of size

[−1 ≤ x, y ≤ 1]. The wave has a wavelength of 20 m and the water depth is 5

m, giving a d/L0 ratio of 0.22. The amplitude is set to 0.1 m and the bed slope

in the wave direction is 1:30 (as the slope is mild we further simplify and treat

d and ∇d as constants). The domain is discretized into two triangles, where

one triangle is in the standard space, and we will examine wave directions at

different θ angles to the horizontal (see Figure 1).

Figure 2 shows the maximum spectral radius, using the BR flux, for the scalar

and coupled methods. As evident from Figure 2, the maximum eigenvalues

are identical, illustrating the equivalence of the two solution approaches. The

maximum eigenvalues occurs at θ = 45◦ which corresponds to the shortest

distance across the triangular elements.

In Figure 3 we illustrate the growth of the maximum eigenvalue for the differ-

ent dispersive flux formulations, using the scalar method (θ = 45◦). Regardless

of flux formulation the growth rate is of O(P 2). For the sBR flux the eigenval-

ues are highly dependent on η, a large η gives a larger maximum eigenvalue.

For the LDG flux the dependence is less significant. As a larger eigenvalue

implies a harsher restriction on the explicit time step the BR flux permits the

largest time step of the three fluxes considered.

4 Accuracy and efficiency

In this section we numerically examine the influence of the choice of (i) solution

approach and (ii) dispersive fluxes on the convergence rate and CPU time.

Consider the simple case of a linear standing wave in a frictionless rectangular

20

basin of constant depth. The analytic solution can be written as:

H(x, y, t) = d+ a cos(kx) cos(ωt) , (47a)

u(x, y, t) = a
ω

kd
sin(kx) sin(ωt) , (47b)

v(x, y, t) = 0 , (47c)

where a is the amplitude and k is the wave number. The frequency ω is

obtained from the linear dispersion equation

ω2

gdk2
=

1

1 + (1/3)(kd)2
(48)

The dimension of the basin is L × L/2, where L = 100 m is the wavelength.

The still water depth of the basin is set to d = 25 m, giving d/L0 ≈ 0.22.

We compute one wave period, using 10 000 time steps, for a standing wave

with an amplitude of 0.1 m using the linearised Boussinesq equations. Three

structured meshes having 16, 64 and 256 evenly distributed elements are used.

The resulting matrix systems are solved using the sparse matrix solver UMF-

PACK [10] and we measure the accuracy in the L2 and L∞ norms. In com-

paring the computational efficiency and storage requirement we will use the

scalar approach with BR flux as reference. We therefore introduce the ratios

r(Nnz) = Nnz/N
ref
nz , r(CPU) = CPU/CPUref , (49)

where Nnz denotes the number of non-zero entries in the stiffness matrix and

CPU is simply the computational time measured in seconds.

21

4.1 Coupled versus scalar method

We start by comparing the coupled and scalar methods using the BR fluxes.

The L2 and L∞ errors and order of convergence are presented in Table 2.

We see no difference between the two approaches in terms of accuracy and

convergence. Indeed, the results are identical, as could be expected from the

eigenspectra analysis.

From the difference in size of the stiffness matrices we would expect the storage

requirement of the coupled method to be at most four times the scalar method.

However, from Table 3 we see that for the present case the coupled method

requires three times the storage of the scalar method. This is simply due to

the use of structured meshes aligned along the Cartesian axes – otherwise a

ratio of four is obtained.

From Table 3 we see that for linear expansions the coupled method is the

computationally most efficient approach, but for P ≥ 2 the scalar method

requires less CPU time. Importantly, the computational efficiency of the scalar

method is seen to increase with increasing expansion order.

4.2 Influence of dispersive flux

In this section we use the scalar method. For the sBR and LDG fluxes we have

taken a stabilisation factor of η = 100. The error and order of convergence are

presented in Table 4. The choice of dispersive DG formulation clearly makes a

difference. The sBR and LDG fluxes give optimal convergence of order P + 1

for both odd and even P , as expected since the penalty terms are of order

22

h−1 [5]. As seen in other work [7] the BR flux, which lacks a penalty term,

gives optimal convergence of order P + 1 for even P , but for odd P it can

degenerate to order P .

As the stencil of the LDG flux is at most 6 elements, compared to ten elements

of the BR and sBR fluxes, a theoretical upper bound of the storage ratio is

0.6. In Table 5 we present the storage and CPU ratios. We see that the sBR

does not require any additional storage and that the storage ratio of the LDG

flux is close to the theoretical bound. The benefit of the small Nnz of the LDG

flux also carries over into the computational time which is smaller per time

step than for the BR and sBR fluxes.

4.3 Influence of the stabilisation parameter

We examine the results obtained from the scalar method with sBR and LDG

fluxes using a parameter in the interval 10−3 ≤ η ≤ 103. Figure 4 shows the

ratios of the errors between the fluxes using penalty term and the BR flux (no

stabilisation), as a function of the stabilisation parameter.

We see that the effect of the penalty term is very different for the sBR and

LDG fluxes, although the results become more similar as η increases. For

η > 102 the results are fairly equivalent for the two fluxes. For large η we also

see that the penalty term is beneficial in the L2 norm but not in the L∞ norm.

Not surprisingly, for small η the sBR flux approaches the results of the BR

flux. However, the LDG flux gives relatively bad results for η < 101. This is

due to the “constant-in-time” approximation of the stiffness matrix.

23

4.4 Comparison with finite differences

In this section the DG models are compared against two finite difference (FD)

models – based on the coupled and scalar methods, respectively – for the

linearized Boussinesq equations. We adopt the for enhanced Boussinesq-type

equations popular FD scheme proposed by Wei and Kirby [45]. In order to

avoid truncation terms in the form of third-order derivatives, the advective

terms are approximated to fourth order in space by a centred five-point stencil,

while higher-order spatial derivatives are resolved using centred differences

of second-order accuracy. We refer to [45] for a full description of the finite

differences employed. As for the DG models the semi-discrete equations are

advanced in time using the third-order Runge-Kutta scheme and the resulting

sparse matrix system is solved using UMFPACK.

For the FD models the computational domain is uniformly discretized with a

grid size h and in Table 6 we present the L∞ error and order of convergence

of the models. We see that the models are quite accurate, with the coupled

method giving results being generally an order of magnitude better. Although

the schemes are formally second-order accurate in space, the smoothness and

weak dispersion of the standing wave case gives that the leading truncation

term generally stems from the fourth-order differences – explaining the con-

vergence of order 4.

For the finite difference models the r(Nnz) ratio approaches 2.8 and the r(CPU)

ratio is roughly 5 (using the finite difference model based on the scalar ap-

proach as reference), indicating that the scalar method is potentially beneficial

also for FD Boussinesq models.

24

We compare the scalar DG (using the BR-flux) and FD model in terms of

efficiency. In Figure 5 we plot CPU times as a function of accuracy for three

different integration times: 1, 10 and 100 wave periods. Here, we emphasis that

the time steps have been chosen to be the maximum value not influencing the

total error, i.e. temporal errors are an order of magnitude less than spatial

discretization errors.

Comparing the FD model and the DG model using P = 3, the FD model is

substantially more efficient for short integration times. However, as the inte-

gration time increases the DG method becomes the most efficient method. This

is caused by the favourable dispersion properties of the finite element method

[20,37]. Additionally, Figure 5 demonstrates that there are, generally speaking,

gains in CPU time using higher-order polynomials compared to lower-order

and that p-type refinement is more beneficial than h-type refinement, see also

[24].

The results presented in Figure 5 are in no way to be read as fully conclusive

– changing time stepping scheme, using staggered grids, etc., will naturally in-

fluence the results. Nevertheless, it indicates that the high-order DG method is

competitive for long-time integration and highly accurate results, even in sim-

ple geometries. For complex geometries the flexibility of unstructured meshes

will further benefit the DG method.

25

5 Computational examples

5.1 Propagation of a solitary wave

Consider a solitary wave of amplitude 0.1 m propagating in a channel with an

undisturbed water depth of 1.0 m. The computational domain is 100 × 50 m

and all boundaries are treated as walls. The solitary wave is initially located

at x = 20 m and the shape is given by the sech-profile solution [45]. The

domain is divided into 64 unstructured elements, see Figure 6. The solution

was approximated using a P = 8 order polynomial expansion and integrated

for 20 s using 1 000 time steps.

Figure 7 shows the computed water depths in a slice through the centreline,

y = 25 m, compared to the approximate analytical solutions. As can be seen

in these plots there is a general good agreement (the small amplitude trailing

waves are not caused by under resolution, but is due to the non-exact initial

condition, as discussed in [45]).

5.2 Scattering of a solitary wave by a vertical cylinder

The scattering of solitary waves by a vertical cylinder has been computed using

Boussinesq models in [44,2,1,47]. We have a rectangular domain −25 ≤ x ≤ 50

and −19.2 ≤ y ≤ 19.2 m. A cylinder with a diameter of 4 m is located at x = 17

and y = 0 m. The domain is discretized into 552 triangles with P = 5, see

Figure 8. Note that the edges aligned on the cylinder boundary are curved,

see e.g. [22] for a description on the implementation of curved boundaries.

The undisturbed water depth is d = 1.0 m and the solitary wave (with 0.1 m

26

amplitude) is initially located at x = 0 m. The initial solitary wave profile is

approximated as in the previous case. The simulation is run for 12.5 s using

2 500 time steps.

Figure 9 shows snapshots of the water depth. At around 4 s the wave starts

to run-up on the cylinder and at t = 6.5 s the backscattering is evident. Later

we see the diffraction and reflection of the scattered waves. We also note that

the solitary wave recovers its pre-impact shape.

In Figure 10 we demonstrate the gain in accuracy by using curved boundaries.

Approximating the cylinder with straight sided boundaries generates small

scale numerical oscillations. Approximating the cylinder by curved boundaries

the solution is smooth.

5.3 Regular waves over a semicircular shoal

For this case we can compare against experimental data [46]. We have a rect-

angular domain of size 30× 6.096 m with wall boundaries at y = 0 and 6.096

m. At x = 0 m there is an inflow boundary while at x = 30 m we have an

open boundary. At the inflow and open boundaries we have applied 3 m wide

27

relaxation zones. The depth in the domain is given by:

Λ(y) =
√

6.096y − y2 , (50a)

d(x, y) =





0.4572 x ≤ 10.67 − Λ

0.4572 + 0.04 (10.67 − Λ − x) 10.67 − Λ < x < 18.29 − Λ

0.1524 x ≥ 18.29 − Λ

(50b)

The incoming linear waves are given inside the relaxation zone as

ζp(x, t) = a sin(kx− ωt) , (51a)

up(x, t) = a
ω

kd
sin(kx− ωt) , (51b)

vp(x, t) = 0 . (51c)

Here the incoming waves have an amplitude of 0.0075 m and a wave period of

2 s.

The domain is decomposed into 386 elements of order P = 6. The simulation

is run for 50 s using 5 000 time steps. In Figure 11 we show the surface ele-

vation after 50 s. In addition to the obvious shoaling, the semicircular shoal

focus the waves to the centre. In Figure 12 we compare the amplitudes of the

first three harmonics obtained from the model with experimental data. The

harmonics from the model were computed from time series sampled at vertices

aligned on the centreline, using the last five wave periods of the simulation.

The harmonics compare fairly well with the experimental data. The computed

solutions are similar to results reported in literature [30,40].

28

6 Conclusions

We have presented triangular spectral/hp discontinuous Galerkin methods for

modelling the propagation and evolution of weakly nonlinear and dispersive

water waves over variable bottom topography. We used standard Boussinesq

equations, expressed in conservative variables, which are valid for a water

depth to deep water wavelength ratio (d/L0) less than 0.22.

We investigated two different solution approaches:

• a coupled method in which the coupled momentum equations were directly

discretized. This results in an implicit matrix of size 2Ndof × 2Ndof .

• a scalar method in which the momentum equations are rewritten into a

scalar wave continuity equation of advection-diffusion type. This is achieved

by introducing the time rate of change of momentum divergence, z = ∇ ·

∂t(Hu), as the dependent variable. The resulting implicit matrix becomes

Ndof ×Ndof . The original variables are recovered in a subsequent step.

We observed that the two approaches gave identical results in terms of accu-

racy, convergence and restriction on the time step for the DG models. However,

the scalar method was more CPU efficient and required less memory to store

the implicit matrix. As the polynomial order is increased in the spectral/hp

discretization, the portion of the total CPU time used for the sparse solve

increases. Subsequently, the efficiency of the DG scalar method increases with

increasing order as the overhead of the recovery step and numerical flux eval-

uations becomes less significant.

Three formulations of the dispersive flux were considered and these all behaved

29

as expected. The sBR and LDG fluxes were shown to give optimal convergence,

P +1, for both odd and even orders. The BR flux, which lacks a penalty term,

sometimes degenerated to sub-optimal convergence for odd P . As the LDG

has a smaller stencil, compared to stencils of the BR and sBR fluxes, the

LDG requires less storage and less CPU time per time step than the other two

fluxes. However, the BR and sBR fluxes are conceptually easier and allow for

a larger time step.

Finally, we compared the spectral/hp DG model against a finite difference

model. It was found that the finite difference model was superior for low-

accuracy and short integration times. For long-time integration and for highly

accurate results the high-order DG method was the most efficient technique,

even for a simple geometry. We also note that the spectral/hp element methods

permits very general discretization of complex and curved geometries.

References

[1] Ambrosi, D. and Quartapelle, L. A Taylor-Galerkin method for simulating

nonlinear dispersive water waves. Journal of Computational Physics 1998;

146:546–569.

[2] Antunes Do Carmo, J.S., Seabra Santos, F.J. and Barthélemy, E. Surface waves

propagation in shallow water: a finite element model. International Journal for

Numerical Methods in Fluids 1993; 16:447–459.

[3] Arnold, D.N., Brezzi, F., Cockburn, B. and Marini, L.D. Unified analysis

of discontinuous Galerkin methods for elliptic problems. SIAM Journal of

Numerical Analysis 2002; 39: 1749–1779.

[4] Bassi, F. and Rebay, S. A high-order accurate discontinuous finite element

30

method for the numerical solution of the compressible Navier-Stokes equations.

Journal of Computational Physics 1997; 131:267–279.

[5] Castillo, P., Cockburn, B., Perugia, I. and Schötzau, D. An a priori error analysis

of the local discontinuous Galerkin method for elliptic problems. SIAM Journal

on Numerical Analysis 2000; 38(5):1676–1706.

[6] Castillo, P. Performance of discontinuous Galerkin methods for elliptic

problems. SIAM Journal on Numerical Analysis 2002; 24(2):524-547.

[7] Cockburn, B. and Shu, C.-W. The local discontinuous Galerkin method for time-

dependent convection-diffusion systems. SIAM Journal on Numerical Analysis

1998; 35(6):2440–2463.

[8] Cockburn, B., Karniadakis, G.E. and Shu, C.-W. The development of

discontinuous Galerkin methods. In Discontinuous Galerkin Methods, edited

by Cockburn, Karniadakis and Shu, Lecture Notes in Computational Science

and Engineering, Vol. 11, Springer, 2000, 3–50.

[9] Cockburn, B. and Shu, C.-W. Runge-Kutta discontinuous Galerkin methods

for convection-dominated problems. Journal of Scientific Computing 2001;

16(3):173–261.

[10] Davis, T.A. UMFPACK Version 4.3 User Guide. Revision of Technical report

TR-03-008, University of Florida, 2004.

[11] Dubiner, M. Spectral methods on triangles and other domains. Journal of

Scientific Computing 1991; 6(4):345–390.

[12] Dupont, F. Comparison of Numerical Methods for Modelling Ocean Circulation

in Basins with Irregular Coasts. PhD thesis, McGill University, 2001.

[13] Eskilsson, C. and Sherwin, S.J. A discontinuous spectral element model for

Boussinesq-type equations. Journal of Scientific Computing 2002; 17(1-4):143–

152.

31

[14] Eskilsson, C. and Sherwin, S.J. A triangular spectral/hp discontinuous Galerkin

method for modelling 2D shallow water equations. International Journal for

Numerical Methods in Fluids 2004; 45:605–623.

[15] Eskilsson, C. and Sherwin, S.J. Discontinuous Galerkin spectral/hp element

modelling of dispersive shallow water systems. Journal of Scientific Computing

2005; 22-23:269–288.

[16] Fagherazzi, S., Rasetarinera, P., Hussaini, M.Y. and Furbish, D.J. Numerical

solution of the dam-break problem with a discontinuous Galerkin method.

Journal of Hydraulic Engineering 2004; 130(6):532–539.

[17] Giraldo, F.X. A spectral element shallow water model on spherical geodesic

grids. International Journal for Numerical Methods in Fluids 2001; 35:869–

901.

[18] Giraldo, F.X., Hesthaven, J.S. and Warburton, T. Nodal high-order

discontinuous Galerkin methods for the spherical shallow water equations.

Journal of Computational Physics 2002; 181:499–525.

[19] Gobbi, M.F., Kirby, J.T. and Wei, G. A fully nonlinear Boussinesq model for

surface waves. Part 2. Extension to O(kh)4. Journal of Fluid Mechanics 2000;

405:181–210.

[20] Gresho, P.M. and Sani, R.L. Incompressible Flow and the Finite Element

Method. Wiley, 1998.

[21] Iskandarani, M., Haidvogel, D.B. and Boyd, J.P. A staggered spectral element

model with application to the oceanic shallow water equations. International

Journal for Numerical Methods in Fluids 1995; 20:393–414.

[22] Karniadakis, G.Em. and Sherwin, S.J. Spectral/hp Element Methods for

Computational Fluid Dynamics. Second edition, Oxford University Press, US,

2005.

32

[23] Koornwinder, T. Two-variable analogues of the classical orthogonal

polynomials. Theory and Application of Special Functions, R.A. Askey, ed.,

Academic Press, New York, 1975; :435-495.

[24] Kreiss, H.O. and Oliger, J.Methods for the Approximate Solution of Time

Dependent Problems. GARP Publications Series No. 10,1973.

[25] Langtangen, H.P. and Pedersen, G. Computational models for weakley

dispersive nonlinear water waves. Computer Methods in Applied Mechanics and

Engineering 1998; 160:337–358.

[26] Li, Y.S., Liu, S.-X., Wai, O.W.H. and Yu, Y.-X. Wave concentration by a

navigation channel. Applied Ocean Research 2000; 22:199–213.

[27] Lynch, D.R. and Gray, W.G. A wave equation model for finite element tidal

computations. Computers and Fluids 1979; 7:207–228.

[28] Ma, H. A spectral element basin model for the shallow water equations. Journal

of Computational Physics 1993; 109:133–149.

[29] Madsen, P.A., Murray, I.R. and Sørensen, O.R. A new form of the Boussinesq

equations with improved linear dispersion characteristics. Coastal Engineering

1991; 15:371–388.

[30] Madsen, P.A. and Sørensen, O.R. A new form of the Boussinesq equations with

improved linear dispersion characteristics. Part 2. A slowly-varying bathemetry.

Coastal Engineering 1992; 18:183–204.

[31] Madsen, P.A. and Schäffer, H.A. Higher-order Boussinesq-type equations for

surface gravity waves: derivation and analysis. Philosophical Transactions of

the Royal Society London 1998; A356:3123–3184.

[32] Madsen, P.A., Bingham, H.B. and Schäffer, H.A. Boussineq-type formulations

for fully nonlinear and extremely dispersive water waves: derivation and

analysis. Proceedings of the Royal Society London 2003; A459:1075–1104.

33

[33] Nwogu, O. Alternative form of Boussinesq equations for nearshore wave

propagation. Journal of Waterway, Port, Coastal and Ocean Engineering 1993;

119:618–638.

[34] Peregrine, D.H. Long waves on a beach. Journal of Fluid Mechanics 1967;

27:815–827.

[35] Proriol, J. Sur une famile de polynomes á deux variables orthogonax dans un

triangle. C.R. Acad. Sci Paris 1957; 245:2459-2461.

[36] Sherwin, S.J., Kirby, R.M., Peió, J., Taylor, R.L. and Zienkiewicz, O.C. On 2D

elliptic discontinuous Galerkin methods. International Journal for Numerical

Methods in Engieering To appear.

[37] Sherwin, S.J. Dispersion analysis of the continuous and discontinuous Galerkin

formulations. In Discontinuous Galerkin Methods, edited by Cockburn,

Karniadakis and Shu, Lecture Notes in Computational Science and Engineering,

Vol. 11, Springer, 2000, 425–431.

[38] Shi, F., Dalrymple, R.A., Kirby, J.T., Chen, Q. and Kennedy, A. A fully

nonlinear Boussinesq model in generalized curvilinear coordinates. Coastal

Engineering 2001; 42:337–358.

[39] Shi, F., Kirby, J.T., Dalrymple, R.A. and Chen, Q. Wave simulations in Ponce

de Leon inlet using Boussinesq model. Journal of Waterway, Port, Coastal and

Ocean Engineering 2003; 129:124–135.

[40] Sørensen, O.R., Schäffer, H.A. and Sørensen, L.S. Boussinesq-type modelling

using an unstructured finite element technique. Coastal Engineering 2004;

50:181–198.

[41] Taylor, M., Tribbia, J. and Iskandarani, M. The spectral element method for the

shallow water equations on a sphere. Journal of Computational Physics 1997;

130:92–108.

34

[42] Toro, E.F. Shock-Capturing Methods for Free-Surface Shallow Flows. John

Wiley and Sons, 2001.

[43] Walkley, M.A. A Numerical Method for Extended Boussinesq Shallow-Water

Wave Equations. PhD thesis, University of Leeds, UK, 1999.

[44] Wang, K.-H., Wu, T.Y. and Yates, G.T. Three-dimensional scattering of solitary

waves by vertical cylinder. Journal of Waterway, Port, Coastal and Ocean

Engineering 1992; 118:551–566.

[45] Wei, G. and Kirby, J.T. Time-dependent numerical code for extended

Boussinesq equations. Journal of Waterway, Port, Coastal and Ocean

Engineering 1995; 121:251–261.

[46] Whalin, R.W. The limit of applicability of linear wave refraction theory in

convergence zone. U.S. Army Corps of Engineers, Research Report H-71-3, USA,

1971.

[47] Woo, S.-B. and Liu, P.L.-F. Finite-element model for modified Boussinesq

equations. I: Model development. Journal of Waterway, Port, Coastal and

Ocean Engineering 2004; 130:1–16.

[48] Woo, S.-B. and Liu, P.L.-F. Finite-element model for modified Boussinesq

equations. II: Application to nonlinear harbour oscillations. Journal of

Waterway, Port, Coastal and Ocean Engineering 2004; 130:17–28.

[49] Xu, Y. and Shu, C.-W. Local discontinuous Galerkin methods for three classes

of nonlinear wave equations. Journal of Computational Mathematics 2004;

22:250–274.

[50] Xu, Y. and Shu, C.-W. Local discontinuous Galerkin methods for nonlinear

Schrödinger equations. Journal of Computational Physics 2005; 205:72–97.

[51] Yan, J. and Shu, C.-W. A local discontinuous Galerkin method for KdV type

equations. SIAM Journal of Numerical Analysis 2002; 40:769–791.

35

FIGURE CAPTIONS

Fig. 1. The wave propagates at the angle θ to the horizontal in the periodic

domain.

Fig. 2. The maximum eigenvalue of X−1Y using the BR flux: (a) coupled

method and (b) scalar method.

Fig. 3. Growth of the maximum eigenvalue with respect to polynomial order

P .

Fig. 4. Ratios of the L2 and L∞ errors for the H-component (N = 64): (a-b)

sBR and (c-d) LDG.

Fig. 5. CPU time versus L∞ error for the H-component: (a) after one wave

period; (b) after 10 wave periods and (c) after 100 wave periods.

Fig. 6. Computational mesh for the solitary wave case.

Fig. 7. Analytical (solid line) and computed (dots) solitary wave propagation

along the centreline.

Fig. 8. Computational mesh for the scattering of a solitary wave case.

Fig. 9. Solitary wave on a cylinder: (a) t = 4.5 s; (b) t = 5.5 s; (c) t = 6.5 s ;

(d) t = 8.5 s; (e) t = 10.5 s; and (f) t = 12.5 s.

Fig. 10. Contour plots of the velocity u around the cylinder at t = 4.5 s (a-b)

and t = 5.5 s (c-d). Curved edges: (a) and (c). Straight edges: (b) and (d).

Fig. 11. Snapshot of surface elevation after 50 s shown over the bottom topog-

raphy (compared to the x and y scales are the surface elevation exaggerated

36

100 times and the depth 20 times).

Fig. 12. Wave amplitude for first, second and third harmonic along the cen-

terline.

37

(-1, -1) (1, -1)

(1, 1)(-1, 1)

q

Wave direction

Fig. 1. The wave propagates at the angle θ to the horizontal in the periodic domain.

38

(a)

θ0

15

30

45

60
7590105

120

135

150

165

180

195

210

225

240
255 270 285

300

315

330

345

0 5 10 15 20

P=5

P=10

P=15

P=20

(b)

θ0

15

30

45

60
7590105

120

135

150

165

180

195

210

225

240
255 270 285

300

315

330

345

0 5 10 15 20

P=5

P=10

P=15

P=20

Fig. 2. The maximum eigenvalue of X
−1

Y using the BR flux: (a) coupled method

and (b) scalar method.

39

P

M
ax

im
um

E
ig

en
va

lu
e

5 10 15 20 25 30 35 40
100

101

102

103

104

105

BR
sBR (η=1)
sBR (η=100)
LDG (η=1)
LDG (η=100)

1

2

Fig. 3. Growth of the maximum eigenvalue with respect to polynomial order P .

40

(a) η

L
2

R
at

io

10-3 10-2 10-1 100 101 102 103
0.50

0.75

1.00

1.25

P=1
P=2
P=3
P=4

(c) η

L
2

R
at

io

10-3 10-2 10-1 100 101 102 103
0

2

4

6

8

10

P=1
P=2
P=3
P=4

10-3 10-2 10-1 100 101 102 103
0.50

0.75

1.00

1.25

(b) η

L
∞

R
at

io

10-3 10-2 10-1 100 101 102 103
0.75

1.00

1.25

1.50

1.75

2.00

2.25

P=1
P=2
P=3
P=4

(d) η

L
∞

R
at

io

10-3 10-2 10-1 100 101 102 103
0

20

40

60

80

100

P=1
P=2
P=3
P=4

10-3 10-2 10-1 100 101 102 103
0.75

1.00

1.25

1.50

1.75

2.00

2.25

Fig. 4. Ratios of the L2 and L∞ errors for the H-component (N = 64): (a-b) sBR

and (c-d) LDG.

41

(a)
L∞ error

C
P

U
tim

e
[s

]

10-810-710-610-510-410-310-210-1100
10-3

10-2

10-1

100

101

102

103

FD

DG h-version:P=1

DG h-version:P=3

DG h-version:P=5

DG p-version:N=4

DG p-version:N=16

DG p-version:N=64

(b)
L∞ error

C
P

U
tim

e
[s

]

10-810-710-610-510-410-310-210-1100
10-1

100

101

102

103

104

FD

DG h-version:P=1

DG h-version:P=3

DG h-version:P=5

DG p-version:N=4

DG p-version:N=16

DG p-version:N=64

(c)
L∞ error

C
P

U
tim

e
[s

]

10-810-710-610-510-410-310-210-1100
100

101

102

103

104

105

FD

DG h-version:P=1

DG h-version:P=3

DG h-version:P=5

DG p-version:N=4

DG p-version:N=16

DG p-version:N=64

Fig. 5. CPU time versus L∞ error for the H-component: (a) after one wave period;

(b) after 10 wave periods and (c) after 100 wave periods.

42

x [m]

y
[m

]

0 25 50 75 100
0

25

50

Fig. 6. Computational mesh for the solitary wave case.

43

x [m]
0 20 40 60 80 100

1.00

1.10
t = 0 s

1.00

1.10
t = 5 s

1.00

1.10

t = 10 s

1.00

1.10
t = 15 s

1.00

1.10

t = 20 s

W
at

er
de

pt
h

[m
]

Fig. 7. Analytical (solid line) and computed (dots) solitary wave propagation along

the centreline.

44

x [m]

y
[m

]

-20 -10 0 10 20 30 40 50

-10

0

10

Fig. 8. Computational mesh for the scattering of a solitary wave case.

45

(a)
x [m]

-20
-10

0
10

20
30

40
50

y [m] -10

0

10

H
[m

]

1.0

1.1

Y
X

Z

(c)
x [m]

-20
-10

0
10

20
30

40
50

y [m] -10

0

10

H
[m

]

1.0

1.1

Y
X

Z

(e)
x [m]

-20
-10

0
10

20
30

40
50

y [m] -10

0

10

H
[m

]

1.0

1.1

Y
X

Z

(b)
x [m]

-20
-10

0
10

20
30

40
50

y [m] -10

0

10

H
[m

]

1.0

1.1

Y
X

Z

(d)
x [m]

-20
-10

0
10

20
30

40
50

y [m] -10

0

10

H
[m

]

1.0

1.1

Y
X

Z

(f)
x [m]

-20
-10

0
10

20
30

40
50

y [m] -10

0

10

H
[m

]

1.0

1.1

Y
X

Z

Fig. 9. Solitary wave on a cylinder: (a) t = 4.5 s; (b) t = 5.5 s; (c) t = 6.5 s ; (d)

t = 8.5 s; (e) t = 10.5 s; and (f) t = 12.5 s.

46

(a)
x [m]

y
[m

]

13 15 17 19 21
-4

-2

0

2

4
u

0.60
0.55
0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

-0.05
-0.10

(c)
x [m]

y
[m

]

13 15 17 19 21
-4

-2

0

2

4
u

0.60
0.55
0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

-0.05
-0.10

(b)
x [m]

y
[m

]

13 15 17 19 21
-4

-2

0

2

4
u

0.60
0.55
0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

-0.05
-0.10

(d)
x [m]

y
[m

]

13 15 17 19 21
-4

-2

0

2

4
u

0.60
0.55
0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

-0.05
-0.10

Fig. 10. Contour plots of the velocity u around the cylinder at t = 4.5 s (a-b) and

t = 5.5 s (c-d). Curved edges: (a) and (c). Straight edges: (b) and (d).

47

x [m]

0

5

10

15

20

25

30

y [m] 0

5

-d
[m

]

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

XY

Z

ζ
[m

] -0.02

0.00

0.02

XY

Z

Fig. 11. Snapshot of surface elevation after 50 s shown over the bottom topography

(compared to the x and y scales are the surface elevation exaggerated 100 times

and the depth 20 times).

48

x [m]

A
m

pl
itu

de
[m

]

0 5 10 15 20 25 30
0.000

0.005

0.010

0.015

0.020 1st harmonic - measured
2nd harmonic - measured
3rd harmonic - measured
1st harmonic - computed
2nd harmonic - computed
3rd harmonic - computed

Fig. 12. Wave amplitude for first, second and third harmonic along the centerline.

49

Table 1

The fluxes for the dispersive part (âδ and (Ĥu)δ are analogously defined).

Method ẑδ ŵδ

BR {zδ} {wδ}

sBR {zδ} {wδ} − (η/h)[[zδ]]

LDG {zδ} + β · [[zδ]] {wδ} − β[[wδ]] − (η/h)[[zδ]]

50

Table 2

Error and order of convergence for the H-component using the scalar and coupled

methods with BR flux.

N = 16 N = 64 N = 256

Norm Method P Error Error Order Error Order

L2 Scalar/ 1 1.1226E-02 2.6768E-03 2.07 5.8530E-04 2.19

BR 2 1.3230E-03 1.9539E-04 2.76 2.5891E-05 2.92

3 1.0811E-04 6.6072E-06 4.03 8.3836E-07 2.98

4 1.0052E-05 3.3676E-07 4.90 1.0690E-08 4.98

Coupled/ 1 1.1226E-02 2.6768E-03 2.07 5.8530E-04 2.19

BR 2 1.3230E-03 1.9539E-04 2.76 2.5891E-05 2.92

3 1.0811E-04 6.6072E-06 4.03 8.3836E-07 2.98

4 1.0052E-05 3.3676E-07 4.90 1.0690E-08 4.98

51

Table 2

Continued.

N = 16 N = 64 N = 256

Norm Method P Error Error Order Error Order

L∞ Scalar/ 1 1.7617E-02 5.6046E-03 1.65 1.2268E-03 2.19

BR 2 3.0141E-03 3.9179E-04 2.94 5.5468E-05 2.82

3 2.8636E-04 2.5172E-05 3.51 2.6100E-06 3.27

4 3.3832E-05 8.7677E-07 5.27 2.9137E-08 4.91

Coupled/ 1 1.7617E-02 5.6046E-03 1.65 1.2268E-03 2.19

BR 2 3.0141E-03 3.9179E-04 2.94 5.5468E-05 2.82

3 2.8636E-04 2.5172E-05 3.51 2.6100E-06 3.27

4 3.3832E-05 8.7677E-07 5.27 2.9137E-08 4.91

52

Table 3

Ratios of Nnz and CPU time between the coupled and scalar methods using the BR

flux.

N = 16 N = 64 N = 256

P r(Nnz) r(CPU) r(Nnz) r(CPU) r(Nnz) r(CPU)

1 3.01 0.71 2.88 0.91 3.00 0.91

2 2.99 1.38 3.00 1.53 3.00 1.56

3 3.00 1.60 2.99 2.00 3.00 1.99

4 3.00 2.54 2.99 2.56 2.99 2.30

53

Table 4

Error and order of convergence for the H-component using the scalar method with

different dispersive fluxes.

N = 16 N = 64 N = 256

Norm Method P Error Error Order Error Order

L2 Scalar/ 1 1.1226E-02 2.6768E-03 2.07 5.8530E-04 2.19

BR 2 1.3230E-03 1.9539E-04 2.76 2.5891E-05 2.92

3 1.0811E-04 6.6072E-06 4.03 8.3836E-07 2.98

4 1.0052E-05 3.3676E-07 4.90 1.0690E-08 4.98

Scalar/ 1 1.0116E-02 2.1906E-03 2.21 4.9405E-04 2.15

sBR 2 9.8322E-04 1.3377E-04 2.88 1.7206E-05 2.96

3 9.3879E-05 5.7200E-06 4.04 3.5945E-07 3.99

4 7.0653E-06 2.3228E-07 4.93 7.5176E-09 4.95

Scalar/ 1 1.0128E-02 2.1932E-03 2.21 4.9361E-04 2.15

LDG 2 9.8134E-04 1.3328E-04 2.88 1.7180E-05 2.96

3 9.4113E-05 5.7090E-06 4.04 3.5769E-07 4.00

4 7.0674E-06 2.3552E-07 4.91 7.6665E-09 4.94

54

Table 4

Continued.

N = 16 N = 64 N = 256

Norm Method P Error Error Order Error Order

L∞ Scalar/ 1 1.7617E-02 5.6046E-03 1.65 1.2268E-03 2.19

BR 2 3.0141E-03 3.9179E-04 2.94 5.5468E-05 2.82

3 2.8636E-04 2.5172E-05 3.51 2.6100E-06 3.27

4 3.3832E-05 8.7677E-07 5.27 2.9137E-08 4.91

Scalar/ 1 1.6093E-02 5.8062E-03 1.47 1.5763E-03 1.88

sBR 2 4.1474E-03 5.7118E-04 2.86 5.9436E-05 3.26

3 4.0362E-04 3.7917E-05 3.41 2.3903E-06 3.99

4 4.8363E-05 1.7865E-06 4.76 4.7637E-08 5.23

Scalar/ 1 1.6219E-02 5.8982E-03 1.46 1.5866E-03 1.89

LDG 2 4.1902E-03 5.5147E-04 2.93 5.8349E-05 3.24

3 4.3846E-04 4.0372E-05 3.44 2.4660E-06 4.03

4 4.8400E-05 1.6822E-06 4.85 4.6965E-08 5.16

55

Table 5

Ratios of Nnz and CPU time relative the scalar method using the BR flux.

N = 16 N = 64 N = 256

Method P r(Nnz) r(CPU) r(Nnz) r(CPU) r(Nnz) r(CPU)

Scalar/ 1 1.04 1.06 1.00 1.03 1.00 1.02

sBR 2 1.00 1.00 1.00 1.02 1.00 1.07

3 1.00 1.01 1.00 1.01 1.00 1.09

4 1.00 1.00 1.00 0.95 1.00 1.05

Scalar/ 1 0.68 1.01 0.63 0.97 0.61 0.95

LDG 2 0.62 0.86 0.63 0.74 0.62 0.85

3 0.62 0.83 0.63 0.86 0.62 0.77

4 0.61 0.77 0.63 0.84 0.62 0.69

56

Table 6

L∞ error and order of convergence for the H-component for the finite difference

schemes.

h = 5 m h = 2.5 m h = 1.25 m

Method Error Error Order Error Order

Coupled 4.6414E-06 3.8855E-07 3.58 2.5985E-08 3.90

Scalar 4.9790E-05 3.3161E-06 3.91 2.1049E-07 3.98

57

