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 ABSTRACT 

 

Honey is a sweet reward of nature. Its composition is dominated by monosaccharides 

(70−80%), water (<20%), disaccharides and higher sugars (5−10%), and minor quantities of 

phenolic compounds, minerals, vitamins, enzymes and organic acids. Sugars govern its 

physicochemical properties and technological functions, while non-sugar components, mainly 

phenolic acids and flavonoids, impart health benefits and make it unique from other sweeteners. 

Interestingly, honey bees promote the transfer of phytochemicals from floral nectars into honey 

and make them concentrated in honey, thus, honey is not only an abundant source of 

antioxidants, but also a carrier of medicinal phytochemicals. 

Oxidative stress and hypercholesterolemia are detrimental factors in the pathogenesis 

of atherosclerosis, the leading cause of mortality worldwide. Although different strategies have 

been developed to combat them, finding an effective natural remedy targeting both is 

challenging. Accumulated evidence emphasizes the advantages of honey in attenuating such 

detrimental factors, however, little is known about its mode of action on oxidative damage and 

lipid metabolism at a molecular level.  

Recently, the use of honey as a healthy food or a complementary medicine has attracted 

great attention. Considerable efforts have been made to incorporate honey into delivery systems 

including cryogels and hydrogels to enhance its nutraceutical values and overcome its physical 

limitations. To date, most investigations on the physicochemical properties of honey address 

its quality standards, whereas understanding structural characteristics and molecular 

interactions within a honey matrix or a honey-incorporated network is limited.  

Therefore, this PhD research was conducted with primary aims to (i) validate the 

physicochemical quality of four newly developed medicinal honeys and elucidate their effect 

on some key biomarkers of oxidative stress and lipid metabolism, (ii) establish a concrete basis 
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of structural characteristics of honey for technological applications in food biomedical 

industries, and (iii) develop a honey-gelatin template as a delivery system for honey’s bio-

functionality.  

In the first experimental chapter, commercial manuka-1 honey with 400 mg/kg 

methylglyoxal (MGO 400+) and four medicinal honeys (arjuna, guggul, jiaogulan and olive) 

newly developed in The Pangenomics Laboratory were characterized for their physicochemical 

and biochemical characteristics. Data indicated that all medicinal honeys tested comply with 

international regulations for blossom honeys, except for olive honey having substandard 

content of monosaccharides (49.2%). Arjuna, guggul and olive honeys demonstrated 

outstanding values of phenolics, flavonoids, radical scavenging activity and antioxidant 

content. The results encouraged the subsequent examination of their effect on oxidative stress 

and cholesterol homeostasis in the fatty acid-induced HepG2 cell line. Although the stimulation 

of Nrf2 gene expression could not be captured for arjuna, guggul and olive honeys, all 

medicinal honeys up-regulated the expression of NQO1 gene that is associated with cellular 

defense pathways in a concentration dependent manner, of which higher transcriptional levels 

were recorded at 2.0%. Manuka-1, guggul honeys (both, 1.0 and 2.0%) and arjuna honey 

(2.0%) significantly reduced total cellular cholesterol (TC) in the cells. In contrast, jiaogulan 

and olive honeys did not decrease TC. The transcriptional levels of the tested genes associated 

with lipid metabolism (AMPKα, SREBP-2, HMGCR, LDLR, LXRα, PPARα) varied according 

to honey-type and concentration. Manuka and arjuna honeys showed a good agreement 

between the transcriptional levels of the tested genes and the reduction of TC. Guggul honey 

modulated genes and decreased TC but further research at various time points is required to 

elucidate the mechanism. Jiaogulan and olive honeys regulated the genes in a pattern that 

should lead to reduced TC, but this expectation did not occur, suggesting their ability to esterify 

free cholesterol into storage form. Although the medicinal honeys (2.0%) activated PPARα, 
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cellular triglyceride content was not reduced upon combined treatment of fatty acids and honey 

to HepG2 cells.  

In the second experimental chapter, a detailed profile of physicochemical and 

rheological properties of four blossom honeys (tulsi, alfalfa, manuka-1 and -2) were 

established. The honeys meet international quality regulations and contain high content of 

phenolics and flavonoids. Manuka-1 and tulsi honeys produce amorphous diffractograms, 

supported by flat micro DSC thermograms. In contrast, alfalfa and manuka-2 honeys exhibit 

multiple WAXD peaks that agree to endothermic transition recorded calorimetrically. 

Calorimetric and mechanical glass transition temperature (Tg) coincide for honey, indicating 

the dominant role of sugars in the metastable state of honey matrix. Finally, a good fit of 

modified Arrhenius and WLF equation allows the determination of free volume characteristics 

within glass transition state and values of activation energy required for molecular motions in 

the glassy state of the honeys tested. 

In the last experimental chapter, molecular interactions and vitrification characteristics 

of a gelatin hydrogel in the present of manuka-1 honey (10−75%, w/w) were presented. 

Thermomechanical analyses exhibit a dramatic glass transition region when cooling samples 

to subzero temperatures. The implementation of synthetic polymer characterization approach 

pinpoints predicted mechanical Tg for high-solid hydrogels in comparison to calorimetric Tg. 

Partial replacement of water molecules within the hydrogels leads to stronger interactions of 

gelatin and honey moieties and creates amorphous systems which are significant for the 

development of functional foods and biomedical products. The study provides concrete 

background for further investigations on topical and oral delivery of bioactive compounds from 

honey-gelatin gels at controlled rates”. 

To summarize, physicochemical and biochemical characteristics of manuka-1, arjuna, 

guggul and olive honeys are presented here for the first time and support the development of 



 
 

4 
 

medicinal honeys that combat oxidative stress and hypocholesterolemia. However, their 

chemical profiles and their effect on pathways associated with the risk factors need to be further 

studied to provide solid evidence for using the medicinal honeys in the management of such 

risks. Comprehensive profiles of viscoelastic and structural characteristics of the blossom 

honeys and honey-containing hydrogels were established as a concrete foundation to maintain 

optimal quality of medicinal honeys and develop delivery hydrogels of honey’s bio-

functionality. To make honey hydrogels closer to clinical availability, swelling and release 

study should be conducted for the controlled delivery of honey and/or its bioactive compounds. 
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INTRODUCTION 

 

Honey is a sweet reward of nature. The global productivity of honey reached 1.86 

million tons, corresponding to a gross production value of $6.38 billion (Faostat, 2016). 

Australia is the fourth largest honey exporter in the world with gross production value was 

$110 million and forecasted $122 million in the year 2015-2016 and 2018-2019, respectively 

according to Australian Bureau of Agricultural and Resource Economics and Sciences (March 

quarter 2018). 

Honey is composed of over 180 compounds including sugars and non-sugars. Its 

monosaccharides dominate in composition (75−80%), followed by water content (<20%), 

disaccharides and higher sugars (5−10%), and minor quantities of phenolic compounds, 

minerals, vitamins, enzymes and organic acids (Bogdanov, 2016; Bogdanov, Jurendic, Sieber, 

& Gallmann, 2008). Sugars govern physicochemical properties and technological functions, 

while non-sugar components, mainly phenolic acids and flavonoids impart health benefits and 

make honey unique from other sweeteners (da Silva, Gauche, Gonzaga, Costa, & Fett, 2016). 

Interestingly, the nectar and pollen foraging activities of honey bees promotes the transfer of 

phytochemicals from plants into honey, thus honey is not only an abundant source of 

antioxidants, but also a carrier of plant medicinal properties (Alvarez-Suarez, Giampieri, & 

Battino, 2013; Anand, Pang, Livanos, & Mantri, 2018; Yamani, Mantri, Morrison, & Pang, 

2014).  

Atherosclerosis is among the leading causes of mortality in contemporary societies. Its 

pathogenesis closely links to oxidative damage and hypercholesterolemia (Barquera et al., 

2015). Several strategies have been developed to combat them, but finding an effective natural 

remedy targeting both is challenging. Honey has been used through human history and widely 

reported to have powerful antioxidant capacity and improve lipid profiles in chemical and 
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biological systems (Afrin et al., 2018; Ajibola, Chamunorwa, & Erlwanger, 2012; Atrott & 

Henle, 2009; Isidorov, Czyżewska, Jankowska, & Bakier, 2011), emphasizing its advantages 

in modulating atherogenic pathogenesis. However, little is known about its action modes on 

oxidative stress and lipid metabolism at molecular levels.   

Recently, the use of honey as a healthy food or a complementary medicine has attracted 

great attention. Considerable efforts have been made to incorporate honey into delivery systems 

such as electrospun meshes, cryogels and hydrogels to enhance its values and overcome its 

physical limitations (El-Kased, Amer, Attia, & Elmazar, 2017; Minden-Birkenmaier & 

Bowlin, 2018; Wang, Zhu, Xue, & Wu, 2012). To date, most investigations on 

physicochemical properties of honey address its quality standards regulated by the Codex 

Alimentarius (2001) and European directive (2001), whereas understanding structural 

characteristics and molecular interactions in honey matrix and in honey-incorporated networks 

is still limited, thus hindering the optimization of honey quality and the development of honey-

containing products.  

This research was conducted with primary aims to (i) elucidate the effect of medicinal 

honeys on some key biomarkers of oxidative stress and lipid metabolism, (ii) establish 

fundamental basis of structural characteristics of honey for technological applications in food 

and biomedical industries, and (iii) develop a honey-gelatin template as a delivery system of 

honey’s bio-functionality.  

 

Primary research questions 

1. Can the selected honey types modulate oxidative stress and lipid metabolism? How 

do they elicit such protective effects? 
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2. How structural properties and rheological measurements with mathematical 

modelling explain the quality and stability of honey? 

3. How does honey influences structural behaviors of a gelatin hydrogel?  

 

Specific research objectives  

1. Evaluate quality standards of a manuka honey and four fortified honey types with 

plant extracts and examine their effects on cellular lipids and the expression of key 

genes associated with cholesterol homeostasis in fatty acid-induced HepG2 cells 

2. Establish a platform of physicochemical and viscoelastic properties for honeys 

originated from floral nectar of medicinal plants 

3. Investigate the effect of a representative honey (a commercial manuka honey 

containing methylglyoxal 400+ mg/kg) on structural characteristics of a gelatin 

hydrogel 

 

Overview of the thesis 

Chapter 1: Part 1 reviews (i) composition of honey and its key quality standards to 

ascertain its uniqueness and superiority to table sugars; and (ii) role and possible action modes 

of honey in relieving the multifaceted dimensions of atherosclerosis, including oxidative stress 

and hypercholesterolemia. Part 2 highlights the theoretical concepts of glass transition behind 

the structural studies in the project. 

Chapter 2: Effect of manuka honey and four newly developed medicinal honeys on key 

biomarkers of antioxidative stress and lipid metabolism on human liver carcinogenic HepG2 

cells. The study examines the quality parameters and focuses on the biochemical and molecular 
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analysis to explain the modulation of intracellular cholesterol triglyceride synthesis pathway 

by honey treatments of the fatty acid-induced HepG2 cells and suggest a relation of antioxidant 

activity and cholesterol reduction. 

Chapter 3: Physicochemical and viscoelastic properties of honey from medicinal plants. 

This fundamental study generates the comprehensive information of physicochemical basic 

standards and structural properties of honeys originated from nectar of four medicinal plants 

and facilitates development of food and biomedical products containing honey as a main 

component. 

Chapter 4: Structural variation in gelatin networks from low to high-solid systems 

effected by honey addition. This study examines effect of increasing incorporation of honey on 

structural properties including thermal, viscoelastic, phase transition and amorphous 

characteristics of gelatin hydro- and high-solid gels. 

Chapter 5: Summary, conclusions and future directions. This chapter connects the 

previous chapters to present the progression of the research throughout the PhD candidature. 

Future directions are highlighted at the end of the chapter.  
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CHAPTER 1. LITERATURE REVIEW AND BACKGROUND 

 

1.1. Part 1: Honey and its role in relieving multiple facets of atherosclerosis 

 

Nguyen, H. T. L., Panyoyai, N., Kasapis, S., Pang, E., & Mantri, N. (2019). Honey and its role 

in relieving multiple facets of atherosclerosis. Nutrients, 11(1), 167. 
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1.2. Part 2: Theories of glass transition − a structural transformation in food materials 

 

Food products possess various structural characteristics and compositions, but they are 

mainly composed of carbohydrates, water, proteins and lipids (Pomeranz, 2012). Carbohydrate 

molecules vary in their weight, from simple sugars (fructose and glucose) to polymeric 

molecules (pectin, starch, gellan, carrageenan and others). Proteins represent polymeric 

structures with various conformations such as gelatin, bovine serum albumin. The biomaterials 

are extensively reported to exhibit a disordered and amorphous state, particularly in high-solid 

and frozen foods (Devi, Liu, Hemar, Buckow, & Kasapis, 2013). These characteristics 

emphasize physicochemical similarities of bio- and synthetic polymers and accommodate 

applications of sophisticated polymer approach in food products to explore their physical and 

structural transformations (Kasapis & Sablani, 2008; Roos, Karel, & Kokini, 1996; Slade & 

Levine, 1995). 

 

1.2.1. Glass transition temperature and its significance 

Glass transition reflects thermodynamic properties of a second-order phase transition 

in a time and temperature dependent manner. In details, this is a reversible transformation from 

the solid state to liquid (rubbery) state of amorphous materials over a temperature range. Glass 

transition phenomenon reflects the changes of enthalpy, heat capacity, free volume, thermal 

expansion coefficient (Kasapis, 2009; Roos, 2003).  

Glass transition temperature (Tg) is the most critical thermal event in food science as it 

reflects stability and quality characteristics of biomaterials. Glass transition temperature is 

commonly pinpointed a single value of a midpoint of the glass transition range (Sperling, 

2005). It is extensively used to predict physical and chemical behaviors of amorphous and 
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partially amorphous foodstuffs such as softness in snack products, sugar crystallization, the 

stickiness and caking (Kasapis, 2009; Roos et al., 1996). It has been known that food materials 

develop soft and gummy properties, decrease viscosity and increase molecular mobility beyond 

their Tg. On the contrary, they become rigid and most stable with limited molecular mobility 

below their Tg (Li, Lin, Roos, & Miao, 2019; Sablani, Kasapis, & Rahman, 2007).  

 

1.2.2. Factors influencing glass transition temperature 

Glass transition temperature determined in a food material is mainly influenced by 

composition, molecular weight, and plasticizers including water and other co/solutes as these 

factors alter thermomechanical characteristics and molecular interactions within polymeric 

networks (Jadhav, Gaikwad, Nair, & Kadam, 2014).  

1.2.2.1. Composition of a food system  

Food systems are usually composed of a biopolymer mixed with another biopolymer or 

co/solute. The combination develops a structural network through inter-molecular interactions 

forming phase-separated or crosslinked networks. Phase separation, for example, in 

gelatin/polydextrose mixture, depends on the total solids and gelling polymer concentrations. 

Some polymers have branched side chain ends, thus their presence increases viscosity and 

dynamics in mixtures. Molecular mobility in phase-separated systems reduced with the 

increase of total solids. This is observed in Tg values located at −30 οC and −22 οC for 

polydextrose and gelatin/polydextrose blend, respectively (Almrhag et al., 2012). In 

crosslinked systems, adjacent molecules are chemically linked to form a three-dimensional 

structure. Tg values in such systems depends on characteristics of chemical bonds (e.g. 

covalent, hydrogen), crosslinking density and molecular weight. A denser crosslinked system 

has stronger physical properties as it has several points for storing shear energy and reducing 
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bond rotations, thus its Tg values increases. This can be observed in the work by George, 

Lundin, and Kasapis (2014) showing mechanical Tg increases from −38 to 1 οC for networks 

of 15% protein fraction and a 65% co-solute as a result of conformational changes in the 

different protein fractions.  

1.2.2.2. Molecular weight  

The dependence of Tg on molecular weight is described in the equation (1.1) that was 

developed by Fox Jr and Flory (1950):        

𝑇𝑇𝑔𝑔 = 𝑇𝑇𝑔𝑔∞ − 𝐾𝐾
(𝛼𝛼𝑅𝑅−𝛼𝛼𝐺𝐺)𝑀𝑀

      (1.1)  

And equation (1.2) by Fox and Loshaek (1955): 

1
𝑇𝑇𝑔𝑔

= 1
𝑇𝑇𝑔𝑔∞

 + 𝐾𝐾
𝑇𝑇𝑔𝑔(∞)
2 𝑀𝑀

       (1.2) 

Where K is a constant, αR and αG are thermal expansion coefficients in rubbery and 

glassy states, respectively, M is molecular weight (g/mol).  

Equation (1.2) clearly indicates a linear correlation of glass transition and high 

molecular weight systems (Fox & Loshaek, 1955). An empirical investigation by Kasapis, Al‐

Marhoobi, and Mitchell (2003a) indicated Tg values of mixtures of gelatin fractions and sugars 

raised from −30 to −14.5 οC relevant to an increase of gelatin molecular weight from 29.2 to 

68.0 kD.  

1.2.2.3. Plasticizers 

Plasticizers increase free volume but decrease viscosity in the micro-environment 

(Ferry, 1980). In addition, their structural variations significantly influence Tg of food materials 

(Lourdin, Coignard, Bizot, & Colonna, 1997). Water is extensively known as an effective 

plasticizer as it forms strong interactions (hydrogen bonds) with structural elements in food 
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systems (Masavang, Roudaut, & Champion, 2019; Sablani et al., 2007). Roos (2010) indicated 

that food materials such as starch, glutenin, maltose and fructose experience decreased Tg  

values when their water content increases (Figure 3).  

 

 

Figure 3. Starch, glutenin, maltose and fructose exhibit different ranges of glass transition 

temperature depending on their water content. Cereals can form  glassy state after being 

plasticized and extruded, but fructose does not form solid state at the same conditions (Roos, 

2010). 

 

As small molecule plasticizers can increase molecular mobility leading to lower Tg  

values for a system, many of them have been using to control Tg of the polymers. For example, 

trehalose and mannitol are used to lower Tg of β-cyclodextrin polymer, making its structural 

transformation observable and improve its applicability in developing tablets for oral 

administration as cyclodextrin can complex with a wide range of active compounds (Tabary et 

al., 2016).  
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1.2.3. Structural relaxation  

 

 
 
Figure 4. Molecular relaxations scanned by dynamic mechanical analyzer (Menard & Menard, 

2006). 

 

Relaxation time is defined as the time required for an equilibrium recovery of a property 

after interference(s), such as an applied stress to an amorphous material. Relaxation time is 

strongly influenced by the viscosity of the material, e.g. short relaxation times are in low 

viscosity systems, and vice versa (Champion, Le Meste, & Simatos, 2000). Figure 4 displays 

various molecular relaxations coupled with different degrees of molecular motions (Menard & 

Menard, 2006). Molecules are tightly compressed with negligible motions at very low 

temperatures (region 6). Early heating regime expands gradually the free volume, initiates 

movements of backbone and side chains, leading to a gamma transition, Tγ. Continuous heating 

and free volume increase generate enough space for the motions of localized groups (4−8 

atoms) and side chains, thus the material experiences some toughness and a beta transition, Tβ 

at this stage. Further heating coordinates chains to large-scale motions (region 4) in the 

amorphous regions and the progression of a glass transition, Tg, followed by a Tα where 
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segmental motions occur, and viscosity reduces (region 3). Finally, the material undergoes a 

melt (region 2), Tm where large-scale chains slip, and the material flows at the end of heating 

route. 

 

1.2.4. Free volume theory 

Free volume theory has been extensively used to explain molecular relaxations of a 

polymer with regard to its free volume, occupied volume and specific volume (Ferry, 1980; Li 

et al., 2019) as illustrated in Figure 5. The free volume indicates the available space for 

molecular motions in amorphous regions (vf). The occupied volume (vo) defines the fraction 

that polymer molecules locate. The specific volume (v) is the total of free volume and occupied 

volume. Free volume usually is around 30% of the total volume in polymer melts and collapses 

to 3% in the glassy state (Cangialosi, Schut, Van Veen, & Picken, 2003; Ferry, 1980).  

 

 
 

Figure 5. A representative scheme of free volume theory (Ferry, 1980) 
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The expansion of free volume at temperatures above Tg, is known as thermal expansion 

coefficient (α). The expansion coefficient at the glassy state (αg) is lower than that in the 

rubbery state (Ferry, 1980).  

The most used theory to explain free volume effect with regard to viscosity is the 

Williams-Landel-Ferry (WLF), which was first developed by Doolittle and Doolittle (1957): 

lnη = 𝐵𝐵�𝑣𝑣0 𝑣𝑣𝑓𝑓⁄ �+ ln𝐴𝐴     (1.3) 

where, η is viscosity (Pa.s); A and B are constants.  

The equation was then modified by Williams, Landel and Ferry (WLF) (1955) when 

they considered effect of molecular rearrangement and introduced the fractional free volume 

concept, f for local motions: 

 ln 𝜂𝜂 = (𝐵𝐵 𝑓𝑓) +⁄ ln𝐴𝐴       (1.4) 

where, f is equal to vf /vo  

As the fractional free volume linearly increases with the elevation of temperature: 

 𝑓𝑓 = 𝑓𝑓𝑔𝑔 + 𝛼𝛼𝑓𝑓(𝑇𝑇 − 𝑇𝑇𝑔𝑔)      (1.5) 

where, f is the free volume at glass transition temperature and αf is expansion coefficient 

The free volume theory introduces a set of shift factors (aT) that indicates polymer 

relaxation. Thus, the free volume equation (1.1) is expressed as bellow: 

log 𝑎𝑎𝑇𝑇 = 𝐵𝐵
2.303

�1
𝑓𝑓
− 1

𝑓𝑓o
�                (1.6) 

A combination of the above relations was described in the framework of William, 

Landel, and Ferry (Ferry, 1980): 

log 𝑎𝑎𝑇𝑇 = log �𝜂𝜂(𝑇𝑇)
𝜂𝜂(𝑇𝑇𝑜𝑜

� = − (𝐵𝐵 2.303𝑓𝑓0⁄ )(𝑇𝑇−𝑇𝑇𝑜𝑜)
(𝑓𝑓0 𝛼𝛼𝑓𝑓⁄ )+(𝑇𝑇−𝑇𝑇𝑜𝑜)   (1.7) 

where, fo is fractional free volume at a reference temperature (Tο), B is equal to 1 (Ferry, 1980)  

The WFL constants (𝐶𝐶1𝑜𝑜) and (𝐶𝐶2𝑜𝑜) describe temperature dependence of viscoelasticity 
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in a relation with free volume (Ferry, 1980). 

𝐶𝐶1𝑜𝑜 = 𝐵𝐵
2.303𝑓𝑓𝑜𝑜

  and  𝐶𝐶2𝑜𝑜 = 𝑓𝑓𝑔𝑔
𝛼𝛼𝑓𝑓

 

The WLF equation (1.7) is universally utilized to describe the vitrification phenomenon 

of polymers. However, it deviates from the progression of viscoelasticity at glassy state 

(Kasapis, 2009; Kasapis & Sablani, 2008). 

 

1.2.5. Reaction rate theory 

As molecules in the microstructure are almost in equilibrium state (Abiad, Carvajal, & 

Campanella, 2009) in glassy state, physiochemical changes in an amorphous material can be 

expressed by the Arrhenius model (Nelson & Labuza, 1994): 

𝑘𝑘 = 𝑘𝑘𝑜𝑜𝑒𝑒
�−𝐸𝐸𝑎𝑎𝑅𝑅𝑅𝑅�        (1.8) 

where, k is rate constant at temperature T, ko is the pre-exponential factor, Ea is the 

activation energy (kJ/mol) and R is the ideal gas constant (8.31 J/mol K). 

Equation (1.8) was then modified in the work of Arridge (1975): 

log 𝑘𝑘𝑜𝑜
𝑘𝑘

= 𝐸𝐸𝑎𝑎
2.303 𝑅𝑅

 �1
𝑇𝑇
− 1

𝑇𝑇𝑜𝑜
�       (1.9) 

The Arrhenius equation indicates a certain degree of activation energy (Ea) is needed 

for molecular mobility within their matrix in glassy state. It also explains the viscoelasticity 

progression in glassy region is a temperature-dependent process (Kasapis, 2009). 

 

1.2.6. Mechanical glass transition temperature prediction 

The structural transformation of elements in glass transition region and the overcome 

of energetic barrier for molecular mobility in glassy region is the background to predict the 
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mechanical glass transition temperature of a polymer material (Kasapis & Sablani, 2008; 

Paramita & Kasapis, 2018). This is expressed as the discontinuity of the two mathematical 

models defined by free volume theory (equation 1.7) and reaction rate theory (equation 1.9) 

(Figure 6). 

 

 
 

Figure 6. WLF and Arrhenius fits exhibited a discontinuity and thus pinpointed the predicted 

glass transition temperature of a biopolymer blend (Kasapis & Sablani, 2008). 

 

The mechanical Tg of a system is normally deviated from its calorimetric Tg which is 

mainly determined by thermodynamic changes and molecular mobility with negligible effect 

of network formation (Kasapis, Al-Marhoobi, & Mitchell, 2003). It was noted that mechanical 

Tg varied up to 20 oC from calorimetric Tg when a polymer presented in the composition of a 

material (Kasapis et al., 2003). This difference is due to the formation of network by the 

polimer and it depends on the structural elements such as molecular weight, electrostatic 
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interactions, thus mechanical Tg is terminologically interchangeable with the concept of 

network Tg (Kasapis, Al‐Marhoobi, & Mitchell, 2003b; Paramita & Kasapis, 2019; Roos, 

2010).  

 

2.7. Glass transition of honey 

Owing to its supersaturated sugar composition, honey is a viscous supercooled liquid 

and usually exhibits a Newtonian behavior. The physical characteristics enable honey to 

complement a current trend in the cryopreservation of biomaterials such as cells, tissues and 

organs (Andraca, Goldstein, & del Castillo, 2013; Recondo, Elizalde, & Buera, 2006).  

Molecular mobility in honey have been explored using mostly calorimetric analysis 

(Bhandari, D'Arcy, & Kelly, 1999; Recondo et al., 2006; Sobrino-Gregorio, Vargas, Chiralt, & 

Escriche, 2017). The studies reported honey at a subzero temperature regime is a glassy solid 

showing a dramatic increase in viscosity and the immobilization of chemical and biological 

components, thus its quality is highly stable. In contrast, a rapid heating route starting at glassy 

state increases heat capacity and generates characteristic Tg that varies for different honeys. 

Lazaridou, Biliaderis, Bacandritsos, and Sabatini (2004) reported a range of Tg for honeys from 

−30 to −50 οC. 

Further heating honey above room temperature liquefies it and increases its 

susceptibility to physical and chemical modifications. A high temperature regime dramatically 

reduces its enzyme activity, degrades proteins and releases free amino acids which herald 

Maillard reaction and colour changes (da Silva, Gauche, Gonzaga, Costa, & Fett, 2016). 

Moreover, high temperatures alter molecular structures of phenolic and flavonoid compounds 

affecting their antioxidant capacity. Therefore, mild temperature (40−50 οC) is strongly 

recommended for commercial honey in preventing crystallization process and browning 
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reactions during storage (Blidi, Gotsiou, Loupassaki, Grigorakis, & Calokerinos, 2017). 

 Although physicochemical properties of several sugar systems have been extensively 

explored to provide valuable database for baking and confectionary industries (Mayhew, Neal, 

Lee, & Schmidt, 2017; Ruiz-Cabrera & Schmidt, 2015), data for naturally occurring sugar 

mixtures like honey are still limited. Thus, determination of thermal and structural behavior of 

honey provides fundamental information for quality stability (e.g. crystallization process is 

minimized, bioactivities are maintained, etc.), optimization of handling and packing procedures 

and the development of honey-containing products to delivery its bio-functions. 
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CHAPTER 2. EFFECT OF HONEY ON KEY BIOMARKERS OF  

OXIDATIVE STRESS AND CHOLESTEROL HOMEOSTASIS 

 

2.1. Introduction 

Atherosclerosis is a leading cause of worldwide vascular deaths and its pathogenesis 

closely links to oxidative stress and hypercholesterolemia (Herrington, Lacey, Sherliker, 

Armitage, & Lewington, 2016). It was reported that a 10% elevation of total cholesterol 

corresponds to a 27% higher incidence of coronary heart disease. Since most of plasma 

cholesterol is low density lipoprotein cholesterol (LDL-C) which forms plaque and hardens the 

arteries at elevated levels, LDL-C is a detrimental element associated with atherosclerotic 

pathogenesis (Lalor et al., 2012; Law, Wald, & Thompson, 1994).  

Statins have been popularly used to reduce cholesterol levels due to their ability of 

inhibiting hydroxy methylglutaryl coenzyme A reductase (HMGCR), a rate-limiting enzyme 

in de novo cholesterol synthesis. However, it was reported that healthy lifestyle and dietary 

regimes are responsible for a significant decrease in vascular mortality in general and 

cholesterol levels in particular, thus, many people on the margin of abnormal cholesterol levels 

can return to normal cholesterol status without medications (Jenkins et al., 2005). Recently, 

functional foods have attracted great attention due to their nutraceutical properties that promote 

health and modulate hypercholesterolemia (Gul, Singh, & Jabeen, 2016).  

Honey, a natural sweetener, contains monosaccharides, disaccharides, water, enzymes, 

proteins, amino acids, vitamins and a wide range of phytochemicals. Due to the diversity of 

plant metabolites in floral nectars from various plants, chemical profiles and consequently 

antioxidant activities of honeys vary (Anand et al., 2019; Combarros-Fuertes et al., 2019; 

Yamani, Mantri, Morrison, & Pang, 2014). The oxygen radical absorbance capacity of honey 

(3−17 µmol TE/g) is comparable to that of several fresh fruit and vegetables (0.5−19 µmol 
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TE/g) (Gheldof & Engeseth, 2002; Özcan & Juhaimi, 2015). The potential of honey in 

modulating cholesterol homeostasis has been evidenced in several investigations (Nguyen, 

Panyoyai, Kasapis, Pang, & Mantri, 2019). Among those, phenolic compounds such as 

catechin, quercetin, luteolin occurring in honey are reported to improve coronary vasodilation, 

prevent blood clots and LDL-C oxidation (Chen, Yang, Jiao, & Zhao, 2002; Mbikay, Sirois, 

Simoes, Mayne, & Chrétien, 2014; Panchal, Poudyal, & Brown, 2012; Wong, Lin, & Leung, 

2015). Several flavonoids in honey are aglycon forms, making them readily bioavailable when 

consumed (Alvarez-Suarez, Giampieri, & Battino, 2013). However, to date, understanding the 

molecular mechanism through which honey elicits its protection against oxidative stress and 

hypercholesterolemia is very limited. 

It has been reported that chronic oxidative stress closely links with dysregulated lipid 

homeostasis. Transcription factor NF-E2-related factors 2 (Nrf2) and its downstream gene, 

NAD(P)H:quinone oxidoreductase 1 (NQO1) are central in defence responses to oxidative 

stress (Sharath Babu, Anand, Ilaiyaraja, Khanum, & Gopalan, 2017). In addition, AMP-

activated protein kinase (AMPK), a key energy sensor has been extensively investigated in  

lipid metabolism pathways because its activation induces ATP-generating pathways, including 

the uptake and oxidation of glucose and fatty acids (Hwang, Kwon, & Yoon, 2009). 

Cholesterol metabolism is co-regulated by sterol regulatory element-binding protein 

(SREBP-2) and liver X receptors (LXRs) in the liver. SREBP-2 preferentially modulates genes 

associated with cholesterol synthesis and uptake (HMGCR and LDLR, respectively) (Raghow, 

Yellaturu, Deng, Park, & Elam, 2008). LXRs are responsible for reducing cholesterol 

absorption in intestine and promoting the excretion of bile cholesterol in the liver through 

upregulating membrane transporters (Li et al., 2017). In addition, proliferator-activated 

receptor alpha (PPARα) is a critical molecule that controls the transcription of genes 

downstream of the lipid catabolism. The activation of PPARα enhances the β-oxidation of fatty 
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acids, reducing the content of cellular lipids (Zheng, Lv, Sheng, & Yang, 2010). Thus, it is 

interesting to explore the effect of honey on these biomarkers to determine if honey can be used 

in the management of atherosclerosis.  

The human HepG2 cells are highly differentiated and exhibit several genotypic 

characteristics of normal liver cells, including cholesterol synthesis and  excretion (Gerets et 

al., 2012), so it was used in the current study. Manuka honey and four medicinal honeys newly 

developed in The Pangenomics Laboratory, RMIT University were examined to investigate 

their physicochemical, biochemical properties, and effect on the aforementioned biomarkers in 

fatty acid-induced HepG2 cells.  

 

2.2. Materials and methods 

2.2.1. Honey samples 

A commercial manuka honey containing methylglyoxal 400+ mg/kg (manuka-1) and 

four medicinal honeys developed from extracts of Terminalia arjuna bark (aruna honey), 

Commiphora mukul stem (guggul honey), Gynostemma pentaphyllum leaves (jiaogulan honey) 

and Olea europaea fruit retentate (olive honey) were examined for their physicochemical, 

biochemical properties, and effect on primary biomarkers of oxidative stress and lipid 

metabolism. The plant species were selected based on scientific literature reporting their 

phytochemical profiles and biofunctions linked to their antioxidant activities and 

hypocholesterolemia. 

Four healthy bee colonies provided by Berley Honey were kept separately in semi-

control enclosures and each was fed with a medicinal nectar, which is a solution of sugars, 

amino acids and a medicinal plant extract to produce medicinal honey (Table 1). Briefly, sugar 

proportion was prepared following the sugar pattern of melitophilus flowering plant species 
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which are friendly for honey bees (Baker, 1983; Chalcoff et al., 2017). The amino acid 

concentrations were prepared following those identified in flower nectar of Prunella vulgaris 

which is a bee-friendly herb wildly distributed in bee pastures during the summer (Gardener & 

Gillman, 2001; Kuriya, Hattori, Nagano, & Itino, 2015). The inclusion of plant extract was 

adjusted to the bee’s preference. In addition, pollen granules A+ premium grade (Western 

Australia) was daily given as a protein source to maintain bee colonies. Extracts of T. arjuna 

bark, C. mukul stem and G. pentaphyllum leaves were obtained following methods described 

by Sultana, Anwar, and Przybylski (2007), Jasmine et al. (2013), Liu et al. (2016) with some 

modifications, respectively. Olive retentate (Boundary Bend, Victoria) was directly used to 

replace plant extracts as it contains (mg/100 ml): total phenol content 90.5, hydroxytyrosol 15, 

sodium 1.9, total sugars < 1.9, fat < 0.2, protein 0.1. 

Table 1. Composition of medicinal nectars 

Components Concentration Reference 

Sugars (sucrose and hexose) 50.0% (3:1, w/w) Baker (1983); Chalcoff, Gleiser, 

Ezcurra, and Aizen (2017) 

Amino acids 2.4 mM Gardener and Gillman (2001) 

Plant extracts < 1.0% (w/w) Can, Yildiz, Sahin, Turumtay, et al. 

(2015); Gheldof and Engeseth (2002) 

 

2.2.2. Moisture, pH, electrical conductivity 

Moisture, pH and electrical conductivity were measured following the International 

Honey Commission method (Bogdanov, Martin, & Lullmann, 2002). Moisture content was 

recorded using a Refracto 30GS refractometer (Mettler Toledo, Australia) and converted 
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following a Chetaway table. pH value was measured from 10% honey solutions. Electrical 

conductivity was measured from 20% (w/v) honey solutions using a S230 conductivity meter 

(Mettler Toledo, Australia). 

2.2.3. Reducing sugars 

The contents of D-glucose and D-fructose in honeys were analyzed following 

instructions from K-SUFRG 06/14 kit (Megazyme, Australia). Briefly, D-glucose was assayed 

by utilizing hexokinase and glucose-6-phosphate avoiding sucrose hydrolysis. The content of 

D-fructose was recorded after the analysis of D-glucose content, following isomerization with 

phosphoglucose isomerase.  

2.2.4. Colour intensity 

Colour intensity of honeys was measured following Saxena, Gautam, and Sharma 

(2010). Honey solutions (50%, w/v in Milli-Q water)  were filtered using 0.45 µm sterile Millex 

filters (Merk, Australia) to remove particles. Results were calculated as the difference of the 

450 and 720 nm absorbance readings recorded from a Lambda 35 UV-vis spectrophotometer 

(Perkin Elmer).  

2.2.5. Protein content 

Protein content was assayed following Bradford’s method (1976) using a Thermo 

Scientific™Coomassie Protein Assay Kit (Thermo Fisher, Australia). In doing so, a volume of 

20 µl of honey solution (10%, w/v) was mixed with  250 μl of Coomassie reagent in a 96 

microplate. After ten-minute incubation at room temperature, the plate was read at 595 nm 

absorbance using a POLARstar Omega plate reader (BMG Labtech, Ortenberg, Germany). A 

calibration curve using bovine serum albumin standards in the range of 0 to 100 μg/ml was 

used to calculate the protein content.  
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2.2.6. Total phenolic content 

Total phenolic content was assayed using Folin-Ciocalteu reagent (Singleton, Orthofer, 

& Lamuela-Raventós, 1999). Briefly, 0.5 ml of 10% filtered honey solution (w/v) was mixed 

with 2.5 ml of 0.2 N Folin-Ciocalteu reagent (Sigma-Aldrich, Australia). Subsequently, 2 ml 

of 75 g/l Na2CO3 solution was added. After 2-hour incubation at ambient temperature, the 

mixture was read at 760 nm absorbance using a Lambda 35 UV–vis spectrophotometer (Perkin 

Elmer). Data is the mean of four replicates ± SD. Gallic acid standards ranging from 0 to100 

μg/ml were used to construct a calibration curve.  

2.2.7. Total flavonoid content 

Total flavonoid content was measured following the method described by Islam, Khalil, 

Islam, Moniruzzaman, Mottalib, Sulaiman, Gan, et al. (2012). Two grams of honey was diluted 

into 10 ml methanol and filtered with a 0.45µm sterile Millex filter (Merk, Australia). Then, 1 

ml of the 20% honey solution (w/v) was added to 4 ml milli-Q water, followed by 0.3 ml of 

5% NaNO2 (w/v). After five minutes, 0.3 ml of 10% AlCl3 (w/v) was added. Six minutes later, 

the mixture was neutralised with 2 ml of 1.0 mM NaOH solution and increased into 10 ml using 

water. The absorbance was recorded at 510 nm within 5 min using a Lambda 35 UV–vis 

spectrophotometer (Perkin Elmer). Catechin standards ranging from 0 to 100 μg/ml were used 

to construct a calibration curve against a blank consisted of honey solution and methanol 

without AlCl3. 

2.2.8. Radical scavenging activity and ascorbic acid equivalent antioxidant content 

Radical scavenging activity (RSA) of the medicinal honeys was recorded by 

determining the reduction of radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) following Meda, 

Lamien, Romito, Millogo, and Nacoulma (2005) with minor modifications. Honey was diluted 

in methanol and filtered with a 0.45 µm sterile Millex filter (Merk, Australia). Then, 0.8 ml of 
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2.5% honey solution (w/v) was added to 2.7 ml of 0.024 mg/ml DPPH in methanol. The mixture 

was vigorously shaken for 15 seconds and incubated for 30 minutes without light at room 

temperature. The DPPH reduction was read at 517 nm absorbance using a Lambda 35 UV–vis 

spectrophotometer (Perkin Elmer). RSA was the percentage of DPPH discoloration calculated 

from the equation: 

% RSA = [(ADPPH– AS)/ADPPH] × 100 

where ADPPH and AS are the absorbance units of DPPH solutions in the absence and 

presence of honey, respectively.  

The antioxidant content (AEAC) was analysed as aforementioned and referred to 

calibration curve of ascorbic acid standards ranging from 0–15.0 μg/ml.  

2.2.9. Viscosity 

Viscosity was measured using an AR-G2 rotational rheometer (TA instruments). 

Honeys (1.5 gram) were loaded onto a 40 mm diameter parallel plate geometry at room 

temperature and the analysis was set at 500 µm gap and shear rate from 0.01 to 10 cm-1 at 20 

οC.  

2.2.10. Fourier-transform infrared spectroscopy (FTIR) 

FTIR spectra of the medicinal honeys were scanned using A MIRacleTM ZnSe single 

reflection ATR plate-linked spectrometer (Perkin Elmer, Norwalk, USA). An amount of 

0.2 gram of honeys was placed onto the measuring plate and measured for 40 scans from 4000 

to 500 cm−1, 4 cm−1 resolution at room temperature.  

2.2.11. Cell culture  

Human liver cell line (HepG2) was kindly granted by School of Health and Biomedical 

Sciences, RMIT University. HepG2 cells were routinely maintained in a complete Dulbecco's 

modified Eagle's medium (DMEM) containing foetal bovine serum (FBS, 10%, v/v) (Thermo 
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Fisher, USA), glutamine (2 mmol/L), penicillin (100 U/mL), and streptomycin (100 mg/mL) 

in an incubator set at 37°C and 5% CO2 atmosphere. The complete medium was changed two 

times a week and subcultures were performed when the cells reached a 75% confluence. Cells 

were counted using trypan blue reagent and Countess® Automated Cell Counter (Invitrogen, 

Australia). All assays used the cells at passage numbers less than twenty. 

2.2.12. Cell viability 

The viability of HepG2 cells under the effect of medicinal honeys was assayed using 

PrestoBlue kit (Invitrogen, Australia). 100 μl of complete DMEM medium containing 3 × 

104 cells/well was pipetted on a 96-well plate and incubated at 37 °C and 5% CO2. Ten hours 

later, the media was discarded, and the cells were incubated in free-serum DMEM overnight. 

Honey solutions in a range of 0−20% (w/v) were prepared in 2% FBS-DMEM and applied to 

the cells. After 24-, 48- and 72-hour incubation with honeys, the cells were washed with PBS 

twice followed by adding PrestoBlue reagent 10.0% in free-serum medium followed by another 

two-hour incubation. The fluorescence intensity was recorded at 535 nm/590 nm using a 

POLARstar spectrophotometer (BMG LabTech, Germany). Cell viability was calculated as the 

percentage of the fluorescence unit of treated cells to control that is untreated cells. 

2.2.13. Cell treatment with fatty acids 

HepG2 cells (6 x105 cells/well) in complete DMEM medium were seeded on a 6-well 

plate. Ten hours later, the complete medium was discarded, and the cells were maintained in 

serum-free, high glucose DMEM medium overnight. A conjugation of fatty acids 1.0 mM 

(oleic acid/palmitic acid, 2:1) and fat-free bovine serum albumin (BSA, Roche) was prepared 

at a 6:1 ratio in 2.0% FBS-DMEM medium and delivered to the cells. In addition, honey was 

simultaneously added at final concentrations 1.0 and 2.0% (w/v). Control cells were exposed 

to 1.0% (w/v) BSA only. Cell pellets were collected after 24 hours. 

https://www.bmglabtech.com/polarstar-omega/
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2.14. Analysis of total cellular cholesterol and triglyceride content 

Lipids were extracted from cell pellets (2.13) following Folch, Lees, and Stanley 

(1957). The dry lipid was dissolved in 200 µl methanol for the subsequent determination of 

total cellular cholesterol (TC) and triglycerides (TG) by enzymatic methods, using Amplex 

Red Cholesterol Assay Kit (Molecular Probes) and EnzyChrom Triglyceride Assay Kit 

(BioAssay Systems), respectively. Cellular protein content was assayed based on 

bicinchoninic acid (BCA) method using BCA Protein Assay Kit (Thermo Fisher Scientific). 

TC and TG contents were normalized to relevant protein content (µg/mg cellular protein) 

and expressed in fold change to control (1.0 mM fatty acid treatment). 

2.2.15. Real-time quantitative polymerase chain reaction (RT qPCR) 

Total cellular RNA was isolated from the HepG2 cells using RNeasy mini kit (Qiagen, 

Australia). Complementary DNA templates were synthesised from 500 ng of total RNA in 20 

µl assays, using SensiFAST cDNA Synthesis kit (Bioline). Reactions were set at 25 °C for 10 

minutes, followed by 42 °C for 15 minutes, 48 °C for 15 minutes, 85 °C for 5 minutes and 

finally cooled at 4 °C before they were stored at -20 oC. Primers (Table 2) were obtained from 

Bioneer Pacific (Victoria, Australia).  

RT qPCR were set up as described in SensiFAST™ SYBR No-ROX kit (Bioline) and 

performed at 95 °C for 2 minutes, succeeded by 40 cycles of 95 oC for 5 seconds, 60 °C for 10 

seconds, 72 °C for 10 seconds using a Rotor-Gene Q machine (Qiagen). β-actin was used as a 

reference gene. The primer specificity was confirmed by the analysis of melting curve. The 

relative quantification of gene expression was accomplished following 2− ΔΔCT method (Livak 

& Schmittgen, 2001). 

2.2.16. Statistical analysis 

Data were analyzed using Excel (Office 365) and IBM SPSS Statistics 26 software and 
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expressed as mean of four replicates ± standard deviation (SD) (SPSS Inc., Chicago, IL) in all 

parameters. Statistical analysis was performed using by one-way analysis of variance 

(ANOVA) followed by Duncan's multiple comparison test. Results were considered 

statistically different when p ≤ 0.05. 

Table 2. Primer sequences 

Gene RefSeq Identification Primers Sequence (5' to 3') 

AMPKα NM_006252.4 Forward TCGCCACTCTCCTGATGCATAT 

  
Reverse GATGATGAGGCTGTGAAAGAAG 

Nrf2 NM_001145413 Forward GAGCCCAGTATCAGCAACAG 

  
Reverse TTCAATGATTCTGACTCCGGC 

NQO1 NM_001025434 Forward TGCTGCAGCGGCTTTGAAGA 

  
Reverse TTTCAGTATCCTGCCGAGTCT 

SREBP2 NM_004599.4 Forward GCCCTGGAAGTGACAGAGAG 

  
Reverse TCACTCCCTGGGAAAGCA 

HMCGR NM_000859.3  Forward GGTGTATCTATTCGCCGACAG 

  
Reverse CTGTTGGAGTGG CAGGACC 

LDLR NM_000527.4 Forward CATCTACTCGCTGGTGACTG 

  
Reverse GGCAACCGGAAGACCATCTT 

LXRα NM_001130102.3 Forward TCACCTTCCTCAAGGATTTCA 

  
Reverse TCATCAACCCCATCTTCGAG 

SREBP-1c NM_001321096.3 Forward CAGCTCTGCACTCCTTCAAG 

  
Reverse TGCAGCTGTTCCTGTGTGAC 

PPARα NM_001001928 Forward CAATGCACTGGAACTGGATGA 

  
Reverse AGACTCCACCTGCAGAGCAA 

β-actin  NM_001101.5 Forward GGTCAGAAGGATTCCTATGTGG 

  
Reverse GCACCACACCTTCTACAATGAG 
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2.3. Results and discussion 

2.3.1. Physicochemical properties 

2.3.1.1. Moisture, electrical conductivity, pH and colour intensity 

Moisture content (MC) (Table 3) is a critical factor determining honey quality and 

affecting other physical characteristics of honey such as sugars, crystallization, viscosity and 

stability (Escuredo, Míguez, Fernández-González, & Seijo, 2013). MC depends on several 

factors such as weather and maturity of honey. Honey with high MC undergoes the 

fermentation caused by osmotolerant yeasts. In the present study, moisture content was 

considerably low in arjuna, guggul and jiaogulan honeys (14.9, 13.4 and 14.0%, respectively), 

compared to manuka-1 and olive honeys (18.5 and 18.4%). The results indicated MCs for the 

honeys tested (including the 4 we produced) are well below 20.0%, the imposed limit for 

natural nectar honeys (EEC, 110/2001) and consistent to previous findings which reported a 

moisture range of 13.0−19.0% for honeys from various origins (Escuredo et al., 2013; Kayacier 

& Karaman, 2008). 

Table 3. Physicochemical properties of honey 

Parameters MH1 ARJ  GUG JIA OLI 

Moisture content (%) 18.5 ± 0.8c 14.9 ± 0.6b 13.4 ± 0.2a 14.0 ± 0.2ab 18.4 ± 0.2c 

Electrical conductivity (mS/cm) 0.54 ± 0.01c 0.24 ± 0.01a 0.34 ± 0.01b 0.31 ± 0.01b 0.32 ± 0.01b 

pH 4.1 ± 0.05ab 3.9 ± 0.05a 4.0 ± 0.01ab 4.1 ± 0.01ab 4.2 ± 0.01b 

Colour intensity (mAU) 2201.1 ± 2.0e 462.3 ± 2.6c 722.7 ± 0.5d 171.7 ± 0.9a 243.5 ± 0.1b 

Data are mean ± SD of four replicate measurements with different letters in the same row 

indicating significant differences (p < 0.05), analyzed by one-way ANOVA succeeded by 

Duncan’s multiple comparison test. MH1: manuka-1 honey containing methylglyoxal 400 

mg/kg, ARJ: arjuna honey, GUG: guggul honey, JIA: jiaogulan honey and OLI: olive honey. 
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Electrical conductivity (EC) reflects the quantity of mineral elements, organic acids and 

proteins in composition of honey. EC of all medicinal honeys was less than 0.8 mS/cm, the 

maximal limit regulated for blossom honey (EEC, 110/2001) and comparable to the previous 

findings (Terrab, Recamales, Hernanz, & Heredia, 2004). We also found that EC values in the 

newly developed medicinal honeys (0.24−0.34 mS/cm) were lower than in manuka-1 honey 

(0.54 mS/cm). This could result from the variations in nectar composition and environment 

that honey bees were exposed to (Kavanagh, Gunnoo, Marques Passos, Stout, & White, 2019). 

pH value of honey is an important feature affecting its texture, stability and shelf-life. 

pH measurement of the medicinal honeys showed acidic values within a limited range of 

3.9−4.2. The results agree with previous findings reporting an acidic pH range of 3.7−4.5 for 

different natural honeys (Anand, Pang, Livanos, & Mantri, 2018; Kavanagh et al., 2019). 

Colour intensity (ABS450) was proportional to the content of pigments (carotenoids, 

flavonoids) and antioxidant activity of honey (Gheldof & Engeseth, 2002). Colour intensity of 

the medicinal honeys greatly varied with the highest value was for manuka-1 honey (2201.1 

mAU), whereas much lower values were recorded for four novel medicinal honeys (462.3, 

722.7, 171.7 and 243.5 mAU for arjuna, guggul, jiaogulan and olive honey, respectively). The 

findings were in line with other observations which reported a wide colour range of 

125.0−3400.0 mAU for natural honeys (Beretta, Granata, Ferrero, Orioli, & Facino, 2005; 

Habib, Al Meqbali, Kamal, Souka, & Ibrahim, 2014; Nguyen, Panyoyai, Paramita, Mantri, & 

Kasapis, 2018).  

2.3.1.2. Viscosity  

Viscosity analysis indicated all tested honeys were Newtonian liquid, which is 

consistent with most of natural honeys (Oroian, 2013; Yanniotis, Skaltsi, & Karaburnioti, 

2006). The novel medicinal honeys presented much higher viscosity than manuka-1 honey. 

Guggul honey presented the highest viscosity (316.2 Pa.s), followed by arjuna, jiaogulan and 
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olive honey (125.8, 100.0 and 63.1 Pa.s). Although manuka-1 honey showed the lowest 

viscosity (15.8 Pa.s), its viscosity is comparable with that of other natural honeys (1.8−13.8 

Pa.s) (Anupama, Bhat, & Sapna, 2003). In addition, the viscosity data in the present study was 

inversely correlated with moisture contents of the relevant honey types (Table 3), congruent 

with previous findings (Saxena et al., 2010; Yanniotis et al., 2006). 

 

 

Figure 1. Viscosity and rheological behaviour of medicinal honeys. MH1: manuka-1 honey 

containing methylglyoxal 400+ mg/kg, ARJ: arjuna honey, GUG: guggul honey, JIA: jiaogulan 

honey and OLI: olive honey.  

 

2.3.1.3. Fourier-transformed infrared spectroscopy 

Chemometric analysis of the medicinal honeys using Fourier-transform infrared 

spectroscopy (FTIR) exhibited five vibrational regions assigned for specific chemical bonds in 

honey (Figure 2). The regions of 3700–3000 cm−1 and 3000–2800 cm−1 indicate to O–H 

stretching of water molecules, and C–H stretching of sugars, respectively (Tewari & Irudayaraj, 

2004). A peak appears at 1655 cm−1 in all honeys is assigend for the bending of H–O–H 

molecules (Kasprzyk, Depciuch, Grabek-Lejko, & Parlinska-Wojtan, 2018). The 1540–
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1175 cm−1 region indicated the presence of bending modes for C–O–H, C–C–H, and O–C–H 

groups (Pataca, Neto, Marcucci, & Poppi, 2007). The vibrations with strong intensity 

absorbance in 1175–940 cm−1 bands known as a fingerprint region for honey’s sugars were 

specific for stretching modes of C–O and C–C from carbohydrates (Anjos, Campos, Ruiz, & 

Antunes, 2015). Bands in 900–750 cm−1 indicated the stretching modes of C–O and C–C 

of saccharide molecules (Nguyen et al., 2018). The results suggest a similarity in chemical links 

representing typical components of the four medicinal honeys and manuka-1 honey. However, 

other analysis techniques such as HPLC may need to use for further determination of the sugar 

and chemical profile. 

 

  

Figure 2. Chemometric analysis using Fourier-transform infrared spectroscopy (FTIR) scanned 

from 4000 to 400 cm-1. MH1: manuka-1 honey containing methylglyoxal 400 mg/kg, ARJ: 

arjuna honey, GUG: guggul honey, JIA: jiaogulan honey and OLI: olive honey. 
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2.3.2. Biochemical characteristics 

2.3.2.1. Reducing sugars 

Monosaccharides (fructose and glucose) that are the major components of honey govern 

the physical state of honey. The data (Table 3) indicates that the total content of fructose and 

glucose is over 60 g/100 g for all medicinal honeys, except for olive honey (49.2 g/100 g 

honey). The results satisfy the regulation by Council Directive 2001/110/EC (EEC, 110/2001) 

and similar with other natural honey varieties having total monosaccharides within the range 

of 43−75 g/100 g honey (Al et al., 2009; Saxena et al., 2010). In addition, the ratio of 

fructose/glucose (F/G) is important for development of crystal sugar nuclei in honey, as it has 

been reported that honey having F/G ratio > 1 can be stored longer without crystallization, and 

in contrast, honey having F/G ratio < 1 develops crystals rapidly, leading to unfavored colour 

and texture. In the current study, all medicinal honeys presented F/G ratio > 1 that are similar 

to most natural honeys (Al et al., 2009; Nguyen et al., 2018). 

2.3.2.2. Protein content 

Protein content is influenced by the presence of amino acids, nectar sources, enzymes 

secreted from honey bees and storage conditions (Saxena et al., 2010). Manuka-1 honey 

exhibited highest protein content (128.5 mg/100 g) as this honey is categorized as “high 

protein” compared to other natural commercial honeys (Nguyen et al., 2018). The four 

medicinal honeys showed lower and varying protein contents, with the maximum value among 

the four honeys is for jiaogulan honey (114.4 mg/100 g), followed by olive, guggul and arjuna 

honey (66.6, 55.3 and 25.6 mg/100 g, respectively). 
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Table 4. Biochemical characteristics of medicinal honey 

Parameters MH1 ARJ GUG JIA OLI 

Fructose (g/100 g) 44.2 ± 2.0e 33.5 ± 0.3b 37.6 ± 0.4c 41.4 ± 0.9d 28.0 ± 2.8a 

Glucose (g/100 g) 28.9 ± 2.0b 27.4 ± 0.1b 31.9 ± 0.2c 33.7 ± 0.3c 21.2 ± 2.3a 

Protein content (mg/100 g) 128.5 ± 1.0e 25.6 ± 5.0a 55.3 ± 3.0b 111.4 ± 3.6d 66.6 ± 9.1c 

Total phenolics (mg GAE/100 g) 72.1 ± 2.0c 73.4 ± 2.4c 108.2 ± 1.8d 31.6 ± 1.7a 59.8 ± 0.5b 

Total flavonoids (mg CAE/100 g 3.9 ± 0.2b 15.3 ± 0.4c 4.1 ± 0.5b 2.1 ± 0.1a 24.0 ± 0.5d 

Radical scavenging activity (%) 55.5 ± 1.7b 90.8 ± 0.4d 91.7 ± 0.4d 21.7 ± 0.3a 75.2 ± 0.0c 

AEAC (mg/100 g) 49.6 ± 1.5b 81.0 ± 0.3d 81.9 ± 0.4d 19.4 ± 0.3a 67.1 ± 0.0c 

Data are mean ± SD of four replicate measurements, with different letters in the same row (a–

e) indicating significant differences (p < 0.05) by one-way ANOVA followed by Duncan’s 

multiple-range test. MH1: manuka-1 honey containing methylglyoxal 400+ mg/kg, ARJ: arjuna 

honey, GUG: guggul honey, JIA: jiaogulan honey and OLI: olive honey. 

 

2.3.2.3. Total phenolic and flavonoid content 

Phenolic and flavonoid compounds are markers of antioxidant activity and the content 

of total phenolics (TPC) and flavonoids (TFC) were commonly analyzed to predict therapeutic 

potential of natural products (Alvarez-Suarez et al., 2013; Can, Yildiz, Sahin, Akyuz Turumtay, 

et al., 2015). Table 3 showed that guggul honey contained the highest level of phenolic 

compounds (108.2 mg GAE/100 g), followed by manuka-1 and arjuna honeys (72.1 and 73.4 

mg GAE/100 g), whereas olive honey contained a moderate level (59.8 mg/100 g) and 

jiaogulan honey showed the lowest level (31.6 mg/100 g) of phenolic compounds. The data are 

comparable with other natural honey varieties which were reported to contain a TPC range of 

16.02−120.04 mg GAE/100 g (Anand et al., 2018; Can, Yildiz, Sahin, Akyuz Turumtay, et al., 

2015) and supported the colour intensity data, e.g. honey with higher colour values having 

more phenolic content (Alves, Ramos, Gonçalves, Bernardo, & Mendes, 2013). We found a 
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strong correlation of TPC and colour intensity (R2 = 0.930) for all four medicinal honeys but 

not for manuka-1 honey. The deviation of manuka-1 honey results from its extra high colour 

intensity value (2201.1 mAU), suggesting the presence of additional compounds from natural 

nectar, compared to the medicinal honeys.  

Total flavonoid contents (TFC) greatly varied among the honeys. Although manuka-1 

honey contained a higher TFC (3.9 mg/100 g) than many natural honeys (0.47−3.61 and 

2.0−5.4 mg/100 g honey) (Anand et al., 2018; Valdés-Silverio et al., 2018), its TFC was similar 

to guggul honey (4.1 mg/100 g) and much lower than that of arjuna and olive honeys (15.3 and 

24.0 mg/100 g, respectively). Jiaogulan honey had the lowest TFC (2.1 mg/100 g). This 

indicates that the TPC and TFC of honeys are strongly determined by nectar sources and the 

medicinal compounds in the honeys prepared from medicinal plant extracts may enhance the 

level of bioactive compounds and therapeutic properties of the four medicinal honeys. 

2.3.2.4. Radical scavenging activity and ascorbic acid equivalent antioxidant content 

RSA has been extensively examined in biological samples using 2,2-diphenyl-1-

picrylhydrazyl (DPPH), a stable nitrogen-centered radical. The RSA varied among the tested 

honey types. Arjuna and guggul honeys showed the highest RSA (90.8% and 91.7%), followed 

by olive and manuka-1 honeys (75.2% and 55.5%) and jiaogulan honey (21.7%). The values 

are comparable to those in Bangladesh and Indian natural honey varieties (33.6−97.5% and 

44.0−71.0%, respectively) (Islam, Khalil, Islam, Moniruzzaman, Mottalib, Sulaiman, & Gan, 

2012; Saxena et al., 2010). Our data indicated that except for jiaogulan honey having low RSA, 

other medicinal honeys (arjuna, guggul and olive) have higher RSA than manuka-1 honey.  

AEAC calculated using the calibration curve of ascorbic acid standards (R2 = 0.998) 

revealed the antioxidant potential of the medicinal honeys. The AEAC was highest in arjuna 

and guggul honeys (81.0 and 81.9 mg/100 g, respectively), followed by olive and manuka-1 

honeys (67.1 and 49.6 mg/100 g, respectively) and the lowest was found in jiaogulan honey 
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(19.4 mg/100 g). Except for jiaogulan honey, other medicinal honeys showed higher AEAC 

values compared to those for Burkina Fasan, India and Bangladesh honeys (10.20−37.87 mg 

AEAC/100 g) (Islam, Khalil, Islam, Moniruzzaman, Mottalib, Sulaiman, & Gan, 2012; Meda 

et al., 2005; Saxena et al., 2010). In addition, the AEAC data exhibited a good agreement with 

RSA for all tested honeys, confirming the significantly elevated antioxidant content and 

activity for arjuna, guggul and olive honeys. 

 

2.3.3. Cytotoxicity of medicinal honeys 

Cells exposed to biologically toxic materials may change their morphology, growth and 

death rate and disintegration may occur. Therefore, examination of the cytotoxicity of the novel 

drugs and compounds is crucial prior to further investigations (Boncler, Różalski, Krajewska, 

Podsędek, & Watala, 2014). The current study tested the toxicity of all honeys within 

concentration range of 0−10% (w/v) on the viability of HepG2 cell line. The data showed that 

the tested honeys affected the viability of HepG2 cells depending on time course and honey 

doses (Figure 3).  

The medicinal honeys at 1.0% (w/v) were safe for the cells as they did not affect the 

viability for the whole experimental period, except for manuka-1 and jiaogulan honey which 

reduced cell viability to 84.4% and 74.4% after 72 hours, respectively. This difference 

indicated an additional effect from non-sugar components in manuka-1 and jiaogulan honey. 

Interestingly, 3.0% concentration of honey analogue, guggul, jiaogulan and olive honeys 

significantly reduced cell viability after 24, 48 and 72 hours, indicating that the honey analogue 

and these medicinal honeys induced cytotoxicity in a similar pattern. However, manuka-1 and 

arjuna honeys at 3.0% maintained cell population after 24 hours, but reduced the population 

after 48 and 72 hours, suggesting phytochemicals in manuka-1 and arjuna honeys may protect 

or promote the cells at this concentration within 24 hours but not later.  
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Figure 3. The viability of HepG2 under the effect of (A) honey analogue consisting of sugars, 

(B) manuka-1 honey containing methylglyoxal 400 mg/kg, (C) arjuna honey, (D) guggul 

honey, (E) jiaogulan honey and (F) olive honey for 24-hour (black), 48-hour (grey) and 72-

hour (whitist) incubation. Results are the mean ± SD of four replicates. *, **, *** signifies 

p ≤ 0.05 vs. control (0% honey) after 24-hour, 48-hour, and 72-hour incubation, respectively, 

analyzed by one-way ANOVA followed by Duncan’s multiple comparison test. 
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All tested honeys significantly reduced cell viability at 5.0% and 10.0% concentrations. 

The reduced viability could be due to the high glucose levels at such honey concentrations 

which have been documented to induce apoptosis in human umbilical vein endothelial cells 

and HT22 hippocampal neuronal cells (Ceriello, dello Russo, Amstad, & Cerutti, 1996; Fan et 

al., 2016; Risso, Mercuri, Quagliaro, Damante, & Ceriello, 2001). Noticeably, jiaogulan honey 

at 5% killed 93.5% cells after 72 hours and this honey at 10% eliminated 92% of the cell 

population after 24 hours and maintained that level till 72 hours. The data suggest a prominent 

anticancer effect of 10.0% jiaogulan on HepG2 cells that are supportive to previous findings 

for jiaogulan extracts (Xie et al., 2012). 

The results revealed that the cytotoxic effect of the tested honeys is comparable with 

those for sugar syrup, thyme and manuka-1 honey varieties on the viability of PC3, DU145 

human prostate cancer cell lines, and THP-1 cell lines (Abel & Baird, 2018; Swellam et al., 

2003; Tonks et al., 2003). Taken together, we selected honey concentrations of 1.0 and 2.0% 

(w/v) for a 24-hour incubation as safe limits to ensure the high stability of the cell population 

in honey treatments for subsequent investigation. 

 

2.3.4. Effect of medicinal honeys on the expression of key genes associated with 

antioxidant defense responses 

Nrf2 and NQO1 genes have been extensively studied for their protective effect against 

oxidation. In this study, we found that the analogue, manuka-1 and jiaogulan honeys  (Figure 

4A, B and E) activated Nrf2 genes and upregulated NOQ1 gene expression at both 

concentrations (1.0 and 2.0%). The honey analogue showed lower levels of NQO1 transcription 

(<1.5 fold) than those of the tested honeys (>1.5 fold), suggesting an additional effect of non-

sugar components. Arjuna, guggul and olive honeys strongly increased NQO1 mRNA 

abundance at high concentration (2.0%) without affecting Nrf2 transcription (Figure 4C, D and 
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F). The results agree with outstanding values of phenolics/flavonoids, RSA and AEAC 

recorded for such honeys (Table 4). Interestingly, although jiaogulan honey exhibited modest 

antioxidant potential, it strongly affected the gene expression, thus, more investigation of 

chemical profile should be taken to determine the protective elements in jiaogulan honey and 

other medicinal honeys.  

In addition, the findings in the current study are in line with other investigations 

reporting that polyphenols modulate Kelch-like ECH associated protein 1/Nrf2/antioxidant 

response elements (Keap1/Nrf2/ARE) gene pathway leading to the amelioration of oxidative 

stress in vitro and in vivo (Gu et al., 2017; Roubalová et al., 2017; Sharath Babu et al., 2017; 

Vigliante, Mannino, & Maffei, 2019). The unvaried Nrf2 transcript levels by arjuna, guggul 

and olive honeys may result from either the modulation of non-sugar components or the 

experimental terminating time where Nrf2 may have been expressed differently before 24 hours 

and later decreased to the level detected (Gu et al., 2017).   

 

2.3.5. Effect of medicinal honeys on cellular lipid content 

HepG2 cells were challenged with fatty acids 1.0 mM (oleic/palmitic; 2:1) in the 

presence of honey (1.0 and 2.0%) for 24 hours and assayed for their cellular cholesterol (TC) 

and triglycerides content (TG). Variations in TC and TG are shown in Figure 5. Total cellular 

cholesterol (TC) was elevated by fatty acids treatment, but it was reduced by the treatments of 

manuka-1 and guggul honeys (both, 1.0 and 2.0%) and arjuna honey (2.0%) (Figure 5B, C and 

D), whereas TC was not reduced by honey analogue, jiaogulan and olive honey at both 

concentrations (1.0 and 2.0%) (Figure 5A, E and F). Cellular triglyceride content (TG) 

significantly increased (3.9 fold) by fatty acids treatments, and the addition of any medicinal 

honey did not significantly reduce TG in fatty acid-induced HepG2 cells.   
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Figure 4. The expression of genes associated with defense responses after 24-hour incubation 

of HepG2 cells with (A) honey analogue containing sugars, (B) manuka-1 honey containing 

methylglyoxal 400+ mg/kg, (C) arjuna honey, (D) guggul honey, (E) jiaogulan honey, (F) olive 

honey. Results are mean ± SD of four replicates; ∗: p < 0.05 vs. control and #: p < 0.05 vs. fatty 

acid-treated cells, analyzed by one-way ANOVA followed by Duncan’s multiple comparison 

test. 
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Figure 5. Total cellular cholesterol (TC) and triglyceride (TG) contents after 24-hour 

incubation of fatty acid-induced HepG2 cells with (A) honey analogue containing sugars, (B) 

manuka-1 honey containing methylglyoxal 400+ mg/kg, (C) arjuna honey, (D) guggul honey, 

(E) jiaogulan honey and (F) olive honey. C: control cells, FA: fatty acid treatment, FAH1: fatty 

acids and honey 1.0%, FAH2: fatty acids and honey 2.0%. Results are mean ± SD of four 

replicates; ∗: p < 0.05 vs. control and #: p < 0.05 vs. fatty acid-treated cells for TC; a: p < 0.05 

vs. control and b: p < 0.05 vs. fatty acid-treated cells for TG. Data was analyzed by one-way 

ANOVA followed by Duncan’s multiple comparison test. 
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3.3.6. Effect of medicinal honeys on key biomarkers of cholesterol homeostasis 

To understand the effect of honey on lipid parameters at molecular levels, we explored 

the expression of selected genes (AMPKα, SREBP-2, HMGCR, LDLR, LXRα and PPARα) 

associated with lipid metabolism pathways using RT qPCR analysis (Figure 6). Firstly, we 

examined the effect of honey analogue, a solution that represents sugar components of honey 

(40% fructose, 35% glucose, 5% sucrose, w/w) on the genes to establish a baseline for the 

medicinal honeys (Figure 6A). The analogue (1.0 and 2.0%) stimulated SREBP2 through the 

activation of AMPKα, however the upregulation of SREBP2 downstream genes, HMGCR and 

LDLR was observed at 1.0% but not at 2.0% concentration (3.9 and 1.2 fold, respectively). The 

results indicate that 1.0% honey analogue stimulated the cholesterol synthesis pathway in the 

fatty acid-induced HepG2 cells, likely through the SCAP-SREBP2 pathway by either or both 

lowering free cholesterol in the cells and/or desensitizing SCAP to cholesterol (Oteng, 

Loregger, van Weeghel, Zelcer, & Kersten, 2019) . The results are consistent with an increased 

TC content in fatty acid-induced HepG2 cells treated 1.0% honey analogue (Figure 5A) and in 

line with previous studies (Oteng et al., 2019; Zhao et al., 2016).  

We found 1.0% honey analogue up-regulated the LXRα and PPARα (Figure 6A). LXRs 

function in cholesterol absorption, transport, efflux, and excretion process. The upregulation 

of LXRs has been reported to improve reverse cholesterol transport and circulation of high-

density-lipoprotein (Jia, Hoang, Jun, Lee, & Lee, 2013). It was reported that glucose binds to 

LXR and forms a heterodimer with 9-cis retinoic acid receptor. Subsequently, the heterodimer 

binds to SREBP-1c and LXR response element in the promoter region to induce the 

transcription of target genes associated with cholesterol and glucose metabolism pathways 

(Lagu, Lebedev, Pio, Yang, & Pelton, 2007). A recent study reported that either glucose alone 

(25 mM) or a mixture of glucose and fructose upregulated LXRα in the presence of 1.0 mM 

fatty acids (Zhao et al., 2016). As honey analogue contains 40% fructose and 35% glucose 

https://en.wikipedia.org/wiki/Real-time_polymerase_chain_reaction
https://en.wikipedia.org/wiki/Real-time_polymerase_chain_reaction
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(w/v), the sugars could attribute to the activation of LXRα gene and enhanced PPARα transcript 

level. 

In contrast, 2.0% honey analogue did not change the transcript level of any target genes 

even though high cellular cholesterol was recorded. It is extensively known that SREBP2 

works in a negative feedback mechanism, particularly, increased cellular cholesterol leads to 

the suppression of SREBP2 and downregulation of its target genes (Goedeke & Fernández-

Hernando, 2012). In the present study, the elevation in SREBP2 mRNA abundance at 2.0% 

honey analogue may result from the activation of AMPK but its level may be either insufficient 

to induce the target genes or suppressed by the high sugar treatment (2.0%) leading high 

cellular cholesterol content (Figure 5A and 6A).  

The medicinal honeys (except for olive honey) at both 1.0 and 2.0% (w/v) activated 

AMPKα (>1.5 fold) compared to honey analogue (< 1.5-fold to control). Interestingly, all 1.0% 

medicinal honeys modulated HMGCR gene expression close to the level of controls (1.1 fold), 

much lower than the level upregulated by 1.0% honey analogue (3.9 fold), indicating the tested 

honeys modulated HMGCR gene expression against the effect of sugars. However, honeys 

showed different patterns in influencing other tested genes (Figure 6B−F). 
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Figure 6. The expression of genes associated with cholesterol homeostasis after 24-hour 

incubation of fatty acid-induced HepG2 cells with (A) honey analogue containing sugars, (B) 

manuka-1 honey containing methylglyoxal 400+ mg/kg, (C) arjuna honey, (D) guggul honey, 

(E) jiaogulan honey, (F) olive honey. Results are mean ± SD of four replicates; ∗: p < 0.05 vs. 

control and #: p < 0.05 vs. fatty acid-treated cells, analyzed by one-way ANOVA followed by 

Duncan’s multiple comparison test. 
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Manuka-1 honey (Figure 6B) at 1.0 and 2.0% did not affect HMGCR, but upregulated 

LDLR gene expression. As the transcriptional level of LDLR gene is highly controlled by 

cellular sterol levels though the activation of SREBP2, an elevation in cellular sterol level 

suppresses LDLR gene transcription and in contrast a depletion of cellular sterols causes to an 

increased LDLR mRNA abundance (Goedeke & Fernández-Hernando, 2012). This leads to an 

increased clearance of plasma LDL particles (Goldstein, DeBose-Boyd, & Brown, 2006). The 

results agreed with the reduction in cellular cholesterol content when treated with manuka-1 

honey (Figure 5B), suggesting that this honey is effective in lowering total cellular cholesterol. 

Manuka-1 honey contains high amounts of phenolic compounds (72.1 mg/100g) that originated 

from manuka-1 floral nectar (Nguyen et al., 2018). These phytochemicals may attribute to its 

cholesterol-lowering effect. 

Arjuna honey (Figure 6C) at 2.0% induced SREBP2 and highly upregulated LDLR gene 

expression (2.3 fold) but did not stimulate HMGCR gene transcription. As discussed in honey 

analogue, the observation suggested that 2.0% arjuna honey is effective in lowering cellular 

cholesterol and possibly leads to improved uptake of plasma LDL-cholesterol. This honey did 

not vary the transcriptional levels of LXRα gene indicating it had no effect on this gene. These 

observations agreed with the decreased TC content in HepG2 cells treated with arjuna honey 

(Figure 5C). The results are supported by previous studies demonstrating that T. arjuna extracts 

decreased plasma lipids and increased HDL to reduce the severity of atherosclerotic lesion in 

aorta (Subramaniam et al., 2011) and favourably modify lipid profile in human subjects 

showing coronary artery disease (Priya et al., 2019).   

Guggul honey (Figure 6D) at 2.0% significantly induced SREBP2 compared to honey 

analogue at the same concentration (2.2 and 0.9 fold change relative to control, respectively). 

This honey also induced LDLR mRNA transcription at 1.0% as honey analogue did, but not at 

2.0% as expected. Instead, it upregulated LXRα gene expression at 2.0% concentration. As 
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indicated in earlier investigations, activation of LXRα leads to the upregulation of its direct 

targets (ATP-binding cassette transporter A1 and G1) that transfer cellular cholesterol to small 

high density lipoproteins to prevent the formation of foam cells (Wójcicka, Jamroz-

Wiśniewska, Horoszewicz, & Bełtowski, 2007). Several studies confirmed elevated expression 

levels of transporters genes and proteins were obtained the through the activation of LXRα in 

HepG2 cells (Peschel, Koerting, & Nass, 2007; Xu et al., 2011). Thus, guggul honey through 

the activation of LXRα likely increased the transcriptional levels of transporter genes and 

proteins, leading to a reduction in cellular cholesterol (Figure 5D). Our current investigation 

did not include the transporters, so we could not confirm a clear correlation between the 

transcriptional levels of tested genes associated with cholesterol homeostasis and the reduced 

cellular cholesterol content by guggul honey treatment, but indeed guggul honey induced the 

tested genes and modulated cellular cholesterol level in HepG2 cells. Guggul resin (guggulu) 

has been widely used as a cholesterol reducing remedy in Ayurveda medicine which is native 

to India. Shah, Gulati, & Palombo (2012) reported that guggul extracts have been approved to 

use as a dietary supplement by The US Food and Drug Administration since 1994. 

Guggulsterones (Z and E) have been demonstrated to reduce plasma cholesterol level and 

function as antagonists of the bile acid and farnesoid X receptors (FXR) in liver and intestine 

(Francis, Raja, & Nair, 2004; Owsley & Chiang, 2003; Passeri et al., 2019). Thus, further study 

focusing on FXR, transporter genes and proteins may support the role of guggul honey in 

hypocholesterolemia. In addition, based on the responsive trend of the genes, we hypothesize 

that clearer effects of guggul honey on the tested genes could be obtained at latter terminating 

time of the experiment.  

Jiaogulan honey (Figure 6E) induced the expression of the aforementioned genes in a 

pattern that should lead to a lower TC content, but this reduction was not recorded. Our finding 

is contradictory with previous findings demonstrating jiaogulan extracts (0.1−0.3 mg/ml) 
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reduce TC content in primary hepatocytes (Müller et al., 2012), whereas total saponin extract 

of jiaogulan leaves activates AMPK, LXRα and its target transporters (ABCG5 and ABCG8) 

leading to a TC reduction in hepatocytes of animal models (Liu et al., 2016). Similarly, olive 

honey (Figure 6F) stimulated SREBP2, LDLR and LXRα genes at 2.0% concentration which 

could be a good basis to argue for the reduction of cellular cholesterol, but this expectation did 

not happen at 24 hours after honey treatment. Olive honey was developed in the current study 

using olive retentate, a by-product from olive oil production. As olive retentate contains an 

enriched and purified source of low molecular weight polyphenols that are usable for food and 

pharmaceutical industries (Russo, 2007), it is supposed to confer protective effect on oxidative 

stress and cholesterol homeostasis. Hence, further investigations are required to confirm if 

jiaogulan and olive honeys reduce cholesterol at 48 and 72 hours after treatment.  

It has been evidenced that cholesterol exits as free cholesterol and cholesteryl esters in 

hepatocytes (Chang, Chang, Ohgami, & Yamauchi, 2006). An excess of cellular free 

cholesterol causes cytotoxicity and the cells have different mechanisms to maintaining 

cholesterol homeostasis including (i) cholesterol efflux (reverse cholesterol transport) and (ii) 

conversion of cholesterol into cholesteryl esters in the form of lipid droplets that are an inert 

storage pool (Drevon, Engelhorn, & Steinberg, 1980; Yamauchi & Rogers, 2018). In the 

current investigation, although jiaogulan and olive honey treatments could not lead to a 

reduction in total cellular cholesterol content after 24 hours, they possibly induced a conversion 

of free cholesterol to cholesteryl esters through the esterification of cholesterol with fatty acids 

in order to avoid free cholesterol toxicity in HepG2 cells through a certain mechanism, while 

still modulating the tested genes in the pattern of AMPK-SREBP2 pathway responsive to 

reduce cellular free cholesterol content (Oteng et al., 2019).  

Manuka-1 and guggul honeys upregulated the PPARα gene expression at both 1.0 and 

2.0% concentration, whereas arjuna and jiaogulan honeys increased the gene transcription at 
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2.0%. Olive honey did not show its effect on this gene (Figure 6A−F). Upregulation of PPARα 

gene expression is an indicator for an increased β-oxidation of fatty acids into smaller 

molecules, leading to a decreased cellular triglyceride content, essential for inhibiting 

atherosclerotic events (Lefebvre, Chinetti, Fruchart, & Staels, 2006). In the current study, 

although PPARα gene was stimulated, cellular triglyceride content was not reduced the honey 

treatments. This observation is likely supported by a previous finding which reported that the 

activation of PPARα suppresses the availability of triglycerides to for the assembly of very 

low-density lipoprotein (VLDL) and increases hepatic triglyceride accumulation (Edvardsson 

et al., 2006). However, in the current study the mechanism through which the tested honey 

types activated PPARα, its direct targets and the links to the increased triglyceride 

accumulation remain unclear. 

 

3.4. Conclusions 

The current investigation demonstrated that the physicochemical properties of the 

medicinal honeys complied with the international quality regulations (EEC, 110/2001), except 

for olive honey which showed low monosaccharide content (49.2%). FTIR analysis confirmed 

their functional groups are as of manuka-1 and other natural honeys. The phenolics and 

flavonoid content, radical scavenging activity and ascorbic acid equivalent antioxidant content 

recorded for arjuna and guggul honeys are higher than those for the commercial manuka-1 

honey. Guggul honey is the best honey among the tested honeys for its highest phenolic content 

(108.2 mg GAE/100 g), moderate flavonoid content (4.1 mg CAE/100 g), radical scavenging 

activity (91.7%) and ascorbic acid equivalent content (81.9 mg/100 g). In contrast, jiaogulan 

honey showed the lowest values in the antioxidant tests. The medicinal honeys were used at 

1.0 and 2.0% concentrations in the subsequent analysis after the cytotoxicity test using 

PrestoBlue reagent.  
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The study provided preliminary results for the protective effects of the medicinal 

honeys on lipid metabolism and support the antioxidant activity data. Manuka-1 and guggul 

honeys (1.0 and 2.0%) and arjuna honey (2.0%) reduced total cellular cholesterol, whereas 

honey analogue, jiaogulan and olive honeys did not change total cellular cholesterol content in 

fatty acid−induced HepG2 cells. The transcriptional levels of the tested genes associated with 

cholesterol homeostasis varied according to honey-type and concentration. Manuka-1 and 

arjuna honeys showed a good agreement between the modulation of the transcription of the 

tested genes and the reduced cellular cholesterol content. Guggul honey modulated the tested 

genes to reduce cellular cholesterol but further research at various time points is required to 

elucidate the mechanism. Jiaogulan and olive honeys did not reduce total cellular cholesterol 

content in the fatty acid-induced HepG2 cells, but their modulation pattern of gene expression 

suggested they could esterify free cholesterol into storage form. However, this hypothesis 

required further study. Except for olive honey, other medicinal honeys (1.0 and 2.0% for 

manuka-1 and guggul honey; 2.0% for arjuna and jiaogulan honeys) activated PPARα, but all 

the honeys did not reduce cellular triglyceride content in fatty acid-induced HepG2 cells. 
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CHAPTER 5: SUMMARY, CONCLUSIONS AND FUTURE WORK 

 

5. 1. Summary and conclusions 

Honey has been used throughout human civilization. Several studies reported its macro- 

and micro- components synergistically work to confer powerful antioxidant activities (Beretta, 

Orioli, & Facino, 2007; Gheldof & Engeseth, 2002; Özcan & Juhaimi, 2015). Our 

comprehensive literature review emphasizes the advantages of honey for the reduction of 

oxidative stress and hypercholesterolemia, two leading causes of atherosclerosis (Nguyen, 

Panyoyai, Kasapis, Pang, & Mantri, 2019). Recent studies indicate that numerous bioactive 

compounds are transferred from the plant tissues to floral nectar and honey, such as hesperetin, 

kaemferol, quercetin (Anand, Pang, Livanos, & Mantri, 2018; Yamani, Mantri, Morrison, & 

Pang, 2014). Moreover, honey contains higher number of secondary metabolites than its 

original floral nectar (Gismondi et al., 2018). The accumulated evidence solidifies the concept 

that honey can be an excellent delivery vehicle of dietary antioxidants and other plant medicinal 

compounds. 

 

5.1.1. Physicochemical and biochemical characteristics of medicinal honeys and their 

effect on key biomarkers of oxidative stress and cholesterol homeostasis 

Four medicinal honeys were developed using plant extracts from T. arjuna bark (arjuna 

honey), C. mukul stem (guggul honey), G. pentaphyllum leaves (jiaogulan honey) and O. 

europaea fruit retentate (olive honey) in The Pangenomics Laboratory. Plant species were 

selected based on scientific literature reporting their phytochemical profiles and biofunctions 

linked to either or both, antioxidant activities and hypocholesterolemia. In addition, a 

commercial manuka honey containing methylglyoxal 400+ mg/kg (manuka-1) from L. 
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scoparium floral nectar was included in the study as manuka honey is a “gold standard” for its 

high antioxidant capacity and health benefits (Alvarez-Suarez, Gasparrini, Forbes-Hernández, 

Mazzoni, & Giampieri, 2014). The main aims of the study in Chapter 2 were to (i) first assess 

the physicochemical, and biochemical properties for the four medicinal honeys and (ii) 

elucidate their effect on cholesterol homeostasis in fatty acid-induced HepG2 cells. 

The moisture content, electrical conductivity, and pH values of our medicinal honeys 

comply with international standards (EEC, 110/2001) and are consistent with other studies 

(Anand et al., 2018; Saxena, Gautam, & Sharma, 2010). However, manuka-1 honey showed 

its colour intensity 3−10 times higher than four medicinal honeys, possibly due to differences 

in the composition of L. scoparium floral nectar and the nectars made from medicinal plant 

extracts. Regarding viscosity of honeys which is inversely proportional to moisture content, 

the newly developed medicinal honeys were more viscous than manuka-1 honey and they all 

showed Newtonian liquid behavior. Manuka-1 and four medicinal honeys presented typical 

infrared spectra regions as reported for several honey varieties (Kasprzyk, Depciuch, Grabek-

Lejko, & Parlinska-Wojtan, 2018), indicating high similarities in their main components.  

The total monosaccharide content is over 60% for the honeys excluding olive honey 

(49.2%) as regulated by EEC (110/2001). Arjuna and guggul honeys were superior to manuka-

1 honey in their phenolic and flavonoid contents, radical scavenging activity (RSA) and 

ascorbic acid equivalent antioxidant content (AEAC). Jiaogulan honey showed lowest phenolic 

and flavonoid compounds, corresponding to their least RSA and AEAC, whereas olive honey 

exhibited the highest flavonoid content but modest RSA and AEAC values. The RSA and 

AEAC data indicated synergistic effect of both phenolic and flavonoid compounds. 

Cytotoxicity tests are extensively used to evaluate the safety thresholds of novel 

drugs/compounds. The current study indicated jiaogulan honey significantly reduced HepG2 

cell population (93.0−95.0%) at 5.0% after 72 hours and 10.0% after 24 hours, suggesting this 



 
 

112 
 

honey either has anticancer effect or may contain more toxic compounds than other honeys, 

probably saponins abundant in G. pentaphylum leaves (Liu et al., 2016; Xie et al., 2012). The 

cytotoxic data also indicate no toxicity of honeys at 1.0 and 2.0% (w/v) for 24 hours. This is 

consistent with several findings for other natural honeys (Abel & Baird, 2018; Tonks et al., 

2003). 

Several studies reported antioxidant capacity of honey is contributed by antioxidant 

enzymes (such as catalase), phenolics that chelate metal elements, trap or scavenge free radical 

species (e.g. O2
−., •OH, H2O2) and induce cellular enzymatic (superoxide dismutase, catalase, 

glutathione peroxidase), and non-enzymatic antioxidants (e.g. vitamins C and E, β-carotene, 

glutathione) (Procházková, Boušová, & Wilhelmová, 2011; Saxena et al., 2010). Antioxidant 

ability is tested in several biological systems including cell metabolites, tissue homogenates, 

aqueous portions of blood (plasma) where honey dissolves. In this study, the antioxidative 

effect of honeys was assessed through the expression of Nrf2 and NQO1, the central genes 

associated with cellular defense pathway that eliminate oxidative and xenobiotic stress (Heiss, 

Schachner, Zimmermann, & Dirsch, 2013).  

 The expression analysis indicated that manuka-1 and jiaogulan honeys (1.0 and 2.0%) 

activate Nrf2 and significantly upregulate NQO1 (>1.5 fold) compared to honey analogue (<1.5 

fold). Other honeys at 2.0% concentration (arjuna, guggul and olive) considerably increase 

NQO1 mRNA levels compared to the honey analogue. The possible reason is phenolic and 

flavonoid compounds in honey modulate Keap1/Nrf2/ARE gene pathway that ameliorates 

cellular oxidative stress (Gu et al., 2017; Roubalová et al., 2017; Sharath Babu, Anand, 

Ilaiyaraja, Khanum, & Gopalan, 2017; Vigliante, Mannino, & Maffei, 2019). However, the 

activation of Nrf2 was not observed in arjuna, jiaogulan and olive honeys at 2.0%. This may 

be due to expression of this transcription factor before 24 hours which was not captured in this 

study (Gu et al., 2017). 
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Manuka-1 (1.0 and 2.0%), arjuna (2.0%) and guggul (1.0 and 2.0%) honeys modulate 

the transcription of AMPKα, SREBP-2, HMGCR, LDLR and LXRα genes depending on 

concentration and honey-type and reduced cellular cholesterol. The results are congruent with 

their outstanding phenolics, flavonoids, RSA and AEAC values. However, a clear mechanism 

for guggul honey to work was not established in this study. Jiaogulan and olive honeys 

expression patterns suggested a reduction in cholesterol content however this did not reflect in 

the cellular cholesterol assay, suggesting probable esterification of free cholesterol into storage 

form (Drevon, Engelhorn, & Steinberg, 1980; Yamauchi & Rogers, 2018). Except for olive 

honey, the medicinal honeys at 2.0% activated PPARα gene transcription, and they may 

therefore suppress the availability of triglycerides for the assembly of VLDL; although cellular 

triglyceride content did not reduce upon combined treatment of fatty acids and honey to HepG2 

cells (Edvardsson et al., 2006).  

 

5.1.2. Physicochemical and viscoelastic properties of honey from medicinal plants 

As the scope of this project focused not only on the bio-functions of honey in 

antioxidative stress and hypocholesterolemia, but also on its technological functions, the next 

study in Chapter 3 was conducted to set up a fundamental platform for developing food and 

pharmaceutical products that contain honey as a main component and enhance the acceptance 

by consumers. The study examined four natural honeys originated from floral nectars of 

medicinal plants namely L. scoparium (manuka-1 and -2 honeys), O. tenuiflorum (tulsi honey), 

M. sativa (alfalfa honey) for their quality attributes and physicochemical properties. 

The data of moisture content, electrical conductivity, pH, ash content, 

monosaccharides, visual appearance and colour intensity was obtained for these blossom honey 

varieties and complied with the EEC (110/2000) standards. Two manuka honeys contained 

highest phenolic and flavonoid contents among the natural honeys tested. The physicochemical 
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properties associated with structural behavior of the honeys were recorded by infrared 

spectroscopy, wide angle X-ray diffraction (WAXD), micro-and modulated differential 

scanning calorimetry and small-deformation dynamic oscillation in shear.  

The natural honeys exhibited typical FTIR spectra regions as aforementioned 

(Kasprzyk et al., 2018). Their morphological characteristics were classified into amorphous 

(tulsi and manuka-1) and semi-crystalline (alfalfa and manuka-2) systems based on the absence 

or presence of sucrose and glucose peaks in X-ray diffractograms. The WAXD data were 

supported by thermal analysis showing featureless thermograms for tulsi and manuka-1 

honeys, opposed to large endothermic peaks caused by the melting of sugar crystals for alfalfa 

and manuka-2 honeys. 

The physicochemical properties supported the concept of glass transition temperature 

(Tg) for the honeys. Determination of Tg is critical for optimization of product quality and 

stability during processing and storage. Above respective Tg value, food products develop a 

rubbery or a melt state with greater molecular mobility. Below Tg, food systems experience a 

glassy state with limited molecular diffusion, so chemical and biological reactions are inhibited 

(Li, Lin, Roos, & Miao, 2019; Roos, 2010). The four natural honeys exhibited calorimetric Tg 

of −47 ± 2 °C, suggesting the effect of moisture plasticizer which accounts for about 18.5% in 

honey composition (Nguyen, Panyoyai, Paramita, Mantri, & Kasapis, 2018). These were in 

line with earlier findings ranging from −47 to −51 °C (Ahmed, Prabhu, Raghavan, & Ngadi, 

2007). The calorimetric measurement well reflected the sugar content in honey composition, 

but it did not elucidate the molecular interactions of structural components in honey matrix.  

In contrast, mechanical spectroscopy is an ideal tool to investigate such interactions and 

predict mechanical Tg. This was performed through monitoring viscoelastic properties 

expressed in the progression of storage (elastic) modulus (G′) and loss (viscous) modulus (G″) 

upon cooling to subzero temperatures. Based on individual viscoelastic spectrum of the tested 
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honeys, the current study employed time-temperature superposition principle to obtain a master 

curve that exhibited the viscoelastic behaviour of honey in a larger window of eight-decade 

frequency range, far beyond the capacity of any instruments. The work simultaneously 

generated data of shift factors which were then used to plot against temperatures to elucidate a 

molecular mechanism in the phenomenon of honey vitrification. This firstly demonstrated a 

linear correlation of temperature and aT values within glassy state range, indicating honey 

follows the predictions of the reaction rate theory, as described by the modified Arrhenius 

equation. The fit of the data to the equation allowed the calculation of activation energy for 

vibrational changes from one conformational state to another (108 and 81 kJ/mol for tulsi and 

manuka-1, respectively, and similar values for alfalfa and manuka-2 honeys). However, the 

viscoelastic pattern then deviated from this model within the glass transition region, but it fit 

well with the free-volume theory modelled in WLF equation (Ferry, 1980). This allows the 

calculation of the free volume estimates for honey vitrification, including WLF constants, 

fractional free volume, thermal expansion coefficient and mechanical Tg (Table 1, Chapter 3). 

The estimates were in good agreement with those for amorphous polymers and high-solid 

carbohydrate systems (Kasapis, 2008). Interestingly, the values of the fractional free volumes 

were around 0.04 suggesting a kinetically trapped equilibrium in molecular relaxation. The 

mechanical glass transition temperatures were determined between −44 to −47 οC that are 

comparable to the calorimetric Tg of the tested honeys confirming the predominant effect of 

sugars in honey matrix. Taken together, the biophysical study provides fundamental data of the 

stability and consistency for using honey as a bioactive material in added-value products.  

 

5.1.3. Structural variation in gelatin networks from low to high-solid systems affected by 

honey addition 

Recently, efforts have been made in the development of convenient delivery systems 
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of honey’s functionality mostly in the fields of wound healing and tissue engineering (El-

Kased, Amer, Attia, & Elmazar, 2017; Minden-Birkenmaier & Bowlin, 2018; Wang, Zhu, Xue, 

& Wu, 2012). Although the incorporation of honey into templates of cryogels and hydrogels 

has reached certain achievements, it is not well understood how honey affects the structural 

transformation and phase behavior of these templates when it is used at concentration ranges. 

Gelatin is commonly used in food and biomedical industries as it chemically resembles 

collagen but is more readily available, much less expensive and reduces immunological risk 

(Elzoghby, 2013). The study in Chapter 4 aims at elucidating the effect of manuka-1 honey 

addition (10 to 75%) on the structural variations and phase transition of gelatin hydro- to high 

solid gels to accommodate its application to industries. 

The current study found that honey addition gradually removed water molecules in the 

hydrogels and generated stronger and thermally stable structures due to the generation of 

various and extended junction zones that alter their thermomechanical characteristics. This is 

evidenced in the onset temperature of gelation that was recorded at 41 °C for the 60% co-solute 

addition, well above that recorded at  27 °C for the 10% gelatin preparation. In addition, storage 

modulus values reached over 21 kPa at the end of cooling run for the former, compared to 

around 10 kPa for the latter (Fig. 1, chapter 4). Outcomes are in good agreement with earlier 

studies that added glucose syrup or mixtures of sucrose and glucose syrup to biopolymers such 

as agarose, deacylated gellan and κ-carrageenan (Kasapis, Al-Marhoobi, Deszczynski, 

Mitchell, & Abeysekera, 2003; Stenner, Matubayasi, & Shimizu, 2016; Tau & Gunasekaran, 

2016). 

The observation of viscoelastic responses was extended to subzero regime for high solid 

preparations containing 10% gelatin mixed with 70 and 75% (w/w) manuka-1 honey. At high 

temperature end, storage modulus is dominant (G′ > G″) due to the formation of a gel with 

rubbery consistency in both systems. Upon cooling to subzero temperatures, viscoelasticity 
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progressed five orders of magnitude reaching values around 109 Pa for both samples and the 

dominant viscous component  was recorded within glass transition region (G" > G′ between −5 

and −36 οC for the 80% total solid sample). The results reflect the formation of an entropic 

network from the vibrations of molecular segments that are shorter than the distance of 

neighboring cross-links (Kasapis & Sablani, 2005). A clearer separation of loss from storage 

modulus in the glass transition temperature range (higher G"/G' value), possibly due to the 

dynamics of Rouse and sub-Rouse motions. At the low temperature end, the elastic component 

becomes dominant, commencing at −36 and −21 °C for the 80 and 85% (w/w) blends and 

defining glassy state which involves the relaxation of β transitions (Panyoyai, Bannikova, 

Small, & Kasapis, 2015). Successful implementation of synthetic polymer approach generated 

viscoelastic master curves that cover a seven-decade frequency window exceeding the 

instrumentally accessible capacity which typically expands from 10-1 to 102 rad/s. 

Significantly, the high fit of data to WLF and Arrhenius mathematic models elucidates the 

molecular process governing vitrification phenomena and confirmed the predicted mechanical 

glass transition at -36 and -21 οC for 80 and 85% total solid samples, respectively. The obtained 

viscoelastic parameters and values of activation energy (Table 1, chapter 4) agree with previous 

studies reporting for glucose syrup (65 to 70%) supported by 0.5% carrageenan network or 

polydextrose (80%) within gellan matrix (Chaudhary, Small, & Kasapis, 2013; Kasapis, 2001). 

In addition, value of activation energy for manuka-1 honey (81 kJ/mol) was lower than this for 

the gelatin-honey systems (119 and 135 kJ/mol) reflecting the elevated difficulty for the 

molecular motions within the gelatin matrix in the glassy state. Moreover, Tg value was also 

lower for manuka-1 honey (−44 οC, 80% total solids) than this for honey-gelatin blend at the 

same solid content (−36 οC), suggesting the occurrence of cohesive intermolecular interactions. 

The rheological characteristics of the gelatin-honey mixtures are complimented by 

calorimetry exhibiting micromolecular interactions. It was found that increased honey content 
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in the gelatin system enhances the thermal stability. This was demonstrated in the increased 

midpoint transition temperatures from 36 and 42.5 to 54.9 οC for the systems with 20, 60 and 

85% total solids. This phenomenon is supported by a decrease in enthalpy values found at 3.0, 

2.3 and 0.9 J/g, respectively.  

The thermal behavior was also monitored at extended subzero regime using modulated 

DSC and deconvolution of thermal signals into reverse and non-reverse heat flows to enhance 

the reliability in determining Tg. A large trough was found at −20 οC at 50% (w/w) total solids 

indicating the molecular species are organized into ordered assemblies. The trough was 

significantly narrowed at 60% total solids and diminished in higher honey levels. The lowest 

Tg was recorded at −76 οC for 60% total solids and gradually increased Tg values were obtained 

at −63, −38 and −20.3 οC for samples with 70, 80 and 85% total solids, compared to Tg value 

of −45 οC for single honey at 80% total solids. The results clearly emphasize the anti-

plasticizing effect of honey on gelatin matrix, support the rheological data (Table 1, chapter 4) 

and agree with other biomaterials (Almrhag et al., 2012a, 2012b). 

Other structural considerations confirmed the amorphous characteristic of honey-

gelatin blends through WAXD and SEM analysis. FTIR spectra analysis suggested molecular 

interactions between O−H groups of sugars and C−O groups of gelatin amides. These 

complementary data argue for the phenomena of glass transition in honey-gelatin high solid 

hydrogels rationalized via thermomechanical analyses. 

 

5.2. Limitations of this study 

Chapter 2 validated manuka-1 and the four medicinal honeys according to international 

regulations for honey (EEC, 110/2001) and presented their physicochemical and biochemical 

characteristics. Further, the effect of honeys on cellular cholesterol and cholesterol associated 

genes was assessed for the first time. The results suggest probably similar compounds are 
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associated with reduced cellular cholesterol content and antioxidant activity of manuka-1, 

arjuna and guggul  honey. However, there are some limitations that need additional 

considerations to reach sufficient evidence supporting these honeys as therapeutic agents for 

antioxidative stress and reducing cholesterol levels as follows: 

• The physicochemical analysis of quality focused on the main parameters but not all 

those regulated by (EEC, 110/2001). For example, the study did not determine sucrose 

content. 

• Phytochemical analysis of honeys that had better antioxidant and cholesterol lowering 

ability will help understand which compounds are associated with these activities.  

• The study evaluated phenolics, flavonoids content, RSA and AEAC in honeys and 

effect of honey in inducing antioxidative genes (e.g. NQO1), but it did not show the 

levels of cellular reactive oxygen species by honeys. Moreover, gene expression study 

involving more genes and a detailed time point study is required to confirm the 

antioxidative effects. 

• The relation of cellular cholesterol content and genes associated with cholesterol 

homeostasis was unclear for guggul honey and contradictory for jiaogulan and olive 

honeys. These require further investigations at transcriptional and translational levels 

as honeys contain varying phytochemical compounds that may stimulate other 

pathways, rather than those assessed in the study. 

• Animal studies and clinical trials will further corroborate the findings from this study. 

 

 Chapter 3 produced fundamental information of physicochemical properties, molecular 

interactions and vitrification characteristics of four natural honeys to facilitate the development 

of honey-containing products. Chapter 4 elucidated structural variation in gelatin networks 
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from low to high-solid systems affected by manuka-1 honey. However, some other aspects 

remained unclear in this study:  

• Although FTIR spectra analysis indicated the typical regions for honey-gelatin blends 

and suggested chemical interactions between O−H groups of sugars and C−O groups 

of gelatin amides, this could be better described by deconvolution of the FTIR spectra.  

• Swelling capacity is an important parameter affecting area exposed to the gels, but 

this is missing the current study. Moreover, the release of either honey or its active 

compounds from hydrogel preparations has not yet been investigated. 

• Visual parameters such as their colour, consistency and homogeneity were not 

assessed to ensure the repeatable and reliable sensory quality. pH values of the gels 

should be determined because the addition of honey which is an acidic sample may 

alter the pH of hydrogels in a concentration-dependent manner.  

 

5.3. Future directions 

 Due to the differing types of phytochemicals present in the selected plant materials, it 

is likely that medicinal honeys (manuka-1, arjuna, guggul, jiaogulan and olive) will affect 

different pathways of cholesterol homeostasis, including intestinal cholesterol absorption, the 

regulation of de novo cholesterol synthesis and uptake, cholesterol efflux. It is thus suggested 

that the determination of chemical profiles of plant extracts and honeys should be conducted 

for inferring the bioactivity of a specific compound or groups of compounds and their action 

modes. In addition, molecular investigations should be extended to more genes associated with 

a specific pathway and followed by post-transcriptional and translational evidence to confirm 

protective effects of honey in reducing oxidative stress and  cholesterol content. Moreover, 

animal or human trials using the best honeys should be conducted to monitor cholesterol 

homeostasis and lipid profiles and validate the clinical benefits of these medicinal honeys in 
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the management of the two leading risks in atherosclerotic pathogenesis. 

 On the other hand, to make honey hydrogels closer to clinical availability for 

antioxidative stress (for example, anti-aging using topical treatments and oral administrations) 

and hypocholesterolemia, swelling and release study should be conducted for the kinetic 

control and targeted delivery of honey and/or its bioactive compounds. In addition, visual 

parameters of the hydrogels such as colour, consistency, homogeneity and pH values should 

be assessed to obtain reliable and repeatable quality hydrogels. Moreover, the honey-gelatin 

hydrogels should be directedly assessed for some biofunctions such as antimicrobials, cell 

protection and regeneration among the others.   
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