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ABSTRACT 

In the last three decades, airlines across the globe have experienced significant 

incidents and milestones such economic recessions, de-regulations, and jet fuel 

fluctuations, leading to many consolidations and even bankruptcies. Airlines seem to 

have a few options to respond to these disruptions and fluctuations. Capacity planning 

is one of the key tools that airlines apply to manage air traffic demand and their 

operating costs. As such, the carriers may alter the number of flights, use different types 

of airplanes, upgrade the seats in the aircraft, and even increase the load factor to 

maintain their market share and profitability, which can occasionally lead to passenger 

dissatisfaction. ‘Capacity Planning’ is defined in this research as a combination of the 

number of flights and aircraft size that airlines choose to manage traffic demand on a 

given origin-destination route. It affects the airlines’ service quality and operating 

costs, in turn, influencing their market share and profitability. Capacity planning has 

become more important for airlines due to the diminishing relative significance of 

traditional tools such as airfare management or hedging contracts.  

However, capacity planning seems to be a difficult decision-making task for airlines as 

they need to consider many factors on both sides of the supply-demand equilibrium of 

the flight market and different limitations such as access to specific aircrafts, airports, 

or even flight regulations. Any changes in the capacity would trigger a sophisticated 

set of interrelated changes in passenger demand, flight frequency, aircraft size, airfare, 

and flight delay, finally leading to an equilibrium shift. This statement considers 

economies of density that means, given no congestion, more density in terms of higher 
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passenger demand leads to more plane-miles by either more flights or larger aircrafts. 

In fact, with no capacity constraints, there is an ongoing loop causing higher density 

from the demand side and more plane-miles from the supply side of the flight 

equilibrium. However, this picture is no longer valid once the capacity constraint is 

added to the equilibrium. Capacity constraint introduces a new player, flight delay, to 

the equilibrium. In other words, higher density leads to more flight delays because of 

capacity constraints. Flight delays bring extra costs to airlines, diminishing economies 

of density. Therefore, airlines need to consider all these interrelated interactions to 

make efficient capacity plans on their operating networks. 

This thesis develops an optimisation model to assist airlines to make the optimum 

capacity decisions for individual routes of a given market such as a specific airport or 

network to maximise the potential passenger demand under the flight supply-demand 

equilibrium. To address this research, three key questions are identified as follows: 

What are the key determinants of airlines’ capacity decisions under the supply-demand 

equilibrium of flight market? How does an airline’s capacity decision influence flight 

delays? How can airline capacity decisions be optimised for the individual routes of a 

given market to maximise the total potential flight demand with respect to the market’s 

capacity constraints? Furthermore, this research answers some significant questions 

related to the interactions among the key players of the supply-demand equilibrium of 

the flight market.  

To answer these questions, this research is implemented in three steps. In the first step, 

the key drivers of capacity planning and demand modelling are statistically identified 

on both sides of the supply-demand equilibrium by applying the two-stage least square 
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technique on the time-series cross-sectional data of 21 major routes of the Australian 

domestic market. In the second step, the impact of changes in the elements of capacity 

decisions in flight delay are investigated by using the Hausman-Taylor regression 

technique on the Australian domestic data. By connecting the findings of step 1 and 2, 

a research framework is created to be used as the basis of the optimisation algorithm in 

the final step. The model is developed by the inclusion of a series of exogenous and 

endogenous factors under the supply-demand equilibrium. To address the simultaneity 

among the variables, a system of four non-linear equations, flight demand, flight 

frequency, aircraft size, and flight delay, is developed and estimated individually by 

two statistical simultaneous techniques – three-stage least square technique (3SLS) and 

maximum likelihood estimator (MLE). The data of seven Australian domestic routes, 

linking Melbourne to other major cities in Australia, was applied, as the case study, to 

estimate the model’s coefficients. Finally, the non-linear optimisation technique was 

applied to the estimates of 3SLS and MLE separately to find the optimum capacity plan 

of the given routes. All proposed models were verified and tested in different steps. As 

the key contribution, this thesis proposes an optimisation model based on a system of 

non-linear equations of the flight supply-demand equilibrium to maximise the potential 

flight demand of a given market with respect to the market’s capacity constraints. This 

model is based on the theory of economies of density and applied the time-series cross-

sectional data of flight market to empirically estimate the coefficients of passenger 

demand equation as the objective function. Compared to other models of capacity 

planning that generally contain a relatively a short list of micro-level factors in 

modelling, the proposed model contains all required macro- and micro-level factors. 
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As the key contribution, this thesis highlights the key drivers of capacity planning and 

demand modeling of supply-demand equilibrium and their relationships in the 

Australian flight domestic market. As a part of results, there is a bilateral relation 

among the elements of capacity decisions and passenger demand. The results 

statistically differentiate the airlines’ policies of capacity planning across the different 

markets. The results suggest that a higher demand for flights primarily results in 

increased flight frequency rather than increased aircraft size or load factor. The load 

factor is identified to be an insignificant variable in capacity planning of the airlines. 

Competition between airlines, participation of low-cost carriers, and jet fuel expenses 

are thought to influence airlines’ capacity decisions, albeit differently across the given 

markets. Interestingly, jet fuel cost inflations stimulate the flight demand in the short-

haul market as well as the routes linking the major cities to the industrial ones. The 

socio-economic parameters of population and employment rates affect the flight 

demand in the different markets in different ways. The findings indicate the airlines’ 

capacity decisions influence flight delays. The results indicate that more frequent 

flights and larger aircrafts together are associated with more flight delays. Route 

congestion is caused by more flights, albeit to a higher degree for low-cost carriers. Jet 

fuel cost inflation is expected to cause flight delays, but more for the legacy airlines 

than low-cost carriers.  

From the results of the optimisation model, for a given period, December 2015, the 

optimum solutions of 3SLS and MLE indicate, respectively, a 1.72% and 0.66% 

improvement on the flight demand compared to the reported actual plan for the airlines. 

The estimated MSE of the MLE model is smaller than that of 3SLS; however, estimated 
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coefficients of 3SLS are statistically more significant than those of MLE, resulting in 

more practical results in the optimisation section. The proposed model and findings of 

this thesis can potentially be applied by airlines as well as policy makers to fleet 

planning and airport infrastructure development projects in different airports and hub-

and-spoke networks across the globe. The proposed optimisation model may be 

enhanced by using the theory of full equilibrium to develop the optimisation model 

through adding the factors of the other transportation modes. Due to the data limitation, 

airfare was only applied as an exogenous parameter in the passenger demand equation 

of the optimisation model. Airfare can potentially be upgraded to become a key variable 

of airline capacity planning under the supply-demand equilibrium. In future research, 

the data of individual airlines can be applied separately at the route level. With the 

airline dimension in modelling, further explorations can be done on the airline’s 

policies and performance of capacity planning in different markets. The proposed 

model can potentially be applied to other airports and hub-and-spoke networks across 

the globe which it surely leads to further explorations about the airlines’ policies and 

capacity planning as well as the demand modelling under the supply-demand 

equilibrium.  

Keywords: Aviation, Capacity planning, Supply-demand equilibrium, Econometric 

Analysis, optimization 
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1.1. Introduction 

Airlines are seeking to keep their core competencies to adequate standards through competitive 

service quality and airfares to control market share and the level of profitability. For this purpose, 

capacity decision is one of the primary tools that airlines rely on to manage and control air traffic 

demand and airfares (Wei and Hansen, 2005; Carey, 2015). As such, carriers may alter the number 

of flights, use different types of airplanes, upgrade the seats in the airplane, and even increase the 

load factor to maintain their market share and profitability, which occasionally results in customer 

dissatisfaction (Stock, 2013). Capacity decisions combined with traditional approaches such as the 

control of airfares and hedging contracts have historically been used by airlines to mitigate the risk 

of bankruptcy arising from unexpected events such as the 9/11 attacks, 2008 global financial crisis, 

and oil price surge in 2008 (Wei and Hansen, 2005; Purnanandam, 2008). 

The role of capacity decisions in airline profitability is expected to become more significant 

because of the diminishing relative effect of other airline tools such as airfare increase or hedging 

contracts (Mohammadian et al., 2019a). Similar to the other tools, capacity planning seems to be 

challenging for airlines as they need to consider many factors on both sides of the supply-demand 

equilibrium of the flight market and include different limitations such as their access to the number 

and types of aircrafts, airports, or even flight regulations. As discussed by Zou and Hansen (2012), 

any change in the capacity would trigger a sophisticated set of interrelated changes in passenger 

demand, flight frequency, aircraft size, airfare, and flight delay finally leading to an equilibrium 

shift. 

This statement takes into account economies of density that means, given no congestion, more 

density in terms of higher passenger demand leads to more plane-miles by either more flights or 
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larger aircrafts. Airlines operate larger aircrafts as it results in lower operating costs per seat, and 

they can offer lower fares to passengers. Cheaper fares stimulate flight demand leading to higher 

density. Therefore, with no capacity constraints, there is an ongoing loop causing higher density 

from the demand side and more plan-miles from the supply side of the flight equilibrium (Zou and 

Hansen, 2012). However, this picture is no longer valid once the capacity constraint is added to 

the equilibrium. Capacity constraint introduces a new player, flight delay, to the equilibrium. In 

other words, higher density leads to more flight delays because of capacity constraints. Flight 

delays bring extra costs to airlines, diminishing economies of density. In fact, higher flight delay 

leads to low passenger demand either directly or indirectly as an outcome of airline responses. 

Figure 1.1 describes these interactions under the supply-demand equilibrium of the flight market. 

Therefore, airlines need to take into account all these interrelated interactions to design efficient 

capacity plans on their operating networks. In fact, an airline should decide continuously about 

flight frequency and aircraft type for each individual route of its operating network to maximise 

its market share and profitability. These airline decisions must consider capacity constraints in 

terms of airport or fleet access. An airline needs to ensure its capacity planning effectively controls 

its operating costs and must manage its market share with a precise look at other competitors. In 

the aviation industry, the key interest is to know the priorities of airport expansion to bring the 

highest benefits in terms of more flight demand across the whole market. To make such these 

decisions, governors or investors need to consider the elasticity of passenger demand to the 

capacity changes in addition to the other factors stimulating demand such as socio-economic 

factors or airfares 
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Figure 1.1 Key drivers of the supply-demand equilibrium of flight market 

1.2. Aims and questions 

This study aims to develop an optimisation model of capacity decisions that considers all key 

drivers on both sides of the supply-demand equilibrium. It is significant to emphasise that the level 

of capacity decisions being targeted in this study is at the strategic level, which is different from 

airline decisions on flight frequency and aircraft choice at the tactical or operational level. The 

airline’s planning on tactical or operational levels is addressed as “fleet planning” or “fleet 

assignment” in the aviation industry (Wei and Hansen, 2007). Airlines’ strategic planning of flight 

frequency or aircraft size is influenced by their long-term policies related to business core 

strategies, infrastructure development, and government regulations. Therefore, the airlines’ 

strategic planning is categorised as long-term decisions, compared to the tactical and operations 

planning which are known as short-term or even daily decisions. At the tactical level, airlines 



Chapter 1 – Introduction 
 

 

4 
 

consider factors including fleet commonality, network structure, and purchase price to make 

capacity decisions such as new aircraft acquisition through a function named ‘fleet planning’. 

 At the operational level, airlines make daily decisions about flight frequency and choice of 

aircraft, which needs to be allocated to a market or a route, normally through a function named 

‘fleet assignment’. Most airlines apply some computer packages at the operational level, based on 

mathematical programming models. These models primarily comprise a profit-maximisation 

objective function and a set of constraints for aircraft availability. Therefore, these levels of 

planning assist airlines in daily capacity planning on their routing network. 

Airlines’ capacity planning at tactical and operational levels are always influenced by capacity 

decisions at the strategic level, and this study aims to explore this phenomenon. The strategic 

decisions are usually made at the same time and have an interrelated relationship with airlines’ 

decisions on networking structure. Strategic capacity planning assists airlines in making decisions 

about strategical changes in their operating networks such as adding a new operating route, 

applying the hub-and-spoke network instead of point-to-point service, or sizing up the average 

aircraft on a specific route in the long run to meet the growing passenger demand (Wei and Hansen, 

2007). 

As indicated above, the primary objective of this research is to develop an optimisation model of 

the airlines’ capacity planning by considering all key drivers on both sides of the supply-demand 

equilibrium of the flight market. Therefore, the main question of this study is “How can airlines 

optimise their capacity decisions under the air supply-demand equilibrium to maximise the 

potential passenger demand?” 



Chapter 1 – Introduction 
 

 

5 
 

This primary question can be broken down into the following three research questions: 

RQ1: What are the key determinants of airlines’ capacity decisions under the supply-demand 

equilibrium of flight market? 

This research question comprises the identification of the antecedents of capacity decisions in the 

airline industry as well as examination of the factors on both sides of the supply-demand 

equilibrium of the flight market. 

The research question 1 comprises the below sub-questions: 

Sub-RQ1.1: Are airlines’ capacity strategies different for short- and long-haul routes? If so, 

what factors drive these strategies? 

Sub-RQ1.2: How do the supply side parameters, including competition, participation of low-

cost carriers, and jet fuel cost inflation, affect passenger demand? 

Sub-RQ1.3: How do the demand-related factors influence the airlines’ capacity decisions?  

Econometric techniques were applied to statistically investigate the key parameters on both sides 

of the demand-supply equilibrium of the aviation industry to identify key drivers in the airlines’ 

capacity decisions. 

RQ2: How does an airline’s capacity decision influence flight delays? 

Flight delay is known as one of the key determinants of capacity decisions in the supply-demand 

equilibrium, and it is a key driver of an airline’s capacity decisions according to the economy of 

density. The research question 2 is to investigate the key drivers on flight delay in an endeavour 
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to highlight the impact of airlines’ operations on flight delay. As a part of research question 2, the 

three sub-questions below are answered: 

Sub-RQ2.1:  How do the elements of capacity decision influence flight delay? 

Sub-RQ2.2:   How do airline-related and route-related factors influence flight delay? 

Sub-RQ2.3:   How do airlines’ policy and performance affect flight delay? 

As the dataset is categorized as time-series cross-sectional data, the econometric techniques of 

panel data analyses were chosen to be applied in this step. However, the bilateral relation among 

some of the variables influences the final model selection. The first two research questions (RQ1 

and RQ2) are prerequisite to address RQ3 as the main key question of this thesis. 

RQ3: How can airline capacity decisions be optimised for the individual routes of a given 

market to maximise the total potential flight demand with respect to the market’s capacity 

constraints? 

RQ3 is to propose an optimisation model to identify the optimum capacity decisions of airlines in 

origin-destination routes to maximise the potential passenger demand. The following sub-question 

are answered in this step: 

Sub-RQ3.1: How do airlines ‘capacity decisions and flight delay along with the other 

drivers stimulate flight demand? 

The optimisation model is aimed to reflect all routes and network/airport constraints in modelling. 

Furthermore, the effect of simultaneity and endogeneity among the variables must be considered 

to develop the model. The econometric techniques, known as structural simultaneous equations 
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model, are applied in model development. The non-linear optimisation technique is applied at the 

final step to find the optimum solution.  

1.3. Research Methodology 

The primary objectives of this research are to investigate the key drivers of the supply-demand 

equilibrium of the flight market and develop an optimisation model of airlines’ capacity decisions. 

To fulfil objectives 1 and 2, described in Section 1.2, this study needs to empirically investigate 

the supply-demand equilibrium of the flight market to identify the key drivers of the airlines’ 

capacity planning, of demand modelling, and of flight delay. Therefore, one of the key steps of 

this study is to identify the significance of the relationships among the model’s factors; these 

relationships are defined as the research hypotheses.  

The theoretical background of this research is defined by the findings of the literature review. 

Therefore, this research is categorized as adopting a positivist paradigm; it aims to test a theory 

through observations. This research is aimed to analyse the factors of supply-demand equilibrium 

of the flight market (Black et al., 2012), independently from prices and quantities of transportation 

substitutes such as surface transportation, vehicles, and trains. Therefore, this study is categorised 

under the theory of partial equilibrium. 

The deductive approach is considered here because the relationships among the model parameters, 

defined as the model’s hypotheses, are investigated by implementing a survey on the monthly data 

of the domestic flight market of Australia. The dataset is categorised as time-series cross-sectional 

data. The data is adjusted seasonally to offset the impact of a season’s changes on the models, and 

outlier test analysis is applied to identify outliers and remove them from the dataset.  
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Figure 1.2 Research Steps/methods 

The econometric techniques are applied in the first and second steps of this study to investigate 

the key drivers of demand modelling and capacity planning and their relationships under the 

supply-demand equilibrium of the flight market. However, as it is discussed in Chapter 3, on 

applying the Durbin-Wu-Hausman test, we can find bilateral relations among the variables on both 

sides of the demand-supply equilibrium. Therefore, the application of the ordinary least square 

methods results in biased and systematic errors. To avoid the biased results, the econometrical 

techniques categorised as instrumental variables estimators are applied in modelling to estimate 

the model’s coefficients. These techniques include single model techniques, such as two-stages 

least square method (TSLS) or Hausman Taylor regression estimator, or full system simultaneous 

techniques such as three-stage least square method or maximum likelihood estimator (MLE). The 

model’s estimation is verified by variance inflation factor to check significant multicollinearity 

problems (Hair et al., 2006).  
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Figure 1.3 Research theoretical frameworks  

As the last step, this study aims to develop an optimisation model for airline capacity planning 

under the supply-demand equilibrium of the flight market. The model objective is to maximise 

passenger demand in conjunction with the theory of economy of density, as briefly described in 

section1.1. 

According to the theory of economies of density, higher densities of populations allow synergies 

in service provision leading to lower generalised costs for customers. In the aviation industry, 

given no congestion, more density leads to more plane-miles either by more flights or larger 

aircraft size. More flights may improve the quality of service to customers, and by using larger 

aircrafts, airlines may reduce the operating costs that finally result in less air fare for customers. 

However, higher density, given no congestion, reduces the generalised costs for customers. 

However, with congestion, delay occurs due to capacity restriction. Lengthening flight time leads 

in extra costs to airlines, thus offsetting or reversing economies of density. 
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Table 1.1 summarises the research design with respect to the research objectives and executive 

steps. 

Table 1.1 Research Methodology 

Research Design Research Selection Reason for Choosing the Item 

Paradigm Positivist To test the theory (Economy of Density) through 
observation 

Theory Theory of Partial Equilibrium 
 

To analyse the supply-demand equilibrium of flight 
market, independently of other transportations 

Theory of Economies of 
Density 

To map the interactions among the model 
parameters 

Approach Deductive To develop hypotheses on the relation among the 
factors using existing theories from the literature 

Strategy Case study To test the theory by analysing the prior data in the 
targeted market 

Primary Method Quantitative The research factors are categorised as quantitative 
data 

Secondary 
Method 

Instrumental variable 
estimators (Step 1 & 2) 

To offset the endogeneity between parameters 

Structural simultaneous 
equations model and non-linear 
optimisation (Step3) 

To estimate the optimum coefficients of the 
capacity model with respect to the simultaneity and 
non-linear relations among the variables  

Data Collection Secondary data Considerable number of observations required to 
make the estimation 

Data 
Specification 

Time-series, cross-sectional To analyse the information on the Australian 
domestic flight market 

Data Verification Outlier analysis To identify outliners and remove them from the 
dataset 

Durbin-Wu-Hausman test 
Hausman Specification test 

To verify the endogeneity and simultaneity among 
the model’s parameters 

Model Estimation 
Verification 

Variance inflation factor 
comparative model 
development (Step 2 &3) 

To check significant multicollinearity problems 
and compare and validate the model estimations 

 

1.4. Research Data 

The research applies the data of the Australian domestic market relating to the routes among the 

states of Adelaide, Melbourne, Sydney, Perth, Darwin, Hobart, Canberra, and Brisbane. Figure 1.3 

presents the routes that were targeted in this research and the monthly data from January 2004 to 
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December 2015. This market was chosen due to the availability of historical data of the different 

demand- and airline-related variables used in this research. This market was a good and reliable 

sample of the Australian domestic market. The dataset contains the data of four dominant airlines, 

Qantas, Virgin, Jetstar, Tigerair, and other carriers that participated during this period, namely 

QantasLink, Regional Express, Virgin Australia - ATR/F100 Operations, and Virgin Australia 

Regional Airlines.  

 

Figure 1.4 Targeted Domestic Origin-Destination Flight Routes1 

 

1.5. Significance and impact of the study 

With respect to the predetermined steps of this study, the expected findings can be significant in 

different ways: 

 This study exclusively initiates the supply-demand equilibrium of the flight market and 

investigates the relation among the parameters on both sides of the equilibrium. As the 

 
1This plot is chosen based on the information of the Domestic Aviation Activity Reports - Department of Infrastructure 
and Regional Development (http://bitre.gov.au/). 
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expected results, this research reveals the new drivers in capacity modelling as well as 

demand modelling and the new relations among the factors. The findings can effectively 

be applicable to the different stakeholders of the aviation industry such as airlines, airport 

investors, and even regulators. 

 The prior studies primarily addressed the flight markets of the US or Europe, which are 

geographically and economically different from Australia. This study is aimed to explore 

the determinants that drive the supply-demand equilibrium on the level of the origin-

destination routes and the parameters that influence the capacity decisions of the dominant 

carriers in the Australian domestic market.  

 The proposed optimisation model of this study can effectively be applied to assist airlines 

in capacity planning. It also can potentially be applied for decision making in the capacity 

development of the airports or networks. 

 

1.6. Thesis Structure 

This thesis is organised in six chapters, designed to address the main objective and associated 

research questions, as indicated in section 1.2.   This chapter introduced the research topic, set out 

the research objective and questions. Regarding the research questions, the chapter presented the 

research methodology, outlined the research structure and highlighted the significance and impact 

of the research. The subsequent chapters are described as below. 

Chapter 2 is a comprehensive literature review to the research topic of the airline’s capacity 

planning under supply-demand equilibrium of the flight market. It discusses the concept of 

passenger demand modelling and airline’s capacity planning in the context of air supply-demand 
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equilibrium. It provides a review on the key determinants of airline’s capacity planning, passenger 

demand, flight delay, and air supply-demand equilibrium. It also discusses the prior studies of 

airlines capacity modelling in the context of air supply-demand equilibrium.  Chapter 2 summarise 

the current literature to identify the gap in the extant knowledge. 

Chapter 3 focuses on answering the first research question that is What are the key determinants 

of airlines’ capacity decisions under the supply-demand equilibrium of flight market? The chapter 

develops an econometric model, based on two- stage least square technique, to identify the key 

drivers of airlines capacity planning under supply-demand equilibrium of the flight market. The 

data of the major routes of Australian domestic market is applied as the research case study in this 

chapter. Regarding the outputs of statistical analyses, the chapter discusses the determinants of 

passenger demand as well as the key drivers of airlines’ strategies of capacity planning in the 

domestic flight market. 

Chapter 4 aims to answer the second question that is How does an airline’s capacity decision 

influence flight delays?  This chapter identifies the key determinants on flight delay as one of the 

key players of supply-demand equilibrium of the flight market. This chapter describes the flight 

delay phenomenon, and its status in Australian domestic flight market. It provides the model 

parameters and discusses the methodological framework in terms of model specification, proposed 

technique, and model formulation. This chapter formulates the flight delay based on the Hausman 

and Taylor’s instrumental variables estimator and discusses the findings relating to the impact of 

flight delay on passenger demand and airlines’ strategies of capacity planning.  

Chapter 5 addresses the key objective of this research that is to develop an optimisation model of 

capacity planning under air supply-demand equilibrium for a given network or airport. The model 
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assumptions, parameters and variables, and objective function are described in this chapter. Then, 

the two econometrical techniques, three-stage least square method (3SLS) and Maximum 

likelihood estimation (MLE), are separately applied to estimate the coefficients of the objective 

function. The models are formulated based on the non-linear optimisation technique, then the 

optimal solutions are compared and discussed. This chapter answers the final question that is How 

can airline capacity decisions be optimised for the individual routes of a given market to maximise 

the total potential flight demand with respect to the market’s capacity constraints? 

Chapter 6 presents the thesis conclusions and discusses the potential implications of the key 

research findings for airlines’ capacity planning. The research questions, indicated earlier in this 

chapter, are revisited to assess whether they are sufficiently addressed. The chapter highlights the 

key contributions of this research and the practical implications. It also provides some directions 

to the future research, along with research limitations.  

1.7. Summary 

This chapter has developed the research context. It has discussed the rational for undertaking this 

research and described the research objective and key questions. It has introduced the 

methodological framework and described the research structure.   

This thesis is important to developing an optimisation model for airlines’ capacity planning 

considering the key drivers on the both sides of supply-demand equilibrium of the flight market. 

The statistical techniques are applied within the thesis to identify the relationships among the 

parameters and variables in the context of either passenger demand modelling or capacity 

planning. The research applies the non-linear optimisation technique to develop the proposed 

model of airlines’ capacity planning. The time-series cross-sectional data belonged to the major 
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routes of the Australian domestic flight market are applied as the thesis case study to evaluate the 

econometrical models as well as verify the proposed optimisation model of airlines’ capacity 

planning. The research aims to reveal the important findings relating the key determinants of 

supply-demand equilibrium of Australian domestic flight market. The proposed optimisation 

model can practically be applied for airlines’ capacity planning for the individual routes of hub-

and-spoke networks or airports across the globe.  
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2.1. Introduction 

This chapter defines the concept of passenger demand, capacity planning, air supply-demand 

equilibrium, and flight delay. It provides a review on the key drivers of airline’s capacity planning, 

passenger demand, flight delay, and air supply-demand equilibrium. The section begins by an 

introduction on airlines’ capacity planning.  The passenger demand is known as the key driver of 

airlines capacity planning. As a result, it also provides a review on the key determinants of 

passenger demand. Flight delay is another player of capacity planning under supply-demand 

equilibrium as discussed in Chapter 1. The antecedence of flight delay is also discussed in this 

section. It then discusses the prior studies of airlines capacity modeling, particularly the ones are 

developed under air supply-demand equilibrium.  The final section of literature review provides a 

summary review of the existing capacity planning models and identifies gaps in the current 

literature review.  

2.2. Air capacity planning 

According to Gold (1955) capacity can be defined in two forms; a) “as an estimate of the total 

amount which can be produced of any given product, assuming some specified allocation of plant 

facilities to such output” and b) “as an estimate of the composite productive capacity covering 

some specified range of products”. The first definition can be stated in physical terms and applied 

to assess the capacity volume as well as its relative changes. This definition assumed that there is 

a sufficient access to materials, labour and other inputs to fully utilise of current capital facilities.  

An airline’s capacity can be defined according to the first definition. Therefore, air supply can 

address the willingness and ability of an airline to provide a specific number of seats at a given 

airfare, and time period. The air supply can be expressed in available seat miles/kilometers 

(ASMs/ASKs) or available ton miles/Kilometers (ATMs/ATKs) (Vasigh et al., 2013). Capacity is 
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defined in this study as total available seat mile calculated by multiplying all two-way non-stop 

flights between origin and destination, and average aircraft size for a given route and time period.  

Capacity planning is a major challenge that airlines encounter on the flight routes of their service 

networks. Capacity decisions affect flight services in terms of cost and quality that in turn influence 

the flight demands of the different groups of passengers, such as price- or time-sensitivity (Hsu 

and Wen, 2003). Capacity planning in general aims to determine the fleet size in terms of number 

of flights, choice of aircrafts, network characteristics as well as average fares for a given 

operational environment, and time period. Macro capacity planning is known as one of the most 

popular approaches, where passengers demand of a given network or airport is applied as the key 

driver of determination of the required numbers of aircrafts in different types. However, macro-

capacity planning generally oversimplifies the practical environment which it makes hard to 

address the adaptability of a specific choice of aircraft flying on a given route.  To keep the needed 

granularity, micro-fleet planning comes after macro-capacity planning to reflect the required 

details of a daily airline operation management (Wang et al. 2015). Micro-fleet planning is known 

as the fleet assignment problem (FAP) within the literature body. FAP deals with the choice of 

aircrafts to the scheduled flights, with respect to equipment capabilities and availabilities, 

operational expenses, and potential revenues. Assigning the larger aircrafts than size required for 

a flight leads in unsold seats, which in turn results in higher operational costs. By contrast, the 

allocation of smaller aircraft than needed on a flight would lead in lost customers because of 

insufficient capacity. Therefore, FAP constitutes a necessary part of an airline scheduling process 

(Sherali et al. 2006). 

In this study, Capacity Planning is categorized in macro level, and defined as a combination of the 

number of flights and average aircraft size that airlines choose to manage their traffic demand on 
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a given origin-destination route. These decisions are prerequisites for planning of an airline’s 

operation, such as flight scheduling and crew assignment (Hsu and Wen, 2000). Airlines invariably 

attempt to maximise profit by increasing their market share and reducing their fixed and variable 

costs. However, the modeling of the air capacity planning is complex (Teodorovic and Krcmar-

Nozic, 1989). An over-large fleet size would lead to unnecessary operating expenses for airlines 

due to the increasing capital assets. By contrast, an underestimated fleet size may result in losing 

a number of passengers in the benefits of other competitors. Furthermore, airlines across the globe 

inevitably must have pursued a high-cost and low-fare policy which it pressured their profit 

margins. Therefore, airlines always investigate to find a more practical capacity planning to meet 

passenger demand with lower expenses (Wang et al. 2015). In other words, airlines need to pursue 

the ideal strategy to find the correct number of seats at the right price. The right number of seats 

can be addressed by the fleet assignment process, and a right price can be achieved by yield or 

revenue management (Sherali et al. 2006).  

On the supply side of the flight market equilibrium, studies largely addressed network modeling, 

hub-location problems, and the determination of flight frequency and aircraft size (e.g., Hansen 

and Kanafani, 1989; Teodorovic and Krcmar-Nozic, 1989; Jaillet et al., 1996; Hsu and Wen, 2000; 

Saberi and Mahmassani, 2013). Prior studies attempted to simultaneously or individually 

determine flight frequency, choice of aircraft size, and even load factor (e.g., Givoni and Rietveld, 

2010; Hsu and Wen, 2003; Pitfield et al., 2010; Teodorovic and Krcmar-Nozic, 1989; Zou and 

Hansen, 2012). prior studies primary addressed the capacity planning of airlines in terms of the 

determination of optimum flight frequency (e.g., Hsu and Wen, 2003). However, some studies 

considered aircraft size and load factor as additional factors in capacity decisions during the 

modeling of capacity (e.g., Pitfield et al., 2010). Without considering all aspects of an airline’s 
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capacity planning, which includes flight frequency, aircraft size, and load factor in an integrated 

model, it is difficult to visualize a holistic picture of airline strategies for capacity decisions. 

Capacity planning also affects air passenger demand. Prior studies highlighted the econometric 

impact of airlines capacity planning on passenger demand (e.g., Wei and Hansen, 2005; Wei and 

Hansen, 2006; Wang et al., 2014). Wei and Hansen (2005, 2006) applied econometric models in 

the U.S. market and argued that airlines could realise higher passenger demand by offering more 

flights rather than utilizing larger aircrafts in the non-stop duopoly markets, and hub-and-spoke 

networks. Wang et al. (2014), through an empirical study of the Chinese domestic flight market, 

suggested that airlines can accommodate rapid demand growth by adding more flights, while 

flying larger aircrafts also contribute to market expansion.     

2.3. Air passenger demand modeling 

According to Vasigh et al. (2013, p. 46), Demand is defined “as the ability and willingness to buy 

specific quantities of a good or a service at alternative prices in a given time period under ceteris 

paribus conditions “.Understanding the theory and function of demand is one of the significant 

aspects for any business, because the demand characteristics determines the patterns and 

specifications of supply. In the aviation industry, demand is frequently expressed in terms of 

number of passengers (PASS), revenue passenger miles/kilometers (RPMs/ RPKs) which it 

normalises passenger demand based on the miles/ kilometers travelled, and revenue ton 

miles/kilometres (RTMs/RTKs). Number of passengers (PASS) is applied in this study to address 

passenger demand. A demand modelling is to develop the functional relationship between the 

quantity demanded and factors driving demand.   
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Air transportation is known as one of the most networked travel systems comprising the markets 

in different levels of performance, growth and volatility. Demand modeling and forecasting is one 

of the critical topics of air transportation industry. Airlines need to know the specifications of 

passenger demand for the purposes of revenue management and capacity planning (Swan, 2002). 

Airlines should recognise that the factors stimulating passenger demand are influenced not only 

by airfares but also by the many attributes that comprise the quality of service (Alamdari and 

Black, 1992). The study on the determinants of the passenger demand has been one of the primary 

research interests in the aviation industry since the 1950’s (Harvey, 1951). Harvey first studied the 

antecedents of passenger demand patterns across the U.S. According to Harvey, population, 

distance, and geographic distribution of large metropolitans are among the primary drivers of the 

air traffic demand patterns. Prior studies on air passenger demand developed models either as a 

function of the factors of the quality of service (e.g., Pitfield et al., 2010), socio-economic and 

demographics (e.g., Grosche et al., 2007), or a combination of factors from both groups (e.g., 

Abraham, 1983; Fridstorom and Thune-Larsen, 1989; Jorge-Calderón, 1997; Wei and Hansen, 

2006).  

Passenger demand may comprise either inelastic (Hansen and Kanafani, 1989; Teodorovic and 

Krcmar-Nozic, 1989; Hsu and Wen, 2000; Adler, 2001) or endogenous variables (e.g., Hsu and 

Wen, 2003; Pitfield et al., 2010). However, passenger demand seems to be elastic to the changes 

in capacity decisions with respect to competition in air transportation (Hsu and Wen, 2003).  

For example, Fridstorom and Thune-Larsen (1989) modeled the air traffic of the Norwegian 

network, highlighting traffic flow, fares, travel time, income, and population as factors in their 

model. Jorge-Calderón (1997) developed a demand model to examine the entire network of 

European routes to identify the key drivers in that market. Jorge-Calderón identified two categories 
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in flight-demand modeling: (1) geo-economic factors and (2) service-related factors. The first 

category includes the exogenous measures such as income, distance, and population. The second 

category, the service-related factors, comprises the airfare and quality of service, controllable by 

the airlines. Jorge-Calderón (1997) suggests flight frequency, aircraft size, and load factor as the 

determinants of the quality of airline service and shows that flight frequency and aircraft size are 

significant for shorter routes and the longer routes, respectively. Wei and Hansen (2006) developed 

an econometric model for the hub-and-spoke network in the U.S. market, investigating the roles 

of lowering ticket prices and increasing airport acceptance in stimulating the number of connecting 

passengers in a network. They considered the service quality parameters, flight frequency, aircraft 

size, and ticket price in addition to the socio-economic factors to develop their demand model. 

Their findings showed that increasing flight frequency affects the demand of connecting 

passengers more strongly than aircraft size. 

Several recent studies evaluated the effect of unexpected events such as the Gulf War in 1991, the 

tragedy of September 11, 2001, the Iraq War in 2003, and the global recession of 2008 on market 

demand. Unsurprisingly, those studies revealed that the occurrence of such events sharply reduced 

air-travel demand in both the long and short terms (Chi and Baek, 2013; Ito and Lee, 2005; Franke 

and John, 2011). The studies also stressed that the demand frameworks would depend on airline 

strategy (full-service vs. low-cost) and airport competition (Barrett, 2004; Pitfield et al., 2010).  

The prior studies also investigated the impact of environmental factors on airlines’ capacity 

planning. For example, Bruekner and Zhang (2010) investigated on the impact of airline emissions 

charges on airline service quality, the features of aircraft design, and network structure as well as 

airfares. They developed a profit-maximization problem based on a detailed theoretical model of 

competing duopoly airlines and applied that on an aggregate data for all the world’s airlines. Their 
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findings indicate the emission charges results in higher air fares, less flight frequency, and raises 

aircraft fuel efficiency with no effect on aircraft size. 

2.4. Supply-demand equilibrium of the flight market 

Supply-demand equilibrium of air market would occur when both sides of equilibrium agree on 

an airfare which it determine the allocation of available seats. At equilibrium, the quantity 

demanded is the same as quantity supplied. In another word, supply-demand equilibrium of air 

market is the setting of airfare such that the demand of seats and available seats provided by airline 

are exactly equal. Airlines always want to achieve high ticket prices to maximise their revenues, 

by contrast, passengers always seek the desire low airfares to minimise their traveling costs. 

Airlines always need to estimate passenger demand and make capacity planning and ticket pricing 

with respect to their demand estimations (Vasigh et al., 2013). Underestimating passenger demand 

causes an airline to offer relatively lower airfares to customers (Figure 2.1, Area 1). In this 

scenario, passenger demand is greater that the available seats provided by airline. Therefore, airline 

is unable to meet passenger demand, and may lose the market share in the benefit of the other 

competitors. Furthermore, an airline is unable to sufficiently benefit from the market due to 

offering the relatively low airfare.  
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Figure 2.1 Supply-demand equilibrium flight markets 

On the other hand, overestimating passenger demand leads an airline to offers their services in 

higher airfares (Figure 2.1, Area 2). In this scenario, airlines may increase its capacity to meet 

passenger demand. Higher airfares lead to less passenger demand, while higher capacity results in 

higher operating costs for the airline. As a result, this scenario results in airline’s losses due to the 

lower willingness of customers to buy the ticket, because of higher airfares, as well as higher 

operating cost, because of excessive capacity. Finding the optimal quantity of supply-demand 

equilibrium, where an airline can provide the right available seats in right airfares to meet the 

potential passenger demand, may be challenging as many factors either in supply or demand side 

may cause an equilibrium shift. This disequilibrium may cause because of either a change of 
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microeconomic, such as bad weather at airport, or of macroeconomic parameter, such as terrorist 

attacks of 9/11 in 2001. The impact of factor changes, which causes disequilibria, may be short or 

long term on the supply-demand equilibrium. However, disequilibria triggers a set of interrelated 

interactions among the equilibrium factors which in turn leads in equilibrium shift (Zou and 

Hansen, 2012). 

Airline supply and demand analysis addresses investigating on passenger behavior, assessing an 

airline’s response to the change of airfare or passenger income, and deriving the essential the 

demand-side information for supply-side decision makings (Vasigh et al., 2013). The study on the 

parameters on both sides of the supply-demand equilibrium has been a primary concern in the 

literature (e.g., Hsu and Wen, 2003; Wei and Hansen, 2005; Pitfield et al., 2010; Zou and Hansen, 

2012). These studies attempted to identify the significant relations among the antecedents of 

potential travel demands and/or an airline’s market share or benefit. Hsu and Wen (2003) 

addressed the supply-demand interaction between passenger demand and flight frequency through 

an integrated model to determine the optimum number of international flights for China Airlines. 

Pitfield et al. (2010) studied airline strategies to address the changes in flight demand and 

competition across the North Atlantic routes. Pitfield et al. applied a three-stage least-squares 

(3SLS) technique to simultaneously assess flight frequency, aircraft size and flight demand, and 

showed that flight demand inflation has a greater effect on flight frequency than aircraft size. In 

another study, Wei and Hansen (2005) used a nested logit model to reveal the factors of the quality 

of service in an airline’s market share and total demand in non-stop duopoly markets. They found 

that, compared to aircraft size, an increase in flight frequency would lead to a higher return in 

market share. Zou and Hansen (2012) developed an econometric model to investigate the effect of 

aviation capacity on the supply-demand equilibrium in a competitive market. Their results 
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indicated that a capacity change would trigger interactions among flight demand, airfares, flight 

frequency, aircraft size, and flight delays, ultimately resulting in an equilibrium shift. According 

to Zou and Hansen (2012), capacity constraint influences flight demand, reduces the number of 

flights, and inflates passenger expenses. In contrast, a greater capacity enables airlines to increase 

both the ticket price and flight frequency while reducing aircraft size. These studies clearly suggest 

that the modeling of air supply-demand equilibrium has been a crucial concern in the aviation 

literature. However, as noted by Gillen and Hazledine (2015), these studies primarily addressed 

the flight markets of the metropolitan cities in the U.S. or Europe, which are geographically and 

economically different from Australia. In those regions, the air transport systems are normally 

served by fully developed 360-degree hub-and-spoke networks2 that do not exist in the Australian 

market. In addition, there are no secondary airports in the large cities in Australia to facilitate the 

activities of the low-cost carriers (Gillen and Hazledine, 2015). Table 2.1 provides a summary of 

some of the prior studies related to the key determinates of passenger demand forecasting and 

airlines capacity decisions. Table 2.2 also provides further information of the studies, listed in table 

2.1, included the information of research category, applied methods, dataset specifications, and 

market under study. 

As can be seen in Tables 2.1 and 2.2, the study on the supply-demand equilibrium of flight market 

has recorded a history of seven decades, started since the 1950’s (Harvey, 1951).   Some studies 

entirely focused on identifying the key determinants on the demand side and developing the 

passenger demand models (Harvey, 1951; Abed et al., 2001; Grosche et al., 2007). In these studies, 

 
2 This term was introduced by Gillen and Hazledine (2015) to explain the geographical difference of the flight market 
of U.S. and Europe and five regions including Australia. According to Gillen and Hazledine (2015), the geography of 
the U.S. and Europe is basically a two - dimensional grid which is different from that of some markets such as Australia 
which had long, thin, and linear entities. 
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passenger demand, as dependent variable, is econometrically modelled by a regression of the 

socio-econometric and demographic factors. From the supply side, Wei and Hansen (2007) applied 

the game-theoretic models on exclusively the supply side’s factors to develop a capacity planning 

model.  Many studies applied the factors on the both sides of supply-demand equilibrium to 

develop either a passenger demand model (e.g., Abrahams, 1983; Hensher, 2002; Fageda, 2005; 

Zou and Hansen, 2012; Zhang, 2015; Srisaeng et al., 2015) or a capacity planning model (e.g., 

Dresner, 2002; Hsu and Wei, 2003; Pai, 2010, Gillen and Hazledine, 2015), or even simultaneously 

the both (Jorge-Calderh, 1997; Ito and Lee, 2005; Pitfield et al., 2010; Brueckner and Zhang, 2010; 

Wang et al., 2014; Binova, 2015).  

From the Tables 2.1, the prior studies applied a single or multiple dependent variable(s) for 

modeling. Number of passengers, as the primary variable, or RPM have been applied as the 

dependent variable in the demand modeling (e.g., Abed et al, 2001; Ito and Lee, 2005). From the 

supply side, flight frequency, aircraft size, total available seats have separately or simultaneously 

been applied as dependent variables of capacity planning (e.g., Jorge-Calderh, 1997; Dresner, 

2002; Gillen and Hazledine, 2015). These variables were also used as explanatory variables of the 

demand modeling (e.g., Abrahams, 1983; Wei and Hansen, 2005; Wei and Hansen, 2005). Load 

Factor was only applied as the explanatory variable in the demand modeling (e.g., Suryani et al., 

2010), however, flight delay was applied either as dependent variable (e.g., Brueckner and Zhang, 

2010; Zou and Hansen, 2012) or as an explanatory variable in the modelling of passenger demand 

or capacity plan (e.g., Abrahams, 1983; Pai, 2010; Britto et al., 2012). Likewise, the prior studies 

primary applied airfare as an explanatory variable in passenger demand modelling (e.g., 

Abrahams, 1983; Hensher, 2002;  Suryani et al., 2010) Airfare was also applied as a dependent 

variable in modelling (e.g., Ito and Lee, 2005; Britto et al., 2012; Gillen and Hazledine, 2015).   
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From Table 2.2, the prior studies applied mostly econometric techniques (e.g., Jorge-Calderh, 

1997; Battersby and Oczkowski, 2001; Britto et al., 2012) or heuristic methods (e.g., Suryani et 

al., 2010; Zhang, 2015) in the demand forecasting.  The studies mainly applied mathematical 

techniques for modelling of capacity planning to find the optimal solutions (e.g., Hsu and Wei, 

2003; Wei and Hansen, 2005; Zou and Hansen, 2012). The studies largely applied the historical 

monthly data for modelling, mainly belonged to the domestic flight markets of USA, EU and 

Australia. 
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Table 2.1 Parameters under study- Literature Review  

Author   

Supply Side Demand Side 

Total Seats 

Flight Frequency 

Aircraft Size 

Load Factor 

Flight D
elay 

Service (Q
ualitative) 

Airline Factors 

Passenger 

RPM
 

Socio-Economic Factors Travel D
uration 

D
istance 

airfare 

Jet-fuel expense 

airline policy (full-
service vs. Low

-cost 

Com
petition 

H
ubbing Activity 

Environm
ental cost 

N
o. of spokes 

G
D

P per Capita 

U
nem

ploym
ent 

rate 

Im
port of G

oods 
and Service 

interest Rate 

incom
e  

Labour Force 

Total G
overnm

ental 
Expenditure 

Consum
er Price 

Index 

Tourist 

Buying pow
er index 

Interest Rate 

Trunk 

Population 

Harvey (1951) 
          

   D   
   

E 
       

E 
 

E 
Abrahams (1983) E E 

  
E 

 
E 

      
D 

     
E 

 
      E 

  

Jorge-Calderh (1997) 
 

D D 
       

E 
  

D 
     

E 
   

E 
   

E 
 

E 
Abed et al (2001) 

             
D 

 
E 

 
E E E 

 
E 

 
    

   

Battersby and Oczkowski (2001) * 
      

E 
       

D 
    

E 
          

Hensher (2002) 
     

E E 
  

E E 
  

D 
 

E 
        

   
   

Dresner (2002) D 
        

E 
              

  
 

E 
 

E 
Hsu and Wei (2003) 

 
D 

    
E 

    
E 

 
E 

              
E 

 

Ito and Lee (2005) 
      

D E E 
     

D 
 

E 
   

E 
   

  
    

Fageda (2005) 
      

E 
   

E 
  

D 
 

E 
   

E 
   

E 
   

E 
 

E 
Wei and Hansen (2005) E E E 

   
E 

      
D 

     
E 

          

Wei and Hensen (2006) 
 

E E 
   

E 
     

E D 
     

E 
         

E 
Grosche et al. (2007) 

             
D 

 
E 

        
E 

   
E E 

Wei and Hansen (2007) ** E D D 
    

E 
                      

Pitfield et al. (2010) 
 

D D 
      

E 
   

D 
               

E 
Brueckner and Zhang (2010) 

 
D D 

 
D 

  
E 

   
E 

  
D 

               

Pai (2010) 
 

D D 
 

E 
   

E 
   

E E 
     

E 
       

E 
 

E 
Suryani et al. (2010)  E  E   E       D  E            E E  
Zou and Hansen (2012)  D E  D  E       D                E 
Britto et al. (2012)     E  D  E E    D      E    E    E  E 
Chi and Baek (2013)  E            D      E           
Wang et al. (2014)  D E     E  E    D  E           E E  E 
Zou and Hansen (2014)     E   E E E    E D               E 
Gillen and Hazledine (2015) D  E    D  E E              E   E E E E 
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Author   

Supply Side Demand Side 

Total Seats 

Flight Frequency 

Aircraft Size 

Load Factor 

Flight D
elay 

Service (Q
ualitative) 

Airline Factors 

Passenger 

RPM
 

Socio-Economic Factors Travel D
uration 

D
istance 

airfare 

Jet-fuel expense 

airline policy (full-
service vs. Low

-cost 

Com
petition 

H
ubbing Activity 

Environm
ental cost 

N
o. of spokes 

G
D

P per Capita 

U
nem

ploym
ent 

rate 

Im
port of G

oods 
and Service 

interest Rate 

incom
e  

Labour Force 

Total G
overnm

ental 
Expenditure 

Consum
er Price 

Index 

Tourist 

Buying pow
er index 

Interest Rate 

Trunk 

Population 

Zhang (2015)        E E     D  E        E    E  E 
Srisaeng et al. (2015)       E E E     D  E        E  E  E   
Binova (2015)  D            D   E   E        E  E 

* Other explanatory variables: Industry Production, Season 

** Other explanatory variables: average aircraft operating cost per flight, average stage length for aircraft type, unit pilot cost per 
block hour, airline-specific factor 

D: Dependent Variables, E: Explanatory Variables 
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Table 2.2 Market under study- Literature Review 

Author   Modelling Method 

 

Data Type Time Series 

Market 

Case Study Category International 

D
om

estic 

Harvey (1951) Regression model Demand forecasting Monthly 1948 × 
 

USA 
Abraham (1983) Regression model Demand forecasting Quarterly 1973-1977 × 

 
USA 

Jorge-Calderh (1997) Two stage least square method Demand /Capacity 
forecasting 

Monthly 1989-1996 × 
 

EU 

Abed et al. (2001) stepwise regression technique Demand forecasting Yearly 1971-1992 × 
 

Saudi Arabia 
Battersby and Oczkowski 
(2001)** 

Regression model Demand forecasting Quarterly 1992-1998 
 

× Australia 

Hensher (2002) Logit-regression model Demand forecasting Monthly 1997-98 
 

× Australia 
Dresner (2002) Reduced form estimating 

procedure 
Capacity planning Monthly 1995-1999 

 
× USA 

Hsu and Wei (2003) Optimisation model Capacity planning Monthly 1995-2001 
  

Taiwan 
Ito and Lee (2005) Reduced form estimation of 

natural logit 
Demand forecasting Monthly 1986-2003 

 
× USA 

Fageda (2005) GRAVITY MODEL  Demand forecasting Monthly 2001-2007 
 

× Spain 

Wei and Hansen (2005) Nested logit model Capacity planning Monthly 1995 
  

USA 

Wei and Hensen (2006) Log-linear demand model Demand forecasting Monthly 2000-2006 
 

× USA 

Grosche et al. (2007) GRAVITY MODEL  Demand forecasting Monthly 2004 × 
 

Germany 
Wei and Hansen (2007) Game-theoretic models Capacity planning Quarterly 1987-1998 

 
× USA 

Pitfield et al. (2010) Three stage least square 
method 

Demand/Capacity 
forecasting 

Yearly 1990-2006 × 
 

EU, USA 

Brueckner and Zhang (2010) Mathematical model based on 
a detailed theoretical model of 
competing duopoly airlines 

Capacity planning Yearly 1993-2008 × 
 

World 

Pai (2010) Regression model Capacity forecasting Monthly 2000-2007  × USA 
Suryani et al. (2010) System Dynamics  Demand forecasting Yearly 1996-2007 ×  Taiwan 
Zou and Hansen (2012) analytical model  Capacity planning Monthly 2007-2012  × USA 
Britto et al. (2012) Regression model Demand forecasting Quarterly 2003-2006  × USA 
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Author   Modelling Method 

 

Data Type Time Series 

Market 

Case Study Category International 

D
om

estic 

Chi and Baek (2013) Autoregressive distributed lag Demand forecasting Monthly 1996-2011  × USA 

Wang Et al. (2014) Three-stage least square 
method 

Demand/Capacity 
forecasting 

Monthly   × China 

Zou and Hansen (2014) Regression model Capacity planning Quarterly 2004-2008  × USA 
Gillen and Hazledine (2015) GRAVITY MODEL  Demand forecasting Monthly 2013-2015  × Australia, Canada, 

New Zealand, 
Norway, Sweden 

Zhang (2015) Dynamic Panel Data Model Demand forecasting Monthly 2009-2013 ×  Australia 
Srisaeng et al. (2015) Genetic Algorithm Demand forecasting Quarterly 1992-2014   × Australia 
Binova (2015) Gravity model Demand/Capacity 

forecasting 
Monthly 2012 ×  USA, Europe 
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2.5. Supply-demand equilibrium of the Australian domestic flight market 

Despite the studies on supply-demand equilibrium in the aviation industry, the Australian flight 

market has garnered a small share of these research efforts (Gillen and Hazledine, 2015). The 

studies on this market largely focused on the demand modeling of the international flight market 

in Australia (Oppermann and Cooper, 1999; Hensher, 2002; Ashwini et al., 2012; Zhang and 

Findlay, 2014; Zhang, 2015).  

Several studies have investigated the Australian domestic market in the last decade, focusing 

mostly on the estimation of air passenger demand for a regional airline hub or specific airport 

(Battersby and Oczkowski, 2001; Hensher, 2002) or passenger demand at a macro-level (Srisaeng 

et al., 2015). Battersby and Oczkowski (2001) developed an econometric analysis on the four 

major routes of Australian domestic market including the routes of Sydney- Melbourne, Sydney-

Brisbane, Melbourne- Brisbane and Sydney- Coolangatta to identify the key drivers on passenger 

demand air travel behaviour.  They developed demand models to identify the elasticity of some 

key determinants including airfare, industry production, and income on discount, full economy 

and business class passengers. Their findings highlight the passenger demand of Australian 

domestic market less elastic to the ticket price, and income, compared to those of the other markets 

across the globe. Hensher (2002) suggested an econometric model to estimate the passenger 

demand of Hazelton Airlines for the Canberra flight market and to study the feasibility of adding 

a hub at Canberra’s international airport. Hensher (2002) defined some new parameters for route 

characteristics such as productions and attractions at the origins and destinations, and a definition 

of airline service quality based on attributes such as on-board services, aircraft type, and airline 

reputation. Srisaeng et al. (2015) proposed a forecasting model based using a genetic algorithm to 

predict passenger demand in the Australian domestic market. Srisaeng et al. used the aggregated 
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monthly data of the socio-economic parameters such as population, GDP, GDP per capita, interest 

rates, airfares, and world jet fuel prices to predict passenger demand in the Australian domestic 

market at a macro level. That study also used dummy variables to address the effects of significant 

Australian incidents such as Ansett Australia’s collapse in 2001, the Sydney Olympic Games in 

2000, and the Melbourne Commonwealth Games in 2006.  

On the supply side, Gillen and Hazledine (2015) merged the data of four Eastern/ Southern states 

in Australia with five other countries’ data and used a gravity model to address the determinants 

of service and pricing, on the regional routes. Their study applied flight frequency and available 

seats to explain capacity, and in the absence of the air passenger factor, the dependent variable was 

directly addressed by the initial demographic factors, such as population and distance. They 

circumvented the bilateral relation between flight frequency and air passenger demand.  

2.6. Optimal modeling of Capacity plans 

Capacity planning can be very sophisticated particularly when it includes the entire route network 

compared to the individual routes (Teodorovic and Krcmar-Nozic, 1989). However, airlines need 

this planning as it is a prerequisite for the flight scheduling and crew allocation (Hsu and Wen, 

2000). The determination of optimal flight frequency or type of aircrafts are among the main areas 

that prior studies have addressed besides the other topics such as hub-and-spoke network 

development, hub location, and airport capacity development (e.g., Teodorovic and Krcmar-Nozic, 

1989; Jaillet et al., 1996; Hsu and Wen, 2000; Pitfield et al., 2010; Takebayashi, 2011). To 

determine the efficient flight frequency or aircraft size, studies have focused on meeting air traffic 

demand, maximizing airline profit, or improving the market share of competitive routes. 
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Some prior studies developed single- or multiple- objective mathematical models on a given 

network for an airline to find the optimum value either as flight frequency to maximise the airline’s 

profitability or to minimise the operating costs (e.g., Teodorovic and Krcmar-Nozic, 1989; Jaillet 

et al., 1996; Hsu and Wen, 2000). These studies treated passenger demand as exogenous and 

ignored the interaction between flight demand and flight frequency (e.g., Hsu and Wen, 2003; 

Takebayashi, 2011; Mohammadian et al., 2019a). Further, these studies only applied flight 

frequency for capacity planning. As noted by Mohammadian et al. (2019a), the two variables of 

airline capacity decisions, flight frequency and aircraft size, need to be applied together to reflect 

a practical and comprehensive picture of airlines policies in capacity planning. 

Some studies in the context of economic competition applied the supply-demand equilibrium in 

hub and spoke network design and the hubbing problem (Hansen and Kanafani, 1987; Hansen, 

1990; Adler, 2001; Hsu and Wen, 2003; Takebayashi, 2011). Hansen and Kanafani (1987) 

developed a model to predict passenger demand resulting from different airlines’ hubbing 

strategies. They indicated that the international traffic through an airport is highly sensitive to the 

airline’s strategy. Hansen (1990) developed an airline hub competition model that integrated 

airlines and passengers route choices. He applied flight frequency on the origin-destinations routes 

of a hub-dominated network as the decision variable. Similar to Hansen and Kanafani (1987), he 

assumed passenger demand to be inelastic with respect to the airfare and airline service changes. 

Adler (2001) proposed a demand model based on a two-stage Nash best-response game. The model 

maximises airline profit by developing an optimal hub-and-spoke network. In the model, flight 

frequency, aircraft size and airfares are the decision variables. Takebayashi (2011) proposed an 

extended bi-level market model of airline network design to maximise airline profit and applied 

aircraft size besides flight frequency as decision variables. These studies assume flight demand to 
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be fixed or exogenous and apply profit maximization as the model objective. Hsu and Wen (2003) 

developed a model under supply-demand equilibrium to obtain the optimal number of international 

flights for China airlines on a hub and spoke network. The model includes two submodels, a 

passenger airline flight choice model to estimate an airline’s market shares as well as predict 

market sizes for all routes under a network, and an airline flight frequency programming model to 

find the optimal flight frequency to maximise the airline’s total profit. The submodels are later 

integrated to analyze the supply-demand interactions. From their model, capacity planning is more 

accurate as it considers the interaction between flight frequency and passenger demand. 

Wei and Hansen (2007) applied three different game-theoretic models to empirically determine 

the strategic capacity plan in duopoly markets. Their model comprises two submodels; cost 

function and demand sub-model, targeted to choose the optimal flight frequency and aircraft size 

to maximise the airline’s profit. The demand sub-model is based on a nested logit model which it 

assumes flight frequency and aircraft size as exogenous variables, and in turn ignores the 

interactions among passenger demand, flight frequency and aircraft size in the modeling. Their 

findings reveal the impact of flight distance on airlines’ capacity planning. Furthermore, they 

highlight how a competitive environment may influence on airlines’ strategies of capacity 

planning.  

2.7. Economies of Density 

Airlines must focus on their cost structure and find the solutions to achieve the higher levels of 

productivity. The aviation industry is highly capital intensive, therefore airlines profitability 

depends upon fuel efficiency, aircraft utilisation, and labor expenses. The theory of cost is one of 

the significant theories of economies which airlines must apply to develop their business strategies 

and frameworks. Cost management of airlines comprises the elements more than just minimising 
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the labor expenses or jet fuel costs. It includes finding the right cost structure to optimise the 

expenses across the entire business (Vasigh et al., 2013, p. 200). When airlines come to decide 

about the theory of cost, which it would apply as a base for cost structure modeling, there are 

different cost theories comprising economies of scale, economies of scope, and economies of 

density.  

Economies of scale refer to “the advantages gained when long-run average costs decrease with 

an increase in the quantity being produced” (Vasigh et al., 2013, p. 198).  This theory is common 

in highly incentive industries with relatively high fixed costs such as railroads or aviation industry. 

Economies of scope refer to “the situation where the company can reduce its unit costs by 

leveraging efficiencies through sharing of resources for multiple projects or production lines” 

(Vasigh et al., 2013, p. 199). In a simple statement, it might be more cost efficient if multiple 

projects or processes when they are implemented together compared to the time they are performed 

separately. Economies of density refer to “cost reductions that result when a company utilizes a 

bigger plant size in the production a single product” (Vasigh et al., 2013, p. 27). Economies of 

density are achieved through the operations consolidation. The aviation industry may apply this 

theory by developing the hub-and-spoke networks. Under a hub-and-spoke network, airlines likely 

enable to increase passenger density and fly aircrafts with higher load factor as well as to fly more 

on their operating routes (Vasigh et al., 2013, p. 200). Airlines may apply one or a combination of 

these mentioned theories to model their cost controls.  Low cost carriers vs. legacy airlines are a 

good example showing how pursuing different cost policies may differentiate between airlines 

operation.  

Early studies on cost economies primary concentrated on proving the existence of economies of 

scale in the aviation industry. White (1979) identified a negligible impact of economies of scale at 
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the overall firm level in the airline industry. This finding has been endorsed by the other studies 

(e.g.  Caves et al.,1984; Gillen and Morrison, 2005). Liu and Lynk (1999) discussed the post-

deregulation of the US aviation market and highlighted the existence of economies of scope. Bailey 

and Friedlaender (1982) proved the existence of economy of scope in the form of economies of 

networking. However, most recent studies on cost economies have been discussed the existence 

of economies of density. By having the access to the hub-and-spoke networks, airlines enable to 

apply relatively larger aircrafts to move passengers, compared to point-to-point flight on their daily 

operations, which in turn increase airlines available seats miles. Having access to the hub-and-

spoke network, airlines also enable to add new spoke to their networks and increase the traffic 

density which in turn lower the marginal operating cost per passenger. This consequently improves 

airlines’ competitiveness, and ‘capabilities for further expansion (Brueckner and Spiller, 1994). 

As discussed by Baltagi et al. (1995), higher level of an airline’s output in terms of more available 

seats or number of departed flights negatively influences the average operating costs. This 

confirms that higher traffic density would lead in lower unit costs that in turn result in lower 

operating costs per aircraft movement, which it proves the presence of economies of density 

(Zuiderg, 2014).  

Economies of density describes the growth of a firm’s output with respect to a constant network 

size and route structure, whereas economies of scale addresses changes in the network size. 

Regarding these terminologies, the authors studied the potential cost saving originated from the 

growth in either output or network. Most of the prior studies found the benefits of economies of 

density versus no impact of economies of scope in increasing the potential cost saving. In more 

details, there are cost benefits arising from the traffic growth or, in another word, higher density, 
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given by having a constant network size. By contrast, there is no cost advantage for airlines to 

operate larger networks (Jara-Diaz et al., 2013). 

As discussed by Zou and Hansen (2012), given by no congestion, economies of density lead 

airlines to provide more plane miles by either a greater number of flights or larger aircrafts. More 

plane miles result in less unit operating costs for airlines, and consequently lower generalised unit 

cost for passengers. Hence, without capacity constraints, there is an iterative loop creating higher 

economic density on the demand side, and more plane-miles on the supply side of the flight 

equilibrium. 

However, this statement is no longer valid once congestion in terms of capacity constraints is 

added to the equilibrium. Capacity constraints introduce a new factor, named flight delay, to the 

equilibrium. As a result, more density results in higher flight delays due to capacity constraints. 

Flight delays incur extra cost for airlines, offsetting the economies of density. In fact, higher flight 

delays lead to less passenger demand either directly or indirectly as an outcome of the airline 

responses (Zou and Hansen, 2012). 

2.8. Flight Delay 

Delay is a measure applied to assess the performance of all transport systems (Wieland, 1997). It 

is also identified as a key driver affecting customer loyalty (Vlachos and Lin, 2014). With the 

increase in air transport demand and supply-side constraints, the subject of flight delays has drawn 

much research interest in the past two decades (Britto et al., 2012).  

While some scholars studied the factors that initially cause flight delays (Abdel-Aty et al., 2007), 

others focused on how flight delays propagate in a flight network (AhmadBeygi et al., 2008; Wong 

et al., 2012). Some studies treated flight delays as an explanatory variable in flight demand 
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modeling (Hansen, 2002; Britto et al., 2012) or capacity planning (Zou and Hansen, 2014). Others 

studied the financial and customer-related aspects of flight delays (Ferrer et al., 2012; Lubbe and 

Victor, 2012; Peterson et al., 2013). 

In some studies, flight delays were used to index an airline’s performance and assess airport 

efficiency (AhmadBeygi et al., 2008; Pathomsiri et al., 2008). These studies identified the 

parameters of flight delays, including seasonal and temporal factors (Abdel-Aty et al., 2007), 

weather and climate (Abdelghanya et al., 2004), airport specification and demand patterns 

(Dillingham, 2005), capacity constraints (Wong et al., 2002), aircraft type and number of 

scheduled flights (Kafle and Zou, 2016), and airline and airport operational performance 

(Reynolds-Feighan and Button, 1999; Muelle and Chatterji, 2002). For instance, Abdel-Aty et al. 

(2007) found evidence of regularity in the arrival delays of non-stop flights at Orlando’s 

International Airport in the U.S. They identified the time of the day, day of the week, season, flight 

distance, and time buffer between scheduled flights as the determinants of flight arrival delays. 

According to Abdelghanya et al. (2004), bad weather accounts for 75% of all flight delays which 

can snowball over time due to the interdependencies between airline resources (aircraft, flight and 

cabin crew) and airport facilities (landing bridges and apron crew).  

Similarly, Abdelghany et al. (2004) highlighted airline recovery action as a factor to curb the 

impact of adverse weather on the scheduled flights. Seasonality and daily propagation patterns are 

identified as antecedents of delays when estimating the distribution of flight delays (Tu et al., 

2008). Tu et al. (2008) attributed the change in flight demand and weather due to seasonality and 

crew connection issues and use the delay built-up from earlier flights to explain the daily 

propagation pattern of flight delays. 
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Airlines desire a high level of airport utilization and seek to minimise their operating costs 

(AhmadBeygi et al., 2008). Therefore, with realistic airspace constraints, a disruption in the 

scheduled flights may affect subsequent flights, which may lead to passenger dissatisfaction. 

According to Wong et al. (2002), capacity constraints increase the runway congestion level, which 

is also a major cause of operational flight delays.  

Prior studies have found flight delays to influence demand modeling or capacity planning. Pai 

(2010) reported flight delays as an important factor that affects the flight frequency and aircraft 

size on airline routes in the U.S. According to Pai (2010), more flight delays may lead airlines to 

reduce the frequency of flights and use smaller aircrafts. Britto et al. (2012) reported that flight 

delays result in lower flight demand and higher airfares on a route, creating a decline in both 

passenger and airline welfare. Zou and Hansen (2012) discussed how airlines attempt to reduce 

flight delays by shifting to fewer flights and using larger aircraft. Zou and Hansen (2014) noted 

that flight delays increase airfares because airlines tend to pass on the delay cost to the travelers. 

Appendix 2.1 provides a summary of some of the prior studies in the field of flight delay 

forecasting and modeling.   

2.9. Summary  

With respect to the review on the prior studies which provided on the previous sections of literature 

review chapter, this section provides a summary of research problems. These problems/ gaps are 

applied to design the study framework.   

2.9.1. Determinants of air supply-demand equilibriums 

As discussed in Section 2.2-5, a number of studies have investigated the regional, national or 

international data to identify the factors in either stimulating the flight demand (Chi and Baek, 
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2013; Fridstorom and Thune-Larsen, 1989; Ito and Lee, 2005; Jorge-Calderón, 1997; George et 

al., 1974; Wei and Hansen, 2006), or determining the optimum capacity on high demand routes or 

hub-and-spoke networks (Givoni and Rietveld, 2010; Hsu and Wen, 2003; Pitfield et al., 2010; 

Teodorovic and Krcmar-Nozic, 1989; Zou and Hansen, 2012). 

None of the existing studies explored the determinants that drive the supply-demand equilibrium 

on the level of the origin-destination routes and the parameters that influence the capacity decisions 

of the dominant carriers in the Australian domestic market. In fact, previous research omitted how 

the domestic airlines managed and met the demands of the potential passengers of the regional 

routes and translated this demand into capacity algorithms. Airline strategies for capacity decisions 

appear to depend not only on flight demand but also on other parameters such as the characteristics 

of the endpoints, competition from other airlines and/or other transport substitutions, and airline-

related factors such as jet fuel cost and airline policy.  

As discussed in Section 2.4, no study has comprehensively addressed the subject of airline capacity 

decisions in the Australian domestic market. Similar studies in the literature primarily focused on 

domestic or international flight routes to large cities in the U.S. or Europe whose geography of the 

flight routes and the economics of passenger aviation are vastly different from the Australian 

domestic flight market (Gillen and Hazledine, 2015). 

Therefore, one of the key purposes of this study is thus to investigate the supply-demand 

equilibrium of domestic air transport in Australia to reveal how the domestic airlines developed 

their capacity algorithms considering the number of flights, aircraft size, and load factor. The 

research questions in this section are thus stated as follows: These questions are targeted to address 

in Chapter 3 of this study. 
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1. Do airline capacity strategies for the Australian market differ, based on the short, medium 

and long-haul routes? If so, what factors drive these strategies? 

2. How do the supply side parameters, including competition, participation of low-cost 

carriers, and jet fuel cost inflation, affect passenger demand? 

3. How do the demand-related factors influence the airlines’ capacity decisions?  

2.9.2. Determinants of flight delay 

As discussed in Section 2.6, flight delay is known as one of the key drivers in the supply-demand 

equilibrium. Despite the significance of flight delays on the performance of the Australian 

domestic aviation industry, empirical studies have yet to examine the factors affecting this 

phenomenon in Australia. Studies have addressed the U.S. or European markets which are 

geographically and economically different from the Australian domestic flight market. As 

discussed by Gillen and Hazledine (2015), the air transport system in the U.S. and Europe is 

supported by mature 360° hub-and-spoke networks. In addition, secondary airports are used in the 

larger cities to facilitate the activities of the low-cost carriers. Such facilities do not exist in 

Australia (Gillen and Hazledine, 2015). Using the data from the Australian domestic aviation 

market, one of the purposes of this study is to address this gap. Further, most studies employed a 

micro level analysis involving daily data to investigate the factors that influence flight delays 

(Hansen, 2002; Abdel-Aty et al., 2007; AhmadBeygi et al., 2008; Ding and Li, 2012). In contrast, 

this study addresses this issue by including new route- and Australian domestic-level factors such 

as jet fuel price, participation rate of the low-cost carriers, and airline competition to model flight 

delays. These research problems are aimed to address in Chapter 4 of this study. 
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2.9.3. Optimal Capacity Planning 

Airlines need to consider the economies of density in the air supply-demand equilibrium for any 

model in demand modeling or capacity planning. This theory builds logic behind the interactions 

among passenger demand, flight frequency, aircraft size, airfare, and flight delay. Therefore, the 

economies of density thinking, this study proposes an optimisation model for airline capacity 

planning of individual routes of a hub and spoke network or an airport. The following are the key 

problems/gaps which this study aims to address in Chapter 5: 

 Different from prior studies which majority applied pure theoretical approaches to develop 

the optimisation model, this study aims to develop an optimisation model based on a 

passenger demand function derived from the empirical analysis on parameters which 

practically applied by airlines for capacity planning.  

 The prior studies have applied an airline’s profitability or operating cost as the model 

objective to determine the optimal number of flights under supply-demand equilibrium. 

This study’s novelty considers flight demand as the objective, and flight frequency and 

aircraft size as the decision variables.  

 This study includes all the key drivers of supply-demand equilibrium and their relations in 

modeling to empirically estimate the passenger demand equation as the model objective. 

In a new optimisation framework, this equation is applied to identify the optimal flight 

frequency and aircraft size. 

 Compared to the prior studies of capacity planning, most of which used aggregate micro-

level data, this study applies macro-level factors in modeling. 

 This study highlights how passenger demand elasticity to the variables of capacity planning 

differs among the routes, as a result of different markets specifications.  
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3.1.Introduction 

This chapter is to develop an econometric model to identify the key drivers of airlines capacity 

planning under supply-demand equilibrium of flight market. This chapter begins with a 

background of airline capacity planning. Then it is followed by a description of Australian 

domestic market where is applied as the research case study. Section 3.4 identifies the model 

parameters, followed by Data Description. It then discusses the econometric technique to analyse 

the data, followed by model formulation in Section 3.6. Section 3.7 provides pool results of the 

econometrical analysis. The final section concludes the findings of the chapter.   

3.2.Background 

Airlines always seek to hold their core competencies to adequate standards through competitive 

service quality and airfares to control their market share and improve the level of profitability. For 

this purpose, capacity planning is one of the primary tools that carriers rely on to manage and 

control air traffic demand and airfares (Wei and Hansen, 2005; Carey, 2015). As such, the carriers 

may alter the number of flights, use different types of airplanes, upgrade the seats in the aircraft, 

and even increase the load factor to maintain their market share and profitability, which can 

occasionally lead to passenger dissatisfaction (Stock, 2013). Indeed, capacity decisions combined 

with the traditional approaches such as the control of airfares and hedging contracts have 

historically been used by airlines to mitigate the risk of bankruptcy arising from unexpected events 

such as the 9/11 attacks, the 2008 global financial crisis, and the oil price surge in 2008 (Wei and 

Hansen, 2005; Purnanandam, 2008). However, the increase in airfare appears to have been 

ineffective for airlines post deregulation because of the keen competition, which is expected to 

grow as the low-cost carriers continue lift their market share (Borenstein, 2011). 
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Airlines have used hedging contracts to reduce any financial loss stemming from the fuel price 

volatility. However, such financial instruments have not been completely successful because of 

the complexity of the hedge fund strategies and the high cost of hedging (Brailsford et al., 2001; 

Carter et al., 2004). Thus, airlines employ various financial strategies, from not hedging to fully 

hedging using a combination of products (SEC, 2005-2015). Thus, the role of capacity decisions 

in airline profitability is expected to become more important because of the diminishing relative 

effect of the other airline tools such as airfare increases or hedging contracts. 

According to the discussion in section 2.8.1 of literature review section, the key research question 

is to identify the underlying factors in capacity decisions, as best practices, in the supply-demand 

equilibrium. Identifying these factors provide an effective base for the forecast of air transport 

activities in the Australian domestic air market. Having reliable forecasts in the aviation industry 

are key information for airlines, investors, and the other stakeholders, and enhance decision 

making at various levels, such as fleet planning, airline route network development, and civil 

aviation and airport development (Srisaeng et al., 2015). In fact, possessing accurate knowledge 

enables the stakeholders to identify the best algorithm on capacity regarding the changes in travel 

demand and how these capacity decisions influence airline demand, market share, and profitability 

(Wei and Hansen, 2005).  

Any capacity decision in the aviation industry triggers an interaction between the factors of supply 

and demand that ultimately leads to an equilibrium shift. Capacity decisions affect the interrelated 

interactions among the passenger flow, flight frequency, aircraft size, and load factor that would 

result in changes in airfare and overall capacity, or even flight delays or cancellations (Zou and 

Hansen, 2012).  
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3.3.Case Study Context: Australian domestic market 

The Australian aviation industry was founded to connect Australia’s regional communities to the 

major cities in Australia (Baker and Donnet, 2012). The industry, historically controlled by the 

Federal Government, was de-regulated in 1989. Since then, there has been several controversial 

changes in the domestic aviation industry (BTE, 1995). From the passenger’s perspective, de-

regulation was successful, resulting in lower average airfares and more flights, and improved the 

service quality due to the keener competition between the legacy and low-cost carriers (BTE, 

1995). The domestic aviation market is expected to expand because of the population growth and 

the vast distances between the cities of Australia (Srisaeng et al., 2015). According to the annual 

reports of the Department of Infrastructure and Regional Development (BITRE, 2006-2016), 58.4 

million passengers were carried on domestic flights for the year ending in June 2016 across 72 

routes in Australia, an increase of 2.1% y-o-y3 and 32.1% from June 2006. From the carriers’ 

perspective, the effect of de-regulation was not as clear cut. Despite the improvement in production 

efficiency with the inclusion of the low-cost carriers as the new service providers, airline 

profitability was adversely influenced by price competition and higher levels of overall capacity, 

particularly during the global recession periods such as the downturn from 2007-2009 (BTE, 

1995). Consequently, the Australian aviation industry experienced several consolidations, 

bankruptcies, takeovers, and loss of airports (Baker and Donnet, 2012). Two low-cost carriers, 

Jetstar and Tiger Airways, with about 35% of the market share in 2015, and two legacy airlines, 

Qantas and Virgin Australia, were recognised as the incumbent suppliers in the domestic air 

market. (Srisaeng et al., 2015).  

 

 
3 Year On Year 
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3.4. Parameters 

Table 3.1 describes the model parameters. Three variables, flight frequency (FF), aircraft size 

(ASIZE), and load factor (LF), are selected to reflect the decisions that airlines make to manage 

their capacity regarding the specifications of flight demand. These variables are collectively known 

as the quality of service (Jorge-Calderón, 1997). In the absence of historical data on the airlines’ 

usage of aircraft types in the Australian domestic market, the average aircraft size is applied in this 

study like the previous studies (e.g. Jorge-Calderón,1997; Pitfield et al., 2010). This chapter also 

analyzes the variable of available seats, which reflects an airline’s capacity to carry passengers. 

This variable is used to investigate how demand or airline-related factors may influence the total 

capacity provided by the airlines with respect to the different capacity algorithms. The available 

seats are influenced by the parameters on both sides of the supply-demand equilibrium of the flight 

market (Jorge-Calderón, 1997; Barrett, 2004; Pitfield, et al., 2010). Air passenger (PASS) is the 

most well-known and frequently used parameter used to reflect the air traffic demand. A stronger 

flight demand causes an increase in flight frequency, aircraft size, and load factor (Fridstorom and 

Thune-Laresen, 1989; Jorge-Calderón, 1997; Ito and Lee, 2005; Chi and Baek, 2013).  

Table 3.1 Description of Parameters 

Name* Definition Type Data source 

Flight 
Frequency 

Total number of flights for a given 
route per month.  

Monthly/OD DIRD, Domestic Aviation 
Activity Reports 
(http://bitre.gov.au/) 

Average 
Aircraft Size 

Average aircraft size calculated as 
Number of Available Seats divided by 
Flight Frequency for a given route and 
time period 

Monthly/OD DIRD, Domestic Aviation 
Activity Reports 
(http://bitre.gov.au/) 

Load Factor 
(%) 

Average Passenger Load Factor for a 
given route per month 

Monthly/OD DIRD, Domestic Aviation 
Activity Reports 
(http://bitre.gov.au/) 

Number of 
Available 
Seats 

Total number of available seats for a 
given route per month 

Monthly/OD DIRD, Domestic Aviation 
Activity Reports 
(http://bitre.gov.au/) 
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Name* Definition Type Data source 
Number of 
Passengers 

Total number of passengers for a given 
route per month 

Monthly/OD DIRD, Domestic Aviation 
Activity Reports 
(http://bitre.gov.au/) 

Jet Fuel Price Average monthly fuel price in US 
airline industry (U.S. Gulf Coast 
Kerosene- Type Jet Fuel spot price 
FOB) 

Monthly/World U.S. Energy Information 
Administration 
(https://www.eia.gov/) 

Number of 
Low-Cost 
Carriers 

Number of low-cost carriers 
participating for a given route and time 
period 

Monthly/OD DIRD, Domestic Aviation 
Activity Reports 

HHI Hirschman-Herfindahl Index on the 
route per month 

Monthly/OD DIRD, Domestic On-time 
Performance Reports 
(http://bitre.gov.au/) 

Employment 
Rate 

Calculated as the product of 
Employment Rate (%) of each city pair 
for a given route and time period (in 
this study) 

Monthly/State4 Department of Employment 
(http://lmip.gov.au/) 

Airfare Australian Domestic Airfare - Real 
Best Discount (ref. month: July 2003) 
for the given period 

Monthly/ 
Australia 
Domestic 
Market 

DIRD, Domestic Air Fare 
Indexes (http://bitre.gov.au/) 

Population  
(in billion) 

Calculated as the product of Population 
of each city pair for a given route and 
time period (in this study) 

Monthly/State ABS 
(http://www.abs.gov.au/) 

*Information covers both directions of each city pair for a given route. 

Airfare (FARE) is a significant explanatory variable of air travel. All other parameters being equal, 

a higher airfare leads to lower levels of flight demand. Due to the unavailability of the average 

monthly airfares of the routes under study, the economy-class airfare index in the Australian 

domestic market was used as a proxy for this parameter. The socio-economic factors have been 

recognised as the primary parameters in the supply-demand equilibrium that are normally used for 

demand modeling (Ito and Lee, 2005). These factors reflect the commercial, cultural, and industrial 

activities in a flight’s origin and destination. Higher levels of the social-economic factors 

positively stimulate flight demand (Ito and Lee, 2005). This study applies the product of population 

 
4 From a report published by the Department of Employment, the three- month moving average of the original 
quarterly data is used to provide the monthly data on the employment rate. 
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(POP), and employment rate (EMP) of the origin-destination (OD) pairs as proxies for the socio-

economic factors. 

Jet fuel cost (JFuel) is the most volatile airline operational expense that affects the capacity 

algorithms of the airlines. Various scholars have addressed this parameter as a key factor that 

adversely influences the quality of flight service (e.g., Borenstein, 2011; Borenstein and Rose, 

2014) and passenger satisfaction in terms of flight cancellations and delays that ultimately results 

in a reduction in flight demand (Stock, 2013). The findings of Ito and Lee (2005) surprisingly did 

not recognise jet fuel cost as a significant parameter in demand modeling. Borenstein (2011), and 

Borenstein and Rose (2014) addressed the fluctuation of jet fuel cost as a factor in the revenue 

volatility of the airline, not for changing an airline’s capacity algorithms. Due to the unavailability 

of the jet fuel cost information in the Australian domestic market, this study uses the monthly 

information of the U.S. Gulf Coast Kerosene-Type Jet Fuel Spot Price to address this parameter in 

the proposed model. Jet fuel have been priced globally, correlated to diesel and gasoline prices and 

related to the passenger demand fueled by global economic growth (Davos, 2018). Therefore, a 

high-level correlation is expected between the monthly jet fuel prices of the Australian domestic 

market with those of the U.S. Gulf Coast Kerosene-Type Jet Fuel Spot Price. Consequently, the 

proposed proxy may sufficiently address the jet fuel price of Australian domestic market in this 

study. 

Compared to the legacy airlines, the low-cost carriers have followed different patterns in demand 

modeling and capacity algorithms. The presence of the low-cost carriers in the flight market has 

been hypothesized to positively affect flight demand and quality of service (Barrett, 2004; Pels, 

2009). This study addresses this parameter by the number of participating low-cost carriers for the 

given route and period. 
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Competition between the airlines reflects a significant effect on flight demand in air transportation 

(Barrett, 2004; Pitfield et al., 2010; Gillen and Hazledine, 2015). Gillen and Hazledine (2015) have 

posited that stiffer competition results in lower ticket prices and flight service improvement, both 

of which stimulate flight demand. However, the Australian aviation industry has experienced many 

consolidations, bankruptcies, takeovers or loss of airports because of market competition policies 

since de-regulation (Baker and Donnet, 2012). The Hirschman–Herfindahl Index (HHI) was 

initially selected for this study as an indicator of airline competition in the routes examined. The 

HHI is a standard approach used to measure the airlines’ competition levels for a specific route 

(Barrett, 2004; Pitfield et al., 2010; Gillen and Hazledine, 2015). The HHI is calculated for route i 

in period t as given below: 

HHI୧୲ = MSଵ୧୲
ଶ + MSଶ୧୲

ଶ + MSଷ୧୲
ଶ +. . . +MS୬୧୲

ଶ            

where MSnit is the market share of airline n on route i in period t. The HHI holds values from “1” 

to “0” reflecting monopoly and perfect competition, respectively, in the market, and the HHI 

includes the participation of all the active airlines. As the data are cross-sectional and include the 

information of 21 OD pairs, 21 dummy variables were included in the model. Considering these 

dummies over the time period, the information was recognised as panel data, and a time-series 

analysis was conducted for all the routes simultaneously.  

To obtain adequate datasets, this study relies on several public and private agencies, including the 

Australian Bureau of Statistics (ABS) and the Department of Infrastructure and Regional 

Development (DIRD). Proxies were used for some parameters in the case of the non-availability 

of monthly state data including the jet fuel costs and the average monthly ticket prices of the OD 

markets. The information regarding the parameters of the targeted routes was estimated from the 
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information on the origins and destinations. The data were seasonally adjusted to reflect the 

industry’s demand pattern.  

 

3.5. Data 

The available data cover twenty-one major flight routes among the state capitals of Adelaide, 

Melbourne, Sydney, Perth, Darwin, Hobart, Canberra, and Brisbane. Figure 3.1 presents the routes 

that were targeted in this research and comprises the bilateral monthly data between origin and 

destination from January 2004 to December 2015. This market was chosen due to the availability 

of historical data of the different demand- and airline-related variables used in this research. This 

market was a good and reliable sample of the Australian domestic market providing the possibility 

of an effective analysis on the factors of competition and the participation of the low-cost carriers. 

The dataset contains the data of four dominant airlines: Qantas, Virgin, Jetstar, Tigerair, and the 

other carriers that participated during this period include QantasLink, Regional Express, Virgin 

Australia - ATR/F100 Operations, and Virgin Australia Regional Airlines. The selected market 

provides enough time-series information of a maximum of 138 observations for each route. 

However, some routes, including Brisbane-Hobart, Darwin-Perth, and Darwin-Sydney, did not 

operate for all twelve months; hence, the dataset was sparse for these routes. 
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Figure 3.1 Targeted Domestic Origin-Destination Flight Routes  

(for reference only; identical to Figure 1.4) 

 

Distance is the most common locational factor (Russon and Riley, 1993). This factor affects 

demand in two diametric ways. First, a longer distance negatively affects flight demand because 

of the reduced social and commercial interaction between the origin and the destination. 

Conversely, the relative significance of air travel increases at greater distances compared to the 

other modes of transportation (Jorge-Calderón, 1997). Domestic low-cost carriers such as Jetstar 

participate less than the full-service airlines such as Qantas on the long-haul routes because of their 

limited access to the hub-and-spoke networks (Whyte and Lohmann, 2015).  

3.6.Methodological Framework 

3.6.1. Model Specification 

As discussed below, three key specifications need to take into accounts to develop the 

methodological framework, and identify the model, as the best practice, to analyse the data. These 

three specifications are as below. 

- the data is categorized as panel data (Cross-Sectional time-series) 
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- Distance needs to be account is the analysis 

- There is endogeneity effect between flight demand, and the variables of capacity decisions 

3.6.1.1.Panel Data Analysis 

Past studies recognised the gravity and econometric models as being the more popular techniques 

to forecast PASS and flight services (Fildes et al., 2011; Gillen and Hazledine, 2015). The same 

studies noted that while the gravity models inherently fit the demand modeling of air traffic, their 

performance was ineffective in modeling markets with capacity constraints or estimating the 

effects of distance on market size (Gillen and Hazledine, 2015). Thus, this method appears to be 

ineffective for the framework of the supply-demand equilibrium intended in this study.  

As the dataset is categorized as a cross-sectional time-series, two methods of panel data analysis, 

fixed effects and random effects general least squares techniques are applied to estimate the 

regression models (Maddala and Lahiri, 1992). The fixed effects model assumes that the panel 

specific effects are correlated with the independent variables. The random effect model assumes 

that the panel specific effects are uncorrelated to the other covariates of the model. If the random 

effects assumption is valid, the random effects model can provide more effective outputs than the 

fixed effect model, otherwise the random effects model is inconsistent (Wooldridge, 2013). The 

more effective model can be selected by applying a Hausman test with the following null 

hypothesis: Ho - the difference between the coefficients of two models of fixed and random-effects, 

is not systematic. If Ho is not rejected, then the coefficients estimated by the random effects model 

are more effective than those of fixed effects model (Wooldridge, 2013). 

Appendix 3.1 presents the coefficients of the fixed effects and random effects models which 

provide the outputs of the Hausman test for the passenger model. The test output of demand model 
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rejects Ho (𝑥ଶ = 159.48). Therefore, the outputs of fixed effects model are more effective than 

those of the random-effects model. However, as the distance-related factors including distance or 

time travel ratio5 are time-invariant, the fixed effects model is not applicable as these variables are 

omitted in the modeling due to the correlation with the routes dummy variables (Wooldridge, 2010, 

p.288). 

3.6.1.2.Distance-related factor analysis 

To assess the distance related factor in modeling, the market under study is categorized into three 

distance groups of short-, medium- and long-hauls as proposed by Abrahams (1983). Table 3.2 

presents the routes in the distance grouping. Regarding the distance grouping, Appendices 3.2, 3.3, 

and 3.4 provide the descriptive statistics of the parameters for three distance groups. Table 3.2 also 

provides a definition of the each of the groups by distance. 

Table 3.2 Flight Route Categories Based on Distance 

Group Distance Flight Route 

Short-haul Less than 800 km (≈ 500 

miles) 

Adelaide - Melbourne, Brisbane - Sydney, Canberra - 

Sydney, Canberra - Melbourne, Hobart - Melbourne, 

Melbourne - Sydney 

Medium-

haul 

Greater than 800 km (≈ 500 

miles) & less than 2400 km 

(1500 miles) 

Adelaide - Brisbane, Adelaide - Canberra, Adelaide - 

Sydney, Adelaide - Perth, Brisbane - Canberra, Brisbane 

- Hobart, Brisbane - Melbourne, Hobart - Sydney 

Long-haul Greater than 2400 km (≈ 1500 

miles) 

 

Brisbane - Darwin, Brisbane - Perth, Darwin - 

Melbourne, Darwin - Perth, Darwin - Sydney, 

Melbourne - Perth, Perth - Sydney 

 
5 The time travel ratio is calculated as the travel duration by car divided by travel duration by flight for a given route. 
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3.6.1.3.Endogeneity effect 

In such a complex system of capacity planning, changing a factor on each side of the equilibrium 

triggers interrelated interactions among the parameters that would cause an imbalance condition, 

subsequently leading to an equilibrium shift. For example, a bilateral condition, which is known 

as endogeneity, has historically been discussed between PASS and the parameters of capacity 

decisions in the literature (Jorge-Calderón, 1997; Pitfield et al., 2010). The endogeneity problem 

normally occurs when an explanatory variable is correlated with the error term. One common cause 

of endogeneity is a loop of causality between the independent and dependent variables of a model 

(Wooldridge, 2013). No doubt, higher demand results in greater capacity from the airlines in terms 

of more FF and a larger ASIZE. Further, greater capacity improves the quality of flight service 

and lower FARE, which stimulate flight demand (PASS). According to Pitfield et al. (2010), 

relying on the ordinary regression (OLS) techniques in econometrics can potentially result in a 

biased and inconsistent estimation. Therefore, to counter the possibility of endogeneity between 

passengers and the four dependent variables FF, ASIZE, LF, and SEATS, this study avoids using 

such techniques for modeling. 

To verify the endogeneity between PASS and the model’s dependent variables, the Durbin-Wu-

Hausman (DWH) test is applied as suggested by Davidson and MacKinnon (1993) on the four 

dependent variables. This test is developed by considering the residuals of the endogenous variable 

as a function of all exogenous parameters in a regression of the original model. The DWH test 

examines the null hypothesis that endogeneity between the parameters (e.g., PASS) and the 

dependent variable (e.g., FF) has no significant effect on the estimates.  

Table 3.3 shows the outputs of the endogeneity test. In general, a small p-value (p < .05) indicates 

the rejection of the null hypothesis. The OLS method is therefore not consistent. The results of the 
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DWH test confirmed the indicated hypothesis regarding the endogeneity between the dependent 

variables and PASS. Therefore, the application of ordinary linear regression model (OLS) can 

potentially result in a biased and inconsistent estimation.  

Table 3.3 Durbin-Wu-Hausman Test Outputs 

Test of endogeneity 

H0: variable is exogenous 

FF& PASS: 

Durbin (Score) 𝜒ଶ(1)  = 9.69 (p-value= 0.0018) 

Wu-Hausman F (1,2608) = 9.63 (p-value = 0.0019) 

ASIZE & PASS   

Durbin (Score) 𝜒ଶ(1) = 45.30 (p-value = 0.0000) 

Wu-Hausman F (1,2608) = 45.64 (p-value = 0.0000) 

LF & PASS   

Durbin (Score) 𝜒ଶ(1) = 36.42 (p-value = 0.0000) 

Wu-Hausman F (1,2608) = 36.57 (p-value = 0.0000) 

SEATS & PASS   

Durbin (Score) 𝜒ଶ(1) = 35.72 (p-value = 0.0000) 

Wu-Hausman F (1,2608) = 35.85 (p-value = 0.0000) 

 

3.6.2. Proposed Technique 

To offset the endogeneity problem, econometric techniques such as the Two-Stage Least-Squares 

(2SLS) (Jorge-Calderón, 1997) or simultaneous equations approach (Pitfield et al., 2010) have 

been applied to flight demand modeling. Jorge-Calderón (1997) used the 2SLS to estimate the 

demand for the international routes of European airlines. Pitfield et al. (2010) suggested a 

simultaneous equations approach, also known as the Three-Stage Least-Squares Method, to model 
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ASIZE, FF, and PASS for nine routes in the U.S. domestic market. Gujarati (2003) suggested the 

2SLS as a preferred model in cases of system or full information methods, with no lagged 

endogenous variables, and not-so-large sample sizes. The 2SLS, as the most common technique 

in the class of the instrumental variables (IV) estimators for causal relationships, is broadly used 

by economists to estimate the parameters in the models of linear simultaneous equations to solve 

the problem of omitted-variables bias in a single equation (Angrist and Imbens, 1995). Wooldridge 

(2013) concluded that the 2SLS is a more robust and consistent model for addressing endogeneity. 

The reader can refer to Zellner and Theil (1962) for the details. 

The 2SLS technique is chosen to build the model because of the endogeneity between PASS and 

the dependent variables of the model, no lagged endogenous variables, and the medium size of the 

dataset. This technique runs in two stages. In the first stage, PASS, as the endogenous variable, 

was regressed against all independent parameters, JFuel, LCC, and HHI, and a set of three 

instrumental factors, EMP, POP, and FARE. In the second stage, a generalized least squares 

technique was applied to estimate the dependent variables, FF, ASIZE, and LF; SEATS by the 

model parameters; and an estimate of PASS.  

3.6.3. Model Formulation 

A logarithmic transformation of the variables is applied to develop the model predicated on the 

assumption that the relationship between the variables is non-linear (Pitfield et al., 2010). This 

format normalizes the model (Ito and Lee, 2005; Wei and Hansen, 2006). Thus, the coefficients 

are interpreted as the elasticity attributes rather than the typical slope attributes. The proposed 

regression models can be summarized as follows: 
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First Stage: 
 

log(𝑃௜௧) = 𝑎௉ + 𝑎ଵ log(𝑃𝑜𝑝௜௧) + 𝑎ଶ log(𝐽𝑒𝑡𝐹𝑢𝑒𝑙௧) + 𝑎ଷ log(𝐸𝑀𝑃௜௧) + 𝑎ସ log(𝐴𝑖𝑟𝑓𝑎𝑟𝑒௧)
+ 𝑎ହ𝐻𝐻𝐼௜௧ +  𝑎଺LCC௜௧ + 𝑎଻D_Route௜ + 𝜀௜௧ଵ 

 
Second Stage: 
 

log(𝐹௜௧) = 𝛽ி + 𝛽ଵ log(𝑃௜௧) + 𝛽ଶ log(𝐽𝑒𝑡𝐹𝑢𝑒𝑙௧) +  𝛽ଷLCC௜௧ + 𝛽ସ𝐻𝐻𝐼௜௧ + 𝛽ହD_Route௜ + 𝜀௜௧ଶ 
 
log(𝐴𝑆𝑖𝑧𝑒௜௧) = 𝛾஺ + 𝛾ଵ log(𝑃௜௧) + 𝛾ଶ log(𝐽𝑒𝑡𝐹𝑢𝑒𝑙௧) +  𝛾ଷLCC௜௧ + 𝛾ସ𝐻𝐻𝐼௜௧ + 𝛾ହD_Route௜ + 𝜀௜௧ଷ  
 
log(𝐿𝐹௜௧) = 𝛿஺ + 𝛿ଵ log(𝑃௜௧) + 𝛿ଶ log(𝐽𝑒𝑡𝐹𝑢𝑒𝑙௧) +  𝛿ଷLCC௜௧ + 𝛿ସ𝐻𝐻𝐼௜௧ + 𝛿ହD_Route௜ + 𝜀௜௧ସ  
 
log(𝑆𝑒𝑎𝑡𝑠௜௧) = 𝜀஺ + 𝜀ଵ log(𝑃௜௧) + 𝜀ଶ log(𝐽𝑒𝑡𝐹𝑢𝑒𝑙௧) +  𝜀ଷLCC௜௧ + 𝜀ସ𝐻𝐻𝐼௜௧ + 𝜀ହD_Route௜ + 𝜀௜௧ହ  
 

where (all variables for domestic flight) 

𝐹௜௧: Total number of flights on route i in period t  

𝐴𝑠𝑖𝑧𝑒௜௧: Average aircraft size on route i in period t  

𝐿𝐹௜௧: Load Factor rate on route i in period t 

𝑆𝑒𝑎𝑡𝑠௜௧: Available seats on route i in period t  

𝑃௜௧: Total passengers on route i in period t 

 𝐽𝑒𝑡𝐹𝑢𝑒𝑙௧: Average cost per gallon in period t 

 𝐴𝑖𝑟𝑓𝑎𝑟𝑒௧: Average airfare in period t 

𝑃𝑜𝑝௜௧: Products of origin-destination states of route i in period t  

𝐸𝑀𝑃௜௧: Products of employment rate of O-D states on route i in period t  

𝐻𝐻𝐼௜௧: HHI on route i in period t 

LCC௜௧: Number of low-cost carriers on route i in period t  

D_Route௜: Dummy variable for route i. 

 

To ensure that the instrumental variables estimates are consistent, this study uses weak instrument 

test as suggested by Stock et al. (2002), whose output is presented in Appendix 3.5. The null 

hypothesis of the test was that the instruments used to estimate the endogenous variable are weak.  

H0: Instruments that estimate the endogenous variable are weak.  

H1: Instruments that estimate the endogenous variable are strong. 
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From Appendix 3.5, the F-statistics of the Wald test output indicate a value greater than 10 (F 

[3,2607] = 622), which suggests that the instrumental variables estimated the endogenous variable 

well. The minimum eigenvalue statistics (MES) was MES = 622 (that is, greater than the 2SLS 

size of a nominal 5% Wald), which confirms the F-statistics result. The next step based on the 

model estimation on the mentioned dataset indicates the results and provides some explanations.  

3.7.Pooled Results 

Table 3.4 summarizes the results in two sections, each representing one stage of the 2SLS.  

3.7.1. Pooled results: TSLS- First Step: Flight Demand Model 

In the first stage, the coefficients indicate a positive relation among the socio-economic 

parameters, including POP, EMP, and PASS, which is consistent with previous research (Jorge-

Calderón, 1997; Abed et al., 2001; Ito and Lee, 2005). The results show that the effect of POP on 

PASS is relatively significant on the long-haul routes. On the long-haul routes, a 10% increase in 

POP would lead to a 12% increase in PASS, considerably higher than a similar rate increase of 4% 

in PASS for both the short- and the medium-haul routes. The results show the effect of EMP is 

more pronounced on the long-haul routes than the short- and medium-haul routes. A 10% increase 

of the EMP factor led to an increase of 14%, 12%, and 19% for the short-, medium-, and long-haul 

routes, respectively. 

The estimation indicated that FARE negatively affects PASS. Flight demand appears to similarly 

affect the markets. A 10% increase in ticket price led to a 2% decrease in PASS in the long-haul 

market compared with a 1% decrease on the short-haul routes, and 0.3% on the medium-haul 

routes respectively, albeit the coefficient of medium-haul model is statistically insignificant. 

 

Table 3.4 2SLS outputs 
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Variables 
First Stage Second Stage 

Passenger Flight Frequency Aircraft Size Load Factor Available Seats 

  Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat 

Short-Haul Routes 

Log (PASS) NA NA 0.226 3.75 0.488 10.14 0.284 6.15 0.713 15.42 
D_LCC 0.016 6.59 0.026 8.45 -0.023 -9.09 -0.004** -1.47 0.004** 1.52 
Log (Jet Fuel) 0.003** 0.23 0.030 2.51 0.036 3.78 -0.068 -7.26 0.067 7.20 
HHI -0.098 -4.29 -0.064 -2.49 0.033** 1.59 0.031** 1.59 -0.032** -1.60 
Instrumental Variable                     

Log (EMP) 1.335 11.93 NA NA NA NA NA NA NA NA 

Log (FARE) -0.116 -5.81 NA NA NA NA NA NA NA NA 

Log (POP) 0.410 13.78 NA NA NA NA NA NA NA NA 

Routes Dummy  Please see the Appendix 3.6 

Intercept -4.486 -7.03 2.289 6.60 -0.561 -2.02 0.278** 1.05 1.733 6.49 

Observation 791   791   791   791   791   

R-Squared 0.994   0.988   0.960   0.745   0.995   

Medium-Haul Routes 

Log (PASS) NA NA 0.724 13.57 -0.079* -1.77 0.357 8.89 0.643 16.02 
D_LCC 0.037 13.27 -0.013 -3.59 0.025 8.09 -0.012 -4.29 0.011 4.27 
Log (Jet Fuel) -0.023* -1.95 -0.020* -1.88 0.032 3.49 -0.011** -1.38 0.011** 1.36 
HHI 0.017** 0.76 -0.276 -13.22 0.169 9.66 0.106 6.79 -0.106 -6.78 
Instrumental Variable                     

Log (EMP) 1.205 12.10 NA NA NA NA NA NA NA NA 

Log (FARE) -0.032* -1.67 NA NA NA NA NA NA NA NA 

Log (POP) 0.435 14.08 NA NA NA NA NA NA NA NA 

Route Dummy  Please see the Appendix 3.6 

Intercept -5.286 -9.01 -0.707 -2.90 2.464 12.07 0.232* 1.26 1.762 9.60 

Observation 1032   1032   1032   1032   1032   

R-Squared 0.994   0.993   0.649   0.445   0.996   

Long-Haul Routes 

Log (PASS) NA NA 0.778 37.98 0.237 12.42 -0.008* -0.66 1.001 82.32 
D_LCC -0.006* -1.25 0.011 3.64 -0.006 -2.12 -0.005 -3.00 0.005 2.94 
Log (Jet Fuel) 0.135 5.48 -0.076 -4.58 0.045 2.99 0.030 3.02 -0.029 -3.02 
HHI -0.125 -3.49 -0.079 -3.23 0.039 1.75 0.041 2.81 -0.039 -2.70 
Instrumental Variable                     

Log (EMP) 1.820 11.32 NA NA NA NA NA NA NA NA 

Log (FARE) -0.179 -4.33 NA NA NA NA NA NA NA NA 

Log (POP) 1.215 23.06 NA NA NA NA NA NA NA NA 

Route Dummy  Please see the Appendix 3.6 

Intercept -17.38 -21.81 -1.094 -10.23 1.15 12.80 1.93 29.95 0.066 1.03 

Observation 811   811   811   811   811   

R-Squared 0.980   0.987   0.802   0.478   0.996   

*p-value>0.05 

**p-value>0.10 
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The results indicated the JFuel parameter as an insignificant factor in PASS model in the short- 

and medium-haul routes. Notably, a higher JFuel resulted in a higher PASS on the long-haul 

routes, which correlates with the price of oil products and its final effect on economic activities on 

the long-haul routes. The long-haul routes are related to the two industrial cities of Perth and 

Darwin.  

According to Ghalayini (2011), higher prices of crude oil and petroleum products would lead to 

higher rates of economic growth for the oil exporting regions or countries. Perth and Darwin are 

known as regions with rich natural resources and a strong mining and oil industry in Australia. 

Therefore, it is to be expected that the higher price of crude oil and its substitutions would lead to 

stronger economic growth in these regions. As an evidence for this statement, this study estimates 

the employment rate on jet fuel price for eight main cities in Australia. Table 3.5 presents the effect 

of jet fuel price, as a proxy for oil price, on employment rate, as a proxy for economic growth, for 

the eight main cities. The results are meaningful as Perth and Darwin captured the highest 

coefficients compared to the other cities. Thus, the significance of the jet fuel price on the 

passenger model is due to the economic and industrial characteristics of Perth and Darwin. In fact, 

these cities are the destination of the business travelers. So, a higher oil price leads to stronger 

economic growth that consequently leads to more business trips to these cities. 

Table 3.5 Effect of jet fuel price on employment rate 

City Melbourne Adelaide Brisbane Sydney Canberra Hobart Darwin Perth 

Coeff. 0.45 0.45 0.48 0.50 0.68 0.77 1.04 1.11 
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The estimations reveal a positive effect of LCC in stimulating PASS on the short- and medium-

haul routes. A 10% increase in LCC led to a 1.6% and 3.7% increase in demand on the short- and 

medium-haul routes, respectively. This might be because of the LCCs’ characteristic to offer lower 

fares than those of legacy airlines (Belobaba et al., 2009, p.122) that, in turn, results in higher 

demand. However, the data indicate no effect of LCC in boosting PASS in the long-haul market, 

possibly due to less participation of low-cost airlines in the long-haul market. The HHI, an 

indicator of airline competition, shows a positive effect on flight demand for the short- and long-

haul routes. A 10% increase in HHI results in 10% and 13% increases in flight demand in the 

short- and long-haul routes, respectively. The model outputs indicate competition as an 

insignificant factor on passenger demand in the medium–haul market.   

3.7.2. Pooled results: TSLS- Second Step 

In the second stage of the 2SLS, this study separately develops the models FF, ASIZE, LF, and 

SEATS using PASS, JFuel, LCC, and HHI.  

3.7.2.1.TSLS- Second Step: Flight Frequency Model 

The frequency model fitted best as its R2 was greater than 0.95. PASS plays a crucial role in flight 

frequency on the different routes although to different degrees. A 10% increase in PASS led to a 

2% increase in FF in the short-haul, 7.1% in medium-haul, and a 7.7% in the long-haul market, 

respectively. JFuel demonstrated different effects regarding flight distance. Table 3.4 

demonstrates that, in the short-haul market, an increase in JFuel positively affects both PASS and 

FF. This positive effect seems to correlate with the price of oil products and their effects on flight 

and surface transportation in short-haul markets where competing modes of transportation are 

available for passengers (Belobaba et al., 2009, p.58). In fact, higher oil prices directly result in 

higher prices for oil products, such as jet fuel and gas. However, due to airline competition and the 
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cap on increasing ticket prices, the net effect of this additional expense seems less for the users of 

aviation transport than for the surface transport modes such as cars, trains, and buses.  

The above effect is reversed for the medium- and long-haul routes. A 10% increase in JFuel led 

to a 0.19% and 0.73% decrease on the medium- and long-haul routes respectively. Airlines tend 

to provide the required flight capacity with less flight frequency but with larger aircraft. Airlines 

have historically applied such a strategy in addition to their hedging policies to offset the increases 

in JFuel. LCC records a positive effect on FF of the city-pair routes on the short- and long-haul 

routes. A 10% increase in LCC led to an increase of 2.6% and 1.1% in FF on the short- and long-

haul markets respectively. However, this effect is negative for the medium-haul route; a 10% 

increase in LCC results in a 1.3% decrease in FF.  

The estimation output shows airline competition in terms of the HHI increases in FF on all routes 

under study, particularly for the medium-haul market. A 10% increase in HHI led to a 7%, 31%, 

and 8% increase on the short-, medium-, and long-haul routes, respectively. This result supports 

the findings of Wei and Hansen (2005) about the relation of flight frequency and airline 

competition.   

3.7.2.2.TSLS- Second Step: Aircraft Size Model 

The aircraft size model indicates a positive effect between PASS and ASIZE in the short- and 

long-haul markets. A 10% increase in PASS leads to a 5% and 2% increase in aircraft size in the 

short- and long-haul markets, respectively. However, airlines seem to be more flexible in applying 

larger aircraft on the short-haul market compared to the long-haul market due to the constraints of 

airport capacity on the routes under study. Notably, the model indicates a negative effect between 

PASS and ASIZE for the medium-haul market. This negative effect stems from the greater 
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elasticity of FF than SEATS on PASS changes in the medium-haul market. In fact, ASIZE is 

computed as SEATS divided by FF. With respect to the model estimations, a 10% increase in 

PASS led in a 7.1% increase in FF and a 6.3% increase in SEATS, resulting in a negative effect 

of PASS changes on ASIZE in the medium-haul market.  

JFuel scales up the ASIZE. In fact, jet fuel inflations led airlines to perform upgauging, in terms 

of adding more seats on existing jets or replacing smaller aircrafts with larger ones, which 

generally leads to a lower operating cost per seat (Belobaba et al., 2009, p.135). This finding 

supports the conclusions of Ryerson and Hansen (2013) about the impact of fuel costs on airline 

operating policies. For example, a 10% increase in JFuel results in a 0.35% increase in aircraft 

size in all markets. According to Belobaba et al., 2009, low-cost carriers typically operate smaller 

aircrafts in shorter distances. The estimation indicates that LCC decreases ASIZE on the short- 

and long-haul routes in the market. The presence of the low-cost carriers on the short- and long-

haul routes decreases ASIZE by 2.33% and 0.6% respectively. In contrast, a 10% more 

participation of the low-cost carriers led in an increase of 2.5% in ASIZE on the medium-haul 

routes. Notably, the competition among the airlines results in a smaller ASIZE in all markets. 

More competition between airlines, as shown by a 10% decrease in HHI, led to an increase of 

smaller aircrafts by 3.3%, 18.4%, and 4% in the short-, medium-, and long-haul routes, 

respectively. However, the estimation is statistically insignificant for the short-haul market. 
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3.7.2.3.TSLS- Second Step: Load Factor Model 

In the load factor model, the effect of PASS is positive but arguably minimal; a 10% change in 

PASS resulted in an increase of 2.7% and 3.4% in LF in the short- and medium-haul markets 

respectively. This effect is statistically insignificant for the long-haul market. LCC shows a small 

negative impact on LF in the medium- and long-haul routes, but it is an insignificant factor in the 

short–haul market. Similarly, the significance of JFuel is small, with a negative effect in the short-

haul market, and positive on the long-haul routes. The effect is insignificant for the medium-haul 

routes. Like the aircraft size model, the HHI reduces LF in all the markets, particularly on the 

medium-haul routes. More competition, through a 10% decrease in HHI, reduces LF by 11%.  

However, the R2 of the Load Factor model is relatively small, except in the short-haul market, 

which renders the results unreliable for interpretation. In fact, with respect to the estimation, it can 

be interpreted that the airlines have not been concerned with LF as a key element in capacity 

planning in the Australian domestic market, particularly for the medium- and long-haul markets. 

This finding is relatively consistent with the discussion of Jorge-Calderón (1997) about the 

significance of load factor in air traffic management. As discussed by Jorge-Calderón (1997), 

while flight frequency has frequently proven to be a significant driver in passenger demand 

modelling, the prior studies have econometrically shown an ambiguity about the significance of 

load factor in air traffic management. 

3.7.2.4.TSLS- Second Step: Available Seats Model 

In the final equation, in the Available Seats model, PASS played a key role in determining flight 

capacity, as expected. A 10% increase in PASS resulted in a 7%, 6% and 10% increase in SEATS 

on the short-, medium- and long-haul routes, respectively. JFuel recorded a slight positive effect 

on SEATS in the short-haul market but slightly negative for the long-haul flights. The results 
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suggest JFuel to be insignificant on SEATS in the medium-haul routes. LCC, with low 

coefficients in the model, presented as a non-significant parameter for estimating SEATS. This 

factor recorded a small positive effect on SEATS with a highest change of 1% in SEATS on the 

medium-haul routes with respect to an increase of 10% in LCC. In contrast, HHI recorded a 

positive effect on SEATS for all origin-destination routes. More competition, in terms of a 10% 

decrease in HHI, led in an increase of 3%, 11%, and 4% in SEATS on the short-, medium-, and 

long-haul routes, respectively.  

3.8.Summary 

Australia is heavily reliant on its air transportation due to the spatial distribution of the urban 

centers across the country. This dependency appears to be growing with population growth. The 

purpose of this study was to provide insights into Australia’s domestic aviation market and to 

understand the drivers on both sides of the supply-demand equilibrium. Four variables of flight 

frequency, aircraft size, load factor, and available seats were defined in this chapter as “capacity 

algorithm”, to investigate the airline capacity decisions regarding the domestic routes. The number 

of air passengers and airfares, combined with two socio-economic factors, namely population and 

employment rate, were used to build the model on the demand side. Competition between airlines, 

jet fuel price, and participation of low-cost carrier were also added to the supply side to provide a 

comprehensive framework for modeling. As these parameters appear on both sides of the supply-

demand equilibrium, this study enables to identify the drivers influencing the airline capacity 

decisions in the domestic market. On the bilateral interaction among the variables on both sides of 

the equilibrium, a two-stage least-squares method was applied to analyze the cross-sectional time-

series data of the airlines. The results suggest that a higher demand for flights primarily results in 

increased flight frequency rather than increased aircraft size or load factor, which is consistent 
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with the literature (Pitfield et al., 2010). The load factor is shown to be an insignificant variable in 

capacity planning of the airlines, particularly on the medium- and long-haul routes, albeit 

significant in capacity planning in the high-demand short-haul routes. 

 

The results suggest that the airlines apply tailored approaches in capacity planning, with respect to 

the passenger demand changes, for the short-, medium-, and long-haul routes. In the short-haul 

market, airlines are more flexible in the choice of aircraft. As a result, the elasticity of the flight 

frequency is smaller than that of aircraft size in the short-haul market with respect to the passenger 

demand. By contrast, flight frequency features as the key player of capacity planning for the 

medium- and long-haul routes. The results indicate that the airlines responded to the demand 

inflation in the medium-haul market with more flights and used the same or even smaller sized 

aircrafts, leading to a negative effect of passenger demand on aircraft size. In the long-haul routes, 

both flight frequency and aircraft size are significant in capacity planning, albeit with less elasticity 

of aircraft size on passenger demand compared to that of the short-haul market.  

Contrary to the findings of Ito and Lee (2005) in which the jet fuel cost was found to be an 

insignificant factor in the airline demand model, this factor is shown to be a driver on both sides 

of the supply-demand equilibrium of Australia’s domestic market. On the short-haul routes, the 

increase in oil price and related products arguably stimulated flight demand and resulted in an 

increase in flight frequency, possibly due to the higher negative elasticity of surface transportation 

demand to the oil price inflation compared to air travel. Further research is required to investigate 

the inflation impact of oil price and its related products on air and surface transportation. 

Furthermore, the higher jet fuel prices scaled up aircraft size on all flight routes. Notably, this 

study highlighted a significant effect of jet fuel cost on passenger demand on the long-haul routes. 
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This can be viewed with respect to the industrial specification of the routes in the long-haul market. 

In this market, higher jet fuel costs led to fewer flights, larger aircraft size, higher load factors, and 

fewer available seats.  

Low-cost carriers played a key role in the short-haul routes. For the period under study, low-cost 

carriers stimulated flight demand, increased flight frequency, and reduced aircraft size in the short-

haul market. The results also indicate the positive impact of low-cost carriers on flight demand. 

However, this factor affects capacity planning of the airlines differently in the medium market 

compared to the short-haul routes. In contrast, the participation of the low-cost carriers on the long-

haul routes was non-significant. This effect most likely stemmed from the low-cost carriers’ policy 

of focusing on the short-haul direct flights. Competition among the airlines enhanced flight 

demand and resulted in more flights, smaller aircraft size, and lower load factors. 

This chapter has sought to reveal a general picture of the Australian domestic aviation market and 

the main players in the supply-demand equilibrium. As mentioned, the econometric estimation 

was able to represent a holistic snapshot of the Australian market and its key players. However, 

some ambiguity surrounding the interpretation of some parameters in the markets remain. This 

requires further investigation. Therefore, moving forward, scholars in this area can examine the 

specific origin-destination routes to explain the primary drivers in the market. 
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4.1. Introduction 

This chapter is to identify the key determinants on flight delay as one of the key players of supply-

demand equilibrium of the flight market. This chapter begins with describing the flight delay 

phenomenon, and its status in Australian domestic flight market. Next the model parameters are 

introduced, followed by the data description. Section 4.6 provides methodological framework in 

terms of model specification, proposed technique, and model formulation. It then discusses the 

pooled results of the flight delay model. The final section of this chapter provides a summary 

review of the econometrical analysis of flight delay model.   

4.2.Background 

Flight delays can affect airlines in several ways, namely, more flight expenditure and customer 

dissatisfaction. Consistent flight delays might also lead to governments setting new regulations. 

While the airlines point to the weather and ineffective air traffic control systems as the key reasons 

for flight delays, the airlines are also at fault for scheduling flights above their capacity (Pai, 2010). 

The significant increase in incidents of flight delays has raised regulatory concerns in the last 

decade. Regulators have already imposed strict measures on the airlines to avoid flight delays and 

cancellations so as to protect the passengers.  

Flight delays are also financially costly. The total yearly cost of flight delays in the U.S. aviation 

market is estimated at over $30 billion; the amount attributable to the airlines was $8.7 billion in 

2007 (Ball et al., 2010). Peterson et.al (2013) reported that a 10% reduction in flight delays would 

increase US net welfare by $17.6 billion (Peterson et al., 2013). For the airlines, flight delays lead 

to additional expenses in staffing, jet fuel, and aircraft maintenance. As such, initiatives are in 

place to curb flight delays and lift capacity, including developing new runways, better runway 

layouts, upgraded air traffic control facilities, and air traffic control procedures. For example, 
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United Airlines saved $1.6 million during the first quarter of 2004 by applying a flight delay 

projection model (Abdelghanya et al., 2004).  

Flight delays and cancellation affect both airlines and air travelers. Airlines suffer a loss in 

passenger loyalty and consequently market share. Flight delays not only increase the costs (Zou 

and Hansen, 2014), the time lost due to a delay or cancellation would also lead to productivity loss 

for both the traveler and the firm (Peterson et al., 2013).  

Without upgrading the airport infrastructure and developing effective mechanisms to manage air 

traffic, the cost of flight delays will rise (Peterson et al., 2013). While there are several empirical 

studies that investigate the characterization of flight delays and airline response (Muelle and 

Chatterji, 2002; Zou and Hansen, 2014), there is no known empirical study on flight delays in the 

Australian domestic aviation context. Further, after the domestic aviation market was deregulated 

in 1990, the low-cost carriers have since penetrated the market (Nolan, 1996). Today, Jetstar and 

Tigerair are the dominant low-cost carriers in Australia.  

This chapter investigates the drivers of flight delays by using the Australian domestic aviation 

market to appreciate the role of airline-related factors on this issue.  Further, unlike previous 

studies which focused on a micro level data analysis, this study analyzes the macro level data to 

identify the airline and non-airline related factors of flight delays. The dependent variable is the 

flight delays during departure. Various variables, including airline capacity decisions and route-

specifics, are used to develop the regression models.  

As flight delays are known to be an indicator of the performance assessment of airlines (Wieland, 

1997; I.D., 2019), this study examines how the flight delay rate may differ between the low cost 

carriers and legacy airlines.  
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4.3.Case Study Context: Australian domestic market 

Since the past decade, flight delays6 have captured the attention of the media, scholars, and even 

regulators across the world (Britto et al., 2012). In Australia, of the 5.7 million flights scheduled 

in the domestic aviation market from January 2005 to December 2015, 915,000 flights had 

experienced individual delays by at least fifteen minutes; this translates to 16% of all flights 

annually (BITRE, 2006 - 2016). According to the Department of Infrastructure and Regional 

Development (DIRD) (BITRE, 2018), the flight delays in arrivals and departures contribute to 

17.3% and 16% of the total arrivals and departures, respectively. Indeed, the data reveal an uptrend 

in flight delays in recent years. For example, while flight delays in departure were 16.2% for 2016-

2017 the figures jumped to 18% in 2017-2018. Some research already suggest that the delay rates 

will continue to increase due to population growth and more air travel (Zou and Hansen, 2014). 

However, flight delays may depend on other factors such as the airline’s operating model. Figure 

1 shows the trend of the average flight delays for the four dominant Australian domestic airlines 

from 2004 to 2015. In 2008 and 2015, the airlines recorded the highest and lowest average rates 

of flight delay. Percentagewise, there has been a reduction of 72% in flight delays between 2008 

and 2015, albeit not uniformly for all four airlines. As shown in Figure 4.1, the flight delays during 

this period have declined for the legacy carriers Qantas and Virgin. The reasons can be attributed 

to the improved traffic and operations systems used by these airlines. However, there is no sign of 

improvement in the flight delays for the low-cost carriers, Jetstar and Tigerair. 

 
6. A flight delay is defined as “the number of flights departing the gate with a delay of more than 15 minutes after the 
scheduled departure time shown in the carrier’s schedule for a given route each month (http://bitre.gov.au/)”. 
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Figure 4.1 Pattern of annual flight delays for four Australian domestic airlines 

Today, economies, such as New Zealand, the US, Indonesia, and the European Union (EU), have 

clear guidance and regulations on passenger compensation arising from flight delays and 

cancellations. For example, the U.S. Department of Transportation (DOT, 2015) implemented 

regulations to limit tarmac delays to three hours and imposed fines on the airlines for longer delays. 

In the EU, there is legislation to compensate passengers for any flight delay and cancellation. 

Passengers are compensated if their flights arrive late by more than three hours. This compensation 

varies depending on the flight distance or delay circumstances (EUROPA, 2004). Currently, from 

a regulatory perspective, Australian airlines do not provide a guarantee to their flight timetable. 

According to CHOICE research, 76% of the flight travelers in domestic Australia prefer to pay 

more airfare to have an EU-like legislation covering flight delays (Castle, 2017). 

 

4.4.Parameters 

Table 4.1 describes the model parameters. From the DIRD information (http://bitre.gov.au/), a 

flight delay is defined as “the number of flights departing a gate at least 15 minutes after the 
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scheduled departure time shown in a carriers' schedule for a given route each month”. Therefore, 

for the purpose of this study, for any given route, flight delays during a departure is employed as 

the model’s dependent variable, which is computed as the number of delayed flights during a 

departure divided by the number of scheduled flights of each city pair of a given route and time 

window, respectively.  

Airlines determine the available capacity of a route through three variables: flight frequency, type 

of aircraft, and flight load factor (Sibdari et al., 2018). Airline capacity decisions also affect the 

quality of the flight service and their operating costs. These factors directly affect airline operations 

and traffic volume that would influence the rate of flight delays (Jorge-Calderh, 1997). From the 

monthly data reported, the average air passenger load factor can reflect the congestion level of the 

routes which is set as the level of a route’s available capacity occupied by the required air demand. 

Capacity decisions include flight frequency, aircraft size, and passenger load factor, which, in turn, 

are influenced by the airline’s capacity policies and constraints. The number of passengers is 

critical to passenger aviation demand as this variable influences an airline’s capacity decisions (Ito 

and Lee, 2005; Chi and Baek, 2013). The endogenous relationship between the number of 

passengers and an airline’s capacity decisions in the Australian domestic air market has previously 

been discussed in the literature (e.g., Mohammadian et al., 2019a). Furthermore, the initial analysis 

on the data indicates a high level of correlation between demand and flight frequency. This study 

ignores the demand factor to avoid any unnecessary complexity in the modeling and possibly bias 

the results. However, as discussed later, three passenger regressors, namely, population, 

employment rate, and airfare are used to model flight delays.    
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Table 4.1 Description of parameters 

Term* Definition Type Data source 

Flight Delay 
in Departure 
(%) 

Number of flight delays in departure 
divided by number of scheduled 
flights 

Monthly/OD DIRD, Domestic on-time 
performance reports 
(http://bitre.gov.au/) 

Flight 
Frequency 

Total number of flights for a given 
route each month.  

Monthly/OD DIRD, Domestic aviation 
activity reports 
(http://bitre.gov.au/) 

Average 
Aircraft Size 

Computed as the number of available 
seats divided by flight frequency for a 
given route and time period 

Monthly/OD DIRD, Domestic aviation 
activity reports  

Load Factor 
(Congestion 
rate) (%) 

Computed as a ratio of total passenger 
to the total available seats for a given 
route and time period 

Monthly/OD DIRD, Domestic aviation 
activity reports  

    
Distance (km) Airport to airport non-stop distance 

for a given route 
OD DIRD, Australian air 

distance reports 
(http://bitre.gov.au/) 

HHI Hirschman- Herfindahl Index on a 
route each month 

Monthly/OD DIRD, Domestic on-time 
performance reports  

Jet Fuel Price Average monthly fuel price in US 
airline industry (U.S. Gulf Coast 
kerosene-type jet fuel spot price fob) 

Monthly/World U.S. EIA  
(http://www.eia.gov/) 

Low-cost 
Carrier 
Participation 
(LCC) 

Total number of flights flown by low 
cost carriers divided by total flight on 
a route each month 

Monthly/OD DIRD, Domestic aviation 
activity reports 
(http://bitre.gov.au/) 

JFuel_ LCC Computed by multiplying average 
monthly fuel price with LCC  

Monthly/ OD -- 

LF_ LCC Computed by multiplying load factor 
with LCC 

Monthly/ OD -- 

Airfare Australian Domestic Airfare - real full 
economy index (Ref. month: July 
2003) for a given period 

Monthly/Austra
lia Domestic 

Market 

DIRD, Domestic air fare 
index (http://bitre.gov.au/) 

Population 
(billion) 

Computed as the product of 
Population of each city pair for a 
given route and time period 

Monthly/State ABS 
(http://www.abs.gov.au/) 

Employment 
Rate 

Computed as the product of 
Employment rate (%) of each city pair 
for a given route and period 

 Department of 
Employment 
(http://imip.gov.au/) 

*Information covers both directions of each city pair for a given route 

Jet fuel price is the main and less-predictable source of operating costs for airlines (Carter, 2006). 

Studies have established jet fuel price to negatively affect an airline’s operation and services (Ito 

and Lee, 2005; Borenstein and Rose, 2014) and increase flight cancellations and delays (Stock, 
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2013). Furthermore, this factor may be a proxy to reflect the effects of significant national and 

world incidents such as Ansett Australia’s collapse in 2001, the Sydney Olympic Games in 2000 

or the tragedy of September 11, 2001, and the global economic downturn 2007-2009. Due to the 

importance of jet fuel price on an airline’s operation (Sibdari et al., 2018), This study uses this 

parameter to identify the effect of airline operating costs on flight delays. 

Route-related factors: This study introduces a set of factors that explains the route specification. 

These factors are distance, participation of low-cost carrier, and airline competition on a route. 

These factors may influence the aircraft movement on the scheduled flights. Distance is the most 

common locational factor that influences both flight demand and airline operations (Russon and 

Riley, 1993). The participation of the low-cost carriers, as previously discussed, affects airline 

services (Barrett, 2004; Pels, 2009). The low-cost carrier participation rate is estimated in this 

study by the number of flights flown by the low-cost carriers divided by the total number of flights 

for a given route per month. Jetstar and Tigerair are the main low-cost carriers in the Australian 

domestic aviation market. Low-cost carriers apply different operating models that may influence 

flight delays. For example, Jetstar as a low-cost carrier offers direct flights that are operationally 

different from the hub-and-spoke networks used by Qantas as a legacy carrier.  

Airline competition reflects a significant effect on flight demand in air transportation (Barrett, 

2004; Pitfield et al., 2010; Gillen and Hazledine, 2015). Gillen and Hazledine (2015) suggest that 

stiff competition yields better flight service. The Hirschman–Herfindahl Index (HHI), defined in 

section 3.4, is applied as an indicator of airline competition in the routes examined.  

Weather-related factors: According to the Bureau of Transportation Statistics (BITRE 2016), 

weather-related factors account for 40% of the total delay instances (Choi et al., 2016). Prior 
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studies (Abdelghanya et al., 2004; Abdel-Aty et al., 2007) highlight the cyclical and seasonal 

impacts of these factors on flight delays in an airport. To control for the effects of inclement 

weather or weather-related factors, this study initially applied the factors such as average low 

temperature and average rain. However, the monthly data are the only available data being used in 

this study to identify the impact of macro-level airline-related factors on flight delays. Therefore, 

based on the initial analysis, the weather-related factors cannot completely address the effect of 

weather changes on flight delays. Nevertheless, in the treatment of the weather-related factors, the 

seasonal and weather-related components were removed from analysis using a filter of seasonal 

adjustment known as the X11 style technique. This technique is based on a moving average 

procedure first described by Macaulay (1931) and cited in Ladiray & Quenneville (2001). As a 

result of applying the seasonally adjusted data, this study assumes that the effect of periodic and 

seasonal factors is already being offset and no weather-related factor is required in the modeling. 

Therefore, the percentages computed as the increase or decrease on flight delay on a specific 

parameter only reflects the relative significance of that parameter compared to the other model 

factors. For example, a 10% increase in flight frequency only reflects the relative impact of flight 

frequency on flight delays compared to the other model parameters excluding the weather-related 

factors.  

Interaction variables: Airlines react differently to external changes such as macro-economic 

factors or air market changes that may influence flight delays. To understand more about the 

impact of the low-cost carriers’ performance on flight delays, this study introduces two interaction 

variables. The variable of JFuel_ LCC, defined as the product of the jet fuel price and low-cost 

carrier participation rate, is used to show how effectively the low-cost carriers have managed their 

operations in a regime of jet fuel inflation. The second interaction variable, LF_LCC, is identified 
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Figure 4.2 Targeted domestic origin-destination flight routes1 

by multiplying the load factor with the low-cost carrier participation rate. Higher load factors or 

congestion levels may render more flight delays. Therefore, in the cases with higher load factors, 

the question is, compared to the legacy airlines, how effectively the low-cost carriers can manage 

their operations to mitigate the flight delays. To avoid a high multi-collinearity between the 

interaction variables and the parameters, this study applies mean centering on the initial parameters 

and use the outputs to create the interactions. This step eliminates the correlation between the 

original parameters and the interactions (Jaccard and Turrisi, 2003).  

4.5.Data 

The available data cover 21 major monthly flight route records of all the domestic airlines which 

include Jetstar, Tigerair, Qantas, Virgin, and the other carriers7. The routes link eight state capitals 

in Australia. Figure 4.2 presents the routes targeted in this research, categorized based on the total 

number of flights in the year 2015. The dataset comprises the city-pair monthly data from January 

2004 to December 2015. The routes are chosen as they are the higher-demand routes in Australia, 

and several airlines compete on these routes.  

 

 
7. include QantasLink, Virgin Australia – ATR/F100 Operation, Virgin Australia Regional Airlines, and REX. 

Total Number of Flights in Year 2015 
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For the datasets, this study relies on the data of two public-sector agencies, the Australian Bureau 

of Meteorology (BOM) and the DIRD. All data were seasonally adjusted by a filter method of 

seasonal adjustment known as the X11 style technique (Ladiray & Quenneville, 2001) to reflect 

the industry’s pattern. Due to the unavailability of the jet fuel price information in the Australian 

domestic aviation market, the monthly information of the U.S. Gulf Coast kerosene-type jet fuel 

spot price was applied to address this factor in the proposed model. This proxy is applicable as jet 

fuel price is a universal commodity for which its price influences all economies including 

Australia. Table 4.1 describes the data sources of the parameters. Appendix 4.1 shows the 

descriptive statistics of the variables.  

4.6.Methodological framework 

4.6.1. Model Specification 

The dataset is characterized as a cross-sectional time-series. Therefore, using an ordinary least 

square method (OLS) may result in a biased and inconsistent estimation (Wooldridge, 2010, 

p.247). As for the data specification, two popular techniques of panel data analysis, fixed effects 

and random effects, were applied to estimate the regression models (Maddala and Lahiri, 1992). 

Using these methods can eliminate bias and improve efficiency (Wooldridge, 2010, p.247). The 

panel specific effects are assumed to be correlated with the independent variables in the fixed 

effects model, while uncorrelated to the other covariates in the random effects model. The more 

effective model can be selected by applying a Hausman specification test (Hausman, 1978). The 

Hausman specification test is an effective approach to identify the appropriateness of either of 

these two techniques with the following null hypothesis: 

Ho: The difference of the coefficients of the fixed and random-effects models is not systematic.  
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If Ho is not rejected, then the random effects model is more effective than fixed effects model to 

estimate the model’s coefficients (Wooldridge, 2010, p.288). 

Appendix 4.2 presents the Hausman-test results for the flight delays model. The test rejects Ho 

(𝑝 = 0.002). So, the fixed effects model is identified as a more effective model to estimate the 

coefficients than the random effects model. However, as the model includes distance, as a time-

invariant variable, the fixed effects model is not applicable in this study as this model is unable to 

address the time-invariant variables (Wooldridge, 2010, p.265). Further, a bilateral relation, which 

is known as endogeneity, has been discussed between flight delays and the elements of capacity 

decisions in the literature (Jorge-Calderh, 1997; Pitfield et al., 2010). Endogeneity causes a loop 

of causality between the model parameters and variables (Wooldridge, 2013), making the use of 

OLS methods ineffective for modeling (Pitfield et al., 2010).  

4.6.2. Proposed Technique 

Hausman and Taylor’s instrumental variables estimator is applied in this research to address both 

the endogeneity effect and the time-invariant factors (Hausman and Taylor, 1981). Hausman and 

Taylor’s estimator provides an approach for overcoming the shortcoming of the random effects 

model while including the time-invariant characteristics. The Hausman-test assumes that airline–

related and route-related factors are correlated with the unobserved individual effect. Therefore, 

the model is rewritten as follows: 

log(𝐷𝑒𝑙𝑎𝑦௜௧) = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + 𝛼𝑋ଵ௜௧ + 𝛽𝑋ଶ௜௧ + 𝛾𝑍ଵ௜ + 𝛿𝑍ଶ௜ +𝑐௜ +  𝜀௜௧ 

where 𝑋ଵ௜௧ is the vector of the explanatory time-variant airline-related parameters that are assumed 

to be uncorrelated with 𝑐௜; 𝑋ଶ௜௧ is the vector of the explanatory time-variant route-related 

parameters that are assumed to be uncorrelated with 𝑐௜; 𝑍ଵ௜ is the vector of explanatory time-
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invariant airline-related parameters, uncorrelated with 𝑐௜; 𝑍ଶ௜ is the vector of explanatory time-

invariant route-related parameters, uncorrelated with 𝑐௜.  𝑐௜ is added to the model that shows the 

unobserved panel-level random effects, presumed to have zero mean and finite variance 𝜎ఓ
ଶ that 

are independently distributed over the panels. In this model,  𝜀௜௧ is an idiosyncratic error that is 

assumed to have zero mean and finite variance 𝜎∈
ଶ distributed Normally over observations (Greene 

1981).  

The Hausman and Taylor estimator requires instrumental variables that are correlated with the 

endogenous variables, and not directly related to flight delays. Airfare combined with two socio-

economic factors, population, and employment rate, are added as instruments to the model. The 

socio-economic factors were identified in prior studies as the primary parameters that stimulate 

flight demand (Ito and Lee, 2005). Airfare is a significant explanatory variable in flight demand 

modeling. All other parameters being equal, a higher airfare leads to weaker flight demand. As the 

monthly route-level data on airfares are not available, the economy-class airfare index in the 

Australian domestic aviation market is taken as a proxy for this parameter. 

4.6.3. Model Formulation 

A statistical model is now formulated to identify the effect of the different factors on flight delays 

in the targeted routes of the Australian domestic aviation market. A log-linear form is applied to 

approximate the non-linear relationship between flight delays and the explanatory variables as 

discussed in the literature (Pitfield et al., 2010). The regression model is set as: 

log(𝐷𝑒𝑙𝑎𝑦௜௧) = 𝑎௉ + 𝑎ଵ log(𝐹𝐹௜௧) + 𝑎ଶ log(𝐿𝐹௜௧) + 𝑎ଷ log(𝐴𝑠𝑖𝑧𝑒௜௧) + 𝑎ସDist௜ +

𝑎ହlog (𝐻𝐻𝐼௜௧) + 𝑎଺𝐿𝐶𝐶௜௧ + 𝑎଻ log( 𝐽𝑒𝑡𝐹𝑢𝑒𝑙௧) + 𝑎଼𝐽𝐹𝑢𝑒𝑙_𝐿𝐶𝐶௜௧ + 𝑎ଽLF_𝐿𝐶𝐶௜௧ +𝑐௜ +  𝜀௜௧  
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where the subscripts i and t denote route i and period j, respectively. The coefficient 𝑎௉ estimates 

the model intercept, 𝑐௜ is route i’s unobserved effect, and 𝜀௜௧ is the error term. The other variables 

are defined below: 

𝐷𝑒𝑙𝑎𝑦௜௧: Portion of scheduled flights delayed on route i in period t.  

𝐹௜௧: Total number of flights on route i in period t.  

𝐴𝑠𝑖𝑧𝑒௜௧ : Average aircraft size on route i in period t.  

𝐿𝐹௜௧  : Load factor on route i in period t. 

𝐿𝐶𝐶௜௧: Participation of low-cost carrier on route i in period t 

Dist௜ : Airport to airport non-stop distance on route i. 

𝐻𝐻𝐼௜௧ : HHI on route i in period t.  

𝐽𝑒𝑡𝐹𝑢𝑒𝑙௧: Average cost per gallon of jet fuel in period t 

The model is implemented in two steps. The first step analyzes the effects of the airline-related 

and route-related factors on flight delays. In the second step, the interaction variables, JFuel_ LCC 

and LF_LCC, are added to the model to examine the performance of the low-cost carriers on flight 

delays. JFuel_LCC and LF_LCC are found by multiplying log( 𝐽𝑒𝑡𝐹𝑢𝑒𝑙௧) and log(𝐿𝐹௜௧) with 

𝐿𝐶𝐶௜௧, respectively. This step seeks to compare the performance of the low-cost carriers against 

the legacy airlines, based on jet fuel price and route congestion (load factor). 

4.7.Pooled results 

4.7.1. Pooled results: Main effects 

Table 4.2 presents the results of the Hausman-Taylor regression. The first run of the model 

includes the main factors that include the airline-related and route-related parameters. The 

variables of capacity decision have a positive effect on flight delays, albeit in different degrees. 

For the flight frequency variable, the coefficients suggest a positive relationship between flight 
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frequency and flight delays. Holding the other variables constant, a 10% increase in flight 

frequency is expected to increase flight delays by 2.3%. This result concurs with the findings of 

prior micro-level studies, which suggest that more flights intending to depart can lead to flight 

bunching and worsen the propagation effect of the flight delays. This is an interesting finding as 

more frequent flights were initially thought to provide more backup options for delayed flights and 

passengers. However, the result shows the opposite to this initial notion. In fact, sometimes the 

capacity of the airport is not able to support the case for several aircraft repairs due to airport 

facility manning issues. Besides, more flights mean more take-offs and landings, so the interarrival 

time between flights is reduced and the margin of error for a scheduled take-offs or landings 

becomes tighter. So, what this suggests is that a prolonged delay by the first flight will have a 

snowball effect on subsequent flights and the delay propagation effect kicks in. In this instance, 

the induced effect is greater than the intended benefit. Thus, higher flight frequency results in a 

shorter time buffer between flights, leading to a prolonged propagation effect of the initial delay.  

However, this trend is not sticky between airlines, as shown in Figure 4.3. From Figure 4.3, which 

shows the average flight delay compared to the flight frequency for the four dominant airlines, 

there has been a drop in the flight delay rates of the airlines, except for Jetstar, despite the total 

average growth in flight frequency, especially in the past five years.  
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Table 4.2 Results of Hausman-Taylor regression 

Variable Main effects Interaction effects 
 Est. t-stat Est. t-stat 
Intercept -9.897 -7.49 -9.615 -7.140 
Endogenous Time-Variant     
Flight Frequency 0. 245 5.55 0.246 5.590 
Aircraft Size 0.195 4.80 0.196 4.870 
Load Factor  1.215 13.12 1.216 13.110 

HHI 0.140 3.770 0.144 3.850 
LC Participation 0.066* 2.010 0.064* 1.95 
Exogenous Time-Variant     
Jet Fuel  0.491 13.620 0.522 11.64 
Airfare (instrument) -0.256 -4.69 -0.260 -4.75 
Population (instrument) 0.089* 2.10 0.040** 0.910 
Employment Rate (instrument) 1.668 6.060 1.605 5.700 
Endogenous Time-Invariant     
Distance 0.062** 0.520 0.062** 0.520 
     
LF_ LCC   -- -- 0.081* 1.830 
JFuel _ LCC   -- -- -0.205 -1.140 
     
Wald χ2 624.42  625.94  
Number of Groups 21  21  
Observation 2556  2556  

*p-value>0.05 

**p-value>0.10 

 

The results show that aircraft size affects flight delays positively. A 10% increase in aircraft size 

lifts flight delays by 1.9% (see Figure 4.4). Likewise, a 10% increase in the load factor or 

congestion level of a route leads to a 12.23% increase in flight delays. This result augments earlier 

research on the positive impact of demand growth, and capacity constraints in flight delays 

(Dillingham, 2005; Wong et al., 2002). Indeed, the growth in air travelers along with airport 

capacity constraints leads to more congestion and hence more flight delays. 
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Figure 4.3 Average flight delays against flight frequency8 

The model results relating to the positive effect of the variables of capacity decisions in flight 

delays can also be explained by the theory of the economies of density (www.encyclo.co.uk). 

According to this theory, which is an inherent condition of the supply-demand equilibrium of the 

aviation industry, more density in terms of greater passenger demand results in more plane-miles 

by either more flights or larger aircraft size. With no capacity constraints, this nets a lower 

operating cost per seat, resulting in more passenger demand. However, capacity constraints add 

flight delays as a new factor to this process. As such, more plane-miles by either more flight 

frequency or larger aircraft size leads to more flight delays (Zou and Hansen, 2012). 

 

 

 
8 Tigerair flights were grounded briefly by the Civil Aviation Safety Authority of Australia in 2011, due to safety 
concerns. It only reopened its Melbourne base after returning to the air. Hence, the discontinuity. 
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 The HHI index shows a positive impact on flight delays, suggesting that keener competition 

between airlines on a route leads to fewer and shorter flight delays. This result confirms the 

findings of Gillen and Hazledine (2015) about the beneficial effect of competition in flight service 

improvement. A 10% increase in airline competition reduces flight delays by 1.34%. The variable 

of low-cost carrier participation rate is applied in modeling to compare the performance of the 

low-cost carriers against the legacy airlines in mitigating flight delays.  

From the model results, the degree and extent of flight delays differ between the low-cost carriers 

and legacy airlines. The model output suggests that an airline’s operating policy is significant to 

the flight delay model. A higher participation of the low-cost carriers by 10% leads to a higher rate 

of flight delays, by roughly 6.82% in the mean duration or number of flight delays. For low-cost 

airlines, as they pursue the low-cost strategy to minimise their operating expenses, the focus of the 

maintenance programs and traffic systems may be less rigorously observed and conducted 

compared to those of legacy airlines. As a result, flight delays are more expected for low-cost 

Figure 4.4 Flight delay trend with respect to aircraft size/ load factor growth 
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carriers than legacy airlines due to the higher possibility of delay propagation as well as mechanical 

faults.  

Based on the results, the legacy airlines have been relatively more successful in limiting flight 

delays than the low-cost carriers, possibly because of their application of more effective traffic 

systems to predict the initial flight delays and reducing the propagation effect, regular maintenance 

on their aircrafts to reduce the possibility of mechanical issues, and the access to a hub-and-spoke 

network to manage air traffic particularly during the peak season.  

Likewise, a 10% increase in jet fuel price leads to a 4.79% increase in flight delays. Indeed, airlines 

apply different capacity algorithms during periods of jet fuel price inflation, which can result in 

longer and more flight delays. For instance, legacy airlines use larger, more fuel-efficient aircrafts 

to manage jet fuel inflations (Sibdari et al., 2018), leading to a higher likelihood of flight delays. 

Figure 4.5 shows the flight delay trend regarding jet fuel price volatility since 2014.  

 

 

Figure 4.5 Average flight delay trend with respect to jet-fuel price fluctuations 
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The results show a positive relationship among the socio-economic parameters and flight delays. 

In fact, population and employment rates are two significant factors in demand modeling that 

stimulate flight demand. With respect to the route/airline capacity constraints, more demand would 

lead to a higher density which in turn promotes more flight delays. In contrast, the model 

estimation indicates a negative relationship between airfare and flight delays. Ceteris paribus, a 

10% increase in airfare is expected to decrease the likelihood of a flight delay by 2.4%. In fact, 

higher airfare negatively affects flight demand that leads in lower density. From the estimation 

model, the variable Distance is statistically insignificant. 

 

4.7.2. Pooled results: Interaction effects 

As mentioned in section 4.6.3, Step 2 includes the interaction factors used in the modeling. Table 

4.2 presents the results of the Hausman-Taylor regression for Step 2. The coefficients of the main 

effect factors are similar to those of step 1. As previously described, two interaction factors, LF_ 

LCC and JFuel_LCC are added to the model to investigate the low-cost carriers’ performance on 

flight delays. From the estimation in step 2, the coefficient of LF_LCC is positive suggesting that 

a higher level of route congestion has a greater effect on the low-cost carriers compared to the 

legacy airlines. Legacy airlines have more flexibility in controlling flight delays in highly 

congested routes, given their access to a range of aircraft types, and the hub and spoke network. 

Likewise, the results of the jet fuel price interaction variable, JFuel_LCC, are different for the low-

cost carriers and legacy airlines. From the model, a higher jet fuel price leads to higher rates of 

flight delays for the legacy carriers. As one of the key operational principle of low-cost carriers, 

these airlines usually apply a homogenous fleet of medium-sized aircraft such as the Airbus 320 
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or Boeing 700/800 leading to less fuel being consumed (Ehmer et al., 2008; Gross and Klemmer, 

2014, p. 34). Thus, jet fuel inflation may affect the low-cost carriers less than the legacy airlines.  

4.8.Summary 

Flight delays are expected to become a widespread and growing phenomenon around the world 

due to the continued growth in flight demand together with the airline/airport capacity constraints. 

This study drew some implications which can potentially be applied in explaining flight delays 

phenomenon in Australia as well as other locations and passenger air-transport markets across the 

globe where contain both legacy and low-cost carriers as active market players.  

This study has identified the airline-related drivers affecting flight delays using a dataset of 

Australian domestic aviation market. This study highlighted the effect of the variables of capacity 

decisions in flight delays. On the mechanisms of airlines to mitigate flight delays, strategies in 

capacity planning can lessen the impact of flight delays.  More plane-mile either by more flight 

frequency or larger aircrafts increase the possibility of flight delays due to the airports’ capacity 

constraints. More flights expect to increase flight delays due to the propagation effect of the initial 

delay. As such, airlines, could consider reducing the number of flights and size of aircrafts to lessen 

flight delays. Higher congestion levels lead in more and longer flight delays as indicated by the 

theory of economies of densities under capacity constraints. Jet fuel inflations enforce airlines to 

apply different capacity strategies leading in flight delays.  

To offset the higher operating expense from the increase in jet fuel price, Australian airlines could 

adopt different policies in capacity planning and operations that can affect flight delays differently. 

Interestingly as explored in this study, the low-cost carriers appear to be more successful than the 

legacy airlines in managing flight delays during periods of jet fuel price inflation. However, these 
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airlines experience weaker performance when controlling flight delays in the highly congested 

routes. This study suggests that the legacy airlines are more successful in controlling flight delays 

than the low-cost carriers, as the former has different operating models to apply to lessen the 

influence of flight delays such as the maintenance programs to reduce mechanical faults or traffic 

systems to reduce the propagation effects of the initial delays. More attention is required from the 

policy makers in Australia and elsewhere to encourage their domestic airlines to apply effective 

traffic systems and approaches to mitigating flight delays. Future research can study the effect of 

capacity planning of individual routes on flight delays. 
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5.1.Introduction 

This chapter is aimed to develop an optimisaiton model of capacity planning to maximise 

passenger demand of an airline for a given network or airport. The objective function is therefore 

to identify the best combination of flight frequency and average aircraft size for each route of a 

given airport (or network) to maximise the total potential passenger demand. Chapters 3 and 4 

explored the key determinants of airlines’ capacity planning or passenger demand modelling. 

These findings are applied in this chapter to develop the methodological framework of 

optimisation model. The rest of this chapter is set as follows; Section 5.2 provides a background 

on airline capacity planning. In Sections 5.3, the parameters are defined, followed by data 

description in Section 5.4. Section 5.5 describes the methodological framework of the optimisation 

model in terms of model specification, proposed technique and model formulation. Section 5.6 

presents the econometrical analyses. The optimal solutions of capacity planning are provided in 

Section 5.7. Section 5.8 concludes. 

5.2.Background 

Airlines across the globe have experienced economic turmoil such as recessions, de-regulation, 

and jet fuel fluctuations, forcing them to either merge with other airlines or file for bankruptcy 

(Baker and Donnet, 2012). There are increasingly fewer options for airlines to respond to such 

disruptions and uncertainty (Sibdari et al., 2018). As such, airlines are turning to capacity planning 

to manage their flight demand and operating cost (Carey, 2015; Sibdari et al., 2018).  

Capacity planning can affect airlines service quality and operating cost, in turn, altering their 

profits and market share (Wei and Hansen, 2005). Airlines have applied various aircraft types and 

different flight schedules on their networks to improve their market share and profitability 

(Mohammadian et al., 2019a). Capacity planning has become more critical for airlines, compared 
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to the other traditional tools such as revenue management or hedging contracts (Sibdari et al., 

2018; Mohammadian et al., 2019a). However, capacity planning is not easy for airlines as they 

need to consider many factors on both sides of their supply-demand equilibrium and accommodate 

various limitations such as access to the number and type of aircraft, airports, or even flight 

regulations. Finding the optimal capacity plan in which an airline can provide the right available 

seats in right airfares to meet the potential passenger demand, may be challenging as many factors 

either in supply or demand side would cause an equilibrium shift. This disequilibrium may occur 

as a result of either a change of micro-level factor, such as bad weather at airport, or macro-level 

parameter, such as terrorist attacks. 

Airlines have historically applied passenger demand forecasts to determine the best combination 

of flight frequency and type of aircrafts to maximise their profitability or market shares. However, 

the changes of passenger demand from one month to the following month depend on the changes 

of different factors such as socio-demographic factors, airfares, and airlines capacity plans. This 

chapter is aimed to present an optimisation model of airline capacity planning to maximise 

passenger demand of an airline for a given network or airport. The objective function is therefore 

to identify the best combination of flight frequency and average aircraft size for each route of a 

given airport (or network) to maximise the total potential passenger demand. 

5.3. Parameters 

The four dependent variables of the supply-demand equilibrium used in this study are passenger 

demand, flight frequency, aircraft size, and flight delay. They are selected to build a system of four 

non-linear equations. Table 5.1 illustrates the model variables in terms of the definition, data type, 

and the models where each parameter is targeted to be an explanatory variable. Table 5.1 also list 

the previous studies where each variable had been used as an explanatory variable in modeling.   
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Passenger demand (PASS) is the most well-recognised variable taken to present the air traffic 

demand (Jorge-Calderón, 1997; Ito and Lee, 2005; Zhang, 2015; Srisaeng et al., 2015; Binova, 

2015). PASS is the key factor of airlines’ capacity planning and ticket pricing. However, PASS is 

influenced by the quality of airline service (Alamdari and Black, 1992, Pitfield et al., 2010; Zhang, 

2015; Srisaeng et al., 2015), and socio-economic and demographic factors (e.g., Jorge-Calderón, 

1997, Grosche et al., 2007; Srisaeng et al., 2015; Binova, 2015). The quality of airline service is 

determined by the factors that comprise flight frequency, aircraft size, airfare, and load factor 

(Jorge-Calderón, 1997). PASS is sometimes assumed to be inelastic (Teodorovic and Krcmar-

Nozic, 1989; Hsu and Wen, 2000; Adler, 2001), or have a bilateral relation to flight frequency and 

aircraft size, as the key elements of capacity planning (Hsu and Wen, 2003; Pitfield et al., 2010; 

Mohammadian et al, 2019a). As discussed by Mohammadian et al. (2019a), load factor is known 

as an insignificant factor in capacity planning in the Australian domestic market, particularly on 

the medium- and long-haul routes hence it is not considered in this study. Airfare (Airfare) is one 

of the significant variables of PASS. A higher airfare results in a lower level of passenger demand 

directing airlines to adjust airfares according to the new passenger demand (Zou and Hansen, 

2012). The socio-economic factors have been historically applied to estimate PASS (e.g. Jorge-

Calderón, 1997; Ito and Lee, 2005). A higher level of the socio-economic factors would increase 

PASS (Ito and Lee, 2005). Population (POP) and employment rate (EMP), calculated by the 

product of the related numbers of the origin-destination (OD) pairs, are applied to reflect the socio-

economic factors. Distance affects PASS in two ways. While a longer distance would lead in less 

demand due to the weaker social and business relations between a flight origin and destination, it 

stimulates passenger demand as it boosts the relative importance of air transportation compared to 
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the other transportation modes (Jorge-Calderón, 1997). According to Mohammadian et al. (2019a), 

distance influences the airline strategies of capacity planning. 

Airlines’ capacity decisions are driven by the passenger demand forecasts for different routes. 

According to Pitfield et al. (2010), a higher PASS has more impact on flight frequency rather than 

aircraft size. The decisions of airlines on the number of flights affect the choice of aircraft and vice 

versa. The number of departing flights from an airport is applied to estimate flight frequency 

(Flight). Like some earlier studies (e.g. Jorge-Calderón, 1997; Pitfield et al., 2010; Sibdari et al, 

2018; Mohammadian et al, 2019a), the average aircraft size (ASize) in terms of the average number 

of available seats per flight is applied in this study. In addition to PASS, other factors such as 

competition between airlines, jet fuel expenses, and airline policy also would influence airline 

capacity decisions (Mohammadian et al., 2019a). As discussed by Mohammadian et al. (2019a), 

while it is expected that the competition between airlines would accompany with more flights and 

smaller aircraft size, the higher jet fuel costs would result in less flight frequency and larger 

aircraft. Jet fuel cost (JetFuel) has historically been among the highest cost components in airline 

operating expenses that negatively affects the service quality (e.g., Borenstein and Rose, 2014). 

Competition would lead to more flights, smaller aircraft size, and more available seats which in 

turn increases PASS (Mohammadian et al., 2019a). The Hirschman–Herfindahl Index (HHI), 

described in section 3.4, is applied as an indicator of airline competition in the routes examined. 

 In response to PASS, the low-cost carriers would have different policies on capacity planning 

compared to the legacy airlines (Mohammadian et al., 2019a). The low-cost carriers (LCC) 

participation in the flight market has been proven to influence quality of flight service that in turn 

stimulates PASS (Barrett, 2004; Pels et al., 2009; Mohammadian et al., 2019a). LCC is estimated 

by the rate of total number of flights provided by the LCC for a given route and period.   
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Flight delay (Delay) is a key facet of service quality, and a performance indicator for air 

transportation systems. Many factors, at both macro- and micro- levels may influence flight delays 

(Yu et al., 2019). More PASS brings about a higher density which, in turn, results in more Delay 

potentially (Zou and Hansen, 2012; Yu et al., 2019). In contrast, more Delay leads to less quality 

airline service which negatively influences PASS (Britto et al., 2012).  Flight delay is significant 

in capacity planning because of the interdependency between flight delay and flight frequency 

(Zou and Hansen, 2012). Principally, flight delays are due to the insufficient supply of air transport 

services or facilities to meet passenger demand (Abdel-Aty et al., 2007). More flights would reduce 

the time buffer between flights and inflate the propagation effect which increases the possibility 

of flight delay (Mohammadian et al., 2019b). Airlines may shift to a smaller number of flights and 

use larger aircrafts to reduce the flight delay (Zou and Hansen, 2012). However, larger aircraft size 

also has a higher possibility of being delayed due to more late passengers (Yu et al., 2019). In this 

study, fight delay (Delay) is estimated as the number of departing flights delayed for longer than 

15 minutes for a given route and time period. Flight delays are also influenced by seasonality, and 

weather and climate (e.g. Abdel-Aty et al., 2007). Weather-related variables are known to 

constitute in 40% of the total delay time (Sun Choi et al., 2016). Bad weather increase aircraft 

separations which in turn leads in a reduction of airport capacity (Schaefer and Millner, 

2001).These factors have been applied in flight delay modeling (Abdel-Aty et al., 2007). We use 

the variables of average monthly rain (Rain), minimum temperature (LowTemp)9, and the season 

(Season) as proxies to identify the weather- and season-induced impacts on flight delays.  

 

 
9 Due to the unavailability of monthly data of weather-related determinants of flight delay such as visibility factors 
or ceiling height factor, Rain and LowTemp are chosen as the proxies of weather-related factors in this paper. 
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Table 5.1 List of parameters  

Term Definition 
Applicable on Model Source 

PASS Flight ASize Delay 

Passenger 
Demand* 

Total number of passengers traveled 
between origin and destination of a given 
route and month period 

× √ √ √ 
Pitfield et al., 2010; Sibdari et al, 2018; 
Mohammadian et al., 2019a 

Flight 
Frequency* 

Total number of flights flown between 
origin and destination of a given route and 
month period  

√ × √ √ 
Jorge-Calderón, 1997; Wei and Hansen, 2006; 
Pels et al., 2009; Pitfield et al., 2010; 
Mohammadian et al., 2019a 

Aircraft Size* 

Calculated by total available seats divided 
by flight frequency between origin and 
destination of a given route and month 
period 

√ √ × √ 

Jorge-Calderón, 1997; Wei and Hansen, 2006; 
Pitfield et al., 2010; Yu et al., 2019; 
Mohammadian et al., 2019a 

Flight Delay*  
Number of flights delayed for longer than 15 
mins in departure for a given route and 
month period 

√ √ √ × 
Britto et al., 2012; Zou and Hansen, 2012  

Airfare* 
Australian Domestic Airfare according to 
Real Best Discount index (ref. month: July 
2003) for a given month period 

√ × × × 
Jorge-Calderón, 1997; Wei and Hansen, 2006; 
Pels et al., 2009; Mohammadian et al., 2019a 

Population  
(billion)** 

Computed by multiplying population of 
each city pair for a given route and month 
period  

√ × × × 
Jorge-Calderón, 1997; Britto et al., 2012; 
Mohammadian et al., 2019a 

Employment 
Rate*** 

Computed by multiplying Employment Rate 
(%) of each city pair for a given route and 
month period  

√ × × × 
Ito and Lee, 2005; Mohammadian et al., 2019a 

HHI* 
Hirschman- Herfindahl Index for a given 
route and month period 

× √ √ √ 
Pitfield et al., 2010; Gillen and Hazledine, 2015; 
Mohammadian et al, 2019a 

Jet fuel 
price****10 

Average monthly fuel price per gallon in US 
airline industry (U.S. Gulf Coast kerosene- 
type jet fuel spot price fob) 

× √ √ √ 
Ito and Lee, 2005; Sibdari et al, 2018; 
Mohammadian et al., 2019a 

 
10 Due to absence of the domestic data of jet fuel cost, the monthly price of the U.S. Gulf Coast kerosene-type jet fuel is applied as a proxy for Jet fuel price. 
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Term Definition 
Applicable on Model Source 

PASS Flight ASize Delay 

LCC 
Participation 
* 

Calculated by dividing total number of 
flights operated by low cost carriers to total 
flights for a given route and month period 

× √ √ × 
Ito and Lee, 2005; Pels et al., 2009; 
Mohammadian et al., 2019a 

Average 
Rain_ 
Origin***** 

Average rains recorded in the closest 
weather station to origin airport for a given 
route and month period 

× × × √ Abdel-Aty et al., 200711;Mehndiratta et al., 2002 
 

Average 
Rain_ 
Destination**
*** 

Average rains recorded in the closest 
weather station to destination airport for a 
given route and month period 

× × × √ Abdel-Aty et al., 2007; Mehndiratta et al., 2002 
 

Temperature 
_ 
Origin***** 

Minimum of lowest temperatures recorded 
by the closest weather station to origin 
airport for a given route and month period 

× × × √ Abdel-Aty et al., 2007; Mehndiratta et al., 2002 

Temperature 
_ 
Destination**
*** 

Minimum of lowest temperatures recorded 
in the closest weather station to destination 
airport for a given route and month period 

× × × √ Abdel-Aty et al., 2007; Mehndiratta et al., 2002 

Season Dummy variable for Season  × × × √ Abdel-Aty et al., 2007 

Distance* non-stop distance (in kilometers) between 
airport to airport of origin and destination 
for a given route 

√ √ √ √ 
Jorge-Calderón, 1997; Pels et al., 2009; Britto et 
al., 2012; Mohammadian et al, 2019a 

Route 
Dummy 

Dummy variable for route i √ √ √ √ 
Sibdari et al, 2018; Mohammadian et al., 2019a 

Data Source: * Department of Infrastructure and Regional Development (DIRD) (http://bitre.gov.au/), ** Australian Bureau of Statistics 

(ABS) (http://www.abs.gov.au/), *** Department of Employment (http://Imip.gov.au/), *** U.S. EIA (http://www.eia.gov/), ***** BOM, 

Weather & climate data (http://bom.gov.au/)

 
11 Abdel-Aty et al. (2007) used wind speed as the proxy of weather changes.  
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5.4.Data 

To test the proposed optimisation model, the domestic flight data of Melbourne airport for seven 

routes linking Melbourne to the other state capitals in Australia. Figure 5.1 represents the targeted 

routes in this study. The dataset includes the O_D monthly data, belonging to all active domestic 

airlines, from January 2004 to December 201512. Appendix 5.1 summarizes the four dependent 

variables for each of the given routes. This market is chosen as it provides the required information 

of the model variables, and all major airlines compete in this market. This model can be extended 

to other airports and networks.  

 

Figure 5.1 Targeted domestic O-D routes (including routes from Melbourne to Adelaide, Hobart, 

Canberra, Sydney. Brisbane, Perth, and Darwin) 

 
12 DIRD, Domestic aviation activity reports (http://bitre.gov.au/) 

Total Number of Flights in Year 2015 
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The dataset is built by relying on the data from agencies such as the Department of Infrastructure 

and Regional Development (DIRD), and the Australian Bureau of Meteorology (BOM). The data 

of the all parameters, except for flight delay, is seasonally adjusted to explain the industry plan. 

The flight delay equation comprises the weather- and season-related parameters that potentially 

offset the seasonal effect of this variable. The data on the average airfare is unavailable for the 

given market, restricting this driver to as an exogenous factor in the passenger demand modeling.  

As the data are categorized as a time-series cross-sectional, the model includes seven route dummy 

variables. To assess the distance related parameter, using the clustering of Mohammadian et al. 

(2019), the seven routes under study are categorized into three markets based on route distance: 

the short-haul market includes the routes between Melbourne and Adelaide, Canberra, Hobart, and 

Sydney. The medium-haul market only has the Melbourne-Brisbane route. The long-haul markets 

are the Melbourne-Perth, and Melbourne-Darwin routes. 

5.5.Methodological framework 

5.5.1. Model Specification  

As discussed in Chapters 3 and 4, there are bilateral relations among these four variables; passenger 

demand, flight frequency, aircraft size, and flight delay, known as endogeneity effect, which cause 

a causal loop among the variables (Wooldridge, 2013). Figure 5.2 presents the interactions 

between these variables with the arrows representing causal relationships. 

As discussed in Zou and Hansen (2012), any change in capacity would prompt a set of related 

changes in passenger demand, flight frequency, aircraft size, airfare, and flight delays that would 

trigger an equilibrium shift. Theoretically, in the aviation industry where the economies of density 

is an inherent specification of the equilibrium (Zou and Hansen, 2012), in a situation of no 
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congestion, greater density in terms of higher passenger demand leading in more plane-miles 

obtained through either more number of flights or larger aircrafts. More flights improve the service 

quality which then leads to greater passenger demand (Else, 1985). Airlines also prefer to operate 

larger aircraft as they have a lower unit operating cost, and the airlines can offer lower fares. At 

the same time, cheaper fares stimulate passenger demand leading to higher economic density. 

Hence, without capacity constraints, there is a virtuous cycle creating higher economic density on 

the demand side and more plane-miles on the supply side of the flight equilibrium (Zou and 

Hansen, 2012). However, this notion is no longer valid once the capacity constraint is added to the 

equilibrium. Capacity constraints add a flight delay factor into the equilibrium. In other words, 

higher density coupled with the capacity constraints would increase the runway congestion level 

which results in more flight delays. Flight delays incur extra costs for the airlines, diminishing the 

economies of density. In fact, higher flight delays lead to less passenger demand either directly or 

indirectly as an outcome of the airline responses. Airlines need to consider these interactions to 

make efficient capacity plans for each route on their operating networks. Such a capacity planning 

helps airlines effectively control operating costs and manage market share.  
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Figure 5.2 Conceptual framework (for reference only; identical to Figure 1.1) 

5.5.2. Proposed Technique 

In the systems of non-linear equations, a factor change on the supply-demand equilibrium prompts 

interactions among the variables, making the equilibrium imbalanced, which leads to an 

equilibrium shift. To estimate the coefficients of the variables, the regression techniques can be 

applied. However, due to the endogeneity effects among the dependent variables, applying the 

ordinary least square (OLS) technique potentially leads to biased and inconsistent results (Pitfield 

et al. ,2010). So, the technique of full system estimators (Baseley, 1988) needs to be applied.  

The two popular system estimators are three stage least square method (3SLS) and maximum 

likelihood estimator (MLE) (or full information maximum likelihood13). Under standard 

conditions, these models are asymptotically equivalent to estimate the structural equations with 

Normal errors because the two estimators have the same asymptotic distribution (Dhrymes, 1973). 

 
13 Full information maximum likelihood technically is the same as maximum likelihood estimator when the models 
are applied on a dataset without missing data. We use maximum likelihood in this study as the applied dataset has no 
missing observation.   
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3SLS, in general, is much simpler to compute compared to the MLE especially for a small dataset. 

These two models are separately applied to deal with endogeneity (Wooldridge, 2013) and to 

estimate the coefficients of the passenger demand model which is applied in the optimisation 

model. The results of two techniques are compared in summary sections.   

 

5.5.3. Model formulation 

To address the simultaneity in the relationship of the four dependent variables as discussed in 

Section 5.4.1, a system of four non-linear equations is developed using a series of endogenous and 

exogenous variables. The aim is to estimate PASS which is later used in the optimisation model. 

The other three equations are included to avoid a possible two-way causation bias. From Section 

5.3, a set of exogenous parameters, comprising airfare14 (Airfare), population (POP), and 

employment rate (EMP), are applied for each of the four equations.  

The optimisation model is aimed to identify the optimal capacity plan of routes of a given airport. 

Thus, all four equations include dummy variables (D_Route୧) to analyze the route information 

which is categorized as time-series cross-sectional data. To avoid multicollinearity between the 

route dummy variables and distance, distance is removed from the passenger demand equation and 

is applied to cluster the individual routes. As a result, the optimisation model is applied separately 

for each cluster to find the optimal solution of the individual routes. The model of Mohammadian 

et al. (2019)’s is applied to cluster the routes by distance. According to Mohammadian et al. (2019), 

individual routes are categorized into three markets based on the route distance as follows: short-

 
14 The data on the average monthly airfares at the route level is unavailable. The Australian domestic average airfare 
index is applied instead to reflect this variable. As a result, this study treats airfare as an exogenous parameter for 
passenger demand. 
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haul routes with distance shorter than 800 km, medium-haul routes with distance between 800 and 

2400 km, and long-haul routes with distance greater than 2400 km.  

The factors of Competition (HHI), Jet fuel cost (JetFuel), and participation of low-cost carriers 

(LCC) are applied as the explanatory variables of both models of flight frequency (Flight) and 

aircraft size (ASize). As endogenous regressors, flight delay (Delay) includes the four factors 

related to the average rain (Rain) and low temperature (LowTemp) of origin and destination of a 

given route, season (Season) for flight delay modeling.  

For each equation, a lagged value of the dependent variable is added as a new predictor, which 

results in robust estimates of the effects of the explanatory variables, and improves the model 

fitness (Achen, 2000). Applying this predictor helps us later to identify the optimal changes of 

flight frequency and aircraft size in period t to maximise the passenger demand changes in period 

t compared to those of period t-1.  

The variables are logarithmic transformed to develop the equations, assuming the relationships 

among the variables are non-linear (Pitfield et al., 2010). As a result, the coefficient for each 

parameter reflects the elasticity of the dependent variable with respect to each corresponding 

parameter in the equation (Ito and Lee, 2005; Wei and Hansen, 2006). The system of four non-

linear equations is specified as follows: 

log(𝑃𝐴𝑆𝑆௜௧) = 𝑎௉ +

𝑎ଵ log(𝑃𝐴𝑆𝑆௜௧ିଵ) + 𝑎ଶ log(𝐹𝑙𝑖𝑔ℎ𝑡௜௧) + 𝑎ଷ log(𝐴𝑆𝑖𝑧𝑒௜௧) + 𝑎ସ log(𝐷𝑒𝑙𝑎𝑦௜௧) + 𝑎ହlog(𝑃𝑜𝑝௜௧) +

𝑎଺ log(𝐸𝑀𝑃௜௧) + 𝑎଻ log(𝐴𝑖𝑟𝑓𝑎𝑟𝑒௧) +  𝑎଼଴D_Route௜ + 𝜀௜௧ଵ  

 

log(𝐹𝑙𝑖𝑔ℎ𝑡௜௧) = 𝛽ி + 𝛽ଵ log(𝐹𝑙𝑖𝑔ℎ𝑡௜௧ିଵ) + 𝛽ଶ log(𝑃𝐴𝑆𝑆௜௧) + 𝛽ଷ log(𝐴𝑆𝑖𝑧𝑒௜௧) +

𝛽ସ log(𝐷𝑒𝑙𝑎𝑦௜௧) + 𝛽ହ log(𝐽𝑒𝑡𝐹𝑢𝑒𝑙௧) +  𝛽଺LCC௜௧ + 𝛽଻𝐻𝐻𝐼௜௧ + 𝛽଼D_Route௜ + 𝜀௜௧ଶ  
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log(𝐴𝑆𝑖𝑧𝑒௜௧) = 𝛾஺ + 𝛾ଵ log(𝐴𝑆𝑖𝑧𝑒௜௧ିଵ) + 𝛾ଶ log(𝑃𝐴𝑆𝑆௜௧) + 𝛾ଷ log(𝐹𝑙𝑖𝑔ℎ𝑡௜௧) +

𝛾ସ log(𝐷𝑒𝑙𝑎𝑦௜௧) + 𝛾ହ log(𝐽𝑒𝑡𝐹𝑢𝑒𝑙௧) +  𝛾଺LCC௜௧ + 𝛾଻𝐻𝐻𝐼௜௧ + 𝛾଼D_Route௜ + 𝜀௜௧ଷ  

 

log(𝐷𝑒𝑙𝑎𝑦௜௧) = 𝛿஺ + 𝛿ଵ log(𝐷𝑒𝑙𝑎𝑦௜௧ିଵ) + 𝛿ଶ log(𝑃𝐴𝑆𝑆௜௧) + 𝛿ଷ log(𝐹𝑙𝑖𝑔ℎ𝑡௜௧) +

𝛿ସ log(𝐴𝑆𝑖𝑧𝑒௜௧) +𝛿ହ log(𝑂𝑟𝑖𝑔𝑖𝑛_𝑅𝑎𝑖𝑛௜௧) +

 𝛿଺ log(𝐷𝑒𝑠𝑡_𝑅𝑎𝑖𝑛௜௧) + 𝛿଻ log(𝑂𝑟𝑖𝑔𝑖𝑛_𝐿𝑜𝑤𝑇𝑒𝑚𝑝௜௧) + 𝛿଼ log(𝐷𝑒𝑠𝑡_𝐿𝑜𝑤𝑇𝑒𝑚𝑝௜௧) +

∑ 𝑘௝𝑆𝑒𝑎𝑠𝑜𝑛௝
ସ
௝ୀଵ + 𝛿ଽD_Route௜ + 𝜀௜௧ସ  

where (all variables for domestic flights) 

𝑃𝐴𝑆𝑆௜௧: passenger numbers in period t for route i  

𝐹𝑙𝑖𝑔ℎ𝑡௜௧: Flights numbers flown in period t for route i  

𝐴𝑠𝑖𝑧𝑒௜௧: Average aircraft size in period t for route i  

𝐷𝑒𝑙𝑎𝑦௜௧: Number of flights delayed in departure in period t for route i  

𝐴𝑖𝑟𝑓𝑎𝑟𝑒௧: Domestic airfare index in period t 

𝑃𝑂𝑃௜௧: Products of populations of origin-destination states in period t 

for route i  

𝐸𝑀𝑃௜௧: Products of employment rate of origin-destination states in 

period t for route i  

 𝐽𝑒𝑡𝐹𝑢𝑒𝑙௧: Average jet fuel price per gallon in period t 

𝐻𝐻𝐼௜௧: HHI in period t for route i  

LCC௜௧: Participation rate of low-cost carriers in period t for route i  
 

𝑂𝑟𝑖𝑔𝑖𝑛_𝑅𝑎𝑖𝑛௜௧ : Average rainfall of origin city in period t for route i 

𝐷𝑒𝑠𝑡_𝑅𝑎𝑖𝑛௜௧  : Average rainfall of destination city in period t for route i  

𝑂𝑟𝑖𝑔𝑖𝑛_𝐿𝑜𝑤𝑇𝑒𝑚𝑝௜௧: Minimum temperature of origin city in period t for route i  

𝐷𝑒𝑠𝑡_𝐿𝑜𝑤𝑇𝑒𝑚𝑝௜௧: Minimum temperature of destination city in period t for route i  

𝑆𝑒𝑎𝑠𝑜𝑛௝: Dummy variable for Season j (j:1 to 4) 

D_Route௜: Dummy variable for route i. 

 

As previously indicated, the coefficients of the air passenger model are applied in the next step to 

develop the objective function of the optimisation model. 
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The optimisation model presents as per below; The objective is to maximise the total passenger 

demand 𝑃𝐴𝑆𝑆௧ of a given network in period t found as a sum of individual passenger demand of 

all routes i=1, 2, …, n included in a given network/airport. Flight frequency (𝐹𝑙𝑖𝑔ℎ𝑡௜௧) and aircraft 

size 𝐴𝑆𝑖𝑧𝑒௜௧ are decision variables in the model which are found separately for each route of a 

given network/airport with respect to the route and network/airport constraints. The values of the 

other parameters are fixed, and found from the dataset for a given period t, and route i. 

𝐎𝐛𝐣𝐞𝐜𝐭𝐢𝐯𝐞: 𝑀𝑎𝑥 𝑃𝐴𝑆𝑆௧ = ∑ 𝑃𝐴𝑆𝑆௜௧
௡
௜ୀଵ   i15=1, 2…. n  

with 

log(𝑃𝐴𝑆𝑆௜௧) = 𝑎௉ +

𝑎ଵ log(𝑃𝐴𝑆𝑆௜௧ିଵ) + 𝑎ଶ log(𝐹𝑙𝑖𝑔ℎ𝑡௜௧) + 𝑎ଷ log(𝐴𝑆𝑖𝑧𝑒௜௧) + 𝑎ସ log(𝐷𝑒𝑙𝑎𝑦௜௧) + 𝑎ହlog(𝑃𝑜𝑝௜௧) +

𝑎଺ log(𝐸𝑀𝑃௜௧) + 𝑎଻ log(𝐴𝑖𝑟𝑓𝑎𝑟𝑒௧) +  𝑎଼D_Route௜ + 𝜀௜௧ଵ  

Subject to: 

Route constraints: 

𝑎௜ < 𝐹𝑙𝑖𝑔ℎ𝑡௜௧ < 𝑏௜ 𝑤ℎ𝑒𝑟𝑒 𝑎௜is min 𝐹௜ and 𝑏௜ is max 𝐹௜ in the period under study 

𝑐௜ < 𝐴𝑆𝑖𝑧𝑒௜௧ < 𝑑௜ 𝑤ℎ𝑒𝑟𝑒 𝐶௜is min 𝐴𝑆𝑖𝑧𝑒௜ and 𝑑௜ is max 𝐴𝑆𝑖𝑧𝑒௜ in the period under study 

Network/Airport constraints: 

∑ 𝐹𝑙𝑖𝑔ℎ𝑡௜௧
௡
௜ୀଵ < 𝐹 where F is the network/airport constraint on Flight departure for all given 

routes in the period t 

∑ 𝐹𝑙𝑖𝑔ℎ𝑡௜௧ ∗ 𝐴𝑆𝑖𝑧𝑒௜௧
௡
௜ୀଵ < 𝑆 where S is the network/airport constraint on the total available 

seats in the period t 

 
15 Route Code is applied as i in the case study. 
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The two sets of constraints are defined to develop the optimisation model. The route constraint 

identifies the possible range of flight frequency (a, b), and aircraft size (c, d) for each route i=1, 

2…, n of a given network/airport with respect to the historical data. This constraint is initiated to 

avoid any impractical solution from being generated by the optimisation model.  

Airlines have a limited access to the number and types of aircraft. Given by this statement is 

applicable for an operating network/ airport, therefore the constraint of flight frequency is defined 

as the total available flights (F) that can be assigned to the all routes of a given network/ airport. 

This constraint is calculated as the total flights reported for all routes of a given network/ airport 

in period t. This total number reflects the total actual flights flown by airlines, not their nominal 

flight capacities. However, we apply this number to perform a fair assessment on actual passenger 

demand reported by airlines compared to potential passenger demand estimated by the optimal 

capacity decisions. Due to the unavailability of the aircraft type data, the total available seats S is 

applied to control for the aircraft size allocation of the optimal solution to the routes under study. 

In short, the total seats of the optimal solution, found from multiplying the optimal flight frequency 

and average aircraft size, must not be greater than actual total seats of the given network/ airport 

or airport in period t.  

As indicated in Section 5.4.2, two techniques; three stage least square method (3SLS), and 

maximum likelihood estimator (MLE) are applied separately to estimate the objective function of 

passenger demand and develop the optimisation model.  
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5.6.Econometric analysis 

5.6.1. Econometrical Analysis: Three-Stage Least Square method 

The three-stage least square method (3SLS), as an instrumental variables estimator, combine 

Seemingly Unrelated Regression (SUR), as a system equation, with two-stage least squares 

estimation (2SLS) (Amemiya, 1977). The 3SLS technique allows the correlations of the 

unobserved disturbances among all equations, as well as restrictions across coefficients of various 

equations. By considering such correlations among the equations, it improves the efficiency of 

equation-by-equation estimation. The 3SLS technique estimates all coefficients of model 

equations simultaneously unlike the single equation estimators such as 2SLS that separately 

estimates the coefficients of each equation.  

As mentioned, there are four endogenous variables (PASS, Flight, ASize, and Delay) in the 

system of non-linear equations. The other variables, comprising the lagged endogenous variables 

such as the lagged passenger demand 𝑃𝐴𝑆𝑆௜௧ିଵ, and lagged flight frequency 𝐹𝑙𝑖𝑔ℎ𝑡௜௧ିଵ are 

exogenous. For each equation, there is a set of instruments. For PASS equation, POP, EMP and 

Airfare are applied as instruments. JetFuel, LCC and HHI play this role for both equations of 

Flight and Asize. For Delay, the factors of Rain, LowTemp and Season are used as instruments. 

Table 5.2 and Appendices 5.2, 5.3, and 5.4 summarizes the econometric results of the 3SLS 

technique for each dependent variable on the dataset of Melbourne airport. The results are 

presented by distance groups and are targeted to apply separately for the optimisation in the next 

step. The primary interest of this econometric analysis is to estimate the coefficients of the air 

passenger demand model as it is applied in the next step to develop the optimisation model. From 

the estimation, more flights lead to greater demand, albeit to different degrees in the distance 

markets. Passenger demand has the highest elasticity to flight frequency in the medium-haul, 
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followed by the short-haul routes. This coefficient is statistically insignificant in the long-haul 

market. Similar to flight frequency, more passenger demand is expected by larger aircraft size for 

the short and long-haul markets. The coefficient of aircraft size is statistically insignificant in the 

medium-haul market. The coefficients of the other parameters in the demand model concur with 

earlier studies. From the results, the passenger demand is more elastic to the changes of flight 

frequency compared to aircraft size in the all three markets. Higher airfares lead to less passenger 

demand in all distance groups. Population and employment rate both positively affect air passenger 

demand. Appendix 5.5 presents a summary of the results of 3SLS analysis for the three distance 

groups. From the R2 outputs, the coefficients of the air passenger demand equation can used to 

develop the optimisation function. 

Table 5.2 3SLS Outputs for Passenger Demand equation 

Variables 

Short-Haul Medium-Haul Long-Haul 

Coef. P-value Coef. P-value Coef. P-value 

Passenger Demand             

Flight 0.145 0.000 0.387 0.001 0.004 0.954 

ASize 0.059 0.069 -0.361 0.391 0.238 0.014 

Delay -0.020 0.044 0.000 0.986 0.103 0.001 

Lag_Pass 0.596 0.000 0.334 0.000 0.687 0.000 

Airfare -0.106 0.000 -0.111 0.120 -0.284 0.018 

Population 0.089 0.001 0.201 0.125 0.142 0.090 

Employment Rate 0.249 0.006 0.487 0.007 0.916 0.000 

Route (Route Code)             

Melboune_Adelaide (1312)             

Melbourne_Hobart (1316) -0.604 0.000 0.000   0.686 0.060 

Melbourne_Canberra (1317) -0.822 0.000         

Melboune_Sydney (1319) 0.861 0.000         

Melbourne_Brisbane (1318)     0.000       

Melbourne_Perth (1314)             
Melbourne_Darwin (1315)         0.686 0.060 

Constant -0.174 0.675 0.186 0.921 -0.349 0.877 
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5.6.2. Econometrical Analysis: Maximum likelihood estimation (MLE)  

Maximum likelihood estimation is a forecasting technique that applies a set of given observations 

to estimate the parameters of a model with the objective of maximizing the likelihood function.  

The method of maximum likelihood is applicable with an extensive variety of statistical analyses 

(Blatt and Hero, 2007). Assuming a parameter is normally distributed with an 

unknown mean and variance, these two elements can be estimated with MLE through a sample set 

of a population. Given the normal model, MLE takes the mean and variance as parameters and 

estimate parametric values of these two elements by making the observed results the most probable 

(Veall, 1990). To perform the MLE analysis for the proposed model, the structural equation 

modeling (SEM) feature is applied in STATA software. Applying MLE, SEM assumes the full 

joint normality of all endogenous and exogenous variables. The MEL estimation by SEM is a 

simple approach to estimate the sophisticated model of this study. The model outputs are targeted 

to apply to develop the optimisation approach. The MEL estimation can be applied as comparative 

model to verify the results of 3SLS technique.  

Appendix 5.6 graphically illustrates the model that developed in SEM and analysed by MLE in 

STATA. The list of parameters and their relations in terms of one-way or bilateral are exactly 

developed based on the framework of proposed model described in section 3, making it feasible 

to apply the MLE outputs as a comparative model to verify the 3SLS results. Table 5.3 summarizes 

the MLE results on the Melbourne airport dataset. As can be seen, the coefficients of parameters 

are different across the seven routes under study which is one of the advantages of MLE compared 

to 3SLS. However, as previously described, the complexity of MLE modeling on SEM may result 

in some unobserved biased estimation. Appendix 5.7 provides the outputs of overall goodness of 

fits. High LR test of the model versus the saturated model indicates the estimation ineffective, 



Chapter 5 – An optimisation model for airlines’ capacity decision-making 
 

113 
 

which it was predictable regarding the size and complexity of the proposed model. However, as 

can be seen in Appendix 5.8, reported the Equation-level goodness of fit, the R-squared of the 

MLE estimation of the routes is relatively high (higher than 90%), making it possible to apply the 

estimated passenger demand model as the objective function of the optimisation model.  

To compare the outputs of 3SLS with MLE, the total mean square error (MSE) is calculated for 

the both techniques on the Melbourne airport dataset. The results indicated the MSE of 9,390,316 

for MLE technique compared to that of 13,700,000 for 3SLS. Based on MSE index, MLE seems 

to be relatively a better forecasting technique of passenger demand model compared to 3SLS. 

However, the coefficients of the 3SLS estimation are more consistent, and supported by the 

findings of the prior studies (e.g. Mohammadian et al., 2019). Compared to the 3SLS, the greater 

number of coefficients of MLE model is statistically insignificant which may cause the 

optimisation results impractical at the final step.  

Table 5.3 MLE Outputs 

Equation 

Route 

1312 1314 1315 1316 1317 1318 1319 

Passenger               

Flight 0.24 0.22 0.04* 0.19 0.07* 0.27 0.29 

ASize 0.17 0.28 0.46 0.17* -0.06* -0.21* 0.20* 

Delay 0.00* 0.03* 0.09 -0.07 0.01* 0.00* 0.00* 

Lag-Pass 0.53 0.56 0.65 0.60 0.77 0.48 0.44 

Airfare -0.08 -0.01* 0.11* 0.00* -0.03* -0.02* -0.03 

Population 0.20 0.11* -0.02* 0.59 0.05* 0.21 0.20 

Employment Rate 0.75 0.60 1.56 0.32 0.17* 0.34 0.21 

Constant -3.86 -2.82 -5.46 -7.43 -0.26* -1.66 -1.83* 

Flight               

Pass 0.04* 0.15 -0.10 -0.11* -0.12* -0.14 0.33 

Asize 0.15 0.04 0.23 0.20 0.23 0.42 -0.39 

Delay 0.01 -0.04 0.03* 0.00* -0.02* 0.02* 0.01* 

Lag_Flight 0.60 0.49 0.78 0.78 0.80 0.57 0.38 

LC Participation rate 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Equation 

Route 

1312 1314 1315 1316 1317 1318 1319 

HHI -0.03* -0.02* -0.26 -0.05* 0.02 -0.08 -0.10 

Jet Fuel 0.01 0.04 0.25 0.07 0.08 -0.01 0.02 

Constant 0.58 0.53 0.23* 0.50* 0.55* 1.00 1.09 

Aircraft Size               

Pass -0.14 0.03* 0.00* 0.02* -0.06 0.15 -0.63 

Flight 0.16 0.19 -0.35 0.03 0.11 0.02 0.49 

Delay 0.00* -0.01* 0.33* 0.00* -0.02* -0.01 0.02 

Lag_Asize 0.82 0.80 1.11 0.86 0.82 0.63 0.78 

LC Participation rate 0.00 0.00 0.00* 0.00* 0.00* 0.00 0.00 

HHI -0.03 0.00 -0.07 0.00* -0.02 0.00 0.09 

Jet Fuel 0.01 0.00 0.04* -0.01* 0.02* 0.02 -0.03 

Constant 0.64 -0.13* 0.07* 0.16* 0.41 0.02 2.29 

Flight Delay               

Pass -0.84 0.50* 0.11 -0.39 -0.84 -0.59 3.56 

Flight 1.45 -0.23* 0.78 1.27 2.21 0.41 -2.30 

Asize -0.69 -0.05* -0.61 1.75 -2.00 3.34 -0.87 

Lag_Delay 0.55 0.63 0.07* 0.42 0.24 0.61 0.59 

Origin_Rain 0.03* 0.01* 0.00* 0.05 0.10 0.05 0.05 

Dest_Rain 0.02 0.03 0.01* 0.01* -0.04 0.03* -0.01 

Orign_Temperature 0.03 -0.02 -0.02 0.01 0.08* -0.02 0.03 

Dest_Temperature 0.00 -0.01 -0.01 -0.01* -0.06* 0.00 -0.05 

Season 0.00* 0.00* 0.00* 0.00 0.00* 0.00 0.00 
Constant 2.31* -1.03* 0.44* -4.30 3.59 -4.81 -9.08 

* Insignificant at confidence level of 0.1 
 

5.7.Optimization 

5.7.1. Optimization: Three-Stage Least Square method 

As mentioned, the objective of the optimisation model is to identify the best combination of flight 

frequency Flighti, and aircraft size ASizei for the set routes of Melbourne airport to maximise the 

total passenger demand (PASS). The data of December 2015 are applied to estimate the constant 

part of the model. Based on the data of December 2015, the total number of flights (F) and total 

available seats (S) in the given routes are 5,386, and 925,827 respectively.  Lingo ver. 18.0 is used 

to solve the model. Table 5.4 presents the output of the optimisation model and provides a 
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comparison between the estimated passenger demand of the optimal solution and the actuals based 

on the data of airline activities as reported.  

Objective  

𝑀𝑎𝑥 (𝑃𝐴𝑆𝑆) = 10଴.ଵସହ ୪୭୥(ி௟௜௚௛ భయభమ)ା ଴.଴ହଽ௟௢௚(஺ௌ௜௭௘భయభమ)ା ସ.ସ଺଻ +

10଴.ଵସହ ୪୭୥(ி௟௜ భయభల)ା ଴.଴ହଽ௟௢௚(஺ௌ௜௭௘భయభల)ା ସ.ଷ଴଺ + 10଴.ଵସହ ୪୭୥(ி௟௜ భయభళ)ା ଴.଴ହଽ௟௢௚(஺ௌ௜௭௘భయభళ)ା ସ.ଵଷସ +

10଴.ଵସହ ୪୭୥(ி௟௜௚௛ భయభవ)ା ଴.଴ହଽ௟௢௚(஺ௌ௜௭௘భయభవ)ା ସ.ଽହଶ + 10଴.ଷ଼଻ ୪୭୥(ி௟௜௚ భయభఴ)ି଴.ଷ଺ଵ௟௢௚(஺ௌ௜௭௘భయభఴ)ା ସ.଻ଽଶ +

10଴.଴଴ସ ୪୭୥(ி௟௜௚௛ భయభఱ)ା ଴.ଶଷ଼௟௢௚(஺ௌ௜௭௘భయభఱ)ା ଷ.଺଴ଷ + 10଴.଴଴ସ ୪୭୥(ி௟௜௚௛௧భయభర)ା଴.ଶଷ଼௟௢௚(஺ௌ௜௭௘భయభర)ା ସ.ସ଴଴  

s.t.  

Airport Constraints 

Flight frequency:   

𝐹𝑙𝑖𝑔ℎ𝑡ଵଷଵଶ+𝐹𝑙𝑖𝑔ℎ𝑡ଵଷଵ଺+𝐹𝑙𝑖𝑔ℎ𝑡ଵଷଵ଻+𝐹𝑙𝑖𝑔ℎ𝑡ଵଷଵଽ+𝐹𝑙𝑖𝑔ℎ𝑡ଵଷଵ଼+𝐹𝑙𝑖𝑔ℎ𝑡ଵଷଵହ+𝐹𝑙𝑖𝑔ℎ𝑡ଵଷଵସ ≤ 5386; 

Aircraft size: 

𝐹𝑙𝑖𝑔ℎ𝑡ଵଷଵଶ ∗ 𝐴𝑆𝑖𝑧𝑒ଵଷଵଶ+𝐹𝑙𝑖𝑔ℎ𝑡ଵଷଵ଺ ∗ 𝐴𝑆𝑖𝑧𝑒ଵଷଵ଺+𝐹𝑙𝑖𝑔ℎ𝑡ଵଷଵ଻ ∗ 𝐴𝑆𝑖𝑧𝑒ଵଷଵ଻ +  𝐹𝑙𝑖𝑔ℎ𝑡ଵଷଵଽ*𝐴𝑆𝑖𝑧𝑒ଵଷଵଽ + 
𝐹𝑙𝑖𝑔ℎ𝑡ଵଷଵ଼ ∗ 𝐴𝑆𝑖𝑧𝑒ଵଷଵ଼+𝐹𝑙𝑖𝑔ℎ𝑡ଵଷଵହ ∗ 𝐴𝑆𝑖𝑧𝑒ଵଷଵହ+𝐹𝑙𝑖𝑔ℎ𝑡ଵଷଵସ ∗ 𝐴𝑆𝑖𝑧𝑒ଵଷଵସ ≤ 925827; 

Route Constraints 

Route 1312: 546 <= 𝐹𝑙𝑖𝑔ℎ𝑡ଵଷଵଶ <= 774; 138 <= 𝐴𝑆𝑖𝑧𝑒ଵଷଵଶ <= 164 
Route 1318: 669 <= 𝐹𝑙𝑖𝑔ℎ𝑡ଵଷଵ଼ <= 1096; 148 <= 𝐴𝑆𝑖𝑧𝑒ଵଷଵ଼ <= 169 
Route 1317: 242 <= 𝐹𝑙𝑖𝑔ℎ𝑡ଵଷଵ଻ <= 516; 106 <= 𝐴𝑆𝑖𝑧𝑒ଵଷଵ଻ <= 142 
Route 1315: 24 <= 𝐹𝑙𝑖𝑔ℎ𝑡ଵଷଵହ <= 100; 103 <= 𝐴𝑆𝑖𝑧𝑒ଵଷଵହ <= 195 
Route 1316: 264 <= 𝐹𝑙𝑖𝑔ℎ𝑡ଵଷଵ଺ <= 489; 130 <= 𝐴𝑆𝑖𝑧𝑒ଵଷଵ଺ <= 173 
Route 1314: 265 <= 𝐹𝑙𝑖𝑔ℎ𝑡ଵଷଵସ <= 564; 178 <= 𝐴𝑆𝑖𝑧𝑒ଵଷଵସ <= 232 
Route 1319: 1309 <= 𝐹𝑙𝑖𝑔ℎ𝑡ଵଷଵଽ <= 2417; 173 <= 𝐴𝑆𝑖𝑧𝑒ଵଷଵଽ <= 199 
 
 
Table 5.4 shows how a change in the capacity planning of the routes may excite passenger demand 

and maximise the overall demand of a given network or airport. The optimal solution increases the 

total potential demand of the given routes by 1.72%. This increase can potentially result in a 

substantial effect on an airline profits because, with no requirement of capacity expansion, adding 

a passenger to a flight has almost zero marginal cost for an airline. From the optimal solution, more 

flights with smaller aircrafts would lead to greater passenger demand. The model allocated less 
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flight frequency and smaller aircrafts to the Melbourne-Adelaide leg, causing a drop of 0.56% in 

passenger demand.  The optimal solution suggests that an increase in both the elements of capacity 

planning for the Melbourne-Sydney leg, lifts the potential passenger demand by 1.7%. The optimal 

solution suggests more flights with smaller aircrafts for the other two short-haul routes. For the 

Melbourne-Brisbane route, more flights using smaller planes should lift passenger demand. On the 

long-haul market, the airlines may manage their market share with fewer flights but larger planes. 
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Table 5.4 Optimisation model outputs vs. actual data (for Melbourne Airport, Dec 2015)- 3SLS Model 

Route Name Route Code Route Type 

Actual Model Estimation Change 

Flight ASize PASS Flight ASize PASS Flight ASize PASS 

Melboune_Adelaide 1312 Short-Haul 751 155 102,500 744 144 101,921 -0.93% -7.10% -0.56% 

Melbourne_Hobart 1316 Short-Haul 436 164 65,573 489 134 65,885 12.16% -18.29% 0.48% 

Melbourne_Canberra 1317 Short-Haul 300 128 41,817 321 123 42,130 7.00% -3.91% 0.75% 

Melboune_Sydney 1319 Short-Haul 2,250 178 370,147 2,417 199 376,446 7.42% 11.80% 1.70% 

Melbourne_Brisbane 1318 Medium-Haul 1,090 166 146,683 1,096 148 153,216 0.55% -10.84% 4.45% 

Melbourne_Perth 1314 Long-Haul 471 218 92,448 265 232 93,611 -43.74% 6.42% 1.26% 

Melbourne_Darwin 1315 Long-Haul 88 175 13,924 24 195 14,213 -72.73% 11.43% 2.08% 

Total     5,386   833,092 5,356   847,423 -0.56%   1.72% 
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5.7.2. Optimisation Model: Maximum likelihood estimation (MLE) 

With respect to the outputs of MLE analysis at the section 5.6.2, the objective function of 

optimisation algorithm is as below. The constraints are the same as 3SLS model indicated in 

section 5.7.1. The coefficients of the variables are different in the all seven routes in MLE function 

compared to those of 3SLS which only were different between distance groups.  

Objective function:  

Max (P)=10^(0.238log(Flight1312)+ 0.169log(ASize1312)+ 3.943)+10^(0.191log(Flight1316)+ 
0.167log(ASize1316)+ 3.926)+10^(0.071log(Flight1317)- 0.055log(ASize1317)+ 
4.558)+10^(0.291log(Flight1319)+ 0.196log(ASize1319)+ 4.143)+10^(0.273Log(Flight1318)- 
0.209log(ASize1318)+ 4.796)+10^(0.037log(Flight1315)+ 0.456log(ASize1315)+ 
3.021)+10^(0.216log(Flight1314)+ 0.278log(ASize1314)+ 3.717); 

s.t.  

Airport Constraints 

Flight frequency:   

𝐹𝑙𝑖𝑔ℎ𝑡ଵଷଵଶ+𝐹𝑙𝑖𝑔ℎ𝑡ଵଷଵ଺+𝐹𝑙𝑖𝑔ℎ𝑡ଵଷଵ଻+𝐹𝑙𝑖𝑔ℎ𝑡ଵଷଵଽ+𝐹𝑙𝑖𝑔ℎ𝑡ଵଷଵ଼+𝐹𝑙𝑖𝑔ℎ𝑡ଵଷଵହ+𝐹𝑙𝑖𝑔ℎ𝑡ଵଷଵସ ≤ 5386; 

Aircraft size: 

𝐹𝑙𝑖𝑔ℎ𝑡ଵଷଵଶ ∗ 𝐴𝑆𝑖𝑧𝑒ଵଷଵଶ+𝐹𝑙𝑖𝑔ℎ𝑡ଵଷଵ଺ ∗ 𝐴𝑆𝑖𝑧𝑒ଵଷଵ଺+𝐹𝑙𝑖𝑔ℎ𝑡ଵଷଵ଻ ∗ 𝐴𝑆𝑖𝑧𝑒ଵଷଵ଻ +  𝐹𝑙𝑖𝑔ℎ𝑡ଵଷଵଽ*𝐴𝑆𝑖𝑧𝑒ଵଷଵଽ + 
𝐹𝑙𝑖𝑔ℎ𝑡ଵଷଵ଼ ∗ 𝐴𝑆𝑖𝑧𝑒ଵଷଵ଼+𝐹𝑙𝑖𝑔ℎ𝑡ଵଷଵହ ∗ 𝐴𝑆𝑖𝑧𝑒ଵଷଵହ+𝐹𝑙𝑖𝑔ℎ𝑡ଵଷଵସ ∗ 𝐴𝑆𝑖𝑧𝑒ଵଷଵସ ≤ 925827; 

Route Constraints 

Route 1312: 546 <= 𝐹𝑙𝑖𝑔ℎ𝑡ଵଷଵଶ <= 774; 138 <= 𝐴𝑆𝑖𝑧𝑒ଵଷଵଶ <= 164 
Route 1318: 669 <= 𝐹𝑙𝑖𝑔ℎ𝑡ଵଷଵ଼ <= 1096; 148 <= 𝐴𝑆𝑖𝑧𝑒ଵଷଵ଼ <= 169 
Route 1317: 242 <= 𝐹𝑙𝑖𝑔ℎ𝑡ଵଷଵ଻ <= 516; 106 <= 𝐴𝑆𝑖𝑧𝑒ଵଷଵ଻ <= 142 
Route 1315: 24 <= 𝐹𝑙𝑖𝑔ℎ𝑡ଵଷଵହ <= 100; 103 <= 𝐴𝑆𝑖𝑧𝑒ଵଷଵହ <= 195 
Route 1316: 264 <= 𝐹𝑙𝑖𝑔ℎ𝑡ଵଷଵ଺ <= 489; 130 <= 𝐴𝑆𝑖𝑧𝑒ଵଷଵ଺ <= 173 
Route 1314: 265 <= 𝐹𝑙𝑖𝑔ℎ𝑡ଵଷଵସ <= 564; 178 <= 𝐴𝑆𝑖𝑧𝑒ଵଷଵସ <= 232 
Route 1319: 1309 <= 𝐹𝑙𝑖𝑔ℎ𝑡ଵଷଵଽ <= 2417; 173 <= 𝐴𝑆𝑖𝑧𝑒ଵଷଵଽ <= 199 
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Table 5.5 presents the results of optimisation model based on the MEL econometric outputs.  The 

optimal solution provided by MEL model indicates an increase of 0.66% in the total potential 

passenger demand compared to the actual capacity plan of the given routes. As can be seen on 

table 5.5, with respect to the optimal solution of MEL model, the passenger demand of four routes 

expect to increase in the expense of the other three routes including Melbourne-Hobart, 

Melbourne-Canberra, and   Melbourne-Brisbane. In more details, the optimal solution suggests 

that an increase in both flight frequency and aircraft size for the legs of Melbourne-Adelaide and 

Melbourne-Sydney. By contrast, the optimal solution allocates less seats to the other two short-

haul route, Melbourne-Hobart and Melbourne-Canberra, causing a passenger demand decreases of 

3.56% and 0.49% on these legs respectively. Likewise, the model allocates less flight frequency 

and smaller aircrafts to the Melbourne-Brisbane leg, causing a drop of 10.37% in passenger 

demand.  On the long-haul market, the optimal solution causes an increase in passenger demand, 

albeit with different strategy of capacity planning. MLE solution utilizes 96.30% of the capacity 

of available flights, relatively less than the utilization rate of 3SLS optimal solution, 99.44%.  
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  Table 5.5 Optimisation model outputs vs actual data (for Melbourne Airport, Dec 2015)-MLE Model 

Route Name Route Code Route Type 

Actual Model Estimation Change 

Flight ASize Pass Flight ASize Pass Flight ASize Pass 

Melboune_Adelaide 1312 Short-Haul 751 155 100,015 774 164 101,703 3.06% 5.81% 1.69% 

Melbourne_Hobart 1316 Short-Haul 436 164 63,326 442 130 61,069 1.38% -20.73% -3.56% 

Melbourne_Canberra 1317 Short-Haul 300 128 41,583 242 106 41,378 -19.33% -17.19% -0.49% 

Melboune_Sydney 1319 Short-Haul 2,250 178 366,310 2,417 199 382,336 7.42% 11.80% 4.38% 

Melbourne_Brisbane 1318 Medium-Haul 1,090 166 145,098 669 148 130,059 -38.62% -10.84% -10.37% 

Melbourne_Perth 1314 Long-Haul 471 218 88,665 564 232 93,805 19.75% 6.42% 5.80% 

Melbourne_Darwin 1315 Long-Haul 88 175 13,159 25 195 13,184 -71.59% 11.43% 0.19% 

Total     5,386   818,155 5,133   823,534 -4.70%   0.66% 

 

Compared to 3SLS solution, MLE solution totally applied only 5,133 flights, and benefited less from the available flights (5,386), 

compared to the total assigned flights of 5,356 in the 3SLS solution. However, as mentioned in section 5.6.2,   some of the coefficients 

in MLE estimation are statistically insignificant which cause some ambiguity around the validity of its results.
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5.8.Summary 

Capacity planning is an approach employed by airlines to manage their market share and operating 

costs. The flight frequency and aircraft size are identified to be key drivers in the supply-demand 

equilibrium. Airlines make their capacity decisions through demand forecasting. However, this 

study shows that any capacity decision later influences the other drivers of the supply-demand 

equilibrium, causing an equilibrium shift. As gaining a higher market share is key in the aviation 

industry, this study has attempted to develop a complete capacity planning model with respect to 

the key drivers of the flight route market. The purpose is to identify the elasticity of passenger 

demand to the two elements of capacity planning for different markets. This study finds that the 

strategies of capacity planning may influence passenger demand differently for different markets. 

Therefore, the airport infrastructure investors and developers also must consider the effects of 

flight frequency and aircraft size on passenger demand, in addition to the other factors of supply-

demand equilibrium to decide on the capacity development projects of airports or networks, 

especially when airport expansion are infrequent. 

A series of exogenous and endogenous factors identified from Chapter 3 and 4 to initiate the air 

supply-demand equilibrium. Through a system of four non-linear equations based on the 

economies of density theory, a comprehensive model comprising all key drivers of supply-demand 

equilibrium was developed. Due to the two-way relations among the four dependent variables, 

3SLS and MLE were applied separately for the econometric analysis of the data of Melbourne 

airport, as a case study. In the optimisation section, different constraints were stated to make the 

final solution practical. Based on the econometric results of two models, MLE had a less calculated 

MSE compared to that of 3SLS. However, the estimation of 3SLS was known more practical and 

statistically meaningful. The econometric outputs of two models were applied to develop the 
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objective function of optimisation algorithm. In the optimisation section, different constraints were 

defined to make the final solution practical. The optimal solution developed on the 3SLS results, 

was identified as a better solution with a 1.72% improvement on the potential passenger demand 

of the given routes of the Melbourne airport compare to a 0.66% for MLE model. The proposed 

model can thus be applied to assist governments and investors in decision making and 

prioritization of the capacity development of the airports or networks. Applying a longer time 

series data to develop the dataset helps to better and more practical estimation in the econometric 

analysis. While this paper addressed airlines’ capacity by flight frequency and aircraft size, the 

research can be improved by considering the actual types of aircrafts flown on the routes. Due to 

the data limitation, airfare was only applied as an exogenous parameter in the passenger demand 

equation. The number of departing flights delayed was used as the proxy for the flight delay 

variable. However, including the other proxies such as flight delays in minutes potentially 

improves the results of the flight delay equation. Applying the cost-related factors can improve 

capacity planning under supply-demand equilibrium. For this, more investigation is needed.  

The proposed model of this study can effectively be applied to assist for decision makings of the 

capacity development of the airports or networks. The application of longer time series data to 

develop the dataset helps for the better and more practical estimation in the econometric analysis 

section. Due to the complexity of the supply-demand equilibrium, the further investigation is 

required for any possible improvement on the model.  

The next chapter presents the key research findings and revisit the predetermined research 

questions. 
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6.1.Introduction 

This chapter presents general conclusions and key findings derived from the modelling in the prior 

chapters. This study developed a novel optimisation model of the airlines’ capacity planning under 

supply-demand equilibrium of the flight market. The econometrical analyses in the previous 

chapters also revealed many findings related to the key determinants of passenger demand 

modelling as well as airlines’ capacity planning. The following sections discuss how the research 

questions, indicated in this thesis, are answered and assesses the implication of the thesis. Section 

6.2 highlights the key findings, followed by section 6.3 which discusses how the research questions 

are answered in this thesis.  Section 6.4 presents the contribution of the study, followed by 

assessing the implication of thesis in section 6.5. Section 6.6 discusses the key research limitations 

and opportunities for future research. In the final section, the chapter is summarised to provide the 

final comments on the key findings.  

6.2. Research summary 

This thesis developed an optimisation model for airline capacity planning under the supply-

demand equilibrium of flight market. The model aims to find the best combination of flight 

frequency and aircraft size in the individual routes to maximise the total potential passenger 

demand for a given airport or hub-and-spoke network. The model framework was developed based 

on the theory of economies of density and included all key drivers of capacity planning on both 

sides of the equilibrium. The significance of the model’s variables and parameters and their 

interactions were tested and verified by implementing innovative econometrical analyses on the 

domestic flight market of Australia in Chapter 3 and 4, and an optimisation model was developed 

in Chapter 5.  
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Chapter 3 was targeted to identify the key drivers of airline’s capacity decisions under the supply-

demand equilibrium. Regarding the endogeneity effect among passenger demand and the variables 

of capacity planning, the two-stage least square technique was applied on the time-series cross-

sectional data of 21 major routes in the Australian domestic market. To further explore the airlines’ 

policies of capacity planning, the routes were categorised into three markets, short-, medium-, and 

long-haul markets. The bilateral relations among passenger demand and the variables of capacity 

decisions were verified by the Durbin-Wu-Hausman test, and the consistency of the instrumental 

variables was tested by the weak instrument test, as suggested by Stock et al. (2002). The 

econometrical analysis confirmed the relationship of passenger demand and the variables of 

capacity planning as well as identified the significant supply- and demand-side parameters which 

required us to consider the supply-demand equilibrium of the flight market. 

Chapter 4 presented the empirical analyses to identify the impact of the variable of capacity 

planning on flight delay. According to the economies of density, given the capacity constraints, 

more plane-miles in terms of more flight frequency and aircraft size leads to flight delay that offsets 

the positive impact of higher densities on the generalised cost of customers and in turn passenger 

demand. Therefore, this step was targeted to statistically test the interaction among flight delay 

and the variables of capacity planning by applying the Hausman–Taylor regression estimator 

technique. This technique effectively addressed the endogeneity among the model’s variables as 

well as the time-invariant parameters in modelling. By adding other airline-related factors and 

introducing the interaction variables, this explored the impact of airlines’ policy and performance 

on flight delay.  

According to the supply-demand framework, initiated according to the economies of density, and 

finalised based on the results of econometrical analyses in Chapter 3 and 4, a system of four non-
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linear equations, passenger demand, flight frequency, aircraft size, and load factor, was developed 

in Chapter 4. This system comprehensively comprised all endogenous and exogenous variables on 

both sides of the supply-demand equilibrium. As the system included the simultaneous equations, 

two full system statistical techniques, 3SLS and MLE, were separately applied to estimate the 

empirical model. The data of routes, linking Melbourne to the other capitals in the Australian 

domestic market, was applied to test the model. The estimated passenger demand equation was 

applied as the objective function of the optimisation model at the final step. A series of capacity 

constraints at the route and airport level was introduced to lead the optimisation outputs to practical 

results. The optimisation model was separately applied for 3SLS and MLE estimations and their 

results were compared. This model provides the optimal solutions of capacity planning at the route 

level to maximise the total potential demand for a given airport or network. The proposed model 

can thus be applied to assist governments and investors in decision making and prioritisation of 

the capacity development of the airports or networks. 

Next section discusses the research findings in detail.  

6.3. Key Research Findings 

This section succinctly provides the key findings derived from the literature review and thesis 

modelling. The findings are discussed for each of the prior chapters in the following sub-sections.  

6.3.1. Literature review 

Chapter 2 provided a literature review on the key drivers and modelling of airline’s capacity 

planning, passenger demand, flight delay, and air supply-demand equilibrium. With respect to 

the literature review provided in chapter 2, this section provides a summary of the findings and 

research problems.  
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• The prior research omitted how the domestic airlines managed and met the demands of the 

potential passengers of the regional routes and transformed this demand into capacity 

algorithms. None of the previous studies explored the drivers of the supply-demand 

equilibrium on the level of the origin-destination routes and the factors that influence the 

capacity planning in the Australian domestic market.  

• No study has comprehensively addressed the subject of airline capacity planning in the 

Australian domestic market. Similar studies in the literature primarily focused on domestic 

or international flight routes of the other regions across the world. 

• The empirical studies have yet to examine the factors affecting the phenomenon of flight 

delay in Australia. Most prior studies employed a micro level analysis involving daily data 

to examine the factors that influence flight delays and there is a lack of research that applies 

new route- and Australian domestic-level factors to model flight delays. 

• The prior studies mostly applied pure theoretical approaches to develop the optimisation 

model of capacity planning and there is a lack of empirical studies in the modelling.  

• The prior studies have applied an airline’s profitability or operating cost as the model 

objective to determine the optimal number of flights under supply-demand equilibrium. 

None of the previous studies applied flight demand as the objective, and flight frequency 

and aircraft size as the decision variables.  

• The prior studies of capacity planning mostly used aggregate micro-level data. Therefore, 

there is a lack of studies which apply macro-level factors in the modelling. 

6.3.2. Identification of Key Drivers of Airlines’ Capacity Decisions 

This step, discussed in chapter 3, was aimed to identify the antecedents of the airlines’ capacity 

decisions. The associated research question of the step was “RQ1: What are the key determinants 
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of airlines’ capacity decisions under the supply-demand equilibrium of flight market?”. This step 

examined the factors on both sides of the supply-demand equilibrium using monthly data of 21 

major domestic routes linking 8 major cities between January 2004 and December 2015. The 

dataset contained the historical data of four dominant airlines, Jetstar, Tiger Airways, Qantas, and 

Virgin Australia, and other active airlines in the Australian domestic flight market. 

To investigate the relationship between flight demand and the variables of capacity decisions 

(flight frequency, aircraft size, load factor, and available seats), the pooled series cross-sectional 

data were analysed using a two-stage least-squares method to model the supply-demand 

interaction. Durbin-Wu-Hausman (DWH) test, as suggested by Davidson and MacKinnon (1993), 

was applied to verify the endogeneity between passenger demand and the variables of capacity 

decisions. Weak instrument test, as suggested by Stock et al. (2002), was applied to ensure that the 

instrumental variable estimates were consistent. The key findings of this step were as below: 

• Airlines applied different strategies of capacity planning for short-, medium-, and long-

haul markets. These policies differently influence passenger demand.  

• In the short-haul market, airlines were more flexible in the choice of aircraft. Therefore, 

aircraft size was relatively more significant than flight frequency in the passenger demand 

model for the short-haul market. By contrast, fight frequency was identified as the key 

driver of capacity planning for the medium- and long-haul routes.  

• Passenger demand inflations led to more flights with the same or even smaller sized 

aircrafts in the medium-haul market. Both flight frequency and aircraft size were 

significant in capacity planning in the long-haul market, albeit with less elasticity of aircraft 

size on passenger demand than that of the short-haul market. 
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• The results suggested that a higher demand for flights primarily results in increased flight 

frequency rather than increased aircraft size or load factor, which was consistent with the 

literature (Pitfield et al., 2010). 

• The number of flights and airline’s choice of aircraft size influenced passenger demand. 

Load factor was recognised as an insignificant factor in the passenger demand model. The 

effect of socio-economic factors, i.e. population and employment rate, on passengers was 

relatively significant in the long-haul routes. 

• Contrary to the findings of Ito and Lee (2005) in which jet fuel cost was found to be an 

insignificant factor in the airline demand model, this factor was shown to be a driver on 

both sides of the supply-demand equilibrium of Australia’s domestic market. However, 

this factor differently influenced passenger demand on short-, medium-, and long-haul 

routes. 

• On the short-haul routes, the increase in oil price and related products stimulated flight 

demand and resulted in an increase in flight frequency at the expense of demand 

reduction in surface transportation.  

• Jet-fuel price inflations resulted in greater passenger demand for the routes with higher 

levels of industrial specifications. 

• Competition among the airlines enhanced flight demand and resulted in more flights, 

smaller aircraft size, and lower load factors, which together reflect higher service quality 

in the domestic flight market in Australia.  

• Low-cost carriers stimulated flight demand, increased flight frequency, reduced aircraft 

size and load factor, and enhanced the available flight capacity in the short-haul market. 

• The higher jet fuel prices scaled up aircraft size on all O-D routes in the market.  
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• Differentiated airline strategies were adopted for capacity decisions between the short-

haul and long-haul routes.  

• Competition and low-cost carriers stimulated flight demand, improve quality of service, 

and increase the total number of available seats.  

• Contrary to earlier studies, this research found that on short-haul routes, higher jet fuel 

costs result in greater flight demand and more flights. 

• Socio-economic parameters, population, and participation rates affected flight demand 

more strongly on long-haul routes than on short-haul routes. 

 

6.3.3. Impact of Airlines’ Capacity Decisions on Flight Delay 

This step, considered in chapter 4, investigated the antecedents of flight delays and how airline 

operations, particularly airline capacity planning, contribute to such an important issue in the 

aviation industry. The associated research question was “RQ2: How does an airline’s capacity 

decision influence flight delays?”. The public domain data of the airlines in Australia’s domestic 

aviation market was applied to develop the model. This data included monthly data of 21 major 

domestic routes linking 8 major cities from January 2004 to December 2015 and is taken from the 

four dominant airlines, Jetstar, Tiger Airways, Qantas, and Virgin Australia, and other active 

airlines in the Australian domestic flight market. 

Due to the endogeneity among the variables as well as the existence of time-invariant variables in 

modelling, the Hausman-Taylor regression method was applied to estimate the econometric model. 

The key findings of this chapter were as follows: 
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 The estimations indicated the variables of airlines’ capacity decisions (flight frequency, 

aircraft size, passenger load factor) as significant determinants of flight delays. 

 Interestingly, the findings of this study showed a negative relation between flight frequency 

and flight delay. 

 Load factor was identified as a significant factor affecting flight delay. 

 Keen competition between airlines was recognised to improve the air service quality in the 

case of less flight delay.  

 The increase in airlines’ operating expenses in terms of jet fuel cost inflation was identified 

as a key driver in flight delay.  

 Higher jet fuel costs were identified to lead to higher rates of flight delay for Qantas and 

Virgin, as legacy carriers, than for Jetstar and Tigerair as low-cost carriers.  

 Legacy carriers were relatively more successful in controlling flight delay than low-cost 

carriers 

6.3.4. Optimisation Model for Airlines’ Capacity Decision-making 

This step, discussed in chapter 5, developed a model to optimise the capacity planning of 

Australia’s airlines under supply-demand equilibrium and improve airline fleet planning and 

airport infrastructure development. The research question addressed by this step was “RQ3: How 

can airline capacity decisions be optimised for the individual routes of a given market to maximise 

the total potential flight demand with respect to the market’s capacity constraints?”. The objective 

was to find the best combination of flight frequency and aircraft size for the individual routes 

relative to an airport so as to maximise the total passenger demand with respect to the routes and 

airport capacity constraints. Exogenous and endogenous factors were identified to initiate the air 

supply-demand equilibrium. The supply-demand equilibrium was outlined based on a system of 
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four non-linear equations involving passenger demand, flight frequency, aircraft size, and flight 

delay. On the bi-relations among the dependent variables, the two full system models, three-stage 

least square (3SLS) and maximum likelihood estimation (MLE) were applied to build the model. 

To test the model, the data of seven Australian domestic routes, linking Melbourne to the other 

major cities in Australia, were used to estimate the model parameters. A non-linear optimisation 

model was applied to find the optimal solutions. The key findings were as below:  

 The results indicated how optimum airlines capacity decisions can improve the potential 

flight demand. 

 The results proposed a new capacity model for the airlines with respect to all key drivers 

under the air supply-demand equilibrium.  

 The optimal solution of 3SLS indicates a 1.72% increase in the potential demand of 

departure flights for the given routes of Melbourne airport compared to the actual plan of 

the domestic airlines for the same period (Dec 2015), compared to that of MEL which 

presents a 0.66% increase in the potential demand of departure flights. 

 The results showed the elasticity of passenger demand with respect to flight frequency and 

aircraft size are different in different markets 

6.4. Meeting the research Objectives 

This thesis aimed to develop an optimisation model for airlines’ capacity planning under the 

supply-demand equilibrium of the flight market. To achieve this, this thesis set three main 

objectives and implemented them accordingly in three executive steps: (1) Identification of key 

drivers on airlines’ capacity decisions, (2) identification of the impact of airlines’ capacity 

decisions on flight delay, and (3) optimisation model for airlines’ capacity decision-making. The 

research objectives were developed in compliance of the research questions indicated in Section 
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1.2 of chapter 1. The main objectives of the first two steps were to identify the key drivers of the 

supply-demand equilibrium and their interactions in order to developing a comprehensive 

framework for modelling in step 3. Step 3 was exclusively aimed to develop an optimisation model 

for airlines’ capacity planning under the supply-demand equilibrium of the flight market.  

 Chapter 3 addressed the first objective and answered the three predetermined questions:  

(1) Are the airlines’ capacity strategies different for short- and long-haul routes? If so, what 

factors drive these strategies?  

To answer this question, the routes under study were clustered, in Section 3.6.1.2, into three 

distance groups of short-, medium-, and long-hauls as proposed by Abrahams (1983). According 

to the data specification, the econometrical technique of two-stage least square method was applied 

separately to these three markets, and the results were compared in Section 3.7.  

(2) How do the supply side parameters, including competition, participation of low-cost 

carriers, and jet fuel cost inflation, affect passenger demand? 

The airline-related factors including competition between airlines, participation of low-cost 

carriers, and jet fuel price were described in section 3.4. Hirschman–Herfindahl Index (HHI) 

was introduced as a proxy to address competition between airlines. All these three parameters 

were applied for modelling in section 3.6.3. The outputs of econometrical analysis of these 

three factors besides the other airline-related and -non-related factors are discussed in Section 

3.7.  

(3) How do the demand-related factors influence the airlines’ capacity decisions?  
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This thesis initially identified passenger demand as the demand-related factor to assess the impact 

of demand-related factors on the airlines’ capacity decision. However, because of the endogeneity 

effect between passenger demand and the variables of capacity planning, discussed in Section 

3.6.1.3, three instrumental variables, population, employment rate, and airfare, were added as new 

factors to the demand side of the equilibrium to offset the endogeneity effect. Applying these 

factors was the first step of the TSLS modelling in Section 3.6.3 and resulted in the findings on 

the impact of demand-related factors in the airlines’ capacity decisions in Section 3.7. 

By answering all above questions, Chapter 3 successfully addressed and achieved the first 

objective of this thesis. 

As discussed in Chapter 1, more plane-miles either by more flight frequency or larger aircraft leads 

to higher rates of flight delay due to capacity constraints. That was the reason why the second 

objective of this thesis was to identify the impact of airlines’ capacity decisions on flight delay. 

Chapter 4 exclusively addressed the second objective by successfully addressing the questions 

below: 

(1) How do airline-related factors affect flight delay? 

Airline-related factors including the variables of capacity planning, flight frequency, aircraft size, 

and load factor were identified in section 4.4. The flight delay model was developed based on 

Hausman and Taylor’s instrumental variable estimator in section 4.6. To identify the impact of 

airline-related factors, the Australian domestic data on the flight market was applied and the 

findings were explored in section 4.7 

(2) How does flight delay rate vary between airlines? 
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To explore the impact of airlines’ performance on flight delay, the factor of low-cost carrier (LCC) 

participation as well as interaction variables were added to the study in section 4.4. Section 4.7.1 

explored the findings about the impact of airlines’ policy, in terms of low-cost carrier and legacy 

airlines, on flight delay. Section 4.7.2 also provided findings on the variables’ interaction effects 

related to the performance of low-cost carriers compared to the legacy airlines to manage flight 

delays in the case of jet fuel price inflation as well as high congestion of routes.  

By addressing the above questions, Chapter 4 effectively achieved the second objective of this 

thesis. The findings of Chapter 3 and 4 were effectively applied to form the conceptual framework 

of the supply-demand equilibrium of the flight market which was later used to initiate the 

optimisation model in Chapter 5.  

Chapter 5 addressed the last objective which is related to the development of an optimisation model 

for airlines’ capacity decision-making under the supply-demand equilibrium. The key question 

was how does the change in the airline’s capacity decision stimulate passenger demand? 

To address this question, an optimisation model was developed by applying the variables of 

capacity decision, flight frequency, and aircraft size as decision variables and passenger demand 

as the objective function. A system of four non-linear equations was developed to create the 

objective function in section 5.5. This function was applied in a non-linear optimisation model in 

section 5.5.3 as a solution to reveal how the changes in an airline’s capacity decision can trigger 

passenger demand. To answer the key question of Chapter 5, the proposed optimisation model was 

developed separately based on 3SLS and MLE techniques in section 5.7 and applied using the data 

on Melbourne airport. The findings of the optimisation model in sections 5.7 and 5.8 successfully 

addressed the key question of Chapter 5.  



Chapter 6 – Conclusion and Future Research 
 

136 

By successfully addressing the all key questions, the main purpose of this thesis, to develop an 

optimisation model for airline capacity planning under supply-demand equilibrium of the flight 

market, was therefore achieved.  

6.5.Contribution of the study 

The overall contribution of this study was the development of an innovative optimisation model 

for airline capacity planning under the supply-demand equilibrium of the flight market. This study 

consisted of three steps with the following key contributions: 

Step 1: Identification of key drivers on airlines’ capacity decisions 

This step developed an econometrical model by the application of the TSLS technique to identify 

the key drivers of airline’s capacity planning and analyse their relationship under the supply-

demand equilibrium of the Australian domestic flight market. A series of endogenous and 

exogenous variables, from the both sides of air supply-demand equilibrium, were novelty applied 

to develop the econometric model. This model considered the endogeneity effect between 

passenger demand and the variables of capacity planning. It was also implemented in different 

distance markets to highlight different strategies of airlines’ capacity planning.   

Step 2: Identification of the impact of airlines’ capacity decisions on flight delay 

This step developed an econometric model by using the Hausman–Taylor regression estimator to 

identify the impact of airline capacity planning on flight delay. This model included airline- and 

non-airline-related factors in modelling and introduced the interaction factors to reveal airlines’ 

performance in controlling flight delay. By applying this model, this step identified how airlines’ 

capacity decisions could influence flight delay and how low-cost carriers relatively control flight 
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delay in the case of jet fuel price inflations as well as of airport congestion as compared to the 

legacy airlines.  

Step 3: Optimisation model for airlines’ capacity decision-making 

An innovative optimisation model was developed for airline’s capacity planning under supply-

demand equilibrium of the flight market. This model was based on the theory of economies of 

density and applied the time-series cross-sectional data of flight market under a system of four 

non-linear equations to empirically estimate the coefficients of passenger demand equation as the 

objective function. This model comprehensively included all key drivers on both sides of the 

equilibrium and considers the bilateral relations among the key variables: passenger demand, flight 

frequency, aircraft size, and flight delay. The techniques of 3SLS and MLE were applied and tested 

by using the data of routes related to the Melbourne airport. This study novelty considered flight 

demand as the objective and flight frequency and aircraft size as the decision variables. The macro- 

and micro-level factors were effectively applied together in the modelling. A series of innovative 

constraints were introduced in the level of airport and routes to practically control the amount of 

decision variables.   

6.6. Planning Implications  

Capacity planning is one of the significant tools that airlines apply to manage passenger demand 

and control air traffic. Airlines may change the number of flights, apply different types of aircrafts, 

upgrade the seats in the aircraft, or even increase the load factor. This process is significant as it 

helps airlines maintain their market shares and manage their operating costs. The relative 

importance of capacity planning has been increasing due to the diminishing significance of other 

tools such as airfare management or hedging contracts. However, capacity planning is 
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sophisticated for airlines as they need to consider many criteria and their interactions for such 

decision-making.  

This study proposed a new optimisation model for capacity planning which considers all key 

drivers of the supply-demand equilibrium of the flight market. Compared to other models of 

capacity planning that generally contain a relatively a short list of micro-level factors in modelling, 

the proposed model contains all required macro- and micro-level factors. The proposed model 

considers all key socio-demographic as well as airline-related factors to determine the optimal 

capacity decisions. It simultaneously considers the specification of the origin and destination such 

as population and employment rate as well as of airline-related factors such as competition between 

airlines, participation of low-cost carriers, and jet fuel inflations to identify the optimal capacity 

decisions of a given route. As the proposed model applies flight frequency and aircraft size for 

such decision-making, airlines can determine the elasticity of passenger demand to these two 

variables separately and differentiate their strategies of capacity planning across different markets.  

The proposed model can be effectively applied to assist airlines in capacity planning of an airport 

or a hub-and-spoke network with respect to all capacity constraints at the level of route as well as 

airport or network. Therefore, it helps airlines to make the right decisions in terms of increasing 

the number of flights or aircraft size for the individual routes to maximise the total potential 

passenger demand for a given airport or network. 

The proposed model can potentially be used to assist governments and policy makers in decision 

making and prioritization of the capacity development of the airports or networks. It determines 

the elasticity of passenger demand to the different factors on both sides of supply-demand 

equilibrium. By having the forecasts of model’s factors, the model may identify the capacity 
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constraints of airports and networks to meet the potential passenger demand, and in turn determine 

the investment priorities of airport or network infrastructure developments.  

6.7.  Limitations and Future Research 

There are a few limitations in this study that are related to the research scope as well as the applied 

dataset. These limitations are mainly related to the data access of a few factors such as airfare and 

jet fuel price, which were applied within the different steps to either identify the key drivers of the 

supply-demand equilibrium or develop the optimisation model. These limitations and their related 

potential future research are separately outlined below: 

Using the theory of full equilibrium to develop the optimisation model 

As discussed in section 1.3, this study applied the theory of partial equilibrium as a base for 

optimisation model development. Therefore, the factors of supply-demand equilibrium of the flight 

market were analysed independently from prices and quantities of transportation substitutions such 

as vehicles and trains. Without having the factors of the other transportation modes in modelling, 

it was sometimes challenging to sufficiently interpret the relationship among the factors. 

Particularly in short-haul routes where surface transportation is a potential substitution of air 

transport, the quantities and prices of all modes of transportation need to be considered to provide 

a holistic picture of key drivers of capacity planning and their interactions under supply-demand 

equilibriums of the transportation market. Therefore, this study suggests applying the theory of 

full equilibrium, which comprises the factors of the other transportation modes, to extend the 

proposed model of this study. 

Investigating the impact of oil price inflation and of its related products on air and surface 

transportation 
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Due to the unavailability of the jet fuel cost information in the Australian domestic market, this 

study used the monthly information of the U.S. Gulf Coast Kerosene-Type Jet Fuel Spot Price to 

address this parameter in the proposed model. This limitation decreased the preciseness of the 

outputs of statistical analyses relating to the relationship between jet fuel price with the other 

variables of air supply-demand equilibrium. 

Further research is required to investigate the impact of oil price inflation and its related products 

on air and surface transportation. For example, as discussed in section 3.7, jet fuel inflation leads 

to increased passenger demand in the short-haul market. This positive effect seems to correlate 

with the price of oil products and their effects on flight and surface transportation in short-haul 

markets where competing modes of transportation are available for passengers. To fully analyse 

this effect, the data on other transportation modes needs to be added to the model. Therefore, airline 

capacity planning with a full picture of the supply-demand equilibrium of all modes of 

transportation could be pursued in future research. 

Using airfare data in the route level 

Due to the data limitation, airfare was only applied as an exogenous parameter in the passenger 

demand equation of the optimisation model in Chapter 5. Because of the absence of monthly data 

on average airfare at the route level, the best discount index of Australian domestic airfare was 

applied as a proxy for airfare. As this index only provides the average airfare in the domestic 

market, this study diminished the significance of this factor in modelling and considered airfare as 

an exogenous factor in the passenger demand model. Therefore, this study suggests applying the 

data of other flight markets, with the average airfare at the route level, in future research. As a 
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result, the significance of airfare can potentially be upgraded to become a key variable of airline 

capacity planning under the supply-demand equilibrium.  

Using airline-level data in modelling 

This study investigated the key drivers of capacity planning and developed an optimisation model 

at the route level. The data of four dominant airlines, Qantas, Virgin, Jetstar, and Tigerair, and the 

other active airlines were consolidated to provide the required dataset. However, this study can be 

expanded by adding the airline dimension in modelling. In future research, the data of individual 

airlines can be applied separately at the route level. With the airline dimension in modelling, 

further explorations can be done on the airline’s policies and performance of capacity planning in 

different markets.  

Using flight delay in minutes for modelling  

As a research limitation, the number of departing flights delayed was used as the proxy for the 

flight delay variable in both econometrical models in Chapter 4 and optimisation model in Chapter 

5. With respect to the statistical output, this study suggests applying other proxies such as flight 

delay in minutes that potentially improves the results of the flight delay equations. 

Applying the optimisation model to other airports and hub-and-spoke networks across the globe 

The data of the seven routes linking Melbourne airport to the other capitals was applied to test the 

optimisation model. As discussed in section 2.4, the Australian domestic flight market is 

geographically and economically different from that of other regions such as the US or Europe. 

Therefore, the application of a proposed optimisation model to other airports and hub-and-spoke 

networks surely leads to further explorations about the airlines’ policies and capacity planning as 
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well as the elasticity of passenger demand to airline- and non-airline-related factors on both sides 

of the supply-demand equilibrium.  

Flight delay modelling based on daily data 

Chapter 4 presented an econometrical model to identify the antecedents of flight delay based on 

the aggregate monthly data of the Australian domestic market. The aim was also to determine how 

airline’s capacity decisions influence flight delay. This study suggests the application of the 

econometrical model, proposed in chapter 4, to the other highly congested routes where there is 

access to daily data.   
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 Appendix 2.1 Literature Review on Flight Delay 

Author  Region  

Market Target Taxonomy Method 

Research Objective Technique 

D
om

estic 

International 

A
irport 

A
irline 

Flight D
elay 

Forecasting 

D
elay Propagation 

D
elay as param

eter 

R
eduction of D

elay 
im

pact 

D
elay im

pact 

Statistical A
nalysis 

O
peration R

esearch 

M
achine L

earning 

M
eta-H

euristic 

Wieland (1997) USA × 
   

×     
    

Delay Prediction  Detailed Policy 
Assessment Tool 

Reynolds-F. and Button (1999) Europe ×  ×    ×   × 
 

  Examination of the current capacity of the 
EU’s airport infrastructure 

Quantitative analysis 

Hansen (2002) USA × 
 

× 
     

× 
    

Runway delay externalities Queuing model 

Wu and Caves (2002) Europe 
   

× 
   

× 
  

× 
  

Scheduling of aircraft rotation by 
balancing the use of schedule time 

Non-linear 
Optimisation model 

Abdelghanya et al. (2004) USA × 
         

× 
  

A projection of flight delays and alerts for 
possible future breaks during irregular 
operation conditions 

Classical shortest 
path algorithm 

Wu (2005) Europe 
   

×  ×  
 

  
 

  Inherent delays of airline schedules 
resulting from limited buffer times and 
stochastic disruptions in airline operations 

Simulation model 

Abdel-Aty et al. (2007) USA × 
   

× 
    

× 
   

Periodic patterns of arrival delay  Statistical two-stage 
approach 

Hunter et al. (2007) USA × 
 

× 
  

  ×  
 

× 
  

Traffic flow management evaluation 
platform 

Simulation 

AhmadBeygi et al. (2008) USA ×   
 

 × 
 

  
 

   Relationship between the scheduling of 
aircraft and the operational performance  

Quantitative Analysis 

Madas and Zografos (2008) Europe × 
 

× 
   

× 
   

× 
  

Multi-criteria evaluation and selection of 
the most compatible slot allocation 
strategy  

AHP Technique 

Soomer and Franx (2008) Europe × 
 

×    
 

×   
 

 × Collaborative decision making to provide 
cost functions related to arrival delays  

Problem-specific 
local search heuristic 

Tu et al. (2008) USA 
    

× 
    

× 
  

× Estimating flight departure delay 
distributions  

Nonparametric 
methods 
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Author  Region  

Market Target Taxonomy Method 

Research Objective Technique 

D
om

estic 

International 

A
irport 

A
irline 

Flight D
elay 

Forecasting 

D
elay Propagation 

D
elay as param

eter 

R
eduction of D

elay 
im

pact 

D
elay im

pact 

Statistical A
nalysis 

O
peration R

esearch 

M
achine L

earning 

M
eta-H

euristic 

Zonglei et al. (2009) Asia   × 
 

× ×    
 

 × 
 

Forecasting flight delays Content-based 
recommendation 
system 

Pai (2010) USA × 
  

× 
  

× 
  

× 
   

Determinants of aircraft size and 
frequency of flights 

Statistical analysis 

Dück et al. (2012) USA  ×    ×  ×  × 
   

Improving the stability of aircraft routes 
and crew pairings 

Heuristic iterative 
approach  

Wong and Tsai (2012) Asia 
   

× 
 

× 
       

Flight delay propagation The Cox proportional 
hazards model  

Cao and Fang (2012) USA    
   

 ×     × Flight departure delays analysis  Genetic algorithm 

Britto et al. (2012) USA × 
  

× 
  

× 
  

× 
   

The impact of flight delays on both 
passenger demand and airfares 

Econometrical 
Analysis 

Zou and Hansen (2012) USA ×   × 
  

×   ×    Delay-reduction benefits from aviation 
infrastructure investment under 
competitive supply-demand equilibrium 

Aggregate, statistical 
cost estimation 
approach 

Ferrer et al. (2012) USA 
 

× 
      

× 
    

Effects of flight delays on passengers’ 
future purchasing behavior 

Econometrical 
Analysis 

Lubbe and Victor (2012) South 
Africa 

        
× × 

   
Cost of flight delays to corporations Quantitative Analysis 

Pyrgiotis et al. (2013) USA × 
 

× 
  

× 
    

× 
  

Delay Forecasting Approximate 
Network Delays 
(AND) model  

Xiong and Hansen (2013) USA 
   

× × 
    

× 
   

US domestic airlines’ cancellation 
decision-making 

Revealed preference 
approach 

SUN et al. (2013) Asia 
 

× × 
 

× 
    

× 
   

Relation of flight delay and air traffic 
movements 

Analytical model 

Peterson et al. (2013) USA × 
       

× 
    

Economic costs of delayed flights USAGE model 

Hao et al. (2014) USA × 
 

× 
     

× × 
   

Impact of the three New York airports on 
delay 

AFAA SWAC 
simulation model  
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Author  Region  

Market Target Taxonomy Method 

Research Objective Technique 

D
om

estic 

International 

A
irport 

A
irline 

Flight D
elay 

Forecasting 

D
elay Propagation 

D
elay as param

eter 

R
eduction of D

elay 
im

pact 

D
elay im

pact 

Statistical A
nalysis 

O
peration R

esearch 

M
achine L

earning 

M
eta-H

euristic 

Vlachos and Lin (2014) Asia × 
     

× 
  

× 
   

Key factors that determine business 
traveler loyalty 

 Hierarchical 
regression analysis 

Zou and Hansen (2014) USA × 
  

× 
  

× 
  

× 
   

Flight delay impact on airfare and flight 
frequency 

Econometrical 
Analysis 

Baumgarten et al. (2014) USA 
  

× 
 

× 
    

× 
   

Relationship between hubbing activities 
and flight delays 

Multi-period 
unobserved effects 
model 

Kafle and Zou (2016) USA × 
    

× 
   

× 
   

Delay propagation patterns  Joint discrete-
continuous 
econometric model 
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Appendix 3.1 Hausman test on the demand model 

 

 

Appendix 3.2 Descriptive statistics for variables in the short-haul routes (N = 782) 

Variable Mean Std. dev. Min Max 

Flight Frequency 1930.73 1207.64 559.00 5301.00 
Average Aircraft Size 150.01 31.70 62.08 199.13 
Load Factor (%) 76.801 7.219 51.700 91.100 
Number of Available Seats 310267 242986 65920 925812 
Number of Passengers 243838 201091 42232 768124 
Jet Fuel Price 2.604 0.532 1.490 4.120 
Number of Low-Cost Carriers 0.906 0.882 0.000 2.000 
HHI 0.395 0.075 0.272 0.801 
Employment Rate  5246 269 4649 5903 
Airfare 128.26 23.702 98.34 165.50 
Population (in billion) 15,000 15,200 1,620 46,000 
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Appendix 3.3 Descriptive statistics for variables in the medium-haul routes (N = 1,025) 

Variable Mean Std. dev. Min Max 

Flight Frequency 650.19 563.17 80.00 2288.00 
Average Aircraft Size 150.88 14.10 114.82 179.14 
Load Factor (%) 77.73 6.20 55.30 92.60 
Number of Available Seats 100,827 92,973 12,528 380,086 
Number of Passengers 79,609 74,993 10,547 312,669 
Jet Fuel Price 2.61 0.53 1.49 4.12 
Number of Low-Cost Carriers 0.73 0.69 0.00 2.00 
HHI 0.44 0.09 0.29 0.78 
Employment Rate  5,286 303 4,655 6,089 
Airfare 127.85 22.72 98.34 165.50 
Population (in billion) 7,070 7,480 503 28,800 

 

 

Appendix 3.4 Descriptive statistics for variables in the long-haul routes (N = 803) 

Variable Mean Std. dev. Min Max 

Flight Frequency 413.66 301.73 64.00 1,197.00 
Average Aircraft Size 195.73 32.68 102.71 276.49 
Load Factor (%) 79.13 7.37 53.30 96.60 
Number of Available Seats 86,818 69,291 8,051 260,884 
Number of Passengers 69,650 55,731 5,694 201,143 
Jet Fuel Price 2.62 0.52 1.49 4.12 
Number of Low-Cost Carriers 0.70 0.75 0.00 2.00 
HHI 0.46 0.10 0.26 1.00 
Employment Rate  5,384 198 4,678 5,839 
Airfare 130.46 23.29 98.34 165.50 
Population (in billion) 7,190 6,380 508 20,000 
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Appendix 3.5 Weak instrument test 
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Appendix 3.6 The coefficients of the Routes’ Dummy variable 

Route Dummy 
PASS FF ASIZE LF SEATS 

Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat 

Short-Haul Routes 

D_AdlMel -0.25 -7.82 -0.32 -9.06 0.16 5.90 0.15 5.54 -0.15 -5.57 

D_BneSyd -0.20 -34.90 -0.13 -8.96 0.07 5.91 0.06 5.38 -0.06 -5.43 

D_CbrSyd -0.34 -5.94 -0.18 -3.39 0.03 0.68 0.15 3.60 -0.15 -3.65 

D_CbrMel -0.29 -4.59 -0.40 -7.60 0.21 5.00 0.19 4.59 -0.19 -4.62 

D_HbrMel -0.25 -4.38 -0.55 -10.57 0.31 7.57 0.23 5.75 -0.23 -5.79 

D_MelSyd Omitted 

Medium-Haul Routes 

D_AdlBne 0.01 0.97 0.07 8.43 -0.03 -3.88 -0.04 -6.97 0.05 7.14 

D_AdlCbr -0.19 -5.79 -0.01 -0.79 -0.04 -2.60 0.06 4.04 -0.05 -3.90 

D_AdlSyd 0.34 16.36 0.22 8.00 -0.06 -2.57 -0.17 -8.01 0.17 8.04 

D_AdlPer 0.04 6.59 0.10 13.77 -0.06 -10.67 -0.04 -6.83 0.04 7.06 

D_BneCbr 0.15 8.67 0.17 19.67 -0.09 -12.92 -0.08 -12.50 0.08 12.65 

D_BneHbr -0.41 -39.50 -0.14 -5.68 0.01 0.65 0.13 7.16 -0.12 -7.06 

D_BneMel 0.47 14.20 0.31 7.43 -0.07 -2.09 -0.24 -7.81 0.24 7.82 

D_HbrSyd Omitted 

Long-Haul Routes 

D_BneDrw 1.42 15.99 -0.03 -1.91 0.05 3.65 -0.02 -2.37 0.02 2.33 

D_BnePer 0.03 1.57 -0.01 -1.83 0.01 2.06 0.00 0.01 0.00 0.03 

D_DrwMel 1.08 13.24 0.01 0.30 0.02 1.26 -0.03 -2.45 0.02 2.35 

D_DrwPer 1.48 13.96 0.07 3.78 0.01 0.39 -0.08 -6.86 0.08 6.87 

D_DrwSyd 1.00 13.60 0.01 0.56 0.03 2.22 -0.04 -4.67 0.04 4.33 

D_MelPer 0.25 20.47 0.07 16.12 -0.07 -17.68 0.00 0.06 0.00 -0.05 

D_PerSyd Omitted 
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Appendix 4.1 Statistics for variables of flight delays and on-time models (N = 2,556) 

Variable Mean Std. dev Min Max 
Flight Frequency 425.23 453.71 2.00 2417.00 

Load Factor (%) 77.74 6.96 51.70 96.60 

Aircraft Size  164.72 33.62 62.00 276.00 

Jet Fuel Price ($) 2.63 0.52 1.49 4.12 

Low Cost Participation  0.14 0.17 0.00 1.00 

HHI 0.43 0.12 0.13 1.00 

Population (billion) 9570.00 10900.00 504.00 46000.00 

Employment Rate 5309.51 268.43 4638.90 6088.72 

 

Appendix 4.2 Hausman test - Flight delays in the flight departure model 
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Appendix 5.1 Data summary of the studied routes 

Route 

Route 
code 

Route type Passenger Flight Aircraft Size Flight Delay 

Mean Max Min Mean Max Min Mean Max Min Mean Max Min 

Melbourne-Adelaide 1312 Short_Haul 87,665 104,974 67,143 671 546 774 152 164 138 13.8% 24.0% 5.5% 

Melbourne-Brisbane 1318 Medium_Haul 120,000 156,048 86,177 855 669 1,096 162 169 148 15.7% 31.8% 5.2% 

Melbourne-Canberra 1317 Short_Haul 41,451 57,186 26,883 378 242 516 127 142 106 13.3% 26.3% 5.7% 

Melbourne-Darwin 1315 Long_Haul 9,717 16,869 2,847 55 24 100 164 195 103 15.5% 52.4% 2.0% 

Melbourne-Hobart 1316 Short_Haul 49,954 72,635 35,347 352 264 489 161 173 130 19.6% 33.6% 7.5% 

Melbourne-Perth 1314 Long_Haul 75,470 100,572 45,688 411 265 564 205 232 178 20.2% 39.8% 9.5% 

Melbourne-Sydney 1319 Short_Haul 310,000 384,699 243,353 1,847 1,309 2,417 186 199 173 17.0% 37.1% 7.3% 
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Appendix 5.2 3SLS outputs for flight frequency equation 

Variable 

Short-Haul Medium-Haul Long-Haul 

Coef. p-value Coef. p-value Coef. p-value 

Flight frequency             

Pass 0.035 0.304 0.079 0.521 0.076 0.233 

ASize 0.148 0.003 0.503 0.049 -0.117 0.316 

Delay 0.003 0.809 0.010 0.456 0.074 0.019 

Lag_Flight 0.832 0.000 0.530 0.000 0.725 0.000 

HHI 0.005 0.714 -0.079 0.015 -0.152 0.000 

Jet fuel 0.022 0.024 -0.009 0.620 0.081 0.006 

LC Participation Rate 0.001 0.000 0.002 0.002 0.000 0.188 
Route (Route Code)             

Melboune_Adelaide (1312) 0.000 (Omitted)         
Melbourne_Hobart (1316) -0.097 0.000         

Melbourne_Canberra (1317) -0.031 0.000         
Melboune_Sydney (1319) 0.078 0.000         

Melbourne_Brisbane (1318)     0.000 (Omitted)     
Melbourne_Perth (1314)         0.000 (Omitted) 

Melbourne_Darwin (1315)         -0.102 0.011 
              

Constant 0.294 0.032 0.663 0.119 0.501 0.000 
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Appendix 5.3 3SLS outputs for aircraft size equation 

Variable 

Short-Haul Medium-Haul Long-Haul 

Coef. p-value Coef. p-value Coef. p-value 

Aircraft Size             

Pass -0.003 0.832 0.131 0.001 0.074 0.003 

Flight 0.042 0.002 0.059 0.149 -0.059 0.006 

Delay -0.004 0.376 -0.006 0.277 0.002 0.888 

Lag_ASize 0.889 0.000 0.606 0.000 0.838 0.000 

HHI -0.001 0.930 0.003 0.855 -0.031 0.016 

Jet fuel -0.003 0.536 0.020 0.002 0.013 0.321 

LC Participation Rate 0.000 0.039 0.000 0.014 0.000 0.589 

Route (Route Code)             

Melboune_Adelaide (1312) 0.000 (Omitted)         

Melbourne_Hobart (1316) 0.021 0.010        

Melbourne_Canberra (1317) -0.002 0.521         

Melboune_Sydney (1319) -0.005 0.515         

Melbourne_Brisbane (1318)     0.000 (Omitted)     

Melbourne_Perth (1314)         0.000 (Omitted) 

Melbourne_Darwin (1315)         0.003 0.873 
              

_Constant 0.152 0.013 0.040 0.811 0.175 0.001 
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Appendix 5.4 3SLS outputs for flight delay equation 

Variable 

Short-Haul Medium-Haul Long-Haul 

Coef. p-value Coef. p-value Coef. p-value 

Flight Delay       
Pass 0.052 0.743 0.169 0.832 0.151 0.601 

Flight Delay 0.594 0.000 0.093 0.866 0.465 0.010 

ASize -0.039 0.866 3.229 0.031 -0.378 0.463 

Lag_Delay 0.562 0.000 0.614 0.000 0.285 0.000 

Origin_Low Temperature 0.019 0.457 0.013 0.795 -0.044 0.475 

Dest_Low Temperature -0.010 0.354 -0.005 0.696 0.007 0.669 

Origin_Average Rain 0.050 0.000 0.054 0.038 -0.038 0.021 

Dest_Average Rain 0.005 0.433 0.030 0.107 0.009 0.618 

season       
2 0.008 0.617 0.021 0.504 -0.035 0.364 

3 0.003 0.900 0.020 0.623 -0.030 0.544 

4 0.003 0.812 0.003 0.903 -0.038 0.205 

Route (Route Code)       
Melboune_Adelaide (1312) 0.000 (Omitted)         

Melbourne_Hobart (1316) 0.099 0.002         

Melbourne_Canberra (1317) 0.013 0.722         

Melboune_Sydney (1319) 0.005 0.929         

Melbourne_Brisbane (1318)     0.000 (Omitted)     

Melbourne_Perth (1314)         0.000 (Omitted) 

Melbourne_Darwin (1315)         -0.227 0.069 

Constant -0.568 0.408 -5.850 0.020 0.407 0.411 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Appendices 
 

163 

Appendix 5.5 3SLS results 

Equation Observation No. of parameters RMSE R-squared Chi-squared 
Short-Haul 

Pass 518 12 0.013288 0.9985 352559.8 

Flight 518 10 0.016643 0.9968 160002.2 

Aircraft Size 518 10 0.007373 0.9862 37036.68 

Delay 518 14 0.102556 0.9048 4930.51 
Medium-Haul 

Pass 132 9 0.013305 0.921 1600.8 

Flight 132 7 0.010955 0.963 3650.69 

Aircraft Size 132 7 0.004161 0.8936 1155.43 

Delay 132 11 0.092972 0.6541 256.28 

Long-Haul 

Pass 229 10 0.033247 0.995 52966.92 

Flight 229 8 0.033434 0.9947 43667.64 

Aircraft Size 229 8 0.014263 0.9629 6037.94 

Delay 229 12 0.162679 0.9133 2410.31 
 

 

Appendix 5.6 SEM model diagram 
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Appendix 5.7 Overall goodness of fit 
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 Appendix 5.8 Equation-level goodness of fit 

Equation 

1312 1314 1315 1316 1317 1318 1319 

R-squared mc R-squared mc R-squared mc R-squared mc R-squared mc R-squared mc R-squared mc 

Passenger 0.91 0.96 0.97 0.99 0.95 0.98 0.93 0.97 0.89 0.95 0.93 0.96 0.97 0.98 

Flight delay 0.34 0.59 0.61 0.78 0.18 0.42 0.47 0.69 0.45 0.67 0.66 0.81 0.60 0.78 

Flight Frequency 0.83 0.91 0.91 0.95 0.93 0.96 0.89 0.94 0.93 0.96 0.89 0.95 0.80 0.89 

Aircraft Size 0.84 0.92 0.97 0.99 0.91 0.95 0.82 0.90 0.94 0.97 0.97 0.98 0.97 0.98 

 

 

 

 

 

 

 

  

 

 

 

 

 


