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Abstract 
 
In December 2013 a new electricity law was approved in Spain as part of an electricity 
market reform including a new remuneration scheme for distribution companies. This 
remuneration scheme was updated in December 2019 and the new regulatory framework 
introduced a series of relevant modifications that aim to encourage the regulated firms to 
reduce their power supply interruptions using a benchmarking approach. While some 
managerial decisions can prevent electricity power supply interruptions, other managerial 
decisions are more oriented to mitigate the consequences of these interruptions. This paper 
examines the second type of decisions using a unique dataset on the power supply 
interruptions of a Spanish distribution company network between 2013 and 2019. We focus 
on the effect of grid automatization on the restoration times, the relative efficiency of the 
maintenance staff, and the importance of its location. We combine a bottom-up spatial 
model and a stochastic frontier model to examine respectively external and internal power 
supply interruptions at municipal level. This model resembles the conventional spatial 
autoregressive models but differs from them in several important aspects. 
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1. Introduction 
The National Commission on Markets and Competition (CNMC), the Spanish regulator 

of the electricity sector approved last year the Circular 6/2019, which was published in the 
Official State Gazette on 5th December 2019, establishing a new methodology for calculating 
the remuneration of the electricity distribution companies for the years to come. The new 
regulatory framework introduced a series of relevant modifications to current regulation that 
aim to encourage the regulated firms to improve their performance, reducing not only 
distribution costs but also power supply interruptions. The previous regulatory framework (see 
Royal Decree 1048/2013), based on intertemporal comparisons, was not able to give the market 
the appropriate signal to achieve these targets. The new incentive scheme resembles a 
benchmarking (or yardstick) regulation as the incentives for quality of service improvements 
rely on the performance of other firms. In particular, the incentive reward/penalty will be 
computed by comparing the performance (variation) of a standard reliability indicator of each 
electricity distribution company with average sector performance in comparable urban and 
rural areas of supply. It is expected that the proposed approach will be more rewarding for the 
regulated firms if they improve the quality of service in the distribution network related to the 
interruption time of the electricity supply to their clients. Therefore, they will likely pay more 
attention to this important topic of the electricity distribution activity. 

Although a large percentage of Power Supply Interruptions (hereafter PSI) are beyond 
the management control of utilities (e.g. due to weather conditions or external human 
manipulations), managerial decisions such as vegetation management, asset investments and 
maintenance strategies can contribute to improvements of quality of service. While some of 
these decisions are more oriented to prevent electricity PSI caused by severe environmental 
conditions (e.g. reducing the number and length of overhead lines or improving grid assets 
capabilities, etc.), other managerial decisions are more oriented to mitigate the consequences 
of these interruptions (e.g. increasing the number of maintenance crews, improving their 
location, etc.). While some of these decisions require additional capital costs, other decisions 
require increasing firm’s operation and maintenance costs. It is not clear in the literature which 
strategy is better. As pointed out by Giannakis et al. (2005) and Jamasb et al (2012), the 
electricity distribution firms might adopt different strategies to combine capital and operating 
costs to improve their quality of service. 

Other literature has shown that weather conditions influence quality of service in 
electricity distribution networks. While Coelho et al. (2003), Domijan et al. (2003) and Zhou 
et al.(2006) find a significant correlation between PSI and rain, wind and temperatures, Yu et 
al. (2009) find that such factors often do not have a significant economic and statistical effect 
on the overall performance of the UK utilities. Wang and Billington (2002) show that severe 
weather conditions do not only increase the frequency of PSI, but also the restoration time. 
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Other researchers have examined the effect of the network characteristics on quality of service. 
For instance, Kjølle et al. (2003) have found that the number and duration of interruptions are 
significantly higher in overhead networks compared to cable networks. 

From a remedy perspective, the emergence of grid digitalization, which allows faster 
and more accurate detection of damaged equipment and its location, helps to restore electricity 
supply and fix faults more quickly. For a matter of time, previous literature has not studied the 
impact of such technological development on the duration of interruptions. This issue can be 
now studied as the electricity distribution firms in many countries have been installing remote 
control on transformers and switching and protection circuits in the last decade. On the other 
hand, faster restoration in most outages requires efficient and well-located maintenance crews. 
As the previous literature uses firm level data or aggregate geographical data, they do not allow 
examining the effect of the location of the maintenance crews on restoration times, as well as 
the relative efficiency of each maintenance crew. 

This paper uses a unique data set on the PSI in 91 Spanish municipalities of a Spanish 
distribution company network between 2013 and 2019 to identify the main technological and 
managerial drivers of the duration of power outages. As our dataset is very detailed, we know 
the source municipality of each PSI as well as, if any, the subsequent municipalities affected 
by the same PSI. In this sense, we are able to distinguish between “internal” PSI where the 
origin is located in the source municipality and “external” PSI caused by outages located in 
other municipalities that are physically connected through the distribution network. 
Distinguishing between the two types of supply interruptions is not a semantic issue because 
while the quick restoration of supply in an “internal” PSI requires one of the maintenance crews 
to be close and/or the existence of remote controlled switching and protection systems located 
in the source municipality, the restoration time in an “external” PSI has nothing to do with its 
own factors but with the location and network characteristics of the source municipality firstly 
affected by the outage. For this reason, we use two different approaches to examine “external” 
and “internal” PSI. 

The duration of the external PSI is modelled using a spatial non-frontier econometric 
model. A spatial non-frontier model is used here because the external PSI only appear if there 
are PSI in neighboring and connected municipalities. As we know the sequence of the 
individual PSI across municipalities, we can develop a spatial model from scratch, i.e. using 
the engineering or physical information of the PSI that occurred in each municipality. 
Therefore, our model can be viewed as a Bottom-Up (BoU) spatial model. A frontier 
specification is not used here because the managerial decisions aiming to restore the electricity 
supply in these municipalities fix network faults located in other municipalities (i.e. in the 
municipality firstly affected by the outages). For this reason, inefficient performance is only 
examined using internal PSI. The duration of the internal PSI is modelled using a standard non-
spatial frontier model. It does not make sense to use here a spatial specification because the 
faults that have triggered these PSI took place within the municipality. 

The paper is structured as follows. Section 2 develops several spatial and frontier 
models that aim to identify the main technological and managerial drivers of the restoration 
times of internal and external PSI. The bottom-up nature of our models is not only apparent in 
that we can distinguish between internal and external PSI, but also in that we aggregate our 
engineering-based (outage) data on monthly and municipality basis in order to mimic the 
traditional spatial econometric models. Section 3 discusses the data used in the empirical 
analysis and its sources. Section 4 provides the parameter estimates and discuss the main 
results. Finally, Section 5 presents the conclusions. 
 

https://energyeducation.ca/encyclopedia/Circuit
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2. Methodology 
2.1. Preliminaries 

Let us first explain briefly how we use the individual information of each outage to 
define our dependent variable(s) and, in particular, to compute an engineering-based spatially 
lagged dependent variable, which differs from the one often used in the standard spatial 
econometric models. 

As customary in the Spanish electricity distribution system, we use the so-called TIEPI 
as a reliability indicator to measure (lack of) quality of service. This indicator, which is defined 
further in Section 3, is a power-adjusted measure of the restoration times as it considers the 
active power loss due to the outage, relative to the whole system power. As we are interested 
in the duration and not the frequency of PSI, our final sample does not include months without 
outages.1 The duration of all power outages occurred in a municipality 𝑚𝑚 = 1, … ,𝑀𝑀 during 
month 𝑡𝑡 = 1, … ,𝑇𝑇 will be expressed as 𝑌𝑌𝑚𝑚𝑚𝑚. 

In a standard Spatial Autoregressive Model (SAR), it is assumed that the dependent 
variable 𝑌𝑌𝑚𝑚𝑚𝑚 is spatially correlated, and this correlation is modelled as follows: 

𝑌𝑌𝑚𝑚𝑚𝑚 = 𝜆𝜆𝑊𝑊𝑌𝑌𝑚𝑚𝑚𝑚 + 𝜀𝜀𝑚𝑚𝑚𝑚     (1) 

where 𝜀𝜀𝑚𝑚𝑚𝑚 is an error term, 𝑊𝑊𝑌𝑌𝑚𝑚𝑚𝑚 = 𝑊𝑊𝑚𝑚𝑌𝑌𝑚𝑚 = ∑ 𝑊𝑊𝑚𝑚𝑚𝑚𝑌𝑌𝑚𝑚𝑚𝑚𝑀𝑀
𝑚𝑚=1  stands for the endogenous spatial 

lag of the dependent variable, 𝑌𝑌𝑚𝑚 = (𝑌𝑌1𝑚𝑚,𝑌𝑌2𝑚𝑚 , … ,𝑌𝑌𝑀𝑀𝑚𝑚) is an 𝑀𝑀𝑀𝑀1 vector of the dependent 
variables, and 𝑊𝑊𝑚𝑚 = (𝑊𝑊𝑚𝑚1,𝑊𝑊𝑚𝑚2, … ,𝑊𝑊𝑚𝑚𝑀𝑀) is a spatial weight vector where the weights (𝑊𝑊𝑚𝑚𝑚𝑚) 
equal one for adjacent units and zero for non-bordering units. Finally, the 𝜆𝜆 parameter is the 
spatial autoregressive coefficient that measures the degree of spatial correlation between units.  

Notice that 𝑊𝑊𝑌𝑌𝑚𝑚𝑚𝑚 can be viewed as a weighted measure of the duration of all PSI that 
occurred in adjacent municipalities to the municipality 𝑚𝑚 in period 𝑡𝑡, even if the outages in 
neighboring municipalities have nothing to do with the PSI in municipality 𝑚𝑚. In some cases, 
𝑊𝑊𝑌𝑌𝑚𝑚𝑚𝑚 include common PSI. However, as this spatially lagged dependent variable ignores the 
true sequence of the PSI across municipalities, it surely includes the duration of PSI of 
subsequent municipalities affected by the same outage. If so, equation (1) would wrongly 
suggest that the outage in a preceding municipality is caused by the outage of a subsequent 
municipality. In other words, the traditional spatially lagged dependent variable will provide 
biased results because it ignores the true physical propagation (i.e. true causality) of PSI in a 
real electricity distribution network. 

Like in a dyadic-type data setting where it is clearly possible to distinguish an origin 
unit from a destination unit (see e.g. Neumayer and Plümper, 2010), we know the source 
municipality of each PSI as well as, if any, the subsequent municipalities affected by the same 
outage. Therefore, our dataset allows us to model properly contagion, diffusion or spillover 
effects across municipalities that are physically connected through the distribution network. To 
achieve this objective, let us decompose the total duration of the PSI (𝑌𝑌𝑚𝑚𝑚𝑚) into two sets: 
internal and external PSI. That is: 

𝑌𝑌𝑚𝑚𝑚𝑚 = 𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚 + 𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚 = ∑ 𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚
𝐼𝐼𝑚𝑚𝑚𝑚
𝑖𝑖=1 + ∑ 𝑒𝑒𝑗𝑗𝑚𝑚𝑚𝑚

𝐽𝐽𝑚𝑚𝑚𝑚
𝑗𝑗=1    (2) 

                                                           
1 Analysing the frequency of PSI is also more challenging as we should cope with an excessive number of zero 
values in our data. The development and estimation of zero-inflated econometric models in non-frontier settings 
have become widespread. See Yang et al. (2017) for a comparison of methods. Our models, however, allow 
examining whether the number of outages matters when estimating the coefficients in which we are interested. 
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where 𝑖𝑖 = 1, … , 𝑌𝑌𝑚𝑚𝑚𝑚 stands for outages started in municipality 𝑚𝑚 in period 𝑡𝑡, and 𝑗𝑗 = 1, … , 𝐽𝐽𝑚𝑚𝑚𝑚 
stands for PSI in municipality 𝑚𝑚 in period 𝑡𝑡 caused by outages that have started before in other 
municipalities physically connected through the distribution network.2 𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 and 𝑒𝑒𝑗𝑗𝑚𝑚𝑚𝑚 are 
respectively the duration of the internal and external PSI from the perspective of the 
municipality 𝑚𝑚. Therefore, while 𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚 measures the duration of all internal PSI occurred in 
municipality 𝑚𝑚 in period 𝑡𝑡, 𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚 measures the duration of all external PSI that affect 
municipality 𝑚𝑚 in period 𝑡𝑡 but that have been ‘imported’ from other municipalities. In other 
words, our dataset allows us to know the true outcome (i.e. 𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚) of the spatial spillovers we 
are able to capture using a spatial econometric model. In a standard spatial application, only 
the aggregate effect of both internal and external PSI (i.e. 𝑌𝑌𝑚𝑚𝑚𝑚) is observed by the 
econometrician. Thus, we have a kind of quasi-natural experiment to test what spatial spillovers 
are being captured by the most common spatial econometric models. 

On the other hand, as we have perfect information about the characteristics of the 
electricity distribution network and all connections across municipalities, we know the true W 
matrix. This matrix should be computed in our application considering the number of 
connections between two municipalities and the capacity of these connections. Otherwise, our 
spatial specification of a physical phenomenon such as the propagation of PSI would not make 
sense. Moreover, unlike most spatial models in regional economics, contiguity in our case is a 
necessary but not sufficient condition to be affected by other municipality. It also requires being 
connected with the preceding municipalities.3 Another attractive feature of our engineering-
based W matrix is that its elements can be treated as exogenous spatial weights when estimating 
the model due to the physical nature of the network connections. This is very useful from an 
econometric view because it avoids the need to address challenging endogeneity issues 
associated with W.  
2.2. Modelling external PSI 

As aforementioned, explaining 𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚 and 𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚 requires a different model because while 
𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚 emanates from municipality 𝑚𝑚 and the network equipment that should be fixed is located 
in this municipality, 𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚 emanates from other municipalities and thus there is nothing to fix 
in municipality 𝑚𝑚. In other words, 𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚 is a pure spatial spillover or contagion effect that 
disappears if municipality 𝑚𝑚 in period 𝑡𝑡 is not involved in multi-municipality PSI that had 
previously started in another municipality. For this reason, we propose using the following 
SAR specification to explain the duration of each external interruption: 

𝑒𝑒𝑗𝑗𝑚𝑚𝑚𝑚 = γ𝑚𝑚Ω𝑗𝑗𝑚𝑚𝑌𝑌𝑗𝑗 = γ𝑚𝑚 ∑ Ω𝑗𝑗𝑚𝑚𝑚𝑚𝑌𝑌𝑗𝑗𝑚𝑚
𝑁𝑁𝑗𝑗
𝑚𝑚=1     (3) 

where 𝑁𝑁𝑗𝑗 is the number of municipalities involved in outage 𝑗𝑗, 𝑌𝑌𝑗𝑗 = (𝑌𝑌𝑗𝑗1,𝑌𝑌𝑗𝑗2, … ,𝑌𝑌𝑗𝑗𝑁𝑁𝑗𝑗) is the 
𝑁𝑁𝑗𝑗𝑀𝑀1 vector of PSI durations involved in outage 𝑗𝑗, and Ω𝑗𝑗𝑚𝑚 = (Ω𝑗𝑗𝑚𝑚1,Ω𝑗𝑗𝑚𝑚2, … ,Ω𝑗𝑗𝑚𝑚𝑁𝑁𝑗𝑗) is a 𝑁𝑁𝑗𝑗𝑀𝑀1 
spatial weight vector where the weights equal one for first-order preceding municipalities that 
are connected through the electricity distribution network and have been affected immediately 
before than municipality 𝑚𝑚 in outage 𝑗𝑗. Otherwise, the elements in Ω𝑗𝑗𝑚𝑚 are equal to zero. 
Finally, the γ𝑚𝑚 parameter is the spatial autoregressive coefficient that measures the contagion 
                                                           
2 The time lag between outages cannot be perceived by humans as it usually lasts milliseconds. 
3 In this sense, our model looks like a multilevel or hierarchical SAR model, which is becoming increasingly 
popular in social sciences. See Corrado and Fingleton (2016) for a summary of these models. It is assumed in this 
models that there exist a number of well-defined groups organized within a hierarchical structure, such as class 
within schools. Much of the multilevel literature assumes that inter-individual interaction is restricted to within 
group boundaries. From a spatial perspective, this implies that the inter-individual interactions are restricted 
spatially in a similar fashion that our bottom-up spatial model. 
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degree of municipality 𝑚𝑚 from preceding municipalities. We expect that this degree depends 
on the number of connections of municipality 𝑚𝑚 with other municipalities, as well as the 
capacity of these connections. 

If we next plug (3) into 𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚 = ∑ 𝑒𝑒𝑗𝑗𝑚𝑚𝑚𝑚
𝐽𝐽𝑚𝑚𝑚𝑚
𝑗𝑗=1 , and add the traditional noise term, we get 

the following bottom-up SAR model:4 

𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚 = γ𝑚𝑚Ω𝑌𝑌𝑚𝑚𝑚𝑚 + 𝜔𝜔𝑚𝑚𝑚𝑚    (4) 

where Ω𝑌𝑌𝑚𝑚𝑚𝑚 = ∑ ∑ Ω𝑗𝑗𝑚𝑚𝑚𝑚𝑌𝑌𝑗𝑗𝑚𝑚
𝑁𝑁𝑗𝑗
𝑚𝑚=1

𝐽𝐽𝑚𝑚𝑡𝑡
𝑗𝑗=1 , and 𝜔𝜔𝑚𝑚𝑚𝑚 is a symmetric and normally distributed noise 

term. One might be tempted to extend this model with municipality-specific factors, i.e. adding 
the traditional 𝛽𝛽𝑋𝑋𝑚𝑚𝑚𝑚 term in a conventional SAR model. However, this might yield the unsound 
result that municipality 𝑚𝑚 has been affected by outages emanated in other municipalities even 
when municipality 𝑚𝑚 was not involved in common outages, i.e. when either Ω𝑗𝑗𝑚𝑚𝑚𝑚 = 0 or 𝑌𝑌𝑗𝑗𝑚𝑚 =
0. 

Equation (4) can be estimated using a simple Ordinary Least Squares (OLS) estimator5 
given that Ω𝑌𝑌𝑚𝑚𝑚𝑚 is by definition an exogenous variable because it has been computed using 
past values although our notation in equation (4) does not explicitly indicate this recursive 
nature of Ω𝑌𝑌𝑚𝑚𝑚𝑚. Therefore, equation (4) can be viewed as a time-space recursive model where 
the dependent variable is lagged in both space and time dimensions (see e.g. Elhorst, 2010).6  

Instead of using variables in levels, it is also possible to estimate a SAR model in per 
outage terms. That is, we can replace respectively 𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚 and Ω𝑌𝑌𝑚𝑚𝑚𝑚 with 𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚/𝐽𝐽𝑚𝑚𝑚𝑚  and 
Ω𝑌𝑌𝑚𝑚𝑚𝑚/𝐽𝐽𝑚𝑚𝑡𝑡 in (4). Compare to a model in levels, the per outage specification reduces 
heteroskedasticity issues and improves goodness-of-fit.7 As it is customary in both spatial and 
frontier literatures, the SAR model can also be estimated using variables in natural logarithms. 
The logarithm specification allows us to prevent the existence of extreme values for the 
heteroskedastic autoregressive parameter in our spatial models. In addition, using logs allows 
us to reduce convergence issues when estimating our frontier models.  

The γ𝑚𝑚 parameter that measures the contagion degree of municipality 𝑚𝑚 from 
preceding municipalities likely depends on the number of connections of municipality 𝑚𝑚 with 
other municipalities, as well as the average capacity of these connections. Indeed, we expect 
larger spatial spillovers when the number and capacity of the connections with preceding 

                                                           
4 Notice that equation (4) cannot be estimated in a conventional spatial econometric application because only, say, 
the whole GDP in one region is observed, and not the portion of such GDP that actually depends on the GDP of 
neighbouring regions. 
5 Equation (4) can also be estimated using Maximum Likelihood (ML) techniques if we assume that 𝜔𝜔𝑚𝑚𝑚𝑚  follows 
a normal distribution, i.e. 𝜔𝜔𝑚𝑚𝑚𝑚~𝑁𝑁(0,𝜎𝜎𝜔𝜔 = 𝑒𝑒𝜏𝜏0). 
6 In this sense, Skevas (2019) shows that the endogeneity issues that exist in conventional SAR models such as 
𝑌𝑌𝑚𝑚 = γΩ𝑌𝑌𝑚𝑚 + 𝜔𝜔𝑚𝑚 are caused by the fact that the dependent variable of any individual appears both on left and the 
right-hand side of the spatial autoregressive model, after replacing 𝑌𝑌𝑚𝑚 on the right-hand side of the above equation 
with 𝑌𝑌𝑚𝑚 = γΩ𝑌𝑌𝑚𝑚 + 𝜔𝜔𝑚𝑚. A time-space recursive model such as 𝑌𝑌𝑚𝑚 = γΩ𝑌𝑌𝑚𝑚−1 + 𝜔𝜔𝑚𝑚  overcomes such a bias because 
for a particular observation, while 𝑌𝑌𝑚𝑚 appears on the left-hand-side, the right-hand-side contains 𝑌𝑌𝑚𝑚−2 after 
replacing 𝑌𝑌𝑚𝑚−1with 𝑌𝑌𝑚𝑚−1 = γΩ𝑌𝑌𝑚𝑚−2 + 𝜔𝜔𝑚𝑚−1, and the endogeneity issue is wiped out. 
7 Notice that the total duration of external PSI in (4) can be decomposed into the number of external PSI that affect 
municipality 𝑚𝑚 in period 𝑡𝑡 (𝐽𝐽𝑚𝑚𝑚𝑚) and the average duration of these interruptions (�̅�𝑒𝑚𝑚𝑚𝑚 = ∑ 𝑒𝑒𝑗𝑗𝑚𝑚𝑚𝑚

𝐽𝐽𝑚𝑚𝑚𝑚
𝑗𝑗=1 /𝐽𝐽𝑚𝑚𝑚𝑚). That is, 

𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚 = 𝐽𝐽𝑚𝑚𝑚𝑚 · �̅�𝑒𝑚𝑚𝑚𝑚. This decomposition suggests that using a per outage specification of (4) allows us to focus on 
outages’ duration (i.e. on �̅�𝑒𝑚𝑚𝑚𝑚) and not on the number of such outages (i.e. on 𝐽𝐽𝑚𝑚𝑚𝑚). 
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municipalities (i.e. involved in common outages) increases. However, the abovementioned 
spatial spillovers are likely attenuated if municipality 𝑚𝑚 has other connections.  

As it does not make sense to obtain negative PSI from an engineering point of view, we 
will use non-linear specifications for the SAR model in (4). In order to prevent negative 
γ𝑚𝑚values, we will parameterize γ𝑚𝑚 using an exponential function, that is γ𝑚𝑚 = exp(𝜆𝜆𝑞𝑞𝑚𝑚) 
where 𝑞𝑞𝑚𝑚 measure municipality 𝑚𝑚’s connectivity. 

 
2.3. Modelling internal PSI 

The duration of the internal PSI is modelled as a Standard non-spatial Frontier (SF) 
model because the managerial decisions aiming to restore power supply in any outage should 
focus on fixing network faults located in the source municipality, i.e. in the municipality first 
affected by the outage. Accordingly, we propose modelling 𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚 as follows: 

𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚 = β𝑋𝑋𝑚𝑚𝑚𝑚 + 𝑣𝑣𝑚𝑚𝑚𝑚 − 𝑢𝑢𝑚𝑚𝑚𝑚(𝑧𝑧𝑚𝑚𝑚𝑚)     (5) 

where 𝑋𝑋𝑚𝑚𝑚𝑚 is a vector of technological and environmental variables that might determine the 
length of the PSI. For instance, it might include the length of the network, and the relative 
importance of aerial and underground lines, as in Kjølle et al. (2003). Another network 
characteristic that might affect quality of service are the degree of digitalization of the network 
and the proportion of outdoor transformers. Restoration times might also depend on the 
distance to the nearest maintenance crew, in particular if the outage is located in the 
countryside. Wang and Billington (2002) show that severe weather conditions also increase 
restoration times. For this reason, other good candidates to be included in 𝑋𝑋𝑚𝑚𝑚𝑚 are the weather 
conditions. In addition to including seasonal dummy variables we also include the percentage 
of outages caused by weather-related issues. 

Equation (6) also includes two error terms, 𝑣𝑣𝑚𝑚𝑚𝑚 and 𝑢𝑢𝑚𝑚𝑚𝑚. While the former term is a 
symmetric error term measuring pure random shocks, the latter term is a non-negative error 
term either measuring managerial inefficiencies associated to restoration times, or extremely 
large restoration times that cannot be attributed to random shocks. 𝑧𝑧𝑚𝑚𝑚𝑚 is a vector of exogenous 
variables that might determine the relative performance of the maintenance crews restoring 
power supply in municipality 𝑚𝑚 or the frequency of difficult-to-restore PSI. As we do not have 
information on the maintenance staff characteristics and we have found convergence problems 
when we included crew-specific dummy variables, we only include seasonal variables aiming 
to measure within-year variations in 𝑢𝑢𝑚𝑚𝑚𝑚 and a set of time trends in order to capture changes in 
𝑢𝑢𝑚𝑚𝑚𝑚 over time.  

As for the external interruptions, the above frontier model can be estimated in levels, in 
per outage terms and in logs. Again a per outage specification of (5) allows us to focus on 
outages’ duration (i.e. on 𝚤𝚤�̅�𝑚𝑚𝑚 = ∑ 𝑖𝑖𝑗𝑗𝑚𝑚𝑚𝑚

𝐼𝐼𝑚𝑚𝑚𝑚
𝑗𝑗=1 /𝑌𝑌𝑚𝑚𝑚𝑚) and not on the number of internal outages (i.e. 

on 𝑌𝑌𝑚𝑚𝑚𝑚). The use of natural logarithms has permitted to get parameter estimates when estimating 
the model using ML techniques.  

The above frontier model can be estimated by ML once we have assumed specific 
distributions for the noise and inefficiency terms. Hereafter we will assume that 
𝑣𝑣𝑚𝑚𝑚𝑚~𝑁𝑁(0,𝜎𝜎𝑣𝑣 = 𝑒𝑒𝛿𝛿0) and that the variable representing inefficiency is the truncation (at zero) 
of a normally-distributed random variable with mean zero and standard deviation 𝜎𝜎𝑢𝑢𝑚𝑚𝑚𝑚 =
𝑒𝑒𝜃𝜃0+𝜃𝜃𝑍𝑍𝑚𝑚𝑚𝑚 . As is customary in the SFA literature, the error term in any of our spatial stochastic 
frontier models includes a noise term (𝑣𝑣𝑚𝑚𝑚𝑚) and an inefficiency term (𝑢𝑢𝑚𝑚𝑚𝑚). Jondrow et al. 
(1982) use the conditional distribution of 𝑢𝑢𝑚𝑚𝑚𝑚 given the composed error term (i.e. 𝑣𝑣𝑚𝑚𝑚𝑚 − 𝑢𝑢𝑚𝑚𝑚𝑚), 
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to estimate the asymmetric random term 𝑢𝑢𝑚𝑚𝑚𝑚. We use the conditional expectation 
𝑌𝑌(𝑢𝑢𝑚𝑚𝑚𝑚|𝑣𝑣𝑚𝑚𝑚𝑚 − 𝑢𝑢𝑚𝑚𝑚𝑚) as a point estimate of 𝑢𝑢𝑚𝑚𝑚𝑚. 

 It is convenient to point out that model (5) is estimated using a different set of 
observations than model (4). Indeed, while the SAR model in (4) is estimated using the monthly 
observations with non-zero external PSI (i.e. when 𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚 > 0), the estimation of the frontier 
model in (5) requires instead using the monthly observations with non-zero internal PSI (i.e. 
when 𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚 > 0). As most municipal interruptions emanate from themselves in our application, 
the number of observations to estimate (5) is much larger than that to estimate (4). Notice in 
this sense that the total number of observations in our application (hereafter 𝑁𝑁) can be split into 
three non-overlapped subsets: i) observations with positive internal PSI but with no external 
PSI (hereafter 𝑁𝑁𝑌𝑌); ii) observations with positive external PSI but with no internal PSI (hereafter 
𝑁𝑁𝑌𝑌); and iii) observations with both positive external and internal PSI (hereafter 𝑁𝑁𝑌𝑌+𝑌𝑌). 
Therefore, while model (4) is estimated using 𝑁𝑁𝐸𝐸∗ = 𝑁𝑁𝐸𝐸 + 𝑁𝑁𝐼𝐼+𝐸𝐸 observations, model (5) is 
estimated using 𝑁𝑁𝐼𝐼∗ = 𝑁𝑁𝐼𝐼 + 𝑁𝑁𝐼𝐼+𝐸𝐸 observations. Typically, 𝑁𝑁𝐼𝐼 > 𝑁𝑁𝐸𝐸 . Thus, 𝑁𝑁𝐼𝐼∗ is much larger 
than 𝑁𝑁𝐸𝐸∗ in our application.  

To conclude this section, it is germane to point out that both models, although estimated 
separately, can be viewed as a unique but more comprehensive BoU spatial frontier models. 
Indeed, notice that if we model the sum of internal and external PSI and combine appropriately 
equations (4) and (5), we get the following spatial frontier model: 

𝑌𝑌𝑚𝑚𝑚𝑚 = γ𝑚𝑚Ω𝑌𝑌𝑚𝑚𝑚𝑚∗ + β𝑋𝑋𝑚𝑚𝑚𝑚∗ + 𝑣𝑣𝑚𝑚𝑚𝑚∗ − 𝑢𝑢𝑚𝑚𝑚𝑚∗      (6) 

where Ω𝑌𝑌𝑚𝑚𝑚𝑚∗ = Ω𝑌𝑌𝑚𝑚𝑚𝑚𝐷𝐷𝐸𝐸>0, 𝑋𝑋𝑚𝑚𝑚𝑚∗ = 𝑋𝑋𝑚𝑚𝑚𝑚𝐷𝐷𝐼𝐼>0, 𝑣𝑣𝑚𝑚𝑚𝑚∗ = 𝑣𝑣𝑚𝑚𝑚𝑚𝐷𝐷𝐼𝐼>0 + 𝜔𝜔𝑚𝑚𝑚𝑚𝐷𝐷𝐸𝐸>0, and 𝑢𝑢𝑚𝑚𝑚𝑚∗ =
𝑢𝑢𝑚𝑚𝑚𝑚(𝑧𝑧𝑚𝑚𝑚𝑚)𝐷𝐷𝐼𝐼>0. 𝐷𝐷𝐸𝐸>0 and 𝐷𝐷𝐼𝐼>0 are two dummy variables identifying the observations with 
respectively non-zero external and internal interruptions. Notice that this model should de 
estimated using 𝑁𝑁 = 𝑁𝑁𝐸𝐸 + 𝑁𝑁𝐼𝐼 + 𝑁𝑁𝐼𝐼+𝐸𝐸 observations, i.e. with less observations than the sum of 
observations in (4) and (5). On the other hand, it is worth mentioning that the above spatial 
frontier model is similar to other spatial and frontier models proposed in the literature. For 
instance, the inefficiency term 𝑢𝑢𝑚𝑚𝑚𝑚∗  resembles the inefficiency term of the Zero-Inefficiency 
Stochastic Frontier (ZISF) model introduced by Kumbhakar et al. (2013) but with perfect 
information about the allocation of the observations between the so-called fully-efficient group 
(observations with 𝐷𝐷𝐼𝐼>0 = 0) and inefficiency group (observations with 𝐷𝐷𝐼𝐼>0 = 1). The above 
model also resembles the Generalized Spatial Autoregressive Frontier (GSARF) model 
introduced by Gude et al. (2018) that also allows the degree of spatial interaction to be 
observation specific. However, while the spatial lagged dependent variable in this paper is 
endogenous, Ω𝑌𝑌𝑚𝑚𝑚𝑚∗  above is exogenous due to its (implicit) recursive nature. 

 

3. Sample and data  
We apply our SAR and SF models to unique data set on the PSI in 91 Spanish 

municipalities of a Spanish distribution company network between 2013 and 2019. The data 
used in this study is confidential as it was obtained directly from this private utility. The 
variables used in our empirical application have been constructed considering the geographical 
structure of the electricity distribution network of such company. This allows us to know the 
real propagation effects of the outages from one municipality to the next.  

Our dependent variables are computed using the standard reliability indicator (TIEPI) 
used in Spain to measure (lack of) quality of service. The TIEPI reliability indicator is the 
equivalent PSI time found in medium voltage (1 kV to 36 kV) of the installed capacity affected 
by the outage. This index has the following expression: 
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𝑇𝑇𝑌𝑌𝑌𝑌𝑇𝑇𝑌𝑌 =  ∑ (𝑃𝑃𝐼𝐼𝑖𝑖∗𝐻𝐻𝑖𝑖)𝑘𝑘
𝑖𝑖=1

∑𝑃𝑃𝐼𝐼
     (7) 

where 𝑇𝑇𝑌𝑌𝑖𝑖 is the sum of the capacity of the transformers (kVA) installed in the substations 
located in the distribution grid and affected by the outage 𝑖𝑖, 𝐻𝐻𝑖𝑖 is the supply interruption time 
affecting the capacity 𝑇𝑇𝑖𝑖, 𝐾𝐾 is the total number of interruptions during the considered lapse 
time, and ∑𝑇𝑇𝑌𝑌 is the sum of the capacity of the transformers (kVA) installed in the substations 
located in the distribution grid. Equivalent measures in other countries are the well-known 
SAIDI and CAIDI indicators, which measure the duration of the interruptions in per consumer 
terms. 

The data set that is being used in the study come from the Distributed Control System 
(DCS) of the network of the Spanish distribution company. The time resolution of the DCS 
allows us to know which is the first event that triggers the outage and, therefore, to know which 
is the “source” municipality where the outage takes place. The data set considers 168,705 
events (distribution stations or step-down transformers affected during an outage) and 23,816 
outages that took place between 2013 and 2019. The complete outage dataset obtained from 
the DCS gives information about all the grid components (distribution stations and step-down 
transformers) that are affected on each outage: the outage number of each outage, the exact 
outage and restored times, the substations or step-down transformers that are affected during 
the outage, the capacity of each one of the substations or step-down transformers that are 
affected during the outage, the so-called event category which gives information about the 
cause of the incident (weather related, not foreseen, scheduled outage or third-party grid 
origin), and name of the municipality where is placed each one of the grid components affected 
during the outage. 

Other different data sources allow us to improve the data quality giving information 
about the urban vs. rural nature of the municipalities affected by the outages,8 the dates when 
a remote-control system was installed in a distribution station or step-down transformer, the 
neighboring municipalities (identified following both a geographical and electrical approach), 
the municipality cross border grid segments,9 the distribution stations and step-down 
transformers characteristics,10 the length of the network,11 and finally the location of each 
Operational and Maintenance (O&M) crew. 

The above detailed information has allowed us to compute the municipality-level 
variables finally used in our empirical application. For each municipality and month, we know 
the number and TIEPI of outages that affected it, the number and TIEPI of outages that were 
triggered by it, the number and TIEPI of outages that progress to neighboring municipalities, 
and the number and TIEPI of outages that come from neighboring municipalities. These 

                                                           
8 The regulator distinguishes between urban areas (municipalities with more than 20,000 supplies, including 
provincial capitals, even if they do not reach the previous figure), semi-urban areas (municipalities with a number 
of supplies between 2,000 and 20,000, excluding provincial capital), rural areas (municipalities with less than 
2,000 suppliers). 
9 More than 3,000 grid segments that cross the border between two geographically adjacent municipalities have 
been identified. We identified the municipalities involved in each interconnection, the number of connections, 
capacities (kVA), sections (mm2), voltage (kV), location (overhead / underground) of all of them. 
10 For each one of them, we have identified the name, identification code, municipality name where is installed, 
municipality identification code, UMTS (latitudinal and longitudinal location), rated capacity (kVA), and outdoor, 
indoor or underground location. 
11 We have identified more than 400 thousand grid segments. For all of them number (#), capacity (kVA), section 
(mm2), voltage (kV) and location (overhead / underground) of the interconnection have been identified. 
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variables allow us to compute the duration of internal and external PSI used as dependent 
variables in our BoU spatial and SF models. 

We also know the number and name of geographical neighboring municipalities, the 
number and name of electrical neighboring municipalities, and the number, capacity and 
voltage level of electrical connections between electrical neighboring municipalities. We have 
used this information to compute a set of determinants of the autoregressive parameter that 
appears in our (heteroskedastic) BoU spatial models. In this model we use the number of 
connections with preceding municipalities involved in common outages (𝑇𝑇𝑁𝑁𝑃𝑃) and the 
average capacity of these connections (𝑇𝑇𝑃𝑃𝑃𝑃), as well as the total number of connections of 
municipality 𝑚𝑚 with other municipalities (𝑁𝑁𝑃𝑃) and their average capacity (𝑃𝑃𝑃𝑃). 

 We have also computed for each municipality the following information: the 
distribution grid length (km’s of medium voltage grid), the proportion of overhead and 
underground lines, the proportion of outdoor, indoor and underground step-down transformers, 
the proportion of remote controlled distribution station or step-down transformer on monthly 
basis, the average geographical position of all the distribution stations and step-down 
transformers that are placed in each municipality, and the minimum geographical distance 
between each municipality and the closest one with operation and maintenance crews located 
on it. 

The above information has been used to compute the technological and environmental 
drivers included in our SF models. As in previous literature, we include a set of network 
characteristics to explain restoration times. We first include the logarithm of the length of the 
network (𝑙𝑙𝑙𝑙𝑁𝑁𝑙𝑙) as it might capture accessibility problems to outages. We have also included 
the natural logarithm of installed capacity (𝑙𝑙𝑙𝑙𝑃𝑃𝑃𝑃𝑇𝑇) to control for differences in power 
capacities between municipalities. This variable is highly correlated with the number of 
transformers and it can also be interpreted as a measure of network complexity. We also 
consider the proportion of distribution stations or step-down transformers fitted with a remote-
control system (𝐷𝐷𝑌𝑌𝐷𝐷𝑇𝑇) because they help to restore supply more quickly. This variable is used 
here to measure the effect of grid automatization on the restoration times. The proportion of 
underground (𝑃𝑃𝑇𝑇) and outdoor transformers (𝑂𝑂𝑇𝑇), and the proportion of overhead lines (𝑂𝑂𝑙𝑙) 
are also included as explanatory variables due to differences in accessibility to the damaged 
equipment or broken lines. For instance, access physically to outdoor transformers or overhead 
lines is easier than in the case of underground transformers and cables.  

The restoration times in some cases might be larger than originally expected because 
all firm’s maintenance crews are far from the outages, in particular if the outage is located in 
the countryside. To capture this location effect, we first include a dummy variable (𝑅𝑅𝑃𝑃𝑅𝑅𝑃𝑃𝑙𝑙) 
indicating the rural nature of the municipality. We next have added the logarithm of the distance 
to the nearest maintenance crews (𝑙𝑙𝑙𝑙𝐷𝐷𝑌𝑌𝑙𝑙) as explanatory variable. This variable is iterated with 
the previous 𝑅𝑅𝑃𝑃𝑅𝑅𝑃𝑃𝑙𝑙 dummy variable as well as its urban counterpart (𝑃𝑃𝑅𝑅𝑈𝑈𝑃𝑃𝑁𝑁) to capture 
differences between rural and urban distances. 

Finally, we have included the proportion of outages caused by weather-related issues 
(𝑊𝑊𝑌𝑌𝑃𝑃𝑇𝑇𝐻𝐻𝑌𝑌𝑅𝑅) in order to see if weather conditions not only might increase the frequency of 
outages (as shown in previous literature) but also increase restoration times. To capture 
seasonal variations in weather conditions we include a set of dummy variables identifying the 
𝑊𝑊𝑌𝑌𝑁𝑁𝑇𝑇𝑌𝑌𝑅𝑅, 𝑙𝑙𝑇𝑇𝑅𝑅𝑌𝑌𝑁𝑁𝐷𝐷 and 𝑙𝑙𝑃𝑃𝑀𝑀𝑀𝑀𝑌𝑌𝑅𝑅 seasons of the year. We ultimately include a set of regional 
dummy variables in our SF models to control for unobserved differences in the electricity 
distribution network between Spanish provinces (i.e. 𝑃𝑃𝑙𝑙𝑇𝑇𝑃𝑃𝑅𝑅𝑌𝑌𝑃𝑃𝑙𝑙, 𝐻𝐻𝑃𝑃𝑌𝑌𝑙𝑙𝑃𝑃𝑃𝑃, 𝑍𝑍𝑃𝑃𝑅𝑅𝑃𝑃𝐷𝐷𝑂𝑂𝑍𝑍𝑃𝑃, 
𝑃𝑃𝑙𝑙𝑌𝑌𝑃𝑃𝑃𝑃𝑁𝑁𝑇𝑇𝑌𝑌, 𝑉𝑉𝑃𝑃𝑙𝑙𝑌𝑌𝑁𝑁𝑃𝑃𝑌𝑌𝑃𝑃 and 𝑀𝑀𝑃𝑃𝐷𝐷𝑅𝑅𝑌𝑌𝐷𝐷). 
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Regarding the inefficiency term, we only include the above set of regional variables to 
capture seasonal variations in the relative performance of each maintenance crew. Such 
differences can likely be attributed to a concentration of extremely difficult-to-manage outages 
in specific seasons, for instance due to extremely bad weather conditions or faults located in 
very difficult-to-access places. The previous set of variables captures within-year changes in 
maintenance crews’ inefficiency. In order to capture general trends in maintenance inefficiency 
over time (i.e. between-year changes), we have also included a third-order polynomial function 
of monthly time trends. 

Tables 1 and 2 provide the descriptive statistics of the variables used in our BoU spatial 
and SF models, respectively. 

[Table 1 here] 
[Table 2 here] 

 

4. Empirical specifications and results 
4.1. BoU and standard SAR models 

As aforementioned, we try to explain the duration of the external PSI using spatial 
autoregressive models. For comparison grounds, we estimate several specifications of our 
bottom-up spatial model. The first BoU spatial model uses exactly the specification that 
appears in (4). In this model, all variables are in levels. In the second model we estimate (4) 
but in per outage terms. In this case, our dependent variable is �̅�𝑒𝑚𝑚𝑚𝑚 = ∑ 𝑒𝑒𝑗𝑗𝑚𝑚𝑚𝑚

𝐽𝐽𝑚𝑚𝑚𝑚
𝑗𝑗=1 /𝐽𝐽𝑚𝑚𝑚𝑚 and 

Ω𝑌𝑌𝑚𝑚𝑚𝑚/𝐽𝐽𝑚𝑚𝑚𝑚 is used as spatial lagged variable. In the third BoU spatial model, we again use the 
original restoration times, but now in logs. In this model, the dependent variable is 𝑙𝑙𝑙𝑙𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚 and 
the spatially lagged variable is 𝑙𝑙𝑙𝑙Ω𝑌𝑌𝑚𝑚𝑚𝑚. Our final BoU spatial model uses the log of the per 
outage variables, i.e. 𝑙𝑙𝑙𝑙(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚/𝐽𝐽𝑚𝑚𝑚𝑚) and 𝑙𝑙𝑙𝑙(Ω𝑌𝑌𝑚𝑚𝑚𝑚/𝐽𝐽𝑚𝑚𝑚𝑚). 

It is germane to recall here that the above spatially lagged variables do not coincide 
with the spatially lagged variable used in a standard SAR specification. While the lagged 
variable in a standard SAR is the spatial lag of the dependent variable (e.g. if the dependent 
variable is 𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚, the spatially lagged variable is 𝑊𝑊𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚), in our BoU spatial model the 
spatially lagged variables is computed using both neighboring external and internal PSI (i.e. 
we use Ω𝑌𝑌𝑚𝑚𝑚𝑚 and not Ω𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚). A second difference has to do with the spatial matrix. While the 
𝑊𝑊 matrix in a standard SAR model aggregates the duration of all PSI occurred in adjacent 
municipalities to the municipality 𝑚𝑚 in period 𝑡𝑡, the Ω matrix takes into account the true 
sequence of the PSI across municipalities, and thus it only includes common PSI. Moreover, 
the Ω matrix only includes preceding municipalities involved in common outages, in contrast 
to the standard SAR model were the spatially lagged variable is computed using 
contemporaneous values. 

As the standard SAR model ignores the true physical propagation of PSI in a real 
electricity distribution network, it likely provides biased results. To examine how severe this 
this issue is, we also compare our BoU results with those obtained using standard SAR model. 
This robustness analysis is carried out using a simple homoscedastic (linear) specification for 
the autoregressive parameter as it is customary in the spatial literature. 

Table 3 summarizes the main results. Regarding the BoU spatial models, we find clear 
improvements in goodness-of-fit either using logs or per-outage values. In this sense, as 
expected, the best specification is the model that uses the log of the per outage variables. The 
estimated autoregressive parameters in all BoU models are sound as they are positive, and quite 
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large (between 0.74 and 1.02). This is an expected result given that we have assumed that the 
restoration times of preceding municipalities involved in common outages are the main factor 
explaining external PSI. On the other hand, it is worth remarking on the poor goodness-of-fit 
of all standard SAR models, especially if the variables are not expressed in natural logarithms. 
The low values of the estimated autoregressive parameters in all standard SAR models are also 
worth mentioning, in particular in the specifications where the variables are not expressed in 
natural logarithms. Although they are statistically significant, they are close to zero. As the 
external interruptions only appear if Ω𝑌𝑌𝑚𝑚𝑚𝑚 > 0, we do not expect significant intercept values. 
This happens in all BoU models, whether we use levels, per outage values or logs. In all 
standard SAR models, the estimated intercept is statistically significant, and even negative. All 
these results can be taken as evidence of the biases caused by using ad-hoc specifications of 
the spatial weight matrix. 12 

[Table 3 here] 
In Table 4 we show the results of two heteroskedastic specifications of our BoU spatial 

model. As the best goodness-of-fit were found using logged variables, we only show the results 
using variables in logs and per-outage variables in logs. Table 3 shows that the heteroskedastic 
specification in both models improves the R-squared statistics and that most of the determinants 
of the autoregressive parameter or function have a significant effect on γ𝑚𝑚. The average value 
of the autoregressive parameter is slightly less than the estimated valued using its 
homoskedastic counterpart in Table 3. However, the autoregressive parameter does vary across 
municipalities. 

[Table 4 here] 

The remarkable variation in γ𝑚𝑚 can be clearly appreciated in Figure 1 that presents the 
kernel density of the autoregressive parameter estimates. Both kernel densities are similar, 
indicating that our results are robust to using or not per-outage variables. This figure also shows 
that the autoregressive parameter estimates range from 0.46 and 0.93. Note, however, that the 
modal value is close to 0.55 in both specifications. This means that if there were 100% increases 
in restoration times in preceding municipalities, the restoration times in a subsequent 
municipality will increase by 55% if the preceding outages have the same nature. As all 
autoregressive parameter estimates are less than unity in Figure 1, there are not one-to-one 
contagion effects in most municipalities if restoration time (changes) is measured in logs 
(growth rates). We have found values much larger than unity when logs are not used to estimate 
model (4). This is also a sound result because the power-adjusted restoration time in one 
municipality might be larger than in the preceding municipality simply due to the installed 
capacity in the subsequent municipality being larger than in the preceding municipality.13 

[Figure 1 here] 
Table 4 also shows the parameter estimates of the autoregressive function γ𝑚𝑚 =

exp(𝜆𝜆𝑞𝑞𝑚𝑚). As mentioned in Section 2, we expect that the contagion degree of municipality 𝑚𝑚 
from preceding municipalities depends on its connectivity with not only these municipalities, 
but also with other municipalities that might attenuate the lack of supply from the preceding 
municipalities. Conditional on the number of connections with preceding municipalities 
involved in common outages (𝑙𝑙𝑙𝑙𝑇𝑇𝑁𝑁𝑃𝑃) and their average capacity (𝑙𝑙𝑙𝑙𝑇𝑇𝑃𝑃𝑃𝑃), the coefficients of 

                                                           
12 In both cases we have used spatial lags of 𝑌𝑌𝑚𝑚𝑚𝑚 . Larger biases are expected if the standard SAR models are 
estimated using 𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚 , i.e. using a wrong spatially dependent variable. 
13 Therefore, the use of logged variables reduces the importance of the differences in capacity between preceding 
and subsequent municipalities when estimating spatial spillovers. 
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the number of connections of municipality 𝑚𝑚 with other municipalities (𝑙𝑙𝑙𝑙𝑁𝑁𝑃𝑃) and their 
average capacity (𝑙𝑙𝑙𝑙𝑃𝑃𝑃𝑃) capture the effect of municipality 𝑚𝑚’s connectivity with non-
preceding municipalities, i.e. subsequent municipalities involved in common outages plus 
municipalities that are connected with municipality 𝑚𝑚 but not involved in common outages. 
The parameter estimates in Table 4 confirm our expectations. The contagion degree increases 
with the average capacity of the connections with preceding municipalities, as expected. The 
relationship with the number of connections with preceding municipalities is not statistically 
significant. We also find the expected result that γ𝑚𝑚 decreases with 𝑙𝑙𝑙𝑙𝑁𝑁𝑃𝑃 and 𝑙𝑙𝑙𝑙𝑃𝑃𝑃𝑃 because 
other sources of supply tend to attenuate the impact of PSI imported from preceding 
municipalities. 
 
4.2. Frontier models 

The duration of the internal PSI is modelled using standard non-spatial stochastic 
frontier (SF) models, where the dependent variable is now the duration of all internal PSI 
occurred in municipality 𝑚𝑚 in period 𝑡𝑡. As we have found convergence problems when the 
dependent variable is not logged, we discuss the frontier results using 𝑙𝑙𝑙𝑙𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚 and 
𝑙𝑙𝑙𝑙(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚/𝑌𝑌𝑚𝑚𝑚𝑚). 

Table 5 shows the parameter estimates of our two SF models. In general, both 
specifications of equation (5) yield very similar results, except for 𝑙𝑙𝑙𝑙𝑁𝑁𝑙𝑙. The coefficient of this 
variable is positive and statistically significant when restoration times are in logs, but not when 
they are expressed in per-outage terms. Both results together seem to suggest that the monthly 
interruptions increase with both network length. On the other hand, the fact that we do not find 
a significant effect on per-outage restoration times indicates that, in general, the differences in 
accessibility between municipalities do not matter to restoring power supply.14 The coefficient 
of 𝑙𝑙𝑙𝑙𝑃𝑃𝑃𝑃𝑇𝑇 is positive in both specifications of the SF model. This is an expected result because 
our dependent variable is a power-adjusted measure of the restoration times in each 
municipality and the installed capacity varies notably across municipalities. However, the 
positive effect found in both specifications might also indicate that the severity of the PSI 
increases with the number of transformers of the network.  

[Table 5 here] 
The percentage of distribution stations or step-down transformers fitted with a remote-

control system (𝐷𝐷𝑌𝑌𝐷𝐷𝑇𝑇) allows us to measure the effect of grid automatization on the restoration 
times. We find a negative and statistically significant effect on restoration times in both 
specifications. Therefore, grid automatization does reduce the duration of all PSI and the 
restoration times of each outage. If the percentage of digital transformers increases in 10% 
points, the restoration times will be reduced about 8%. On the other hand, we do not find a 
significant effect of underground transformers (𝑃𝑃𝑇𝑇) on restoration times. This is an expected 
result because the reference transformers are located indoor, and there are no differences in 
restoration times with the underground transformers from an engineering point of view. 

The proportion of outdoor transformers (𝑂𝑂𝑇𝑇) has a negative and significant effect on 
restoration times when the restoration times are not measured in per-outage terms. We 
originally expected a positive effect because firm’ engineers believe that fixing an outdoor 
transformer normally requires more time than an indoor or underground transformer. 
Therefore, the negative coefficient is likely to do with the fact that most of the outdoor 
                                                           
14 If the lack of accessibility has been extraordinarily relevant in occasional outages, its effect should be captured 
by the corresponding inefficiency score. 
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transformers are located in rural areas where the installed capacity tends to be small. In this 
way, the percentage of outdoor transformers might have a negative effect on a power-adjusted 
measure of restoration times. Similar comments can be made for the negative coefficient found 
for the proportion of overhead lines (𝑂𝑂𝑙𝑙). The overhead lines are mainly located in rural areas. 
Therefore, the overhead lines tend to supply power to a smaller number of customers per 
network kilometer. However, the coefficient of the 𝑅𝑅𝑃𝑃𝑅𝑅𝑃𝑃𝑙𝑙 dummy variable is positive and 
statistically significant in both specifications. As the proportion of overhead lines in rural 
municipalities (85%) is higher than in more urban municipalities (78%), this dummy variable 
thus might be capturing part of the effect of 𝑂𝑂𝑙𝑙 on restoration times. 

The two variables included in the model to measure the effect of the distance to the 
nearest maintenance crews (𝑙𝑙𝑙𝑙𝐷𝐷𝑌𝑌𝑙𝑙) on outage durations have positive coefficients and in 
general are statistically significant. This result seems to confirm that the location of 
maintenance crews is a relevant factor to managing PSI, especially if the municipality affected 
for the outage is more urbanized. The larger effect for urban municipalities has likely to do 
with the fact that the installed capacity in these municipalities tend to be larger than in urban 
areas. In addition, we do not find an increasingly effect of the distance on restoration times 
given the lack of significance of the coefficient of the quadratic distance term. 

We have tried to capture the effect of weather conditions on restoration times through 
the 𝑊𝑊𝑌𝑌𝑃𝑃𝑇𝑇𝐻𝐻𝑌𝑌𝑅𝑅 variable, that measures the proportion of outages caused by weather-related 
issues, plus a set of seasonal dummy variables. The larger the proportion of outages caused by 
weather-related issues, the larger the restoration times are in both specifications. The estimated 
coefficient is however much smaller when we use a per-outage measure for the duration of the 
PSI. This result therefore seems to indicate that the weather conditions not only increase 
restoration time of each outage, but also the frequency of outages, as found in previous 
literature. Unlike the 𝑊𝑊𝑌𝑌𝑃𝑃𝑇𝑇𝐻𝐻𝑌𝑌𝑅𝑅 variable, the three seasonal dummy variables included as 
frontier determinants do not provide additional information about the severity of the PSI. 

Finally, and regarding the set of regional dummy variables, we have found highly 
significant coefficients, indicating that the above set of variables were not able to control for 
all differences in the electricity distribution network between Spanish provinces. It is worth 
highlighting the large values of the coefficients of 𝐻𝐻𝑃𝑃𝑌𝑌𝑙𝑙𝑃𝑃𝑃𝑃 and 𝑍𝑍𝑃𝑃𝑅𝑅𝑃𝑃𝐷𝐷𝑂𝑂𝑍𝑍𝑃𝑃, i.e. the two 
provinces of Aragón region. However, both coefficients are quite different because the network 
of both provinces differ notably.15 Similar comments apply to the two coefficients estimated 
for Alicante and Valencia provinces.  

Figure 2 shows the average efficiency scores by provinces. They have been computed 
using the per-outage specification of our model because the goodness-of-fit is much better in 
this model, and in addition because the estimated efficiency scores do not depend on the 
number of power interruption, which is far from the control of the maintenance crews. Our 
results show a relatively good performance of the maintenance crews located in each province 
because the average value in all of them is larger than 92%. This figure also provides a very 
interesting result regarding the performance of the maintenance crews. The distribution of the 
inefficiency scores in Asturias and Huesca provinces are much more skewed than in other 
provinces. This is again a somewhat expected outcome because the municipalities of these two 
provinces are more rural than in other provinces and their population is widely scattered in 

                                                           
15 For instance, while 95% of the network in Huesca province is made up with overhead lines and its population 
is widely scattered in a wide area, the overhead lines in Zaragoza province only represents a 35% in Zaragoza 
province due it is a much more urbanized area. 
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wider areas. The large number of extremely low values for the efficiency scores in Asturias 
and Huesca reveals the existence of frequent difficult-to-restore PSI in these two provinces. 

[Figure 2 here] 
We depict the annual evolution of the efficiency scores in Figure 3. Our SF model yields 

much lower efficiency scores in 2019 than in previous years. This is something that the 
distribution company must examine using the outage-level information. The Spanish regulator 
(CNMC) justifies the new regulatory framework on the poor quality of services performance 
of many Spanish electricity distribution utilities. The observed deterioration in quality of 
service seems thus to corroborate such decision. 

[Figure 3 here] 
 

5. Conclusions and final remarks  
This paper uses a unique dataset to identify the main technological and managerial 

drivers of the duration of power outages. Unlike previous literature we focus our analysis on 
two issues: the emergence of grid digitalization and the location (and inefficiency) of 
maintenance staff. As we know the sequence of the individual PSI across municipalities, we 
use two different approaches to examine external and internal PSI. In a standard spatial 
application, only the aggregate effect of both PSI is observed by the econometrician. 

The duration of the external PSI is modelled using a bottom-up SAR model that is 
developed using the engineering information of the PSI occurred in each municipality. Unlike 
the standard SAR model, our bottom-up model can be estimated using a simple OLS estimator 
because of the recursive nature of the spatially lagged variable. We show that the standard SAR 
model is seriously biased because it ignores the true sequence of the PSI across municipalities. 
In contrast, the duration of the internal PSI is modelled using a standard frontier model because 
the equipment that must be fixed is in the municipality initially affected by the outages. For 
this reason, the inefficient performance of the maintenance crews is only examined using 
internal PSI. 

The estimated standard SAR models provide very poor goodness-of-fit as well as 
unsound autoregressive parameters. The logged specifications of our heteroskedastic BoU 
spatial models show that there are not one-to-one contagion effects in most municipalities, and 
that the degree of municipality contagion increases with the number of connections, and their 
average capacity, with preceding municipalities involved in common outages. However, the 
analysis also confirms that radial grid areas with few alternative routes to supply energy to end 
customers, often located in rural municipalities, are more affected by external outages than 
more interconnected areas, often in urban municipalities. 

Regarding the internal PSI, our SF models show that both the weather conditions and 
the network characteristics influence quality of service in electricity distribution networks, as 
in previous literature. Unlike previous papers, we find a negative effect of transformers fitted 
with a remote-control system on restoration times in both specifications. Therefore, grid 
automatization does reduce the duration of all PSI and the restoration times of each outage. 

We finally find that the performance of the maintenance crews is quite good because 
their average efficiency is larger than 92%. However, our efficiency analysis also reveals that 
there are numerous difficult-to-restore PSI in Asturias and Huesca provinces, an outcome that 
the firm might examine in detail in order to improve its quality performance in these two 
Spanish provinces. Another result that the firm should pay attention to is the observed 
deterioration in the estimated efficiency scores in 2019. 
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From a distribution company point of view, the analyzes carried out in this paper are 
useful to reinforce the idea that grid digitalization or remote control of grid assets is a must in 
order to reduce the impact of outages in terms of active power loss. Our results seem to confirm 
that the location of maintenance crews is also a relevant factor to managing PSI. Whether 
increasing capital expenditure by installing remote control systems in distribution stations or 
step-down transformers is more efficient than increasing operational costs in maintenance 
crews is an issue that we will try to explore in the future. We will also examine in the future 
whether the installation of a second line to increase the supply capacity to a neighborhood or a 
new commercial area is better than reinforcing the capacity of the existing line, or it is 
preferable to install underground assets. 
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Table 1. Descriptive statistics. SAR models 

Variable Definition Units Obs. Mean Std. Dev. Min Max 
YE Restoration times of external PSI seconds 1516 62.876 487.467 0.001 10252 
J Number of internal PSI  number 1516 6.658 8.463 1 77 
WY Restoration times of preceding municipalities seconds 1516 69.711 420.295 0.001 10570 
WY Restoration times of connected municipalities seconds 1516 1025.473 9953.262 0.001 215927 
UN Number of connections with neighboring municipalities number 1516 21.090 20.138 1 88 
CA Capacity of connections with neighboring municipalities KW 1516 931.677 1092.167 2 3962 
PNU Number of connections with preceding municipalities number 1516 6.660 7.879 1 41 
PCA Capacity of connections with preceding municipalities KW 1516 269.725 463.876 2 2530 
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Table 2. Descriptive statistics. SF models 

Variable Definition Units Obs. Mean Std. Dev. Min Max 
YI Restoration times of internal PSI seconds 3739 217.349 3958.901 0 215154 
I Number of internal PSI number 3739 6.126 7.880 1 82 
NL Network length km 3739 395 431 2 2125 
OL Proportion of overhead lines proportion 3739 0.807 0.259 0 1.00 
DIGT Proportion of digital transformers proportion 3739 0.073 0.082 0 0.50 
UT Proportion of underground transformers proportion 3739 0.025 0.095 0 0.79 
OT Proportion of outdoor transformers proportion 3739 0.562 0.296 0 1.00 
WEATHER Proportion of outages caused by weather issues proportion 3739 0.013 0.092 0 1.00 
DIS Distance to the nearest maintenance crew km 3739 13.902 10.895 0 51 
RURAL Rural municipality dummy 3739 0.362 0.481 0 1 
URBAN Urban municipality dummy 3739 0.638 0.481 0 1 
AUTUMN Season of the year dummy 3739 0.252 0.434 0 1 
WINTER Season of the year dummy 3739 0.244 0.430 0 1 
SPRING Season of the year dummy 3739 0.249 0.432 0 1 
SUMMER Season of the year dummy 3739 0.255 0.436 0 1 
ASTURIAS Spanish province dummy 3739 0.857 0.350 0 1 
HUESCA Spanish province dummy 3739 0.059 0.236 0 1 
ZARAGOZA Spanish province dummy 3739 0.010 0.100 0 1 
ALICANTE Spanish province dummy 3739 0.014 0.116 0 1 
PALENCIA Spanish province dummy 3739 0.043 0.203 0 1 
MADRID Spanish province dummy 3739 0.017 0.128 0 1 
2013 Year dummy 3739 0.145 0.352 0 1 
2014 Year dummy 3739 0.148 0.355 0 1 
2015 Year dummy 3739 0.153 0.360 0 1 
2016 Year dummy 3739 0.144 0.351 0 1 
2017 Year dummy 3739 0.146 0.353 0 1 
2018 Year dummy 3739 0.136 0.343 0 1 
2019 Year dummy 3739 0.128 0.334 0 1 
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Table 3. Linear homoscedastic SAR models 

  BoU Standard 
In levels Coef.   t-ratio Coef.   t-ratio 
Intercept 8.995   0.95 58.885 *** 4.69 
Autoregressive parameter (γ) 0.773 *** 34.78 0.004 *** 3.10 
R-squared 0.444     0.006     
Per outage Coef.   t-ratio Coef.   t-ratio 
Intercept -4.578   -0.89 24.678 *** 3.17 
Autoregressive parameter (γ) 1.029 *** 44.73 0.003 *** 2.73 
R-squared 0.569     0.005     
In logs Coef.   t-ratio Coef.   t-ratio 
Intercept 0.037   0.89 -0.680 *** -7.24 
Autoregressive parameter (γ) 0.724 *** 43.08 0.462 *** 23.59 
R-squared 0.551     0.269     
Per outage in logs Coef.   t-ratio Coef.   t-ratio 
Intercept 0.003   0.10 -0.511 *** -9.21 
Autoregressive parameter (γ) 0.745 *** 49.98 0.437 *** 29.46 
R-squared 0.623     0.364     
Obs. 1516     1516     

 
 
 

 

Table 4. BoU heteroscedastic SAR models 

 In logs Per outage in logs 
 Coef.  s.e. t-ratio Coef.  s.e. t-ratio 
𝛼𝛼 0.149  *** 0.043 3.51 0.055  * 0.029 1.88 
𝜆𝜆0 -0.483  *** 0.034 -14.37 -0.453  *** 0.036 -12.76 
𝑙𝑙𝑙𝑙𝑁𝑁𝑃𝑃 (𝜆𝜆1) -0.125  *** 0.031 -4.05 -0.066  ** 0.031 -2.17 
𝑙𝑙𝑙𝑙𝑃𝑃𝑃𝑃 (𝜆𝜆2) -0.108  *** 0.035 -3.07 -0.114  *** 0.036 -3.17 
𝑙𝑙𝑙𝑙𝑇𝑇𝑁𝑁𝑃𝑃 (𝜆𝜆3) 0.013   0.037 0.34 -0.059    0.038 -1.56 
𝑙𝑙𝑙𝑙𝑇𝑇𝑃𝑃𝑃𝑃 (𝜆𝜆4) 0.050  * 0.028 1.76 0.077  *** 0.029 2.68 
R-squared 0.582 0.640 
Average SAR parameter  0.626 0.643 
Obs. 1516 1516 
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Table 5. Parameter estimates of the SF models 

    In logs Per outage in logs 
    Coef.   s.e. t-ratio Coef.   s.e. t-ratio 
Frontier                 
  Intercept 1.472  *** 0.065  22.79 0.856    0.058  14.87 
  lnNL 0.262  *** 0.067  3.89 -0.092  * 0.048  -1.91 
  lnCAP 0.374  *** 0.062  6.00 0.229  *** 0.044  5.15 
  DIGT -0.809  * 0.483  -1.68 -0.750  ** 0.345  -2.17 
  UT -0.149    0.519  -0.29 0.457    0.369  1.24 
  OT -0.710  *** 0.246  -2.89 -0.282    0.175  -1.61 
  OL -1.905  *** 0.482  -3.95 -1.086  *** 0.343  -3.17 
  RURAL 0.455  *** 0.085  5.34 0.153  ** 0.061  2.53 
  lnDIS·RURAL 0.175  *** 0.040  4.40 0.032    0.028  1.11 
  lnDIS·URBAN 0.195  *** 0.058  3.39 0.100  ** 0.041  2.45 
  1/2lnDIS 2 0.022    0.038  0.56 -0.010    0.027  -0.36 
 WEATHER 1.954  *** 0.234  8.34 0.832  *** 0.166  5.00 
  WINTER -0.110  * 0.064  -1.74 -0.061    0.054  -1.13 
  SPRING -0.097    0.062  -1.55 -0.038    0.069  -0.56 
  SUMMER -0.094    0.062  -1.52 -0.087    0.058  -1.49 
  HUESCA 5.461  *** 0.196  27.89 4.218  *** 0.139  30.25 
  ZARAGOZA 3.706  *** 0.303  12.25 3.570  *** 0.216  16.56 
  ALICANTE 1.913  *** 0.318  6.02 2.647  *** 0.226  11.72 
  VALENCIA 0.623  * 0.324  1.92 1.257  *** 0.230  5.46 
  MADRID 1.272  *** 0.336  3.78 1.921  *** 0.239  8.03 
Noise term                 
  Intercept 0.506  *** 0.023  21.75 -0.173  *** 0.023  -7.42 
Inefficiency term                 
  Intercept -10.227    7.955  -1.29 0.494    0.305  1.62 
  t 0.531  * 0.315  1.69 -0.028  * 0.015  -1.80 
  1/2·t2 -0.005  * 0.003  -1.82 0.000  * 0.000  1.92 
  1/3·t3 1.229    1.659  0.74 -0.001    1.367  0.00 
  WINTER -1.121    0.979  -1.15 2.176    1.728  1.26 
  SPRING -1.561  ** 0.788  -1.98 1.174    1.393  0.84 
  SUMMER -10.871    147.2  -0.07 -10.591  ** 4.804  -2.20 
  Obs 3739       3739       
  Log likelihood -6260.1        -4988.9        

 
.  
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Figure 1. Kernel densities of spatial autoregressive values. 

 
 

 

Figure 2. Average efficiency scores by provinces. 
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Figure 3. Average efficiency scores over time. 

 
 

.5
.6

.7
.8

.9
1

ef

2013 2014 2015 2016 2017 2018 2019


	power_interruptions-orea-wp007-front-2020_03_18
	power_interruptions-orea-wp07-2020_03_18

