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Dissipation, the irreversible loss of energy and coherence, from a microsystem is the result of coupling
to a much larger macrosystem (or reservoir) that is so large that one has no chance of keeping track
of all of its degrees of freedom. The microsystem evolution is then described by tracing over the
reservoir states, which results in an irreversible decay as excitation leaks out of the initially excited
microsystems into the outer reservoir environment. Earlier treatments of this dissipation used density
matrices to describe an ensemble of microsystems, either in the Schrödinger picture with master
equations, or in the Heisenberg picture with Langevin equations. The development of experimental
techniques to study single quantum systems (for example, single trapped ions, or cavity-radiation-field
modes) has stimulated the construction of theoretical methods to describe individual realizations
conditioned on a particular observation record of the decay channel. These methods, variously
described as quantum-jump, Monte Carlo wave function, and quantum-trajectory methods, are the
subject of this review article. We discuss their derivation, apply them to a number of current problems
in quantum optics, and relate them to ensemble descriptions. [S0034-6861(98)00601-1]
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I. INTRODUCTION

Quantum mechanics is usually introduced as a theory
of ensembles. However, the invention of ion traps, for
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example, offers the possibility to observe and manipu-
late single particles, where the observability of quantum
jumps, which are not directly observable in the en-
semble, lead to conceptual problems of how to describe
single realizations of these systems. Usually Bloch equa-
tions or Einstein rate equations are used to describe the
time evolution of ensembles of atoms or ions driven by
light. New approaches via conditional time evolution,
given say when no photon has been emitted, have been
developed to describe single experimental realizations
of quantum systems. This leads to a description of the
system via wave functions instead of density matrices.
This conditional ‘‘quantum trajectory’’ approach is still
an ensemble description, but only for a subensemble
where we know when photons have been emitted.

The jumps that occur in this description can be con-
sidered as due to the increase of our knowledge of the
system represented by the wave function (or the density
operator) describing the system. In the formalism pre-
sented in this review, it is assumed that the gedanken
measurements are performed in rapid succession, for ex-
ample, on the emitted radiation field. The result will be
that either a photon has been found in the environment
or that no photon has been found. A sudden change in
our information about the radiation field (for example,
through the detection of a photon emitted by the system
into the environment) leads to a sudden change of the
wave function of the system. However, not only does the
detection of a photon lead to an increase of information,
but the failure to detect a photon does as well. From
these experiments, new insights have been obtained into
atomic dynamics and dissipative processes, and new
powerful theoretical approaches have been developed.
Apart from the new insights into physics, these methods
also allow the simulation of complicated problems, e.g.,
in laser cooling, that were completely intractable using
the master-equation approach. In general they can be
applied to all master equations that are of Lindblad
form, which is in fact the most general form of a master
equation.
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This article reviews the various quantum-jump ap-
proaches developed over the past few years. We focus
on the theoretical description of basic dynamics and on
simple instructive examples rather than the application
to numerical simulation methods.

Some of the topics covered here can also be found in
earlier summaries (Erber et al., 1989; Cook, 1990;
Mo” lmer and Castin, 1996; Srinivas, 1996) and more re-
cent summer school lectures (Mo” lmer, 1994; Zoller and
Gardiner, 1995; Knight and Garraway, 1996).

II. INTERMITTENT FLUORESCENCE

Quantum mechanics is a statistical theory that makes
probabilistic predictions of the behavior of ensembles
(ideally an infinite number of identically prepared quan-
tum systems) using density operators. This description
was completely sufficient for the first 60 years of the
existence of quantum mechanics because it was gener-
ally regarded as completely impossible to observe and
manipulate single-quantum systems. For example,
Schrödinger (1952) wrote
. . . we never experiment with just one electron or atom or
(small) molecule. In thought experiments we sometimes
assume that we do; this invariably entails ridiculous con-
sequences. . . . . In the first place it is fair to state that we
are not experimenting with single particles, any more than
we can raise Ichthyosauria in the zoo.

This (rather extreme) opinion was challenged by a re-
markable idea of Dehmelt, which he first made public in
1975 (Dehmelt, 1975, 1982). He considered the problem
of high-precision spectroscopy, where one wants to mea-
sure the transition frequency of an optical transition as
accurately as possible, e.g., by observing the resonance
fluorescence from that transition as part (say) of an
optical-frequency standard. However, the accuracy of
such a measurement is fundamentally limited by the
spectral width of the observed transition. The spectral
width is due to spontaneous emission from the upper
level of the transition, which leads to a finite lifetime t of
the upper level. Basic Fourier considerations then imply
a spectral width of the scattered photons of the order of
t21. To obtain a precise value of the transition fre-
quency, it would therefore be advantageous to excite a
metastable transition that scatters only a few photons
within the measurement time. On the other hand, one
then has the problem of detecting these few photons,
and this turns out to be practically impossible by direct
observation. Dehmelt’s proposal, however, suggests a
solution to these problems, provided one would be able
to observe and manipulate single ions or atoms, which
became possible with the invention of single-ion traps
(Paul et al., 1958; Paul, 1990) (for a review, see Horvath
et al., 1997). We illustrate Dehmelt’s idea in its original
simplified rate-equation picture. It runs as follows.

Instead of observing the photons emitted on the meta-
stable two-level system directly, he proposed using an
optical double-resonance scheme as depicted in Fig. 1.
One laser drives the metastable 0↔2 transition while a
second strong laser saturates the strong 0↔1; the life-
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time of the upper level 1 is, for example, 1028 s, while
that of level 2 is of the order of 1 s. If the initial state of
the system is the lower state 0, then the strong laser will
start to excite the system to the rapidly decaying level 1,
which will then lead to the emission of a photon after a
time that is usually very short (of the order of the life-
time of level 1). This emission restores the system to the
lower level 0; the strong laser can start to excite the
system again to level 1, which will emit a photon on the
strong transition again. This procedure repeats until at
some random time the laser on the weak transition man-
ages to excite the system into its metastable state 2,
where it remains shelved for a long time, until it jumps
back to the ground state, either by spontaneous emission
or by stimulated emission due to the laser on the 0↔2
transition. During the time the electron rests in the
metastable state 2, no photons will be scattered on the
strong transition, and only when the electron jumps back
to state 0 can the fluorescence on the strong transition
start again. Therefore, from the switching on and off of
the resonance fluorescence on the strong transition
(which is easily observable), we can infer the extremely
rare transitions on the 0↔2 transition. Therefore we
have a method to monitor rare quantum jumps (transi-
tions) on the metastable 0↔2 transition by observation
of the fluorescence from the strong 0↔1 transition.

A typical experimental fluorescence signal is depicted
in Fig. 2 (Thompson, 1996), where the fluorescence in-
tensity I(t) is plotted. However, this scheme only works
if we observe a single quantum system, because if we
observe a large number of systems simultaneously, the
random nature of the transitions between levels 0 and 2
implies that some systems will be able to scatter photons
on the strong transition, while others will not because
they are in their metastable state at that moment. From
a large collection of ions observed simultaneously, one
would then obtain a more or less constant intensity of
photons emitted on the strong transition.

The calculation of this mean intensity is a straightfor-
ward task using standard Bloch equations. The calcula-

FIG. 1. The V system. Two upper levels 1 and 2 couple to a
common ground state 0. The transition frequencies are as-
sumed to be largely different so that each of the two lasers
driving the system couples to only one of the transitions. The
1↔0 transition is assumed to be strong while the 2↔0 transi-
tion is weak.
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tion of single-system properties, such as the distribution
of the lengths of the periods of strong fluorescence, re-
quired some effort, which eventually led to the develop-
ment of the quantum-jump approach. Apart from the
interesting theoretical implications for the study of indi-
vidual quantum systems, Dehmelt’s proposal obviously
has important practical applications. An often-cited ex-
ample is the realization of a new time standard using a
single atom in a trap. The key idea here is to use either
the instantaneous intensity or the photon statistics of the
emitted radiation on the strong transition (the statistics
of the bright and dark periods) to stabilize the frequency
of the laser on the weak transition. This is possible be-
cause the photon statistics of the strong radiation de-
pends on the detuning of the laser on the weak transi-
tion (Kim, 1987; Kim and Knight, 1987; Kim et al., 1987;
Ligare, 1988; Wilser, 1991). Therefore a change in the
statistics of bright and dark periods indicates that the
frequency of the weak laser has shifted and has to be
adjusted. However, for continuously radiating lasers this
frequency shift will also depend on the intensity of the
laser on the strong transition. Therefore, in practice,
pulsed schemes are preferable for frequency standards
(Arecchi et al., 1986; Bergquist et al., 1994).

Due to the inability of experimentalists to store, ma-
nipulate, and observe single-quantum systems (ions) at
the time of Dehmelt’s proposal, both the practical and
the theoretical implications of his proposal were not im-
mediately investigated. It was about ten years later that
this situation changed. At that time Cook and Kimble
(1985) made the first attempt to analyze the situation
described above theoretically. Their advance was stimu-
lated by the fact that by that time it had become possible
to actually store single ions in an ion trap (Paul trap;
Paul et al., 1958; Neuhauser et al., 1980; Paul, 1990).

In their simplified rate-equation approach Cook and
Kimble started with the rate equations for an incoher-
ently driven three-level system as shown in Fig. 1 and

FIG. 2. Recorded resonance fluorescence signal exhibiting
quantum jumps from a laser-excited 24Mg+ ion (Thompson,
1996). Periods of high photon count rate are interrupted by
periods with negligible count rate (except for an unavoidable
dark-count rate).
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assumed that the strong 0↔1 transition is driven to
saturation. They consequently simplify their rate equa-
tions, introducing the probabilities P1 of being in the
metastable state and P2 of being in the strongly fluo-
rescing 0↔1 transition. This simplification now allows
the description of the resonance fluorescence to be re-
duced to that of a two-state random telegraph process.
Either the atomic population is in the levels 0 and 1, and
therefore the ion is strongly radiating (on), or the popu-
lation rests in the metastable level 2, and no fluores-
cence is observed (off). They then proceed to calculate
the distributions for the lengths of bright and dark peri-
ods and find that their distribution is Poissonian. Their
analysis, which we have outlined very briefly here, is of
course very much simplified in many respects. The most
important point is certainly the fact that Cook and
Kimble assume incoherent driving and therefore adopt a
rate-equation model. In a real experiment coherent ra-
diation from lasers is used. The complications arising in
coherent excitation finally led to the development of the
quantum-jump approach. Despite these problems, the
analysis of Cook and Kimble showed the possibility of
direct observation of quantum jumps in the fluorescence
of single ions, a prediction that was confirmed shortly
afterwards in a number of experiments (Bergquist et al.,
1986; Nagourney et al., 1986a, 1986b; Sauter et al., 1986a,
1986b; Dehmelt, 1987) and triggered a large number of
more detailed investigations, starting with early works
by Javanainen (1986a, 1986b, 1986c). The subsequent ef-
fort of a great number of physicists eventually culmi-
nated in the development of the quantum-jump ap-
proach. Before we present this development in greater
detail, we should like to study in slightly more detail
how the dynamics of the system determines the statistics
of bright and dark periods. Again assume a three-level
system as shown in Fig. 1. Provided the 0↔1 and 0↔2
Rabi frequencies are small compared with the decay
rates, one finds for the population in the strongly fluo-
rescing level 1 as a function of time something like the
behavior shown in Fig. 3 (we derive this in detail in a
later section). We choose for this figure the values
g1@g2 for the Einstein coefficients of levels 1 and 2,
which reflects the metastability of level 2. For times
short compared with the metastable lifetime g2

21 , the
atomic dynamics can hardly be aware of level 2 and
evolve as a 0–1 two-level system with the ‘‘steady-state’’
population r̄ 11 of the upper level. After a time g2

21 , the
metastable state has an effect, and the (ensemble-
averaged) population in level 1 reduces to the appropri-
ate three-level equilibrium values. The ‘‘hump’’ Dr11
shown in Fig. 3 is actually a signature of the telegraphic
fluorescence discussed above. To show this, consider a
few sequences of bright and dark periods in the tele-
graph signal as shown in Fig. 4. The total rate of emis-
sion R is proportional to the rate in a bright period
times the fraction of the evolution made up of bright
periods. This gives

R5g1 r̄ 11S TL

TL1TD
D , (1)
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but this has to be equal to the true average,

R5g1r11~`! , (2)

so that

TD

TL
5

r̄ 112r11~`!

r11~`!
5

Dr11

r11~`!
, (3)

and the ratio of the period of bright to dark intervals is
governed, as we claimed, by the ‘‘hump’’ Dr11 .

So far we have concentrated on situations where the
Rabi frequencies are small (or for incoherent excita-
tion). What happens for coherent resonant excitation
with larger Rabi frequencies? The answer to this ques-
tion is nothing (Knight et al., 1986): there are essentially
no quantum jumps, at least at any significant level, for

FIG. 3. Time evolution of the population in the strongly fluo-
rescing level 1 of the three-level ion shown in Fig. 1. The life-
times g1

21 and g2
21 are marked on the time axis. What is crucial

here is the ‘‘hump’’ Dr11 : this is a signature of the telegraphic
nature of the fluorescence.

FIG. 4. A few periods of bright and dark sequences in the
fluorescence intensity I from a three-level system. The bright
periods last on average TL and the dark periods TD .
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coherently-driven resonantly excited three-level sys-
tems! But this is because the idea of resonance is tricky:
the strong Rabi frequency on the 0↔1 transition dresses
the atom, and the ac Stark effect splits the transition
(Autler and Towne, 1955; Knight and Milonni, 1980),
forcing the system substantially out of resonance. If this
is recognized and the probe laser driving the 0↔2 tran-
sition is detuned from the bare resonance until it
matches the dressed-atom resonance, then the jumps
and telegraphic fluorescence return. We investigate this
phenomenon more closely in Sec. V. As far as we know,
the dependence of the telegraph fluorescence on detun-
ing for coherently excited transitions has yet to be con-
firmed experimentally.

Let us return to the idea of a null measurement. We
imagine that we observe the fluorescence from a driven
three-level ion over a time scale that is long compared
with the strongly fluorescing state lifetime g1

21 but very
short compared with the shelf-state lifetime g2

21 , so that
g1

21!Dt!g2
21 . Pegg and Knight (1988a, 1988b) have

shown that the average period of brightness and dark-
ness in the telegraphic fluorescence can be obtained very
straightforwardly from considerations of null detection.
During such an interval Dt , the population in the shelf
state P2(t) hardly has time to evolve, but population can
be rapidly cycled from the ground state u0& to the
strongly fluorescing state u1& and back. Detection of a
photon at the beginning of a Dt interval implies a sur-
vival in the 0–1 sector for the whole interval and a bright
period, whereas a null detection is sufficient for us to be
confident that the atom is shelved for the whole Dt in-
terval and a dark period ensues.

If we take our origin of time to be after an interval Dt
in which we see a photon, then P2(0)50. We can intro-
duce the ‘‘life expectancy’’ TL as the time the atom
spends in the 0–1 sector continuously. If the atom is still
in this sector at a time t1 (known from an observation of
another fluorescence photon just prior to t1), then the
life expectancy will also be TL . So we can partition the
outcomes into the case in which at t1 it has survived in
the 0–1 sector with probability P10(t1), and the case in
which the ion did not survive the whole interval t1 con-
tinuously in the 0–1 sector (Pegg and Knight, 1988a,
1988b)

TL5P10~ t1!~ t11TL!1@12P10~ t1!#ft1 , (4)

where f is a fraction (,1). Then for small t1

TL5
t1P10~ t1!

12P10~ t1!
5

t1

12P10~ t1!
2t1 , (5)

and if t1 is small so we may neglect the possibility of a
return from state u2& back in to the 0–1 sector,
@12P10(t1)#'P2(t1), so that

TL
215

dP2

dt U
t50

, given P2~0 !50 . (6)

This is finite, so we know that the fluorescence will ter-
minate. To obtain a value for TL , we merely need to
know the evolution equation (not its solution) for the
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population in state u2&: this would be the Bloch equation
for coherent excitation or the Einstein rate equation for
incoherent excitation.

The calculation of the mean period of darkness pro-
ceeds along similar lines: if no photons are detected in
an interval Dt just before t50, we find

TD
2152

dP2

dt U
t50

, given P2~0 !51 . (7)

The analysis presented here obviously also applies for
the density-operator equations in exactly the same form,
and we obtain

TL
215~ ṙ22! t50 with r22~0 !50, (8)

TD
2152~ ṙ22! t50 with r22~0 !51. (9)

Here the dot means the average gradient of the r22 ver-
sus t curve over a range of order Dt . Because Dt is much
smaller than the characteristic change of r22 , it is very
close to the normal derivative at all points.

It is straightforward to use this idea of ‘‘collapse by
nondetection’’ to estimate the characteristic time
needed to be sure that a quantum jump has occurred
(Pegg and Knight, 1988b). There are TL /td times as
many short dark periods between photon emissions as
there are prolonged dark periods of average length TD ,
where td ('g1

21 for strong transition saturation) is the
average length of the short period. Thus the probability
that an emission will be followed by a long dark period
is approximately td /TL for TL@td , and the probability
that it will be followed by a short dark period is close to
unity.

Immediately following a photon emission, a dark pe-
riod of length at least t (with t,TD) can exist for two
complementary reasons: (a) the atom goes to state u2&
and therefore does not decay for a time of the order of
TD , or (b) the atom is still in the u0&↔u1& plane but has
not yet emitted a photon. The probability of (a) occur-
ring is td /TL and the probability of (b) is approximately
exp(2t/td). Clearly for t,td it is much more likely that
any observed dark period of length t is due to (b), but
this becomes rapidly less likely as t increases. The point
at which the observation of the dark period is just as
likely to involve (a) as (b) is found by equating the two
expressions to give

t

TL
5

td

TL
ln~TL /td!. (10)

It follows that the sampling period Dt must be greater
than the t given by Eq. (10) in order for the observation
of darkness during Dt to imply (a) with reasonable cer-
tainty.

Further, because we know that immediately following
the emission the atom is in u0&, the probability of its
being in u2& is zero, and because Eq. (10) gives the order
of the time of darkness required for the probability of
being in u2& to grow to about 1

2 , Eq. (10) gives the char-
acteristic time for the wave-function collapse by nonde-
tection. This characteristic time can be associated with
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the time necessary for us to be certain that a quantum
jump from u0& to u2& has occurred. For completely coher-
ent excitation, Eq. (10) reduces to an expression similar
to that for the shelving time found by Porrati and Puter-
man (1987) and Zoller et al. (1987). Note that, while the
collapse by nondetection of the system into the meta-
stable state requires a finite time, the collapse of the
wave function due to the detection of a photon has to be
viewed as practically instantaneous. When we detect a
photon our knowledge of the system changes suddenly,
and this sudden change of knowledge is reflected by the
sudden change of the system state, which, after all, rep-
resents our knowledge of the system.

III. ENSEMBLES AND SHELVING

Before we develop detailed theoretical models to de-
scribe individual quantum trajectories (i.e., state evolu-
tion conditioned on a particular sequence of observed
events), it is useful to examine how the entire ensemble
evolves. This is in line with the historical development,
as initially investigators tried to find quantum-jump
characteristics in the ensemble behavior of the system.
We do this in detail for the particular three-level V con-
figuration (shown in Fig. 1) appropriate for Dehmelt’s
quantum-jump phenomena. For simplicity, we examine
the case of incoherent excitation. Studies for coherent
excitation using Bloch equations can be found, for ex-
ample, in other publications (Kimble et al., 1986;
Schenzle and Brewer, 1986; Kim, 1987; Nienhuis, 1987;
Ligare, 1988). The Einstein rate equations for the V sys-
tem are (Pegg et al., 1986b)

d

dt
r1152~A11B1W1!r111B1W1r00 , (11)

d

dt
r2252~A21B2W2!r221B2W2r00 , (12)

d

dt
r0052~B1W11B2W2!r001~A11B1W1!r11

1~A21B2W2!r22 , (13)

where Ai ,Bi are the Einstein A and B coefficients for
the relevant spontaneous and induced transitions, Wi
the applied radiation-field energy density at the relevant
transition frequency, and r ii is the relative population in
state i (r001r111r2251 for this closed system). In
shelving, we assume that both B1W1 and A1 are much
larger than B2W2 and A2 and furthermore that
B2W2@A2 . The steady-state solutions of these rate
equations are straightforward to obtain, and we find

r11~ t→`!5
B1W1~A21B2W2!

A1~A212B2W2!1B1W1~2A213B2W2!
,

(14)

r22~ t→`!5
B2W2~A11B1W1!

A1~A212B2W2!1B1W1~2A213B2W2!
.

(15)
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Now, if the allowed 0↔1 transition is saturated,

r00~ t→`!'r11~ t→`!
A21B2W2

2A213B2W2
'

1
3

(16)

and

r22~ t→`!'
B2W2

2A213B2W2
'

1
3

. (17)

Now we see that a small B2W2 transition rate to the
shelf state has a major effect on the dynamics. Note that
if the induced rates are much larger than the spontane-
ous rates, the steady-state populations are r00

5r115r225
1
3 : the populations are evenly distributed

amongst the constituent states of the transition.
However, the dynamics reveal a different story from

that suggested by the steady-state populations. Again, if
the allowed transition is saturated, then the time-
dependent solutions of the excited-state rate equations
tell us that for r00(0)51 we have

r11~ t !5
B2W2

2~2A213B2W2!
e2~A213B2W2/2!t

2
1
2

e2~2B1W11A11B2W2/2!t1
A21B2W2

2A213B2W2
,

(18)

and

r22~ t !5
B2W2

2A213B2W2
$12e2~A213B2W2/2!t%. (19)

Note that these expressions are good only for strong
driving of the 0↔1 transition. This especially means that
for short times r00 is of the order of 1/2, which results in
Eq. (19). Then, for a very long-lived shelf state 2, we see
that for saturated transitions (BiWi@Ai)

r11~ t !'
1
3 H 11

1
2

~e23B2W2t/223e22B1W1t!J (20)

and

r22~ t !'
1
3

$12e23B2W2t/2%. (21)

These innocuous-looking expressions contain a lot of
physics. We remember that state 1 is the strongly fluo-
rescing state. On a time scale that is short compared
with (B2W2)21, we see that the populations attain a
quasisteady state appropriate to the two-level (0↔1)
dynamics,

r11~ t short!;
1
2

$12e22B1W1t%→
1
2

. (22)

This can of course be confirmed in an experiment (Finn
et al., 1986; 1989). For truly long times the third, shelving
state makes its effect, and

r11~ t long!;
1
3

, (23)

as we saw qualitatively in Fig. 3. As we saw earlier in the
discussion of Eq. (3), the change from two-level to
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three-level dynamics already gives us a signature of
quantum jumps and telegraphic fluorescence, provided
we are wise enough to recognize the signs. Figure 3 il-
lustrates the change from two- to three-level dynamics.

The steady-state populations are sufficient to describe
the average level of the fluorescent intensity. But how
do quantum jumps and shelving show up in the intensity
correlations? For example, let us examine the second-
order correlation function

g ~2 !~ t ,t!5
^:I~ t1t!I~ t !:&

^I~ t !&2
, (24)

where the colons describe normal ordering (Loudon,
1983). This correlation function is straightforward to
compute from the Einstein rate equations using the
quantum regression theorem (Lax, 1963), which relates
one-time to two-time correlations, given that the dynam-
ics are Markovian. Here of course there are two inten-
sities, that of the 1→0 and of the 2→0 fluorescence. We
can then correlate the two light fields: ‘‘1’’ with ‘‘1’’ or
‘‘1’’ with ‘‘2’’ and so on, where ‘‘1’’ and ‘‘2’’ represent
the fluorescence on the 1→0 and the 2→0 transitions,
respectively. So let us concentrate on evaluating gij

(2)

3(t ,t), which represents the joint probability of detect-
ing a fluorescent photon j (j51,2) on the transition j at
time t and some other photon (not necessarily the next
photon) from transition i at time (t1t). It is straight-
forward to show (Pegg et al., 1986b) that

g11
~2 !~t !5g12

~2 !~t !511
B2W2

2~A21B2W2!
e2~A213B2W2/2!t

2
2A213B2W2

2~A21B2W2!
e2~2B1W11A11B2W2/2!t, (25)

and

g22
~2 !~t !5g21

~2 !~t !512e2~A213B2W2/2!t. (26)

Using B1W1@B2W2 and that the transitions are satu-
rated, we find that these correlation functions simplify to
give

g11
~2 !~t !5g12

~2 !~t !511
1
2

~e23B2W2t/223e22B1W1t!, (27)

so that, as expected, the correlation functions obey the
same evolutions as the populations. It is worth noting
that for short times t we expect to see antibunching
(Loudon, 1983) from this three-level fluorescence, and
this has been observed experimentally from trapped ions
(Itano et al., 1988; Schubert et al., 1992).

In the mid 1980s, when studies of quantum-jump dy-
namics of laser-driven three-level atoms began in ear-
nest, a great deal of effort was expended in determining
the relationship between joint probabilities of detection
of a photon at time t and the next or any photon a time
t later. This was addressed in detail by Cohen-Tannoudji
and Dalibard (1986; Reynaud et al., 1988), by Schenzle
and Brewer (1986; Schenzle et al., 1986), and others
(Cook, 1981; Lenstra, 1982). One attractive approach,
advocated by Cohen-Tannoudji and Dalibard, uses a
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dressed manifold and from this evaluates the delay func-
tion describing the distribution of delay times before the
next emission occurs. In Fig. 5 that laser excitation
couples together these atom+field states, but fluores-
cence does not: spontaneous emission is an irreversible
loss out of this manifold to states with reduced photon
number in the excitation modes, but with photons cre-
ated in initially unoccupied free-space modes.

We expand our atom+field state vector into the basis
states ul& with fixed number of fluorescence photons in
the radiation field as shown in Fig. 5 as

uc~ t !&5(
l

al~ t !e2iElt/\ul&, (28)

and solve for the probability amplitudes al(t). The
probability of remaining without further emission in the
n-excitation atom+field manifold up to time t is

P0~t!5(
i

uai~t!u2. (29)

The negative differential of this survival probability de-
scribes the delay function (Cohen-Tannoudji and Dali-
bard, 1986)

I1~t![2
dP0

dt
, (30)

so that the probability of there being an interval t be-
tween one photon’s being emitted (detected) and the
next is

P0~t!512E
0

t

I1~t8!dt8. (31)

To evaluate this interval distribution function it is suffi-
cient to calculate the atom+field dressed-state ampli-
tudes. This demonstrates the utility of this approach:
there is no need to solve the potentially complicated
Bloch equations for the driven three-level atom, al-
though of course this can be done (Schenzle and
Brewer, 1986). Kim and co-workers (Kim and Knight,

FIG. 5. Atom+field states used to describe the survival of a
three-level system in an undecayed state. The numbers ns ,nw

specify photon numbers driving the strongly allowed transi-
tions 0↔1 and the weak transition 0↔2. Note that fluores-
cence takes the system out of the three atom+field states.
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1987; Kim et al., 1987), Grochmalicki and Lewenstein
(1989a), Wilser (1991), and later others have used the
delay function to describe shelving in the V system. The
conditional probability of an atom’s emitting any photon
between time t and t1dt after emitting a photon at
time t50 is I(t)dt . The photon emitted at time t can
be the first to be emitted after that at t50 or the next
after any one at time t8 (0,t8,t), so that

I~t!5I1~t!1E
0

t

dt8I~t8!I1~t2t8!, (32)

where I1(t) is the interval distribution. If this is ex-
pressed in terms of its Laplace transform Ĩ (z), then

Ĩ ~z !5
Ĩ 1~z !

12 Ĩ 1~z !
. (33)

The function g(2)(t) is the normalized correlation func-
tion for a photon detection at t50 followed by the de-
tection of any photon (not necessarily the next) at time
t. It follows that

g ~2 !~t !5
I~t!

I~t→`!
, (34)

or equivalently in Laplace space

g̃ ~2 !~z !5
Ĩ ~z !

lim
z→0

z Ĩ ~z !
, (35)

so that

g̃ ~2 !~z !5F lim
z→0

12 Ĩ 1~z !

z Ĩ 1~z !
G Ĩ 1~z !

12 Ĩ 1~z !
. (36)

For the case of incoherent, rate-equation excitation of a
three-level V-system atom, it is straightforward to calcu-
late the atom+field survival probability, differentiate this
to generate the delay function, and then from Eq. (36)
deduce g(2)(t). If this is done, precisely the same form
is obtained as that from the quantum regression theo-
rem. The merit of this approach is easier to appreciate
for the case of coherent excitation, where the regression
theorem requires the solution of the three-level Bloch
equations and the solution of eighth-order polynomial
characteristic equations, compared with the need to
solve three coupled equations when using the delay-
function route. In Sec. V we further illustrate the con-
nection between the next-photon probability density
and the any-photon rate in Eqs. (182)–(193).

Rather than examine the correlation functions, it may
be useful to examine other properties of the photon sta-
tistics and in particular the variance in the photon num-
bers in the detected fluorescence (Kim, 1987; Kim and
Knight, 1987; Kim et al., 1987; Jayarao et al., 1990). For a
Poissonian field (Dn)25^n&, but for a sub-Poissonian
field (Dn)2,^n&, and for a super-Poissonian field
(Dn)2.^n&. To characterize the deviation from pure
Poissonian fluctuations, Mandel (1979) defined the pa-
rameter
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QM~t![
~Dn !22^n&

^n&
, (37)

which can be written in terms of the mean intensity ^I&
and the second-order correlation function g(2)(t) as

QM~t!5
^I&
t H E

0

t

dt2E
0

t2
dt1g ~2 !~ t1!J 2^I&t . (38)

If this is used to describe the fluorescence from a three-
level atom involving shelving (Kim, 1987; Kim and
Knight, 1987; Kim et al., 1987), then as t→` for satu-
rated transitions,

QM~t→`!5
TD

2

TL
^I&, (39)

where TL and TD are the mean times of bright and dark
periods in the telegraphic fluorescence signal from the
three-level atom shown in Fig. 1. If a dark period does
not occur, QM(t→`)→0, whereas, the larger TD be-
comes, the larger the Mandel parameter becomes, re-
flecting the large fluctuations implicit in jumps from
dark to bright periods. These macroscopic fluctuations
are manifested in the photon-counting distributions
studied in detail by Schenzle and Brewer (1986) using
Bloch equations. They showed that the count distribu-
tion of photons detected from the strongly allowed tran-
sition were Poissonian except for an excess of zero
counts. In an interval T of the order of the lifetime of
the shelving state one either counts a large number of
photons (a bright period) or one counts nothing (a dark
period). The probability of counting n photons in time T
is Poissonian except again for an excess of zeros
(Schenzle and Brewer, 1986) and is evaluated from the
Mandel counting formula [or its quantum equivalent de-
rived by Kelley and Kleiner (1964)],

W~n ,T !5
1
n! S g1hT

2 D n

e2g1hT/2, (40)

except for n50. Here g1 is the decay rate of the strongly
fluorescing state and h is the detector efficiency. So in an
interval T;g2

21, where g2
21 is the lifetime of the shelv-

ing state, we count either n; 1
2 g1hg2

21'108 for typical
transitions, or we find n50. Note we essentially do not
see n51,2,3,.. . as W(n51,T5g2

21);108e2108
>0, as

shown in Fig. 6. Schenzle and Brewer (1986) interpret
these macroscopic intensity fluctuations in terms of
quantum jumps. Imagine the fluorescent intensity to be
jumping from dark (off) states to bright (on) states with
probability distribution

P~I !5Ad~I !1~12A !d~I2I0!; (41)

then we find for the probability of counting n photons in
a time T

W~n ,T !5Adn ,01~12A !
~HI0T !n

n!
e2HI0T, (42)

where H is the counting efficiency. The zero count is
W(n50,T)5A>1/3 for saturated transitions. The be-
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havior of Eq. (42) is schematically shown in Fig. 6,
where we see the excess probability for no counts (dark
period) together with a high probability for a large num-
ber of jumps (bright period).

In the past two sections we have discussed the initial
attempts toward a theoretical description of single-ion
resonance fluorescence. However, these attempts did
not yield a satisfying approach to the problem, as the
single-system properties described, e.g., by the delay
function, were deduced from equations of motion de-
scribing the whole ensemble. In the next section we shall
explain and summarize a number of methods using the
quantum-jump approach, which allows the most natural
description of many properties of resonance fluores-
cence and time evolution of single-quantum systems.

IV. DISCUSSION OF DIFFERENT DERIVATIONS
OF THE QUANTUM-JUMP APPROACH

A. Quantum jumps

Prior to the development of quantum-jump methods,
all investigations of photon statistics started out from
the ensemble description via optical Bloch equations or
rate equations as presented above, which were used to
calculate nonexclusive ‘‘probability densities’’ for the
emission of one or several photons at time t1 ,. . . ,tn in the
time interval @0,t# . It is important to note that only the
probability of emission of any photon was asked for.
Therefore many more photons might have been emitted
in between the times t i . An example of such a function,
which we discussed in Sec. III, is the intensity correla-
tion function g(2)(t), which gives the normalized rate at
which one can expect to detect photons (any photon
rather than the next) at time t when one has been found
at t50.

FIG. 6. Macroscopic photocount fluctuations revealed in pho-
tocount distribution W(n ,T) of counts of the allowed 0↔1
transition fluorescence from a saturated V configuration. One
either registers a large number of counts in the time interval
@0,T# (On), which is a sign of a bright period, or one registers
no counts at all (Off), which shows that one is in a dark period.
After Schenzle and Brewer (1986).
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Efforts were made to use nonexclusive ‘‘probability
densities’’ to deduce the photon statistics of the single
three-level ion, and the aim was to show that a single ion
exhibits bright and dark periods in its resonance fluores-
cence on the strong transition (Schenzle and Brewer,
1986; Pegg and Knight, 1988a). This approach is, how-
ever, not very satisfying, as it requires the solution of the
full master equation and the inversion of a Laplace
transformation. Furthermore, this approach is very indi-
rect, as we first calculate the ensemble properties and
then try to derive the single-particle properties. It would
be much more elegant to have a method that enabled us
to calculate the photon statistics of the single ion di-
rectly. This goal was discussed widely at a workshop at
NORDITA in Copenhagen in December 1985, follow-
ing a paper at that meeting by Javanainen (1986b), and
the goal was finally realized with the development of the
quantum-jump approach. Its development essentially
started when Cohen-Tannoudji and Dalibard (1986),
and at much the same time Zoller, Marte, and Walls
(1987), derived the exclusive probability P0(t) that, after
an emission at time t50, no other photon has been emit-
ted in the time interval @0,t# (Cohen-Tannoudji and
Dalibard, 1986) or the exclusive n-photon probability
density p [0,t](tut1 ,. . . ,tn) that in @0,t# n photons are emit-
ted exactly at the times t1 ,. . . ,tn (Zoller et al., 1987),
without going back to the master equation of the full
ensemble. Both quantities are intimately related for two
reasons: first, the probability density I1(t) for the emis-
sion of the first photon after a time t is given by

I1~ t !52
d

dt
P0~ t !, (43)

and second because it turns out that the exclusive
n-photon probability density essentially factorizes into
next-photon probability densities I1(t)

p [0,t]~ tut1 ,. . . ,tn!5P0~ t2tn!I1~ tn2tn21!• . . .•I1~ t1!.
(44)

This factorization property was initially assumed and
then justified by physical arguments by Cohen-
Tannoudji and Dalibard (1986) while Zoller et al. (1987)
calculated first the exclusive n-photon probability
p [0,t](tut1 ,. . . ,tn) and subsequently its decomposition into
next-photon probabilities. Before we discuss the above
approaches, we point out that, although the exclusive
(next photon at time t) I1(t) and nonexclusive (a photon
at time t) I(t) distributions are very different, they are
related by a simple integral equation (Kim et al., 1987).
As discussed in Eq. (32) in Sec. III,

I~ t !5I1~ t !1E
0

t
dt8I1~ t2t8!I~ t8!, (45)

which becomes especially simple when one considers the
Laplace transform of that equation, as we have a convo-
lution on the right-hand side of Eq. (45). This relation-
ship enables us in principle to obtain the exclusive prob-
ability density I1(t) from the nonexclusive quantity I(t).
In practice, however, this is exceedingly difficult to do,
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as one has to know all the eigenvalues of the corre-
sponding Bloch equations. Therefore a direct approach
is needed.

1. Derivations of the quantum-jump approach

The idea put forward by Zoller et al. (1987) was not to
calculate the complete density operator r irrespective of
the number of photons that have been emitted, but to
discriminate between density operators corresponding
to different numbers of emitted photons in the quan-
tized radiation field. The quantity of interest is therefore

rA
~n !~ t !5TrF$Pnr~ t !%, (46)

where r(t) is the density operator of atom and quan-
tized radiation field, TrF$ • % the partial trace over the
modes of the quantized radiation field, and Pn the pro-
jection operator onto the state of the quantized radia-
tion field that contains n photons. This method of calcu-
lating the density operator for a given number of
photons in the quantized radiation field was first used by
Mollow (1975) to investigate the resonance fluorescence
spectrum of two-level systems. However, as at that time
the investigation of single ions was completely beyond
experimental capability, he did not extend his conclu-
sions to single-quantum systems. This was only made
possible later by the experimental realization of single
ions in ion traps.

In the following we discuss the approach of Zoller
et al. (1987) for the case of a three-level system in the V
configuration (see Fig. 1), rather than, as in the original
paper, for the two-level case. Following Mollow (1975)
and Blatt et al. (1986) one obtains for Eq. (46) the equa-
tions of motion

d

dt
rA

~0 !~ t !52i@HeffrA
~0 !~ t !2rA

~0 !~ t !Heff
† # , (47)

and

d

dt
rA

~n !~ t !52i~HeffrA
~n !~ t !2rA

~n !~ t !Heff
† !

1(
i51

2

2G iiu0&^iurA
~n21 !~ t !ui&^0u, (48)

where the effective Hamiltonian operator Heff is given
by

Heff52(
i51

2 H \~D i1iG ii!ui&^iu1
\V i

2
~ u0&^iu1ui&^0u!J ,

(49)

with the detunings D i5ṽ i2v i1 , ṽ i the laser frequency,
V i the Rabi frequency, and 2 G ii the Einstein coefficient
on the i↔1 transition. It is now important to note that
the effective Hamilton operator Heff is a non-Hermitian
operator. The real part of 2i Heff is negative, which
implies that the trace of the density operator rA

(0)(t) de-
creases in time. This is not surprising because rA

(0)(t)
describes the conditional time evolution under the as-
sumption that no photon has been emitted into the
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quantized radiation field. The probability that an excited
atom has not emitted a photon decreases in time, and
therefore the trace of rA

(0)(t) describing this probability
should decrease in time. This decrease is necessary for
the trace of the density operator r(t), disregarding the
number of emitted photons,

T~ t ,0!r~0 !5r~ t !5 (
n50

`

rA
~n !~ t !, (50)

to be preserved under the time evolution. The equations
of motion, Eqs. (47) and (48), have the solution

rA
~0 !~ t !5S~ t ,t0!rA

~0 !~ t0!, (51)

where

S~ t ,t0!rA
~0 !~ t0!5e2i Heff~ t2t0!rA

~0 !~ t0!eiHeff
†

~ t2t0! (52)

and

rA
~n !~ t !5E

0

t
dt8S~ t ,t8!RrA

~n21 !~ t8!, (53)

with

RrA
~n !~ t !5(

i51

2

2G iiu0&^iurA
~n !~ t !ui&^0u. (54)

From this result it is now possible to deduce the prob-
ability that exactly n photons have been emitted in the
time interval @0,t# . The probability that no photon has
been found should then be given by

P0~ t !5TrA$S~ t ,0!rA~0 !% (55)

and
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Pn~ t !5E
0

t
dtn . . .E

0

t2
dt1TrA$S~ t ,tn!R•••RS~ t1,0!rA~0 !%

(56)

is the probability that exactly n photons have been emit-
ted. Zoller, Marte, and Walls then realized that the
structure of these expressions coincides with that de-
rived from an abstract theory of continuous measure-
ment constructed by Srinivas and Davies (Davies, 1969,
1970, 1971, 1976; Srinivas and Davies 1981, 1982). This
theory supports the interpretation of

pn~ t1 ,. . . ,tn!5TrA$S~ t ,tn!R . . .RS~ t1,0!rA~0 !% (57)

as the probability density that exactly n photons have
been emitted at times t1 ,. . . ,tn and no photons in be-
tween. From the general theory of measurement, they
interpreted the quantity

P0~ t12t0!5
TrA$RS~ t1 ,t0!RT~ t0,0!rA~0 !%

TrA$RT~ t0,0!rA~0 !%
(58)

as the probability density that after an emission of a
photon at time t0 the next photon will be emitted at t1 .
It should be stressed that, although in the work of Zoller
et al. (1987) the super-operator T(t ,0) is identified with
the time evolution of the ensemble, irrespective of how
many photons have been emitted in @0,t# , for the follow-
ing it should always be chosen to be the time evolution if
a given number of emissions have taken place at the
times t1 ,. . . ,tn . Assuming this [as is also implicitly done
later in (Zoller et al., 1987)], one obtains for the prob-
ability density that photons are emitted exactly at times
t1 ,. . . ,tn ,
p [0,t]~ t1 ,. . . ,tn!5TrA$S~ t ,tn!R . . .RS~ t1,0!rA~0 !%,

5
TrA$S~ t ,tn!R . . .RS~ t1,0!rA~0 !%

TrA$RS~ t ,tn21!. . .RS~ t1,0!rA~0 !%
•••

TrA$RS~ t1,0!rA~0 !%

TrA$rA~0 !%
,

5P0~ t ,tn!I1~ tn ,tn21!. . .I1~ t1,0!. (59)
Here we have factorized p [0,t](t1 ,. . . ,tn) into products
of I1(t l ,t l21). In principle these functions can depend
on the atomic state at time t l21 (after the emission).
However, in most cases this state will be the ground
state of the system and will be the same after each emis-
sion. Having found that the knowledge of P0(t) is suffi-
cient [I1(t) can be obtained via Eq. (43)], Zoller et al.
then continue to discuss the photon statistics of the
three-level V system. Their results may also be used to
implement a simulation approach for the time evolution
of a single three-level system (Hegerfeldt and Wilser,
1991; Dalibard et al., 1992; Dum, Zoller, and Ritsch,
1992). However, the application of the quantum-jump
approach in numerical simulations will be discussed later
in this section.

The approach of Zoller, Marte, and Walls already re-
veals many features of the quantum-jump approach.
However, there is a slight complication in their ap-
proach, as they rely on the abstract theory of continuous
measurement of Srinivas and Davies to give interpreta-
tions to their equations (57) and (58). The reason that
they need the support of the theory of Srinivas and
Davies is that they never talk about the way the photons
are measured. In fact only the emission of photons is
mentioned and not the detection of photons. From a
quantum-mechanical point of view, however, one has to
be very careful, as the emission of a photon is not well
defined. It is the detection of a photon in the radiation
field which is a real event. Of course the treatment of
Zoller et al. (1987) already implies some properties of
the measurement process, e.g., they implicitly assume
time-resolved photon counting. However, they gave no
explicit treatment of such measurements. This problem
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was addressed in greater detail by several authors, and
in the following we discuss these ideas.

2. The detection and nondetection of photons

Porrati and Putterman (1989) were the first to explic-
itly include the result of quantum-mechanical measure-
ments into their calculation. They, as well as others
(Pegg and Knight, 1988a), noticed that the failure to de-
tect a photon in a measurement leads to a state reduc-
tion, as information is gained through that null measure-
ment. Essentially we can be increasingly confident that
the ion is in a nonradiating state (examples of this will
be shown in Sec. V). Porrati and Putterman assume that
at some large time t a measurement on the whole quan-
tized radiation field is performed. Assuming the result of
this measurement is the detection of no photons, they
calculate all Heisenberg operators at that time projected
onto the null-photon subspace of the complete Hilbert
space, i.e., operators of the form

~P0ÔAP0!~ t !. (60)

Although not mentioned explicitly by Porrati and
Putterman (1987, 1989), the calculation of this operator
turns out to be closely related to the projector formalism
(Nakajima, 1958; Zwanzig, 1960; Haake, 1973; Agarwal,
1974), a connection that was elaborated on by Reibold
(1992). Although their approach can in principle lead to
the quantum-jump method, there are some conceptual
problems in the actual execution of the use of the null-
measurements idea. The main problem is that Porrati
and Putterman only talk about a single measurement at
a large time t , performed on the complete quantized
radiation field. This does not seem to be a very realistic
model of measurements performed by a broadband
counter, which informs us immediately whether a pho-
ton is detected. Also the calculation of the state after the
detection of a photon was not elaborated on by Porrati
and Putterman (1987, 1989), where it was merely stated
that the system is reset back to its ground state on pho-
todetection, which is of course a physically correct pic-
ture. These conceptual concerns to this approach were
later addressed in the work of Hegerfeldt and Wilser
(1991; Wilser, 1991), of Carmichael (1993a), and of Dali-
bard et al. (1992; Mo” lmer et al., 1993; Mo” lmer, 1994). In
the following we give a more detailed account of their
approach.

We shall follow closely the presentation given by the
Hegerfeldt group (Hegerfeldt and Wilser, 1991; Wilser,
1991), as it directly leads to the delay function that was
also found in earlier papers (Cohen-Tannoudji and Dali-
bard, 1986; Zoller et al., 1987). The physical ideas, how-
ever, are very similar to those presented elsewhere
(Dalibard et al., 1992; Mo” lmer et al., 1993; Mo” lmer,
1994). We treat the same three-level system as in the
discussion of Zoller et al. (1987).

In Hegerfeldt and Wilser (1991) and Wilser (1991) [as
well as in Dalibard et al. (1992), Mo” lmer et al. (1993);
and Mo” lmer (1994)], the following simple model of how
the photons are detected was proposed. It was assumed
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that the radiating ion is surrounded by a 4p photodetec-
tor that detects photons irrespective of their frequency
and that the efficiency of the detector is unity. Efficien-
cies less than unity may be treated in a slightly different
way using the same physical ideas (Plenio, 1994; Heger-
feldt and Plenio, 1996) and leads to a natural connection
between the next-photon probability density I1(t) and
the any-photon rate (intensity correlation function)
g(2)(t) (Kim et al., 1987; Plenio, 1994). We shall return
to this point later. As truly continuous measurements in
quantum mechanics are not possible without freezing
the time evolution of the system through the Zeno effect
(Misra and Sudarshan, 1977; Reibold, 1993; Mahler and
WeberruX, 1995), it was instead assumed that measure-
ments are performed in rapid succession, where the time
difference Dt between successive measurements should
be much larger than the correlation time of the quan-
tized radiation field. This means that

Dt@v10
21. (61)

If successive measurements are more frequent than v10
21,

we enter the regime of the quantum Zeno effect and
significantly inhibit the possibility of spontaneous emis-
sions (Reibold, 1993). On the other hand Dt should be
much smaller than all time constants of the atomic time
evolution to ensure that one finds the photons one by
one, so that the time evolution can be found using per-
turbation theory. Therefore

G ii
21 ,D i

21 ,V i
21!Dt . (62)

For optical transitions it is easy to satisfy both inequali-
ties, Eqs. (61) and (62), simultaneously.

Now the density operator at time t under the condi-
tion that no photons have been detected in all measure-
ments that took place at time s1 ,. . . ,sn has to be calcu-
lated. Although the result of each measurement was
negative, in the sense that no photon was found, this still
has an impact on the wave function of the system, as it
represents an increase of knowledge about the system
(Dicke, 1981; Porrati and Putterman, 1987; Pegg and
Knight, 1988a). Using the projection operator P0 onto
the vacuum state of the quantized radiation field and the
time-evolution operator U(t ,t8) of system and radiation
field in a suitable interaction picture, we find

uc~sn!&5P0U~sn ,sn21!P0 .. .P0U~s1,0!uc~0 !&, (63)

as, after each measurement that has failed to detect a
photon, we have to project the quantized radiation field
onto the vacuum state according to the von Neumann-
Lüders postulate (Lüders, 1951; von Neumann, 1955).
As sj2sj21 obeys Eqs. (61) and (62), it is possible to
calculate the time-evolution operator U(sj ,sj21) in
second-order perturbation theory to obtain

P0U~sj ,sj21!P0'S 12
i

\
Heff~si21!~si2si21! DP0 (64)

with the effective Hamiltonian operator given by Eq.
(49). In the quantum-jump method presented by Dali-
bard et al. (1992), Mo” lmer et al. (1993), and Mo” lmer
(1994) the Weisskopf-Wigner approach (Weisskopf and
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Wigner, 1930) was used to find a formula equivalent to
Eq. (64). Inserting this equation into Eq. (63) and
changing from a coarse-grained time scale to a continu-
ous one, we obtain for the atomic part of the wave func-
tion (the radiation field is in its vacuum state), where no
photons have been detected in all measurements in the
interval @0,t# ,

ucA
~0 !~ t !&5e2iHefft/\ucA~0 !&. (65)

One should note that the effective time evolution does
not preserve the norm of the state and that it maps pure
states onto pure states. In fact the square of the norm of
Eq. (65) is just

P0~ t !5^cA
~0 !~ t !ucA

~0 !~ t !& (66)

and coincides with P0(t) given in Eq. (55). The function
P0(t) will become important in applications of the
method in simulations (Dalibard et al., 1992; Dum, Zol-
ler, and Ritsch, 1992). It should be noted here in passing
that if we consider the normalized version of the time
evolution Eq. (65) for a two-level system, we find that it
is identical to the time evolution according to the neo-
classical radiation theory of Jaynes (Bouwmeester et al.,
1994). The reason for this is claimed by Bouwmeester
et al. to be that Heff contains all contributions from vir-
tual photons (i.e., all radiation reaction terms) but does
not include the real photons, as their detection leads to
state reduction according to the projection postulate.
However, neoclassical theory predicts quantum beats
from a three-level system in the L configuration, while it
is easily seen that an analysis of the problem using the
quantum-jump approach does not predict quantum
beats, a result in accordance with experiment (Milonni,
1976, and references therein).

Eventually the photodetector will find a photon, and
the state after this detection can be determined by the
projection postulate. We write the state after the detec-
tion of a photon as a density operator, as the state after
the emission can be a mixture, e.g., as in the three-level
L configuration (Javanainen, 1992; Hegerfeldt, 1993;
Hegerfeldt and Plenio, 1995a; Hegerfeldt and Sonder-
mann, 1996), although in the case of the three-level V
system it is not:

r̃ R~sn!5~12P0!U~sn ,sn21!P0rA
~0 !~sn21!

3P0U~sn ,sn21!~12P0!. (67)

At this point the additional assumption is made that the
photodetector absorbs the photon (which it does in re-
ality) and that the state after the detection is simply ob-
tained by removing the photons from the radiation field.
This can be done by tracing over the quantized radiation
field and multiplying with P0

rR5TrF$ r̃ R~sn!% ^ P0

5(
i51

2

2G iiu0&^iurA
~0 !~sn21!ui&^0u~sn2sn21!. (68)
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It should be noted that the assumption that the state,
after the detection of a photon in the counter, is given
by Eq. (68) is not included in the projection postulate
but enters as a physically justified additional assumption.
However, using slightly different mathematical methods
it is possible to show that the procedure of Eq. (68) is
not really necessary. Ideal quantum-mechanical mea-
surements in which the photon is not absorbed lead to
the same results (Plenio, 1994; Hegerfeldt and Plenio,
1996). This is a consequence of the intuitively obvious
fact that in free space photons emitted by the system will
never return to it and is implicit in the treatment of
Zoller et al. (1987).

3. The quantum-jump approach from classical
photoelectron-counting distributions

A different approach towards the quantum-jump
method was presented earlier by Carmichael and co-
workers (Carmichael et al., 1989; Carmichael, 1993a).
They derive the quantum-jump method from a discus-
sion of photoelectron-counting distributions that are
found in experiments. A quantum-mechanical theory for
photoelectron-counting distributions was developed in
1964 by Kelley and Kleiner (1964), who derived the
quantum-mechanical expressions for nonexclusive mul-
ticoincidence rates. For the probability to have n photo-
electron counts in the time interval @ t ,t1T# , they find

p~n ,t ,T !5K :H j* t
t1Tdt8Ê ~2 !~ t8!Ê ~1 !~ t8!

n! J
3expH 2jE

t

t1T
dt8Ê ~2 !~ t8!Ê ~1 !~ t8!J :L ,

(69)

where Ê is the electric field operator and j is the prod-
uct of detector efficiency and a factor to convert field
intensity into photon flux. The notation ^:...:& means that
all operators have to be normally ordered and time or-
dered in such a way that times decrease from the center
towards the left and right. Expanding Eq. (69), one can
write p(n ,t ,T) as a complicated series of integrals over
the nonexclusive multicoincidence rates

I~ t1 ,. . . ,tm!5jm^Ê ~2 !~ t1!. . .Ê ~2 !~ tm!

3Ê ~1 !~ tm!. . .Ê ~1 !~ t1!&, (70)

which gives the rate for the joint detection of photons at
times t1 ,. . . ,tm . It is a nonexclusive rate, as there may be
more detections in between the times t1 ,. . . ,tm . That
these possible events are included in Eq. (70) is obvious,
as the Heisenberg operators are calculated with respect
to the total Hamiltonian of the system, which describes a
time evolution in which arbitrarily many photons may
be created. The analysis of the photon statistics by
means of the coincidence rate Eq. (70) has long been the
standard way of investigation. It was, however, realized
that this is not the only possibility, and for certain prob-
lems it is not even the most natural way. In fact Eq. (69),
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for example, can be expressed very easily by the exclu-
sive probability density to find photon counts at exactly
the times t1 ,. . . ,tn and at no other time in @ t ,t1T# . One
finds for this the expression

p~n ,t ,T !5E
t

t1T
dtnE

t

tn
dtn21 .. .E

t

t2
dt1p [t ,t1T]~ t1 ,. . . ,tn!.

(71)

Carmichael and co-workers (Carmichael et al., 1989;
Carmichael, 1993a) then undertook the step to express
the exclusive probability density in terms of the intensity
operators. They find

p [t ,t1T]~ t1 ,. . . ,tn!5(
r50

`
~21 !r

r! E
t

t1T
dtr8 . . .E

t

t1T
dt18

3^: Î~ tr8!. . . Î~ t18! Î~ tm!. . . Î~ t1!:&,

(72)

where

Î~ t !5jÊ ~2 !~ t !Ê ~1 !~ t !. (73)

This can be checked by inserting Eqs. (72) and (73) into
Eq. (71) and showing that the result coincides with Eq.
(69) (Stratonovitch, 1963; Saleh, 1978). The aim now is
to rewrite Eq. (72) in terms of (super)-operators that
only act in the atomic space, as these are much easier to
handle than the Heisenberg operators Î(t). It turns out
that the resulting equations are quite simple. To this end
it is important to note that the electric-field operator in
the Heisenberg picture can be decomposed into a free-
field part and a source-field part

Ê ~2 !~ t !5Êf
~2 !~ t i!1Ês

~2 !~ t i!. (74)

In the Markov approximation the free field com-
mutes with all electric-field operators at earlier times
(Cohen-Tannoudji et al., 1992) and vanishes when acting
onto the vacuum state. It is therefore possible to
replace the intensity operators Î(t i) for i51,.. . ,m by
Ês

(2)(t i)Ês
(1)(t i) in Eq. (72). All other intensity opera-

tors remain unchanged. Carrying out the time ordering
in Eq. (72) explicitly and after tedious calculations [for
details we refer the reader to Carmichael et al. (1989)
and Carmichael (1993a)], one obtains for an overall
counter efficiency j

p [t ,t1T]~ t1 ,. . . ,tn!

5jnTrA$e ~L2jR!~ t1T2tm!R. . .Re ~L2jR!~ t12t !r~ t !%,

(75)

where L is the super-operator given by

Lr52
i

\
@Heff~j!r2rHeff~j!# , (76)

where Heff(j) is obtained from Heff for perfect effi-
ciency j51 by substituting G→(12j)G . R is the reset
operator giving the state after a photon has been de-
tected. Assuming unit efficiency (j51) of the detection
process, we recover Eq. (49).
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4. A formulation as a stochastic differential equation

So far we have discussed a number of approaches to
the quantum-jump description of dissipation. These ap-
proaches can be formulated somewhat differently in the
language of quantum stochastic differential equations
(Gardiner, 1992). This formulation is certainly rather
formal at first glance, but it has the advantage that cer-
tain operations that use the Markov approximation be-
come simpler. On the other hand, one has to use the
somewhat unintuitive Ito formalism (Gardiner, 1992;
Gardiner et al., 1992), when a more physically oriented
derivation would sometimes help to interpret the result-
ing equations.

To illustrate the idea of this formalism, we consider a
laser-driven two-level atom in a quantized radiation field
that is in the vacuum state. We follow the description in
Sondermann (1995b). The Hamiltonian operator in a
suitable interaction picture is given by

H52\D1u1&^1u1
\V

2
~ u0&^1u1u1&^0u!

1(
kl

~ i\gkls10akle2i~vkl2v10!t1H.c.!

5HA1s10D10E~1 !~ t !1D10
† E~2 !~ t !s01 , (77)

where s ij5ui&^ju is an operator annihilating an electron
in level j and creating an electron in level i and where

D10E~1 !~ t !5D10(
kl

i\S e2vkl

2e0\V D ~1/2!

3ekls10akle2i~vkl2v10!t (78)

is the interaction energy between the electric-field op-
erator E†(t) in the Schrödinger picture (or more pre-
cisely in the chosen interaction picture) and the atomic
dipole moment D21 of the transition. The time-
discretized Schrödinger equation then reads

i\Duc~ t !&5Huc~ t !&Dt

5$HADt1s10DA†~ t !2s01DA~ t !%uc~ t !&, (79)

where

DA~ t !5E
t

t1Dt
dA~ t !

5E
t

t1Dt
dt D10(

kl
i\S e2vkl

2e0\V D ~1/2!

3ekls10akle2i~vkl2v10!t. (80)

We assume in the following that Dt@v10
21 , which is cru-

cial to justify the Markov approximation. The idea is
now to perform the Markovian limit directly in the
Schrödinger equation instead of performing this limit on
the results. This is the step where we have to introduce
the notion of quantum stochastic differential equations,
as in performing this limit we cannot subsequently inter-
pret the resultant Schrödinger equation as an ordinary
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differential equation (Gardiner, 1992; Gardiner et al.,
1992). Under the Markov assumption we have

@DA~ t !,DA†~s !#5H 0 if ut2su>Dt ,

GDt otherwise,
(81)

which in the limit Dt→0 results in

@dA~ t !,dA†~s !#5H 0 if tÞs ,

Gdt otherwise.
(82)

We also need to know that if we assume that the initial
state of the quantized radiation field is the vacuum, then

dA~ t !dA~ t !505dA†~ t !dA†~ t !, (83)

where this equation is defined in the mean-square-
topology sense, i.e., one applies both sides on an initial
vector and takes the absolute square of the result after-
wards (Gardiner, 1992; Gardiner et al., 1992). Taking the
limit Dt→0 in Eq. (80), we have assumed the ordinary
rules of calculus and therefore generated a stochastic
differential equation in the sense of Stratonovitch

i\duc~ t !&uS5$HAdt1s10dA†~ t !2s01dA~ t !%uc~ t !&.
(84)

Since a Stratonovitch equation is not easy to integrate,
we would like to put it in Ito form, using Eqs. (81)–(83)
(Gardiner, 1992; Gardiner et al., 1992). We then find

i\duc~ t !&uI5$HAdt1dA†~ t !s012Gs11dt%uc~ t !&,
(85)

where the Gs11dt arises from a dA(t)dA†(t) contribu-
tion. As the dA(t) commute with all earlier dA(s) upon
which uc(t)& depends, it can be commuted to the right
until it operates on the initial state and therefore the
vacuum. Therefore the contribution of the dA(t) van-
ishes, and only the dA†(t) contribution survives.

What we are in fact interested in here is the rederiva-
tion of the quantum-jump approach. Therefore we are
interested in the time evolution when no photon is
present in the field, i.e., we are interested in the state
vector

P0uc~ t !&5uc~ t !&0 , (86)

where P0 is the projector onto the vacuum state of the
quantized radiation field. We find

duc~ t !&05P0duc~ t !&5~2iHA /\2Gs11!P0uc~ t !&dt .
(87)

The dA†(t) now vanishes because, when acting on a
vacuum state to its left, it gives zero contribution. The
norm of the conditional state vector uc(t)&0 is just the
probability to find no photon until t if there was no pho-
ton at t50. This is just the reduced time evolution found
in the previously discussed derivations. The probability
density I1(t) for an emission at time t is just the rate of
decrease of the norm of the emission free-time evolu-
tion, i.e.,

d0^c~ t !uc~ t !&0uI5~d0^c~ t !u!uc~ t !&010^c~ t !u~duc~ t !&0!

1~d0^c~ t !u!~duc~ t !&0!
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50^c~ t !uiHA /\2Gs11uc~ t !&0

10^c~ t !u2iHA /\2Gs11uc~ t !&0

522G0^c~ t !us11uc~ t !&0 . (88)

In this way we have recovered the time evolution of the
no-photon probability P0(t). What happens when a
photon has been detected? Then we need to calculate
the contribution to the state of the system projected
onto the one-photon subspace at time t , i.e., P1uc(t)&,
that originates from systems where no photon has been
emitted so far. It can easily be seen that this contribution
comes from an atom in the ground state because only an
operator of the form dA†s01 in Eq. (85) survives. There-
fore, using this formulation, we have recovered the
quantum-jump approach; we observe that this formal-
ism, although not delivering new insights into physics
different from those of previous derivations of the
quantum-jump approach, is very elegant from a formal
point of view. To understand the formalism a little bet-
ter, we now show how one may obtain Eq. (87) without
referring to the formalism of stochastic differential
equations (Zoller and Gardiner, 1995). We consider a
finite time step for the state vector P0uc(t)&, using the
Hamiltonian operator Eq. (77) and first-order perturba-
tion theory. We obtain

DP0uc~ t !&5P0~2iHA /\Dt2s10DA~ t !!uc~ t !&

5P0U~ t ,0!U†~ t ,0!(2iHA /\Dt

2s10DA~ t !)U~ t ,0!U†~ t ,0!uc~ t !&

52iHA /\DtP0uc~ t !&

1P0U~ t ,0!s10(DA~ t !2Gs01~ t !)uc~0 !&,

(89)

where in the last line we have used the well-known ex-
pression for the Heisenberg operator of the electric-field
operator, which can be written as a free-field contribu-
tion and a source term (the dipole of the atom radiates
the outgoing field) (Loudon, 1983). Note that s01(t) is
now a Heisenberg operator. Eliminating A(t) in the last
row of Eq. (89), as it operates on the initial vacuum
state, we obtain

DP0uc~ t !&5Dt~2iHA /\2Gs11!P0uc~ t !& . (90)

Now we may easily perform the limit Dt→0 to obtain
the same result as in Eq. (87), however, without the ex-
plicit use of the quantum stochastic differential calculus.

B. Quantum-state diffusion and other approaches
to single-system dynamics

1. Quantum-state diffusion

So far we have discussed the quantum-jump approach
for the description of single radiating quantum systems.
The main ingredient in the derivation was the assump-
tion of time-resolved photon-counting measurements on
the quantized radiation field. The resulting time evolu-
tion could be divided into a coherent time evolution
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governed by a non-Hermitian Hamiltonian operator
that is interrupted by instantaneous jumps caused by the
detection of a photon and the consequent gain in knowl-
edge about the system. One could ask whether this de-
scription is unique, that is, it represents the only possi-
bility. From the emphasis we put on the importance of
the measurement process in the derivation of the
quantum-jump approach, one can already guess that
other measurement prescriptions will yield different
kinds of quantum trajectories. In the following we shall
discuss an important example (Gisin and Percival, 1992)
of a different kind of quantum trajectory, quantum state
diffusion, which in fact can be derived from a very im-
portant measurement method in quantum optics,
namely, the balanced heterodyne detection. Before we
show the connection of quantum-state diffusion to bal-
anced heterodyne detection, let us point out that
quantum-state diffusion was originally derived indepen-
dently from a measurement context. Steps in this direc-
tion were made when several authors became interested
in alternative versions of quantum mechanics (Pearle,
1976; Ghirardi et al., 1986; Diosi, 1988, 1989; Ghirardi
et al., 1990) and the investigation of the wave function
collapse, i.e., the projection postulate (Gisin 1984, 1989).
In these investigations stochastic differential equations
for the time evolution of the state vector of the system
were studied. Again there is a multitude of possible
equations; however, Gisin and Percival (1992) provided
a natural symmetry condition under which it is possible
to derive a unique diffusion equation, which is referred
to as the quantum-state diffusion model (QSD). Given a
Bloch equation in Lindblad form (Lindblad, 1976)

ṙ52
i

\
@Hsys ,r#1(

m
~2 LmrLm

† 2Lm
† Lmr2rLm

† Lm!,

(91)

with the system Hamiltonian Hsys , and the Lindblad
operators Lm , the quantum-state diffusion equation for
the state vector is

udc&52
i

\
~Hsys2i\Lm

† Lm!uc&dt

1(
m

~2^Lm&Lm2^Lm
† &^Lm&!uc&dt

1(
m

~Lm2^Lm&!uc&djm . (92)

The djm represent independent complex normalized
Wiener processes whose averages, denoted by M(...),
satisfy

M~djm!50,

M(Re~djm!Re~djn!)5M(Im~djm!Im~djn!)

5dmndt ,

M(Re~djm!Im~djn!)50. (93)

Equation (92) has to be interpreted as an Ito stochastic
differential equation, see, for example, Stratonovitch
Rev. Mod. Phys., Vol. 70, No. 1, January 1998
(1963) and Gardiner (1992). It is easy to check that av-
eraging Eq. (92) over the stochastic Wiener process
yields the density operator equation, Eq. (91), and that
therefore (in the mean) normalization is preserved. For
numerical studies, often a somewhat simpler equation is
used that does not preserve normalization even under
the mean. This is given by

udc&52
i

\
Huc&dt1(

m
~2^Lm

† &Lm2Lm
† Lm!uc&dt

1(
m

Lmuc&djm . (94)

It should be noted that Eq. (93) is a nonlinear equation
as it also depends on the expectation values of the Lind-
blad operators Lm . This makes the analytical treatment
of this equation very difficult, and there are only a few
cases for which an analytic solution is known (Gisin,
1984, 1989; Salama and Gisin, 1993; Carmichael, 1994;
Wiseman and Milburn, 1994). However, it was found by
Goetsch, Graham, and Haake (Goetsch and Graham,
1993, 1994; Goetsch et al., 1995) and later for non-
Markovian systems by Strunz (1996a, 1996b), that it is
possible to find linear stochastic differential equations
that also reproduce the ensemble average. Stochastic
differential equations for the wave function have also
been derived by Barchielli (1986, 1993; Barchielli and
Belavkin, 1991) (see also Zoller and Gardiner, 1995 for
a good summary of these approaches) from a more ab-
stract mathematical point of view. The approach of Bar-
chielli also gives a common mathematical basis for both
diffusion and jump processes.

However, we do not intend to elaborate further on
the mathematical side of the theory. Instead we would
like to show that it is possible to derive quantum-state
diffusion from the quantum-jump approach in a certain
limiting case, i.e., the case of infinitely many jumps,
where each jump has an infinitesimal impact on the
wave function. In fact it turns out that quantum-state
diffusion can be related to an explicit and well-known
physical measurement process in quantum optics,
namely, the method of balanced heterodyne detection
(see, for example, Castin et al., 1993; Carmichael, 1993a;
Wiseman and Milburn, 1993a, 1993b; Mo” lmer, 1994;
Knight and Garraway, 1996; Wiseman, 1996). In the fol-
lowing we would like to show this explicitly for the spe-
cific example of a decaying cavity, and we follow a simi-
lar path to that used in the approach of Garraway and
Knight (Castin et al., 1993; Garraway and Knight, 1994b;
Knight and Garraway, 1996). To be specific, we shall
illustrate the method for the case of balanced hetero-
dyne detection of the output of an undriven optical cav-
ity. We have in mind the situation given in Fig. 7.

2. Quantum-state diffusion as a quantum-jump description
of heterodyne detection

The left-hand cavity A (with mode operators acav) is
the source of a weak output field (mode operators akl)
that we want to analyze, while the lower cavity (mode
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operators bloc) is assumed to be in a coherent state ub&
with a very large amplitude b for all times, so that the
radiated field (with mode operators bkl) of that cavity is
very large. The Hamiltonian operator describing this
situation is

H5\vcavacav
† acav1(

kl
\vklakl

† akl

1(
kl

$i\gklacav
† akl1H.c.%1\v locbloc

† bloc

1(
kl

\vklbkl
† bkl1(

kl
$i\fklbloc

† bkl1H.c.%,

(95)

where the gkl and fkl are the coupling constants be-
tween the cavity and the outside world and vcav and
v loc the frequencies of the cavity A and the local oscil-
lator cavity, respectively. The action of the beamsplitter
is to mix the two incoming modes. Assuming a 50%
beamsplitter, we find for the new mode operators (Lou-
don and Knight, 1987)

ckl5
1

&
~akl1bkl!,

dkl5
1

&
~2akl1bkl!. (96)

Now going over to an interaction picture with respect to

FIG. 7. Schematic picture of the heterodyne-detection scheme.
Cavity A emits a weak signal that we mix with the signal from
the local oscillator cavity B. We measure the difference in the
counts in the two counters that detect the photons that leave
the beamsplitter.
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H05\vcavacav
† acav1(

kl
\vklakl

† akl1\v locbloc
† bloc

1(
kl

\vklbkl
† bkl (97)

and subsequently changing the basis via a displacement
operator such that the initial state of the local oscillator
is the vacuum (Mollow, 1975; Pegg, 1980), we obtain,
using V5v loc2vcav ,

H5(
kl

i\

&
@gklacav

† e2iVt1fkl~bloc
† 1b* !#

3ckle2i~vkl2v loc!t1H.c.

1(
kl

i\

&
@2gklacav

† e2iVt1fkl~bloc
† 1b* !#

3dkle2i~vkl2v loc!t1H.c. (98)

Now applying the methods that we used to derive the
quantum-jump approach, we easily obtain the two jump
operators

Jc5
1

&
~AgcavacaveiVt1Ag locb!,

Jd5
1

&
~2AgcavacaveiVt1Ag locb!, (99)

where gcav and g loc are the decay rates of the cavity and
the local oscillator. Within a short time interval Dt , i.e.,
such that (vcav2v loc)Dt!1, we will count on average

^Jc
†Jc&5

b2g loc

2 S 11A 4gcav

g locb
2 ^xVt& D (100)

counts in mode c , and

^Jd
†Jd&5

b2g loc

2 S 12A 4gcav

g locb
2 ^xVt& D (101)

counts in mode d , where

^xf&:5^acav
† eif1acave2if&. (102)

These are average values around which the actual num-
ber of counts in the two counters fluctuates. We can
approximate this number of counts m(t) by the stochas-
tic process

m~ t !5^J†J&Dt1^J†J&1/2DW , (103)

such that ^(DW)2&5Dt . For the powers of the jump op-
erators we find

Jc
m15bm1S g loc

2 D m1/2S 11
m1

b
Agcav

g loc
acaveiVtD ,

(104)

Jd
m25bm2S g loc

2 D m2/2S 12
m2

b
Agcav

g loc
acaveiVtD .

As we normalize after each emission, the prefactors are
not really important, and we can divide the jump opera-
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tors by these. One should note that the phase of these
prefactors is fixed due to the fact that in the limit of
infinite b the jump operators have to become the unit
operator. Therefore there is no freedom in the choice of
the sign of the prefactors. It is now easy to derive the
effective Hamiltonian operator Heff , for which we find

Heff52i\
gcav

2 S a†a1
g loc

gcav
b2D . (105)

Using this together with Eq. (104), we obtain

uc̃~ t1Dt !&5S 12
i

\
HeffDt1e2iVtacavS 2gcav^xVt&

1Agcav

2
~DW12DW2! D uc̃~ t !&. (106)

Adding together the two Wiener noises
DW5(DW12DW2)/& , taking the limits Dt→dt and
DW→dW , and defining

dj5e2iVtdW , (107)

we obtain, after dropping a counter-rotating term of the
form e22iVt,

udc̃&5F2
gcav

2 S acav
† acav1

g loc

gcav
b2Ddt

1gcavacav^acav
† &dt1Agcavacavdj G uc̃& . (108)

This is the unnormalized diffusion equation, given, for
example, by Gisin and Percival (1992). One should note
that if we had considered homodyne detection, i.e., the
case V50, then we would have found a different diffu-
sion equation, as there would not have been a counter-
rotating term that we could have dropped. Therefore an
additional term in Eq. (108) would appear (Carmichael,
1993a; Mo” lmer, 1994).

To yield the normalized equations for quantum-state
diffusion as they are given by Gisin and Percival (1992),
we have to normalize the wave function, and we have to
include a stochastic phase factor a(t) into the wave
function (Garraway and Knight, 1994b), i.e., we look for
a diffusion equation for

uc~ t !&5
eia~ t !uc̃&

^c̃ uc̃&
. (109)

The reason we have to include this seemingly unmoti-
vated phase factor is that in the derivation of the
quantum-state diffusion equation by Gisin and Percival
(1992), a term is added to the diffusion equation to give
it the simplest possible form. This term in fact gives rise
to a random phase change. To yield quantum-state dif-
fusion we choose a(t) as

a~ t !5
ig

2 ^acav&dj2
ig

2 ^acav
† &dj* . (110)

This choice has the effect of removing dj* that would
appear in the diffusion equation of the normalized wave
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function without the additional phase factor. Using Eq.
(110) in Eq. (108) and assuming djdj* 5dt , we finally
obtain

udc&52
g

2
acav

† acav1gS acav^acav
† &1

1
2 ^acav

† acav&

2
1
2 ^acav

† &^acav& D uc&dt1Ag~acav2^acav&!dj .

(111)

We have therefore shown that the quantum-state diffu-
sion equation Eq. (111) [or Eq. (92)] can be regarded as
a limiting case of the quantum-jump approach. In Sec. V
we will illustrate the transition from the quantum-jump
behavior to the quantum-state-diffusion behavior that
takes place when we increase the amplitude of the local
oscillator (Granzow, 1996). It should be noted that it is
also possible to obtain a jumplike behavior from
quantum-state diffusion equations. However, this proce-
dure is much less satisfying than the above derivation of
quantum-state diffusion from quantum jumps. The rea-
son is that one has to modify the quantum-state diffu-
sion equation by adding an additional operator, the lo-
calization operator. The amplitude with which this
localization operator appears in the equations is arbi-
trary and has to be adjusted according to the experimen-
tal situation (Gisin et al., 1993). This is not particularly
satisfying, at least in cases in which we deal with single-
ion resonance fluorescence. Here the quantum-jump ap-
proach appears to be much more natural. In fact it can
be shown that one can not associate the jumps occurring
in the quantum-state-diffusion picture with photon emis-
sions, as such an interpretation can lead to more than
one emission from an undriven two-level system
(Granzow, 1996). Taking these considerations into ac-
count, one could be tempted to say that the quantum-
jump approach is more fundamental than quantum-state
diffusion. However, both approaches have the same jus-
tification, as they were both derived from a particular
measurement situation. Depending on the experimental
situation and the measurement scheme employed, we
have to choose either the quantum-jump approach or
the quantum-state diffusion model to obtain the correct
description of the experimental situation. Quantum-
state diffusion was, as mentioned before, not originally
introduced to describe a specific experimental situation.
It was rather seen as an attempt to formulate alternative
versions of quantum mechanics, and there are attempts
to derive diffusion equations from fundamental ideas,
such as, for example, decoherence induced by gravita-
tional fluctuations (Percival, 1994b, 1995, 1997; Percival
and Strunz, 1997). Although the quantum-state diffusion
model can not be regarded as the proper description of
quantum jumps in single-photon counting experiments
but rather as the description of heterodyne detection, it
is nevertheless useful in the investigation of single-
system behavior. Interesting phenomena such as local-
ization in phase and position space (Gisin and Percival,
1993a, 1993b; Percival, 1994a; Herkommer et al., 1996)
are found. These can be used to improve the perfor-
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mance of simulation procedures using a ‘‘moving-basis’’
approach (Schack et al., 1995; Schack et al., 1996), where
only a time-dependent subset of all basis states is used in
the simulation. A similar method is also possible for a
variant of the quantum-jump approach (Holland et al.,
1996). Note also that one can obtain diffusion equations
when one applies the quantum-jump approach to meso-
scopic systems (Brun et al., 1997). Again one obtains a
quantum-state-diffusion description, as it represents the
mathematical limit of a system experiencing numerous
jumps that individually have small effect on the system.

3. Other approaches

So far, we have discussed the evolution of open sys-
tems, that is of microsystems in contact with Markovian
reservoirs such as the bath of vacuum-field modes re-
sponsible for spontaneous emission. The quantum-jump
concept within an open-system context has to do with
the gain in information about the microsystem that is
accessible from the record available in the dissipative
environment. Such jump processes do not require an ex-
tension or modification of conventional quantum me-
chanics, and we refer to these as ‘‘extrinsic’’ jumps. A
very different jump mechanism has been studied by a
number of authors (Ghirardi et al., 1986; Diosi, 1989;
Ghirardi et al., 1990; Percival, 1994b; Percival and
Strunz, 1997). In these approaches the Schrödinger
equation is modified in such a way that quantum coher-
ences are automatically destroyed in a closed system by
an intrinsic stochastic-jump mechanism. This should be
distinguished from the extrinsic mechanisms we are con-
cerned with in the bulk of this review.

To see how an intrinsic jump mechanism works, we
need a concrete realization that we can apply to a spe-
cific time evolution. Milburn (1991) has proposed just
such a realization, in which standard quantum mechan-
ics is modified in a simple way to generate intrinsic de-
coherence. He assumes that on sufficiently short time
steps, the system does not evolve continuously under
normal unitary evolution, but rather in a stochastic se-
quence of identical unitary transformations. This as-
sumption leads to a modification of the Schrödinger
equation that contains a term responsible for the decay
of quantum coherence in the energy-eigenstate basis,
without the intervention of a reservoir and therefore
without the usual energy dissipation associated with nor-
mal decay (Moya-Cessa et al., 1993). The decay is en-
tirely of phase dependence only, akin to the dephasing
decay of coherences produced by impact-theory colli-
sions or by fluctuations in the phase of a laser in laser
spectroscopy.

It is interesting to apply Milburn’s model of intrinsic
decoherence to a problem of dynamical evolution: that
is, the interaction of two subsystems and the coherences
that establish themselves as a consequence of their in-
teraction. The interaction between a single two-level
atom and a quantized cavity mode was considered by
Moya-Cessa et al. (1993), and they showed how the in-
trinsic decoherence affects the long-time coherence
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characteristics of the entangled atom-field system. In
particular it could be shown how the revivals (a signa-
ture of long-time coherence) are removed by this intrin-
sic decoherence. The quantum-jump approach as we
have discussed it so far only treats systems (atoms) in-
teracting with a Markovian bath (the quantized multi-
mode radiation field). However, one might be interested
in applying the quantum-jump approach to non-
Markovian interactions. Examples are electrons inter-
acting with phonons or, in quantum optics, an atom in a
cavity interacting with a mode that loses photons to the
outside world (Garraway, Knight, and Steinbach, 1995).
The second example already suggests a possible way one
could model such systems. Here the atom sees a cavity
mode with finite width, i.e., a spectral function that is
not flat but a Lorentzian (Piraux et al., 1990, and refer-
ences therein). However, one does not need to solve a
non-Markovian master equation, as the width of the
mode is produced by its coupling to the outside world.
Taking this coupling explicitly into account, by describ-
ing a coupled atom-cavity field mode with a dissipative-
field coupling to the environment, one again obtains a
Markovian master equation. This is also the recipe for
the treatment of an interaction of a bath with a general
spectral function R(v) (Imamoglu, 1994). One has to
decompose R(v) into a sum (or integral) of Lorentzians
with positive weights. Each Lorentzian can then be mod-
eled by a mode interacting with both the system and a
Markovian reservoir. This method is practical only if the
number of additional modes that one has to take into
account is not too large. One should also note that in
this case the meaning of a jump in the simulation can
become obscure, as the excitation of the system is trans-
ferred to the Markovian bath in two steps via the addi-
tional mode (Garraway, Knight, and Steinbach, 1995).
However, if one is only interested in a simulation
method to obtain the master equation for non-
Markovian interactions, this is not important.

We have discussed a number of derivations of the
quantum-jump approach so far. A different approach to-
wards the description of single-system dynamics has
been proposed by Teich et al. (1989) and Teich and
Mahler (1992). In their method the dynamics described
by the master equation is split into two distinct parts.
One part smoothly changes the instantaneous basis of
the density operator (coherent evolution), while the
other part causes jumps between the basis states accord-
ing to a rate equation. The instantaneous basis can be
viewed as a generalization of the dressed-state basis. For
a stationary state the basis states are fixed so that only
jump processes occur. However, the approach is analyti-
cally quite complicated for nonstationary processes, and
in addition there are interpretational problems (Wise-
man and Milburn, 1993a).

4. Decoherent histories

At this point we would like to explain briefly a re-
cently proven connection (Yu, 1996; Brun, 1997) be-
tween the quantum-jump approach and a totally differ-



119M. B. Plenio and P. L. Knight: Quantum-jump approach to dissipative dynamics . . .
ent concept, the decoherent-histories formulation of
quantum mechanics. A similar connection, although
mathematically more involved, between the quantum-
state diffusion model and the decoherent-histories ap-
proach has also been established (Diosi et al., 1995). The
decoherent-histories formulation of quantum mechanics
was introduced by Griffiths (1984), Omnès (1988, 1989,
1994), and Gell-Mann and Hartle (1990, 1993). In this
formalism, one describes a quantum system in terms of
an exhaustive set of possible histories that must obey a
decoherence criterion that prevents them from interfer-
ing, so that these histories may be assigned classical
probabilities.

In ordinary nonrelativistic quantum mechanics, a set
of histories for a system can be specified by choosing a
sequence of times t1 ,. . . ,tN and a complete set of projec-
tions $Pa j

j (t j)% at each time t j that represent different

exclusive possibilities, i.e., they obey

(
a j

Pa j

j ~ t j!51, (112)

Pa j

j ~ t j!Pa j8
j

~ t j!5da ja j8
Pa j

j ~ t j!. (113)

Note that the projection operators Pa j

j are Heisenberg

operators; one could represent them in the Schrödinger
picture by

Pa j

j ~ t j!5e2iHtPa j

j e iHt. (114)

The Schrödinger-picture projection operators are as-
sumed to be operators in the system space.

A particular history is given by choosing one Pa j

j at
each point in time, specified by the sequence of indices
$a j%, denoted a for short. The decoherence functional on
a pair of histories a and a8 is then given by

D@a ,a8#5Tr$PaN

N ~ tN!•••Pa1

1 ~ t1!r~ t0!Pa18
1

~ t1!•••PaN8
N %,

(115)

where r(t0) is the initial density matrix of the system.
The decoherence criterion is now given by this decoher-
ence functional D@h ,h8# . Two histories h and h8 are
said to decohere if they satisfy the relationship

D@h ,h8#5p~h !dhh8 , (116)

where p(h) is the probability of history h . A set of his-
tories $h% is said to be exhaustive and decoherent if all
pairs of histories satisfy the criterion Eq. (116) and the
probabilities of all the histories sum to 1.

To establish a connection between quantum jumps
and decoherent histories, one uses a system that inter-
acts with the outside world in one direction. An example
of such a system is a cavity. The counter outside the
cavity is now modelled by a two-level system that is
strongly coupled to a bath so that both its coherence and
its excitation is damped much faster than all time con-
stants of the evolution of the system. One then defines
the two projection operators

P051^ u0&^0u, P151^ u1&^1u. (117)
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These projections model the presence or absence of
photons outside the system. It would be more general to
consider more than one mode of the radiation field, and
the proof can be generalized to that case. We now space
these projections a short time dt apart, and each history
is composed of N projections representing a total time
T5Ndt . A single history is a string $a1 ,a2 ,. . . ,aN%,
where a j50,1 represents whether or not a photon has
been emitted at time t j5(j21)dt . Using this, it is pos-
sible to write the decoherence functional as

D@h ,h8#5Tr$PaN
eLdt~PaN21

eLdt(. . .eLdt~Pa1
uc&

3^cuPa18
!. . .)PaN8

!%, (118)

where L is the superoperator describing the time evolu-
tion according to the Bloch equations for the system
(cavity) coupled to the two-level system. It is now pos-
sible to show that the decoherence functional in fact
obeys Eq. (116) to a very good approximation. It should
be noted that the construction of the decoherent histo-
ries using the two operators in Eq. (117) closely re-
sembles the derivation of the quantum-jump approach
as given by Hegerfeldt and Wilser (1991) and Wilser
(1991).

The crucial point in the quantum-jump approach is
the fact that we assume that we perform time-resolved
measurements on the photons that are emitted by the
atom. These photons may be mixed with a local oscilla-
tor in a heterodyne detection as we did for the deriva-
tion of quantum-state diffusion but even there we as-
sume time-resolved measurements. A nice feature of the
quantum-jump approach has been that it allows us to
describe the radiating system by a wave function instead
of a density matrix. However, one may ask the question
whether this is the only possible way to reach a wave-
function description of radiating systems. In fact it turns
out that in some sense there is a complementary ap-
proach that also yields a wave-function description. This
method was proposed by Holland and Cooper (1996)
and uses frequency-resolved measurements instead of
time-resolved measurements. It turns out that again it is
possible to decompose the density operator into pure
states (Mollow, 1975), which, however, are now charac-
terized by the number of photons that have been de-
tected and for which the frequency instead of their pre-
cise emission time is known.

C. Simulation of single trajectories

After we have introduced and discussed different
derivations of the quantum-jump approach, we will now
briefly explain how the quantum-jump approach is used
to simulate single-quantum systems. We will describe
the simulation approach for a decaying undriven cavity.
The generalization to an arbitrary system should then be
obvious. Carmichael (1993a) has given a precise rela-
tionship between the conditioned density operator con-
tingent on a precise sequence of detection events (a
‘‘record’’) and the ensemble-averaged density operator.
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He shows, for example, that if the zero-temperature
boson-damping master equation is written in Liouvillian
form

dr

dt
5Lr (119)

and we split the Liouvillian action L as a sum of two
terms, an anticommutator and a ‘‘sandwich’’ term,

Lr52
g

2
@ â†â ,r#11g âr â†5~L1S!1S, (120)

then we may identify the ‘‘sandwich’’ term S as a jump
operator. Equation (119) can be integrated formally as

r~ t !5exp$@~L1S!1S#t%r~0 !

5 (
m50

` E
0

t
dtmE

0

tm
dtm21 . . . E

0

t2
dt1

3$e ~L1S!~ t2tm!Se ~L1S!~ tm2tm21!

3S . . . Se ~L1S!t1r~0 !%, (121)

where the quantity in curly brackets in Eq. (121) is la-
beled r c̄(t) by Carmichael and is the conditioned den-
sity operator describing a specific ‘‘trajectory’’ or detec-
tion sequence. We can write r c̄(t) in terms of the
conditioned pure-state projectors

r c̄~ t !5uC c̄~ t !&^C c̄~ t !u. (122)

The component exp@(L1S)Dt# propagates r c̄(t) for a
time Dt without a decay being recorded: for the condi-
tioned state uC c̄(t)&,

uC c̄~ t1Dt !&5exp@2iHeffDt/\#uC c̄~ t !&, (123)

where the non-Hermitian effective Hamiltonian

Heff5H2i\
g

2
â†â (124)

derives from the anticommutator in Eq. (120). Once a
decay is registered, the gain in information is responsible
for the jump

uC c̄~ t !&→ âuC c̄~ t !&. (125)

The procedure adopted in quantum-jump simulations
can then be summarized as follows (Dalibard et al., 1992;
Dum, Zoller, and Ritsch, 1992):

(1) Determine the current probability of an emission

DP5gDt^Cuâ†âuC&. (126)

(2) Obtain a random number r between zero and one,
compare with DP , and decide on emission as fol-
lows:

(3) If r,DP there is an emission, so that the system
jumps to the renormalized form

uC&→
âuC&

A^Cuâ†âuC&
. (127)

(4) If r.DP no emission takes place, so the system
evolves under the influence of the non-Hermitian
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form

uC&→
$12~i/\! HDt2~g/2!Dt â†â%uC&

~12DP !1/2 . (128)

(5) Repeat to obtain an individual trajectory, or history.
(6) Average observables over many such trajectories.

To reassure ourselves that this is all true, we note that
the history splits into two alternatives in a time Dt :

uC&5H uCemit& with probability DP ,

uCno emission& with probability 12DP .
(129)

Then in terms of the density matrix, the evolution for a
step Dt becomes a sum of the two possible outcomes,

uC&^Cu→DPuCemit&^Cemitu1~12DP !

3uCno emit&^Cno emitu (130)

5gDt âuC&^Cuâ†1H 12
i

\
HDt

2
g

2
Dt â†âJ uC&^Cu H 11

i

\
HDt2

g

2
Dt â†âJ

;uC&^Cu2
i

\
Dt@H ,uC&^Cu#

1
g

2
Dt$2 âuC&^Cuâ†2 â†âuC&^Cu

2uC&^Cuâ†â%, (131)

so that

Dr

Dt
52

i

\
@H ,r#1

g

2
$2 âr â†2 â†âr2r â†a% (132)

as in the original master equation (119). We have now
seen how the quantum-jump approach can be used to
simulate a master equation. In Sec. V we will see some
examples of such simulations and also of single realiza-
tions of quantum trajectories. After this simple ap-
proach to simulating the master equation, we give a
brief exposition of the idea of higher-order unravellings
of the master equation (Steinbach et al., 1995a). To see
the motivation, we have to realize that the quantum-
jump approach is based on the simulation of the condi-
tioned evolution of either a density operator or a state
vector. However, at a certain level it is not a rigorous
implementation of the trajectory concept. Because this
method discretizes time into small steps dt , a quantum
jump in the simulation takes a finite time dt , whereas in
a simulation of quantum trajectories the information
gained from detection should instantaneously be used in
conditioning the quantum state of the system. This pin-
points the subtle difference between conditioned trajec-
tories and the slightly simpler idea of evaluating the
probability of decay quanta at discrete timesteps. One
way to remedy the fact that conditioning takes time in
the simulation is to add evolution with the effective
Hamiltonian to the projection step that has to be per-
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formed when a photon is detected. Having said this, the
question arises as to when during the time interval dt do
we need to condition the quantum state according to the
result of the detection process. First, it is worth noting
that, wherever we decide to do this, it would not change
the accuracy of integrating the master equation in first
order. Second, we may try to increase the accuracy by
choosing a specific point in the interval dt . Let us inte-
grate the master equation to second order in dt :

rS~ t1dt !5rS~ t !1
1
2

dt~@LrS# t1@LrS# t1dt !1O~dt3!.

(133)

Here L is the Liouville operator describing the evolution
of the complete master equation. The terms that result
from evaluating the right-hand side of this equation can
be cast into the following form (for details, see Stein-
bach et al. (1995a). By C we denote the reset operator
that has to be applied after the detection of a photon.

rS~ t1dt !5 UrS~ t !U†

1
1
2

dt UCrS~ t !C†U†

1
1
2

dt CUrC~ t !U†C†

1
1
2

dt2 UCCrC~ t !C†C†U†1O~dt3!.

(134)

Here U denotes evolution under the influence of the
effective Hamiltonian

U5expS 2
i

\
Heffdt D , (135)

which we call the ‘‘no-jump’’ evolution. The four terms
on the right-hand side of Eq. (134) represent four spe-
cific conditioned evolutions or mini-trajectories that the
system might follow. An expansion into mini-trajectories
is important because only then can the density-matrix
evolution, Eq. (134), be simulated with pure states. The
first mini-trajectory in Eq. (134) represents evolution
without any jump, and the second and the third repre-
sent a jump followed by evolution without jumps and
vice versa, respectively, and the fourth includes two suc-
cessive jumps followed by no-jump evolution.

We see that it is not sufficient to specify one point in
the interval dt at which to condition the density operator
due to the quantum jump. We have to consider two
points, at the beginning and at the end of dt , and also
the possibility of two immediately successive quantum
jumps in order to increase the accuracy in dt by one
order.

One can pursue this idea to obtain results that are
accurate up to fourth order (in dt). The master equation
has to be integrated along the lines of a fourth-order
Runge-Kutta method for ordinary differential equations
(Steinbach et al., 1995a).
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The way in which Eq. (134) is turned into a Monte
Carlo simulation is clear: each mini-trajectory defines
the conditioned evolution of the system and is assigned a
specific probability with which it occurs, analogous to
the jump and no-jump probabilities in the standard
method. Just as in the standard procedure, a random
number uniformly distributed between 0 and 1 is drawn
to choose at random which of the mini-trajectories will
govern the system evolution in the next time step dt .
The no-jump evolution is tested first as this, for small dt ,
is the most likely mini-trajectory. We note that the prob-
ability for evolution without detection remains un-
changed as compared with the standard method. Be-
cause the no-jump evolution is most probable, the
diversity of the mini-trajectories hardly influences the
necessary computing time. However, if the no-jump
mini-trajectory is not selected, then one of the alterna-
tive trajectories in Eq. (134) must be chosen.

To illustrate the improvement the method of higher-
order unravellings presents (Steinbach et al., 1995a), one
can simulate a laser-driven two-level system using the
ordinary first-order integration and compare the result
to the same simulation using the method of higher-order
unravellings. In Fig. 8 the simulation results of the inver-
sion ^s3&5^u1&^1u2u0&^0u&/2 of the two-level system are
plotted after 250000 runs for a Rabi frequency V5A ,
the Einstein coefficient of the transition, zero detuning,
and a time step dt50.1A21. We clearly see that the
first-order quantum-jump approach (dashed line) devi-

FIG. 8. Ensemble-averaged time evolution for the expectation
value ^s3&5^(u1&^1u2u0&^0u)&/2 (inversion in the two-level
system). The dotted line shows a sample of 250,000 trajectories
obtained by the fourth-order Monte Carlo method (V5A ,
gdt50.1A21, and zero detuning). It is hard to distinguish the
dotted line from the solid line showing the analytical result.
The dashed line shows a sample of 250,000 trajectories ob-
tained by the first-order Monte Carlo method for the same
parameters. From Steinbach et al., 1995a.
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ates from the exact result (solid line), while the dotted
line obtained from a fourth-order unravelling is much
closer to the exact result.

The problem that the simulation algorithm in Eqs.
(119)–(132) is given for discrete time steps and is there-
fore equivalent to a first-order Euler scheme can also be
overcome in a different way. With the use of the delay
function one can construct the quantum-jump evolution
in the limit Dt→0, that is, in a manner that does not rely
on the discretization. The simulation then runs as fol-
lows.

(1) At the t0 at which the last jump has occurred a ran-
dom number r between 0 and 1 is obtained.

(2) The time t to the next jump is then obtained by
solving numerically

P0~t!5ue2i Hefft/\uc~t0!&u25r. (136)

This solution can be obtained using, for example, a
fourth-order Runge-Kutta integration or other more
sophisticated methods.

(3) If needed uc(t)& is calculated numerically in the
time interval @ t0 ,t01t# from

uc~t!&5e2i Heff~t2t0!/\uc~t0!&. (137)

(4) Proceed with the quantum jump at time t01t . Go to
point 1.

The advantage of the procedure above is that effec-
tively no time discretization is imposed. Therefore one
can implement the most efficient time-evolution algo-
rithm for the particular problem of interest to compute
e2iHeff(t2t0)/\. For example, a fourth-order Runge-Kutta
method with adjustable step size, operator-splitting tech-
niques, or predictor-corrector schemes can be imple-
mented straightforwardly. The delay function can be
used when it can be calculated analytically. This situa-
tion occurs, for example, in the dynamics of two- and
three-level systems (this method has in fact been used in
the examples given in Sec. V) and in dark-state laser
cooling (VSCPT) (Bardou et al., 1994).

D. A quantum system driven by another quantum system

The next problem we want to investigate is that of a
quantum system B driven by the radiation emitted from
another quantum system A (Carmichael, 1993b; Gar-
diner, 1993). In the following we closely follow Car-
michael (1993b). One could try to solve the problem by
determining the dynamics of the driving system A first
and from that the statistics of the emitted light. How-
ever, in general an infinite number of correlation func-
tions is required to characterize the state of the light
emitted from A . In semiclassical theory one could in-
stead simulate the properties of the light by implement-
ing a suitable stochastic process. Unfortunately, this is
not possible in the quantum case. Therefore it is better
not to divide the problem in two, but to determine the
dynamics of the composite system A % B . To obtain the
broken time symmetry, one uses an interaction between
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A and B that is mediated by a reservoir R and assumes
the Born-Markoff approximation. A simplified version
of the problem is illustrated in Fig. 9, where it is as-
sumed that only one mode of each cavity needs to be
considered. The cavities have three perfectly reflecting
mirrors and one with transmission coefficient T!1. The
Hamiltonians HA and HB describe the free-cavity
modes and any interactions that take place inside the
cavities. HR is the free Hamiltonian of a travelling-wave
reservoir R that couples the cavities in one direction
only. The fields E(0) and E(l) that couple to the cavities
are written in photon-flux units. The complete Hamil-
tonian for A % B % R is

H5HA1HB1HR1HAR1HBR , (138)

with

HAR5i\~2kA!1/2@aE†~0 !2E~0 !a†# ,

HBR5i\~2kB!1/2@bE†~ l !2E~ l !b†# , (139)

where kA and kB are the cavity linewidths and a and b
are annihilation operators for the cavity modes. H de-
scribes two systems interacting with the same reservoir.
It should be noted that A and B couple to that reservoir
at different positions in space. Usually spatially sepa-
rated reservoir fields are treated as independent, an as-
sumption that cannot be valid for the geometry shown in
Fig. 9, where the output from cavity A appears a time
t5l/c later at the input of cavity B . The spatial separa-
tion of the two cavities can in fact be eliminated using
the Born-Markoff approximation in the Heisenberg pic-
ture to relate E†(0) and E†(l). One obtains

UA~t!E†~ l !UA
† ~t!5E†~0 !1

1
2

~2kA!1/2a , (140)

where

UA~t!5ei~HA1HR1HAR!t/\. (141)

If x(t) is the density operator of system A % B % R , we
may define the retarded density operator of the system
A % B % R as

FIG. 9. Schematic picture of the experimental situation envis-
aged in the theory of ‘‘cascaded’’ quantum systems. System B
is driven by the quantum system A . The counter registers a
superposition of both fields, one emitted from system A and
the other emitted from system B . After Carmichael (1993b).
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x8~ t !5UA~t!x~ t !UA
† ~t! (142)

and can easily show that x8(t) satisfies the Liouville
equation with the Hamiltonian

H85HS1HR1HSR , (143)

where

HS5HA1HB1i\~kAkB!1/2~a†b2ab†!,

HSR5i\$@~2kA!1/2a1~2kB!1/2b#E†~0 !2H.c.%. (144)

Now A and B couple to the reservoir at the same spatial
location and in addition couple directly with coupling
constant (kAkB)1/2. Now one can easily derive the mas-
ter equation for the density operator of A % B
r85TrR$x8% and obtain

ṙ85
1
i\

@HS ,r8#1Cr8C†2
1
2

C†Cr82
1
2

r8C†C ,

(145)

with

C5~2kA!1/2a1~2kB!1/2b . (146)

Having found the master equation, one can easily find
the conditional time evolution that then allows one to
unravel the dynamics of the composite system A % B .
The time evolution of the conditional wave function
ucc(t)& between photodetections is governed by the
Hamiltonian operator

H5HA1HB2i\@kAa†a1kBb†b12~kAkB!1/2ab†# .
(147)

After a photodetection we have to reset the system us-
ing the operator C , i.e., ucC(t)&→CucC(t)& . Now we are
in a position to simulate individual trajectories of two
coupled quantum systems. For applications of the
theory, for example, to an atom driven by squeezed light
or by antibunched light emitted from another atom, see
Carmichael (1993b), Gardiner (1993), Gardiner and Par-
kins (1994), and Kochan and Carmichael (1994). An
early example of an investigation of atoms driven by
antibunched light was discussed by Knight and Pegg
(1982).

E. Spectral information and correlation functions

Until now we have discussed the quantum-jump ap-
proach only in connection with quantities of the system
or its resonance fluorescence that require a temporal
resolution; no frequency information has been obtained,
as only broadband photon counting has been assumed.
However, it would be nice to be able to use the
quantum-jump approach for spectral properties of the
resonance fluorescence of the system. Of special interest
are, for example, the power spectrum of resonance fluo-
rescence or the absorption spectrum of a weak probe
laser. It turns out that it is in fact possible to use the
quantum-jump approach (Dum, Parkins, et al., 1992;
Gardiner et al., 1992; Mo” lmer et al., 1993; Mu, 1994; Ple-
nio, 1994; 1996; Hegerfeldt and Plenio, 1996) and also
quantum-state diffusion (Gisin, 1993; Sondermann,
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1995a; Brun and Gisin, 1996; Schack et al., 1996) to cal-
culate those spectra. There are several different ways to
derive quantum-jump equations that enable us to calcu-
late spectral information. In the following we will discuss
three of them.

One possible approach can be made via the method of
quantum stochastic differential equations (QSDE)
(Dum, Parkins, et al., 1992; Gardiner et al., 1992). We
already outlined the spirit of their approach in Eqs.
(77)–(90). Following, essentially, Gardiner et al. (1992),
but using the notation used in Eqs. (77)–(90), one de-
fines an output mode operator

dM~ t !5E
t

t1dt
dsD10(

kl
i\S e2vkl

2e0\V D ~1/2!

3ekls10akle2i~vkl2v21!s (148)

and then the spectrum in the Schrödinger picture as

S~v!5 lim
t→`

^f~ t !ur†~v ,t !r~v ,t !uf~ t !&
t2t0

, (149)

where we defined

r~v ,t !5E
t0

t
dM~s !e2iv~ t2s !. (150)

We can now introduce the auxiliary wave function

ub~ t !&5r~v ,t !uf~ t !&. (151)

For these two wave functions one then obtains a Stra-
tonovitch stochastic differential equation that can then
be transformed into the Ito form. One then obtains

dS uf~ t !&

ub~ t !&
D 5S 2i Heff /\ 0

AAs01 2iHeff /\2iv D S uf~ t !&

ub~ t !&
D .

(152)

The spectrum is now obtained by averaging

S~v!5 lim
t→`

^b~ t !ub~ t !&
t2t0

(153)

over many realizations. Note that Eq. (152) for uf(t)& is
just the conditional time evolution when no photons
have been emitted. This equation is used to determine
the jump times. The equation for ub(t)& has a free evo-
lution similar to uf(t)& except for an additional rotation
with frequency v. In addition it is driven by uf(t)&. This
driving can be interpreted as a process where a photon is
emitted into the modes described by dM(t) and there-
fore the atom is de-excited. The approach given here
can be used to simulate spectra in a number of situations
(Dum, Zoller, and Ritsch, 1992; Marte, Dum, Taieb,
Lett, and Zoller, 1993; Marte, Dum, Taieb, and Zoller,
1993). This approach is in fact similar in spirit to the
approach of Schack et al. (1996), who also assume the
interaction of the system with one mode of the quan-
tized radiation field. Schack et al. then derive the
quantum-state diffusion equations that allow the calcu-
lation of the spectrum. It should be noted that using Eq.
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(152) and then following our derivation of quantum-
state diffusion from quantum jumps would have led to
the same result.

A slightly different approach to the problem more in
the spirit of the derivation of the quantum-jump ap-
proach of Hegerfeldt and Wilser (1991) and Wilser
(1991) was undertaken by Plenio (1994) and Hegerfeldt
and Plenio (1996). Their starting point is the photon
number operator, and they define the spectrum via the
number of photons that have been emitted into certain
narrow frequency intervals (Agarwal, 1974), or, to be
more precise, the number of photons in a certain mode
of the quantized radiation field [an approach using the
electric-field operator that follows similar lines is also
possible and is essentially equivalent to the approach of
(Gardiner et al., 1992)]. To remain close to a physical
picture, they envisaged an experimental situation as de-
picted in Fig. 10. A part of the quantized radiation field
(in a solid angle VB) is observed by a broadband
counter, while in the rest of the space (solid angle VS) a
spectrometer (for example, a Fabry-Perot) is situated.

The broadband counter performs time-resolved ob-
servations on the quantized radiation field. It is again
assumed that the time-resolved measurements can be
modeled by a sequence of gedanken measurements that
are performed in rapid succession, as in the derivation of
the quantum-jump approach (Hegerfeldt and Wilser,
1991; Wilser, 1991). At a large time T , we then perform
a spectrally resolved measurement of those photons that
have entered the spectrometer. In that way one has
measured a spectrum with a spectral resolution ;1/T ,
which is conditioned on the particular detection se-
quence one has found in the broadband counter. The
derivation of the relevant set of differential equations to
calculate the spectrum follows similar ideas, as they
were developed in the work of Hegerfeldt and Wilser
(1991) and Wilser (1991). The outline of the derivation
presented here seems to be more complicated than the
one in Eqs. (148)–(153). The reason is that in Eqs.
(148)–(153) an infinitesimally small spectrometer was as-
sumed and extensive use of the formalism of quantum
stochastic differential equations was made. In the fol-

FIG. 10. A schematic representation of a possible experimen-
tal setup for the measurement of conditional spectra. The spec-
trometer occupies a solid angle VS , while the broadband
counter occupies VB . The broadband counter performs fre-
quent measurements, while in the spectrometer only one mea-
surement at a late time T is performed.
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lowing neither of these assumptions is made. (For a
more detailed exhibition of the ideas, see Plenio, 1994;
Hegerfeldt and Plenio, 1996). The aim is to calculate
differential equations for the conditional photon num-
ber in the mode kl , which is given by

Tr$akl
† ~0 !akl~0 !r~ tut1 ,t2 ,. . . ,tn!%, (154)

where v5uku/c , k̂5k/uku, and we assume that k is a vec-
tor pointing into the solid angle VS of the spectrometer.
The conditional spectrum of resonance fluorescence is
now obtained by summing over all vectors k in VS . For
the calculation of Eq. (50) we need the state
r(tut1 ,t2 ,. . . ,tn), where photons were detected at times
t1 ,. . . ,tn only. With P0VB

the projection operator onto

the vacuum state for all modes with k̂PVB and with the
abbreviation

A[P0VB
U~ t ,smn

n ! )
k51

mn

P0VB
U~sk

n ,sk21
n !, (155)

where sk
n are the times of measurements where no pho-

ton was found, we find, for tn,t,tn11 ,

r~ tut1 ,t2 ,. . . !5Ar~ tn10ut1 ,. . . ,tn21!A†, (156)

where r(tn10ut1 ,. . . ,tn21) is the state right after the de-
tection of a photon in VB ; it is recursively given by

r~ tn10ut1 ,. . .tn21!

[TrVB
$~12P0VB

!U~ tn ,smn21

n21 !r~smn21

n21 ut1 , . . . ,tn21!

3U†~ tn ,smn21

n21 !~12P0VB
!% ^ P0VB

. (157)

Here TrVB
$ • % denotes the partial trace over all modes

with a k vector that points into the solid angle VB . As in
the usual quantum-jump approach, at this point the as-
sumption enters that the photons detected in the broad-
band detector are absorbed during the measurement as
in a real counter. One can show, however, that this as-
sumption is not necessary for obtaining the equations of
motion used in this section (Plenio, 1994). In fact one
can just as well assume ideal quantum-mechanical mea-
surements instead and obtain the same results (Plenio,
1994). This is of course a manifestation of the intuitive
physical idea that photons emitted by the atom will not
be reabsorbed as long as there are no reflecting mirrors
close to the atom. Mathematically it is essentially a con-
sequence of the Markov approximation, which is incor-
porated elegantly in the formalism of Gardiner et al.
(1992). The general principle is to first find the
Heisenberg-Langevin equations for operators of the
form

Q0~ t ![UI
†~ t ,0!P0VB

QP0VB
UI~ t ,0!, (158)

where UI(t ,0) is the interaction-picture time-evolution
operator. With the abbreviation

Pn :5)
j50

mn

P0VB
~sj

n! )
k50

n21 H C~s0
k11!)

i50

mk

P0VB
~si

k!J , (159)

where P0VB
(t) and C(t) are defined similar to Eq. (74)

without P0VB
, we then find for Eq. (154)
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Tr$aM
† ~0 !s~0 !aM~0 !r~ tut1 ,t2 ,. . . !%

5^Pn
†~aM

† saM!0~ t !Pn&. (160)

The next step is to calculate the time derivative of the
right-hand side of Eq. (160). Quite similar to the deriva-
tion of the quantum regression theorem one can then
obtain the final set of differential equations (Plenio,
1994; Hegerfeldt and Plenio, 1996). As long as the solid
angle covered by the broadband counter is not equal to
4p, the resulting equations still describe mixtures, since
the photons emitted into the spectrometer are not ob-
served in a time-resolved way. For the explicit form of
the equations of motion, see Plenio (1994) and Heger-
feldt and Plenio (1996). In the limit of a 4p broadband
counter, the resulting equations map pure states into
pure states and are actually the same as those derived by
Gardiner et al. (1992). The main ingredients in this deri-
vation are that the initial state of the quantized radiation
field is the vacuum state and that the Markov approxi-
mation is valid. Using this approach it is straightforward
to derive the quantum-jump approach for the calcula-
tion of the absorption spectrum of a weak probe beam
by an atom. The idea is to assume that the probe beam
consists of a mode that is in a coherent state.

uakl&5D~akl!u0&, (161)

where

D~akl!5eaklakl
†

2akl
* akl. (162)

One then performs a unitary transformation that
maps this coherent state onto the vacuum state. This
leads to additional oscillating fields in the Hamiltonian
operator and to an initial state in the probe mode which
is now the vacuum. Therefore the approach outlined
above may be used again. Without further complicated
calculations one obtains the spectrum as the change in
the photon number in the probe mode. It is possible to
show that this definition of the absorption spectrum re-
duces to the stationary absorption spectrum for suffi-
ciently long times (Plenio, 1994, 1996).

The approaches exhibited so far enable us to simulate
spectral information (e.g., the spectrum of resonance
fluorescence). They were derived for both a definition of
the spectrum via the electric-field operator (Gardiner
et al., 1992) and via the photon-number operator (Ple-
nio, 1994; Hegerfeldt and Plenio, 1996). The physically
motivated derivation of the formalism by Hegerfeldt
and Plenio (1995b; Plenio, 1994) with a finite-size spec-
trometer yields, as a byproduct, equations of motion for
a system that is observed by a counter that does not
cover the whole solid angle and/or has below unit effi-
ciency. These equations of motion will later be used to
illustrate the connection between the next-photon and
the any-photon probability and to show that an ineffi-
cient photon counter will not measure the next-photon
probability but the any-photon probability, which is pro-
portional to the intensity correlation function g(2)(t).

The approaches discussed so far gave equations that
enabled us to calculate the spectrum of resonance fluo-
Rev. Mod. Phys., Vol. 70, No. 1, January 1998
rescence directly from the norm of a component of a
propagated wave function. However, there is a third way
to obtain the spectrum of resonance fluorescence, which
is via the simulation of the correlation function
^s10(t1t)s01(t)& [where s01(t) is the Heisenberg op-
erator corresponding to u0&^1u] and subsequent Fourier
transformation of the simulation results. Indeed this is
the way in which Dalibard, Castin, and Mo” lmer
(Mo” lmer et al., 1993; Mo” lmer, 1994) and others (Mu,
1994; Garraway, Kim, and Knight, 1995) employed the
quantum-jump approach to obtain simulations of the
spectrum of resonance fluorescence. The simulation pro-
cedure for a correlation function of the form
C(t1t)5^A(t1t)B(t)& runs as follows. First one
evolves using the Monte Carlo wave-function approach
a wave function uf(0)& towards uf(t)& . Then one forms
the auxiliary wave functions

ux6~0 !&5
1

Am6

~16B !uf~ t !&, (163)

ux68 ~0 !&5
1

Am68
~16iB !uf~ t !&, (164)

where the m6 ,m68 are normalization constants. Now one
has to evolve each of these four wave functions accord-
ing to the Monte Carlo wave-function procedure and
then to form

c6~t!5^x6~t!uAux6~t!&, (165)

c68 ~t!5^x68 ~t!uAux68 ~t!&, (166)

from which one obtains

C~ t ,t!5
1
4

@m1 c̄ 1~t!2m2 c̄ 2~t!2im18 c̄ 18 ~t!

1im28 c̄ 28 ~t!# . (167)

It can be shown that this procedure produces the correct
ensemble averages (Dalibard et al., 1992). A subsequent
Fourier transform of the simulation results yields a spec-
trum. This procedure has been used, for example, to
simulate the spectrum of a three-level system in a V
configuration (Garraway, Kim, and Knight, 1995). How-
ever, care has to be taken in this procedure because, if
one only performs a single Fourier transform to obtain
the stationary spectrum

S1~v!:52 Re E
0

`

dt eiDt^s10~t!s01~0 !&ss , (168)

one inevitably runs into difficulties, as one can only
simulate finite times. Then, however, the Fourier trans-
formation yields spurious negativities in the power spec-
trum that are due to finite-time effects. This problem
can be circumvented by using a finite-time double inte-
gral of the correlation function, as required in the defi-
nition of the time-dependent spectrum.

ST~v!:5
1
T E

0

T
dt8E

0

T
dt9eiD~ t82t9!^s10~ t8!s01~ t9!& .

(169)
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This quantity has the advantage that it is manifestly
positive for each realization, as it is of the form ^A†A&.
However, this considerably slows down the simulation
procedure because the integral transform is now much
more complicated.

A different criticism should be mentioned concerning
the interpretation of a single run of this simulation pro-
cedure. While the derivation of the simulation proce-
dure by Hegerfeldt and Plenio (1996) clearly shows that
a physical interpretation of a single run in the schemes
derived in Hegerfeldt and Plenio (1996), Plenio (1994),
and Gardiner et al. (1992) is possible, this is not obvi-
ously the case for the simulation procedure of Mo” lmer
et al. (1993). A problem lies in the fact that four differ-
ent wave functions have to be propagated in the proce-
dure, each of which might follow different jump se-
quences. Furthermore, even if only one jump sequence
is followed, it is not clear what the interpretation of the
correlation function is. This may be illustrated by the
following example. We now would like to simulate a
trivial correlation function of the form ^1(t1t)A(t)&.
We would expect that in each realization the simulation
procedure would give the same result as for the single
time-expectation value ^A(t)&. This, however, is not the
case, as is easily seen in the following example. We as-
sume a spontaneously decaying two-level system and the
initial state

uf~0 !&5S 1
11e2D 1/2

~ u0&1eu1&). (170)

The emission-free time evolution is given by

U0~ t1t8,t !5eMt8, (171)

where

M5S 0 0

0 2G22
D . (172)

If we assume that no jump at all occurs until t1t , we
obtain, according to the procedure of Mo” lmer et al.
(1993), the single-run result for the correlation function
^1(t1t)s01(t)& to be

^1~ t1t!s01~ t !&5
1

11e22G11t , (173)

while the expectation value of the operator s01(t) at
time t51/G11 is given by

^s01~ t51/G11!&5
1
2

. (174)

These two expressions obviously differ. Therefore we
can conclude that the simulation procedure of Mo” lmer
et al. (1993) yields the correct ensemble results; how-
ever, if we are interested in questions concerning single
runs or spectra conditioned on a given jump statistics,
care has to be taken, and it is safer to resort to the
approaches of Dum, Parkins, et al. (1992), Gardiner
et al. (1992), and Hegerfeldt and Plenio (1996; Plenio,
1994). Applications to conditioned spectra will be given
later in Sec. V.
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Here we have only described in detail quantum-jump
approaches to calculate spectral information. Of course
one can also obtain a quantum-state diffusion simulation
of spectral information. One can derive the equations,
either by starting out from the quantum-jump equations
given above and then following our derivation of the
quantum-state diffusion equations as a result of hetero-
dyne detection, or by deducing the equations, given that
the system couples to an additional output mode [i.e.,
similar to (Gardiner et al., 1992) but here literally one
mode of the quantized radiation field is chosen] and
then writing down the master equation for that enlarged
system. From that one can then easily obtain quantum-
state-diffusion equations (Brun and Gisin, 1996). How-
ever, if one tries to apply the equations to the calcula-
tion of time correlation functions of the form
^A(t1t)B(t)&, one again encounters interpretational
problems similar to those explained for the approach of
Mo” lmer et al. described above. It should be noted that
the approach to calculate time correlation functions
given by Gisin (1993) does not lead to ^A(t1t)B(t)& as
usually defined in quantum optics, but to a different cor-
relation quantity that is difficult to interpret (Sonder-
mann, 1995a).

V. APPLICATIONS OF THE QUANTUM-JUMP APPROACH

A. Photon statistics

In the previous sections we have introduced and dis-
cussed the quantum-jump approach, illuminating many
different approaches to it. After these sometimes formal
considerations, we would like to give a number of ex-
amples to give a better understanding of the formalism
and its physical implications. The examples will be
drawn mainly from two physical situations: single
trapped ions driven by lasers and electromagnetic fields
in cavities, i.e., cavity QED.

We start by illustrating the difference between single
realizations and ensemble averages by investigating a
laser-driven two-level system damped by a zero-
temperature quantized radiation field. The master equa-
tion is then given by

ṙ52
i

\
@HA ,r#2G$s11r1rs11%12Gs01rs10 , (175)

with

HA52\Du1&^1u1
\V

2
~ u0&^1u1u1&^0u!, (176)

where 2G equals the Einstein coefficient of the observed
two-level system, V is the Rabi frequency, and D is the
detuning of the laser.

Assuming standard broadband photodetection, the
quantum-jump approach gives for the conditional time
evolution between detections

uc~ t !&5e2iHefft/\uc~0 !&, (177)

with



127M. B. Plenio and P. L. Knight: Quantum-jump approach to dissipative dynamics . . .
Heff5HA2i\G , (178)

and for the normalized state after the detection of a
photon

uc~ t1!&5
s01uc~ t !&
is01c~ t !i 5u0&. (179)

The probability for not having a jump in the time inter-
val @0,t# , if the initial state is the ground state,
uc(0)&5u1&, is given by

P0~ t !5^ceff~ t !uceff~ t !&5
l2

l22l1
el1t2

l1

l22l1
el2t,

(180)

with

l1/25
2G1iD

2
6

AG22D22V222iDG

2
. (181)

Using the parameters V55G and D50, the upper-state
population r11 of the ensemble evolves as shown in Fig.
11, where the initial state is the ground state. The popu-
lation rises from zero, undergoing some Rabi oscilla-
tions, and then tends towards a steady state. Now let us
look at individual realizations of the time evolution us-
ing the same parameters and initial conditions. The re-
sult for one possible realization is shown in Fig. 12. The
picture is strikingly different from Fig. 11 in that the
time evolution is not smooth, but exhibits jumps, and it
does not tend towards a steady state. We rather observe
that initially the system starts to perform a Rabi oscilla-
tion. As the population in the upper level grows in time
so does the probability for the emission of a photon.
This oscillation is then terminated by the emission of a
photon that brings the atom back to its ground state.
Then the whole process starts again. Figures 11 and 12

FIG. 11. The upper-state population r11 of an ensemble of
two-level systems, which is driven by a laser with Rabi fre-
quency V55G and vanishing detuning D50. The system ex-
hibits some oscillations and then approaches a nonzero steady-
state value.
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show little similarity; however, averaging over many in-
dividual realizations shown in Fig. 12 leads to a closer
and closer approximation of the ensemble average. To
illustrate this we have plotted the ensemble result to-
gether with the average over N5100 and 10000 indi-
vidual realizations in Fig. 13. It is found that the root-
mean-square deviation of the simulated average from
the exact ensemble result is of the order of 1/AN . We
have examined the photon statistics of a two-level sys-

FIG. 12. The time evolution of the upper-state population r11
of a single driven two-level system. As in Fig. 11 the two-level
system is driven by a laser with Rabi frequency V55G and
vanishing detuning D50. The system starts a Rabi oscillation,
which is then interrupted by a quantum jump (detection of a
photon). After the jump the system is reset in the ground state
and a new Rabi oscillation starts. After Garraway et al. (1995).

FIG. 13. The ensemble result of Fig. 11 is compared to the
average over N5100 and N51000 realizations generated us-
ing the quantum-jump approach. The fluctuations of the aver-
ages become smaller with increasing N , and the ensemble av-
erage gets approximated more and more closely. The Rabi
frequency is V55G , and the detuning is D50.
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tem by detecting all the photons emitted by the atom
with high time resolution, as we assumed that the
counter has unit efficiency and covers the whole solid
angle. Assuming this, one would be able to measure the
next-photon probability density I1(t). However, in a
real experiment the counter efficiency is much less than
unity, due to imperfect quantum efficiency and because
only a finite solid angle is covered by the counter. There-
fore the question is which function we actually measure
when we perform a real experiment in which we deter-
mine the detection time of the next photon in our im-
perfect counter.

To answer this question we would like to employ the
quantum-jump approach, assuming a perfect photon
counter, which, however, does not cover all space. If it
covers a solid angle VB , then this is equivalent to a 4p
counter of efficiency b5VB/4p . The equation of motion
for this setup up has been derived in Sec. IV in connec-
tion with the simulation of spectral information [see
Eqs. (154)–(160)]. The efficiency b of the detection pro-
cess is the fraction of the emitted photons that are actu-
ally detected. We obtain the conditional equation of mo-
tion for the density operator under the assumption that
no photon has been detected in the counter,

ṙ052
i

\
$Heffr02r0Heff%12G~12b!s01rs10 .

(182)

Heff is given by Eq. (178), and one should note that now
the conditional time evolution does not map pure states
onto pure states. This is of course due to the incomplete
information gained from the imperfect counter. There-
fore we have to average over all possible events that the
counter could not detect, and this leads to a mixture.
One observes two familiar limits: for zero counter effi-
ciency we recover the ordinary optical Bloch equations,
whereas for unit efficiency b51 we find the effective
time evolution inferred from the assumption that no
photon has been found in the whole solid angle, given a
perfect counter.

Having found Eq. (182), we can now calculate the
probability that the detector finds no photon in the time
interval @0,t#

P0~ t !5Tr$r0~ t !%, (183)

which reduces to Eq. (55) or Eq. (66) in the limit b→1.
The next-count rate is then the negative time derivative
of Eq. (183)

I1,b~ t !52Gbr11~ t !, (184)

where r22 is obtained by solving Eq. (182). Instead of
solving this equation analytically, we plot the solution
for several different counter efficiencies b. We assume
G51 and V55G . In Fig. 14 we plot the next-detection
probability for counter efficiency b51, b50.1, and
b50.0049, where the latter value of b is computed from
Mandel’s antibunching experiments (Kimble et al., 1977;
Dagenais and Mandel, 1978). We observe that, for de-
creasing counter efficiency, the function Eq. (184) ap-
proximates the any-photon probability of the whole en-
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semble, which becomes more and more closely
proportional to the intensity correlation function g(2)

3(t). So far we have shown how to calculate the next-
detection rate for different counter efficiencies from the
quantum-jump approach. We have plotted the results
numerically. However, it is also possible to derive an
analytical expression in a somewhat different way. This
was done in Kim et al. (1987) and was in fact one earlier
approach to the problem. As described earlier one can
utilize the fact that there is a very simple relation be-
tween the any-photon rate Ib(t) of the complete en-
semble and the next-detection rate I1,b(t) for a counter
with efficiency b. This relation can be found using

r11~ t !5r11
~b!~ t !1E

0

t
dt8r11~ t2t8!2Gbr11

~b!~ t8!, (185)

and

I1,b~ t !52Gbr11
~b!~ t !, (186)

Ib~ t !52Gbr11~ t !, (187)

where r11
(b)(t) is calculated from Eq. (182). Inserting this

and taking the Laplace transform yields

Î~z !5
1

b

Î1,b~z !

12 Î1,b~z !
. (188)

The intensity correlation function g(2)(t) is related to
the any-photon rate Ib(t) for an imperfect counting pro-
cess by

2Gr11~`!bg ~2 !~ t !5Ib~ t !. (189)

Therefore we obtain

Î1,b~z !5
2Gr11~`!b ĝ ~2 !~z !

2Gr11~`!b ĝ ~2 !~z !11
, (190)

FIG. 14. The next-photon rate for different counter efficien-
cies b51, b50.1, and b5 .0049, and the any-photon probabil-
ity that is obtained in the limit b50. The Rabi frequency is
V55G , and the detuning is D50.
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where ĝ(2)(z) is the Laplace transform of the intensity
correlation function g(2)(t).

One should note that the intensity correlation func-
tion does not depend on the efficiency b, as it is normal-
ized with respect to the stationary detection rate. From
Eq. (190) one observes that, up to a normalization fac-
tor, the next-photon probability tends towards the inten-
sity correlation function. Inserting the well-known ex-
pressions for the stationary state of the two-level system
and the intensity correlation function for zero detuning

r22~`!5
V2

2V214G2 (191)

and

ĝ ~2 !~z !5
V212G2

z@~z13G/2!21V22G2/4#
(192)

into Eq. (190), we obtain

Î1,b~z !5
bV2G

~z1G!@z~z12G!1V2~z1bG!#
. (193)

This Laplace transform can be inverted easily. Plotting
this function exactly reproduces Fig. 14 if one normal-
izes the maximum of I1,b(t) to unity.

B. Intermittent fluorescence

After this discussion of the photon statistics of the
resonance fluorescence of a two-level system, we now
proceed to illustrate the formalism for a more complex
system, namely, a three-level system in V configuration
as shown in Fig. 1. We assume that the 0↔1 transition is
strongly allowed while the 0↔2 transition is metastable.
In a typical experiment one would have a lifetime of the
order of seconds for the metastable level 2, while the
unstable level 1 has a lifetime of several nanoseconds.
The system is irradiated by two lasers, one on each tran-
sition. The Rabi frequency V1 of the laser driving the
0↔1 transition is assumed to be much larger than the
Rabi frequency V2 on the 0↔2 transition. If one ob-
serves the intensity of resonance fluorescence on the
strong transition under these conditions one typically
obtains a result as shown in Fig. 2, or, in a more sche-
matical representation, in Fig. 4. Long periods of bright-
ness with many photon counts (bright periods) are inter-
rupted by prolonged periods with no photodetections
(dark periods). As we discussed previously, a simplified
treatment of this situation using rate equations was
given by Cook and Kimble (1985; Kimble et al., 1986).
However, as the described situation involves lasers, a
more detailed treatment is required, as coherences can
play a crucial role in the time evolution of the system.
Such treatments were initially undertaken using Bloch
equations, but this is not the most natural description of
the problem. Such a natural description of the problem
was provided by the quantum-jump approach. In the fol-
lowing we will use the quantum-jump approach to cal-
culate the photon statistics of the V system, and we will
use it to gain interesting and sometimes surprising in-
Rev. Mod. Phys., Vol. 70, No. 1, January 1998
sights into the single-system dynamics. It will turn out
that the rate-equation treatment of Cook and Kimble,
while giving a qualitative picture, is insufficient to ex-
plain many interesting properties of the system. A simi-
lar analysis can be carried out for other systems, such as
a L configuration (Agarwal et al., 1988b; Plenio, 1994;
Hegerfeldt and Plenio, 1995a), and in a system where
both upper levels couple strongly to the ground level but
are close together (Hegerfeldt and Plenio, 1992, 1993,
1994; Köhler, 1996).

In the following analysis we will always assume that
both bright and dark periods are much longer than the
lifetime of the unstable level 1. This condition is neces-
sary from a physical point of view, as otherwise one
would not be able to distinguish between a dark period
and the time interval between two successive emissions
in a bright period. Also a bright period consisting of
approximately one photon has little meaning. With the
detuning D i and Rabi frequencies V i of the lasers on the
0↔i transition, we obtain the condition (Hegerfeldt and
Plenio, 1995b)

V2
2!

1
4

16D2
2G11

2 1(V1
214D2~D12D2!)2

G11
2 1~D12D2!2 , (194)

where 2G11 equals the Einstein coefficient of level 1.
This condition assumes that the Einstein coefficient of
level 2 is negligible. Again this can be cast into an ana-
lytical form. We require (Hegerfeldt and Plenio, 1995b)

G22!
V1

2V2
2G11

16D2
2G11

2 1$V1
214D2~D12D2!%2 , (195)

which expresses the fact that spontaneous emissions
from level 2 are much less frequent than stimulated tran-
sitions. This also implies that there are sufficiently many
long dark periods. These conditions can be obtained by
first solving the problem for G2250. Then one has to
note that one obtains bright and dark periods only if the
waiting-time distribution has two very different decay
constants. Two different decay constants are obtained if
Eqs. (194) and (195) are satisfied. The conditions Eqs.
(194) and (195) take on a simpler form, e.g., when one
assumes D15D250.

To be able to calculate the mean lengths of bright and
dark periods, we need to define precisely what we mean
by bright and dark periods. To distinguish between
bright and dark periods we introduce a time T0 . If our
perfect photodetector fails to detect a photon in a time
interval @0,TD# , where it has found a photon at time
t50, we speak of a dark period of length TD . If, how-
ever, in a time interval @0,TL# the time between succes-
sive photon detections is always less than T0 , we have a
bright period of length TL . Using these definitions and
the next-photon probability density I1(t), we obtain for
the mean length of a dark period

TD~T0!5
*T0

` dt8t8I1~ t8!

*T0

` dt8I1~ t8!
5T01

*T0

` dt8P0~ t8!

P0~T0!
, (196)

while the mean length of a bright period is
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TL~T0!5
1

P0~T0!

*0
T0dt8t8I1~ t8!

*0
T0dt8I1~ t8!

. (197)

These expressions appear to be quite complicated, but
they can be simplified when we use the assumption that
bright and dark periods are long compared to the life-
time of level 1. In that case it is obvious that the time
evolution of the system has two widely different time
scales, one determining the emission rate during bright
periods, the other giving the rate at which dark periods
occur. This is reflected in the fact that the probability to
find no photon in the interval @0,t# has a slowly decaying
tail as we can observe from Fig. 15, where we plot P0(t)
for the parameters V152G11 , V250.35G11 , D15D250,
and G2250. If we choose T0 such that it is much larger
than the mean time between photon detections in a
bright period while still being much shorter than the
mean length of a dark period, we can reliably distinguish
between bright and dark periods. The choice of T0 im-
plies that

P0~T0!5pe22T0 Im~l1!>p!1, (198)

where l1 is the smallest eigenvalue of the effective
Hamiltonian of the system

Heff5S 0 2
V1

2
2

V2

2

2
V1

2
iG111D1 0

2
V2

2
0 D2

D . (199)

Simplifying Eqs. (196) and (197), we then obtain

FIG. 15. The waiting-time distribution P0(t) of the V system
describing the probability that after an emission at t50 no
other emission has taken place until t . Parameters are
V152G11 , V250.35G11 , D15D250, and G2250, where G ii are
decay constants. One observes a slowly decaying tail of P0(t),
indicating the possibility of dark periods.
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TD~T0!5
1

22 Im l1
(200)

and

TL~T0!5
tL

p
, (201)

where tL is the mean time between successive photode-
tections in a bright period

tL~T0!5E
0

T0
dt8t8I1~ t8!Y E

0

T0
dt8I1~ t8!. (202)

The mean time interval between successive emissions in
a bright period can be found from Eq. (202), or more
easily from

tL5
1

2G11r11
TLS , (203)

where r11
TLS is the population of the upper level 1 of a

two-level system driven by a laser of Rabi frequency
V152G11 and D150. Now it is quite easy to obtain ana-
lytical expressions for TD and TL . We find

TD5
16D2

2G11
2 1(V1

224D2~D22D1!)2

2V1
2V2

2G11
, (204)

TL5
2D1

212G11
2 1V1

2

2G11
2 12~D12D2!2 TD . (205)

We see that under the conditions of Eqs. (194) and (195)
both bright and dark periods are much longer than the
lifetime of the unstable 0↔1 transition.

Investigating the average rate 1/(TD1TL) at which
we observe quantum jumps, i.e., the onset of dark peri-
ods, we see that it depends on the detuning of the laser
on the 0↔2 transition. If we assume that the strong la-
ser (V1@G1) is resonant (D150), we observe that the
ratio 1/(TD1TL) becomes minimal when D250 and
maximal for the Autler-Townes or Stark split detunings
D256V1/2.

1
TD1TL

5
4V1

2V2
2G11

16D2
2G11

2 1~V1
224D2

2!2

G11
2 1D2

2

4G11
2 12D2

21V1
2 .

(206)

This dependence on the detuning D2 reflects the fact
that due to the strong driving of the 0↔1 transition, the
lower level exhibits Autler-Townes splitting. The two ef-
fective levels are shifted by 6V1/2 with respect to the
original level 0. To obtain long dark periods one needs
to bring the weak laser on the 0↔2 transition into reso-
nance with one of the dressed states of the 0↔1 transi-
tion. The resulting frequency dependence is shown in
Fig. 16. Before we proceed with the investigation of the
single system behavior, we show again, now quantita-
tively, that the existence of bright and dark periods in
the resonance fluorescence has a visible effect on the
ensemble quantities too. To see this, we plot the inten-
sity correlation function g(2)(t) in Fig. 17. We observe
that there is a slowly decaying contribution for times
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t@G22
21, quite similar to the behavior of the next-photon

probability density I1(t) shown in Fig. 15. One can show
that in this regime we can approximate g(2)(t) by

g ~2 !~t !>11
TD

TL
expH S 1

TD
1

1
TL

D tJ , (207)

where TD and TL are given by Eqs. (204) and (205).
Therefore, from the measurement of the g(2) function,

FIG. 16. 1/(TD1TL), representing the average rate at which
quantum jumps will be observed in the three-level V system, as
a function of the detuning D2 on the weak transition. The pa-
rameters are V1510G11 , V250.3G11 , D150, and G2250. One
observes that the maximum quantum-jump rate is achieved for
detunings D256V1/2, illustrating the Autler-Townes splitting
of the ground state.

FIG. 17. The intensity correlation function g(2)(t) of a V sys-
tem for the same parameters as in Fig. 15. One clearly ob-
serves that g(2)(t) first falls off quickly to a value of around 1.2
for times around t'5G11

21 and then starts to fall off slowly
towards the stationary value of 1.
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we can infer the existence of long bright and dark peri-
ods, and one can determine their mean lengths. The fact
that this information is hidden in the intensity correla-
tion function is not surprising, as it is proportional to the
any-photon rate I(t), which is related to the next-
photon rate I1(t) via

I~t!5I1~t!1E
0

t

dt8I~t2t8!I1~t8!. (208)

Later we will also show that the existence of bright and
dark periods also leaves its fingerprints in the spectrum
of resonance fluorescence as well as in the absorption
spectrum.

After this analytical discussion of the photon statistics
of the V system, we will now investigate what the system
time evolution for a single realization will typically look
like. For the parameters V152G11 , V250.2G11 , D150,
D250, and G2250, we have plotted both the time evolu-
tion of the population r11 of the unstable level 1 and
population r22 of the metastable level 2. In Fig. 18 one
observes that in some regions a rapid change of r11 ac-
companied by many detections takes place. However,
there are also regions where no photon is found and
most of the population is in level 2 (with a remnant still
in level 1). One should note that, as seen in Fig. 19, the
population in level 2 grows continuously and does not
jump from level 0 into level 2, as one might expect from
a rate-equation picture. Nevertheless, there is a jump,
not at the beginning of the dark period, but at its end
(Wilser, 1991; Garraway, Knight, and Steinbach, 1995),
as we can see in Fig. 20, where we have magnified the
time evolution of r11 in a dark period. The jump occurs
after a long time and marks the end of the dark period,
as after the jump the population is in the ground state,

FIG. 18. The time evolution of the population r11 of the rap-
idly decaying level in the V system. Periods where the time
evolution exhibits rapid Rabi oscillations interrupted by quan-
tum jumps can suddenly stop and lead to periods of no Rabi
oscillations and no jumps. The parameters are V152G11 ,
V250.2G11 , D150, D250, and G2250.
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which is strongly coupled to state 1. It should be noted
that in the simulation shown in Figs. 18–20 the decay
rate of the metastable level was assumed to be G2250,
which implies that the dark period always ends with an
emission from level 1. The continuous change of popu-
lation towards the metastable state in a dark period
nicely clarifies the importance of the failure to detect
photons (null measurements) for the time evolution of
the wave function. The failure to detect a photon pro-
vides us information about the system state that is de-

FIG. 19. The population r22 of the metastable state 2 with the
same parameters as in Fig. 18. One clearly observes that during
a dark period the population evolves smoothly into the meta-
stable state 2.

FIG. 20. The population of the unstable state 1 in a dark pe-
riod for the same parameters as in Fig. 18. The population
does not jump out of level 1 but evolves continuously. How-
ever, at the end of the dark period a jump occurs that is due to
an emission for level 1 because we assumed the shelving level
2 to be stable.
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scribed by the wave function. In this case the no-
detection event tells us that we are more likely to find
the system in the metastable state. Accordingly, the
wave function quickly (within several lifetimes of the
unstable level) tends towards the metastable state if we
have not found a photon during this time. The evolution
is continuous, as we assume (in the limit of the Markov
approximation) continuous measurements of the radia-
tion field. Therefore the failure to detect a photon in an
infinitesimal time interval @ t ,t1dt# leads to an infinitesi-
mal change proportional to dt . Conversely, the detec-
tion of a photon leads to a discontinuous change of the
wave function because one quantum of energy has
leaked out of the system into the environment. There-
fore the system has to change discontinuously and jumps
back into its ground state. Again this change of the wave
function is due to our increased knowledge of the sys-
tem.

C. From quantum jumps to quantum-state diffusion

So far we have only illustrated the quantum-jump ap-
proach to the photon statistics of a single ion. In Sec. IV
we have seen that other pictures are possible, namely,
the quantum-state-diffusion picture. Instead of present-
ing a large number of examples of the quantum-state-
diffusion model, we rather want to illustrate how the
transition from the quantum-jump picture to the
quantum-state-diffusion picture takes place. In Sec. IV
we have seen how to derive the quantum-state-diffusion
equations from a quantum-jump description of a bal-
anced heterodyne-detection experiment. In this deriva-
tion we had to assume the limit in which the photon
number in the local oscillator tends to infinity. In the
following we will illustrate this limit by choosing a num-
ber of finite values for the photon number of the local
oscillator. To keep the following analysis as simple as
possible, we in fact do not consider the case of balanced
heterodyne detection but of homodyne detection (Vogel
and Welsch, 1994). Instead of a cavity we will investigate
the time evolution of a laser-driven two-level system
with upper level 1 and lower level 0. We follow the pre-
sentation given by Granzow (1996). For the simulations
we need to know two quantities. The Lindblad operator
for the homodyne-detection scheme is given by

L5u0&^1u1a1, (209)

where a is the field amplitude of the local oscillator. As
the Lindblad operator is changed and depends on a, so
does the effective Hamiltonian operator between pho-
ton detections. We have

Heff52\Du1&^1u2
\V

2
~ u1&^0u1u0&^1u!

2i\G11~L†L1a* L1aL* uau2!, (210)

where 2G11 equals the Einstein coefficient of the upper
level 1, V is the Rabi frequency on the 0↔1 transition,
and D is the detuning. The probability for a jump in the
time interval dt is given by
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FIG. 21. Single realizations of a driven two-level system whose resonance fluorescence is observed in homodyne detection. The
Rabi frequency is V54G11 , and the amplitude of the local oscillator is (a) a50, (b) a50.5, (c) a51, and (d) a510. With
increasing a, jumps become more frequent and smaller in amplitude. From Granzow (1996).
pc52G11@^L†L&1a* ^L&1a^L†&1uau2#dt . (211)

These expressions can be derived analogously to the
procedure that we applied in the description of the bal-
anced heterodyne detection. In Fig. 21 we have plotted
single realizations of a two-level system with Rabi fre-
quency V54G and local oscillator amplitudes (a) a50,
(b) a50.5, (c) a51, and (d) a510. One clearly ob-
serves that with increasing a the number of jumps in-
crease while their amplitudes decrease. For a510 we
Rev. Mod. Phys., Vol. 70, No. 1, January 1998
already see a behavior very close to that one would ob-
tain in the limiting case a5` .

D. A decaying cavity

So far we have illustrated the quantum-jump ap-
proach in the context of single-ion resonance fluores-
cence. Now we would like to discuss a different kind of
problem, namely, cavity QED (Haroche, 1984). That
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means we are interested in the field states inside a cavity
as well as the time evolution of an atom interacting with
such a cavity (Grochmalicki and Lewenstein, 1989b;
Imamoglu, 1993). Again these problems can be formu-
lated in the framework of the quantum-jump theory be-
cause both the losses of the cavity to the outside world
as well as spontaneous emission of an atom give rise to a
master equation of Lindblad form, which can be simu-
lated using wave functions. A derivation of the simula-
tion equations is possible using the physical picture of
photon counters surrounding the system. For example, a
broadband photon counter outside the cavity will detect
photon losses of the cavity. As an initial example to il-
lustrate the physical insight that we gain from the
quantum-jump approach, we would like to investigate
the time evolution of a field state in a lossy cavity. As an
initial state we chose the state

uc&5
~ u0&1u10&)

A2
. (212)

In an appropriate interaction picture, the time evolution
under the condition that no photon has been found by
the photon counter outside the cavity is given by the
effective Hamiltonian

Heff52i\Ga†a , (213)

while the normalized state after the detection of a pho-
ton is given by

ucR&5
auc&

A^cua†auc&
. (214)

In Fig. 22 the mean photon number for a single realiza-
tion is shown. Initially no jump takes place, and the ef-
fect of this failure to detect a photon outside the cavity is
that the mean photon number inside the cavity de-
creases; it becomes more and more unlikely to find a
photon inside the cavity because, if there was a photon
in the cavity, it would leave the cavity, leading to a pho-
ton count. However, in the simulation shown in Fig. 22
we finally observe a photon outside the cavity, and at
that moment we know that there have been photons in
the cavity. Calculating the state after the detection,
given that we started with the superposition Eq. (212),
we find that the post-detection state is a Fock state con-
taining 9 photons. This implies that the mean photon
number after the photon detection is actually higher
than before the detection. After this first detection, the
cavity continues to decay, and now each detection of a
photon outside the cavity decreases the mean number of
photons inside the cavity, while now the number of pho-
tons remains invariant under the conditional time evolu-
tion from the relevant Fock states.

In the previous example we saw that the exponential
decay of the field mode in the ensemble average is the
result of the superposition of many single realizations in
which the cavity excitation changes discontinuously at
random times. Coherence between component parts of a
superposition state changes in amplitude and is eventu-
ally destroyed. However, this is not the only way in
Rev. Mod. Phys., Vol. 70, No. 1, January 1998
which coherence between superposition states is de-
stroyed. In the following example we show that the de-
cay of coherence of a ‘‘Schrödinger-cat’’ state of the
form

uc&5~ ua&1u2a&&)/i ua&1u2a& i , (215)

where i·i is a normalization factor, is due to a random-
ization of the relative phase between the two coherent
states, while the modulus of the relative phase remains
invariant under the no-jump evolution (Garraway and
Knight, 1994a). In each individual realization the cat
state remains a cat state. Although the amplitude of the
two coherent states decays, the relative phase between
the two coherent states just changes its sign. In fact if the
state before the detection is given by Eq. (215), then
after the detection of a photon we have the state

uc1&5auc&/i•i5~ ua&2u2a&&)/i•i . (216)

The conditional time evolution when no photon has
been found is given by

uc~ t !&5~ uae2G~ t2t8!&2u2ae2G~ t2t8!&&)/i•i , (217)

so that the amplitudes of the coherent states decay ex-
ponentially while their relative phase remains unaf-
fected. Averaging over many realizations, however,
leads to a decaying relative phase as random phases tend
to cancel out. It is interesting to note that the rate of
decay for the relative phase of the Schrödinger-cat state
is given by Guau2, while the amplitude decay rate is
given by G. Therefore, in the ensemble average, the cat
decoheres before the amplitudes of its constituents are
significantly affected (Garraway and Knight, 1994b).

FIG. 22. The expected photon number of the state of a cavity
with decay rate 2G prepared in an initial state
uc&5(u0&1u10&)/2 as a function of time. Before we observe the
first photon outside the cavity, the expected photon number
decreases. The first jump increases the expected photon num-
ber because we now know that the state has to be u9&. Subse-
quently, each photodetection decreases the expected photon
number by one.
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Another example that shows that the loss of coher-
ence can be due to phase shifts at random times is the
phenomenon of revivals in the Jaynes-Cummings model
[Shore and Knight (1993) and references therein]. In this
phenomenon a two-level atom is initially in its excited
state 1, while the cavity field is in a coherent state with
amplitude a,

uc&5u1&^1u ^ ua&^au. (218)

This initial product state becomes entangled [Ekert and
Knight (1995) and references therein], and the average
excitation of the atom rapidly tends towards 1/2. The
reason for this is that the frequency of Rabi oscillations
depends on the number of photons in the field mode
(Narozhny et al., 1981). The different Rabi frequencies
quickly decohere so that one observes an average exci-
tation of 1/2 of the atom. However, as the frequencies
are discrete, they partially rephase after a longer time,
and the excitation of the atom rises again. This revival is
shown, for example, in Fig. 23. Revivals of this kind
have been observed experimentally by Meekhof et al.
(1996) and Brune et al. (1996) and of the micromaser
kind by Rempe and Walther (1987). If the cavity is
damped, however, these revivals are much weaker and
will vanish for strong damping, as shown in Fig. 24,
where we have chosen the same parameters as in Fig. 23
but with an additional cavity-damping constant of
g50.01g , where g is the atom-field coupling constant.
We assumed that the atom does not decay spontane-
ously. No substantial revivals can be observed (Barnett
and Knight, 1986). What will we see for an individual
realization? If we assume that the atom does not decay
spontaneously, we obtain the effective Hamiltonian

Heff5Hsys2i\ga†a (219)

FIG. 23. Revivals in the inversion ^s3&5(u1&^1u2u0&^0u)/2 of
a two-level atom in a cavity with an initial field prepared in a
coherent state ua& with a54. The parameters of the simulation
were D50, g/g5100, where g is the atom-field coupling con-
stant. g is used to scale time, while in the next figure it is the
decay constant of the cavity.
Rev. Mod. Phys., Vol. 70, No. 1, January 1998
that generates the conditional time evolution of the
atom-cavity system if no photons are detected outside
the cavity. Hsys generates the free evolution of an un-
damped atom-cavity-field system, while the second term
on the right-hand side describes the damping of the cav-
ity at a rate 2g. The state after the detection of a cavity
photon is

uc1&5
auc&
i•i . (220)

A single realization for the parameters of Fig. 24 is
shown in Fig. 25. Now the revivals persist; however, each
jump that occurs at a random time introduces a phase
shift. An average taken over many individual realiza-
tions then leads to a quick decay of the coherence, and
revivals are not observed any more. A similar analysis
can be performed for a lossless cavity with an atom that
may spontaneously decay (Burt and Gea-Banacloche,
1996).

In these examples we only considered undriven atoms
in a cavity. Driven two-state systems inside a cavity can
of course also be investigated using the quantum-jump
approach (Alsing and Carmichael, 1991; Tian and Car-
michael, 1992), but we do not discuss this in detail here.

E. Other applications of the quantum-jump approach

So far we have illustrated the quantum-jump ap-
proach for a number of examples in single-ion physics
and cavity QED. The quantum-jump approach can and
has been applied to a large number of problems, which

FIG. 24. Revivals in the inversion ^s3&5^(u1&^1u2u0&^0u)&/2
of a two-level atom in a cavity with an initial field prepared in
a coherent state ua& with a54. Even a modest decay rate of the
cavity leads to a rapid destruction of the revivals. (b) shows the
revival. It was obtained by a quantum-jump simulation using
320,000 runs and is indistinguishable from the numerical inte-
gration of the master equation. The parameters of the simula-
tion were D50, g/g5100, and gdt5531024.



136 M. B. Plenio and P. L. Knight: Quantum-jump approach to dissipative dynamics . . .
we cannot discuss in detail here. Amongst these ex-
amples are the discussion of correlations between quan-
tum jumps in two stored ions. Such correlations were
observed in an experiment (Sauter, Blatt, et al., 1986), in
which the intermittent fluorescence of two Ba+ ions in
an ion trap was investigated and correlations were found
between the quantum jumps in the two ions which ex-
ceeded those expected from independent jumps. How-
ever, Itano et al. (1988) could not confirm these correla-
tions in their experiment. Theoretical investigations
(Lewenstein and Javanainen, 1987; 1988; Agarwal et al.,
1988a; Hendriks and Nienhuis, 1988; S. V. Lawande, Ja-
gatap, and Lawande, 1989; Lawande, Lawande, and Ja-
gatap, 1989) predicted that correlations should be small
if the ions are separated by many optical wavelengths. If
the ions are closer than an optical wavelength together,
correlations might be observable. For such small separa-
tions even two two-level ions could exhibit quantum
jumps (Yamada and Berman, 1990; Kim et al., 1989; Q.
V. Lawande et al., 1990).

Another example of the application of the quantum-
jump approach is the investigation of the quantum Zeno
effect (Misra and Sudarshan, 1977). The quantum Zeno
effect was measured in an experiment by Itano et al.
(1990) that was originally proposed by Cook (1988). The
experiment used a two-level system. The ground-state
population was measured via coupling the lower level
strongly to a rapidly decaying third level. Observation of
resonance fluorescence then indicates that the system
was in its ground state. This experiment was investigated
theoretically independently by Power and Knight
(Power, 1995a, 1995b; Power and Knight, 1996), by
Beige and Hegerfeldt (1996a, 1996b), and by Mahler
and coworkers (Mahler and WeberruX, 1995) using the

FIG. 25. For the same parameters as in Fig. 24 we plot a single
realization of the time evolution. The diamonds mark the in-
stants where a photon was detected outside the cavity. Note
that the revivals in a single realization survive. The quantum
jumps lead to a phase jump of the time evolution of the inver-
sion of the atom, which leads to a destruction of the revivals in
the ensemble average. From Garraway, Knight, and Steinbach
(1995).
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quantum-jump approach, and, e.g., by Frerichs and
Schenzle (1991) using Bloch equations. The investiga-
tions using the quantum-jump approach helped to un-
derstand the experiment from the single-particle point
of view and will be important in the analysis of future
quantum Zeno experiments (Plenio et al., 1996) using
single ions instead of around 5000 as in the experiment
by Itano et al. (1990).

Cohen-Tannoudji and co-workers have applied the
quantum-jump approach to the problem of lasing with-
out inversion (Cohen-Tannoudji et al., 1992a, 1992b,
1993) to understand the processes involved from the
point of view of single systems and to simulations of
dark-state cooling (Bardou et al. 1994).

Apart from these more analytical applications of the
quantum-jump approach, its numerical usefulness has
been demonstrated as well, for example, in numerical
simulations of laser-cooling experiments in two or three
dimensions (see, for example, Castin and Mo” lmer, 1995;
Marte, Dum, Taieb, Lett, and Zoller, 1993; Marte, Dum,
Taib, and Zoller, 1993). The fact that the quantum-jump
approach allows the description of the system using a
wave function instead of the density operator has made
these investigations possible. Both the gain in computa-
tional speed and the saving in memory space is consid-
erable, as in a quantum-jump simulation only N differ-
ential equations have to be propagated, instead of N2 in
the density-operator simulation.

The quantum-state-diffusion model, apart from its im-
portance in fundamental issues such as the measurement
process or intrinsic decoherence, is now widely used to
investigate the transition between classical and quantum
behavior and in the field of quantum chaos (see, for ex-
ample, Spiller and Ralph, 1994; Brun et al. 1996; Rigo
and Gisin, 1996). As we have already mentioned in Sec.
IV, the quantum-state-diffusion model also exhibits in-
teresting localization properties in both position and
phase space (Gisin and Percival, 1993a, 1993b; Percival,
1994a; Herkommer et al., 1996), which can be used to
implement very fast simulation algorithms (Schack et al.,
1995, 1996). Similar localization properties exist also for
variants of the quantum-jump approach (Holland et al.,
1996).

A more exotic application of the quantum-jump ap-
proach, or more precisely of the experiments in which
quantum jumps were observed, is the fact that these ex-
periments can provide a ‘‘perfect’’ random-number gen-
erator. This is because these experiments allow the ob-
servation of single quantum jumps, which occur at
absolutely random times, due to the fundamental inde-
terminacy of quantum mechanics (Erber and Putterman,
1985; Erber et al., 1989). Whether this idea is useful is,
however, doubtful, although in principle there could be
applications, e.g., in cryptography.

F. The spectrum of resonance fluorescence
and single-system dynamics

So far our examples of the quantum-jump approach
were limited to the investigation of the photon statistics
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of the radiation emitted by a system and of the internal
dynamics of a system conditioned on a measurement
record of observing the radiation emitted by the system.
As a further application of the quantum-jump approach,
we would now like to consider the spectrum of reso-
nance fluorescence of a three-level atom in the V con-
figuration, as shown in Fig. 1. This system, whose photon
statistics we already discussed in the context of bright
and dark periods, exhibits interesting features in the
spectrum of resonance fluorescence on the strong 0↔1
transition. In the following we will discuss briefly the
ensemble behavior of the spectrum and then show how
we can understand this behavior from the point of view
of the single-system dynamics. We will closely follow the
analysis of Hegerfeldt and Plenio (1995b) and Plenio
(1994, 1996). We consider the system shown in Fig. 1
and assume that the Rabi frequencies V i of the lasers
and the decay constants G ii of the two upper levels sat-
isfy the following conditions.

(i) The Rabi frequency of the laser driving the 0↔2
transition is weak, that is

V2
2!

1
4

16D2
2G11

2 1(V1
214D2~D12D2!)2

G11
2 1~D12D2!2 , (221)
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which simplifies for V1@D1 ,D2 to

V2
2!S V1

2

2G11
D 2

. (222)

(ii) Spontaneous emission on the 2↔0 transition
should be negligible, that is

G22!
V1

2V2
2G11

16D2
2G11

2 1$V1
214D2~D12D2!%2 . (223)

These conditions have the following interpretation. If
Eq. (221) is satisfied, the V system exhibits long bright
and dark periods as discussed in Eqs. (194)–(205). If Eq.
(223) is satisfied, stimulated transitions from level 2 to
level 0 are much more frequent than spontaneous emis-
sions on the same transition. Under the assumption of
Eqs. (221)–(223), the spectrum of resonance fluores-
cence takes on the following approximate analytical
form
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The contributions Eqs. (230) and (231) just represent
the well-known Mollow triplet and the Rayleigh peak
(Mollow, 1969, 1972a, 1972b, 1975, 1981). These contri-
butions are expected and are well understood. The third
contribution, however, a narrow Lorentzian, is a new
feature in the spectrum of resonance fluorescence. In
Figs. 26 and 27 we see the spectra for the cases of strong
driving of the 0↔1 transition and for a medium strong
laser on the same transition. One clearly observes the
narrow peak, which should not be confused with the
Rayleigh peak, in both spectra. In the following we will
focus our attention to this new feature and use it to
exemplify the application of the quantum-jump ap-
proach for spectral information and to illustrate how en-
semble properties can be understood better from a
single-system point of view. One might, for example, be
interested in the following question. What happens if we
observe the spectrum of resonance fluorescence in a
bright period exclusively? Experimentally this may be
measured by triggering the spectrometer with the broad-
band counter. The spectrometer will be opened if we
detect photons in the broadband counter at a sufficiently
high rate, and it will be closed when we fail to find pho-
tons for a certain time T0 . Using this time constant T0
we have a means either to observe the spectrum in a
bright period (T0'10/G11) or to have no restriction on
the emission times (T05`), i.e., the ensemble spec-
trum. Changing T0 , we can continuously switch between
the two regimes. The spectrum of resonance fluores-
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cence can be simulated using the quantum-jump ap-
proach (Hegerfeldt and Plenio, 1996). In Fig. 28 the ef-
fect of the change in T0 is clearly visible. For small T0
the amplitude of the narrow central peak becomes small.
However, only the central part of the spectrum is
strongly affected, while the wings of the spectrum are
more or less independent of T0 . This is an example of
conditional fluorescence spectra, and it shows that spec-
tra can be dependent on the conditions imposed on the
photon statistics. Here we have shown the effect for the

FIG. 26. The spectrum of resonance fluorescence on the 0↔1
transition. The parameters are V156G11 , V250.4G11 , and
D15D250. One clearly observes the Mollow triplet and the
additional narrow peak in the spectrum. From Hegerfeldt and
Plenio (1995b).

FIG. 27. The spectrum of resonance fluorescence on the 0↔1
transition. The parameters are V152G11 , V250.2G11 , and
D15D250. Due to the weaker driving as compared to Fig. 26,
the sidebands in the Mollow triplet are no longer resolved. The
additional narrow peak is again observable and has a higher
relative weight. From Hegerfeldt and Plenio (1995b).
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spectrum of resonance fluorescence, but similar results
may be obtained by investigating the absorption spec-
trum of a weak probe beam on the strongly driven 0↔1
transition (Plenio, 1996). Again a narrow peak is ob-
served that vanishes if we try to measure the same fea-
ture in a bright period of the system. After we have
investigated the spectrum of resonance fluorescence of
the V system and some of its properties, especially the
occurrence of the narrow peak, it is now instructive to
see how we can understand this feature from the photon
statistics of the single-atom-like system. The photon sta-
tistics are provided by the quantum-jump approach. Ex-
plicit results have been given in this section in Eqs.
(194)–(205).

Now that we know that the V configuration exhibits
light and dark periods for those parameters for which
the narrow peak in the spectrum appears, we proceed
with a somewhat simplified model of resonance fluores-
cence of the V system. We assume that the lengths of
light and dark periods obey exactly Poissonian distribu-
tions, e.g., the probability density that a light period has
the length t is

IL~ t !5
1

TL
e2t/TL, (233)

and for a dark period to have a length of t is

ID~ t !5
1

TD
e2t/TD. (234)

These probability densities have been derived from a
rate-equation model of the time evolution by Cook and
Kimble (1985). Additionally, we assume that in a bright
period the system behaves exactly like a two-level sys-
tem made up of the two levels 0 and 1. This assumption
has to be checked and turns out to be good in the case of

FIG. 28. Simulation of the conditional spectrum of resonance
fluorescence for T05` and T0550G11

21 . One observes that
only the narrow central peak is affected by the conditioning of
the photon statistics, while the wings of the spectrum are es-
sentially independent of the choice of T0 .
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the spectrum of resonance fluorescence treated here.
However, it is not always correct, as a careful analysis of
the absorption spectrum on the strong 0↔1 transition
proves, and deviations from this idealized assumption
may lead to significant contributions to the absorption
spectrum (Plenio, 1996).

It is well known (Loudon, 1983) that the stationary
spectrum of resonance fluorescence of such a two-level
system is given by

S ~2 !~D!5 lim
T→`

C

T E
0

T
dt1E

0

T
dt2^E ~2 !~ t1!E ~1 !~ t2!&

3e2iD~ t12t2!, (235)

where E(2)(t) and E(1)(t) denote the negative- and
positive-frequency part of the electric-field operator and
C is chosen in such a way that, with

E ~1 !~ t !;s01~ t !, (236)

one obtains
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For the non-normalized resonance-fluorescence spec-
trum of the two-level system, one then obtains
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where the constants B , C , and D are given in Eqs.
(225)–(227). As the light emitted by the atom switches
on and off due to the light and dark periods, we assume
that the electric field radiated by the three-level configu-
rations is given by

Ê ~6 !~ t !:5E ~6 !~ t !f~ t !, (239)

where f(t) is a two-state jump process with values 0 and
1. The probability density for the length of a period
where f(t)50 is given by Eq. (233) and that for f(t)51
is given by Eq. (234). Therefore we have to substitute

ŝ ij~ t !:5s ij~ t !f~ t ! (240)

in Eq. (237) and expect the spectrum of the three-level
configurations to be given by

S ~3 !~D!5
2G11

p
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`

dt e2iDt^^ŝ10~t!ŝ01~0 !&&ss ,

(241)

where ^^.&& denotes both the quantum mechanical aver-
age as well as the stochastic average over all realizations
of the process f(t). This can be simplified to
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with
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where

L~D!5
1
p
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~1/TD11/TL!21D2 . (244)

Because both TD and TL , Eqs. (203)–(205), are as-
sumed to be much longer than the mean emission time
of a two-level system, which is of the order of G11

21 , we
can deduce from this
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This expression has to be compared with the results Eqs.
(224)–(232). In fact, inserting Eqs. (203)–(205) into Eq.
(245) yields an expression in very good agreement with
the spectra of the V system. The width Gp of the result-
ing narrow peak is

Gp5
1

TD
1

1
TL

. (246)

The amplitude Ap of the narrow peak in the normalized
spectrum is then given by

Ap5
2~D1

21G11
2 !

V1
212~D1

21G11
2 !

TD
2 TL
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Now the interpretation of the narrow peak is obvious.
The stochastic modulation of the resonance fluorescence
due to dark periods leads to a partial broadening of the
Rayleigh peak. The small width of the additional peak in
the resonance-fluorescence spectrum is then understood
from the fact that the correlation time tc of the random
telegraph process f(t), which simulates the light and
dark periods, is very large. In fact it is easy to show that

tc5S 1
TD

1
1

TL
D 21

. (248)



140 M. B. Plenio and P. L. Knight: Quantum-jump approach to dissipative dynamics . . .
This results in an extremely narrow distribution in fre-
quency space with a width Gp5tc

21 . It is this structure
that is observable in the spectrum of resonance fluores-
cence. It is interesting to note that the narrow peak is
not easily interpreted in a dressed-states picture. Indeed,
in secular approximation and for D15D250, one obtains
a zero weight for the narrow peak. Even if we tune the
laser on the 0↔2 transition to resonance with one of the
dressed states, i.e., D256V1/2, the weight of the narrow
peak comes out much too small. In fact it would then be
predicted to be proportional to V2

2. The narrow peak
found here clearly has a different origin than the line-
narrowing effects found by others (Narducci, Oppo, and
Scully, 1990; Narducci, Scully, et al., 1990; Manka et al.,
1993), where the systems do not exhibit bright and dark
periods in their resonance fluorescence, but simply a de-
crease in intensity. The existence of bright and dark pe-
riods in the resonance fluorescence leads to a narrow
peak in the spectrum, but it should be noted that the
converse is not necessarily true. There are situations
[e.g., a laser-driven two-level system in a squeezed
vacuum (Swain, 1994)] in which the spectrum of reso-
nance fluorescence exhibits narrow peaks but where the
photon statistics does not show bright and dark periods.
The reason for that can be found in the fact that the
photon statistics is governed by the population decay
rates, while the spectrum of resonance fluorescence is
derived from the g(1)(t) correlation function, which is
strongly influenced by the decay rates of the coherences
in the system. In the case of a two-level system in
squeezed light the coherences have a slowly decaying
component, while the population decay rate is still large.

G. Spontaneous emission in quantum computing

As a last application of the quantum-jump approach,
we would like to investigate the influence that spontane-
ous emission has on the function of a quantum com-
puter. Quantum computing is an idea that has attracted
enormous interest in the last two years. It was elevated
from the obscurity of theoretical idealization to possible
practical applications by the discovery of an algorithm
by Shor (1994) (see also Ekert and Josza, 1996, and ref-
erences therein) that allows the factorization of large
numbers in polynomial time on a quantum computer, as
compared to the exponential time required on a classical
computer. However, this achievement in computing
speed is only possible due to the massive use of the su-
perposition principle in quantum mechanics. The basic
idea is that a qubit (a two-level system) can exist in a
superposition of the two values 0 and 1. N qubits can
then exist in a superposition of 2N values. These values
can be manipulated by a series of unitary transforma-
tions. A final readout can then provide us with informa-
tion about global properties of the function imple-
mented by the unitary transformation. Such a global
property of the function is, for example, its period,
which a quantum computer determines by performing a
discrete Fourier transform, something which can also be
implemented on a quantum computer (Coppersmith,
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1994). In the course of its time evolution (computation)
the quantum computer evolves into a highly entangled
state. However, it is known that any entangled state is
very sensitive to dissipation. Therefore one expects that
the quantum computer is highly sensitive to spontaneous
emission and other sources of dissipation. This is in fact
the case, and currently research in quantum error-
correction methods has concentrated on attempts to find
methods to correct for these errors (Calderbank and
Shor, 1996; Shor, 1996; Steane, 1996). The quantum-
jump approach is ideally suited for the investigation of
this problem because it is able to describe single runs of
a quantum computer rather than an ensemble of quan-
tum computers, as in the Bloch-equation description.
We will illustrate the problems caused by spontaneous
emission in quantum computers by examining the ex-
ample of the discrete Fourier transform mentioned
above. There are two effects contributing to the deco-
herence of the quantum computer. One is the obvious
fact that a spontaneous emission will destroy at least
part of the coherence in the quantum computer. The
second decohering effect, however, originates from the
conditional time evolution between spontaneous emis-
sions (Plenio and Knight, 1997). We have learnt above
that this time evolution is actually different from the
unit operation because even the nondetection of a pho-
ton represents a gain in our knowledge about the sys-
tem. Therefore the wave function of the system, which
represents our knowledge of the system, has to change.
This leads to a distortion of the time evolution, which
will then affect the result of our calculation. In Figs. 29
and 30 we simulate a quantum computer (we do not go
into detail concerning its implementation here) that cal-
culates the discrete Fourier transform of a function that
is evaluated at 32 points (Plenio and Knight, 1997). The
resulting square modulus of the wave function of the
quantum computer is compared to the exact result ob-
tained from an absolutely stable quantum computer.
The function on which we perform the discrete Fourier
transform is given for definiteness in this example by
f(n)5d8,(n mod10) for n50,1,.. . ,31. One can implement
the Hamiltonian operators (in the Lamb-Dicke limit) for
all the necessary quantum gates in a linear ion trap
(Cirac and Zoller, 1995) to realize this discrete Fourier
transform. In addition to the coherent time evolution,
possible spontaneous emissions from the upper levels of
the ions are taken into account, but all other sources of
loss are neglected.

In Fig. 29 one emission has taken place during the
calculation time of the quantum computer. If we com-
pare the resulting wave function with the correct wave
function, we observe a marked difference between the
two. In Fig. 30 we show the wave function of an unstable
quantum computer that has not suffered a spontaneous
emission during the calculation of the discrete Fourier
transform. We clearly see that even when no spontane-
ous emission has taken place, the wave function of the
quantum computer differs substantially from the correct
result. This difference becomes stronger and stronger
the larger the ratio between the computation time T and
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the spontaneous lifetime tsp of the quantum computer
becomes. Therefore the wave function of the quantum
computer will be sufficiently close to the correct result
only if the whole computation is finished in a time T that
is much shorter than the spontaneous lifetime tsp of the
quantum computer.

The fact that even one spontaneous emission will usu-
ally make the result of the quantum computation com-
pletely incorrect can then be used to derive stringent
upper limits on the numbers that can be factorized on a
quantum computer (Plenio and Knight, 1996, 1997).
This again shows that knowledge of the single-system
behavior gained from the quantum-jump approach gives
us useful new insights into important properties of quan-
tum systems.

VI. CONCLUSIONS

Recent work in quantum optics has forced us to reex-
amine the dynamics of individual quantum systems in
which single realizations (single atoms or trapped ions,
single cavity-field modes, and so on) are described in
quantum mechanics. In these situations, the dynamics is
always dissipative and leaves a record of its history ac-
cessible in the wider world of the outside environment.
If this record is read, so that we acquire specific infor-
mation, then we can associate a specific quantum trajec-
tory to that conditional record. In this way we ‘‘unravel’’
the dissipative master equation into a family of records.

FIG. 29. Results of a discrete Fourier transform of a function
f(n)5d8,(nmod10) with n50,1,.. . ,31. The solid line is the result
for a quantum computer with stable qubits and represents the
correct result. The dashed line shows the result of the same
computation using a quantum computer with unstable qubits,
one of which has suffered a spontaneous emission during the
calculation. The results clearly differ and show the impact of a
single spontaneous emission on a quantum computation. For
the parameters chosen on average, the quantum computer will
suffer one emission per discrete Fourier transform, i.e., tsp5T
in this case. From Plenio and Knight (1997).
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We have reviewed the new technique developed to de-
scribe this unravelling, which goes under the names of
quantum jumps, Monte Carlo wave-function simula-
tions, and so on. We have further demonstrated how
they can be used to describe entirely nonclassical behav-
ior in a wide range of situations in quantum optics. Fu-
ture applications will surely emerge from these powerful
approaches.
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Moya-Cessa, H., V. Bužek, M. S. Kim, and P. L. Knight, 1993,

Phys. Rev. A 48, 3900.
Mu, Y., 1994, Opt. Commun. 110, 334.
Nagourney, W., J. Sandberg, and H. G. Dehmelt, 1986a, Phys.

Rev. Lett. 56, 2797.
Nagourney, W., J. Sandberg, and H. G. Dehmelt, 1986b, J.

Opt. Soc. Am. B 3, 252.
Nakajima, S., 1958, Prog. Theor. Phys. 20, 948.



144 M. B. Plenio and P. L. Knight: Quantum-jump approach to dissipative dynamics . . .
Narducci, L. M., G.-L. Oppo, and M. O. Scully, 1990, Opt.
Commun. 75, 111.

Narducci, L. M., M. O. Scully, G.-L. Oppo, P. Ru, and J. R.
Tredicce, 1990, Phys. Rev. A 42, 1630.

Narozhny, N. B., J. J. Sanchez-Mondragon, and J. H. Eberly,
1981, Phys. Rev. A 23, 236.

Neuhauser, W., M. Hohenstatt, P. Toschek, and H. G. Deh-
melt, 1980, Phys. Rev. A 22, 1137.

Nienhuis, G., 1987, Phys. Rev. A 35, 4639.
Omnès, R., 1988, J. Stat. Phys. 53, 893.
Omnès, R., 1989, J. Stat. Phys. 57, 359.
Omnès, R., 1994, The Interpretation of Quantum Mechanics

(Princeton University, Princeton, NJ).
Paul, W., 1990, Rev. Mod. Phys. 62, 531.
Paul, W., O. Osberghaus, and E. Fischer, 1958, Ein Ionenkäfig
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