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1 Introduction

Initiation and propagation of delamination is often a precursor to ultimate

failure in laminated composite structures. Knowledge of delamination and

ability to model this aspect of failure therefore deserve particular attention.

In implicit Finite Element (FE) FE codes, decohesion elements have been suc-

cessfully used to simulate of standard delamination toughness tests (Double

Cantilever Beam (DCB), Mixed-Mode Bending (MMB) and End Notch Flex-

ure (ENF)) [1–6]; debonding of skin/stiffener specimens [2], overlap tests [7],

compression after impact (CAI) of composite plates [1,8] and crush of compos-

ite tubes [9]. In explicit analyses, some work using a cohesive zone approach is

presented in Refs. [10,11], in which the applications include MMB specimens

and the impact with penetration of a steel ball in a composite plate.

LS-Dyna [12] is one of the explicit FE codes most widely used by the indus-

try to model impact or crash situations in laminated composite materials.

However, decohesion elements are not available within the code. In this work,

a decohesion element with a bilinear constitutive law is formulated and im-

plemented in LS-Dyna. The formulation is based on published work [1,6,9].

Due to stability limitations which are identified with the discontinuities in

the bilinear law, two other constitutive laws are also developed. One of these

constitutive laws is a third-order polynomial, and the other is a combination

of linear and third-order polynomial segments. These two constitutive laws

are implemented together with the bilinear law within a new decohesion ele-

ment, using an enhanced formalism. The three different constitutive laws are

compared, and applications are presented in mode I, II and mixed mode.
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2 Bilinear constitutive law

2.1 Introduction

The bilinear formulation presented in this section is based on the formula-

tion from Refs. [1,6,9], and a comparison with the work from Refs. [7,8,13] is

performed.

Consider a point in an interface like the one in Fig. 1. The tractions ti between

the top and bottom surfaces of the interface at that point are related to the

relative displacement δi at the same point for i = 1, 2, 3 (Fig. 1). The index

value i = 1 corresponds to an opening mode (mode I), while the index values

i = 2 and 3 correspond to a shear mode (mode II, III, or a combination of

both). In decohesion-element formulations, the sliding mode is usually con-

sidered to represent both modes II and III because the distinction between

mode II and III depends on the direction of the relative displacement between

homologous points with respect to the orientation of the crack front. With-

out knowing how the crack front is oriented—and in a generic situation, with

multiple crack growth, it might be difficult even to define it—it is impossible

to distinguish between mode II and mode III.

The relative-displacements and tractions corresponding to the onset of dam-

age are denoted as onset displacements and onset tractions respectively, and

identified with the superscript ‘o’. The relative displacements corresponding

to complete decohesion are denoted final displacements and identified with

the superscript ‘f ’.

Suppose a point loaded such that a relative displacement δi is applied parallel
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Fig. 1. Bilinear constitutive law in single-mode loading

to one of the local axes (i = 1, 2 or 3). While the relative displacement has

never exceeded its damage onset value, the point behaves elastically. Once the

onset displacement is exceeded, some energy is absorbed. The total energy

that can be absorbed at each point (per unit area of the interface) equals the

critical energy release rate for the corresponding mode.

When the maximum traction N or S (according to the mode) is reached, the

damage is assumed to start propagating. The corresponding onset displace-

ments are, for the opening and shear modes respectively:

δo
N =

N

k
, δo

S =
S

k
. (1)

When the traction reaches zero, the energy absorbed must equal the critical

energy release rate. This leads directly to the definition of the final displace-

ments in a pure-mode loading situation as

δf
N =

2GIc

kδo
N

and δf
S =

2GSc

kδo
S

. (2)

2.2 Mixed mode

In a situation where more than one mode acts simultaneously, the damage

starts propagating even before one of the limit tractions for pure mode load-
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Fig. 2. Mixed-mode behaviour for the bi-linear law

ing (N or S) is attained individually—Fig. 2. In order to analyze this situation,

the shear relative-displacement, δshear, and the magnitude of the relative dis-

placement, δ, are defined as

δshear =
√
(δ2)

2 + (δ3)
2, δ =

√
〈δ1〉2 + (δshear)

2 (3)

where the operator 〈·〉 is the Mc-Cauley bracket defined as 〈x〉 = max {0, x} ,

x ∈ R. The shear traction is defined as

tshear =
√
(t2)

2 + (t3)
2 (4)

and the participation of the different modes β, is defined as

β = max

{
0,

δshear

δ1

}
. (5)

The onset relative-displacement, δo, is defined by a mixed-mode initiation

criterion and the final relative-displacement, δf , is defined by a mixed-mode

propagation criterion.

5



2.2.1 Mixed-mode initiation criterion

The following quadratic delamination criterion is used, for it has proven to

be suitable for delamination onset prediction in composite materials by other

authors [14–16]: (〈t1〉
N

)2

+
(

tshear

S

)2

= 1. (6)

As tractions are a function of the relative displacements, the previous criterion

may be expressed in terms of relative displacements resulting in

δo =




δo
Sδo

N

√√√√ 1 + β2

(δo
S)

2 + (βδo
N)

2 ⇐ δ1 > 0

δo
S ⇐ δ1 ≤ 0.

(7)

2.2.2 Mixed-mode propagation criterion

The mixed-mode propagation criterion establishes the state of complete de-

cohesion for different ratios of applied mode I and shear mode energy release

rates. There are several criteria that establish mixed-mode propagation. One

of these, the power law criterion [7], can be expressed as

(
GI

GIc

)α

+
(

Gshear

GSc

)α

= 1. (8)

Consider the energy absorbed up to the complete decohesion in a mixed-

mode loading situation, for each mode. As the tractions are a function of the

relative displacements, these energies may be expressed in terms of relative

displacements. The energy absorbed by each mode in a mixed-mode loading

is (Fig. 2)

GI =
kδo

1δ
f
1

2
and Gshear =

kδo
shearδ

f
shear

2
. (9)
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Introducing Eq. 9 in the expression of the power law criterion, Eq. 8, the

expression for δf can be obtained as

δf =




2 (1 + β2)

kδo

[(
1

GIc

)α

+

(
β2

GSc

)α]−1/α

⇐ δ1 > 0

δ f
S ⇐ δ1 ≤ 0.

(10)

For most carbon/epoxy composites, the mixed-mode data can be accurately

represented using 1 ≤ α ≤ 2.

The B-K criterion (Benzeggagh and Kenane, [17]) uses the parameter η to

describe the mixed-mode interface behaviour:

GIc + (GSc − GIc)
(

Gshear

GI +Gshear

)η

= GI +Gshear. (11)

Proceeding as before, but now using this criterion, the expression for the final

relative displacement is obtained as

δf =




2

kδo

[
GIc + (GSc − GIc)

(
β2

1+β2

)η]⇐ δ1 > 0

δ f
S ⇐ δ1 ≤ 0.

(12)

2.3 Constitutive law

In order to account for irreversibility, the maximum over time value of the

mixed-mode displacement is defined as, at time τ ,

δmax (τ) = max
τ ′≤τ

{δ (τ ′)} . (13)

Neglecting the interpenetration that occurs in the eventuality of compression,
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the constitutive law could be expressed very simply as

ti = (1− d) kδi (no sum in i) (14)

where only one damage variable is used, and is defined as

d =




0⇐ δmax ≤ δo

δf (δmax−δo)

δmax(δf−δo)
⇐ δo < δmax ≤ δf

1⇐ δmax ≥ δf .

(15)

The expression for the damage variable above results directly from the defini-

tion of the onset and final relative-displacements, and the bilinear shape for

the constitutive law. From Eq. 15, it follows that d ∈ [0, 1].

In order to avoid interpenetration for compression situations, a simple contact

logic already available in most FE codes could be used. Instead, the following

condition is be added to Eq. 14:

t1 = kδ1 ⇐ δ1 ≤ 0. (16)

This constitutive law in Eq. 16 has only one damage variable d, and, in a

mixed-mode situation, implies that the state of complete decohesion is at-

tained at the same time for opening and shear loading.

2.4 Comparison to other formulations

The decohesion formulation presented is compared to the one proposed by

Crisfield and co-workers in Refs. [7,8,13]. In those references, the following
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relation between relative displacements and tractions is proposed:

t1 =

(
1− κ

1 + κ

δf
N

δf
N − δo

N

)
kδ1 (17)

tshear =

(
1− κ

1 + κ

δf
S

δf
S − δo

S

)
kδshear (18)

with

κ =

〈

(〈δ1〉

δo
N

)2α

+

(
δshear

δo
S

)2α



1/(2α)

− 1

〉
. (19)

This formulation verifies the power law for damage propagation, as expressed

in Eq. 8. Fig. 3 compares the applications of both implementations in a mixed-

mode loading situation with β = 1/2, for an interface with the following prop-

erties: GIc = 0.7 kJ/m2 , GIIc = 1.7 kJ/m2 , N = 80 kJ/m2 , S = 100 kJ/m2

and k = 1×105N/mm3 . For this comparison, the value α = 1 is used for both

formulations, as, for this case, the damage onset criterion expressed in Eq. 6 is

also satisfied. Note that when damage starts propagating, the complete defini-

tion of the model requires the determination of the two different variables δf
1

and δf
shear. However, only one equation is available: the one that results from

the application of a propagation criterion. The other condition, implicitly con-

sidered in the model presented, is that the interface should attain the state

of complete decohesion at the same time for normal and shear components of

the traction, as can be observed in Fig. 3. On the other hand, for the model

proposed in Refs. [7,8,13], complete decohesion is attained at different times

for the opening and shear modes. In Ref. [13], it is recognized that this goes

against experimental evidence; it is however argued that this problem can be

simply overcome by considering different penalty stiffness values for mode I

and mode II, so as to achieve δo
N/δf

N = δo
S/δf

S. All formulations presented in

the present paper avoid this requirement.
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2.5 Varying mode ratio

In this formulation, the irreversibility of damage is considered through the

definition of the maximum magnitude of the relative displacement (Eq. 13).

Consider a situation where the mode ratio at a given material point is constant

in time. In this case, if unloading occurs after damage onset, then the point

will linearly unload towards the origin and the maximum relative displacement

that once existed at that point is recorded in the variable δmax. When re-

loading, no energy is absorbed until δmax is reached again. When complete

decohesion occurs, the energy absorbed is the one defined by the propagation

criterion, and does not depend on the loading/unloading sequence.

Consider now a more generic situation, where the mode ratio (at a given point)

does change throughout the loading, in the damage propagation phase, Fig.

4. In this figure, a point has been loaded in mode I (vertical axis) and damage

started propagating until it reached the point denoted by ‘1’. Suppose that
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in a numeric incremental implementation, the next equilibrium point is ‘2’.

There is no trivial answer to what the memory of damage would be for this

new mode ratio, and how much energy should still be available to be absorbed.

One possibility to address this issue in a decohesion formulation is that, at any

load step, the maximum mixed-mode displacement is considered to provide a

memory of the damage evolution, regardless of the mode ratio. In Fig. 4,

this methodology is represented by the circle drawn from the initial point ‘1’.

Another possibility, from Refs. [8,13], consists in storing the maximum value

in time of the variable κ in Eq. 19. This approach is represented in Fig. 4 for

the particular case of α = 1, by the ellipse starting from point ‘1’. Note that,

as long as the mode ratio does not change too much, then the two approaches

are very similar.

2.6 Implementation

The decohesion model presented has been implemented in LS-Dyna [12] as a

user material within a brick element. This approach for the implementation
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has the implication of requiring to model the resin rich layer (for the case of

delaminations) as a non-zero thickness medium. However, the resin rich layer

has, in fact, a finite thickness and mass scaling can be used to obtain faster so-

lutions when applying the decohesion element to quasi-static situations. Note

that the volume associated with the decohesion element can in fact be set to

be very small by using a small thickness (0.01 to 0.001mm ) and the element’s

kinetic energy arising from this be still several orders of magnitude below its

internal energy, which is an important consideration for quasi-static analyses.

3 Two other constitutive laws

3.1 Introduction

The bilinear constitutive law presented in the previous section allows the mod-

elling of delamination in composite materials and has been successfully used

by several authors in implicit analyses [1,6,9]. However, it will become evi-

dent in the next section of this paper that the two discontinuities existing in

the bilinear law (at peak value and complete decohesion) generate numeri-

cal instabilities in an explicit implementation. In certain situations, a stress

wave is generated at those points, and this excites high-frequency vibrations

that completely break the decohesion elements in the vicinity. It is possible to

overcome this problem by using damping algorithms, higher mesh refinement,

lower interface strength, higher fracture toughness or lower load-rate. How-

ever, the particular finite element model that is not affected by these shock

waves is not always straightforward to define.

For those reasons, two alternative constitutive laws are proposed and imple-
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mented in LS-Dyna [12]. The shape of the first law is a curve, and is defined

by a third order polynomial function as proposed in Refs. [18]:

t =
27

4
to
(
1− δ

δf

)2
δ

δf
. (20)

It can be easily shown that the maximum value of the traction in Eq. 20 is to,

which corresponds to damage onset. It can also be shown that the maximum

traction corresponds to a relative displacement δ = δf/3. The final displace-

ment in a single-mode loading can be related to to and the energy dissipated

per unit area Gc by

δf =
48

27

Gc

to
. (21)

The function in Eq. 20 has no discontinuities, and the slope at complete

decohesion is zero, which renders the complete failure of the element much

smoother—Fig. 5(a) and (b). In order to introduce a damage variable (which is

useful to define the mixed-mode behaviour, irreversibility, for post-processing,

and for uniformity of the implementation), Eq. 20 can be expressed as

t = k (1− d) δ (22)

where k = 27to/4δ
f , d = 1 for δ > δf , and

d = 2
δ

δf
−
(

δ

δf

)2

for δ ≤ δf . (23)

The second alternative constitutive law proposed and implemented in LS-

Dyna [12] is similar to the bilinear, in the sense that it is characterized by

a linear-elastic behaviour before failure onset. However, it is also similar to

the third order polynomial constitutive law, in the sense that discontinuities

are smoothed by using a third-order damage variable. The constitutive law,
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shown in Fig. 5(c) and (d), can be expressed by Eq. 22, but with the damage

variable defined as d = 0 for δ ≤ δo, d = 1 for δ > δf , and

d = 1− δo

δ


1 +

(
δ − δo

δf − δo

)2 (
2

δ − δo

δf − δo
− 3

)
 for δo < δ ≤ δf . (24)

The constitutive law defined by Eqs. 22 and 24 has zero slope at failure onset,

conducing to a discontinuity which is less severe than the one existing for

the bilinear formulation, and the slope at complete decohesion is zero, which

renders complete failure smoother.

3.2 Constitutive law

The bilinear formulation presented in the previous section is based on previous

work [1,9,6], and for consistency with that work, the mixed-mode ratio was

defined as β = δshear/δ1. However, this definition implies that a division by zero

occurs for pure shear mode loading, which has to be considered as a particular
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case in the numerical implementation. An alternative definition is therefore

used in this section, which avoids this division by zero: θ = acos 〈δ1〉 /δ, θ ∈
[0, π/2]. The contribution of the different shear components is defined as ω =

atan δ3/δ2, ω ∈ [0, 2π[ .

The constitutive law of the interface element, expressed on the direction of

the relative displacement, is defined as

t = kpos (1− d) δ (25)

where kpos is an input parameter for the bilinear and the linear/polynomial

constitutive laws, but is computed as kpos = 27to/4δ
f for the third order

polynomial law. The traction components are recovered as

t1 = t cos θ, tshear = t sin θ (26)

t2 = tshear cosω, t3 = tshear sinω (27)

with this condition added to prevent interpenetration:

t1 = knegδ1 ⇐ δ1 ≤ 0 (28)

where kneg is the penalty stiffness, also given to the model as an input param-

eter.

3.3 Mixed-mode behaviour

3.3.1 Initiation criterion

The initiation criterion used in the bilinear constitutive law of the previous

section, Eq. 6, is also used here. When applied to this formulation, the expres-

15



sion for the magnitude of the onset traction is

to =



(
cos θ

N

)2

+

(
sin θ

S

)2


−1/2

. (29)

For the bilinear and the linear/polynomial constitutive laws, the onset relative

displacement needs to be defined and is obtained as

δo = to/kpos (30)

where kpos is the elastic stiffness.

3.3.2 Propagation criterion

Using the power law (Eq. 8) for propagation criterion, and using the definition

of the participation of each mode ratio θ, Eq. 8 can be manipulated to obtain

the fracture toughness Gc as

Gc =

[(
cos2 θ

GIc

)α

+

(
sin2 θ

GSc

)α]−1/α

. (31)

The B-K criterion (Eq. 11) an also be used instead of the power law, resulting

in

Gc = GIc + (GSc − GIc)
(
sin2 θ

)η
. (32)

The final relative-displacement can then be obtained as

δf =




2Gc

to
(Bilinear and linear/ polyn. laws)

48

27

Gc

to
(3rd order polynomial law).

(33)
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3.4 Irreversibility

Irreversibility can be addressed by storing the maximum value in time of the

magnitude of the relative displacement δ. This approach was followed in the

previous section, for consistency with the work on which it was based [1,9,6].

Other similar approaches are possible, such as storing the maximum value in

time of the variable δ/δo or of the variable δ/δf . With any of these approaches

however, it cannot be always and simultaneously guaranteed that a point at

the stage of damage propagation will not become completely undamaged or

fully damaged, just as a result of a change in the mode ratio. Also, with some

of the previous approaches, and in particular with the one implemented in the

previous section, a fully damaged point could become only partially damaged

as a result of just a change in the mode ratio. These assertions can be better

visualized using Fig. 4.

An approach that avoids the mentioned limitation, and which is eventually

more intuitive, consists of storing the maximum value in time of the damage

variable itself. With the latter approach, the instantaneous value of the damage

variables are defined as

dinst =




0⇐ δ ≤ δo

δf (δ−δo)

δ(δf−δo)
⇐ δo < δ ≤ δf

1⇐ δ ≥ δf

(Bilinear law) (34)

dinst =




2 δ
δf −

(
δ
δf

)2 ⇐ δ ≤ δf

1⇐ δ ≥ δf

(3rd order polynomial law) (35)
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dinst =




0⇐ δ ≤ δo

1− δo

δ

[
1 +

(
δ−δo

δf−δo

)2 (
2 δ−δo

δf−δo − 3
)2
]
⇐ δo < δ ≤ δf

1⇐ δ ≥ δf

(Linear/polyn. law)

(36)

and the damage variable itself is obtained from the instantaneous value as

d(τ) = max
τ ′<τ

{d(τ ′)} . (37)

For the 3rd order polynomial constitutive law, Eq. 37 can be modified so that

a reversible non-linear elastic behaviour exists before damage onset, resulting

in

d(τ) =




dinst(τ)⇐ d ≤ 5/9

max
τ ′<τ

{dinst(τ
′)} ⇐ d > 5/9

(3rd order polynomial). (38)

3.5 Implementation

The third-order polynomial decohesion model presented has also been imple-

mented in LS-Dyna [12] as a user material within a brick element.

4 Comparison

The three different decohesion-element constitutive laws implemented in LS-

Dyna are compared in test cases which are designed to test the limits of their

stability. For decohesion elements implemented in explicit codes, stability is

affected negatively by coarse meshes, high maximum tractions in the interface

18



and low fracture toughness (because these factors result in fewer elements in

the cohesive zone). Discontinuity points in the constitutive law, like those in

the bilinear formulation, also affect stability negatively, as shock waves are

generated when the elements fail; this effect is found to be more pronounced

at higher load-rates, probably due to the higher kinetic energy of the model

[19].

One example examining the limits of stability of the three decohesion laws

consists of a pure mode I DCB test of a carbon-PEEK composite, with material

properties E = 150GPa and GIc = 0.7 kJ/m2 . For the maximum traction,

two values N = 50MPa and N = 80MPa are compared. The penalty stiffness

used is k = kpos = kneg = 1× 105N/mm3 . The specimen is 25mm wide and

3mm thick, with a pre-crack length of 33mm . The length of each decohesion

element is 0.37mm and only one integration point per element is used. A high

displacement-rate of 4000mm/s is applied to the specimen.

Fig. 6(a) presents the load-displacement curve obtained with the three con-

stitutive laws implemented, for a maximum traction N = 50MPa , and Fig.

6(b) presents the same results for a maximum traction N = 80MPa . Both

figures show the analytical curve corresponding damage propagation, assum-

ing simple beam theory and treating the specimen arm as built-in at the crack

tip.

While all formulations were found to be stable at lower imposed displacement-

rates, the bilinear formulation results in a severe instability once the crack

starts propagating, for this fast loading. However, the other constitutive laws

are able to model the smooth, progressive crack propagation. The vibrations

observed during crack propagation for the linear and for the linear/ polynomial
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Fig. 6. Comparison of the load displacement curves obtained with different interface

models, for (a) N = 50MPa and (b) N = 80MPa

laws are more pronounced for higher maximum tractions in the interface. For

the bilinear law, higher tractions resulted in a more severe instability (bigger

crack jump).

5 Applications

Mode I (DCB, [20]), mode II (4ENF, [21]) and mixed mode (MMB, [22])

tests were carried [23] on specimens manufactured from carbon-epoxy prepreg

(T300/913), supplied by Hexcel. The main results from these tests are pre-

sented graphically in Fig. 7. To characterize the mixed-mode behaviour, the

power law with coefficient α = 1.21 was found to give the best fit to the

mixed-mode data. This value of α has therefore been used in the simula-

tions. The average mode I and mode II fracture toughness were determined

as GIc = 0.258 kJ/m2 and GIIc = 1.08 kJ/m2 .
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Fig. 7. Total fracture toughness, as a function of mode ratio

5.1 Mode I

One of the DCB specimens from the mentioned test program [23] was cho-

sen to be simulated. The specimen was 20mm wide, 3.1mm thick and the

pre-crack length was 53mm—Fig. 8. The average mode I fracture toughness

registered during the test is GIc = 0.268 kJ/m2 and the flexural Young’s mod-

ulus is E = 119GPa . The maximum mode I traction was arbitrarily taken

as N = 60MPa . The minimum decohesion-element length in the numerical

model was 0.2mm . A displacement-rate of 560mm/s was applied to the ap-

propriate points of the model. The load vs. displacement curves obtained from

the simulation are presented in Fig. 9, together with experimental data and

the analytical solution for propagation.

It can be observed that the numerical curves slightly over-estimate the load for

large displacements. The error in the fracture energy absorbed by each failed

element is monitored and found to be under 0.0025% for all formulations. The

difference between analytical and numerical is thus essentially due to other

factors which include kinetic, hourglass-control and damping energy in the

model, as well as accumulation of round-off errors during the analysis.
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Fig. 8. Numerical model of a DCB specimen
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Fig. 9. Experimental, analytical and numerical load-displacement curves for a DCB

specimen

5.2 Mode II

A particular 4ENF specimen from the mentioned test program [23] was chosen

to be simulated. The specimen was 20mm wide, 3.1mm thick and the pre-

crack length was 25mm . Part of the loading rig was modelled as well, in order

to account correctly for the boundary conditions, as shown in Fig. 10. The

measured fracture toughness, GIIc = 1.11 kJ/m2 , was used in the simulation,

and the flexural modulus was taken as E = 137GPa . The maximum mode

II traction was arbitrarily taken as S = 60MPa . The minimum decohesion

element length was 0.5mm . A displacement-rate of 240mm/s was applied to
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Fig. 10. Mesh and loading body for the 4ENF specimen
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Fig. 11. Experimental, analytical and numerical load-displacement curves, for an

ENF specimen

the appropriate points of the model.

The maximum error in the energy absorbed by each element is under 1% for

all formulations. With the exception of the harmonic vibrations related to

the dynamic loading, the numerical results fit very well the analytical and

experimental ones, Fig. 11.

5.3 Mixed mode

The simulation of an MMB test also requires modelling of the test fixture,

as shown in Fig. 12. The specimen modelled was 20mm wide, 3.1mm thick
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Fig. 12. Finite element model of the MMB test and boundary conditions

and the pre-crack length was 33mm . The distances between loading points are

shown in Fig. 12. The fracture toughness values used in this simulation were an

average of the tests performed [23]: GIc = 0.258 kJ/m2, GIIc = 1.108 kJ/m2,

and, as reported earlier, the power law parameter α was determined to be 1.21.

The flexural modulus obtained from the test was E = 112GPa . The maximum

mode I and mode II tractions were arbitrarily taken as N = S = 60MPa .

The minimum decohesion element length was 0.25mm . A displacement-rate

of 60mm/s was applied to the appropriate points of the model.

There is a good agreement between the numerical, analytical and experimen-

tal data, as shown in Fig. 13. Note that in this case, a significant part of

the difference between numerical and analytical results from two factors not

present in pure-mode loading situations: the decohesion element (i) interpo-

lates the mixed-mode fracture toughness using the power law, and (ii) obtains

the mode ratio from the ratio of relative displacements, and the latter ratio

might be influenced by the vibrations in the model.

6 Conclusions

Three different constitutive laws were implemented within an interface ele-

ment formulation into the industrial standard LS-Dyna [12] explicit dynamic

code. The formalism used is relatively simple and modular, allowing other
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constitutive laws to be added easily. Initiation criteria, which define the maxi-

mum traction in mixed-mode situations, as well as propagation criteria, which

define the energy absorbed in mixed-mode situations, can also be added taking

advantage of the modularity of the implementation.

When under less favorable numerical conditions (e.g. DCB loaded at 4000mm/s ),

it was observed that the discontinuities existing in the bilinear constitutive law

resulted in instabilities. These were not observed for the 3rd order polynomial

or linear-polynomial laws. However, all formulations were shown to model

appropriately mode I, mode II and mixed mode I and II quasi-static crack

propagation problems at lower loading rates.

The decohesion element, implemented in LS-Dyna, were shown to acurately

model a range of static delamination problems, using a dynamic relaxation

technique. The decohesion element can now be applied to a range of impact

and crash problems, which may in addition involve in-plane damage. Other

applications include modelling compression after impact (CAI) and the prop-

agation of any delaminations from the initial impact.
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[1] M. F. S. F. de Moura, J. P. Gonçalves, A. T. Marques, P. T. de Castro,

Prediction of compressive strength of carbon-epoxy laminates containing

delaminations by using a mixed-mode damage model, Composite Structures

50 (2000) 151–157.

[2] P. P. Camanho, C. G. Dávila, Mixed-mode decohesion finite elements for the

simulation of delamination in composite materials, Tech. Rep. NASA/TM-2002-

211737, National Aeronautics and Space Administration, U. S. A. (2002).

[3] Y. Mi, M. A. Crisfield, Analytical derivation of load/ displacement relationship

for the DCB and MMB and proof of the FEA formulation, Tech. rep., Internal

Report, Department of Aeronautics, Imperial College London (April 1996).

[4] O. Allix, A. Corigliano, Geometrical and interfacial non-linearities in the

analysis of delamination in composites, International Journal of Solids and

Structures 36 (1999) 2189–2216.

[5] M. Ortiz, A. Pandolfi, Finite-deformation irreversible cohesive elements

for three-dimensional crack-propagation analysis, International Journal for

Numerical Methods in Engineering 44 (1999) 1267–1282.

[6] P. P. Camanho, C. G. Dávila, M. F. de Moura, Numerical simulation of mixed-

mode progressive delamination in composite materials, Journal of Composite

Materials 37 (16) (2003) 1415–1438.

[7] Y. Mi, M. A. Crisfield, A. O. Davies, Progressive delamination using interface

elements, Journal of Composite Materials 32 (14) (1998) 1246–1272.

[8] Y. Qiu, M. A. Crisfield, G. Alfano, An interface element formulation for the

simulation of delamination with buckling, Engineering Fracture Mechanics 68

(2001) 1755–1776.

26



[9] S. T. Pinho, Crush simulation and energy absorption of composite tubes,

Master’s thesis, University of Porto, Faculty of Engineering, Portugal

(September 2002).

[10] A. F. Johnson, A. K. Pickett, P. Rozycki, Computational methods for predicting

impact damage in composite structures, Composites Science and Technology 61

(2001) 2183–2192.

[11] A. K. Pickett, Review of finite element simulation methods applied to

manufacturing and failure prediction in composite structures, Applied

Composite Materials 9 (2002) 43–58.

[12] Livermore Software Technology Corporation, California, USA, LS-Dyna 970

(2003).

[13] G. Alfano, M. A. Crisfield, Finite element interface models for the delamination

analysis of laminated composites: mechanical and computational issues,

International Journal for Numerial Methods in Engineering 50 (2001) 1701–

1736.
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