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Abstract

A criterion for matrix failure of laminated composite plies in transverse tension and

in-plane shear is developed by examining the mechanics of transverse matrix crack

growth. Matrix cracks are assumed to initiate from manufacturing defects and can

propagate within planes parallel to the fiber direction and normal to the ply mid-

plane. Fracture mechanics models of cracks in unidirectional laminates, embedded

plies and outer plies are used to determine the onset and direction of propagation

of crack growth. The models for each ply configuration relate ply thickness and ply

toughness to the corresponding in-situ ply strength. Calculated results for several

materials are shown to correlate well with experimental results.
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1 INTRODUCTION

Strength-based failure criteria are commonly used with the finite element

method to predict failure events in composite structures. A large number of

continuum-based criteria have been derived to relate stresses and experimental

measures of material strength to the onset of failure. The most typical among

the proposed criteria is Hashin’s criterion [1] which assumes a quadratic in-

teraction between the stresses acting on the fracture plane.

The recent World Wide Failure Exercise (WWFE) conceived and conducted

by Hinton and Soden [1]-[6] provides a good assessment of the status of cur-

rently available theoretical methods for predicting material failure in fiber

reinforced polymer composites. Comparison of the predictions by the WWFE

participants with experimental results indicates that even when analyzing sim-

ple laminates that have been studied extensively over the past 40 years, the

predictions of most theories differ significantly from the experimental obser-

vations.

One of the damage mechanims considered in the WWFE was transverse ma-

trix cracking [1]-[6]. Transverse matrix cracking is often considered a benign

mode of failure because it normally causes such a small reduction in the over-

all stiffness of a structure that it is difficult to detect during a test. However,

transverse matrix cracks also provide the primary leakage path for gases in

pressurized vessels. Leakage is a phenomenon that is receiving considerable

interest after the cancelation of the NASA X-33 launch vehicle program [7],

where it was found that liquid hydrogen had leaked at cryogenic tempera-

tures and, once the temperature increased, caused major delaminations by
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cryopumping.

To predict matrix cracking in a laminate subjected to in-plane shear and

transverse tensile stresses, a failure criterion should be established as a function

of the ”in-situ” strengths. The in-situ effect, originally detected in Parvizi’s

[8] tensile tests of cross-ply glass fiber reinforced plastics, is characterized by

higher transverse tensile and shear strengths of a ply when it is constrained by

plies with different fiber orientations in a laminate, compared with the strength

of the same ply in a unidirectional laminate. The in-situ strength also depends

on the number of plies clustered together, and on the fiber orientation of the

constraining plies. The orientation of the constraining plies and the number of

plies clustered together also affect the crack density and the stiffness reduction

of the cracked ply. Experimental tests in (±25◦/90◦n)s (n=1,2,3) carbon/epoxy

laminates have shown higher crack densities for thinner 90◦ layers [9]. The

reduction of the elastic properties of a cracked ply is normally predicted using

elastic analyses of cracked plies [10]-[11], or Continuum Damage Models [12]-

[15].

The in-situ effect is illustrated in Figure 1, where the relation between the in-

situ transverse tensile strength experimentally measured and the total number

of 90◦ plies clustered together (2n) is represented.

[Figure 1 about here]

It is clear that accurate in-situ strengths are necessary for any stress-based

failure criterion for matrix cracking in constrained plies. Both experimental

[9], [16]-[17] and analytical methods [10], [18] have been proposed to determine

the in-situ strengths. Although the models proposed can satisfactory predict
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the in-situ transverse tensile strength, there is still the need to accurately

predict the in-situ shear strength.

The uncertainty in the prediction of initiation and progression of damage

in composites has led to the undertaking of an effort at the NASA Langley

Research Center to revisit existing failure theories, assess their capabilities,

and to develop new theories where necessary. As a result of that effort, a

set of six criteria for predicting failure of unidirectional FRP laminates were

proposed [19], [20].

The objectives of this paper are to present a detailed examination and valida-

tion of a novel failure criterion for matrix cracking under transverse tension

combined with in-plane shear, and to develop a reliable model to predict the

in-situ shear strength of laminated composites.

The in-situ transverse tensile and in-plane shear strengths, as well as the

failure criterion for transverse tensile and in-plane shear acting simultaneously,

follow from the respective critical energy release rate for crack propagation.

The concept of interaction energy, which is defined as the energy released by

the introduction of a crack in a ply subjected to in-plane transverse tensile and

shear stresses, is used to calculate the individual components of the energy

release rate. The in-situ strengths and failure criterion are obtained from the

expressions of the components of the energy release rate. The accuracy of the

model developed to predict in-situ strengths and of the failure criterion is

assessed by comparing the predictions with published experimental data.
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2 INTERACTION ENERGY AND ENERGY RELEASE RATE

UNDER NON-LINEAR SHEAR BEHAVIOR

2.1 Background

Laws [22] derived an expression for the interaction energy for a ply with an

elliptical slit crack. The expression considers the combined action of transverse

tensile and in-plane shear stresses, assuming a linear shear response [22]. It is

considered here that the assumption of a linear in-plane shear behavior leads to

an overprediction of the in-situ shear strength. Therefore, the generalization

for a nonlinear shear behavior is developed. The procedure uses Eshelby’s

[23] application of the eigenstrain problem to solve the stress field around an

elliptical crack, in a framework similar to the one proposed by Laws [22].

2.1.1 The eigenstrain problem

Consider an unstressed infinite solid that undergoes some physical process

that generates inelastic strains. The physical process could for instance be

plastic deformation or phase transformation. Probably due to the later, this

inelastic strain is commonly called transformation strain. The problem consists

in determining the stress and strain fields due to the transformation strains.

The total strain tensor ε is the sum of an elastic strain tensor εel with the

transformation strain tensor εt:

ε = εel + εt (1)

and the stresses result from the elastic component of the strain:
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σ = C : εel = C :
(
ε− εt

)
(2)

where C is the constitutive tensor. Neglecting the body forces, the equilibrium

equation is:

∇ · σ = C :
(
∇ · ε−∇ · εt

)
= 0 (3)

or:

C :∇ · ε− bt = 0 (4)

where bt is a fictitious body force distribution defined as:

bt = C :∇ · εt (5)

If the transformation strains are known, then Equation (4) can be solved for

ε using Fourier transforms or Papkovich-Neuber potentials.

Consider the particular case of an elliptic volume V bounded by a surface S

within an infinite body represented in Figure 2.

[Figure 2 about here]

The volume V is described by the inequality:

(
x

a

)2

+
(

y

b

)2

+
(

z

c

)2

≤ 1 (6)
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The elliptic region undergoes a change of form that without the constraint

imposed by the surrounding material would result in an arbitrary homoge-

neous strain εt. The fictitious body forces defined by (5) are in this case zero

everywhere except in the surface S where they are:

bt = C : εtδ

((
x

a

)2

+
(

y

b

)2

+
(

z

c

)2

− 1

)
· n (7)

where n is the normal to the ellipsoid and δ (·) the Dirac delta function.

Within the ellipsoid, the total strain field ε = εel + εt is uniform, and can be

expressed as [22]:

ε = P : C : εt (8)

where the fourth order tensor P results from solving (4) with bt given by

(7). P depends on the elastic properties of the material and geometry of the

ellipsoid. The derivation of the tensor P can be found in references [24,25].

The stress field is then obtained as:

σ = C : εel = C :
(
ε− εt

)
= − (C−C : P : C) : εt = −Q : εt (9)

with:

Q = C−C : P : C (10)
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2.1.2 The Eshelby inhomegeneity problem

Eshelby [23] showed that the eigenstrain problem can be used to determine the

stress and strain fields that result from an elliptic inhomegeneity. Consider an

elliptical inhomegeneity with a constitutive tensor C∗ inside a homogeneous

infinite solid with a constitutive tensor C. Supposing that the solid is loaded

by an uniform stress or strain at infinity, σ∞ and ε∞ respectively, the stress

and strain tensors can be expressed as:

σ = σ∞ + σ̃; ε = ε∞ + ε̃ (11)

where σ∞ and ε∞ are the uniform stress and strain tensors that would be

induced in the solid if the inhomegeneity were not present, while σ̃ and ε̃

represent a perturbation due to the presence of the inhomegeneity.

The perturbation due to the inhomegeneity can be computed using the eigen-

strain analogy. In fact, the stress field σ = σ∞ solves the equilibrium equations

everywhere in the solid, except in the inclusion, where the error in the stress

is uniform and equal to (C∗ −C) : ε∞. This suggests that the stress state

can be corrected by using a transformation strain inside the inclusion. For

the inhomegeneity and the transformed region to be equivalent, the stresses

in both cases must be the same. For the case of the hypothetical transformed

region, the stress is:

σ = C : εel = C :
(
ε− εt

)
(12)

while in the case of the inhomegeneity, the stress tensor is:
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σ = C∗ : ε (13)

For the transformed region to be equivalent to the inhomegeneity, it follows

from equations (12) and (13) that:

C :
(
ε− εt

)
= C∗ : ε (14)

Decomposing the strain ε into its two components ε∞ and ε̃ in equation (14)

gives:

C :
(
ε∞ + ε̃− εt

)
= C∗ : (ε∞ + ε̃) (15)

Expressing the perturbation strain ε̃ in terms of the transformation strain

using equation (8), and replacing in equation (15):

C :
(
ε∞ + P : C : εt − εt

)
= C∗ :

(
ε∞ + P : C : εt

)
(16)

which can be re-arranged to:

(C−C∗) : ε∞ = [C− (C−C∗) : P : C] : εt (17)

For a void, C∗ = 0 and equation (17) reduces to:

εt = Q−1 : σ∞ (18)

The determination of εt in equation (18) is an important result since the strain

and stress at the cavity wall follow as:

ε = ε∞ + ε̃ = ε∞ + P : C : εt = ε∞ + P : C : Q−1 : σ∞ (19)

σ =C : ε (20)

9



The interaction energy, defined as the energy released by the introduction of a

crack when the solid is being loaded at infinity by the stress σ∞, was calculated

for a linear-elastic material by Eshelby [23]. For a general constitutive model,

the interaction energy is expressed as:

Eint =
∫

V

[∫ εt

0
σ∞ : dεt

]
dV = V

∫ εt

0
σ∞ : dεt (21)

where V is the volume of the cavity. The derivation of equation (21) requires

the use of equation (18) relating εt to σ∞.

The definition of Q in equation (18) is not strictly valid for a non-linear

material behavior, because the superposition principle is used in its derivation.

As a result, there is an approximation implied in the use of equation (21) for

a non-linear material behavior.

The solution for the interaction energy for a slit crack was obtained from the

solution for an ellipsoidal cavity by Laws [22]. Laws considered first an infinite

elliptic cylinder by taking c → ∞, and by expressing the interaction energy

per unit length of the cylinder as:

Eint = πa2
0ε

∫ εt

0
σ∞ : dεt, with ε =

b

a0

(22)

A slit crack is represented by making ε → 0. Since the tensor Q becomes

singular when ε → 0, but the product εQ−1 does not, some care has to be

taken. Equation (22) can be transformed into:
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Eint = πa2
0

∫ σ∞

0
σ∞ : εQ−1 : dσ∞ (23)

Making ε → 0, and defining Λ = εQ−1, the interaction energy can be expressed

as:

Eint = πa2
0

∫ σ∞

0
σ∞ : Λ :dσ∞ (24)

The tensor Λ depends on the tensor P (through the tensor Q), which was

obtained in an integral form in References [24,25]. The integral expression

resulting for the tensor Λ cannot be exactly integrated. Laws [22] carried an

approximate integration for a linear elastic material. Using Laws model [22]

for a non-linear material behavior in shear implies a further approximation

because the superposition principle was used to derive the tensor Q. However,

the error in the predicted in-situ shear strength can be attributed to the

assumption of linear shear response.

In fact, experimental results obtained in unidirectional composite materials

subjected to in-plane shear stresses show a non-linear response, as illustrated

in Figure 3.

[Figure 3 about here]

Figure 3 represents two major effects of the shear response of a composite ma-

terial. Firstly, the shear modulus of the material is reduced in the unloading-

loading cycles occurring after the onset of non-linearity, i.e., G
(2)
12 < G

(1)
12 . The

reduction of the shear modulus is a result of the presence of damage in the
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material. The damage mechanisms are microcracks with sizes of the mag-

nitude of the fibre diameter occurring in the matrix and at the fibre-matrix

interface [26]-[27]. The premature growth of the micro-cracks to a macroscopic

transverse cracks is prevented by the fibres [26].

The second effect is the presence of permanent shear deformations in the

material, γp
12. The permanent shear deformations are normally attributed to

plastic or viscoplastic deformations in the matrix [28].

Based on these experimental observations, a modification to Laws model [22],

assuming a non-linear shear behavior and plane stress, is proposed. Assuming

a general shear behavior, equation (24) is written as:

Eint =
1

2
πa2

0

(
Λo

22σ
2
22 + 2

∫ σ12

0
σ12Λ

o
12dσ12

)

=
1

2
πa2

0

(
Λo

22σ
2
22 + 2

∫ γ12

0
σ12dγ12

)

=
1

2
πa2

0

[
Λo

22σ
2
22 + χ (γ12)

]
(25)

where χ (γ12) is defined as:

χ (γ12) = 2
∫ γ12

0
σ12dγ12 (26)

and Λo
22 is given by [18]:

Λo
22 = 2

(
1

E2

− ν2
21

E1

)
(27)

For a linear shear behavior Equation (25) reverts to the model proposed by

Laws [22].
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3 SLIT CRACK MODEL AND ENERGY RELEASE RATES

The failure criterion for predicting matrix cracking in a ply subjected to in-

plane shear and transverse tension and the expression to determine the in-situ

strengths proposed are based on the Fracture Mechanics analysis of a slit crack

in an unidirectional ply, as proposed by Dvorak and Laws [18]. The slit crack

is lying on the 1-3 plane, as represented in Figure 4.

[Figure 4 about here]

The crack has a length 2a0 along the thickness t of a ply. Physically, this

crack represents a distribution of defects in the composite material: matrix-

fiber debonds, matrix voids, or clusters of densely packed fibers, corresponding

to the preferential locus for void nucleation in the matrix [31].

The location and dimensions of matrix-fibre debonds or matrix voids are ran-

dom variables that depend on the material and manufacturing process. The

fibre distribution is also a random variable that defines the location of void nu-

cleation in the matrix when the composite is subjected to transverse or shear

stresses. The mechanistic and statistical representation of these damage mech-

anisms at the micromechanical level would be a formidable task, impractical

for the purpose of designing a composite structure.

Therefore, it is assumed that the combination of these individual defects form

an higher level of “effective cracks” [29]. Using the concept of effective crack

the precise identities of the different micromechanical damage mechanisms are

lost. However, the effects of the micromechanical damage mechanisms, i.e. the

propagation of macrocracks along the transverse or longitudinal directions, re-
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sulting from the growth and interaction of the several micromechanical damage

mechanisms, can be represented by the effective crack [30].

The effective slit crack represented in Figure 4, representing the macroscopic

effect of defects that occur at the micromechanical level, can grow in the

1 (longitudinal, L) direction, in the 3 (transverse, T) direction, or in both

directions. Considering a non-linear shear behavior and neglecting the effects

of the adjoining plies, the interaction energy is given by:

Eint =
1

2
πa2

0

[
Λo

22σ
2
22 + χ (γ12)

]
(28)

Following Dvorak and Laws [18], the energy release rate for the case of crack

propagation in the transverse direction is obtained as:

G (T ) =
1

2

∂Eint

∂ao

(29)

and for the longitudinal direction:

G(L) =
Eint

2ao

(30)

Using (28) in (29)-(30), the mode I and mode II components of the energy

release rate are obtained as:

GI (T ) =
πao

2
Λo

22σ
2
22 (31)

GII (T ) =
πao

2
χ (γ12) (32)

for crack growth in the transverse direction, and:

14



GI (L) =
πao

4
Λo

22σ
2
22 (33)

GII (L) =
πao

4
χ (γ12) (34)

for crack growth in the longitudinal direction. The components of the energy

release rate were defined in the previous equations as G, as usual in Linear

Elastic Fracture Mechanics (LEFM). However, it should be noted that the

mode II component of the energy release rate is obtained from a non-linear

constitutive model. Under this circumstance the model II component of the

energy release rate corresponds to the rate of decrease of potential energy with

respect to crack length for fixed boundary conditions.

4 DETERMINATION OF IN-SITU STRENGTHS

Experimental observations have shown that the in-situ strengths of a ply in

a laminate depend on its thickness [8]. In general, thinner plies have higher

strengths than thicker ones (Figure 1). The in-situ strengths of a ply also

depends upon its location in the laminate, i.e., if the ply is an embedded ply,

constrained by another ply or group of plies, or if the ply is at the surface of the

laminate (outer ply). The surfaces of outer plies are generally unconstrained so

that surface cracks are likely to develop at those locations. The energy release

rate is magnified due to the proximity of the slit crack to the surface of the

laminate, thus lowering the in-situ strength.

Three ply configurations are considered for the determination of in-situ strengths:

thick plies, thin plies, and thin outer plies.
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4.1 Thick plies

A thick ply embedded in a laminate is shown in Figure 5. The slit crack

represented in Figure 5 propagates first in the transverse direction because

the energy release rate is twice as large in the transverse direction as it is in

the longitudinal direction, as can be observed by comparing equations (31)

and (33). Therefore, the components of the energy release rate are given by

equations (31)-(32).

[Figure 5 about here]

The in-situ tensile strength can be obtained by solving equation (31) for the

stress at failure [18]:

Y T
is =

√√√√2GIc(T )

πa0Λo
22

(35)

For a thick embedded ply loaded in mode II, the fracture toughness for crack

propagation in the transverse direction is obtained from equations (26) and

(32):

GIIc(T ) = πa0

∫ γu
12

0
σ12dγ12 (36)

Hahn and Tsai proposed approximating the non-linear shear response with

the following polynomial [33]:

γ12 =
1

G12

σ12 + βσ3
12 (37)
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where β defines the non-linearity of the shear stress-shear strain relation, which

is zero for a linear behavior. Using the polynomial approximation (37), the

mode II fracture toughness given by equation (36) becomes:

GIIc(T ) = πa0


(Sis

L )
2

2G12

+
3

4
β

(
Sis

L

)4


 (38)

Equations (35) and (38) can be used to calculate the in-situ transverse ten-

sile strength and in-situ shear strength. Dvorak and Laws [18] observed that

a unidirectional laminate can be considered to be a special case of a thick

laminate in which the outer surfaces are unconstrained so that surface cracks

can develop. This important observation allows the prediction of the in-situ

strengths of thick plies using experimental data obtained for unidirectional

laminates. Using the classical solutions for stress intensity factors of surface

cracks in unidirectional laminates [32], the components of the fracture tough-

ness are obtained as:

GIc(T ) = 1.122πa0Λ
o
22

(
Y T

)2
(39)

GIIc(T ) = 2πa0

∫ γu
12

0
σ12dγ12 = 2πa0

[
(SL)2

2G12

+
3

4
β (SL)4

]
(40)

Using (35) and (39), the equation proposed by Dvorak and Laws [18] for the

in-situ tensile strength is obtained:

Y T
is = 1.12

√
2Y T (41)

The in-situ shear strength, Sis
L , is obtained from (38) and (40):
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(SL)2

G12

+
6

4
β (SL)4 =

(Sis
L )

2

2G12

+
3

4
β

(
Sis

L

)4
(42)

Equation (42) has two imaginary roots and two real roots with opposite signs.

The in-situ shear strength of a thick ply, Sis
L , corresponds to the positive real

root of (42).

4.2 Thin plies

The geometry of a thin embedded ply is represented in Figure 6. The slit crack

represented in Figure 6 extends across the ply thickness and can only grow

in the longitudinal direction. Therefore, the components of the energy release

rate are given by equations (33) and (34).

[Figure 6 about here]

Considering pure mode I loading, the in-situ tensile strength of a thin embed-

ded ply can be obtained from (33) as derived in Reference [18]:

Y T
is =

√√√√8GIc(L)

πtΛo
22

(43)

For a thin embedded ply loaded in mode II the fracture toughness is obtained

as:

GIIc(L) =
πt

4

∫ γu
12

0
σ12dγ12 (44)

Substituting equation (37) in (44) yields:
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(
SL

is

)2

8G12

+
3

16
β

(
SL

is

)4
=

GIIc(L)

πt
(45)

The in-situ shear strength of a thin ply, SL
is, corresponds to the real root of

equation (45).

4.3 Thin outer plies

A thin outer ply, represented in Figure 7, is considered as a special case of a

thin laminate, where the energy release rate is magnified due to the proximity

of the slit crack to the surface of the laminate.

[Figure 7 about here]

Under this circumstance, the corresponding fracture toughness is given by:

GIIc =
πt

2

∫ γu
12

0
σ12dγ12 (46)

From (37), the following expression is derived:

(
SL

o

)2

4G12

+
3

8
β

(
SL

o

)4
=

GIIc

πt
(47)

The in-situ strength of an outer ply is obtained solving equation (47).
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4.4 General expression for the in-situ shear strengths

The positive, real solutions of equations (36), (45) and (47) have all the same

general form:

SL
is =

√√√√(1 + βφG2
12)

1/2 − 1

3βG12

(48)

where the parameter φ is defined according to the configuration of a given ply:

For a thick ply : φ =
12

(
SL

)2

G12

+
72

4
β

(
SL

)4

For a thin ply : φ =
48GIIc

πt

For an outer ply : φ =
24GIIc

πt
(49)

The special case of a linear shear behavior is obtained when β tends to zero.

Therefore, the in-situ shear strength of thin plies for linear shear response can

be obtained as:

SL
is = lim

β→0

√√√√(1 + βφG2
12)

1/2 − 1

3βG12

=

√
φG12

6
∴

SL
is =





√
8G12GIIc

πt
, thin embedded ply.

2
√

G12GIIc

πt
, thin outer ply.

(50)

For thick embedded plies, the in-situ shear strength obtained for linear shear

response is:

SL
is = lim

β→0

√√√√(1 + βφG2
12)

1/2 − 1

3βG12

=
√

2SL (51)
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Equations (50) and (51) are equal to the ones obtained by Dvorak and Laws

[18] and Dávila and Camanho [19], [20] for linear shear behavior. The compar-

ison between the predictions of the in-situ shear strength of T300/BSL 914C

CFRP [16], assuming β = 3.6 × 10−8MPa−3 and using linear and non-linear

shear stress-shear strain relations, is shown in Figures 8 and 9, for the cases

of a thin embedded ply and a thin surface ply, respectively.

[Figure 8 about here]

[Figure 9 about here]

It can be seen that there is a significant difference in the predicted in-situ

strengths with linear or non-linear shear response. For example, the predicted

in-situ shear strength of one embedded ply assuming linear behavior is 2.1

times higher than the predicted in-situ shear strength assuming non-linear

behavior.

5 FAILURE CRITERIA FOR TRANSVERSE TENSION AND

IN-PLANE SHEAR

In Wu and Reuter’s experiments [34] composite specimens were tested under

pure mode I, pure mode II, and mixed-mode I and II loading. Based on the

experimental data obtained by Wu and Reuter [34], Hahn [35] proposed a

mixed mode criterion written as a polynomial in the stress intensity factors

KI and KII :
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(1− g)
KI

KIc

+ g
(

KI

KIc

)2

+
(

KII

KIIc

)2

≤ 1 (52)

with g = GIc

GIIc
. Using Linear-Elastic Fracture Mechanics, assuming self-similar

crack growth, and taking into account that the crack is oriented along one of

the principal directions of elastic symmetry of an orthotropic ply, the stress

intensity factors can be related to the components of the energy release rates

as:

GI =
A√

2E1E2

K2
I (53)

GII =
A√
2E1

K2
II (54)

with A =

√(
E1

E2

)1/2 − υ21 + E1

2G12
. Using (53) and (54) in (52), the Hahn crite-

rion becomes:

(1− g)

√
GI

GIc

+ g
GI

GIc

+
GII

GIIc

≤ 1 (55)

Using equations (33)-(34) or (31)-(32) for a linear shear stress-shear strain

response in (55), the failure criterion proposed by Dávila and Camanho [19]-

[21] is obtained:

(1− g)
σ22

Y T
is

+ g

(
σ22

Y T
is

)2

+

(
σ12

SL
is

)2

≤ 1 (56)

For a non-linear shear behavior, the last term in (56) must be modified be-

cause Equation (54) is valid for linear constitutive models only. Sandhu [36],

assuming a non-linear elastic behavior, proposed the use of the strain energy
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density for the prediction of failure in materials exhibiting non-linear behav-

ior. For a non-linear shear behavior, the last term of Equation (56) is modified

using the contribution of the shear stress and shear strain to the strain energy

density as:

(1− g)
σ22

Y T
is

+ g

(
σ22

Y T
is

)2

+
χ (γ12)

χ (γu
12)

≤ 1 (57)

Equation (57) represents the general form of the failure criterion for predicting

matrix cracking under transverse tension and in-plane shear. Equations (56)

and (57) are equivalent when the relation between the shear stress and the

shear strain is linear.

The function χ (γ12) can be defined knowing the non-linear shear behavior,

σ12 = σ12 (γ12). However, for a multidirectional laminate, it is clear that the

shape of the non-linear shear stress-shear strain relation depends on the trans-

verse stresses. The non-linearity in the shear response is mostly a result of

damage mechanisms involving the growth and coalescence of microcracks in

the matrix [26]. It is therefore reasonable to expect that the onset and growth

of the microcracks are affected by the presence of transverse stresses.

The effect of the transverse stresses on the non-linear shear stress-shear strain

relation is clearly shown in Puck’s experimental results [26], illustrated schemat-

ically in Figure 10.

[Figure 10 about here]

Therefore, the term χ (γ12) in equation (57) should be computed from a consti-

tutive model capable of representing the effect of the transverse tensile stress
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on the shear stress-shear strain relation.

6 COMPARISON BETWEEN PREDICTIONS AND EXPERI-

MENTAL RESULTS

6.1 In-situ shear strengths

The in-situ transverse tensile strengths for thick and thin plies that are pre-

dicted using equations (41) and (43), respectively, have been found to correlate

well with experimental results, as reported in Ref. [18]. However, there is still

the need to validate the models proposed to predict the in-situ shear strengths.

Experimental results for CFRP laminates by Chang et al. [16] are used here

to assess the accuracy of the equation proposed to predict the in-situ shear

strengths, equation (48). Chang and Chen tested CFRP laminates with differ-

ent lay-ups using the 2-rail shear test method and reported the values of the

in-situ shear strengths as a function of the number of plies clustered together.

The material tested was a T300/1034 CFRP, whose mechanical properties

were measured by Chang and Chen [16] and Shahid and Chang [11]. The

material properties are shown in Tables 1 and 2.

[Table 1 about here]

[Table 2 about here]

The lay-up considered was (0◦n/90◦n)S, n=1,...6, and the experimental in-situ

strengths as a function of the number of plies measured by Chang and Chen
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[16] are presented in Figure 11.

[Figure 11 about here]

The results shown in Figure 11 demonstrate the reduction of the in-situ shear

strength that results from stacking together plies with the same orientation.

The in-situ strength of a laminate composed of (0◦/90◦) sublaminates is twice

as high as that of a laminate composed of (0◦6/90◦6) sublaminates. In fact,

the results obtained for n=6 is surprising because an in-situ shear strength

20% lower than the one obtained in an unidirectional laminate was measured.

The reason for this apparent inconsistency is that the experimental results

must be corrected to account for the presence of residual thermal stresses.

As a result of the difference between curing and room temperatures and the

resulting orthotropic thermal contractions of the plies, tensile stresses develop

in the fiber direction and compressive stresses develop in the direction normal

to the fibers. The plies are therefore subjected to a multiaxial stress state and

a failure criterion should be used to correct the in-situ strengths measured in

the experiments.

In order to correct the predicted in-situ strengths the following typical values

for CFRP coefficients of thermal expansion are assumed: α11 = −1× 10−6/◦C

and α22 = 26× 10−6/◦C. For a temperature difference of −125◦C , the trans-

verse tensile stress calculated using classical lamination theory is σ∆T
22 =

29.3MPa in all plies of the laminate.

The prediction of the in-situ strength with Equations (48) and (49) depends

on the shear nonlinearity parameter β. In the following calculations, it is

assumed that β is the same for the laminate under investigation as for a
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unidirectional laminate of the same material system. Therefore, the values of

β used in the following laminate shear strength predictions were calculated by

fitting Hahn’s polynomial shear function (37) to published stress-strain data

for unidirectional laminates. The results of least-squares approximations of

test data for T300/BSL 914C [3] and T300/976 [37] are shown in Table 3.

[Table 3 about here]

After calculating the residual thermal stresses and the parameter β, it is pos-

sible to correct the experimental data and compute the in-situ shear strengths

by taking into account the residual thermal stresses. The in-situ shear strength

SL
is is obtained by solving the failure criterion proposed in equation (57). For

convenience, the term ψ is defined as:

ψ = (1− g)
σ∆T

22

Y T
is

+ g

(
σ∆T

22

Y T
is

)2

− 1 (58)

where the tensile strength Y T
is is calculated using equation (43). The effective

experimental in-situ shear strength, corrected for residual thermal stresses, is

given by the positive real root of equation (57), which is:

SL
is = −

√
−3β G12 ψ

(
ψ +

√
−ψ

(
−ψ + 9 β2 G2

12σ
4
12 + 6 β σ2

12G12

))

3β G12 ψ
(59)

The laminate under investigation, (0◦n/90◦n)S, contains an outer ply with a

total thickness corresponding to half of the thickness of the embedded ply.

Using equations (48) and (49) it can be concluded that the in-situ strength
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of the outer and embedded plies are the same, and matrix cracking occurs

simultaneously in all the plies of the laminate.

The experimental results of Chang et al. [16] and the corresponding predicted

shear strengths are compared in Figure 12 for two values of the shear non-

linearity parameter β. The predictions of the linear model are obtained using

equations (50), whereas the predictions of the non-linear model are obtained

using equation (48).

[Figure 12 about here]

An excellent agreement between the proposed non-linear model and experi-

mental results is obtained for the two values of β used. It can be observed

that the linear shear strain model significantly overpredicts the in-situ shear

strength. For β = 2.44 × 10−8MPa−3 and n=1, the errors in the predicted

shear strengths using the linear and the non-linear equations are 95.5% and

-3.6%, respectively.

6.2 Failure envelopes

The failure criteria proposed in equations (56) and (57) are used to predict the

failure envelopes in the (σ22, σ12) space, with σ22 ≥ 0, for carbon and glass-

fiber reinforced composite materials. The results are compared with published

experimental data for AS4-55A (Swanson et al. [38]), E-Glass-LY556 (Hinton

et al. [3]), and Scotch-Ply Type 1002 (Voloshin et al. [39]). The corresponding

elastic properties and strengths are shown in Table 4.
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[Table 4 about here]

There is no experimental information concerning the relation between the non-

linear shear behavior and the applied transverse tensile stresses. Furthermore,

for AS4-55A and Scotch-Ply Type 1002, the shear stress-shear strain relation

is not provided, even for unidirectional test specimens. Therefore, it is not

possible to define the function χ (γ12) for the materials under investigation,

and the linear form of the failure criterion proposed, equation (56), is used

to predict the failure envelopes for the AS4-55A and Scotch-Ply Type 1002

materials.

The lamina strengths predicted using the maximum stress criterion, the Hashin

criterion, and the present criterion given by equation (56) are compared in Fig-

ure 13 for a carbon fiber material system and in Figure 14 and 15 for a glass

fiber material system.

[Figure 13 about here]

[Figure 14 about here]

It can be observed that the strengths calculated with the present criteria

correlate well with the experimental results. Furthermore, the results obtained

with the criteria proposed represent an improvement over the commonly used

Hashin and maximum stress failure criteria for the loading cases and range of

materials investigated.

The shear stress-shear strain relation of the E-Glass-LY556 composite mater-

ial is presented in Ref. [3]. For this material, the parameter β, which defines

28



the shear response when the material is subjected to in-plane shear stresses,

is calculated as β = 4.62 × 10−8 MPa−3. The accurate definition of the func-

tion χ (γ12) when the material is under the combined effect of in-plane shear

stresses and transverse tensile stresses would require a constitutive model

based on continuum damage mechanics. Such models are able to represent

the onset and growth of the non-critical damage mechanisms that contribute

to the non-linear response represented in Figure 3. Continuum damage models

incorporate damage onset and damage evolution equations that are functions

of the relevant components of the stress tensor. Therefore, the effects of the

transverse stress on the shear response can be taken into account.

In the absence of a constitutive model able to define the function χ (γ12)

under multiaxial loading, the criterion based on a non-linear shear response

proposed, equation (57), can be used to predict the strength E-Glass-LY556

using two simplifying models.

In the first model it is assumed that the material shear response is non-linear

elastic and independent of the transverse stresses (i.e. β is constant). Under

these circumstances, it is possible to predict the lamina strength using (37) and

the failure criterion proposed in equation (57). The resulting failure criterion

is:

(1− g)
σ22

Y T
is

+ g

(
σ22

Y T
is

)2

+

σ2
12

G12
+ 3

2
βσ4

12

(SL
is)

2

G12
+ 3

2
β (SL

is)
4
≤ 1 (60)

The second model assumes that the material shear response is non-linear elas-

tic, and that β depends linearly on the transverse tensile stress, σ22, as:
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β̄ (σ22) = β0 +
σ22

κ
(61)

where β0 is the shear response factor for in-plane shear (β0 = 4.62 × 10−8

MPa−3). Assuming β̄ (σ22 = 30MPa) = 2β0 results in κ = 6.5 × 108 MPa4.

The corresponding shear responses for σ22 = 0MPa, σ22 = 15MPa and σ22 =

30MPa are represented in Figure 16.

[Figure 16 about here]

The lamina strengths predicted using the Hashin criterion and the present

criteria given by equations (56) and (57) are compared in Figure 15 for E-

Glass-LY556 GFRP.

[Figure 15 about here]

The strengths calculated with the present criteria are in good agreement with

the experimental results. The failure criteria based on equations (56) and (57),

when accounting for the effect of the transverse stress on the shear response,

provide the most accurate predictions. The experimental results obtained for

E-glass LY556 when subjected to high values of transverse stress are sparse. In

this region, Hashin’s criterion and the criteria proposed here provided similar

results.
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7 CONCLUSIONS

A new analytical closed-form model to predict the in-situ shear strength of

composite laminates was proposed. Using a non-linear shear stress-shear strain

constitutive behavior, the model proposed can accurately predict the in-situ

shear strength as a function of ply thickness and ply location. The accurate

values of the in-situ shear strength that can be obtained using the proposed

model are essential for the prediction of matrix transverse cracking in multi-

directional laminates.

Based on the calculation of mode I and mode II energy release rates, a new

stress-based failure criterion for matrix cracking under in plane shear and

transverse tension is proposed. The predictions of the criterion are compared

with published experimental data for carbon- and glass-fiber reinforced com-

posites. A good agreement between the experimental results and experimental

data is obtained. Furthermore, the predictions of the failure criterion proposed

indicate a better correlation with experimental data than Hashin and maxi-

mum stress criteria.
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Figures

Fig. 1. In-situ effect in laminated composites (after Dvorak [18]).
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Fig. 2. Elliptic volume V representing an inhomogeneity within an infinite body.
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Fig. 11. Experimental results: in-situ and unidirectional shear strengths.

β
β
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Fig. 15. Shear stress-shear strain relations for β = β(σ22).

Fig. 16. Comparison between model predictions and experimental data-E–

Glass-LY556.
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Tables
Table 1

T300/1034-C elastic properties.

E1 (GPa) E2 (GPa) G12 (GPa) SL (MPa) ν12

168.2 12.5 6.2 45.0 0.3

Table 2

T300/1034-C properties.

GIc (Nmm−1) GIIc (Nmm−1) t (mm)

0.228 0.455 0.127

Table 3

Shear nonlinearity parameter β for two CFRP material systems.

Material β × 10−8 (MPa−3)

T300/976 2.44

T300/BSL 914C 3.61

Table 4

Elastic properties and strengths.

Material E1 (GPa) E2 (GPa) G12 (GPa) ν12 YT(MPa) SL (MPa)

Scotch-Ply 53.5 17.0 5.8 0.3 19.6 37.5

E-Glass LY 53.5 17.7 5.8 0.3 35.0 72.1

AS4-55A 126.0 11.0 6.6 0.3 27.0 51.3
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