
1 
 

Measurement and Analysis of Multiband 
Bistatic and Monostatic Radar Signatures of 
Wind Turbines 
 
 M. Ritchie, F. Fioranelli, A. Balleri and H.D. Griffiths 

 
This paper presents the results of recent measurements taken with two 

radar systems to measure the simultaneous monostatic and bistatic 

signature of wind turbines, at S-band and X-band. Coherent monostatic 

and bistatic data was collected with the University College London 

(UCL) NetRAD 2.4 GHz radar, and the Cranfield University CW radar 

operating at X-band. This initial analysis shows the bistatic Doppler 
signature of wind turbines and informs on the key differences seen at 

modest bistatic angles. Polarimetric variations are also analysed via data 

gathered using co-polarised VV and HH and cross-polarised VH 

components. 

 

Introduction: The United Kingdom, together with many other countries, 

is investing a large amount of money to support the development of 

alternative and sustainable ecologically-friendly technologies, including 

wind farms, as a means to reduce reliance on fossil fuels and generation 

of greenhouse gases. The United Kingdom has targeted that 15% of 

energy should be generated by renewable sources by 2020 [1]. The EU 

committee has also recognised that wind power will be the dominant 

technology to achieve this target because wind farms are the most 

mature technology currently available [1]. 

Radar systems detect and localise targets by sending an 

electromagnetic signal and detecting target echoes. If the target is 

moving, the frequency of its echo is shifted by a quantity that is 

proportional to the target velocity.  

Radar systems are used by Air Traffic Control (ATC) air defence 

networks to provide services to aircraft and to detect and localise threats 

and hostile air targets. It has long been recognised that wind turbines 

can significantly disrupt the operation of surveillance radars used for air 

traffic control and for air defence. The radar return from wind farms, 

commonly called wind farm clutter, presents time-varying amplitude 

levels that can be comparable to those produced by aircraft. Depending 

on weather conditions, the rotating blades can have very high tip speeds 

and induce similar Doppler shifts to those of aircraft. Wind farms cause 

detection problems to radar systems both because of the increased 

clutter level and because of the obscuration of true targets behind the 

wind farm. This represents a potentially significant safety risk to the 

services provided to aircraft and for the reliability of air defence. 

Currently, half of wind farm developments in the UK face objections 

from aviation stakeholders and the MoD on the grounds of radar 

interference and obstruction or impact to low flying operations [2]. 

Significant research has been applied into analysing the effects of 

wind turbines on radar systems [3-4]. Research that focused on 

mitigating the issues caused by wind turbines includes new wind turbine 

designs [5], holographic radar techniques [6] as well as additional 

digital signal processing algorithms [7].  

The application of bistatic or multistatic radar systems as a solution to 

wind farm clutter interference is investigated here. The aim of these 

measurements was to provide the first result of simultaneous monostatic 

and bistatic Doppler from an operational wind turbine. 

Bistatic radars provide additional degrees of freedom which can result 

in a number of advantages against the wind farm signals, such as 1) 

lower radar target/clutter cross sections 2) lower Doppler spreads and 3) 

multi-perspective information.  

There potentially exists an optimal geometry that reduces the level 

and Doppler spread of wind farm clutter whilst keeping air target 

returns high, hence less wind farm interference. Additionally, the 

bistatic geometry allows the antenna beams to be directed so to 

minimise obstructions. A bistatic configuration provides more 

information and can result in a significantly reduced probability of 

interference. Very little real data has been published on multistatic radar 

wind farm clutter making this area of research exceptionally novel. 

 

Radar systems and measurements: The experiments were carried out in 

January 2015 at the Westmill Wind Farm in Watchfield, outside the 

perimeter of the Defence Academy of the UK. The wind farm consists 

of 5 turbines which are 49 m in height and have blades with a length of 

31 m. During the measurements the average wind velocity was recorded 

as approximately 4 ms-1. 

Two separate radar systems were used to generate the results 

presented in this letter. One was the NetRAD S-band multistatic pulsed 

coherent radar system developed at UCL [8]. This system used 200 mW 

transmit power, a pulse length of 0.6 s, 45 MHz bandwidth and a PRF 

of 5 kHz during the experiments. The antennas used had beamwidth of 

10° and a gain of 24 dBi. The second system is the Cranfield University 

X-band CW radar. This radar used a transmit power of 15 dBm and was 

centred at about 10 GHz. Two NetRAD nodes were used during the 

experiments to allow simultaneous monostatic and bistatic recordings. 

The X-band CW radar was simultaneously deployed at the monostatic 

node of the NetRAD radar to give comparative X-band data.  

The geometry of the setup can be seen in Fig. 1. These nodes were 

separated by a distance of 50 m on a baseline that was 432 m from the 

2nd turbine, hereafter labelled the Turbine under Test (TUT), giving a 

bistatic angle of approximately 6.6°. All five turbines were visible to the 

radar but only Doppler data from the TUT is shown from the NetRAD 

radar.  

 
Fig. 1 Plan view of the experimental setup 

 

Data analysis: The data was processed to provide both Range Time 

Intensity (RTI) and Doppler-Time spectrogram from the turbines. The 

key comparisons made here are between the simultaneous monostatic 

and bistatic datasets. Fig. 2 shows the RTI plot of the turbines as seen 

from the NetRAD monostatic radar. This figure shows the history of 5 

seconds of pulse compressed data. The 5 turbines are the vertical spaced 

lines at the two way range distances from the radar. 

 

 
Fig. 2 NetRAD HH Polarised RTI (a) Monostatic and (b) Bistatic  

 

The following analysis shows the Doppler signatures generated by the 

TUT. In order to produce the Doppler signature a Short Time Fourier 

Transform (STFT) was used with a weighted Hamming window of 0.6 s 

duration and an overlap of 95 %. The Doppler-Time spectrogram from 

both the monostatic and bistatic node are shown in Fig. 3. Clear 

differences can be observed between the two spectrograms. The 

monostatic Doppler spread is much higher, and shows a symmetrical 

pattern, whereas the bistatic Doppler is dominated by a negative 

Doppler component.  

The antennas were then rotated to capture bistatic VV polarised data. 

This is shown in Fig. 4. In this case the monostatic Doppler is again 

shown to have a higher return, but the bistatic signature is less 

asymmetrical in comparison to the HH dataset. For completeness the 

cross polarised results are shown in Fig. 5. As expected these results 

show a much suppressed return, with some blade flashes seen in the 

monostatic data but very little returns from the blades in the bistatic 

node. 
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It was observed that for both the TUT and the 3rd turbine, the positive 

Doppler blade flashes have higher intensity than those with negative 

Doppler when using VV data. This effect seems to be more evident in 

the monostatic signatures. In the HH data it is seen that the negative 

Doppler blade flashes become more intense than the positive ones. This 

was particularly evident with the TUT ( = 6.5°) and less so for the 3rd 

turbine ( = 4.65°). The ratio of the blade flash intensity to the central 

nacelle Doppler component was found to be greater (1-2 dBs) in all 

cases for the monostatic data compared to bistatic result. Although only 

a small difference was found in this data it may become more 

significant at greater bistatic angles. Further bistatic experiments are 

required to validate this relationship fully, particularly for greater 

bistatic angles. 

 

 
Fig. 3 NetRAD HH Polarised (a) Monostatic and (b) Bistatic 

spectrogram 

 
Fig. 4 NetRAD VV Polarised (a) Monostatic and (b) Bistatic 

spectrogram 

 
Fig. 5 NetRAD VH Polarised (a) Monostatic and (b) Bistatic 

spectrogram 

 

The X-band radar results can be seen within Fig. 6. The results are 

related back to the S-band figures such that the monostatic results in 

Fig. 3-5 are equivalent to Fig. 6a, 6b & 6c respectively. Unlike the S-

band radar the CW X-band system does not resolve targets in range so 

all of the turbines signatures have been folded into the Doppler 

spectrogram shown. This leads to multiple non-periodic blade flashes, 

seen particularly in Fig. 6a.  

The X-band data results show a higher Doppler return within the 

positive Doppler component of the signature compared to the negative 

component in both HH and VV. This does not correspond with the 

mono and bistatic HH returns seen in the S-band data, where a stronger 

negative component is observed. Both bands of data do show a stronger 

relative return in HH pol data as well as a wider blade flash component 

in time compared to VV data. 

 

  

 
Fig. 6 X-Band Mono spectrogram (a) HH Pol (b) VV pol (c) VH Pol  

 

Conclusion: In this letter experimental results from a simultaneous S-

band monostatic and bistatic have been shown, along with 

complementary X-band monostatic data. The key differences between 

the monostatic and bistatic Doppler spectra have been described and 

how these translate to performance of a bistatic or multistatic system 

when dealing with wind turbine clutter. These results are believed to 

represent the first publication of simultaneous coherent monostatic and 

bistatic Doppler from wind turbines. Further experimentation is 

required to investigate these variations as a function of bistatic angle 

(particularly wider bistatic angles) and different geometries. 
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