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Abstract
Nature provides a number of examples where acoustic echolocation is the primary
sensing modality, the most well-known of these being the bat, whale and dolphin. All
demonstrate a remarkable ability to “see with sound”. Using echolocation they
navigate, locate and capture prey. As species, they have not only survived but have
thrived in all their individual environments, often solely reliant on echolocation. All of
these creatures are inherently cognitive. They all maintain a perception of their
environment through the nervous system that allows them to take actions. In this paper
we focus on the bat as an example of a cognitive system exploiting a memory-driven
perception-action cycle, enabling it to navigate and interact with its environment. The
key conceptual components of cognition and how it could be applied to man-made
echoic sensors is introduced. This is followed by a description of how echoic flow fields,
a bio-inspired technique that bats have been shown to use, fit guidance and control
problems. We then go on to explain how bats are able to reliably distinguish between
different targets. A combination of the theory and examples is used to demonstrate the
vast potential for advancing the capability of made in man-made systems by adopting
aspects of natural echolocating cognitive dynamic systems.

Introduction

Bats provide an informative case study representing an extremely capable echoic
cognitive-dynamic system. Specifically, they have been shown to navigate in a manner
that is consistent with a description based on an echoic form of flow field theory. These
“echoic flow fields” inherently embrace cognition through sensor “perceptions” linked
directly to maneuver “actions”. Further, nectar-feeding bats are able to discriminate
nectar rich flowers from a variety of alternatives. Feeding by the bat results in
pollination of the flower, and hence reproduction of the plant species. Consequently,
co-evolution has resulted in flowers that are easily identified because elements of their
structure preferentially reflect the incident acoustic waves.

Together echoic flow and scene perception play a key role in the autonomous ability of
the bat to navigate and feed. Thus, an understanding of the sensing modalities and
cognitive processing methodologies used by the bat could have immense and profound
implications for future radar and sonar sensing leading to a plethora of new capabilities
and applications.
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Radar and sonar systems have become indispensable tools for remote sensing,
supporting numerous military and civil applications. Indeed, in recent years their utility
has been greatly enhanced with the advent of electronic scanning arrays, high-
resolution imaging, and space-time techniques for the detection of slow moving targets
in dense clutter. New applications are constantly emerging, such as vehicular radar. In
the near future it is likely that all newly manufactured cars will carry multiple, highly
capable radar systems.

Three main drivers have fuelled radar sensor development in recent years:

(i) Increased signal to interference ratio

(ii) Adaptive beam-forming and sidelobe reduction

(iii) Improved spatial resolution

In different ways each of these has contributed to systems that have increasing
sensitivity. As a result, modern radar systems, especially those that produce high-
resolution imagery, receive echoes from all objects that are illuminated. Consequently,
much more emphasis has to be placed on being able to discriminate between different
objects as opposed to merely declaring the presence or absence of, say, an aircraft in
the sky. This trend of increasing radar sensitivity is continuing.

Discrimination has the potential to radically transform radar and sonar from being a
relatively simple observer of the world to being a sensor system that autonomously
perceives and therefore can also decide and act. There has been much research devoted
to discrimination and classification in the form of Automatic (or Aided) Target
recognition (ATR). However, ATR remains a challenging and largely unsolved problem.
Echo “signatures” are complex, exhibit much variability, and reliable interpretation of
them has so far proven elusive.

For these reasons ATR remains largely the domain of the research community. Most
approaches to radar target classification are linear, in that they sequentially process
received echo data until some classification label can be assigned. The resulting
performance is inconsistent even under ideal target observation conditions occurring
within the context of laboratory or laboratory-like conditions (e.g. targets on a turntable
or in an anechoic measurement chamber). Perhaps the best performing ATR systems are
those that use ‘signature information’ such as jet engine modulation (JEM) templates or
those able to provide a count of the helicopter rotor blades and their rotation rates [1].

More generally though, these linear approaches bear little resemblance to mammalian
cognitive processes. Bats readily discriminate using echolocation to select sources of
food. They are constantly probing their surroundings with “calls”, interpreting the
reflected echoes (perception) to decide if a food source is present and then capturing
and consuming the prey item (action). The process is adaptive and can be repeated with
variation until a successful outcome is achieved.
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Autonomous guidance and control via radar and sonar sensing is a highly sought-after
capability with an enormous range of applications. For example, increasing traffic
densities lead to an increasing and unacceptably high rate of road fatalities. It follows
that technology able to prevent collisions, perhaps ultimately taking over the role of the
driver, is of great interest. Radar has the potential to be a key component of such
systems because of its proven ability to measure range and range rate in a simple
inexpensive, discrete package regardless of time of day or prevailing weather.
Processing echo information to enable autonomous collision avoidance is thus a very
desirable objective and one that bats seem to have mastered.

Bats use echolocation for navigation, and nimbly avoid collision with obstacles as well as
with one another. They have evolved to feed at dusk and into the dark when many
other animals, including some predators, are unable to fully function. All of this is
achieved with a remarkable degree of agility and few if any collisions in highly-
populated, intersecting “three-dimensional highways” [2]. It is echolocation that
enables the bat to carry out these complex orientation tasks and to perform
discrimination in complete darkness. The ability to navigate using radar or sonar seems
tantalizingly close, especially as the technology exists that can match and even exceed
the range of parameters used by bats. However, this requires the radar or sonar system
to acquire a sufficient awareness of its surroundings (perception) for self-decision
making, followed by application of motor forces to maneuver safely thorough those
surroundings (action).

Cognition plays a direct and fundamental role in the abilities of bats. Radar and sonar
systems also have to be able to “understand” their surroundings to a level that enables
them to move about and interact with their sensed environments. This demands an
ability to perceive, discriminate, make decisions and provide stimuli enabling action.
Incorporating a cognitive approach into synthetic sensors systems has the potential to
revolutionize their role in existing and new applications.

Cognition and Sensing
The heart of cognition is the “perception-action” cycle that both informs and is informed
by memory [3]. It may be autonomic or take higher forms. Cognition, as a topic of study
in its own right, is extraordinarily complex and has been the subject of substantial
research by many communities. For example, over the past 30 years there have been
many laudable attempts to produce cognitive architectures within the artificial
intelligence community [4]. These attempts to capture the essence of the cognitive
process are also based largely on a biomimetic approach. In the work presented here we
draw heavily on the formulation presented by Haykin in [3] in which a memory driven
perception-action cycle is first presented and applied to radar.

Cognition requires stimulation by sensors or by memories originally obtained by sensory
input. In the human this is via hearing, touch, smell, vision and taste. The nervous
system converts sensed stimuli into a “perception” of the world. This perception is
sufficiently accurate for us to move around and to manipulate our world. In other
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words, we are able to take informed “action” by interpreting our sensory perception of
the world and making behavioral decisions. Subsequently, the nervous system sends
signals that activate our muscles thus enabling the desired action to take place.

The notion of perception and action may be embedded within a system. Consider, as an
example, the reflex reactions of animals and radar closed-loop tracking. These are
termed “autonomic”, implying an automatic response rather than requiring
contemplative thought. Conversely, perception and action can be external. Detecting an
obstacle and deciding whether to walk around it to the left or right requires cognition at
a higher level, necessitating informed decision-making (perhaps the route to the left is
twice as long as the one to the right).

Closely coupled with perception are “recognition” and “categorization”. Recognition and
categorization operate on the output of a perceptual system and lead to the
“understanding” of an environment or scene. Recognition and categorization are both
informed by and assist in the creation of “memories”. Memories might be derived from
recent experiences, such as from a previous observation (e.g. a coherent processing
interval in radar), or from earlier experiences derived from a similar situation. Both
require effective creation and application of memories. Hence prior knowledge is an
important resource and component of a cognitive sensing system.

“Attention” is closely related to perception and may be thought of as the requirement to
allocate and direct the sensing resources towards relevant information. “Decision-
making” implies the establishment of choices and the selection of one appropriate to a
desired goal. In a radar system this process could entail, for example, changing sensor
parameters to maintain a desired quality of track. The basis for determining the set of
possible choices, resolving possible conflicts, and selecting the best choice varies in
complexity depending on the task. In some cases this process may be enabled by the
architecture whilst for others it is embedded within it.

Perception clearly plays a fundamental role in situational awareness and leads to
“prediction”. Perceptual information about entities and events combined from many
sources takes the form of behavioral patterns that can be extracted and extrapolated
into a prediction of the future. Prediction implies some form of a model of the
environment and the effect actions may have on it (e.g. expected social norms). Such
prediction enables generation of “plans” usually according to prescribed policies for
carrying out tasks such as the order in which different targets might be interrogated or
the deployment of resources in an electronically scanned radar system. Over longer
timescales cognitive sensing performance will also benefit from concepts such as
“reasoning”, “reflection”, and “learning” that facilitate adjustments to the underlying
policies.

The application of cognitive-dynamic systems to radar and sonar sensing is in its infancy
and whilst the above describes key components of a cognitive system it is beyond the
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scope of this article to address them all. Here, we examine two connected tasks,
discrimination and autonomous guidance using the bat as inspiration for synthesizing
man-made counterparts.

Biomimetic guidance and control – Echoic flow fields
Bats provide an excellent example of a natural echolocating cognitive system. They
sense the environment by transmitting “calls” collimated in a beam which can be
directed into the surrounding open space. Echoes are processed on reception in both
ears. Bats are able to perceive their environment such that they can navigate, avoid
collisions, select targets and make decisions critical to their survival. They do this by
adapting to the characteristics of the environment and continuously changing their
echolocation sensing parameters such as the form of the call (frequency and depth and
rate of modulation), call duration, the rate at which calls are transmitted, call amplitude
and the direction in which the call is transmitted [e.g. 5, 6]. This section explores
methods and strategies for collision-free guidance and orientation based on exploiting
echoic flow fields.

Flow fields were first conceived by Gibson [7] and subsequently developed by Lee and
co-workers [e.g. 8]. Flow field theory seeks to explain how humans and other members
of the animal kingdom are able to navigate complex environments without having to
compute and re-compute the position of all objects and obstacles along with the
position of self. Flow fields naturally occur in many domains but most research attention
has been on vision in the form of optical flow, see [9] and references therein. Optical
flow represents the relative movement between a point of observation and objects in
an illuminated environment as the ratio of light intensity to changes in light intensity. A
human walking towards a doorway will exploit observed changes in the global pattern of
scattered light. The instantaneous time to reach the doorway is automatically sensed
and the nervous system controls the approach to, and transit through, the doorway.

Flow fields are a direct measure of the time for objects in relative motion to come
together or, more generally, for a gap to be closed. The closure of a gap includes, for
example, the closure of the angle between a current or reference direction of travel and
a desired direction of travel. Distance and angle gaps can be combined enabling the
computation of three-dimension flow fields. The derivative of a flow field determines
how the gap will be closed. Holding the derivative at a constant value fixes the form of
the resulting trajectory. A range of trajectory types can be chosen by selecting the value
of the constant thus enabling different types of task to be carried out. Crucially, the
sensed flow field (perception) can be used to directly compute the desired trajectory
(action) consistent with [10]. In the case of humans a neuronal response stimulates
muscles in the required way. Therefore measurement of gap closure times in both
distance and angle (azimuth and elevation) provides a powerful basis for enabling
autonomous behaviors in synthetic systems. The flow field or gap closure time is usually
denoted with the parameter ߬and this convention will be adopted here.
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Bats have been shown [10] to perform tasks such as intercepting prey on the wing or
maneuvering to a landing site in a manner that is consistent with exploitation of flow
fields. Lee uses the term acoustic flow whereas here the term Echoic Flow (EF) is
employed to specifically denote an active sensing system where acoustic or electro-
magnetic signals are transmitted and received. In [4] it is concluded that bats use EF as a
method enabling controlled landings and feeding on the wing. The behavior of the bat
was found to be consistent with computation of ߬and its derivative in both range and
angle. Bats employ a strategy whereby the values of the derivatives of range and angle ߬
take a specific value. Radar and sonar systems inherently measure distance and angle
using echolocation and thus lend themselves well to the measurement of 3-D flow
fields. The flow field, ,߬ associated with radial range is given by:

=ݎ߬ ݎ ⁄ݎ̇ (1)

where ݎ is the range to a detected object and ሶisݎ the change in range of the object
between the current and previous measurements. Strictly ߬, andݎ ሶareݎ all functions of
time, ,ݐ however, here the ‘ሺݐሻ’ has been omitted for clarity in the equations.

߬ is a direct measure of the time to collision or time to close the range gap and has
units of time. For example, if a radar sensor system is moving directly towards a
stationary object with a velocity of 3 ms-1 and the object is located at a distance of 6 m,
the gap closure time is 2 s.

The time derivative of ,߬ denoted ሶ߬, is a dimensionless quantity that is related to the
velocity and acceleration as the system approaches a target. ሶ߬depends on range, range
rate and acceleration according to

=ݎ̇߬
߲ ݎ߬

ݐ߲
= 1−

ݎ̈ݎ

2ݎ̇
= 1− ݎ߬

ݎ̈
ݎ̇

(2)

Equation (2) is a second order differential equation and can be solved for cases where ሶ߬
takes a constant value, ,݇ to give the expression in (3a) that describes the change in
range as a function of time and the initial range and echoic flow. Differentiating (3a)
with respect to time gives (3b) that describes the progression of range-rate, or speed. A
further differentiation gives (3c) that describes the progression of acceleration.
Equations (3a) to (3c) are the equations of motion for the system [10],

=ݎ (1ݎ + ݐ݇ ߬⁄ )
భ
ೖ
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(3a)

(3b)

(3c)

where ݎ and ሶݎ are the range and velocity at time ൌݐ Ͳ s and ߬ ൌ ݎ ⁄ሶݎ is the initial
echoic flow. The convention is that the initial range is negative while the velocity is
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positive, i.e. the gap between radar platform and target is closing. These are the basic
equations of EF and, as shown here, enable the sensed flow field to generate changes to
velocity and acceleration such that a desired trajectory is followed. Note that the range,
,ݎ in (3) could be replaced with any sensor measurable parameter permitting its control
by echoic flow.

Figure 1 shows the equation of motion curves, for constant values of ሶ߬ ൌ ݇�and initial
conditions of ݎ = −10 m and ሶݎ = 1 ms-1. In this example, the radar is part of a vehicle
approaching the object head-on. Unless braking is applied the vehicle and object will
collide. Figure 1 shows five regions of behavior types.

1. ݇ ൌ ͳ. There is no change in acceleration with time and the platform collides
with the target after 10 s at the same speed as when the target was first
detected. The collision is “hard”.

2. ͲǤͷ൏ ݇ ൏ ͳ. The trajectory is consistent with “a late braking strategy” (such as
one might be used by a runner in baseball). This still results in a collision as the
sensor platform vehicle still has positive velocity. However, the initial braking
acceleration (with negative value) is insufficient to stop the system at the object
location. As the sensor platform approaches the target the braking increases
(theoretically to an infinite amount) at the instant the vehicle and object collide.
Infinite braking would mean there is no actual collision with the target, since the
velocity will become zero at zero gap. However, no real system (or baseball
runner) can actually have a negative infinite acceleration, so in practice the
platform will crash into the target with a positive velocity and the collision can
still be hard, depending on the value of .݇

3. Ͳ൏ ݇ ൏ ͲǤͷ. This is an example of an early braking strategy (such as one might
be used by the driver of a passenger vehicle). The initial braking is larger than
necessary to bring the sensor platform to a halt and thus the braking has to be

Figure. 1: The variation, over time, of (a) range, (b) velocity and (c) acceleration as
the sensor system approaches a target. Note the accelerations are negative indicating
braking. The curves are calculated using (3).
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gradually reduced as the object is approached. When the object is reached the
velocity and braking will be zero resulting in a soft collision or no collision at all.
This case is particularly valuable since its end conditions are favourable for many
applications such as parking, docking and aircraft landing.

4. ݇ ൌ ͲǤͷ. Here, a constant braking is applied such that the velocity decreases
linearly until the platform comes to rest at the target location.

5. ݇  ͳ. Here, the sensor system accelerates towards the target. If ݇ is close to 1
then the acceleration comes only when the platform is close to the target. While
if ب݇ ͳ the acceleration begins immediately. The resulting collision tends
towards the catastrophic.

To illustrate the application of echoic flow to autonomous guidance, a simulation of a
robotic vehicle equipped with a monostatic radar system located inside a corridor is
used. The “corridor” was formed from of a series of closely spaced point scatterers (as
shown in red in Figure 2) each of which provides a scaled and delayed reflection of the
signal incident upon it. The parameters of the radar system are shown in Table 1. The
antenna transmits and receives two beams with 15° beamwidths angled at ±45° from
the direction of travel. The initial heading angle is 45° to the left of the y-axis. To control
the platform ߬ for each beam is computed and a decision is made to steer away from
the beam with the small EF, i.e. only a single steering control instruction is used.

Table I: Parameters of the autonomous navigation simulation.

Parameter Value Unit

Number of beams 2 N/A
Optimum beam angles ±45 ° (degree)

Beamwidth 15 ° (degree)
PRF 10 Hz

Platform speed 1 ms-1

Platform turn angle 30 ° (degree)
Display update interval 1 s
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Figure 2a shows that a stable condition for the control rule is reached when the EF is
balanced in both beams; this causes the platform to navigate to the center as it
progresses along the corridor. Figure 2b shows results for a continuous square corridor.

(a)

(b)

(c)

Figure 2 Cognitive guidance and control using echoic flow for (a) a straight
corridor, (b) a closed loop and (c) a closed loop with obstacles. Arrows indicate

location and forward direction; green arrow indicates starting location & direction.
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The control rule successfully steers the platform to navigate the loop. Although a
notional steady state is reached after the second corner is passed, the robotic vehicle
doesn’t follow exactly the same trajectory on future circuits due to slight difference in
orientation producing a slightly different perception-action combination. The final
configuration, Figure 3(c), is a continuous square corridor with obstacles. While the
platform is able to successfully navigate around the obstacles, it does deviate from the
steady state condition in their aftermath. Nevertheless the platform avoids the wall and
proceeds without collision around the entirety of the corridor using just a single
instruction.

Flow fields can be coupled together, that is to say they can be linked such that action
based on one field can be directly associated with another. The coupling can be
expressed by a simple linear relationship

ఞ߬ = ݉ ఊ߬ (4)

where ఞ߬ is the time to close a gap between the current value and a desired value of a

parameter .߯ In other words the parameter ߯ can represent, range, angle or even echo
power. Equation (4) couples the flow fields of ߯ and ߛ such that both gaps must close at
the same moment in time, but that the gap in ߯ closes ݉ times faster than that in .ߛ
This allows the simple example above to be easily extended to three-dimensional
trajectories.

A cognitive radar system can measure range, ,ݎ and angle, ,ߠ accurately and through (4)
couples the flow fields as ߬ ൌ ݉ ఏ߬ so that the range and angle gaps close at the same
time. Consider the example of a radar sensor (on a vehicle) intercepting a moving target
following a non-ballistic, or irregular trajectory. The radar sensor measures the range, ,ݎ
and angle, ,ߠ to the target on a pulse-by-pulse basis. Over two pulses the radar is
therefore able to perceive the flow field for the parameters as

ఞ߬ = ߯ ( ߯ − ߯ିଵ)⁄ (5)

where ߯ is either orݎ ߠ and ݊ is the pulse number.

Replacing withݎ ߯ in (2), to indicate application of the equation to a general parameter,
and re-arranging gives an expression for the acceleration

߯̈ = ߯̇ଶ൫1 − ߬̇ఞ൯ ߯⁄ (6)

This is the acceleration required, based on the current time to collision, to close the gap
in the parameter .߯ During the action phase of the cycle the radar sets the linear and
angular accelerations of the platform to the values obtained from (6). This is repeated
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every pulse from the second pulse allowing control of the platform velocity and heading
direction.

Figure 3. Interception of a moving target. The guidance and control of the sensor
platform is achieved using the echoic flow measured in the andݔ ݕ directions and the

two flow fields are coupled.

Figure 3 shows a platform being guided by a radar that processes echoic flow
intercepting an accelerating target. The radar is capable of perceiving the flow in the x
and y directions based on its measurements of range and angle. The decision to use the
x and y directions rather than range and angle is for ease of simulation implementation
and not to suggest they are preferable. The two fields are coupled and through (4) and
(6) updates to the platform acceleration can be calculated from each radar pulse to
guide the platform to the target. The initial velocity of the sensor is 20 ms-1 with a
heading angle of 45°, measured from the y direction. The acceleration is set to 0 ms-2

and is along the heading direction. The target location is 250 m from initial platform
position and the angle between the line of sight (LOS) and the heading direction is 20°.
The target will be assumed to have an initial velocity of =୲୲࢜ 10 × [sin 20 cos 20]

ms-1 and an acceleration of =௧௧ࢇ −0.5 × [0 1] ms-2. At the end of the simulation,

the final target velocity was [3.4 −5.6] ms-1 while the platform final velocity vector

was [3.6 −5.5] ms-1. The absolute error between the two velocities is small, just
0.2 ms-1.

This example of guidance and control demonstrates how, when the right perception is
taken from the radar data, i.e. echoic flow, actions can be decided on easily. Here, the
action is to correctly set the vector acceleration such that the target is intercepted and
its heading and speed are matched. The acceleration is calculated (action decided on)
using (6), with the distances to the target in the andݔ directionsݕ substitutd in for ,߯
and (4) resulting in a deterministic implementation of the perception-action cycle. The
cycle is normally considered to act in the presence of memory; here we might consider
the memory to be the fixed value of ሶ߬required in (6) and the value of ݉ from (4). The
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system remembers which value of ሶ߬and ݉ to use, 0.5 and 2.14, respectively, in the
example, to obtain a desired approach trajectory.

Echoic flow based cognitive guidance and control has many applications in the real
world. One example would be a landing aid for a helicopter approaching the helipad on
a ship. The ship is moving in the sea, so even if the helicopter remained stationary, the
range would vary. If the helicopter is decending, equation (6) provides a deterministic
implementation of the perception-action cycle in which the required action—braking ,ሷݎ)
substituted in for ሷ߯in (6))—can be determined based on the perception or
measurement of echoic flow. Since the echoic flow perception is time varying, the
motion of the helipad merely changes the instantaneous estimation of the flow and the
braking action automatically adjusts susch that the landing type, determined by the
control constant, ,݇ will still occur. As a more sophisticated example, if the target in
Figure 3 were considered to be a space in a line of moving traffic then it is clear that
echoic flow could be used to allow a self guiding car to merg in. Clearly echoic flow has
many potential applications and is a demonstration of the power of cognition coupled
with radar sensing.

Biomimetic discrimination
Echoic flow offers a powerful method for guidance and path planning, however, it is
only one aspect of the bat’s cognitive process; another equally significant cognitive
ability is the bat’s ability to distinguishing legitimate sources of nourishment from other
objects. In other words, the bat is able to recognise desirable objects from their acoustic
signatures, a capability that is highly desirable in radar and sonar systems.

By visiting flowers for nectar, the bat is responsible for pollen transfer between different
individual plants and hence plays a key role in plant pollination. In other words,
although the short-term interest of the bat is solely efficient feeding, it is in the long-
term interest of both the bat and plant species for pollination to take place successfully.
Because of this, it has been hypothesised that co-evolution of bat and plant may have
contributed to forming the shape and structure of bat-pollinated flowers in order to
ease classification by bats [11-16]. Thus the ingredients for successful classification are
in-built and this makes an ideal study case for deducing techniques applicable to
synthetic echoic sensing. Recognition of flowers by bats is a demanding task, but nectar-
feeding bats succeed in foraging using echolocation alone [e.g. 10, 11].

As a result of co-evolution, plants will have developed to provide clues in the echo
responses obtained by the bat. In particular, bats have to distinguish between good
flowers, wilting flowers and buds as well as timing their feed for maximum effect
(efficient eating and energy consumption). It would seem likely, therefore, that
characteristics indicating the difference between these flower states are embedded in
echoes of the bat’s cry to facilitate discrimination. In this research the floral echoes are
examined to evaluate their dominant features and better understand how the bat might
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utilize them. Ultimately, this knowledge may inform on how to interpret the target
information available in manmade synthetic aperture radar and sonar images.

The “Rhytidophyllum auriculatum hook” is a bat-pollinated plant that grows in the
Caribbean region and produces small flowers whose nectar is extremely attractive to
bats (Figure 4).

Figure 4. The “Rhytidophyllum auriculatum hook” is a bat-pollinated plant
that grows in the Caribbean region. The photo on the right shows a flower corolla taken from the plant

grown at University of Bristol with its main components. The flower corolla was around 1 cm long.

Echoes from this plant are ideal for investigating the information sensed by the bats, as
well as the relationship between the echo and the maturity status of the Rhytidophyllum
auriculatum plant. Two datasets containing High Range Resolution Profiles (HRRPs) of an
open flower and a bud of Rhytidophyllum auriculatum are compared. Of course we
cannot be certain the bat processes received echoes as HRRPs but it biological analysis
has proposed bats to be sensitive to target range and the range differences between
parts of a target [14].

The bat has to be able to discriminate between nectar-bearing open flowers and closed
buds. Although the form of the bat’s neural signal processing is largely unknown, we
expect the HRRPs of the bud to therefore be significantly different from those of open
flowers. Closed buds are physically smaller than open flowers. Consequently the amount
of energy they reflect is lower than for open flowers. Thus overall echo strength can be
one factor in helping the bat distinguish between open flowers and closed buds.

HRRP data was collected at the School of Biological Sciences at the University of Bristol
in 2009. Flowers were impaled on a thin metallic pin (1.5 mm diameter) placed at the
center of a horizontal turntable. The turntable was set so that HRRPs could be measured
at 1° angular intervals. The Rhytidophyllum auriculatum plant was ensonified using a
custom-built loudspeaker emitting pulses over which the frequency was linearly
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decreased from 200 kHz to 50 kHz. The resulting HRRPs have a range resolution of
approximately 1.5 mm. This was experimentally measured as the width of the main lobe
of the cross-correlation function between the transmitted chirp and the echo generated
by a metallic flat plate. Facsimiles of bats’ calls were digitally encoded, amplified with a
Piezo Driver/Amplifier Series, Treck, PZD 350 M/S and emitted through an ultrasound
loudspeaker. Echoes were recorded with an ultrasound microphone and digitised at a
sampling rate of 500 kHz. A measurement of the background was removed from the
echoes before subtracting the data mean value. The Hilbert transform of each echo was
then cross-correlated with that of the transmitted waveform to generate the HRRPs. A
much more detailed description of the experimental facility can be found in [17].

Figure 5a shows the HRRPs plotted as a function of orientation angle for an open
Rhytidophyllum auriculatum flower. The complex structure of the scattering from the
corolla is visible over the entire angular range. There are discernable regions of both
high and low reflectivity that persist over large angles. Whilst complex, the HRRPs are
far from random, but a route to correct recognition is not obvious.

The flower is broadly bell-shaped. This results in a relatively large echo being reflected
over the wide range of angles, making them easier to detect against the background.
The petals contribute significantly to the amount of reflected energy. Indeed, the petals
are themselves visible over a wide angular window that spans at least ±90°.

Figure 5b shows HRRPs when the Rhytidophyllum auriculatum bud was ensonified. The
structure of the HRRPs of the bud is very different from that of the open flower. Again,
scattering is present over all angles but the level of complexity in the HRRP’s is reduced
giving them a more sparse appearance. The image suggests only one or two discrete
scatterers are now contributing to the HRRPs. At an angle of 0° (when the sensor
directly faces the bud), the scattering is weaker than at any other angles. This is due to
the ensonified surface now being smaller that at any other angles and sloping away
from the direction of the sensor. There is also scattering caused by the sepals that cover
the back of the corolla. This is visible at around 21.5 cm and exists over all angles
between ±90°.

These results illustrate that specific parts of the flower contribute to the overall
information sensed by the bat. The HRRP responses for the open and closed flower
show how information is modified as the flower changes appearance both in terms of
the total reflected signal as well as the detailed structures shown in the HRRPs.
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Figure 5. Magnitude of the HRRPs of a) a Rhytidophyllum auriculatum open flower and b) a
Rhytidophyllum auriculatum bud. The structure of the bud is very different from that of the open flower.

This may be thought as the flowers way to attract the bat attention. The color scale indicates the echo
strength in [dB] normalised to the maximum echo value.

However, the bat has a much more complex task in approaching and selecting flowers
suitable for feeding. It has to do this in an area of highly dense scattering caused by
many Rhytidophyllum auriculatum flowers of different ages as well as other plants not
suitable for feeding. The bat has to be able to process echoes to gather the right
information for successful feeding [18]. It seems likely that the bat’s (echoic flow) flight
trajectory in approaching the flower is also a contributory element in extracting
information in the recognition of suitable nectar-bearing open flowers. Because the
plant species perpetuates through the resulting pollination, the spatial and shape
arrangements between individual flowers, buds and Calyxes (i.e. flowers without the
corolla) have all evolved to give the bat the necessary information to succeed in the task
of flower recognition.

Differences between echo responses from buds, calyxes and open flowers allow the bat
to detect and recognise the correct target (the open flower). The bell-shaped flowers act
as efficient retro-reflectors over a broad range of angles correspondingly causing a large
echo at all angles. This alone helps make them easier to detect. Closed buds and calyxes
scatter less energy back towards the bat. These differences between echo strengths are
exploited by the bat and help to plan the approach trajectory to the nectarium (the part
of the corolla that contains the nectar).

Figures 6a, b and c show HRRPs as a function of azimuth and elevation angle. The
measurements were made with the same apparatus described earlier. The vertical-axis
is the distance in metres between the artificial bat-head and the centre of rotation of a
turntable located at a distance of approximately 20 cm. The horizontal axis is the angle
between the horizontal turntable and the bat-head. At 0° the bat-head directly faces the
plant. The color coding indicates echo strength and has been normalised to the
maximum echo value.
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Figure 6a shows, at a 0° depression angle, that the scattering from the two buds located
on the left of the open flower (as viewed from the front) is clearly visible at a distance
between 16 cm and 18 cm. The bud scattering is present over a large angular window
between -80° and 0°. The scattering from the bud located on the same side as the open
flower superimposed with echoes from the dead branches is visible between -30° up to
+80° at a distance from 16 cm to about 19 cm. The open flower protrudes maximally
and hence is visible at the nearer range of about 14 cm. Its reflections are more
directional than those of the buds.

In Figure 6b (-25° depression angle) the scattering from the two buds located on the
right of the open flower is clearly visible between 16 cm and 18 cm and again is present
over a large angular ambit from -80° and 0°. However, the scattering from the two buds
on the left hand side is much weakened. This illustrates the strong dependence of the
scattering on relative orientation between the bat and the ensonified object. The open
flower still protrudes maximally and is visible at a range of about 14 cm. As before, its
reflections are more directional than those associated with the buds.

The vertical plane HRRPs are shown in Figure 6c. The Figure shows that scattering from
the buds and the dead branches with Calyx is visible at a distance of 16 cm and persists
over almost all perspectives. The open flower is visible at a distance of 14 cm and over a
smaller angular window between -25° and -10°. This is typical of the comparatively
higher directionality of floral echoes in the vertical plane. The bell shape of the flower
provides the bat with a strong echo response over a broad range of azimuth and
elevation angles. The figures also show the open flower protruding which helps to
facilitate separation from buds, calyxes, and background clutter.

Nectar-feeding bats have a remarkable ability to extract information from echoes by
exploring a number of vertical and horizontal perspectives. They use a lot of hovering flight
which can certainly help them build up a profile of acoustic flow field images across different
angular profiles [19]. This aids selection of an appropriate approaching angle into the
corolla. Information is exploited in a wide variety of ways. The analysis of HRRPs carried
out above suggests that the magnitude of echoes, and the detailed and angular
dependent echo structures, might all combine to enable successful recognition.
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a) b)

c)

Figure 6. Inflorescence of a R.auriculatum plant composed of an open flower and three buds measured a)
horizontally from a vertical angle of 0° b) horizontally from a vertical angle of -25° and c) vertically from a
horizontal angle of 0°. The 0° aspect angle corresponds to the artificial bat-head being placed at the same
height as the centre of rotation and facing the 0° direction. The image shows the more complex structure

and higher directionality of flowers in the horizontal and vertical planes. The flower also protrudes and this
facilitates separation from buds, calyxes and the background. The color scale indicates the echo strength

in [dB] and it has been normalised to the maximum echo value.

To explore this further in the context of synthetic sensing, HRRPs of a car and a tank are
measured in the same way as for the flowers. Figure 7 shows photos of the two (scaled)
targets used together with their corresponding HRRPs. The HRRPs were collected over
an angular ambit of 180° at 1° intervals. Across this broad range of angles, it is clear the
echo responses from the two objects are very different but also exhibit a complexity
that makes recognition challenging.
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Photo of the scaled Ford car and the scaled T55 tank used for the experiments.

a) b)

Figure 7. Amplitude of the HRRPs of a) the scaled Ford car and b) the scaled T-55 tank over an angular
window between -90° and +90°. The 0° aspect angle corresponds to the artificial bat-head being placed at
the same height as the centre of rotation and facing the front side of the target. The color scale indicates

the echo strength in [dB], normalised to the maximum echo value.

To examine how recognition might be affected by the relative orientation between the
sensor and the target, classification performance discriminating the two targets is
computed as a function of look-angle. Classification performance is assessed using a k-
NN classifier. In this specific case the ܰ௧ profiles separated by a constant angular
step ൌݏ Ͳ͵° were extracted from each object to train the classifier. These were used to
form a training set U. The remaining ܰ௧௦௧HRRPs in each class were used to form the
test set W. Features were extracted from the profiles and used for training. The

ܰ = 20 features were extracted from each HRRP using the Principal Components

Algorithm (PCA) similar to [17] to generate the feature based training set D and test set
E. Classification performance was assessed as a function of the width of the target
sector.

Figure 8 shows a plot of the results as a function of angle for 10°, 15° and 20° sector
sizes. Each angle on the x-axis corresponds to the first HRRP belonging to the target
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sector. For example the peformance at 0° for the 10° large sector corresponds to the
case when the test set was formed with all HRRPs from 0° to 9°. The training set
remained constant.

Figure 8: Classification performance as a function of angle for three different sector widths: 10 degrees,
15° and 20°. The image shows there are angles that provide best separation between the two targets. If

selectable, these would represent a more optimum choice for target classification.

Figure 8 shows that classification performance can vary significantly as a function of
illumination angle with the sector width only having a small influence. Thus there are
angles that provide best separation of the two targets that, if selectable, would
represent a more optimum choice.

Summary and Conclusions
Echoic flow is an inherently cognitive concept embodying perception linked to action. It
provides a powerful yet simple rationale for autonomous guidance and control
consistent with behavior observed in natural systems. These properties make it highly
suited to many radar and sonar sensing applications. Flow fields are readily computable
from radar measurements of range and angle to a target or object. They provide a
convenient metric indicating a gap closure time between the radar and an object
regardless of the motion of either. By perceiving the environment in this manner the
cognitive decision making process is straightforward enabling selection of appropriate
actions based on information extracted from the received radar signal.
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However, more complete and capable cognitive sensing system requires the ability to
recognize and categorize information in any given scenario. A key component is a robust
and reliable discrimination function. Bats are able to use coarse information such as
echo strength combined with the fine detail provided by (perhaps) HRRPs augmented by
observation at multiple different orientations. Exploitation of this approach in synthetic
sensors is challenging, but the insights provided through observation and measurement
of natural systems is pointing the way to new approaches offering genuine promise.

These are but two ways in which synthetic echolocation sensing can begin to adopt
processing approaches that exploit new freedoms offered by a cognitive approach.
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