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ABSTRACT 25 

Environmental risk analysts need to draw from a clear typology of uncertainties when 26 

qualifying risk estimates and/or significance statements about risk. However, categorisations 27 

of uncertainty within existing typologies are largely overlapping, contradictory, and 28 

subjective, and many typologies are not designed with environmental risk assessments 29 

(ERAs) in mind. In an attempt to rectify these issues, this research provides a new 30 

categorisation of uncertainties based, for the first time, on the appraisal of a large subset of 31 

ERAs, namely 171 peer-reviewed environmental weight-of-evidence assessments. Using this 32 

dataset, a defensible typology consisting of seven types of uncertainty (data, language, 33 

system, extrapolation, variability, model, and decision) and 20 related sub-types is developed. 34 

Relationships between uncertainties and the techniques used to manage them are also 35 

identified and statistically evaluated. A highly preferred uncertainty management option is to 36 

take no action when faced with uncertainty, although where techniques are applied they are 37 

commensurate with the uncertainty in question. Key observations are applied in the form of 38 

guidance for dealing with uncertainty, demonstrated through ERAs of genetically modified 39 

higher plants in the EU. The presented typology and accompanying guidance will have 40 

positive implications for the identification, prioritisation, and management of uncertainty 41 

during risk characterisation. 42 

  43 

 44 

 45 

 46 

 47 
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INTRODUCTION 50 

Uncertainties within environmental risk assessments (ERAs) need to be properly 51 

managed to enable risk estimates to be used as a sound basis for risk management actions 52 

(van der Sluijs et al. 2004; Refsgaard et al. 2007). National and international regulatory 53 

bodies stress the importance of acknowledging and dealing with uncertainty in ERAs during 54 

the risk characterisation phase (Fairman et al. 1998; USEPA 1998; DEFRA 2011). 55 

Implementing such guidance starts by identifying potential types of uncertainty (Morgan et 56 

al. 1990), at which point it is essential that environmental risk analysts are able to draw from 57 

a clear and defensible typology of uncertainties (Knol et al. 2009; Ramirez et al. 2012). 58 

Existing typologies have limitations, relating primarily to research domain transferability and 59 

content reliability (Walker et al. 2003; Ascough II et al. 2008; Knol et al. 2009; Troldborg 60 

2010). In this paper, we present the development of an evidence-based typology of potential 61 

uncertainties in ERAs which, together with implementation guidance, aims to resolve the 62 

issues surrounding existing categorisations and better equip environmental risk analysts when 63 

attempting to identify and manage uncertainty. 64 

There are a wide range of different types of evidence that can be used to formulate 65 

and evaluate risk estimates within ERAs (e.g. toxicological, biological, financial). In some 66 

situations, different lines of evidence are amalgamated and the degree to which they support 67 

or refute hypotheses about risk is evaluated (Linkov et al. 2009). This process, termed weight 68 

of evidence (WOE), aims to provide either a definitive course of action for decision-makers 69 

where the evidence may be contradictory, or identifies missing information needed to form a 70 

definitive conclusion (Chapman 2007). WOE can be applied to ERAs (as well as to 71 

ecological or human assessments), but is not recognised as being a specific type of ERA 72 

(Suter II and Cormier 2011) and is not consistently defined (Weed 2005). ERAs that apply 73 

WOE methods follow the same four phases (problem formulation, exposure assessment, 74 
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effects assessment, and risk characterisation; DEFRA 2011) as ERAs that do not use WOE 75 

methods, and can therefore be used to identify a useful and manageable dataset to assess how 76 

uncertainty is categorised and managed across the much larger set of available ERAs in 77 

different risk domains. 78 

It is largely agreed that environmental uncertainty is comprised of different aspects, 79 

commonly termed dimensions (Janssen et al. 2003; Walker et al. 2003; Knol et al. 2009). 80 

These dimensions relate to: the inherent nature of the uncertainty, either epistemic 81 

(limitations in our knowledge) or aleatory (the randomness of natural systems and their 82 

components); the severity of the uncertainty, ranging from deterministic treatment at one end 83 

of the spectrum to indeterminacy at the other; and the location of the uncertainty, which 84 

describes where, in applied situations, the uncertainty manifests. As different uncertainties 85 

must be managed differently using different techniques (van der Sluijs et al. 2004; Refsgaard 86 

et al. 2007), identifying the different types of uncertainties that exist in applied situations is 87 

an essential part of uncertainty management (Morgan et al. 1990). A typology of uncertainty 88 

can aid this process by providing comprehensive, relevant, and reliable categorisations 89 

(complete with definitions) of all potential types of uncertainty that may be encountered (van 90 

Asselt and Rotmans 2002; Knol et al. 2009). However, existing typologies are based on 91 

small-scale literature reviews, amalgamations of existing frameworks, or researcher opinion 92 

(Table 1). As a result, the typologies often contain contradictory definitions and terms, 93 

communicate varying frequencies of uncertainty, are rarely comprehensive within their 94 

intended research domains, and do not include a clear method for the collection and collation 95 

of the evidence base. Furthermore, whilst these typologies may be applicable in a wider risk-96 

context, they are not designed specifically for use with ERAs. Since the overall reliability of 97 

a typology relies on the legitimacy of the adopted categorisation(s), in the context of ERAs, it 98 

is crucial that this is rectified. 99 
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[TABLE 1 NEAR HERE] 100 

This research offers a new categorisation of uncertainties based on the appraisal of a 101 

large subset of ERAs in which uncertainties have been transparently identified. As the 102 

evidence base is formed of peer-reviewed environmental ERAs that feature WOE methods, 103 

the assertions made in this article span a diverse set of interests, making the resulting 104 

typology relevant across a number of distinct risk-based research domains. The typology is 105 

combined with an analysis of the adoption of uncertainty management techniques (UMTs) 106 

used when faced with different uncertainties, and guidance for dealing with uncertainty 107 

drawn from key observations. 108 

Uncertainty analysis should be a principal component of risk characterisation and thus 109 

ERAs. In reality, this is rarely the case. The introduction of an uncertainty typology that 110 

consults a manageable subset of the vast available ERA evidence base, coupled with 111 

prioritised guidance, will assist risk analysts in their attempts to prioritise, identify, and 112 

manage uncertainties within applied ERAs. 113 

 114 

METHODOLOGY 115 

Building the Evidence Base 116 

In order to categorise uncertainty in ERAs that feature WOE methods (hereafter 117 

termed WOE-ERAs) and analyse the use of techniques in their management, an evidence 118 

base of peer-reviewed literature was established. Searches were conducted for directly 119 

labelled WOE-ERA literature, using the ISI Web of Science and Scopus academic databases, 120 

respectively, and using the terms weight, evidence, risk, and uncertainty (in the title, abstract 121 

and keywords field for Scopus, and in the topic field for ISI Web of Science). Non-labelled 122 

WOE-ERA literature was also searched for, using the terms risk, assessment, and uncertainty 123 

(in the title, abstract and keywords field for Scopus, and in the topic field for ISI Web of 124 
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Science). In-built filtering within the online databases was used to remove obviously non-125 

relevant literature (non-English articles, book series articles, articles from the domains of 126 

social science, arts and humanities) before the remaining articles were assessed for inclusion 127 

based on the following criteria: 128 

 the article must include (or be in its entirety) an ERA that applies either a qualitative, 129 

semi-quantitative, or quantitative WOE methodology (after Linkov et al. 2009); 130 

 the assessment must make direct reference to the uncertainties to be recorded within 131 

this research, thereby minimising researcher-subjectivity when creating the typology;   132 

 the assessment must be original research and not a review of previously published 133 

work, in order to avoid duplicate values; and 134 

 an aspect of the environment must feature in at least one part of the source-pathway-135 

receptor (S-P-R) paradigm, where the environment “… consists of all, or any, of the 136 

following media, namely the air, water, or land” (EPA 1990). 137 

These criteria ensured that only original (i.e. non-review-based) environmentally-focused 138 

WOE-ERAs (including ecological, environmental, and human-health risk assessments) that 139 

specifically mentioned uncertainty were included within this study, whilst the general search 140 

terms used allowed representation from a wide range of research domains. 141 

 142 

Data Collection 143 

The articles (conforming to the selection criteria) were examined in full and relevant 144 

information was extracted and recorded in separate spreadsheet entries. A working list of 145 

definitions was kept to ensure that observations were consistent and distinctions between 146 

uncovered uncertainties were not blurred. Importantly, no upper limit was set as to the 147 

number of UMTs that could be associated with each identified uncertainty type. 148 

 149 
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 150 

Data Organisation 151 

The uncertainty data were organised using an iterative category clustering technique 152 

(Hartigan 1975). The different objects (i.e. the uncertainties) were categorised into distinct 153 

groups, such that the degree of association between any two objects was maximal if they 154 

belonged to the same group and minimal otherwise. In this way, the articles (from the data 155 

collection stage) were organised into groups by relevance to other similar data values. To 156 

reduce the potential for subjectivity in assigning objects to groups, the process was performed 157 

iteratively, with definitions and categorisations continually refined. 158 

 159 

Data Analysis 160 

The frequencies with which the different locations and sub-locations of uncertainties 161 

were associated with the UMTs were recorded. These were converted to percentage values of 162 

total occurrences in order to identify the most commonly occurring relationships. A separate 163 

bivariate analysis was performed using SPSS v18 (SPSS Inc., Chicago IL) to quantify the 164 

relationships between all two-variable combinations (P ≤ 0.01). 165 

 166 

RESULTS 167 

Data Frequencies and Organisation 168 

Uncertainty typology 169 

Analysis of the collected WOE-ERA literature (n=171 assessments), in conjunction 170 

with iterative clustering of the extracted data (Figure 1), revealed 20 separate types of 171 

uncertainty (Table 2), with a total of 385 individual occurrences. The data uncertainty (n=125 172 

out of 385; 32.5%) and extrapolation uncertainty (n=110; 28.6%) locations were the most 173 
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frequently occurring, with the decision uncertainty (n=6; 1.6%) and language uncertainty 174 

(n=16; 4.2%) categories the least frequent. 175 

[FIGURE 1 NEAR HERE] [TABLE 2 NEAR HERE] 176 

Uncertainty management techniques 177 

Data extracted from the sources highlighted the use of a variety of UMTs (n=27), with 178 

a total of 453 separate applications. Occurrence proportions of the most frequently occurring 179 

mechanisms are shown in Table 3, along with brief descriptions and associated uncertainties. 180 

Monte-Carlo simulation was adopted most frequently (n=100 out of 453; 22.1%), followed 181 

by uncertainty factors (n=75; 16.6%), sensitivity analysis (n=38; 8.4%), and 'taking no action' 182 

(n=35; 7.7%). 183 

[TABLE 3 NEAR HERE] 184 

Relationships Between Uncertainties and Uncertainty Management Techniques 185 

Frequency relationships 186 

The highest frequency relationships between the uncertainty locations and UMTs 187 

employed (Figure 2) occurred between data uncertainties and Monte-Carlo simulation (n=56 188 

out of 453 relationships), between extrapolation uncertainties and uncertainty factors (n=40), 189 

and between extrapolation uncertainties and Monte-Carlo simulation (n=18). On a 190 

proportional basis, the highest dependencies were seen between language uncertainties and 191 

fuzzy logic (68.8%; i.e. language uncertainties were managed with fuzzy logic in 68.8% of 192 

cases), model uncertainties and sensitivity analysis (35.1%), and data uncertainties and 193 

Monte-Carlo simulation (34.4%). Overall, uncertainties were associated with at least one 194 

UMT in 92.3% of cases, and were therefore unmanaged 7.7% of the time. 195 

[FIGURE 2 NEAR HERE] 196 

 197 

 198 
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Statistical relationships 199 

The strongest correlations between the uncertainty types and UMTs (Figure 3) 200 

occurred between decision uncertainty and adaptive management (ρ=0.57), spatial 201 

(extrapolation) uncertainty and interpolation (ρ=0.46), and cause (system) uncertainty and 202 

causal influence (ρ=0.40). A similar strength correlation occurred between the portion of data 203 

uncertainties used as parameter values in computational and/or numerical models (and 204 

therefore consist of repeated values from within the data location; marked model input in 205 

Figure 3) and Monte-Carlo simulation (ρ=0.32). 206 

Positive correlations were also observed between several uncertainty-location/UMT 207 

combinations, where all individual uncertainty types within the location shared a positive 208 

correlation with the respective UMT. The strongest of these relationships were language 209 

uncertainties with fuzzy logic (ρ=0.45) and fuzzy-stochastic systems (ρ=0.24), and model 210 

uncertainty with sensitivity analysis (ρ=0.29). 211 

[FIGURE 3 NEAR HERE] 212 

 213 

DISCUSSION 214 

An Improved (Evidence-Based) Uncertainty Typology 215 

The existing uncertainty typologies (Table 1) are predominantly based within specific 216 

research areas, using categorisations that are primarily relevant to those fields. They 217 

communicate varying frequencies of uncertainties, often in a contradictory fashion, and use a 218 

number of different approaches in their construction, including small-scale literature reviews 219 

(e.g. Regan et al. 2002) and amalgamations of existing frameworks (e.g. Ascough II et al. 220 

2008). This has led to overlapping and contradictory sets of categorisations. The uncertainty 221 

typology presented in Table 2 addresses the following issues: 222 
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 The set of articles analysed included ecological, environmental, and human-health risk 223 

assessments. Although the specific requirements of these assessments differ, they do 224 

contain the same four phases and many of the same processes (US EPA 1998; Zhang et 225 

al. 2010; DEFRA 2011). Therefore, the developed typology does not restrict 226 

observations to narrowly-defined research domains (e.g. conservation biology) but 227 

instead extends the focus to all concerns of an environmental nature, enabling the 228 

typology to be more transferrable and relevant to a larger number of risk analysts.  229 

 Using WOE-ERAs, which contain a variety of ERA techniques as well as distinct forms 230 

of evidence, increases the potential for a larger spectrum of uncertainties to exist. This is 231 

reflected in the typology which, containing 20 distinct forms of location-based 232 

uncertainties arranged according to their natures, is the most extensive to date.  233 

 By constructing and interrogating a large supporting evidence base of peer-reviewed 234 

articles (n=171) all uncertainty categorisations within the typology are supported and 235 

defensible. 236 

  237 

 It is also pertinent to address the potential limitations associated with the method used 238 

to construct the typology and its resulting categorisations: 239 

 Dependence on existing assessments to contain reliable information. This limitation may 240 

have been realised where incorrect information was presented within the sourced 241 

materials, though the peer-review process was expected to resolve these errors. Perhaps 242 

of more concern was the potential omission (rather than incorrect inclusion) of important 243 

uncertainties; key uncertainties that went unidentified in the source materials could not 244 

feature in the typology. However, the evidence base of 171 assessments was believed to 245 

be extensive enough to account for all potential uncertainties. 246 
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 Subjectivity in the information clustering process. The clustering process used to form 247 

categorisations within and between the different types of uncertainty, whilst efficient and 248 

effective, did require an element of subjectivity on the part of the researcher. This type of 249 

qualitative clustering has the potential to blur definitions, thereby reducing the clarity of 250 

the clustered output. This potential limitation was managed as far as possible by making 251 

the clustering process transparent (see Figure 1). 252 

 Representativeness of the typology for application to ERAs. Limiting the included studies 253 

to WOE-ERAs may have led to biases within the evidence base, which would have been 254 

transferred into the typology. One potential bias was a focus on risk domains in which 255 

WOE-ERAs are commonly used. This potential limitation may result in a lack of 256 

representativeness when applying the typology to non-WOE-ERA scenarios. However, 257 

when weighed against other viable alternatives, such as building an evidence base of 258 

ERAs based in specific risk domains, the WOE-ERA approach was deemed to be the 259 

most representative for future application of the typology. 260 

The outlined advantages together with the management of potential limitations ensures that 261 

the presented typology addresses the issues associated with existing categorisations. 262 

 263 

Defining Uncertainty 264 

The nature of uncertainty 265 

 Interrogation and analysis of the WOE-ERAs (n=171) identified a total of three types 266 

of nature-based uncertainty, which are discussed in detail here. 267 

 268 

Aleatory uncertainty 269 

 Aleatory uncertainty represents the inherent randomness displayed in human and 270 

natural systems (Bedford and Cook 2001; Ascough II et al. 2008). Aleatory uncertainty 271 
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cannot be reduced, although additional research may help to better understand the 272 

complexities of the system(s) of interest. Whilst such systems may in actuality be chaotic 273 

rather than random (and are therefore in principle understandable; Regan et al. 2002), risk 274 

analysts find it useful to treat the associated uncertainties from the latter position. For 275 

example, stochastic numerical techniques (such as Monte-Carlo simulation and Latin 276 

Hypercube sampling) act as realistic representations of real-world processes, which are either 277 

viewed as being too complex for deterministic interpretation (e.g. seismic activity) or as 278 

inherently random (e.g. weather systems). However, in mimicking nature, stochastic models 279 

can produce results that are consistently more representative than their deterministic 280 

counterparts (Hromkovic 2005). 281 

 282 

Epistemic uncertainty 283 

 Epistemic uncertainty (Bedford and Cooke 2001; Walker et al. 2003; Petersen 2006; 284 

Ascough II et al. 2008; Knol et al. 2009) represents the imperfection of knowledge 285 

concerning a system of interest. Epistemic uncertainty can be quantified, reduced, and 286 

possibly eliminated, depending on the specific situation. However, whilst epistemic 287 

uncertainty is in principle reducible by increasing relevant knowledge, this new information 288 

can reveal the true depths of our ignorance, only serving to increase the associated 289 

uncertainty (Janssen et al. 2003; van der Keur 2008). 290 

 291 

Combined uncertainty 292 

This research introduces a combined epistemic and aleatory category, reflecting the 293 

potential for the location-based uncertainties contained within it to incorporate both epistemic 294 

and aleatory aspects, and forcing a separation from those sets. For example, model 295 

uncertainty may incorporate system uncertainty, which can reduce confidence in the structure 296 
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of a model, as well as variability uncertainty, which may cast doubt over the validity of the 297 

model’s output. For this combined category, reducing secondary uncertainties associated with 298 

incorporated groups is just as important as managing the primary failings. 299 

 300 

The location of uncertainty 301 

 Interrogation and analysis of the WOE-ERAs (n=171) identified a total of 7 main 302 

types of location-based uncertainty and 20 related sub-types, which are discussed in detail 303 

here. 304 

 305 

Data uncertainty 306 

Data are used extensively in risk assessments, not least environmental WOE-ERAs. 307 

For example, data may be used to draw attention to a source of environmental danger, to 308 

assess the degree of harm imposed upon a valued asset, or to support or refute damaging 309 

claims made against an individual, organisation, or even nation. Whether empirical or 310 

experimental, all data carries a level of inherent confidence associated with its truth and 311 

correctness. Identifying potential sources of uncertainty within data can help to distinguish 312 

between the reliable and the unreliable.  313 

Data uncertainties can be further arranged into three groups: availability, referring to 314 

the incompleteness, scarcity, or absence of data (i.e. data is not available); precision, 315 

concerning the lack of accuracy in obtained data (i.e. data is not precise); and reliability, 316 

reflecting its trustworthiness (i.e. data is unreliable, possibly due to errors associated with its 317 

processing, statistical analysis, or presentation). The data reliability sub-location, which 318 

accounts for 20.8% of all uncertainties within the WOE-ERA evidence base, primarily 319 

reflects the measurement and systematic sub-categories seen within existing typologies 320 

(Table 1). 321 
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 322 

Language uncertainty 323 

 Language is used both in conjunction with and separately to data. The uncertainties 324 

associated with language arise for a number of reasons, but stem primarily from a lack of 325 

clarity. Language can be used to express ideas and commands or to communicate the final 326 

results of assessments; its use is unavoidable and necessary. 327 

 Linguistic uncertainties are comprised of three types: ambiguity, where multiple 328 

meanings are possible; underspecificity, where meanings are not exact; and vagueness, where 329 

meanings are not clear and understandable. The use of a single field-specific term can carry 330 

all three linguistic uncertainties: it may not be clearly defined and therefore have many 331 

meanings throughout the community (ambiguous); its use may be superseded by a more 332 

relevant and accurate term (underspecific), and certain members, especially those from 333 

outside the field, may have heard of the term, but have a limited understanding of its true 334 

meaning (vague; Acosta et al. 2010). 335 

 In previous typologies, language uncertainties (if included at all) were typically 336 

separated into their own category (e.g. Morgan et al. 1990; Regan et al. 2002; Ascough II et 337 

al. 2008), but are here deemed to be epistemic. The uncertainties associated with language 338 

arise for a number of reasons, but stem primarily from a lack of clarity (Morgan et al. 1990). 339 

However, the definitions, contexts, and applications associated with language can be 340 

controlled (Regan et al. 2002). Theoretically, language uncertainties can be quantified, 341 

reduced or even removed – techniques such as fuzzy logic are testament to this – equating 342 

them with the other uncertainties (data and system) within the epistemic set. Despite their 343 

relatively low levels of occurrence within the WOE evidence base (of just 4.7%; Figure 4.2), 344 

communicating the epistemic quality of language uncertainties allows analysts to approach 345 

them with reduction and elimination in mind, which may previously not have been the case. 346 
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 347 

System uncertainty 348 

 System uncertainty tallies closely to scientific understanding; if the understanding is 349 

low the uncertainty will be high, and vice-versa. However, a field which develops rapidly, 350 

such as biotechnology, will contain high levels of knowledge as well as some system 351 

uncertainty, due largely to the unknowns that progress brings. 352 

 System uncertainties can be more clearly defined according to the source-pathway-353 

receptor relationship, which constitutes the three main phases of system understanding: 354 

cause, which concerns a lack of clarity regarding the source(s) of harm; effect, relating to the 355 

influence a particular stressor (source) has upon the receptor(s); and process, which concerns 356 

either not understanding the risks or not identifying something vital to a successful 357 

assessment. 358 

Process uncertainty correlates with the pathway stage of the relationship, which can 359 

be anything between the source(s) of harm and asset(s) of value. It can contain a variety of 360 

uncertainties, such as not identifying the critical dose needed for an adverse effect to result 361 

(Meek and Hughes 1995). The risks associated with certain nanotechnologies, a rapidly 362 

developing field, are unclear because of a lack of process understanding, which in some cases 363 

may be coupled with high effect uncertainty. For example, the contribution of physical 364 

structure to a nanoparticle’s toxicity may not be fully understood (Gottschalk et al. 2010), 365 

whilst its effects upon different receptors may simply be unknown (Zalk et al. 2009). 366 

 367 

Variability uncertainty 368 

 Also described as random and stochastic, variability uncertainty is the inherent 369 

unpredictability of any human or natural system. Human variability in ERAs results primarily 370 

from intentionally biased and subjective actions (Khan et al. 2002), but extends to all 371 
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qualities of humans which are, either literally or from the viewpoint of the risk analyst, 372 

stochastic in nature. Irrespective of their position or seniority, humans involved in the 373 

assessment process may display bias when they have something to gain, or subjectivity when 374 

they believe their own views to be more correct than those of others (Chen et al. 2007). 375 

Human variability can be exhibited by those with close links to a project, such as decision-376 

makers, stakeholders, and scientists, as well as those with no vested interest, such as hired 377 

laboratory technicians or computer modellers (Croke et al. 2007). 378 

The natural element may be considered unexpected and free from intentional bias 379 

(Jørgensen et al. 2009). It pertains to the chaotic traits of natural systems. Natural variability 380 

is also the primary cause of uncertainties associated with extrapolation; a process that 381 

becomes necessary when faced with limited knowledge (e.g. limited data or limited process 382 

understanding). 383 

 384 

Extrapolation uncertainty 385 

Extrapolation can occur across a variety of means, and is usually present wherever 386 

there is missing information or knowledge (Luttik et al. 2005), but is not necessarily 387 

associated with numeric data. In the developed typology, extrapolation uncertainty is a sub-388 

category of the aleatory category, where previously it has either been grouped with model 389 

uncertainties (Walker et al. 2003; Regan et al. 2002; Finkel 1990), treated as a branch of 390 

variability (Huijbregts 2001), or more commonly ignored altogether. Extrapolation can be 391 

considered an attempt at rectifying availability issues: if information were readily available, 392 

extrapolation would not be necessary. However, when it is required, the process is deemed 393 

uncertain due to the natural variability involved (e.g. spatially and temporally extrapolating 394 

meteorological data beyond the physical limits of an existing network of measuring stations 395 

to a study site). Extrapolation can therefore be considered the result of epistemic failings, 396 
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with the connected uncertainties driven through aleatory means. Whilst an increase in 397 

relevant epistemic knowledge may prevent the need for extrapolation (thereby providing a 398 

distinction from variability uncertainty, which can be neither eliminated nor reduced), when it 399 

is required it is the aleatory-based failings that must be addressed. These observations 400 

confirm extrapolation uncertainties to be aleatory in nature, and indicate that they should be 401 

considered separately from the variability location.  402 

 Extrapolation is identified in six forms: intraspecies, where information specific to 403 

members of a species is used to represent other members of the same species; interspecies, 404 

where information specific to members of a species is used to represent members of a 405 

different species; laboratory, where information specific to laboratory conditions is used to 406 

represent real-world scenarios; quantity, where information specific to one quantity is used to 407 

represent another; spatial, where information specific to one spatial scale is used to represent 408 

another; and temporal, where information specific to one timescale is used to represent 409 

another. 410 

 411 

Model uncertainty 412 

With regard to a system of interest, modelling is an attempt to understand processes, 413 

predict responses, evaluate management alternatives, and support the policy and decision-414 

making process (Arhonditsis et al. 2007). Modelling procedures vary according to the system 415 

of study and desired outcomes, though they invariably involve an initial conceptualisation 416 

stage, which is then developed into a numerical and/or computational representation 417 

(Stephens et al. 1993). Simplifications and assumptions are usually necessary features of the 418 

structural process, since natural features and dependencies are complex and numerous. The 419 

initial conceptualisation stage is arguably the most important. Any uncertainties that exist 420 

here will likely be propagated throughout the rest of the modelling procedure. The conceptual 421 
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representation also needs to be fit for purpose: an oversimplification may result in a failure to 422 

capture essential features, leading in turn to inadequate numerical or computational 423 

simulations. Conversely, an undersimplification may yield a model that is too complex, and 424 

therefore time-intensive, or even prohibitive, to build and execute (El-Ghonemy et al. 2005). 425 

Model uncertainties relate to the different stages of the process: structure, which 426 

concerns the representation of real-world processes in model form; and output, which reflects 427 

the level of confidence in the results. The model structure sub-location, which accounts for 428 

3.9% of all uncertainties within the WOE-ERA evidence base, primarily reflects the 429 

structural and technical sub-categories seen within existing typologies (Table 3.1). 430 

 431 

Decision uncertainty 432 

 Decision uncertainty exists when doubt surrounds an optimal course of action, often 433 

in the face of differing objectives. There may be multiple options which satisfy at least a part 434 

of the criteria for the decision, but also possible is the existence of no such alternatives. For 435 

example, management of ecological and environmental resources requires decision-makers to 436 

evaluate multiple and often conflicting strategies, whilst balancing objectives of productivity 437 

and sustainability (Ducey and Larson 1999). Decision uncertainty is potentially comprised of 438 

all uncertainties identified up to and including this stage of the WOE-ERA process. 439 

 440 

The level of uncertainty 441 

 Every identified uncertainty with a defined nature- and location-type must also be 442 

considered in terms of its level (i.e. severity; Janssen et al. 2003; Walker et al. 2003; 443 

Refsgaard et al. 2007). The level of an identified uncertainty is highly context-dependant and 444 

cannot, at present, be ascribed a priori along with its nature and location. Due to this, there is 445 

a reduced need (compared with the nature and location) for an uncertainty typology to make 446 
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specific reference to potential levels within its main structure. It may simply be more 447 

appropriate to do it in an accompanying narrative, as is the case here.  448 

 Humans exhibit a variety of distinct levels of knowledge, ranging from determinism 449 

(perfect knowledge) to indeterminacy (lack of knowledge; Wynne 1992). The further we 450 

move from a deterministic understanding of a system, the more severe the uncertainty 451 

becomes (Walker et al. 2003). The level of uncertainty is described according to two factors, 452 

namely the degree of confidence attached to the likelihood of an event occurring, and the 453 

degree of confidence attached to the severity of outcomes should that event occur (Wynne 454 

1992; Stirling 1999). These metrics are used to convey the level of understanding, and 455 

therefore the level of the associated uncertainty. Recognised levels of uncertainty include: 456 

deterministic uncertainty, in which we are confident about the likelihoods and outcomes; 457 

statistical uncertainty, where we can confidently assign probabilities to events but have little 458 

understanding of the ramifications of the events; scenario uncertainty, where there is 459 

confidence about the outcomes but not likelihoods of an event (i.e. the reverse of statistical 460 

uncertainty); recognised ignorance, where it is not possible to define probabilities or a 461 

complete set of outcomes; and total ignorance, which is the uncertainty of which we know 462 

nothing and to which we are ignorant (i.e. the inverse of deterministic uncertainty). 463 

 When the focus shifts from uncertainty identification (i.e. the purpose of the typology 464 

presented here) to uncertainty management, an effective typology should also aim to 465 

communicate methods for quantification and/or reduction. In that instance, communicating 466 

the uncertainty levels is essential as a change in level can cause a change in the optimal 467 

UMT. In terms of data uncertainties, for example, when there is a level of statistical 468 

uncertainty the associated data uncertainty can be tackled through sensitivity analysis. 469 

However, if we were in the range of scenario uncertainty, scenario analysis, for example, 470 
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would be more appropriate (Refsgaard et al. 2007). Ultimately, selection of a suitable UMT 471 

is dependent on the mix of all three uncertainty dimensions: location, nature and level. 472 

 473 

Dealing with Uncertainty 474 

The appropriateness of UMTs employed 475 

UMTs should be used in concert with specific types of uncertainty (Refsgaard et al. 476 

2007). The correct adoption of any one UMT is therefore dependent upon the uncertainties 477 

present (Stirling 2012). The occurrence frequency analysis and statistical analysis conducted 478 

between the uncertainty types and UMTs highlighted several relationships, the vast majority 479 

of which show the UMTs being used to tackle appropriate uncertainties. This observation 480 

extends to frequently occurring uncertainty and UMT combinations (e.g. Monte-Carlo 481 

simulation being used to tackle data reliability uncertainty; Figure 3) as well as those 482 

combinations which occur less frequently, but are no less appropriate (e.g. MCDA being used 483 

to tackle decision uncertainty; Figure 3; Linkov and Moberg 2011). This is a positive finding, 484 

since the incorrect utilisation of a UMT may be considered just as important as choosing not 485 

to use one at all, which was the fourth most-adopted option in the studied data set. We have 486 

defined taking ‘no action’ as the publication author(s) recognising uncertainties but not taking 487 

action, with or without offering justification (e.g. Wright-Walters et al. 2011). As well as 488 

indicating the inappropriate use of this technique with reference to specific uncertainties 489 

(primarily model and variability), the occurrence frequency analysis and resulting 490 

dependency model (Figure 2) convey a more important point: dealing with uncertainties 491 

should be a major priority within these assessments. The fact that the ‘no action’ mechanism 492 

appears so often suggests that this is not currently the case. 493 

 494 

 495 
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Separating uncertainty and variability 496 

 The categorisation of uncertainties as being either epistemic, aleatory, or a 497 

combination of the two, might imply that each of the identified UMTs can equally be 498 

assigned to one of these groups. This is not the case, nor is there a single mechanism that 499 

offers comprehensive solutions to all of the identified uncertainties. 500 

 Whilst uncertainties appear to fall easily into the aforementioned groupings, the 501 

boundary can be less well defined in applied situations (Merz and Thieken 2009). The most 502 

pertinent example of this is the use of Monte-Carlo Simulation in an attempt to cope with 503 

both forms of uncertainty. Since epistemic and aleatory uncertainties can both be described 504 

by probability distributions, many assessments involving a first-order Monte-Carlo procedure 505 

claim to successfully handle both (Wu and Tsang 2004). However, the ensuing single 506 

distribution (which may combine data reliability uncertainty with inherent natural variability) 507 

incorrectly implies that uncertainty and variability are the same, and that they can be dealt 508 

with as one (Wu and Tsang 2004). Problems may still exist even when a distinction is made: 509 

incorrectly treating variability as if it were uncertainty may yield a meaningless distribution 510 

when a single figure is required (Vose 2000). Effectively, the techniques that are employed to 511 

manage uncertainty can, if executed incorrectly, introduce further errors. 512 

 It is increasingly recognised that uncertainty and variability need to be treated 513 

separately (Kelly and Campbell 2000; Li et al. 2008; Kumar et al. 2009; Qin and Huang 514 

2009; Helton et al. 2011). Once separated, both aleatory variability and epistemic uncertainty 515 

can be quantified, and steps can be taken to reduce and potentially remove epistemic 516 

uncertainty. Techniques such as second-order Monte-Carlo (Griffin et al. 1999; Wu and 517 

Tsang 2004) and integrated fuzzy-stochastic systems (Li et al. 2007; Kumar et al. 2009; Qin 518 

and Huang 2009) have emerged that can manage both aleatory and epistemic uncertainties. 519 

Moreover, through correct uncertainty management, they attempt to eliminate the inferred, 520 
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and potentially unjustifiable, level of confidence that can incorrectly be assigned to risk 521 

estimates. 522 

 523 

Guidance for practitioners 524 

In order to help practitioners better prioritise, identify, and manage uncertainties in 525 

assessments, we propose combining the uncertainty typology (Table 2) with the uncertainty-526 

based frequency and dependency (Figure 2) data. The resulting list of potential uncertainties 527 

(Table 4), which is organised by uncertainty location and sub-location, is ranked according to 528 

the frequency with which the uncertainties appear in the evidence base (of 171 WOE-ERAs). 529 

These rankings correspond to the order in which practitioners may wish to consider 530 

uncertainties in their assessments. The individual uncertainties are further categorised 531 

according to their nature. In addition, several options for managing each uncertainty are 532 

presented, ordered according to the strength of the dependencies between an uncertainty sub-533 

location and its respective UMTs within the evidence base (where one is the optimal UMT 534 

and three is the least optimal). 535 

[TABLE 4 NEAR HERE] 536 

Applying the guidance: the case of genetically modified higher plants 537 

In the European Union (EU) the introduction of Genetically Modified Organisms 538 

(GMOs) for experimental purposes and for placing on the market for cultivation, importation 539 

or processing is regulated by European Commission Directive 2001/18/EC (EC 2001). In 540 

order to obtain consent for purposes of deliberate release into the environment, applicants 541 

must submit a comprehensive dossier containing relevant information about the GMO, 542 

including an ERA. However, submitted ERAs rarely consider uncertainties, and where 543 

uncertainty is acknowledged it is primarily handled by adopting (favourable) worst-case 544 

estimates (Hart et al. 2007). 545 
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A well-researched example of GMOs in the environment is the potential risk of 546 

Bacillus thuringiensis (Bt) modified maize to non-target Monarch butterflies, with research in 547 

USA investigating levels of risk under differing exposure scenarios. For the purposes of this 548 

research, this specific case can reasonably be expanded to a more generalised relationship of 549 

potential Genetically Modified Higher Plant (GMHP) risk to Lepidoptera. Whilst 81 550 

examples of this scenario exist within the publically available dossiers submitted by 551 

applicants under Directive 2001/18/EC, the dossiers do not include evidence to support 552 

attempts to identify or manage uncertainties within their respective ERAs, which seems to 553 

contradict the instruction in the enforcing regulation to do so. 554 

Directive 2001/18/EC promotes a six-step ERA procedure for applicants to follow, 555 

where the first four steps correspond to the ERA and the final two to risk management 556 

options beyond the assessment. The first four steps are commonly known as problem 557 

formulation, effects assessment, exposure assessment, and risk characterisation (DEFRA 558 

2011). An ERA carried out by an applicant can be expected to consist of these four phases, 559 

which, on the basis of information contained within relevant governmental guidance 560 

documents (Fairman et al. 1998; USEPA 1998; DEFRA 2011), and in the context of potential 561 

GMHP risk to Lepidoptera, could contain most or all of the major elements listed in Table 5. 562 

The presented uncertainty typology (Table 2) and guidance (Table 4) can be applied to this 563 

standard ERA structure to determine potential locations of uncertainty and relevant options 564 

for their management (Table 6). For example, problems may exist when attempting to 565 

determine aspects of the dose of the GMHP stressor (e.g. modified protein) received by the 566 

Lepidoptera receptor during the effects assessment phase of the ERA. Such issues could 567 

feasibly correspond to: uncertainty in applying relevant data about the duration, frequency, or 568 

intensity of the dose (leading to data reliability, availability, and/or precision uncertainty); 569 

variability about the situation (natural variability); forced extrapolations from the available 570 
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data to other points of interest (interspecies, spatial, intraspecies, temporal, laboratory, and/or 571 

quantity extrapolation uncertainty), or; defining parameters in models that reflect the data 572 

utilised (model structure uncertainty) and using those models to quantify the dose received 573 

(model output uncertainty). 574 

[TABLE 5 NEAR HERE] [TABLE 6 NEAR HERE] 575 

By applying the uncertainty typology (Table 2) and guidance (Table 4) to the rest of 576 

the ERA structure in Table 5, we formulated a list of 43 potential uncertainties. These 577 

uncertainties are categorised according to the four phases of the ERA and the main locations 578 

in which uncertainty can exist (e.g. data, variability), which are in turn organised in order of 579 

their highest ranked uncertainty sub-location (e.g. data reliability, natural variability). System 580 

uncertainties are likely to dominate the problem formulation phase, with data, variability, 581 

extrapolation, and model uncertainties the focus in the middle analysis phase (effects and 582 

exposure assessments), and language and decision uncertainties playing more of a role at the 583 

final risk characterisation step. The responsibility for determining whether the potential 584 

uncertainties exist, and at what level of severity, will rest with the relevant applicant(s). 585 

Prioritised techniques for the management of each uncertainty sub-location (brought forward 586 

from Table 4) are also included. When implementing these UMTs applicants should ensure 587 

that epistemic and aleatory uncertainties are approached in the correct way. 588 

This simple example demonstrates how potential uncertainties can be identified using 589 

the presented uncertainty typology and guidance. This may allow for more considered 590 

uncertainty analyses in both established risk domains and highly regulated emerging fields, 591 

such as GMHPs, leading to more robust ERAs. Environmental decision-making at some of 592 

the highest strategic levels (e.g. the European Union) may ultimately benefit. However, the 593 

researchers recognise that application of the presented typology will inevitably require some 594 

end-user subjectivity, and that consistent reproduction of results may be hard to achieve. To 595 
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that end, the researchers are currently investigating, applying and validating methods to 596 

improve the uncertainty identification process within ERAs, which build on the presented 597 

typology and reduce the reliance on the skill, experience and ability of the end-user. 598 

 599 

CONCLUSION 600 

Uncertainty typologies aim to foster understanding, further acting as tools to aid 601 

uncertainty identification during risk characterisation. The categorisations and definitions 602 

presented within uncertainty typologies must be comprehensive and reliable, but existing 603 

typologies have been found to be lacking in a number of ways, especially in an ERA context. 604 

This research presented a typology of uncertainties based, for the first time, on the 605 

analysis of a large evidence base, namely 171 peer-reviewed environmental WOE-ERAs. In 606 

creating the typology, which consists of 7 main types of location-based uncertainty (data, 607 

language, system, extrapolation, variability, model, and decision) and 20 related sub-types, 608 

several key issues surrounding existing typologies, including research domain transferability 609 

and content reliability issues, have been resolved. In addition, whilst the techniques used by 610 

analysts to manage these uncertainties were implemented appropriately, we have shown that 611 

in some cases the validity of a risk estimate is negatively impacted as uncertainty 612 

management is excluded. The practical guidance that we have introduced here will help 613 

resolve this issue by providing a robust method for dealing with uncertainty, as demonstrated 614 

through an applied case study focussing on ERAs of genetically modified higher plants in the 615 

EU. This case study also highlights the relationships between different uncertainties and the 616 

various phases and tasks within ERAs. Moving forward, we are currently exploring these 617 

relationships in more detail, with the aim of adding value to the uncertainty identification 618 

process. 619 
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The typology presented here and accompanying guidance, which should be utilised by 620 

risk analysts during the formative stages of uncertainty analyses, will have positive 621 

implications for the identification, prioritisation, and management of uncertainty during risk 622 

characterisation. 623 
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Table 1 Uncertainty categorisations offered by existing typologies within the published environmental risk-based literature. 

Source reference Uncertainties included within source 

Vesely and Rasmuson 1984 Data; Model (understanding, approximation); Completeness; Physical variability 

Henrion and Fischoff 1986 Random; Systematic 

Alcamo and Bartnicki 1987 Model (structure, parameters, forcing, initial state, operation) 

Beck 1987 Model (aggregation, structure, numerical, parameter); Variability; Errors; 

Morgan and Henrion 1990 
Statistical variation; Systematic error; Linguistic; Variability; Inherent randomness; Disagreement; Model 

(approximation, form) 

Finkel 1990 Model; Parameter; Decision; Natural variability 

Funtowicz and Ravetz 1990 Inexactness; Unreliability; Border with ignorance 

Wynne 1992 Risk; Uncertainty; Ignorance; Indeterminacy; 

Helton 1994 Stochastic; Subjective 

Hoffman and Hammonds 1994 Lack of knowledge; Variability 

Rowe 1994 Temporal; Structural; Metrical; Translational 

Faucheux and Froger 1995 Ignorance; Strong uncertainty; Uncertainty; Certainty 

van der Sluijs 1997 
Inexactness; Unreliability; Ignorance; Model (input data, conceptual model structure, technical model 

structure, bugs, model completeness) 

Stirling 1999 Risk; Uncertainty; Ambiguity; Ignorance 

Bedford and Cooke 2001 Aleatory; Epistemic; Parameter; Data; Model; Ambiguity; Volitional 

Huijbregts et al. 2001 Parameter; Model; Choices; Variability (spatial, temporal, between source and object) 

Bevington and Robinson 2002 Systematic errors; Random errors 
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Regan et al. 2002 

Epistemic (measurement error, systematic error, natural variation, inherent randomness, model, subjective 

judgement); Linguistic (vagueness, context dependence, ambiguity, underspecificity, indeterminacy of 

theoretical terms) 

van Asselt and Rotmans 2002 
Variability (nature, cognitive, behavioural, societal, technological); Knowledge (inexactness, lack of 

measurements, practically immeasurable, conflicting evidence, ignorance, indeterminacy) 

Janssen et al. 2003 
Statistical; Scenario; Recognised ignorance; Knowledge-based; Variability-based; Context; Expert 

judgement; Model (structure, technical, parameters, input); Data; Outputs 

Walker et al. 2003 
Statistical; Scenario; Recognised ignorance; Total ignorance; Epistemic; Variability; Context; Model 

(structure, technical, parameters, input, outputs) 

Brown 2004 Bounded uncertainty; Unbounded uncertainty; Indeterminacy; Ignorance 

Dewulf et al. 2005 Inherent nature of phenomena; Lack of knowledge; Ambiguity in system understanding 

Beer 2006 Probabilistic; Ambiguity; Incertitude; Ignorance; Indeterminacy 

Petersen 2006 Location; Nature; Range; Recognised ignorance; Methodological unreliability; Value diversity 

Hayes et al. 2006 Linguistic; Variability; Incertitude 

Maier et al. 2008 
Data (measurement error, type of data, length of record, analysis); Model (method, record quality, calibration, 

validation, experience); Human (stakeholder, politics) 

Ascough II et al. 2008 Knowledge; Variability; Linguistic; Process; Model; Variability; Linguistic; Decision 

Brouwer and Blois 2008 Statistical; Scenario; Qualitative; Recognised ignorance 

Knol et al. 2009 
Statistical; Scenario; Recognised ignorance; Epistemic; Ontic (process, normative); Model (structure, 

parameters, input data); Methodological; Analyst uncertainty 
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Table 2 Novel typology of uncertainties (including definitions) resulting from the analysis and iterative clustering of data obtained from 171 

ERAs that applied WOE methods. 

Nature Location Sub-location Definition 

Epistemic Data Availability referring to the incompleteness, scarcity, or absence of data  

  Precision concerning the lack of accuracy or precision in obtained data 

  Reliability reflecting its trustworthiness i.e. data is erroneous for some specified reason 

 Language Ambiguity where multiple meanings are possible 

  Underspecificity where meanings are not exact 

  Vagueness where meanings are not clear and understandable 

 System Cause concerning a lack of clarity regarding the source(s) of harm 

  Effect relating to the influence a particular stressor (source) has upon the receptor(s) 

  Process where the risks are not understood or a process vital to a successful assessment is not identified 

Aleatory Variability Human results primarily from intentionally biased and subjective actions, but extends to all qualities of 

humans which are, either literally or from the viewpoint of the risk analyst, stochastic in nature 

  Natural pertains to the stochastic traits of natural systems 

 Extrapolation Intraspecies where information specific to members of a species is used to represent other members of the 

same species  

  Interspecies where information specific to members of a species is used to represent members of a different 

species 

  Laboratory where information specific to laboratory conditions is used to represent real-world scenarios 
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  Quantity where information specific to one quantity is used to represent another 

  Spatial where information specific to one spatial scale is used to represent another 

  Temporal where information specific to one timescale is used to represent another 

Combined Model Structure concerning the representation of real-world processes in model form 

  Output reflecting the level of confidence in the produced results 

 Decision Decision where doubt surrounds an optimal course of action, often in the face of differing objectives.  
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Table 3 Descriptions of the most frequently occurring uncertainty management techniques, organised according to the percentage rates with 

which they occur in the evidence base of 171 ERAs that applied WOE methods, along with their associated uncertainties. 

Uncertainty management 

technique 

  Description Associated uncertainty 

locations 

Referenced in: 

Monte-Carlo simulation 

(22.1%) 

Utilises repeated executions of numerical models to 

simulate stochastic processes. 

Data, Extrapolation, 

Variability, Model, System 

Ma 2002 

Qin and Huang 2009 

Uncertainty factor 

(16.6%) 

Attaches a factor-based correction to the data being used 

which reflects the level of uncertainty within it. 

Extrapolation, System, 

Data, Variability 

Calabrese 1994 

Phillips et al. 2008 

Sensitivity analysis 

(8.4%) 

Tests the sensitivity of a chosen output variable to 

variations in quantities relating to input variables. 

Data, Model, Extrapolation, 

System 

Huysmans et al. 2006 

Oughton et al. 2008 

No action 

(7.7%) 

Not attempting to quantify, reduce, or manage 

uncertainties, whether recognised by the publication 

author(s) or identified through this research. 

Data, Extrapolation, 

System, Variability, Model 

Cesar et al. 2009 

Further data collection 

(7.3%) 

The collection of increased quantities of data. Extrapolation, Data, 

Variability 

Avagliano and Parella 

2009 

Fuzzy logic 

(6.8%) 

A form of multi-valued logic that allows its components to 

be approximate rather than precise. 

Data, Language, Model, 

Variability 

Zadeh 1965 

Acosta et al. 2010 

Expert elicitation 

(4.6%) 

Seeks to capture the knowledge of one or more experts in a 

field with regard to a specific matter. 

Data, System , Variability Kandlikar et al. 2007 

Probability density function
1
 Describes the frequency of occurrence for different Data, Variability Oughton et al. 2008 
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(4.0%) parameter values over a given range. 

Latin hypercube sampling 

(3.5%) 

Splits a distribution into distinct intervals for sampling and 

use as inputs to a numerical model. 

Data, Variability Klier et al. 2008 

Kumar et al. 2009 

Bayesian belief network 

(3.1%) 

A graphical representation of a system, in which 

relationships between uncertain characteristics are 

expressed through probability values. 

Variability, Data, System Aspinall et al. 2003 

Fuzzy-stochastic system 

(3.1%) 

A hybrid approach for incorporating epistemic and 

stochastic uncertainties separately. 

Data, Extrapolation, 

Language 

Li et al. 2007 

Kumar et al. 2009 

Precautionary management 

(1.8%) 

Management based upon the application of the 

Precautionary Principle. 

Extrapolation, System Godduhn and Duffy 

2003 

Multi-criteria decision analysis 

(1.1%) 

Brings together criteria and performance scores to provide 

a basis for integrating risk and uncertainty levels. 

Decision Linkov et al. 2007 

Critto et al. 2007 

Adaptive management 

(0.4%) 

Incorporate the needs of many into an iterative system 

where differing alternatives and objectives are present. 

Decision Dey et al. 2000 

Williams et al. 2009 

1
Refers to probability density functions that are applied independently of the Monte-Carlo simulation and Latin-hypercube sampling techniques. 
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Table 4 Ranked potential uncertainties (according to the percentage proportion with which they occur in the evidence base of 171 ERAs that 

applied WOE methods) for risk analysts to consider, detailing uncertainty locations, sub-locations, and natures, along with related uncertainty 

management techniques in order of decreasing appropriateness. Row shadings correspond to the uncertainties that can be quantified, reduced and 

potentially removed (epistemic ), quantified at best (aleatory ), and those that must be considered on a case-by-case basis (combined ). 

Rank Location of 

uncertainty 

Sub-location of 

uncertainty 

Nature of 

uncertainty 

Uncertainty management 

technique #1 

Uncertainty management 

technique #2 

Uncertainty management 

technique #3 

1 (20.8%) Data Reliability Epistemic Monte-Carlo simulation Sensitivity analysis Uncertainty factors 

2 (10.1%) Data Availability Epistemic Monte-Carlo simulation Sensitivity analysis Uncertainty factors 

3 (9.9%) Variability Natural Aleatory Monte-Carlo simulation Further data collection Uncertainty factors 

4 (7.8%) Extrapolation Interspecies Aleatory Uncertainty factors Monte-Carlo simulation Further data collection 

=5 (6.0%) Extrapolation Spatial Aleatory Interpolation Monte-Carlo simulation Uncertainty factors 

=5 (6.0%) System Process Epistemic Uncertainty factors Monte-Carlo simulation Expert elicitation 

7 (5.2%) Extrapolation Intraspecies Aleatory Uncertainty factors Monte-Carlo simulation Further data collection 

=8 (4.2%) Extrapolation Temporal Aleatory Further data collection Uncertainty factors Monte-Carlo simulation 

=8 (4.2%) Model Output Combined Sensitivity analysis Monte-Carlo simulation Fuzzy logic 

=10 (3.9%) Model Structure Combined Sensitivity analysis Monte-Carlo simulation Fuzzy logic 

=10 (3.9%) System Effect Epistemic Uncertainty factors Expert elicitation Monte-Carlo simulation 

=12 (3.1%) Extrapolation  Laboratory Aleatory Uncertainty factors  Further data collection Monte-Carlo simulation 

=12 (3.1%) System  Cause Epistemic Uncertainty factors  Further data collection Monte-Carlo simulation 

=14 (2.3%) Extrapolation  Quantity Aleatory Uncertainty factors  Further data collection Monte-Carlo simulation 

=14 (2.3%) Variability  Human Aleatory Bayesian belief networks Expert elicitation Sensitivity analysis 
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=16 (1.6%) Data Precision Epistemic Fuzzy logic Expert elicitation Monte-Carlo simulation 

=16 (1.6%) Decision  Decision Combined Adaptive management MCDA Bayesian belief networks 

=16 (1.6%) Language Ambiguity Epistemic Fuzzy logic  Fuzzy-stochastic N/A 

=16 (1.6%) Language Vagueness Epistemic Fuzzy logic  Fuzzy-stochastic N/A 

20 (1.0%) Language Underspecificity Epistemic Fuzzy logic  Fuzzy-stochastic N/A 
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Table 5 Major elements of an environmental risk assessment, derived from government guidance documents (Fairman et al. 1998; USEPA 

1998; DEFRA 2011). 

Assessment phase Assessment task Assessment sub-task 

Problem formulation Build a conceptual model Define risk relationships e.g. source-pathway-receptor paradigm 

  
Select assessment endpoints e.g. development; behaviour; survival; 

fecundity; abundance 

  
Consider appropriateness of assessment endpoints e.g. to other 

endpoints; to receptor 

 Form work/analysis plan 
Factors affecting fate and transport of stressor e.g. physical; chemical; 

atmospheric; biotic 

  
Data considerations/requirements e.g. gaps; collection; synthesis; 

analysis 

Effects assessment Analyse the stressor-response relationship Determine the dose received e.g. duration, intensity 

  
Examine assessment endpoints e.g. development; behaviour; survival; 

fecundity; abundance 

 
Create stressor-response (effects) profile(s) e.g. 

single-point; distribution 
 

Exposure assessment Collect data/information relating to: The stressor e.g. composition; distribution; release 

  
The fate and transport of the stressor (i.e. pathways) e.g. biological; 

chemical; physical; receiving media 

  The receptor e.g. composition; distribution 

 Evaluate stressor-receptor contact Co-occurrence e.g. frequency; duration; intensity 
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  Nature of contact e.g. ingestion; inhalation; dermal 

 
Create exposure profile(s) e.g. worst-case; 

conservative; probabilistic 
 

Risk characterisation Select relevant effects/exposure profiles  

 
Estimate risk e.g. single-point comparison; 

cumulative distribution 
 

 
Aggregate risk e.g. combine stressor-based risk 

estimates; combine endpoint-based risk estimates 
 

 Evaluate risk 
Confidence in risk estimate(s; i.e. uncertainty analysis) e.g. qualitative; 

semi-quantitative; quantitative 

  
Significance of risk estimate(s) using e.g. regulation; stakeholders; 

receptor recovery potential 

 
Communicate risk e.g. to risk professionals; to 

laypersons; to stakeholders; to regulators 
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Table 6 Potential uncertainties for the ERA scenario of GMHP risk to Lepidoptera, organised according to the four phases of ERAs in which 

they will occur: problem formulation, effects assessment, exposure assessment, and risk characterisation. Analyst(s) should consider each listed 

potential uncertainty against all corresponding sub-locations (which are ranked according to the frequency with which they occur within the 

evidence base of 171 ERAs that applied WOE methods). Prioritised uncertainty management techniques are also displayed for each uncertainty 

sub-location, should a related uncertainty be deemed to exist. The potential level of uncertainty must be assessed by the analyst on a case-by-

case basis. 

Uncertainty 

location/ sub-

location 

Problem formulation Effects assessment Exposure assessment Risk characterisation 

Data 

(epistemic) 

 Factors affecting fate and 

transport of stressor e.g. can we 

get the required data? 

 Data considerations and 

requirements e.g. identifying 

data collection, synthesis, and 

analysis techniques; 

 Determine the dose received by 

receptor e.g. data about the 

duration, frequency, or 

intensity of dose; 

 Examine assessment endpoints 

e.g. data about receptor 

development, behaviour, 

survival, fecundity, abundance; 

 Create exposure profile(s) e.g. 

distributions (of stressor 

intensity Vs. response 

magnitude) using analysed data 

 Stressor info e.g. data about its 

composition, distribution, or 

release;  

 Fate/transport info e.g. data  

about the dispersion or 

deposition of the receptor; 

about atmospheric, terrestrial, 

or biotic conditions; 

 Receptor info e.g. data about 

dietary, breeding, migratory, or 

predatory patterns; 

 Create exposure profile(s) e.g. 

using direct monitoring data; 

 Assessing the significance of 

the risk e.g. using data 

regarding regulatory-enforced 

or stakeholder-derived 

acceptability levels; 
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Reliability (1) Monte Carlo Simulation; Sensitivity analysis; Uncertainty factors; 

Availability (2) Monte Carlo Simulation; Sensitivity analysis; Uncertainty factors; 

Precision (=16) Fuzzy logic; Expert elicitation; Monte Carlo Simulation; 

Variability 

(aleatory) 

 Factors affecting fate and 

transport of stressor e.g. 

variability in/between 

identified processes; 

 Determine the dose received by 

receptor e.g. variability in the 

duration, frequency, or 

intensity of dose; 

 Examine assessment endpoints 

e.g. variability in receptor 

development, behaviour, 

survival, fecundity, abundance; 

 Create exposure profile(s) e.g. 

variability in single point (e.g. 

LC50, EC50) estimates; 

 Stressor info e.g. variability in 

spatial/temporal distribution; 

variability in intensity or 

quantity of release; 

 Fate/transport info e.g. 

variability in dispersion or 

deposition of the receptor; 

variability in atmospheric, 

terrestrial, or biotic conditions; 

 Receptor info e.g. variability in 

dietary, breeding, migratory, or 

predatory patterns; 

 Stressor-receptor contact e.g. 

variability in spatial, temporal 

or intensity of overlap; 

 Risk estimation e.g. 

variability in single-point 

comparisons of PEC Vs. 

LC50/EC50; variability in 

cumulative distributions of 

stressor intensity Vs. response 

magnitude; 

 Assessing the significance of 

the risk e.g. variability in 

regulatory-enforced or 

stakeholder-derived 

acceptability levels; 

variability in receptor 

recovery potential; 

Natural (3) Monte Carlo Simulation; Further data collection; Uncertainty factors; 

Human (=14) Bayesian belief networks; Expert elicitation; Sensitivity analysis; 

Extrapolation 

(aleatory) 

 Consider appropriateness of 

assessment endpoints e.g. 

extrapolating generic endpoints 

for use with this receptor; 

 Determine the dose received by 

receptor e.g. extrapolating 

knowledge for the duration, 

frequency, or intensity of dose; 

 

 Stressor info e.g. forced 

extrapolation of release 

intensity or quantity 

information; 

 Create exposure profile(s) e.g. 

 Risk estimation e.g. 

extrapolating from single-

point comparisons of PEC Vs. 

LC50/EC50; 

extrapolating from cumulative 
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extrapolating to create 

conservative estimates; 

extrapolating to create worst-

case estimates; 

distributions of stressor 

intensity Vs. response 

magnitude; 

 Assessing the significance of 

the risk e.g. extrapolating 

from regulatory-enforced or 

stakeholder-derived 

acceptability levels; 

Interspecies (4) Uncertainty factors; Monte Carlo Simulation; Further data collection; 

Spatial (=5) Interpolation; Monte Carlo Simulation; Uncertainty factors; 

Intraspecies (7) Uncertainty factors; Monte Carlo Simulation; Further data collection; 

Temporal (=8) Further data collection; Uncertainty factors; Monte Carlo Simulation; 

Lab. (=12) Uncertainty factors; Further data collection; Monte Carlo Simulation;  

Quantity (=14) Uncertainty factors; Further data collection; Monte Carlo Simulation; 

System 

(epistemic) 

 Define risk relationships e.g. 

missing a stressor, pathway, or 

receptor; 

 Select assessment endpoints 

e.g. missing an endpoint; 

 Consider appropriateness of 

assessment endpoints e.g. 

relevance to other endpoints; 

relevance to receptor; 

 Identifying fate/transport 

factors e.g. are there any 
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missing? 

Process (=5) Uncertainty factors; Monte Carlo Simulation; Expert elicitation;  

Effect (=10) Uncertainty factors; Expert elicitation; Monte Carlo Simulation;  

Cause (=12) Uncertainty factors; Further data collection; Monte Carlo Simulation; 

Model 

(combined) 

  Determine the dose received by 

receptor e.g. model parameters 

for the duration, frequency, or 

intensity of dose; 

 Examine assessment endpoints 

e.g. model parameters for 

receptor development, 

behaviour, survival, fecundity, 

abundance; 

 Create effects profiles e.g. 

using model output; 

 Stressor info e.g. model 

parameters for the 

composition, distribution, or 

release; 

 Fate/transport info e.g. model 

parameters for the dispersion 

or deposition of the receptor; 

 Receptor info e.g. model 

parameters for the dietary, 

breeding, migratory, or 

predatory patterns; 

 Stressor-receptor contact e.g. 

model parameters for the 

spatial, temporal or intensity of 

overlap; 

 Create exposure profile(s) e.g. 

using dispersion models; using 

probabilistic models; 

 

Output (=8) Sensitivity analysis; Monte Carlo Simulation; Fuzzy logic; 

Structure (=10) Sensitivity analysis; Monte Carlo Simulation; Fuzzy logic; 

Decision     Selecting relevant 
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(combined) effects/exposure profiles; 

 Risk aggregation e.g. 

combining selected estimates 

to form one overall risk 

estimate; 

Decision (=16) Adaptive management; Multi-criteria decision analysis; Bayesian belief networks; 

Language 

(epistemic) 

 Defining the scope of the ERA 

e.g. communicating with 

stakeholders 

   Assessing the significance of 

the risk e.g. with regulators or 

stakeholders; 

 Communicating the risk e.g. 

to risk professionals; to 

laypersons; to stakeholders; to 

regulators; 

Ambiguity (=16) Fuzzy logic; Fuzzy-stochastic system; 

Vagueness (=16) Fuzzy logic; Fuzzy-stochastic system; 

Underspec. (20) Fuzzy logic; Fuzzy-stochastic system; 
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Figure Captions 

 

Figure 1  Overview of the clustering process applied to the uncertainty data extracted from 

the collected evidence base (n=171 ERAs that applied WOE methods), showing: a) all 36 

recorded location-based uncertainty types; b) all 36 recorded location-based uncertainty types 

organised according to their nature; and c) final 20 location-based uncertainty types organised 

according to their nature. The superscript Greek letters in b) are matched to the superscript 

Greek letters in c), representing clustering into like groups. For example, model structure, 

model parameters, computer software/hardware, model calibration, and model simplification 

uncertainties, denoted by the Greek letter Kappa (κ), in b) are clustered into model structure 

uncertainty, also denoted by κ, in c). 

 

Figure 2 Model showing the occurrence frequencies of the individual location-based 

uncertainty types identified (light grey squares; n=20), management techniques utilised (dark 

grey circles; n=10), and the relationships between them (black lines) within the collected 

evidence base (n=171 ERAs that applied WOE methods). The areas of the squares and circles 

(which depict the respective occurrence frequencies) are relative to each other, as are the 

widths of the dependency lines, where an increasing (square or circle) area and (line) width 

indicates an increasing frequency. 

 

Figure 3 Matrix plot showing the correlation values (ρ) between the uncertainties and their 

respective management techniques within the collected evidence base (n=171 ERAs that 

applied WOE methods), where a higher value indicates a stronger correlation. 


