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i 

 

Abstract 

 

Increased treatment capability is required on small sewage treatment works to meet ammonium 

consents that are tightening to effluent concentrations of below 5 mgNH4
+-N/L and in some cases as 

low as 0.5 mgNH4
+-N/L.  Optimisation of existing assets is preferential over the addition or 

expansion of the works to minimise associated costs and energy usage.  Many small works in the UK 

currently employ horizontal sub-surface flow constructed wetlands (HSSF CWs) that have 

restricted capability to nitrify due to limited oxygen transfer and as such artificial aeration has been 

proposed as a potential upgrade technology.  To assess the performance of the technology, full-

scale sites were monitored in terms of ammonium and solids removal and hydraulic 

characterisation over 3 years. Supporting pilot studies were carried out to assess the effect of 

aeration on the planted vegetation and to determine optimum transfer efficiencies. Results indicate 

aeration of HSSF CWS is a successful technology with regards to enhanced nitrification on tertiary 

small works sites, evidenced by all tested scenarios achieving ammonium effluent concentrations 

below 3 mg/L on sites receiving 0.1-13.0 gNH4
+-N/m2/d, and provides comparative treatment to 

higher energy technologies such as rotating biological contactors and activated sludge processes 

with the benefit of being able to be retrofitted into existing HSSF CWS sites.  The presence of media 

was found to enhance oxygen transfer efficiency by a factor of 3.2 in a packed system compared to a 

control with optimal operation observed at orifice sizes below 1 mm diameter and air flow rates of 

10-20 L/min. The presence of artificial aeration was detrimental to the growth of Phragmites 

autralis and Typha latifolia in terms of stunted growth and yellowing of leaves. Potential problems 

were found in the response to shock ammonium loadings at lowly loaded sites, such as an increase 

in influent ammonium concentration from 1.2±4.0 mgNH4
+-N/L to 16.0±8.4 mgNH4

+-N/L with a 

peak concentration of 33.2 mgNH4
+-N/L. Further optimisation to rectify the issue is proposed in 

terms of increasing the abundance and activity of the inherent nitrifying population. 
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Chapter 1 

 

Introduction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 

 

Introduction 

 

1.1 Background 

 

The traditional approach to meeting tightening discharge consents in wastewater 

treatment has focussed on asset replacement and/or inclusion of additional end of 

pipe assets. Whilst generally successful at meeting the treatment requirements it 

can incur substantial increases in cost and energy and hence is not sustainable as a 

long term strategy. This is perhaps most apparent in the case of small rural sewage 

works where there is a desire for low energy and low maintenance treatment 

through the use of passive technologies (Brookes, 2013). Continuance of the 

philosophy is being challenged by the need to meeting tightening ammonium 

standards as set under the Water Framework Directive (2000) where traditionally, 

existing sites would be retrofitted with intensive technologies such as activated 

sludge processes or upgraded with tertiary nitrification processes such as 

submerged aerated filters or tertiary rotating biological contactors.  

 

The majority of nitrogen entering wastewater treatment plants exist in either 

organic nitrogen or ammoniacal-nitrogen species with the latter representing the 

predominate component at between 66%-90% of the total nitrogen in raw 

wastewater (Sattayatewa et al, 2010; Gajewsko, 2011). The Organic N is further 

readily transformed to inorganic ammonia through the biological process of 

ammonification. In wastewater, typically at a pH of 6-9, ammonia predominately 

exits in its ionised state (ammonium – NH4+). Nitrifiers then convert NH4+ to nitrite 

(NO2) and then to nitrate (NO3) utilising available dissolved oxygen that is 
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accordingly depleted by the nitrifiers and other organisms present unless 

replenished at a sufficient rate. In the absence of oxygen, denitrifiers then utilise 

the available nitrate molecules for respiration resulting in the production of 

nitrogen gas which is readily released into the atmosphere.   

 

Ammonium-nitrogen (NH4+-N) is principally removed by the process of 

nitrification.  Nitrification is a two-step, microbially mediated process requiring a 

constant supply of oxygen and describes the autotrophic biological oxidation of 

ammonium (NH4+) via nitrite (NO2-) (Equation 1) to nitrate (NO3-)(Equation 2): 

 

NH4+ + 1.5O2 → NO2- + 2H++ H2O (mainly carried out by Nitrosomonas)  (1) 

NO2- + 0.5O2 → NO3-    (mainly carried out by Nitrobacter)                   (2) 

 

The process requires 4.57 kg of oxygen to remove 1 kg NH4+-N in addition to the 

demand exerted by the faster growing heterotrophic bacteria for removal of 

organic matter. As such, the process requires the addition of oxygen to the system 

resulting in the use of energy intensive technologies such as activated sludge 

plants (ASPs) typically operating on large-scale works.  In comparison, small works 

(serving a < 2000 population equivalent (p.e.)) contain predominately low energy 

technologies, favouring trickling filters (TFs) and rotating biological contactors 

(RBCs) as the main stage of treatment. These works account for a significant 

number of assets in the UK, where it is estimated that approximately 79 % of all 

works fit this description (DEFRA, 2012).  Compared to the large-scale works, 

these sites offer a greater capacity to re-develop and adapt existing technologies. A 
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typical small works process flow sheet consists of a primary settlement tank for 

capture of solids, followed by a secondary biological system for removal of 

biodegradable organic matter, suspended solids and nutrients and tertiary 

treatment for final polishing (Figure 1.1).  

 

 

Figure 1.1 Typical process flow sheet for a small sewage works 

 

The technologies generally achieve adequate organics and solids removal and can 

achieve NH4
+-N removal down to 5 mgNH4

+-N/L. However, with ammonium 

consents typically dropping below this and some cases down to as low as 0.5 

mgNH4+-N/L (Pearce, 2003) the capacity of the works requires further expansion. 

One of the most common options in the small works context that has the potential 

to fill this space are constructed wetlands (CWs) which are now a well-established 

low energy technology utilised on small wastewater treatment plants.  

 

Horizontal sub-surface flow (HSSF) constructed wetlands are passive wastewater 

treatment systems commonly used for tertiary suspended solids, organic matter, 

Primary 
sedimentation

Secondary biological 
treatment
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and nitrate removal.  Partially treated wastewater is fed to the bed via a ‘v’ notched 

influent distribution trough onto cobbles of 50-200 mm to enable even distribution 

of the influent.  The remainder of the bed is filled with 6-12 mm river gravel 

through which the wastewater flows horizontally through the permanently 

saturated media to improve quality via physical, chemical and biological processes 

(Figure 1.2).  The wastewater is kept below the gravel surface (controlled by an 

adjustable standpipe) to ensure contact with the biofilm attached to the gravel 

media and to mitigate against overland flow and consequent by-passing of the 

major treatment pathways.  The effluent is then captured in a collection chamber 

and discharged to the receiving water course. 

 

 

Figure 1.2 Schematic of a typical HSSF CW (Adapted from Knowles et al, 2011)  

 

Oxygen transfer in conventional HSSF CWs occurs through convection and 

diffusion from the air to the surface water.  Transfer is generally poor with 

estimated oxygen transfer rates of 0.3-3.2 gO2/m2/d (Kadlec and Wallace, 2009; 
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Tyroller et al, 2011)  resulting in a residual dissolved oxygen (DO) below 0.5 mg/L 

leading to low oxygen availability in HSSF CWs being cited as the primary cause of 

their poor nitrification capabilities (Cottingham et al, 1999, Vymazal and 

Kröpfelová, 2008).  It follows that existing HSSF CWs sites are not equipped to 

meet future tightening NH4+-N consents facing small sewage treatment works. To 

illustrate, 10 years of historical data from a small works site serving 400 p.e. 

(Severn Trent Water data) shows adequate organics removal as measured by 5 day 

carbonaceous biochemical oxygen demand (CBOD5) and total suspended solids 

(TSS) to a commonly used 20/30 mg/L standard 100 % of the time. Ammonium 

removal was shown to be less stable and exceeding a future target of 4 mgNH4+-

N/L over 50 % of the time (Figure 1.3).   

 

 

Figure 1.3 CBOD5, TSS and NH4-N effluent concentrations and typical future 

consents for HSSF for a small sewage works (p.e. 400). Severn Trent Water data, 

2000-2010) 

TSS consent 

NH4-N future consent 
CBOD5 consent 

TSS 

NH4-N 
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In response to the issue, recent innovations, coupled to the desire for more 

sustainable treatment approaches, has seen consideration of the CW technology 

for nitrification increase in terms of both scientific investigation (Ouellet-

Plamondon et al, 2006, Loupasaki and Diamadopoulos, 2013) and implementation 

(Pearce, 2013). Increased oxygen transfer has been investigated in terms of 

vertical flow systems (and associated variants) that allows oxygen transfer via 

intermittent loading achieving oxygen transfer rates of 28-100 gO2/m2/d or 

artificial aeration of HSSF wetlands, via a blower and coarse bubble air diffusers 

(Cottingham et al, 1999; Ouellet-Plamondon et al, 2006; Wallace, 2001). The latter 

technology has been adopted in the US with successful results (Kadlec and Wallace, 

2009) where the systems are designed for low-moderate hydraulic and solids 

loading rates; typical median values in the US are 0.02 m3/m2/d and 2 g/m2/d 

(Knowles et al, 2011). However, in many countries, loading rates are considerably 

higher with, for instance, the equivalent UK figures being 0.12 m3/m2/d and 7 

g/m2/d for hydraulic and solids loading respectively (Knowles et al, 2011). 

Highlighting that direct technology transfer may not be applicable and further 

investigation of the technology is required under UK conditions. This extends to 

understanding the relative benefits and weaknesses of the technology over and 

above alternative options such as tertiary RBCs, TFs and submerged aerated filters 

(SAFs) (Boller et al, 1994).  
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1.2 Project aims and objectives 

 

1.2.1 Aim  

Investigate the processes affecting the performance of artificial aeration in 

horizontal sub-surface flow constructed wetlands and establish the feasibility and 

appropriateness of its application for tertiary nitrification on small sewage 

treatment works. 

 

1.2.2 Objectives 

1. Review the available literature in order to understand nitrification potential 

in sub-surface flow constructed wetlands and to discuss their future 

outlook and challenges with a focus towards tertiary nitrification; 

2. Assess the appropriateness of aerated CWs for delivery of tertiary 

nitrification across a range of typical situations through case study 

assessment to understand the overall efficacy and potential challenges with 

the adoption of the technology;  

3. Investigate the effect of media presence on the efficacy and design of the 

aeration system; 

4. Determine the effect of artificial aeration on plant  growth and 

development; 

5. Combine the findings of the three years investigation to advise on the 

impact on the design basis of an aerated HSSF CW, including suggestions of 

process optimisation and the role of aerated CWs within current UK. 
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1.3 Thesis structure 

 

The thesis is presented as a series of chapters formatted as papers for publication 

(Figure 1.4, Table 1).  All papers were written by the first author, Eleanor 

Butterworth and have been edited by Prof. Bruce Jefferson and Dr. Gaby Dotro. All 

experimental work was undertaken by Eleanor Butterworth with the following 

exceptions: Chapter 3: Hydraulic conductivity, tracer tests and solids 

characterisation by Philip Onunkwo as part of his MSc thesis. Chapter 4: Capture of 

video footage of bubble pathways in a visualisation column plus assistance with 

oxygen transfer experiments by Melanie Beneteau as part of her placement 

requirements. Chapter 6: Hydraulic conductivity and tracer tests by Gabriela Mansi 

as part of her placement requirements.

 

Figure 1.4 Thesis overview 
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A literature review was carried out in Chapter 2 in order to understand 

nitrification potential in sub-surface flow constructed wetlands.  This was achieved 

by an overview of oxygen transfer theory and the factors affecting it,.  Findings 

then informed a discussion of their future outlook and challenges with a focus 

towards tertiary nitrification (Chapter 2, Butterworth E., Dotro G., Richards A., 

Jones M., B Jefferson. (2014) Considering the potential for tertiary nitrification in 

sub-surface flow constructed wetlands: a review. Ecological Engineering. In 

preparation). 

 

Chapter 3 assessed the initial performance of a full scale aerated HSSF CW by 

measurement of contaminant removal, hydraulic behaviour and accumulated 

solids characterisation in comparison to a non-aerated control.  A cost comparison 

of implementing the technology against traditional options was then carried out to 

understand the opportunity for use of the process compared to the existing 

alternative process flow-sheet options (Chapter 3, Butterworth E., Dotro G., Jones 

M., Richard A., Onunkwo P., Narroway Y., Jefferson B. (2013) Effect of artificial 

aeration on tertiary nitrification in a full-scale sub-surface horizontal flow 

constructed wetland. Ecological Engineering 54:236-244). 

 

The focus of Chapter 4 was on the effect of media presence on oxygen transfer 

efficiency (OTE).   The aim of this study was to determine the difference in oxygen 

transfer rates in a densely media packed bed vs. a non-media system using a non-

porous diffuser. Various configurations of diffuser orifice diameter size and air 

flow rate were tested to determine their affect on associated aeration efficiency. 
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Supporting bubble visualisation experiments were designed to provide further 

insight and explanation of the mechanisms occurring within the system. Results 

then provided the basis for recommendation around energy reduction in 

artificially aerated wetlands (Chapter 4, Butterworth E., Beneteau M., Dotro G., 

Jefferson B. (2014) Effect of media on oxygen transfer in packed beds. Water 

Research. Submitted) 

 

Chapter 5 then responded to observations made during the full scale trials 

(Chapter 3) at the side-by-side test site where poor establishment of the commonly 

used plant Phragmites australis was observed in the presence of aeration; an 

observation shared elsewhere in the wetland community. Direct quantification of 

the effect of artificial aeration on plant growth in constructed wetlands in terms of 

above and below ground biomass and nutrient uptake of two macrophyte species 

Phragmites australis and Typha latifolia was carried out to provide quantitative, 

mechanistic evidence to support any differences between the systems 

(Butterworth E., Brix H., Dotro G., Jefferson B. (2014) Impact of aeration on 

macrophyte establishment in sub-surface constructed wetlands used for tertiary 

treatment of sewage. Ecological Engineering. In preparation). 

 

Chapter 6 assessed the translation of artificial aeration to full scale systems of 

various configurations including intermittent aeration, tertiary combined storm 

flow and a secondary bed; determined the efficacy at high and variable ammonia 

loading rates not yet reported in the literature, and further, reported on the longer 

term trends of initial performance.  Performance was assessed in terms of 
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ammonia and solids removal, hydraulic conductivity and mixing patterns and in 

terms of process robustness to determine whether the use of aerated HSSF CWs is 

viable as a reliable tertiary process for ammonium removal on small sites 

(Butterworth E., Mansi G., Richards A., Jines M., Dotro G., Jefferson B (2014) 

Ammonia removal at four full-scale artificially aerated horizontal flow constructed 

wetlands. Ecological Engineering In preparation). 

 

 

Table 1.1 Thesis structure with journal submission plan for each chapter 

 

Chapter/ 
Paper 

Objective 
addressed 

Title Target Journal 
 
Status 
 

 
2 

 
1,5 

 
Considering the potential for 
tertiary nitrification in sub-

surface flow constructed 
wetlands: a review 

 

 
 

Ecological 
Engineering 

 
 

In 
preparation 

3 2,5 

Effect of artificial aeration on 
tertiary nitrification in a full-scale 

sub-surface horizontal flow 
constructed wetland 

 

 
 

Ecological 
Engineering 

 
 

Published 

4 3,5 
Effect of media on oxygen 

transfer in packed beds 
 

Water Research Submitted 

5 4,5 

Impact of aeration on 
macrophyte establishment in 

sub-surface constructed wetlands 
used for tertiary treatment of 

sewage 
 

Ecological 
Engineering 

In 
preparation 

     

6 2,5 

Ammonia removal at four full-
scale artificially aerated 

horizontal flow constructed 
wetlands 

 

Ecological 
Engineering 

In 
preparation 
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The overall impact of the research with respect to artificial aeration for tertiary 

nitrification on small works was then discussed with a focus on the implications of 

the work, its applicability and potential for further work (Chapter 7).  The aim of 

the final chapter was to bring all the previous chapters together to establish the 

feasibility and appropriateness of its application for tertiary nitrification on small 

sewage treatment works within the current process flowsheet. 
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2.1 Abstract  

The challenge of how to maintain or improve wastewater treatment performance without 

causing an excessive increase in energy or costs is increasingly focussed towards 

ammonia. On small sewage treatment works in the UK solutions have historically been 

energy intensive: to divert waste to a larger plant, add a polishing step to the end of the 

process flow sheet, or upgrade and replace upstream processes. A large proportion of 

these sites employ constructed wetlands for tertiary treatment and as such this review 

explores oxygen transfer theory; nitrification performance of existing constructed wetland 

systems and affecting factors to reveal reduced energy and cost options are available. 

Consequently, future perspectives include the use of artificial aeration and greater 

consideration of vertical sub-surface flow systems as they achieve the nitrification 

capacity in a smaller footprint than horizontal flow systems and where suitable hydraulics 

permit, can be operated under very low energy demand. 

 

Keywords: Constructed wetlands, nitrification, tertiary treatment

mailto:b.jefferson@cranfield.ac.uk
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 2.2 Introduction 

One of the most important challenges facing the management of wastewater discharges 

concerns the maintenance or improvement of treatment performance, without causing 

an excessive increase in energy usage or costs. Such a challenge sits at the heart of the 

water-energy nexus, requiring innovation to offset the negative impacts associated 

with population growth, energy production and climatic change on the quality and 

availability of water resources for human consumption and ecosystems alike 

(Vörösmarty et al, 2000).  

 

Meeting the challenge is of increasing urgency as regulatory organisations around the 

world are reducing allowable discharge concentrations in order to preserve the 

receiving bodies and enhance the natural capital associated to them. For example, 

within the EU, more stringent environmental quality standards are being set as part of 

the Water Framework Directive (adopted in 2000), requiring discharges to preserve 

the ecological status of receiving bodies to a level which would occur with minimal 

anthropogenic impact. Previous activities have largely resolved such concerns in terms 

of nitrogen at large sewage works, but pressures remain in terms of phosphorus and 

hazardous chemicals (Gardner et al, 2013). At small–medium scale works, the 

challenge extends to nitrogen, and in many small works (sub 2000 population 

equivalence) ammonia.  

 

The traditional solution to the issue has largely resulted in asset replacement or 

inclusion of additional end of pipe assets, increasing both cost and energy usage. To 

illustrate, without innovation, the treatment required to meet aforementioned goals 
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has been estimated by the UK Environment Agency to increase CO2 emissions in the UK 

by over 110,000 tonnes per year; more than doubling operational and carbon 

emissions of individual works that require upgrading (Georges et al, 2009). 

Consequently, re-development and adaption of existing treatment processes is 

becoming increasingly desired and implemented (Brookes, 2013). This is perhaps most 

apparent at small works, as they represent a large percentage of the total works and 

contain predominately low energy technologies. For instance, in the UK, it is estimated 

that approximately 79 % of all works fit this description (DEFRA, 2012) and are based 

around trickling filters (TFs) or rotating biological contactors (RBCs) as the main 

biological treatment stage. Typical effluent quality exceeds the 20/30 (5 day 

carbonaceous biochemical oxygen demand (CBOD5)/total suspended solids (TSS)) 

standard they were originally intended to meet and many provide reasonable levels of 

ammonium removal down to discharge levels of 5 mgNH4
+-N/L. To date, upgrade of the 

treatment capacity has focussed on enhanced solids removal in processes such as 

depth filters, micro-screens and horizontal sub-surface flow (HSSF) wetlands in 

response to the need to improve suspended solids and CBOD5 discharge levels. Looking 

forward, the challenge is increasingly focussed towards ammonia, with required 

discharge levels reduced to below 5 mgNH4
+-N/L and in some cases down as low as 0.5 

mgNH4
+-N/L (Pearce, 2013).  Ammonia removal is predominately derived through 

aerobic biological degradation and consequently, traditional tertiary treatment 

processes are ill equipped to achieve this by providing limited pathways for 

nitrification. Accordingly, upgrade refers to inclusion of tertiary aerobic biological 

processes such as submerged aerated filter (SAFs) and TFs or replacement / 

enhancement of the secondary treatment process, with the potential to switch to 

activated sludge plants (ASPs) or membrane bioreactors where meeting discharge 
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consents is perceived to be particularly challenging. This potentially deviates from the 

philosophy of small works by failing to meet the aspiration to deliver appropriate 

treatment whilst maintaining a low impact in terms of energy, chemical usage, 

maintenance and costs. The divergence between aspiration and treatment need creates 

an opportunity to consider innovations in existing options that can be adapted to 

deliver the required pathways for ammonia removal.  

 

One of the most common options in the small works context that has the potential to 

fill this space are constructed wetlands (CWs) which are now a well-established low 

energy technology utilised on small wastewater treatment plants. Constructed 

wetlands are traditionally passive wastewater treatment systems that consist of a lined 

excavation filled with porous media, planted with emergent macrophytes. Evolution of 

the concept has produced a variety of CW configurations capable of varying degrees of 

treatment that can be tailored to specific needs in terms of organics, solids or nutrient 

removal (Figure 2.1).  

 

In HSSF CWs (Figure 2.1a), wastewater flows horizontally through the permanently 

saturated media to improve water quality via physical, chemical and biological 

pathways and is dominated by strong reducing conditions due to limited oxygen 

availability and hence such configurations have an inherent limit on their nitrification 

capacity. In contrast, vertical sub-surface flow (VSSF) CWs (Figure 2.1b) intermittently 

dose the bed from the surface. During draining, the biofilm surrounding the substrate 

media is exposed to the atmosphere enabling diffusion of the oxygen through the 

biofilm, creating the conditions required for aerobic biological wastewater treatment 

to occur (Cooper et al, 1997).  The resultant increase in ammonium removal rate has 
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led the technology to become increasingly popular as a secondary treatment process 

where limited operator input is desired and sufficient land is available (Kadlec and 

Wallace, 2009; Moir, 2013). 

 

 

Figure 2.1 Common constructed wetland configurations: a. Horizontal sub-surface 

flow; b. Vertical sub-surface flow; c. Aerated horizontal sub-surface flow; d. 

Hybrid/integrated systems 

 

Tidal flow and reciprocating wetlands are classifications of flood and drain systems 

based on the vertical flow design, whereby the length and frequency of the flood and 

drain cycles are varied to achieve the desired redox conditions to allow treatment via 

aerobic and anoxic processes. Where continuous aerobic conditions are required, 
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artificial aeration has become popular (Figure 2.1c); supplying air via the addition of 

blowers and diffusers placed on the wetland bed (Ouellet-Plamondon et al, 2006; 

Wallace, 2006, Zhang et al, 2010). In addition to these classifications, numerous 

integrated or hybrid systems have been developed that combine variations of wetland 

design. Traditionally, vertical flow beds are used for nitrification followed by a 

horizontal bed for denitrification and solids removal (Figure 2.1d).  

 

Ammonification occurs more rapidly than nitrification, dependant on pH, temperature 

and C/N ratio. Ammonium (NH4+–N) in CW systems can also be reduced by adsorption, 

plant uptake and volatilization. Very few studies complete N mass balances in tertiary 

CWs utilised for municipal wastewater treatment due to concerns over effective 

representation of the different components and the overall complexity (Chen et al, 

2014) however it is generally believed that the contribution of these processes to the 

NH4+–N removal is very limited compared with nitrification (Lee et al, 2009).  

 

Recent innovations, coupled to the desire for more sustainable treatment approaches, 

have seen consideration of the CW technology for nitrification increase in terms of both 

scientific investigation (Butterworth et al, 2013; Loupasaki and Diamadopoulos, 2013) 

and implementation (Pearce, 2013). Accordingly, the current paper aims to review the 

available literature in order to understand nitrification potential in sub-surface flow 

constructed wetlands and to discuss their future outlook and challenges with a focus 

towards tertiary nitrification.  This is achieved by an overview of oxygen transfer 

theory and the factors affecting it, followed by a review of ammonium removal 

performance from the literature and a discussion of the influences affecting ammonium 
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removal rates. The paper then concludes with a discussion of the outlook and 

challenges with regard to tertiary nitrification on small sewage treatment works. 

 

 2.3  Oxygen transfer  

The ability to deliver sufficient oxygen to drive nitrification is based on the 

combination of the demand exerted by the nitrifying biofilms and the diffusional rate of 

transfer across the stagnant boundary layers surrounding the biofilms. The former 

constitutes the oxygen uptake rate (OUR) by the microorganism for growth, 

maintenance and production and is hence linked to the loading rate of the system 

(Garcia-Ochoa and Gomez, 2009), whilst the latter is known to be rate limiting once the 

bulk dissolved oxygen (DO) falls below 2 mgO2/L (Nowak, 2000). The rate and 

efficiency of oxygen transfer is described in different ways including; the mass of 

oxygen transferred per unit time (oxygenation capacity, kgO2/h); the percentage of the 

oxygen transfer compared to that available (oxygen transfer efficiency – OTE), 

commonly measured per metre of submergence to normalise against different studies; 

mass of oxygen transfer per unit of energy consumed (oxygenation efficiency - OE) and 

the aeration efficiency (AE) both measured in kgO2/kWh. Details of the respective 

equations are provided in Chapter 4, Section 4.3.1.  

 

The rate of oxygen transfer is proportional to the area of contact between the liquid 

and gas phases (ASCE, 1988). Consequently, aerobic processes are designed to 

maximise this feature in one of two ways: falling films or rising bubbles (Figure 2.2). 

Falling film systems occur in non-flooded tanks such that the majority of the void space 

is filled with air. Water is then passed over the biofilm enabling both oxygen and 
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substrate to diffuse into the biofilms that are held in place on packing materials (Figure 

2.2a). Typical examples of this technology include TFs, RBCs and VSSF CWs; listed in 

increasing order of packing density. In all cases the rate of transfer is operationally 

controlled through the wetting rate, with each packing system having a minimum 

liquid rate for effective use (Coulson et al, 2002). Reported oxygen transfer efficiencies 

for such systems are in the region of 5 %/m (Metcalf and Eddy, 2003; Medoza-

Espinosa and Stephenson, 1999).  

 

In contrast, rising bubble systems (Figure 2.2b) operate in flooded tanks where small 

bubbles of air are added at the bottom of the tank and allowed to rise to the surface 

under the action of gravity. Typical systems include flocculent processes such as 

activated sludge or sequenced batch reactors as well as biofilm processes such as SAFs, 

biologically aerated filters (BAFs) and artificially aerated CWs. Transfer rates are 

controlled by the contact time between the air bubble and the bulk liquid and the 

specific surface area of the gas/liquid interface. Consequently, smaller bubbles enhance 

transfer through an increase in both the specific surface area and the contact time such 

that fine bubble systems (2-5 mm bubble size, Mueller et al, 2002) are preferred over 

coarse bubble (6-10 mm bubble size, Mueller et al, 2002) in flocculent systems. 

Operationally this is influenced though the depth of submergence, air flow rate, type of 

diffuser (material and hole size) and the diffuser density (ASCE, 1988) with, for 

example, typical oxygen transfer efficiencies in the range of 8-12 %/m for activated 

sludge systems (Metcalf and Eddy, 2003).  

 

The importance of initial bubble size is less clear in fixed-film rising bubble systems 

(Figure 2.2c) as media presence can cause the coalescence of fine bubbles, decreasing 
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bubble surface area, resulting in a lower OTE and the break-up of coarse bubbles, 

increasing OTE (Fujie et al, 1992; Harris et al, 1996). For instance, no real benefit in 

OTE was observed with respect to the presence of media in pilot trials of an integrated 

fixed-film activated sludge (IFAS) process where rates remained around 4-7 %/m 

(Collignon, 2006). In high density packing systems, such as aerated wetlands, an 

additional impact is seen as the apparent rise rate of the bubbles can be reduced due to 

bubble hold up in the spaces between the media grains (Butterworth et al, 2014). 

Direct oxygen transfer measurements in open and packed tanks have shown a 53 % 

increase in OTE for the latter, although the impacts were strongly linked to gas flow 

rate and orifice size (Butterworth et al, 2014).  

 

 

Figure 2.2 Common methods of air delivery to wastewater: a. Falling films; b. Rising 

bubbles (non-media system) and c. Rising bubbles (media system) 
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2.3.1 Oxygen transfer in constructed wetlands 

In CWs the retrospective oxygen consumption rates are commonly based on a mass 

balance using water quality data, which has led to overestimation of oxygen transfer 

rates (Nivala et al, 2012). To illustrate, direct measurement of the OTR by gas tracer 

methods has shown OTRs of around 0.3-3.2 gO2/m2/d in HSSF CWs – lower than 

previous estimates of 5.4 to 100 gO2/m2/d based on mass balances and theoretical 

calculations (Tyroller et al, 2010). Respirometry techniques have also been adapted 

from use in activated sludge and applied to measure biological kinetics in VSSF CW 

systems (Andreottola et al, 2007).  Samples are aerated to reach endogenous 

conditions and the OUR is determined from the response of the dynamic DO profile to a 

substrate spike.  The method has calculated maximum OURs of 2.5-4.4 g O2/m3/h and 

an ammonium removal rate (AR) of 1.8 gNH4+-N/m3/h (Andreottola et al, 2007; 

Ortigara et al, 2010).   

 

2.3.2 Horizontal sub-surface flow 

Oxygen supply in conventional HSSF CWs (Figure 2.1a) is poor and variable, occurring 

primarily via convection and diffusion from the air to the surface water, with estimated 

transfer rates of 0.3-3.2 gO2/m2.d (Troyller et al, 2010) compared to required 

consumption rates of 2.4-11.6 gO2/m2.d (Nivala et al, 2012). Oxygen transfer from 

plants in excess of plant respiration requirements are uncertain, but considered 

insignificant (Brix, 1990; Bezbaruah and Zhang, 2005). Such low oxygen transfer rates 

lead to a residual DO of around 0.1-0.9 mgO2/L (Kaseva, 2004; Butterworth et al, 

2013); insufficient for nitrification (Nowak, 2000) and consequently, complete 

nitrification is only considered achievable in lowly loaded systems of up to 2 gNH4+-

N/m2.d (Butterworth et al, 2013).    
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2.3.3 Vertical sub-surface flow  

Vertical sub-surface flow CWs (Figure 2.1b) are falling film systems (Figure 2.2a) 

reported to consume 5.7-156 gO2/m2.d (Nivala et al, 2012) and maintain a residual DO 

of 4.3-6.5 mgO2/L (García-Pérez et al, 2009; Sousa et al, 2011). Part of the oxygen 

demand is met via nitrate utilisation during the flooded phases that is subsequently 

released into the flow during the drain phase (Tanner et al, 1999; Austin, 2006). 

Effective delivery of the aerobic environments occurs when the sand is not saturated; 

thus good drainage and distribution is critical (Torrens et al, 2009). The oxygenation 

processes are affected by the applied hydraulic loading rate in terms of the batch 

feeding volumes; at any hydraulic loading, larger batch volumes favour oxygen 

diffusion but reduce retention time and hence treatment (Torrens et al, 2009). 

Variation in loading approaches has led to a range of estimated average OTRs between 

50-90 gO2/m2.d (Cooper et al, 1997). Tidal flow (Zhao et al, 2004) and reciprocating 

operating strategies (Behrends et al, 2001) are based on vertical flow systems, with 

several flood and drain cycles occurring daily, designed to enhance oxygen transfer and 

therefore increase nitrification (Tanner et al, 1999). To illustrate, a laboratory study 

run with a 3 hr fill : 3 hr drain cycle demonstrated that the oxygen demand in the tidal 

flow system was fully met with OTRs reaching 450 gO2/m2.d (Wu et al, 2011). The 

systems have been reported to deliver the required oxygen quickly with saturation of 

the biofilm occurring in less than 1 minute (Behrends, 1999).   

 

2.3.4 Artificially aerated systems 

Artificially aerated (AA) systems (Figure 2.1c) are fixed-film, rising bubble systems 

(Figure 2.2c) reported to achieve residual DOs of 3.3-7.0 mgO2/L (Bezbaruah and 
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Zhang, 2005, Muñoz et al, 2006) and meet oxygen demand rates of 50-1027 gO2/m2.d 

(Nivala et al, 2012). Studies have been increasing in this area since 1999 (Cottingham 

et al, 1999; Chazarenc et al, 2009; Fan et al, 2013) and generally relate to aerated HSSF 

systems, although more recently include flooded vertical flow systems (Tang et al, 

2008; Stefanski and Tsihrintzis, 2009).  The air delivery configuration varies between 

systems and includes the use of a 20 cm diameter air diffuser placed at the inlet of the 

mescosm with air supplied at 6.7 L/min.m3 bed (Ouellet-Plamondon et al, 2006); a 90 

mm slotted PVC pipe across the width of the bed at two locations along a 30 m bed, 

delivering 4.2 L/min.m3 of bed (Cottingham et al, 1999) and 125 mm diameter 

perforated pipe placed along the width of the bed at four locations across a length of 

15.5 m, delivering 32.3 L/min.m3 bed 12 hours a day (Nivala et al, 2007). The latter 

system used an orifice size of 3 mm indicating coarse bubble aeration akin to those 

used in SAFs whereas the former systems use fine bubble aeration as used in ASPs.  

 

A paucity of reported data on the relative efficacy of the different designs indicates 

limited optimisation to date. However, pilot investigations into the impact of hole size 

and air flow rate have revealed low air flow rates (10-20 L/min) and small hole sizes 

(0.5-0.8 mm) produced higher SOTEs/m than high flow rates (40-100 L/min) and 

larger hole sizes (2-3 mm) (Butterworth et al, 2014). The time required to reach the 

maximum DO took around 5 minutes which compared to 20 minutes reported in a pilot 

aerated flooded vertical flow systems used for secondary treatment (Fan et al, 2013). 

The system was intermittently aerated at a range of 1±0.5 L/min.m3 and stopped once 

the DO reached 3.5 mgO2/L. DO decline took 60 minutes to drop below 1.0 mgO2/L 

enabling total nitrification and good denitrification to occur.  
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2.4  Nitrification performance 

Comparison of data from the collated studies of different wetland configurations 

revealed median ammonium removal rates of 2.8 gNH4+-N/m2.d for VSSFs, 2.0 gNH4+-

N/m2.d for AA systems and 0.5 gNH4+-N/m2.d for the HSSFs, with integrated systems 

operating at higher removal rates of 9.3 gNH4+-N/m2.d (Table A, supplementary 

information 2.1). Variation of reported ARs was highest in the integrated (0.4-12.8 

gNH4+-N/m2.d) and vertical flow systems (0.1-79.3 gNH4+-N/m2.d) with a two-sided 

Grubbs test (0.05 significance level) indicating no statistical outliers in the dataset. 

Variation in both sets is due to the VSSF component and reflects differences in set up, 

loading rate and the fact that ammonia load is not the rate limiting component in 

system design and operation. Supporting this, the range of reported ARs for HSSFs was 

0.03-7.2 gNH4+-N/m2.d verifying the systems are able to nitrify when operated under 

appropriate loadings to enable sufficient oxygen transfer and hence were more related 

to hydraulic and solids loading rate than ammonia loading rate.  

 

Comparison of the tested systems revealed full scale studies utilising bed depths of 0.6-

0.7 m and areas of 4-10,000 m2 whilst pilot/lab scale systems ranged from depths of 

0.2-0.6 m and areas of 0.1-5.9 m2. Analysis of the data indicated general lower 

ammonium removal rates in lab/pilot systems compared to full scale (Table 1). For 

instance, underestimations appeared in the cases of VSSFs (31 %) and HSSFs (27 %) 

although a much closer translation between scales of operation appears to exist in the 

case of aerated HSSFs (17 %). However, in the case of integrated systems ARs were 

found to be 6.2 times higher at pilot than at full scale. This is likely to be due to the 

multiple stages common in integrated systems and the higher ammonium loading rates 

used in the pilot/lab scale integrated systems compared to those in the full scale (Table 
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A, supplementary information 1). As such, only data relating to full scale beds and 

outdoor systems were taken into account for the remainder of the data analyses. 

 

Table 2.1 Comparison of ammonium removal rates (AR) in various wetland systems at 

full and pilot scale 

System 

Full scale Pilot/lab scale   

Number 
AR 

(g/m2/d) Number 
AR  

(g/m2/d) 
Total 

number 

∆AR 

(g/m2/d) 

HSSF 16 0.71 15 0.52 31 -0.19 

VSSF 13 2.19 6 1.52 21 -0.67 

Integrated 3 1.65 12 11.9 15 +10.3 

Aerated HSSF 7 2.30 17 1.91 13 -0.39 

 

For full scale systems, median ammonium removal rates of 2.3 gNH4+-N/m2.d for the 

aerated systems; 2.2 gNH4+-N/m2.d for VSSFs and 0.7 gNH4+-N/m2.d for the HSSFs 

were calculated; with integrated systems decreasing from 9.3 to 1.7 gNH4+-N/m2.d 

(Figure 2.3). 
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Figure 2.3 Comparison of nitrification rates calculated for various full scale wetland 

systems.  The ‘box’ represents the 50th percentile range, the line the median and the 

‘whiskers’ the upper 5th and 95th percentiles 

 

2.5  Influences on ammonium removal rates 

2.5.1 Loading rates 

A strong correlation between NH4+-N loading and removal rate was found in all 

systems (Figure 2.4) in agreement with findings from Tanner et al, (2002) who showed 

rates of NH4+-N removal increased with mass loading for an HSSF CW. Strong 

correlations were also observed for each of the individual configurations; for instance 

increasing ammonium loading rates between 0.8-8.0 gNH4+-N/m2.d corresponded to 

ARs of 0.7-7.2 gNH4+-N/m2.d (R2=0.99) for HSSF systems older than two years (Figure 

2.4). Inclusion of the data from the younger systems (less than 2 years) weakened the 

relationship, producing an R2 value of 0.46, as the younger systems produced a 

maximum AR of 1.8 gNH4+-N/m2.d at a loading rate of 7.7 gNH4+-N/m2.d. The capacity 

to nitrify also appears related to hydraulic residence time as a study by Trang et al, 

(2010) revealed a reduction in removal between 0 % and 91 % for a fixed inlet 

concentration when changing the hydraulic loading rate from 31-146 mm/d 

corresponding to N loading rates of 1.5 and 6.9 gNH4+-N/m2.d.  
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Figure 2.4 Relationship between ammonium removal rate and NH4-N loading rate 

from long and short term performance data from full scale HSSF CWs, and full scale 

aerated and VSSF  

*All ARs and loading rates relate to data from the full scale studies taken reported in Table 2.  HSSF systems older than 2 years old are considered 

established.  All other data points are from full scale systems less than 2 years old plotted up to loading rates of a maximum of 9 gNH4/m2.d  

 

 

The majority of studies report on CWs were used for secondary treatment, whilst full 

scale tertiary systems appear under-represented in the literature (Table A, 

supplementary information 2.1).  Typical removal efficiencies in full scale secondary 

HSSF CWs varied from 6.5-93.4 % corresponding to effluent ammonia concentrations 

predominately above 5 mg/L with a range between 3-61 mgNH4+-N/L. In comparison, 

effluent ammonia in the aerobic secondary CWs was lower and ranged between 1.5-
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12.0 mgNH4+-N/L for VSSFs and 1.0-9.5 mgNH4+-N/L for AA HSSFs corresponding to 

removal efficiencies of 51.8-97.5 % and 95.3-96.7 % respectively. 

 

Lower ARs were reported for full scale tertiary HSSF CWs (0.05-0.22 gNH4+-N/m2/d) 

with corresponding hydraulic loading rates of 0.01-0.28 m3/m2/d (Table A, 

supplementary information 2.1). In one study, tracer tests identified that the 

preferential flow paths and dead zones that occurred in the systems were not the cause 

of the poor efficiency (O’Luanaigh et al, 2010). Further investigation showed the NH4+-

N:COD ratio was high (1:9), suggesting poor performance could be due to competition 

from the faster growing heterotrophs utilising available oxygen to degrade organic 

material, leaving insufficient for nitrifying bacteria to degrade ammonia.  Influent 

NH4+-N and organic-N, in contrast, were changing form on a cyclic basis through 

processes such as mineralisation, immobilisation and plant uptake. Equivalent loading 

rates in tertiary VSSF and AA HSSF CWs ranged from between 0.03-0.53 m3/m2/d 

treating ammonia concentrations up to 50.5 mgNH4+-N/L resulting in effluent 

ammonia concentrations of 0.2-29.2 mgNH4+-N/L (Table A, supplementary information 

2.1).  

 

2.5.2 Operation 

Operational practice has also been shown to influence capacity at lab/pilot scale. For 

instance, an increase in ammonia removal from 70 % to over 91 % was observed in a 

continuous compared to an intermittently run (24 hr fill:24 hr drain) VSSF wetland 

(Zhang et al, 2005). Alteration of the dosing frequency has been shown to influence 

treatment through its impact on hydraulic retention time in the bed (Stevik et al, 

1999).  When the dose is applied in fewer, larger volumes the retention time is reduced 



34 

 

due to the greater hydraulic driving pressure applied which correspondingly inhibits 

pollutant contact with the biofilm by reduction in the exchange between the mobile 

and less mobile water fractions in the bed (Torrens et al, 2009). However, oxygenation 

is reduced as dosing frequency is increased as it is controlled by the time between 

batches such that increased frequency can reduce nitrification, requiring a balance to 

be reached (Molle et al, 2006).  

 

A study of the effect of the flood/drain ratio on performance of VSSF systems resulted 

in 94 %, 91 % and 63 % ammonium removal in 1:2, 2:1 and 3:0 systems, (days to flood: 

days to drain), however, total nitrogen removal was highest in the 3:0 system and 

lowest in the 1:2, whilst COD and total phosphorous removal did not differ significantly 

between the different ratios (Jia et al, 2010). The study also documented decreased 

nitrification rates during a period of high BOD5 (330 g/m2/d) loading rates due to 

increased competition for oxygen and the formation of thicker heterotrophic biofilms 

that buried the slow growing nitrifiers and contributed to clogging of the system. 

  

Artificial aeration has been shown consistently to enhance nitrification congruent with 

the negation of the oxygen limitation in systems operated at high loading rates. To 

illustrate, a full scale system treating landfill leachate (Nivala et al, 2007) recorded 95 

% ammonium removal efficiency (average loading 81 gNH4+-N/d) compared to a 

yearly average of 32 % removal in the system during periods of no aeration (average 

loading 29 gNH4+-N/d). The same has been reported for municipal sewage treatment 

where a full scale system operating at a loading rate of 5.5 gNH4+-N/m2.d enabled 68 % 

ammonium removal during aeration compared to 15 % without (Cottingham et al, 

1999). Further, Ouellet-Plamondon et al, (2006) recorded summer mass removals of 
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99 % and 94 % in an aerated system compared to a non-aerated control compared to 

lower removals of 94 % and 65 % respectively over winter, with systems loaded at 0.7 

(summer) and 0.2 (winter) gNH4+-N/m2.d. Equivalent findings have been reported in 

tertiary nitrification systems where a direct comparison of full scale aerated and non-

aerated beds on the same site revealed a difference in effluent ammonia of 0.1±0.05 

mgNH4+-N/L in the aerated bed compared to 8.6±6.4 mgNH4+-N/L in the non-aerated 

bed (Butterworth et al, 2013).  

 

2.6 Outlook and challenges 

In the current context of nitrification, delivery of sufficient air enables CW technology 

to provide effective treatment of ammonia at either a secondary or tertiary treatment 

stage in a wastewater flow sheet. Implementation for secondary treatment applications 

is becoming more commonplace at small rural municipal works in parts of Europe 

(Kadlec and Wallace, 2009) and private treatment systems more generally (Moir, 

2013). In both cases, vertical or artificially aerated horizontal beds are used to ensure 

sufficient oxygen transfer to drive nitrification. Both systems are shown to be able to 

reduce ammonium to below 5 mgNH4+-N/L at a 95th percentile when operated as a 

secondary process (Table A, supplementary information 1) unless high hydraulic 

loading rates (0.53 m3/m2.d) or difficult wastewaters (e.g. leachate) are considered. 

Accordingly, when discussing future outlook it is more pertinent to discuss the 

potential for use of the technology for tertiary applications where the current 

preference for HSSF CW results in limited ammonium removal unless they are very 

lightly loaded (2 gNH4+-N/m2.d).  
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A relative paucity of data exists for aerobic CWs used for tertiary nitrification but in 

both VSSF and AA CWs, where studies exist, the data indicates effective treatment 

congruent with lack of oxygen being the inhibitory factor. Data from both real and 

synthetic trials suggest effluent ammonia concentrations of less than 1 mgNH4+-N/L 

are possible whilst maintaining treatment levels in terms of solids and CBOD5 

compared to non-aerated systems by just aerating standard designs of HSSF CWs 

(Butterworth et al, 2013). Consequently, the question is about the relative comparison 

with alternative options to understand the opportunity space that can be occupied.  

 

On sites that already contain HSSF CWs a significant advantage can be attributed to 

artificial aeration as the upgrade can be conducted as part of the routine maintenance 

cycle significantly reducing cost and negating the need for new assets. This was 

confirmed during a recent feasibility assessment of upgrading options on a small 

sewage treatment plant with an existing HSSF CW (Butterworth et al, 2013). Upgrading 

with artificial aeration was a more viable option in terms of cost, land and footprint 

than the traditional options of RBCs, SAFs or TFs.  

 

Whilst the efficacy of treatment is becoming more established, challenges exist in 

relation to robustness to dynamic events, energy demand and the impacts of aeration 

on solids accumulation and hydraulic conductivity. Operational experience suggests 

that the longer HRTs used in artificially aerated wetlands provide enhanced resilience 

against cold temperatures compared to high rate equivalents such as SAFs and TFs 

(Pearce, 2013). However, wetlands suffer from the same challenge as all tertiary 

nitrification systems related to the low substrate concentration encountered during 

much of the year. For instance, previous studies indicate that feed ammonia 
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concentrations rarely exceed 5 mgNH4+-N/L and are often substantially lower 

(Butterworth et al, 2013; Table A, supplementary information 1). This prohibits 

establishment of large communities of ammonia oxidising bacteria (AOB) within the 

beds such that during periods of increased load, available substrate may exceed the cell 

specific ammonia-oxidation rate of the community [4-10 fmol/cell/hr, (Belluci et al, 

2011)]. No direct studies on bacterial abundance or community profile have been 

reported for aerobic wetlands used for tertiary nitrification systems but investigations 

on established HSSF CWs revealed 1-3 % of the total community being related to AOB 

(Krasnits et al, 2009) which increases to around 16 % when assessing aerated 

secondary VSSF beds (Fan et al, 2013). These represent the limits between which 

tertiary systems will likely sit and research is required to understand how to increase 

the active AOB population size in order to enhance nitrification resilience during 

increased loads. Once a sufficient community exists the technology may be able to 

emulate the IFAS process whereby nitrification rate can be turned up and down by 

controlling DO and hence provide a means of dynamic control against variable 

nitrification demand (Pearce, 2013).  

 

Artificially aerated tertiary systems currently installed use small fixed speed blowers 

such that excess air needs to be vented making direct measurement of the required 

energy complex (site observations, author). However, a recent report based around a 

750 population equivalent site revealed the use of a 1.5 kW blower (Pearce, 2013). 

Whilst this generates a very small energy cost (less than £1000 /yr based on UK prices) 

it represents a high relative energy demand per person at around 2.43 Wh/person 

comparable to typical levels for activated sludge of 2.45 Wh/person. Further, all energy 

use on the site was compared which revealed that the aeration system accounted for 
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between 40-50 % of the total energy demand, the second being heating in the 

operators building. In contrast, energy demand for aeration based on oxygen transfer 

experiments indicates that only 0.7 kW is required to maintain an adequate DO and so 

the potential for optimisation exists (Butterworth et al, 2014). Whilst the small size of 

the blowers restricts concern on an individual site basis, once scaled up across all small 

works within a region the impact becomes significant. Reduction in the actual power 

demand also enhances the opportunities for using localised renewable energy sources 

providing a route for future off grid operation of such sites which would enhance 

uptake still further.  

 

The majority of systems have been recently installed such that longer term impacts 

remain unclear on issues associated to solids accumulation, mixing and hydraulic 

conductivity. Previous mesocosm studies have indicated that the impact of artificial 

aeration reduces solids accumulation (Chazarenc et al, 2009) and enhances hydraulic 

conductivity during the initial years of operation (Butterworth et al, 2013). The 

reduction coincides with changes in characteristics of the solids in terms of volatile 

solids, specific filtration resistance and sludge volume index suggesting that the solids 

have transformed. This offers the possibility of extended bed life in aerated systems 

compared to un-aerated ones but validation is required through long term 

observations as recent results indicate that the benefits dissipate as the bed ages 

(Mansi et al, 2013). The equivalent information has not been reported for VSSF 

systems and so further research is required to understand how tertiary aerobic 

pathways influence long term operation of CWs in relation to clogging and solids 

accumulation.  
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2.7 Conclusions 

The potential to successfully treat ammonia in CWs is apparent once sufficient oxygen 

is supplied to enable aerobic conditions to predominate in the bed. This can be 

achieved through either reduced loading in HSSF CWs or increased oxygen transfer 

through the use of aeration in the form of passive (VSSF) or artificial (aerated HSSF) 

aeration. Either way, a strong evidence base exists to demonstrate the capability of 

CWs to meet nitrification needs during secondary treatment and accordingly the 

technology is increasingly used in small rural sites for this function.  

 

The future growth outlook is then towards tertiary nitrification where increasing 

numbers of small works are requiring upgrade, but application of CWs for the purpose 

is currently limited. Existing sites provide evidence that CWs can be an effective choice, 

thus, the challenge for growth increasingly relates comparison to the alternative 

technologies as well as overcoming the uncertainties associated with solids and 

hydraulic conductivity and the wider consideration of energy use. Consequently, future 

perspectives include greater consideration of VSSF systems as they achieve the 

nitrification capacity in a smaller footprint than HSSF systems and where suitable 

hydraulics permit, can be operated under a very low energy demand. However, if total 

nitrogen removal is required, aerated HSSF CWs appear more suitable as delivery of 

multiple redox environments within a single system can be simply achieved by 

aerating only a fraction of the bed, enabling total nitrogen removal.  
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Supplementary information 2.1  

 

Table A Ammonium removal rates and site details 

 

Reference Area Ve Q HRT HLR NH4
+ loading rate Inlet Outlet AR  Treatment 

  m2 m3 m3/d d m3/m2/d g/m2/d mg/L mg/L g/m2/d   

HSSF                     

Llorens, 2009 10000 2800 100 30.0 0.01 0.33 33.0 6.8 0.24 Tertiary 

Matamoros, 2008 10000 2800 100 30.0 0.01 0.38 37.8 3.0 0.32 Secondary 

Matamoros, 2008 10000 2800 100 30.0 0.01 0.61 61.0 15.3 0.43 Secondary 

Cottingham et al, 1999 150 36.00 14.4 3.00 0.10 5.66 59.0 50.2 0.71 Primary 

Vymazal, 2011 2500 600.00 203 2.96 0.08 6.69 82.4 8.0 6.04 Secondary 

Vymazal, 2011 704 168.96 80.2 2.11 0.11 8.02 70.4 6.8 7.24 Secondary 

Vymazal, 2011 18.0 4.32 0.7 6.17 0.04 1.08 27.7 4.1 0.92 Secondary 

Vymazal, 2011 2100 504.00 36.3 13.9 0.02 3.89 225 15.8 3.61 Secondary 

Vymazal, 2011 750 180.00 22.8 7.89 0.03 0.84 27.7 4.10 0.72 Secondary 

Vymazal, 2011 2160 518.40 231 2.24 0.11 3.58 33.4 4.71 3.07 Secondary 

Vymazal, 2011 3040 729.60 233 3.13 0.08 5.14 67.1 4.46 4.80 Secondary 

STW Site 1, (unpublished) 100 24.00 28.0 0.86 0.28 3.33 11.9 11.1 0.22 Tertiary 

STW Site 2, (unpublished) 200 48.00 100 0.48 0.50 7.70 15.40 11.90 1.75 Secondary 

Vymazal, 2005 18.0 4.32 0.30 14.4 0.02 1.03 62.0 51.0 0.18 Secondary 

O'Luanaigh, 2010 15.1 2.09 0.33 6.40 0.02 1.62 74.9 61.0 0.30 Secondary 

O'Luanaigh, 2010 4.00 0.69 0.14 5.00 0.03 0.76 22.1 20.7 0.05 Tertiary 
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Caselles-Osario and Garcia,2007 0.55 0.08 0.01 6.00 0.02 0.45 25.0 3.40 0.50 Secondary 

Caselles-Osario and Garcia,2007 0.55 0.08 0.02 3.00 0.04 1.26 34.0 2.60 1.47 Secondary 

Caselles-Osario and Garcia,2007 0.55 0.08 0.03 2.00 0.06 2.04 37.0 13.0 1.68 Secondary 

Caselles-Osario and Garcia,2006 0.54 0.06 0.20 3.00 0.37 4.30 11.6 8.30 0.13 Secondary 

Caselles-Osario and Garcia,2006 0.54 0.06 0.10 6.00 0.19 4.28 23.1 10.0 0.26 Secondary 

Matthys et al,2000 0.07 0.01 0.00 3.50 0.03 5.44 156 126 1.04 Secondary 

Agudelo, 2010 0.60 0.05 0.01 7.25 0.01 1.38 125 115 0.10 Secondary 

Kaseva, 2004 5.88 1.23 0.63 1.98 0.11 2.19 20.6 15.1 0.58 Secondary 

Kaseva, 2004 5.88 1.23 0.64 1.93 0.11 2.24 20.6 15.9 0.52 Secondary 

Maltais – Landry et al, 2009c 1.00 0.10 0.06 1.73 0.06 0.12 2.00 0.01 0.12 Tertiary 

Yalcuk, 2009 0.31 0.13 0.01 12.5 0.03 3.90 122 75.0 1.50 Secondary 

Albuquerque et al, 2009 1.60 0.14 0.02 5.70 0.02 0.53 35.5 5.00 0.48 Tertiary 

Albuquerque et al, 2009 1.60 0.13 0.02 5.10 0.02 0.80 53.6 31.1 0.35 Tertiary 

Yousefi and Mohseni-Bandpei, 

2010 0.13 0.02 0.08 4.00 0.58 14.8 25.3 14.4 0.40 Tertiary 

Yousefi and Mohseni-Bandpei, 

2010 0.13 0.02 0.09 4.00 0.69 17.5 25.3 19.0 0.27 Tertiary 

VSSF                     

Bruch et al, 2011 50.0 15.8 5.00 3.2 0.10 2.99 29.9 1.50 2.84 Secondary 

Bruch et al, 2011 30.0 5.40 3.00 1.8 0.10 2.49 24.9 12.0 1.29 Secondary 

Bruch et al, 2011 30.0 5.40 3.00 1.8 0.10 2.49 24.9 3.23 2.17 Secondary 

Cooper et al, 1997 16.0 3.36 8.40 0.4 0.53 26.5 50.5 29.2 11.2 Tertiary 

Cooper et al, 1997 16.0 3.36 8.40 0.4 0.53 15.3 29.2 14.0 7.98 Tertiary 

Cooper et al, 1997 16.0 3.36 8.40 0.4 0.53 3.34 6.4 2.2 2.19 Tertiary 
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Cooper et al, 1997 16.0 3.36 8.40 0.4 0.53 1.16 2.2 1.4 0.43 Tertiary 

Mitterer-reichmann, 2002 275.0 82.50 7.43 11 0.03 2.09 77.5 5.30 1.95 Secondary 

Mitterer-reichmann, 2002 275.0 165.0 7.43 22 0.03 2.09 77.5 1.90 2.04 Secondary 

Weedon, 2003 16.7 5.01 1.34 3.8 0.08 7.51 93.9 10.3 6.69 Secondary 

Kayser and Kunst, 2005 2250 540.0 0.30 0.5 0.29 0.01 50.0 4.5 21.8 Secondary 

Foladori et al, 2013 2.25 1.8 0.16 11.6 0.07 4.00 58.0 11.9 3.18 Secondary 

Sklarz et al, 2009 0.99 0.36 0.30 1.2 0.30 11.2 37.0 3.00 10.3 Primary 

Langergraber et al, 2007 20.0 26.0 4.00 1.0 0.20 13.5 67.6 6.60 79.3 Secondary 

Langergraber et al, 2007 20.0 26.0 4.00 1.0 0.20 13.5 67.6 17.5 65.1 Secondary 

Langergraber et al, 2007 20.0 26.0 4.00 1.0 0.20 13.5 67.6 36.9 39.9 Secondary 

Yalcuk, 2009 0.50 0.11 0.01 11 0.02 2.44 122 46.0 1.52 Secondary 

Yalcuk, 2009 0.50 0.08 0.01 8.0 0.03 2.44 122 62.0 1.20 Secondary 

Matthys et al, 2002 0.07 0.01 0.00 3.5 0.01 5.44 156 112 1.52 Secondary 

Jia et al, 2010 0.24 0.06 0.02 3.0 0.10 4.31 43.1 2.65 3.51 Secondary 

Green et al, 1997 0.10 0.03 0.02 1.0 9.77 9.38 40.0 1.20 11.6 Secondary 

Green et al, 1997 0.10 0.03 0.02 1.0 9.77 23.4 100 33.0 20.1 Secondary 

Fan et al, 2013 0.04 0.01 0.01 3 0.21 8.4 40.1 27.0 1.1 Secondary 

Fan et al, 2013 2.00 0.60 0.06 10.0 0.03 1.11 37.0 28.2 0.26 Secondary 

MODIFIED/INTEGRATED                     

Cooper et al, 1997 32.0 9.0 15.0 0.6 0.47 5.16 11.0 1.00 4.69 Tertiary 

Johansen and Brix, 1996 527.0 147.6 20.0 7.4 0.04 1.84 48.5 6.60 1.59 Secondary 

O'Hogain, 2003 184 44.0 8.0 5.5 0.03 1.96 45.0 7.0 1.65 Secondary 

Zhao et al, 2011 4.40 1.50 1.28 2.0 0.29 31.0 107 31.0 12.9 Secondary 

Curia et al,2011 1.00 0.35 2.00 3.0 3.20 12.8 6.40 3.00 0.40 Tertiary 
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Green et al,1997 0.10 0.02 0.03 0.8 0.25 9.84 40.0 2.30 9.28 Secondary 

Green et al,1997 0.10 0.02 0.02 1.3 0.16 16.0 100 32.5 10.8 Secondary 

Sun et al, 2005 0.03 0.008 0.01 0.2 0.42 43.7 104 76.0 39.2 Secondary 

Babatunde et al, 2010 0.03 0.01 0.04 0.2 1.27 169 133 35.6 117 Secondary 

Zhao et al, 2004 0.14 0.05 0.05 0.9 0.34 34.0 100 60.0 13.6 Secondary 

Zhao et al, 2004 0.03 0.003 0.01 0.2 0.43 52.0 121 75.0 19.8 Secondary 

Sun et al, 1999 0.03 0.008 0.01 0.4 0.42 50.8 121 63.0 40.6 Secondary 

Ong et al, 2010 0.03 0.01 0.00 3.0 16.5 1.95 32.3 4.96 1.88 Secondary 

Ong et al, 2010 0.03 0.01 0.00 3.0 34.0 0.95 32.3 10.2 1.52 Secondary 

Ong et al, 2010 0.03 0.01 0.00 3.0 34.0 0.95 32.3 13.4 1.30 Secondary 

AERATED                     

Cottingham et al,1999 150 36.00 14.4 3.00 0.10 5.37 55.9 17.9 3.04 Primary 

STW Site 1, (unpublished) 390 93.60 144 0.65 0.37 2.03 5.50 0.50 1.85 Tertiary 

STW Site 2, (unpublished) 100 24.00 28.0 0.86 0.28 3.33 11.9 0.40 3.22 Tertiary 

STW Site 3, (unpublished) 520 124.8 179 0.70 0.34 0.63 1.84 0.14 0.59 Tertiary 

STW Site 4, (unpublished) 200 48.00 50 0.96 0.25 7.25 29.00 1.00 7.00 Secondary 

STW Site 5, (unpublished) 600 144.0 155 0.93 0.26 2.56 9.90 1.00 2.30 Tertiary 

Nivala et al, 2007 93.0 22.32 0.40 55.8 0.004 0.87 203 9.53 0.83 Secondary 

Ouellet-Plamondon et al,2006 0.96 0.12 0.03 5.00 0.03 0.07 2.33 0.03 0.06 Secondary 

Zhang et al, 2010 2.10 0.84 0.13 6.46 0.06 2.21 35.7 4.00 1.96 Secondary 

Matthys et al, 2001 0.07 0.01 0.003 3.50 0.03 5.44 156 27.3 4.49 Secondary 

Ong et al, 2010 0.03 0.00 0.002 3.00 0.06 1.90 32.3 0.69 1.86 Secondary 

Ong et al, 2010 0.03 0.01 0.003 0.00 0.00 0.95 32.3 0.75 0.95 Secondary 

Palmer, 2008 0.13 0.05 0.006 10.0 0.02 0.41 9.50 0.57 0.33 Tertiary 
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Palmer, 2008 0.13 0.02 0.011 5.00 0.04 0.82 9.50 1.62 0.29 Tertiary 

Fan et al, 2013 0.04 0.01 0.01 3.0 0.21 8.42 40.1 0.3 3.45 Secondary 

Fan et al, 2013 2.00 0.60 0.06 10.0 0.03 1.11 37.0 1.7 1.06 Secondary 

Foladori et al, 2013 2.25 1.35 0.36 3.8 0.16 9.16 58.0 19.5 6.08 Secondary 

Dong et al, 2012 0.02 0.01 0.00 4.2 0.19 1.34 7.05 1.8 1.00 Secondary  

Dong et al, 2012 0.02 0.01 0.01 2.1 0.38 2.68 7.05 1.7 2.03 Secondary  

Dong et al, 2012 0.02 0.01 0.01 1.1 0.76 5.36 7.05 3 3.08 Secondary  

Dong et al, 2012 0.02 0.01 0.00 4.2 0.19 1.34 7.05 1 1.15 Secondary  

Dong et al, 2012 0.02 0.01 0.01 2.1 0.38 2.68 7.05 0.9 2.34 Secondary  

Dong et al, 2012 0.02 0.01 0.01 1.1 0.76 5.36 7.05 2.2 3.69 Secondary  

 

NB: Percentage removal is commonly quoted to describe ammonia removal efficiencies in specific CWs but is inadequate for comparing the performance of 

different systems as it takes no account of the characteristics of the bed; ammonium removal rate (AR) is considered a better performance parameter as the 

area, concentration, and hydraulic retention time are acknowledged, allowing different systems to be comparable. Equation (1) was used to calculate 

nitrification rates as it enables the use of hydraulic residence times (HRT) obtained from tracer studies. Associated assumptions for the calculated rates were: 

a) where the porosity of the bed was not stated a value of 0.4 has been used (Kadlec and Wallace, 2009), and b) where HRT values have been measured as 

part of the study these have been used in preference to theoretical values 

                                  

Where: AR =ammonium removal rate, Ve = Effective volume (m3) = (area of bed * depth of water *porosity of bed media), Cin = NH4
+-N concentration at inlet 

(mg/L), Cout = NH4
+-N concentration at outlet (mg/L), HRT = Hydraulic retention time (d) = Ve/Q
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3.1  Abstract 

A full scale comparison of a newly commissioned artificially aerated horizontal 

sub-surface flow constructed wetland and a non-aerated bed of identical design 

was conducted to determine the efficacy of artificial aeration to upgrade treatment 

performance for ammonium removal.  The works serves a population equivalent of 

400; each bed has a mean hydraulic loading rate of 0.27 m3/m2/d and during the 

first 9 months of operation received inlet loadings of: ammonium (NH4+-N): 

3.1±2.4 gNH4+-N/m2/d; carbonaceous biochemical oxygen demand: 2.8±2.0 

gO2/m2/d; chemical oxygen demand: 19.4±11.2 g/m2/d and total suspended 

solids: 6.6±5.0 g/m2/d (mean ± standard deviation, n=17).   Results demonstrated 

enhanced nitrification in the aerated bed with 99 % mass ammonium removal up 

to the maximum tested loading rate of 10.1 gNH4+-N/m2/d.  In comparison, an 

ammonia removal of 59 % was observed in the non-aerated bed up to a loading 

rate of 1.6 gNH4+-N/m2/d beyond which performance deteriorated.  Carbonaceous 

mailto:g.c.dotro@cranfield.ac.uk
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biochemical oxygen demand and suspended solids removal were seen to be 

statistically similar between the beds while a significant difference was observed 

in terms of mixing pattern, quantity and characteristics of the accumulated solids 

and hydraulic conductivity.  The suitability of the technology was also assessed 

through comparison of cost, carbon footprint and land area relative to alternative 

upgrading options. Retrofitting existing horizontal sub-surface flow wetlands was 

shown to be the most cost effective solution delivering the required treatment at 

38 % of the cost of the least expensive alternatives.    

 

Keywords: Aeration; constructed wetlands; carbon; cost; dissolved oxygen; 

nitrification 

 

3.2 Introduction 

Horizontal sub-surface flow constructed wetlands (HSSF CWs) are passive 

wastewater treatment systems commonly used for tertiary suspended solids, 

organic matter, and nitrate removal.  In addition, the systems are increasingly 

required to remove ammonical nitrogen (NH4+-N) which principally occurs 

through the aerobic biological process of nitrification.  Oxygen transfer in 

conventional HSSF CWs is poor and variable, occurring primarily via convection 

and diffusion from the air to the surface water with estimated oxygen transfer 

rates of 0.3-3.2 gO2/m2/d (Kadlec and Wallace, 2009; Tyroller et al, 2011).  

Consequently, dissolved oxygen (DO) within the bed is generally below 0.5 mg/L 

such that the low oxygen availability in HSSF CWs is cited as the primary cause of 

their poor nitrification capabilities (Cottingham et al, 1999, Vymazal and 
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Kröpfelová, 2008).  Vertical flow systems are one alternative that allows oxygen 

transfer via intermittent loading achieving oxygen transfer rates of 28-100 

gO2/m2/d, thus enabling consistent ammonia removal (Cooper, 1999, Brix et al, 

2002, Weedon, 2003).  Indeed, vertical flow systems are commonly used for 

secondary treatment with subsequent polishing for solids and denitrification in a 

HSSF CW (Kadlec and Wallace, 2009). Another option is introducing artificial 

aeration of HSSF wetlands via a blower and coarse bubble air diffusers (Davies and 

Hart, 1990; Cottingham et al, 1999; Ouellet-Plamondon et al, 2006; Wallace, 2001).  

 

Artificial aeration (AA) has been proposed as a solution to create an aerobic 

environment conducive of nitrification with the additional benefit of the ability to 

be retrofitted into existing HSSF CW systems.  The efficacy of the approach has 

been shown at laboratory and pilot scale wetlands (Ouellet-Plamondon et al, 2006; 

Zhang et al, 2010), where an increase in ammonia removal of between 21 % and 

63 % was observed compared to a non-aerated bed.  Illustrations of the use of AA 

have also been presented at full-scale in terms of tertiary treatment of landfill 

leachate (Nivala et al, 2007), industrial wastewater (Wallace and Kadlec, 2005), 

and secondary treatment of domestic wastewater.   For the latter, a study of 17 

artificially aerated HSSF showed loading rates of 0.001 to 0.049 m/d and 0.2 – 6 

gTKN/m2/d for hydraulic and total Kjeldhal nitrogen (TKN), respectively (Wallace 

et al, 2010). Based on the statistical study of these wetlands in the US, Wallace et al, 

(2010) found that above TKN loading rates of 1 gTKN/m2/d little reduction of 

nitrogen was achieved. However, for tertiary applications, hydraulic loading rates 

are considerably higher with, for instance, the UK range being 0.2 to 0.9 m3/m2/d 
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(Knowles et al, 2011).  In small works not originally designed to nitrify, influent 

ammonia concentrations to the tertiary wetlands can be similar to secondary 

wetland influents (i.e. up to 40 mgNH4-N/L) which under these higher hydraulic 

loading rates would result in a much greater ammonia (or TKN) loading rate than 

has been tested to date at full scale. Thus, the application of aerated wetlands for 

tertiary nitrification of domestic wastewaters, whilst attractive in principle for 

upgrading small works, has yet to be proved.  

 

Additional benefits of artificial aeration have been postulated in terms of increased 

solids degradation rates and its associated impact on the lifetime of the bed 

(Chazarenc et al, 2009; Nivala et al, 2012). However, the only evidence to date 

relates to a change in accumulated total suspended solids a laboratory-scale study 

(Chazarenc et al, 2009). Further research is required to characterise the systems 

hydraulically and quantify the benefits from a clogging minimisation perspective. 

 

This study aims to determine the performance of a full-scale aerated HSSF CW 

system for tertiary nitrification of domestic wastewater against a conventional 

HSSF control.  To the authors’ knowledge, this paper is the first to describe the 

efficacy of artificial aeration under low organic matter, high ammonia and 

hydraulic loading rates typically found in tertiary systems and includes an 

assessment of the impact of aeration on ammonia removal, solids accumulation 

and characteristics, hydraulic conductivity, and a cost comparison against common 

alternatives employed for nitrification on small works. 
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3.3 Materials and methods 

3.3.1 Site description 

The trial site (Figure 3.1) serves a population equivalent of approximately 400, 

designed to treat a dry weather and maximum flow of 61 and 363 m3/d, 

respectively.  The works is gravity fed and comprises of an initial primary 

settlement tank and an integral rotating biological contactor (RBC) unit for 

secondary treatment. The flow from the RBC is split between two parallel tertiary 

HSSF wetlands, 100 m2 each  (approximately 0.5 m2/pe).  In the event of the works 

receiving six times the dry weather flow, an overflow operates and diverts excess 

untreated sewage to a combined sewer overflow (CSO) HSSF wetland (180m2).  

Both tertiary beds were refurbished due to clogging in October 2010. This involved 

the excavation and washing of the existing gravel, which was later returned to the 

bed.  During the refurbishment, air lines (12 mm diameter perforated piping; 

perforations 2 mm diameter at 300 mm spacings) were placed on the floor of the 

beds, as per a USA- patented aeration system (Wallace, 2001).  Both beds were un-

aerated until March 2011. On the 3rd of March, aeration was switched on in the test 

bed (i.e. aerated) and left off in the control bed. Aeration in the test bed received 

continuous aeration from a 1.6 kW blower delivering approximately 150 m3/h.   

 

The beds contain 0.6 m of 6-12 mm gravel media giving a measured porosity of 0.4, 

and are planted with Phragmites australis (P. australis) at 4 seedlings/m2.  The 

mean flow to each bed is 27.2 m3/d, resulting in mean hydraulic loadings of 0.27 

m3/m2/d. Inlet loadings recorded since the onset of aeration are NH4+-N: 3.1±2.4 

gNH4+-N/m2/d, 5 day carbonaceous biochemical oxygen demand (CBOD5) 2.8±2.0 
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gO2/m2/d, chemical oxygen demand (COD): 19.4±11.2 gO2/m2/d and total 

suspended solids (TSS): 6.6±5.0 gTSS/m2/d (mean ± standard deviation, n=17).    

 

  

Figure 3.1 Process flow sheet of the trial site (left) and image of the trial site June 

2011, showing the aerated bed left and control bed right (right) 

 

3.3.2 Standard wastewater parameters 

Composite samples were taken once every 2 weeks and consisted of an 

amalgamation of samples taken every 15 minutes over 24 hours using auto-

samplers (ISCO 3700, Teledyno Isco Inc, USA) placed at the inlet and outlet of the 

individual beds over 9 months (March-November 2011; n=17).  Samples were 

collected in 1L plastic sampling bottles and stored in a cool box with ice blocks 

during transition to the laboratory for same day testing.  Where same day testing 

was not feasible samples were stored at 4 °C and brought to room temperature 

prior to analysis.  

 

Hach-Lange test kits were employed for determining NH4+-N (detection limits – 

low range, medium range and high range test kits dependent on site conditions: 

0.015-2; 1-12; 2-47 mg/L NH4+-N), NO3-N (0.23-13.5, 5-35 mg/L NO3-N ) and TN 
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(1-16; 5-40, 20-100 mg/L TN), according to Hach-Lange procedures and read via a 

Hach-Lange DR2800 spectrophotometer.  Standard methods (APHA, 2005) were 

followed to determine the CBOD5 of the solutions, using Hach-Lange nutrient 

buffer pillows for preparation of the dilution water and Hach-Lange nitrification 

inhibitor.  Dissolved oxygen concentration was measured using an LBOD with 

auto-stirrer (Hach-Lange).  Total suspended solids were quantified following 

standard procedures using a three-piece filter funnel with 70 mm filter diameter 

and 1.2 µm pore size (APHA, 2005).  Portable meters and probes were used to 

determine pH (Fisher Scientific), redox potential, dissolved oxygen and 

temperature (Hach-Lange HQ40D).  Probes were checked weekly with standard pH 

solutions of 4.01 and 7.0; Zobell’s solution and hydrogen sulphite solution for pH, 

redox potential and DO, respectively.  Hach standards were used periodically to 

ensure accuracy of test kits and triplicate tests of all standard wastewater 

parameters indicated results precise to  ±0.8 mg/L. 

 

Statistical analyses were carried out using Graphpad Prism v.5. Data was tested for 

normality by calculating the t-statistic that describes the number of sample 

standard deviations that the sample was above or below the sample mean. In a 

normal distribution 68 % of values will lie within one standard deviation, 95 % 

within two deviations and 99 % within three. The data did not follow a normal 

distribution and therefore statistical significance between contaminant removal in 

the aerated and control beds was tested using the non-parametric Wilcoxon 

matched-pairs signed rank two-tailed test at (P<0.05) as an alternative to the 

paired students t-test. 
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3.3.3 Tracer Tests 

Triplicate tracer tests were conducted to establish transport and mixing behaviour 

during July and August 2011.  The tests involved the addition of a 0.135 g impulse 

of 20 % Rhodamine Water Tracer Liquid (Keystone Europe Ltd.) at the inlet points 

of both wetlands (De Novio, 2004).  The rhodamine outlet concentration was 

measured using a fluorescence spectrophotomer (YSI sondes 6 series,  fitted with 

Rhodamine sensor) with a sensitivity of up to 0.001 µg detection.   Calibrations 

were first conducted with deionised water and on site before each test with 

wetland samples for background readings.  Tracer recovery percentages were 

calculated by carrying out mass balance analyses on effluent data.  Retention times, 

index modal retention time, Morrill dispersion index (MDI), and dispersion were 

determined in accordance with standard methods (Metcalf and Eddy, 2003). 

 

3.3.4 Solids quantification and characterisation 

Triplicate grab samples were collected using a metal sample can (0.1 m diameter, 

0.2 m length) per each of the 9 test locations (Figure 3.2) 11 months after 

refurbishment (i.e., five months after aeration was turned on) for the 

quantification of accumulated solids.   The collected solids were separated from the 

gravel by shaking vigorously with 250 mL effluent  wastewater and passed 

through a 5 mm sieve.  The solids solution was analysed for suspended and volatile 

solids to determine differences in the amount and type of within-bed solids 

present in each bed and characterised in terms of sludge volume index (SVI), 

specific resistance to filtration (SRF) and capillary suction testing (CST).  The 

sludge volume index (SVI)  is the volume in millilitres occupied by 1 g of a 
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suspension after 30 min settling and distinguishes between settling characteristics 

of the solids in each of the beds (APHA, 2005).  Cake filtration consisted of passing 

50 mL of the sample through a 0.45 µm filter membrane and analysis to determine 

the SRF and the compressibility of the cakes according to standard procedures 

(Tiller and Lloyd, 1972).  

 

Figure 3.2 Hydraulic conductivity test / solids sampling locations 

 

3.3.5 Hydraulic conductivity 

In-situ saturated hydraulic conductivity measurements were taken using a steel 

pipe perforated at the base and a model 3001 Solinst levelogger following the 

falling head methodology described by Pedescoll et al, (2009).  Measurements 

were taken in triplicate along three transect points spanning the length of each of 

the wetlands (Figure 3.2).  This measurement gives approximate saturated 

hydraulic conductivity values, as vertical conductivity is measured, and does not 

take into account the horizontal flow.  In addition, a certain degree of compaction 

occurs when inserting the pipe into the bed and thus presents a source of error but 
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these errors have been evaluated and are considered acceptable (Pedescoll et al, 

2009). 

 

3.3.6 Feasibility 

To assess the feasibility of employing artificial aeration, a cost and footprint 

comparison was performed against conventional treatment options capable of 

achieving effluent concentrations of 10/15/3 (CBOD5/TSS/NH4+-N).  Options to 

upgrade the works included upgrading the secondary treatment with the addition 

of a rotating biological contactor (RBC), mineral media trickling filter (TF), 

submerged aerated filter (SAF) in parallel to the existing RBC; the addition of a 

tertiary TF or a nitrifying SAF in series, or retrofitting the HSSF CW with artificial 

aeration during standard refurbishment (Figure 3.3).   

 

Figure 3.3 Flowsheets tested in the feasibility study 
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Sizing and costs of the different options were calculated according to standard 

literature, manufacturer’s specifications and internal Severn Trent design 

standards as appropriate (Table 1). Capital costs were based on a Severn Trent 

database of past projects and inflated to current worth.  As no historic costs existed 

for AHFCWs, costing was based on quotes for the test site.  All data was normalised 

to this technology to provide direct comparison and translation to other 

geographical regions.  Conventional options assume a 25 year design life. 

Traditional CWs for tertiary application are expected to require refurbishment due 

to clogging of the media approximately every 8-15 years (Griffin et al, 2008; 

Cooper et al, 1996). Thus, the retrofit option included the cost of one additional 

refurbishment.  To simplify the costing, common items to all options were 

excluded such as primary settling and flow metering.  

 

In addition to initial construction costs (based on cost curves), the cost of 

operation was calculated assuming electrical equipment (Table 3.1) to run 24 h/d, 

with additional energy used for de-sludging of the RBC, TFs and SAFs averaged at 

running twice a week for two hours (£0.09/kWh).  Maintenance was estimated at 1 

h/month for the CWs and 2.5 h/month for all other options, based on Severn Trent 

experience. The land footprint includes the area of the process and associated 

humus tanks, balancing tanks, pumps, blower units, and control panels. Carbon 

footprint was taken to consist of operational carbon and excludes process 

emissions, with a conversion from grid electricity to carbon dioxide (CO2) 

equivalents calculated as 0.544 kgCO2e/kWh (UKWIR, 2008). 
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Table 3.1 Design parameters used for sizing comparative technologies 

Process Design basis Design depth (m) Power requirements 

(kW) 

 

RBC 

 

20 m2/p.e. 

 

0.0 

 

1.1 (Drive unit)a 

TF (2nd) 0.04 kgCBOD5/m3/d 2.0 1.7 (Pump)b 

TF (3ry) 0.06 kgNH3/m3/d 2.5 1.0 (Pump)b 

SAF (2nd) 0.6 kg/m3/d 3.5 4.0 (Blower)c 

SAF (3ry) 0.4 kgNH3/m3/d 3.0 4.0 (Blower)c 

AHFCW 0.7 m2 / p.e. 0.6 1.6 (Blower)d 

Retrofit AHFCW N/A 0.0 1.6 (Blower)d 

 

aSize of drive unit based on manufacturers details (Tuke and Bell Ltd.) 
bPumping requirements based on a wetting rate of 1.4m3/m2/h (Severn Trent) 
cBlower sizing based on manufacturers details (WPL) 
dBlower sizing based on installed unit on site (NB: This is considered oversized) 
 
 

 

3.4  Results and analyses 

3.4.1 Contaminant removal 

Ammonium concentrations (quoted as the mean ± standard deviation, n=17) at the 

outlet of the aerated bed were significantly lower than the control demonstrating 

the superior NH4+-N removal occurring in the aerated bed across the full range of 

loading rates experienced (Figure 3.4 left and right). In contrast, effluent ammonia 

in the non-aerated bed increased in proportion to the loading rate (Figure 3.4, 

right).  
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Mean effluent ammonium concentrations were 0.1±0.05 mg NH4+-N /L for the 

aerated and 8.6±6.4 mg/L for the control, corresponding to mass removals of 99 % 

and 13 % respectively. While both systems removed ammonia, a significant 

difference (W=118) observed between the aerated and control system confirms 

the effectiveness of the artificial aeration for use in highly loaded CWs.  Notably, 

ammonia removal in the control bed was substantial, at 59 %, up to a loading rate 

of 1.6 gNH4+-N/m2/d, above which efficiencies deteriorated (Figure 3.4, right).  In 

agreement with other HSSF wetlands (Kadlec and Wallace, 2009), higher NH4+-N 

loading rates in the control bed correspond to higher NH4+-N outlet 

concentrations, exhibiting a linear relationship (R2=0.74). Nitrification rates (NR) 

in the aerated bed increased linearly from 1.6 to 6.4 gNH4+-N/m2/d with increasing 

NH4+-N loading rates, demonstrating a strong causal relationship.   

 

  

Figure 3.4 Box and whisker plot of NH4-N, concentrations (n=17) at the inlet and 

the outlet of the control and aerated beds.  The box represents the interquartile 

range; the line indicates the mean and the whiskers the 25th and 75th percentiles 
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(left).  NH4+-N loading rate and associated effluent concentrations for the aerated 

and control beds (n=17) (right) 

 

Effluent nitrate concentrations of 1.2-16.9 mgNO3-N/L, with a mean value of 5.2 

mgNO3-N/L, were recorded for the aerated bed whilst the control bed recorded a 

lower mean value of 2.0 mgNO3-N/L and range of 0.1-8.6 mgNO3-N/L.   Total 

nitrogen was not routinely measured (n=3) as the investigation was primarily 

focussed on ammonia removal, but it is interesting to note that percent reductions 

of 77 % and 55 % (corresponding to mean outlet concentrations of 25.3 mgTN/L 

and 18.1 mgTN/L) were observed for the aerated and control bed respectively.  

Effluent TSS and CBOD5 samples produced comparable measurements in the 

aerated and control beds (Figure 3.5 left and right).  Effluent TSS concentrations 

were 14.0 ± 9.4 mgTSS/L for the aerated and 21.7 ± 11.0 mgTSS/L for the control, 

and populations did not differ statistically (W=77). The effluent CBOD5 was 4.3±3.1 

mgO2/L for the aerated and 7.0±5.6 mgO2/L for the control.   Mean CBOD5 

concentrations (Figure 3.5 right) in the effluent of both beds were significantly 

lower than the inlet, highlighting successful removal, but did not differ significantly 

from each other (W=77) highlighting treatment capacity with regard to CBOD5 was 

not improved by artificial aeration. This result could be expected due to the low 

CBOD5 loading rates and expected background concentrations for HSSF 

constructed wetlands (Kadlec and Wallace, 2009).  
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Within-bed dissolved oxygen concentrations were less than 1.0 mgO2/L across the 

control bed, with 80 % below 0.5 mgO2/L. These low DO levels have been 

associated with low nitrification rates in both suspended growth and biofilm 

reactors (Dotro et al, 2011).   In contrast, the DO in the equivalent aerated bed was 

8 to 11 mgO2/L, equating to saturated DO levels.  However, it is well documented 

that nitrification is achievable in other biofilm systems, such as rotating biological 

contactors (RBCs), at a DO of 2 mgO2/L or above (Nowak, 2000), indicating the bed 

is potentially being over-aerated.   

 

Figure 3.5 Box and whisker plots of TSS (left) and CBOD5 (right), concentrations 

(n=17) at the inlet and the outlets of the control and aerated beds 

 

3.4.2 Hydraulic characterisation 

The aerated beds had similar residence time distributions (RTD) at all flow rates, 

with a sharp rise to peak followed by an exponential decay indicating a trend 
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control displayed a double peaked curve, characteristic of channelling conditions 

and a classical representation of non-ideal CSTR system (Figure 3.6).  

 

Detention times obtained from the aerated bed varied greatly between tests and 

correlated with the prevailing flow rate during each trial. Values of 22, 6 and 57 

hours corresponded with average flow rates of 1.9, 3.5 and 0.9 m3/h respectively. 

In contrast, the mean detention times in the control were more consistent at 31, 31 

and 21 hours irrespective of flow rate. Associated nominal residence times (τn) 

were 12.6, 6.9 and 26.7 hours for flow rates 1.9, 3.5 and 0.9 m3/h respectively such 

that the measured detention times were larger than expected. Analysis of the data 

and the resultant diagnostic of the hydraulic characteristics of the beds needs to 

reflect respective tracer recoveries of 77 % in the aerated and 35 % in the control 

congruent with of 77 % in the aerated and 35 % in the control may in part be due 

to adsorption of the rhodamine to sediment within the beds (Lin et al, 2003). 

Further analysis of the tracer detention time (τ) in comparison with the associated 

nominal residence time (τn) indicated stagnation / delay due to higher air:water 

ratio associated during low flow conditions. 

 

More detailed analysis of the RTDs in terms of the index of modal retention time 

(τp/τn) indicated a non-uniform flow distribution in both beds as expected in 

packed bed mixing (Metcalf and Eddy, 2003). Under low flow conditions, the 

aerated bed switched from more CSTR towards a plug flow (PF) mixing pattern as 

evidenced by an increase in τp/τn from 0.12-0.14 to 0.82 which was similar to 

those obtained for the non-aerated beds which tended towards a PF reactor 



77 

 

system (Figure 3.6). Similar conclusions can be drawn from comparison of the 

Morrill dispersion indexes (MDI) for normal flow conditions where the MDI of the 

aerated bed is higher and more consistent with CSTR mixing patterns (12.7 and 

14.2) than those for the control system (7.3, 5.4 and 6.8).  In the event of low flow, 

the MDI value of the aerated bed decreased to 4.3 suggesting considerable plug 

flow mixing behaviour.  

 

As mixing was presumed to follow a convective dispersion mechanism, the 

dispersion coefficient (D) represented the spreading process within the beds.  

Analysis of the data indicated that under high flow rates the aerated bed presented 

significantly higher D values than during the other trials suggesting an increased 

risk of advective spreading during aeration which is not observed in the control.  In 

contrast, during low flow when the water is below the media line, high 

dispersive/turbulent mixing is more apparent in the aerated bed compared to the 

control as signified by the higher dimensionless dispersion number of 0.63 

compared to 0.23 in the case of the control bed.  
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 Figure 3.6 Residence time distributions for the aerated (top) and control (bottom) beds 

 

3.4.3 Solids quantification, characterisation and hydraulic conductivity  

Analysis of the solids across the surface of both beds indicated aeration generated 

significant differences in both the quantity and character of the solids compared to 

the non-aerated bed (Table 3.2).  To illustrate, within-bed solids were 12.9; 6.2 and 
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5.4 kgTSS/m2 for the control and 2.5, 0.5 and 0.7 kgTSS/m2 for the aerated bed at 

the inlet, middle and outlet respectively.  These translate to an average 

accumulation rate of 8.8 and 1.3 kgTSS/m2/year for the control and aerated bed, 

respectively.   

 

The nature of the solids was also observed to be different between beds (Table 

3.2).  In the case of the control bed, the characteristics of the solids are consistent 

throughout the bed with minimal variation in SVI, SRF or compressibility.  The low 

SVI (28-39 mL/g), relatively high specific resistance to filtration (4-5x1013 mg/kg) 

and moderate compressibility (0.4-0.5) suggest a compact solids mass through 

which water transport is heavily restricted.  For instance, the SRF values are 

representative of sludge material that is very difficult to dewater and is typical of 

raw sludge (Wakeman and Tarleton, 2005). In comparison, in the case of the 

aerated bed the SVI and SRF change through the bed suggesting the solids are 

being transformed in character.  The reduction in SVI from 78 mL/g to 14 mL/g 

and the respective change in SRF from 5x1013 to 6x1011 mg/kg, indicate that the 

solids are becoming more compact as they travel through the bed and that water 

can transport more easily through the solid cake material.  The SRF of the material 

at the end of the aerated bed is indicative of a well-conditioned sludge that is 

moderately easy to dewater (Wakeman and Tarleton, 2005). To illustrate the 

impact of these changes, the SRF experiments took around 10 hours to complete 

with the samples taken from the control bed compared to minutes for the samples 

taken from the end of the aerated bed.  
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Table 3.2 Solids characteristics in the inlet, middle and outlet of the aerated and 

non-aerated control 

  Inlet Middle Outlet 

TSS (mg/L) Aerated 4183 780 1220 

Control 21560 10320 8920 

VSS (mg/L) Aerated 1543 250 315 

Control 14271 5328 4910 

SVI (mL/g) Aerated 77.7 21.8 13.9 

Control 38.9 36.3 28.0 

CST (s/g) Aerated 9.7 11.2 6.9 

 Control 6.3 3.5 4.3 

SRF (0.6 bar) 
mg/kg 

Aerated 6 x 1013 2 x 1012 6 x 1011 

 Control 5 x 1013 4 x 1013 5 x 1013 

Compressibility  Aerated 0.5 0.8 <0.1 

factor Control 0.5 0.4 0.5 

DO (mgO2/L) Aerated 9.4 10.5 9.8 

 Control 0.3 0.5 0.7 

TSS = total suspended solids; VSS = volatile suspended solids; SVI = sludge volume index; CST = capillary suction tests; SRF = 

specific resistance to filtration 

 

Higher hydraulic conductivities (k) were observed in the aerated compared to the 

control bed at all measurement locations, with values of 20 to 41 m/d and 2 to 28 

m/d in the aerated and control, respectively (Figure 3.7).  Similar k values in the 

aerated bed were observed at all measurement locations.  In the control bed, k 

values were lowest at the inlet and highest at the outlet suggesting improved 

hydraulic conductivity with distance from the inlet.  



81 

 

 

Figure 3.7 Comparison of hydraulic conductivity at the inlet, middle and outlet of 

the aerated and control beds. Each location is the mean of the lateral three 

readings. Error bars represent average standard deviation 

 

3.4.4 Feasibility 

Comparison of the treatment technologies reveals that the artificial aeration option 

delivers a lower total monetary cost than the alternatives (Figure 3.8).  The total 

cost ratio ranged from 7.8 times for the RBC to 2.8 for the tertiary trickling filter 

(TF 3ry).  The retrofitted artificial aeration system (AHFCW) was significantly 

lower in total cost than conventional options and required no additional area aside 

from housing of the blower unit, making its impact minimal and demonstrating the 

overall attractiveness of the use of this system to upgrade existing HSSF CWs.   
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Figure 3.8 Comparative ratio of upgrading options to meet tightening ammonium 

consents on a small wastewater treatment plant 

 

In relation to power consumption and the associated carbon footprint, both the 

RBC and TF 3ry provided lower solutions at 28 % and 35 % lower than the AHFCW 

option due to the efficiency of aeration.  However, given that the DO in the beds 

was saturated, a reduction in power usage would be possible whilst still providing 

sufficient treatment therefore reducing this difference.   

 

3.5  Discussion 

Key observations from initial results of this full scale comparative study have 

demonstrated that artificially aerating HSSF CWs enables complete ammonia 
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removal without deterioration in solids and CBOD5 removal capabilities of un-

aerated HSSF CWs.  

 

Effluent CBOD5 concentrations were not affected by organics loading in either the 

aerated or control bed, highlighting adequate oxygen is present for removal 

without the addition of AA.  Ammonia removal in the traditional non-aerated bed 

was seen to correlate to loading rates in terms of both ammonia (Figure 3.4 right) 

and organics with a limiting loading rate of up to 1.6 gCBOD5/m2/d (Figure 3.9) 

beyond which ammonia removal became less reliable.  This suggests that during 

periods of higher CBOD5 loading, the limited oxygen available in conventional 

systems is utilised by the faster growing heterotrophic bacteria that effectively out 

compete the ammonia oxidising bacteria for available DO.  In contrast, ammonia 

removal was consistent in the aerated bed irrespective of loading rates confirming 

oxygen to be the rate limiting component over other mechanisms. In the current 

study, effective nitrification was observed across all the ammonia loading rates 

experienced (up to 10.1 gNH4+-N/m2/d) indicating that the system had not become 

ammonia load limited. This observation offers the potential to increase loading 

rates further, and demonstrates the efficacy of the technology for highly loaded 

CWs, extending previous findings with landfill leachate at a loading rate of 0.9 

gNH4+-N/m2/d  (Nivala et al, 2007) and domestic sewage at a loading rate of 5.4 

gNH4+-N/m2/d  (Cottingham et al, 1999). 
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Figure 3.9 CBOD5 loading rates vs. Effluent CBOD5 concentrations (left) and 

effluent ammonium concentrations (right) 

 

Nitrogen loss and retention is variable within CWs and is largely a result of 

nitrification/denitrification; plant uptake; sediment storage and nitrous oxide 

(N2O) production via nitrification and incomplete denitrification (Maltais-Landry 

et al, 2009a).  Total nitrogen removals in this study of 77 % and 55 % were 

recorded for the aerated and control beds respectively (n=3). A comparison of N 

species measured in the aerated and control beds (n=17) highlights the superior 

nitrification in the aerated system, with low ammonium and high nitrate recorded 

in the effluent (Table 3).  Together with the knowledge that the presence of oxygen 

inhibits both synthesis and activity of denitrification enzymes (Kampschreur et al, 

2009) the results suggest denitrification in the aerated bed is minimal. Evidence 

that partial denitrification is occurring in the control bed can be inferred from a 50 

% reduction in nitrate levels.   

 

 

R² = 0.1914 

R² = 0.1816 

0 

2 

4 

6 

8 

10 

12 

14 

0 2 4 6 8 

E
ff

lu
e
n
t 

C
B

O
D

5
  (

m
g
O

2
/L

) 

CBOD5 loading (gO2/m
2/d) 

Aerated Control 

R² = 0.4613 

0 

5 

10 

15 

20 

25 

0 2 4 6 8 

E
ff

lu
e
n
t 

N
H

4
-N

  (
m

g
N

H
4
+
-N

/L
) 

CBOD5 loading (gO2/m
2/d) 

Aerated Control 



85 

 

Table 3.3 Influent and effluent N species loadings 

N species Influent Effluent 

  

(g/m2/d) 

Aerated 

(g/m2/d) 

Control 

(g/m2/d) 

NH4-N 3.6 0.03 3.0 

NO3-N 4.7 7.2 2.4 

NO2-N 0.2 0.02 0.06 

Total inorganic N 8.5 7.3 5.5 

(TN 9.8 8.0 5.4) 

    

Nitrogen species in the effluent of the non-aerated bed suggest 3.0 g/m2/d are 

unaccounted for compared to 1.2 g/m2/d in the aerated bed.   Sediment storage 

has been measured to account for 27-63 % of N retention (Maltais-Landry et al, 

2009a) and N retention via this method is likely to be greater in the control bed, 

due to the higher accumulated solids recorded herein.  Nitrogen is also ‘lost’ from 

CWs via nitrous oxide emission.  The most important parameters affecting N2O 

emissions in wastewater treatment plants are cited as low DO in the nitrification 

and denitrification stages; increased NO2 concentrations in both the nitrification 

and denitrification stages and limited availability of biodegradable organic carbon 

during denitrification (Kampschreur et al, 2009).  As denitrification is considered 

to be minimal in the aerated bed it is expected the control bed is emitting higher 

levels of N2O.  In support of this reasoning, results of a mesocosm planted with P. 

australis recorded 0.4 % of TN emitted as N2O in a non-aerated system compared 

to 0.1 % in an aerated (Maltais-Landry et al, 2009b).  At O2 concentrations < 1 mg 

O2/L (as measured in the control bed) N2O production can correspond to as much 
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as 10 % of the N load (Kampschreur et al, 2009) and has been recorded at a 

maximum of 1.9 gN2O/m2/d in CWs (Huang et al, 2012). 

 

Total nitrogen removal of up to 96 % has been recorded in laboratory-scale 

aerated systems through configurational differences to the current study where 

only the front end of the bed is aerated, thus providing post anoxic zones (Maltais-

Landry et al, 2009a,b).  The similarity in organics removal between the two beds in 

the current study and the ability to denitrify at the back end of the bed in the 

Maltais-Landry et al, (2009a,b) study indicate that availability of organic matter is 

not limiting the extent of denitrification seen in these systems.  Thus, should NO3- 

or TN removal be required in the future, this could be achieved by limiting the 

aeration of the bed to a fraction of the area.   

 

Nitrifier activity is known to be susceptible to cold temperatures. In conventional 

HSSF CWs, temperature effects are typically quantifiable where readings fall below 

15-10 °C (Vymazal, 1999; Delatolla et al, 2009). Results from this study relate 

primarily to operation where water temperatures ranged between 10-20 °C; 

consequently, the effect of colder temperatures in these full-scale systems have yet 

to be quantified. Historical records for this particular site indicate water 

temperatures can average 8 °C over the winter and indeed drop to 4 °C on extreme 

days. It is unclear if effluents at 8 °C would result in significantly lower nitrification 

efficiency. Even so, complete nitrification as achieved in this study is not commonly 

required; indeed, this particular site only has to produce an effluent of 4 mgNH4+-

N/L for compliance purposes although it is currently discharging 0.2 mgNH4+-N/L 
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(95th percentile value). In addition, discharge permits are typically caveated for 

cold temperature conditions. In the UK, ammonia consents are mandatory with the 

exception of the unusual occurrences where water temperature falls below 5 °C. 

Therefore, whilst the nitrification rate of systems may be affected once lower 

temperatures ensue and should be monitored to determine the design envelope for 

this technology, current performance suggests the systems should continue to 

deliver a compliant effluent throughout the year.  

 

Additional benefits of aeration were further seen with respect to the rate of 

accumulation and characteristics of the solids within the beds (Table 2), with the 

aerated bed having a lower quantity of solids and less compact than the control, 

which would favour water transport through the accumulated sludge. These 

results agree with higher hydraulic conductivity values found in the aerated bed 

when compared against the control. Other conventional HSSF CWs studied with 

the same hydraulic conductivity protocol have shown values of 300 m/d when the 

gravel is clean and 4-6 m/d when the gravel was deemed “clogged” (Pedescoll et al, 

2010). Thus, whilst the aerated bed has higher conductivity values than the 

control, the potential extension of bed life cannot yet be quantified. Although the 

effect on system age requires long-term monitoring, this study provides initial 

information for identical, side-by-side full-scale systems with and without 

aeration.  

 

The hydraulic conductivity results agree with a lower actual mean residence time 

recorded in the control bed, demonstrating an increase in preferential flow paths 
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within the bed and increased overland flow.  Suspended solids concentrations in 

the effluent wastewater (Figure 3.4, left) show the aerated bed contains similar 

solids in the effluent as the control bed, suggesting the decrease in solids within 

the aerated bed is not due to increased solids in the effluent caused by mixing.  A 

comparison of the volatile suspended solids to the total suspended solids gives 

values of 52-66 % and 26-37 % VSS in the control and aerated beds, respectively; 

supportive of the theory that the abundance of oxygen is allowing increased 

degradation of organic matter. The full scale system results are in general 

agreement with mesocosm studies conducted by Ouellet-Plamondon et al, (2006) 

and Chazarenc et al, (2009), in that greater suspended solids removal (as opposed 

to storage) is achieved in aerated systems due to increased biological activity and 

more available pore space.   

 

The fluctuation in MDI and the index of modal retention time observed with the 

tracer studies in the aerated bed at high and low flows suggests the hydraulic 

performance of the aerated bed is significantly influenced by the water level, 

where true sub-surface operation favours a more efficient system and a few 

millimetres of overland flow can result in a change from a CSTR to a more plug-

flow reactor. As this was not the case for the control bed, the introduction of 

aeration into a conventional bed should take into account the potential for variable 

performance when the water level changes (e.g., due to bed clogging) from sub-

surface to partial surface flow. In this study, the majority of the time the water 

level was above the gravel due to site operational issues and still achieved 

complete nitrification, similar CBOD5 and TSS removal efficiency, and better 
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hydraulic conductivity of the bed under the same conditions as the control, non-

aerated wetland.  

 

The feasibility assessment highlighted the advantages and weaknesses the 

different biofilm technologies can offer against an aerated constructed  wetland 

built as tested in this full-scale study. Whilst the calculations required a number of 

assumptions and hence provide an initial guidance only, the overall comparison 

does show the efficacy of using the retrofit option on sites that currently contain 

HSSF CWs but need to enhance nitrification performance. In the case where 

conventional CWs did not exist on-site, the major trade off would become land 

requirements; where the non-wetland options would require between 2 % (SAF) 

and 19 % (TF 3ry) of the aerated wetland land footprint.  In cases of limited land 

availability or land prices becoming prohibitive, TF 3ry or SAF options would 

become more suitable, providing a balance of small footprint and cost compared to 

an additional RBC.   

 

3.6 Conclusions 

The performance of a full scale aerated HSSF CW was analysed to determine 

contaminant removal, hydraulic behaviour and solids characterisation in 

comparison to a non-aerated control.  Observations from the full scale trial have 

demonstrated that artificially aerating HSSF CWs results in complete nitrification 

of the secondary effluent without negatively impacting on solids and CBOD5 

removal efficiencies.  Aeration also results in different solids accumulation 

quantities and characteristics, with less compact solids, increased hydraulic 
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conductivity, and better hydraulic efficiency in the aerated bed under sub-surface 

flow, resulting in a more efficient reactor. A cost comparison of implementing the 

technology against conventional biofilm options suggests artificial aeration of 

tertiary treatment horizontal flow constructed wetlands is competitive in terms of 

cost, treatment performance, and carbon footprint where nitrification is required 

on a small works site.  Long-term studies are required to assess the lifespan of 

aerated HSSF CWs and to determine the sustainability of the trends observed in 

this study.  
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4.1 Abstract 

The aim of this study was to determine the difference in oxygen transfer rates in a 

densely media packed bed vs. a non-media system using a non-porous diffuser. 

Various configurations of diffuser hole diameter size and air flow rate were tested 

to determine their affect on associated aeration efficiency and supporting bubble 

visualisation experiments were designed to provide further insight and 

explanation of the mechanisms occurring within the system. The findings of this 

study indicate enhanced mass transfer quantified by higher KLa20s of 3.2-24.7 h-1 

recorded in the media compared to 0.4-6.1 h-1 in the non-media tests.  Smaller 

bubble diameters were recorded in the media systems ranging from 0.5-9.0 mm to 

2.0-15.0 mm in the media and non-media systems respectively over all tested 

orifice sizes and air flow rates. Lower bubble velocities of 48-202 mm/s were 

recorded in the media systems compared to 202-330 mm/s in the non-media.  In 

addition, increased gas hold up caused by tortuous bubble pathways and 

retardation in the void spaces, observed in the bubble visualisation column, 

increased the residence time of the bubbles; increasing the time for oxygen 

transfer to occur.  In terms of overall aeration efficiency, the packed bed systems 

produced an αM factor of 3.2 improvement compared to non-media systems.  

mailto:b.jefferson@cranfield.ac.uk
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Results provide the basis for energy reduction on small wastewater treatment 

plants, introducing the possibility for renewable energy sources to adequately run 

these systems. 

 

Keywords: Oxygen transfer, packed beds, constructed wetlands 

 

4.2   Introduction 

Aeration in the form of the addition of rising bubbles to the base of wastewater 

treatment reactors is commonly used to facilitate biological nutrient removal 

processes such as nitrification.  Air bubble size and gas-hold up control the oxygen 

transfer rate, as these factors determine the gas-liquid interfacial area available for 

transfer (Fujie et al, 1992). Efforts to enhance oxygen transfer by the addition of 

rising bubbles include manipulation of the depth of the reactor, variation of air 

flow rates (Ashley et al, 1991; Ashley et al, 1992; Cornel, 2003), the diffuser type, 

placement and density (Hasanen et al, 2006; Mueller et al, 2002) and re-direction 

of the bubble flow path via inclined bubble aeration (Kim et al, 2013). The optimal 

system aims to maximise the residence time of the bubble in the reactor and 

minimise bubble size which will enhance transfer with minimal energy input.   

 

In traditional systems the air bubble size is controlled by the combination of the 

orifice size used and the air flow rate. Previous research has shown that the 

average bubble size increases as air flow rate through each diffuser increases (Polli 

et al, 2002), decreasing the benefits of using smaller orifice hole diameters 

(Hasanen et al, 2006). At lower air flow rates bubbles form more slowly and the 
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oxygen transferred to the wastewater during formation increases (Ashley et al, 

1991) and at higher flow rates space between bubbles is decreased so lateral 

diffusion is limited. Increasing diffuser density can offset some of these impacts 

and has been shown to increase oxygen transfer efficiency (OTE) with typical 

diffuser densities in the range of 0.2-0.5 m2/ diffuser (ASCE, 1988).  Typical 

diffuser depths of 3-6 m at air flow rates of 7-68 m3/h/unit in non-porous diffuser 

systems correspond to clean water standard oxygen transfer efficiencies (SOTEs) 

of 2-4 %/m.  Similar depths are used for porous systems with lower air flow rates 

per unit (0.6-5.5 m3/h) resulting in higher SOTEs of 5-7 %/m (Mueller et al, 2002).  

In packed bed systems e.g. aerated constructed wetlands, biological aerated filters 

(BAFs), and submerged aerated filters (SAFs), optimised design of the aeration 

system is complicated due to media presence negating some of the traditional 

methods for improved oxygen transfer. As such, accepted methods to enhance 

transfer in non-media systems such as activated sludge plants (ASPs) are not 

always applicable.  Increased transfer has been recorded in media filled tanks 

compared to those with no media (Harris et al, 1996) and oxygen transfer in a SAF 

was reported to be higher than the same system with no media operating at the 

same flow rate, resulting in a power economy of 2-3 kgO2/kWh; twice that of an 

ASP (Fujie et al, 1992; Fujie and Kubota, 1986). The increase in transfer has been 

attributed to increasing bubble hold up time and controlling bubble size (Fujie et 

al, 1992, Harris et al, 1996).     

 

Non-porous diffusers are also termed coarse bubble aerators, referring to typical 

orifice sizes of 4.8-9.5 mm producing bubbles 6-10 mm (Mueller et al, 2002) whilst 
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porous diffusers represent fine bubble systems producing 2-5 mm bubbles 

(Mueller et al, 2002).  The presence of the media can also cause the coalescence of 

fine bubbles, decreasing bubble surface area, resulting in a lower OTE and/or 

break-up of coarse bubbles which will increase OTE; indicating that the benefit of 

porous (fine bubble) diffusers may be reduced in such systems compared to 

traditional coarse bubble diffuser systems (ASCE, 1988). For instance, relative 

transfer in an integrated fixed-film activated sludge (IFAS) configuration saw little 

difference in SOTE between fine bubbles with media and without: 8-16 % and 9-17 

% respectively.  The impact of the media on transfer was more pronounced in the 

coarse bubble system, which recorded an SOTE of 6-7 % with media compared to 

4-6 % without (Collignon, 2006).  The SOTE of the fine bubble aeration decreased 

with increased airflow rate (16 % at 5 m/h compared to 8 % at 35 m/h); whilst the 

SOTEs for the coarse bubble system was relatively similar at all tested air flow 

rates (6 % at 5 m/h and 7 % at 35 m/h).  Break-up and coalescence was attributed 

to the size, shape and density of the media. Consequently it is standard practice to 

fit packed bed systems with non-porous, coarse bubble diffusers.  

 

Aerated constructed wetlands (CWs) are a relatively new form of packed bed 

system created to enhance oxygen delivery into this traditionally passive 

treatment solution used on small sewage treatment works. The addition of 

aeration has been demonstrated to provide an effective solution for tertiary 

nitrification which is easily adaptable into existing constructed wetland assets and 

hence is gaining consideration when treatment upgrading is required with respect 

to ammonia discharges (Chapter 3, Butterworth et al, 2012; Fan et al, 2013). 
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Commercial systems utilise coarse bubble aeration from 2 mm orifice diffusers 

below a 0.6 m bed of gravel (6-12 mm) with a measured porosity of 0.4. The 

packing density is comparable to traditional media systems such as BAFs (0.4 -

Mann and Stephenson, 1997) and less than trickling filters using reported 

porosities of 0.8 (Dermou et al, 2007) that are typically employed for tertiary 

nitrification on small works.  Operational experience indicates that the beds are 

typically over aerated resulting in saturated oxygen levels leading to poor energy 

utilisation. For instance, a recent energy survey at a small works including an 

aerated wetland, revealed energy usage akin to a main stage activated sludge 

process at around 2.45 Wh/PE (Pearce, 2013). Consequently, it has been suggested 

that such an approach is irreconcilable with the low energy / passive preferences 

for small works operation. However, the author posit that a better understanding 

of oxygen transfer in such systems will enable a more rational design basis and a 

significant reduction in overall energy demand enabling the utilisation of aeration 

in a manner more compatible with the wider operational aspirations.   

 

Accordingly, the aim of this study was to determine oxygen transfer rates in a 

densely media packed bed using non-porous diffusers of various configurations of 

diffuser orifice diameter size and air flow rate to determine their effect on 

associated aeration efficiency. Supporting bubble visualisation experiments were 

designed to provide further insight and explanation of the mechanisms occurring 

within the system. Corresponding non-media systems for all experiments were 

conducted to serv as a control. 
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4.3 Materials and methods  

4.3.1 Oxygen transfer theory 

The rate of oxygen mass transfer is commonly described according to two-film 

theory (Lewis and Whitman, 1924); that envisages stagnant gas and liquid films at 

the gas-liquid interface.  As oxygen solubility in water is low, the liquid side 

becomes rate limiting such that the rate of oxygen transferred is principally 

considered dependant on the thickness of the liquid film. The oxygen transfer rate 

is then described by the liquid film transfer coefficient (KL); the ratio of bubble 

surface area to water volume (a); the volume of the reactor (V) and the oxygen 

deficit (C*-C).  As the gas-liquid interfacial area (a) is not easily measured, it is 

amalgamated with KL to produce the volumetric mass transfer coefficient (KLa) 

that can be experimentally determined. The final result of the test is expressed as 

the standard oxygen transfer rate (SOTR) (Equation 1), a hypothetical mass of 

oxygen transferred per unit of time at zero dissolved oxygen concentration, water 

temperature of 20 °C and barometric pressure of 1 atm under specified gas rate 

and power conditions (Strenstrom et al, 2006). 

 

SOTR = KLa20 · V · (C*-C)         (1) 

SOTR = Standard oxygen transfer rate in liquid volume V (gO2/d) 

KLa20 = Volumetric mass transfer coefficient at 20°C (h) 

V = Volume of water (m3) 

C* = Oxygen saturation concentration (gO2/m3)  

C = Oxygen concentration in tank (gO2/m3) 

 

The SOTR is then compared to the mass of oxygen delivered to derive the standard oxygen 

transfer efficiency (SOTE) (Equation 2): 
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SOTE = SOTR/w0         (2) 

SOTE = Standard oxygen transfer efficiency (%) 

SOTR = Standard oxygen transfer rate in liquid volume V (gO2/d) 

w0 = Mass flow of oxygen in the air stream (gO2/d) (Equation 3) 

 

w0 = ρQa (Mueller et al, 2002)        (3)  

 

w0= Mass flow of oxygen in the air stream (gO2/d)     

ρ = Oxygen density (gO2/m3) 

Qa = Air flow rate at standard conditions (g/d) 

 

SOTEs are commonly reported per m depth of reactor to enable comparison to similar 

technologies and this approach has been adopted in the current study.   

 

4.3.2 Affecting factors 

Aeration system performance is often reported for clean water conditions at standard 

temperature and pressure.  In reality, the oxygen transfer rate is affected by process 

conditions including variations in temperature, pressure and process water 

characteristics. Increasing temperature causes a reduction in oxygen solubility and can be 

corrected for variation through inclusion of an Arrhenius term (Equation 4). 

KLa(T) = KLa(20)θT-20         (4) 

KLa(T) = Volumetric mass transfer coefficient at temperature T (°C) 

KLa(20) = Volumetric mass transfer coefficient at 20 °C 

θ = Effect of temperature on mass transfer coefficient, typically given the value 1.024 for 
diffused and mechanical aeration devices (Metcalf and Eddy, 2003) 
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Correction for differences in barometric pressure (Ω) in tanks less than 6 m depth are 

estimated by calculating the ratio of atmospheric pressure to the standard total pressure 

(ASCE, 1998). In non clean systems additional corrections are required based on the 

impact of surface active agents reducing the mass transfer coefficient () (Wagner and 

Pöpel, 1996) and presence of salts on equilibrium solubility () (ASCE, 1988). However, 

clean water testing provides the baseline for aeration system performance as it is 

comparatively reproducible regardless of geographical location (Mueller et al, 2002) and 

is useful in deriving mechanisms of mass transfer when analysing new systems and hence 

represents the basis of the current investigation.  

 

4.3.3 Aeration efficiency 

The standard aeration efficiency (SAE) is a useful term to quote whilst comparing 

processes as it expresses the quantity of oxygen supplied (at standard conditions) per unit 

of energy consumed (Equation 5). 

 

SAE = SOTR/P          (5) 

SAE = Standard aeration efficiency (kgO2/kWh) 

SOTR = Standard oxygen transfer rate in liquid volume V (gO2/d) 

P= Power (Equation 6) 

The power requirement for the delivery of the required air based on adiabatic 
compression is given by Metcalf and Eddy (2003): 

 

Pw  = wRT1/29.7.n.e[(p2/p1)0.283)-1]       (6) 

 

Pw = Power requirement of blower (kW) 

w = Weight of flow of air (kg/s)  

R = Gas constant for air (8.314 kJ/k mol K) 

T1 = Absolute temperature (K) 
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p1 = Absolute inlet pressure (atm) 

p2 = Absolute outlet pressure (atm) 

n = (k-1)/k = 0.238 for air 

k = 1.395 for air 

29.7 = Constant for SI unit conversion 

e =Blower efficiency  

 

A detailed example calculation can be found in supplementary information 4.1. 

 

4.3.4 Oxygen transfer tests with and without media in tank 

Oxygen transfer tests were carried out in a 1.5 m x 1.5 m x 1.0 m depth tank 

(Broomhill Composites Ltd.). The diffuser was made from 12 mm (inner diameter) 

LDPE pipe fixed to a plastic grid and connected to the air supply through a vertical 

supply pipe (Figure 4.1). Perforations were then drilled into lateral pipe to form a 

grid of holes spaced 300 mm apart. The plastic grid was lowered onto the tank 

floor on top of a layer of gravel to ensure it was level.  When a new orifice size was 

required the plastic grid was removed, amended and replaced.   

 

 

Figure 4.1 Tank and diffuser set up 
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Orifice sizes of 0.5, 0.8, 1.0, 2.0 and 3.0 mm were tested at air flow rates of 10, 15, 

20, 40, 60, 100 L/min.  The design was based on UK aerated CWs that typically 

consist of a 12 mm aeration pipe and 2 mm hole diameters spaced 300 mm apart.   

 

Oxygen was removed from a known volume of water in a separate mixing tank 

using a well mixed solution of sodium sulphite (Na2SO3) at 7.88 mg/L per 1.0 mg/L 

dissolved oxygen (DO) combined with a cobalt catalyst (0.3 mg/L) until a DO of 

less than 0.5 mg/L was attained.  The test tank was then filled with de-oxygenated 

water to a depth of 0.6 m from the mixing tank via a tap and pipe.  The air supply 

was switched on and DO recorded periodically at 0.1 m and 0.4 m below the 

water/gravel surface using DO probes (Hach-Lange HQ40D). Freshly prepared 

water was used for each individual test. For tests including media, the tank was 

filled with 6-12 mm gravel as used as standard in Severn Trent Water constructed 

wetlands with a tested porosity of 0.4. The terms kLa and C* were analysed using 

the two film theory mass transfer model (Equation 1).  

 

The affect of the media was quantified by creating media factors (αM); calculated 

by plotting media versus no media values against each other for the comparative 

variables. 

 

4.3.5  Bubble visualisation column 

Bubble behaviour was visualised using a Perspex column (Figure 4.2).  Pipe was 

inserted into the bottom of the tank with one central orifice and linked to an air 

supply.  The same pipe, orifice sizes and air flow rates were realised as used in the 
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test tank.  The column was filled with clean water or water and media to a depth of 

0.6 m.  A metal graticule (mm) was attached across the column to allow post 

experiment bubble diameter analysis. The air was switched on and video footage 

taken at 25 frames/second (Sony digital camera model SLT-A55V). 

 

Figure 4.2 Bubble visualisation column set up 

 

Still images were captured from the video footage using VLC media player 

(VideoLan, 2013) and sized relative to the graticule. Velocities were measured as 

vertical equivalence by measuring the number of frames required for bubbles to 

travel a fixed vertical distance. One hundred bubbles were counted for each 

experiment (hole size and flow rate) to provide a representative sample as 

previous experiments demonstrated that the standard error of the distribution 

remained stable once more than 80 bubbles were analysed (data not shown). 
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4.4  Results  

4.4.1 Oxygen transfer tests with and without media in tank 

Oxygen transfer was enhanced due to the presence of media across all 

experiments. For example, in the case of a 3 mm orifice hole size operating at an air 

flow rate of  20 L/min the time required to produce an increment rise in DO per 

unit tank volume was 116 s compared to 515 s in the media and non-media 

systems respectively (Figure 4.3). Correspondingly, the time required to reach a 

DO set point was shorter in the presence of media (Figure 4.3). 

 

 

Figure 4.3 Relative rates of dissolved oxygen concentration in media vs. non-

media filled systems (3 mm orifice size; 20 L/min air flow rate) 

 

To illustrate, based on a 5 mgO2/L target (set for ease of measurement) the non -

media systems required on average 6.6 times as long (range 2.2-13.0). The impact 

of the media on the rate of DO increase was reduced when normalising for the total 
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volume of water such that the DO set point was reached only 2.6 times faster on 

average than when no media was present.  

 

The mass transfer coefficient (KLa20) in the media ranged between 3.2-24.7 

compared to 0.4-6.1 in the non-media tests (Figure 4.4). A general trend of 

increased KLa20 with increasing air flow rates was observed across all conditions 

with, for example, an increase in the average KLa20 from 6.2 h-1 at 10 L/min to 22.8 

h-1 at 100 L/min in the case of the 1 mm hole size during the media trials (Figure 

4.4).  The average standard deviation for each orifice size in the non-media tests 

ranged from 0.04-0.09 compared to a much larger deviation recorded in the media 

tests of 2.8-4.6 (error bars on Figure 4.4). 

  

Figure 4.4 Variation in volumetric mass transfer coefficient at tested orifice size 

and air flow rates 
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The mass transfer coefficient increased as a function of air flow rate in both 

systems. In the case of the non-media system small orifice sizes (0.5-1.0 mm) 

resulted in higher KLas than coarse orifice sizes (2.0-3.0 mm) congruent with 

standard aeration knowledge (Mueller et al, 2002). The same pattern held during 

the media case but much greater variation was observed between trials, reducing 

the clarity of the relationship which is indicative that other mechanisms were 

operating over and above those when no media was present. The SOTE/m in the 

non-media systems was generally less than half than that recorded in 

corresponding media tests below air flow rates of 60 L/min (Figure 4.5). 

 

 

Figure 4.5 Average SOTEs (%/m) for all tested air flow rates and orifice sizes with 

and without media  

 

The difference became less apparent as air flow rate increased such that at an air 

flow rate of 100 L/min no discernible difference was observed. The lowest 
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comparatively low despite changes in air flow rate.  At the low flow rates the 2 mm 

and 3 mm orifice sizes in the media tests produced results in a similar range of 0.5, 

0.8 and 1 mm with no media. The high KLa values observed in the media systems at 

100 L/min (Figure 4.4) did not translate into corresponding high SOTEs as the 

porosity of the reactor does not influence the measured KLa and is only accounted 

for during the conversion of the data into SOTR (Equation 1). 

 

4.4.2  Bubble visualisation column 

To elucidate the mechanisms responsible for the enhanced oxygen mass transfer a 

series of bubble visualisation experiments were undertaken (Figure 4.2).  The 

bubble size in the media systems tended to be smaller and distributed over a 

narrower range compared to the non-media systems indicated by size ranges of 

0.5-9.0 mm and 2.0-15.0 mm respectively. For instance, at an air flow rate of 20 

L/min through a 0.5 mm orifice (Figure 4.6), the majority of the bubble diameters 

in the non-media system fell between 3.0-5.0 mm (85 %) compared to 51 % in the 

media system suggesting the presence of media was reducing the bubble size and 

hence increasing the total surface area for mass transfer per unit volume of air. 

The percentage of bubbles between 3-5 mm decreased with larger orifice sizes 

with levels of 73 %, 83 % and 54 % in the case of the non media trials with orifice 

sizes of 0.8 mm, 1.0 mm and 2.0 mm respectively, indicating significant 

coalescence when using smaller orifices. Corresponding figures in the case of the 

media trials were 38 %, 63 % and 55 % respectively indicating that the impact of 

media was less significant as the orifice size increased and confirmed a difference 

in underlying mechanisms. Although some differences between media vs. non-
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media systems were apparent, the data suggest orifice size was not the controlling 

factor on bubble diameter in either system as demonstrated by median bubble 

sizes of 4.0 mm, 4.0 mm, 3.0 mm and 4.0 mm for the 0.5 mm, 0. 8 mm, 1.0 mm and 

2.0 mm holes sizes respectively in the case of media and 4.0 mm, 6.0 mm, 4.0 mm 

and 5.0 mm bubbles in the case with no media. 

 

 

Figure 4.6 Bubble diameter frequency in the media column (left) and the non-

media column (right) at air flow rate 20 L/min 

 

The variation of bubble diameters was analysed in relation to air flow rate (Figure 

4.6).  Larger and more variable bubble diameters were found in the non-media 

systems compared to those with media (Figure 4.7).  Bubble sizes increased in the 

non-media systems in relation to increasing flow rates at all orifice sizes. For 

example, in the case of a 0.8 mm orifice size upper quartile values of 6.0, 7.0 and 

8.0 mm were observed for flow rates of 15, 20 and 40 L/min respectively.  The 

media systems showed no relationship between air flow rate and bubble diameter 

with corresponding upper quartile values of 4.0, 5.0 and 4.0 mm.  These data 
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suggest flow rate had an impact on bubble size in the non-media systems but not 

on the media systems.  

 

Figure 4.7 Box and whisker plots of bubble diameters recorded at 0.8 mm diffuser 

size in media and non-media systems at various air flow rates. The box represents 

the interquartile range; the line indicates the median and the whiskers the 

maximum and minimum 

 

Lower velocities were measured in the media systems compared to the 

corresponding non-media systems at all orifice sizes (Figure 4.8).  To illustrate, 

over all flow rates, velocities ranged from 48-202 mm/s in the media systems 

compared to 202-330 mm/s in the non-media. The impact of air flow rate was 

minimal with respect to the rise velocities of similar bubble sizes when using an 

orifice hole size above 0.5 mm and air flow rates above 20 L/min. For example, in 

the case of a 0.8 mm orifice hole size, the bubble rise velocity was 129±24, 133±30 

and 115±15 mm/s for 15, 20 and 40 L/min respectively compared to 295±49, 

259±37 and 287±53 mm/s in the non-media system (Figure 4.8). 
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Figure 4.8 Average bubble velocities (mm/s) at various orifice size and air flow 

rates with and without media 
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individual bubbles were formed constantly with little mixing and coalescence 
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the formation of larger bubbles and increased mixing (Figure 4.9, middle). 

Comparatively, in the media systems, bubbles travelled via various pathways; 

tortuous in comparison to the non-media and therefore spending a comparatively 
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extending the residence time of the bubble.  At higher flow rates this phenomenon 

was not observed as prevalently as the speed and force of the pathways was too 

strong to allow extra duration in the void.  For example, at 1 mm orifice size this 

phenomenon accounted for approximately 15-20 % of the gas bubbles, increasing 

the time spent in the reactor by 1-10 s per bubble at 15 L/min and fractions of a 

second-2 s at 60 L/min. 

 

   

Figure 4.9 Bubble pathways in non-media system (0.8 mm), 15 L/min (left) and 

60 L/min (middle) and media system (right) 

 

Visual inspection of the video footage also revealed the zone of influence (ZOI) per 

orifice to be in the range 150-300 mm from the centre point of the orifice hole. For 

instance in the case of the 0.5 mm orifice, the majority of the bubbles were 

observed within the first 150 mm with progressively fewer bubbles travelling as 

the distance extended away from the centre point of the orifice.  The ZOI increased 

with bubble size and flow rate such than at 100 L/min and 2.0 mm orifice size the 
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ZOI recorded a larger range with a more even distribution of bubbles consistently 

around 300 mm compared to the small orifice size and low flow rate. 

 

4.5 Discussion 

The findings of this study indicate enhanced mass transfer in the packed bed 

system if the applied air flow rate is sufficiently low.  Both orifice size and air flow 

rate influenced the overall mass transfer rates even though the bubble size was 

effectively constant, indicating that another mechanism was controlling the overall 

transfer rate. Accordingly, the data suggest that the increased bubble hold up and 

more tortuous bubble pathways observed in the media systems results in the 

enhanced transfer.  

 

The impact of the observed enhanced mass transfer is illustrated through 

calculation of the standard aeration efficiency (SAE) to express the quantity of 

oxygen supplied per unit of energy consumed (supplementary information 4.1). 

SAEs decreased with increasing air flow rate and orifice size for both media and 

non-media systems with a more pronounced affect in the media systems.   To 

illustrate, SAEs varied from 1.1-24.5 kgO2/kWh in media systems and 1.7-7.4 

kgO2/kWh in the non-media.  This compares to typical levels of 3.1-7.2 kgO2/kWh 

for various modern diffuser types and air flow rates tested in clean water with no 

media (Kember, 2007).  Comparing the SAEs in media vs. non-media systems 

indicates an overall enhancement factor (αM) of 3.2 (not including variations due to 

orifice size or air flow rates) quantifying the extent the media presence improves 

relative SAE between the systems (Figure 4.10).   
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Figure 4.10 Relationship between SAE in media vs. non-media systems as a 

function of orifice size 
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and grow as additional gas entered until it grew to a size when the buoyancy force 

exceeded the drag forces exerted by the gravel surfaces. Accordingly, the gas hold 

up rate is considered to be largely due to the size of the voids present in the media 

system controlling the growth of the bubble. The rate of gas flow will also influence 

this by reducing the percentage of total gas held pseudo statically within the pore 

spaces reflected by the highest difference in SAE seen with small orifice sizes and 

low air flow rates. 

 

The SAE results reflect the balance between the power required to deliver a higher 

flow rate and the higher flow rate not delivering a favourable increase in OTE. A 

similar pattern was seen for orifice size i.e. bigger holes require more air and 

therefore power to deliver and as an increase in OTE is not associated with larger 

hole sizes it follows that media systems with small orifice sizes and low flow rates 

will provide the most efficient solution for aerobic treatment on small works in 

aerated constructed wetlands. 

 

To illustrate the impact of the findings above, the data was used to size blower 

requirements for an existing operational aerated CW serving a population 

equivalent of 400 (Chapter 3, Butterworth et al, 2013). The site had an 80th 

percentile flow of 117 m3/d and 95th percentiles of 5.1 kg COD/d and 2.5 kgNH4+-

N/d being removed across the system. The calculations are based on standard 

approaches (Austin and Nivala, 2009) and assume a respiration load equivalent to 

that of the COD (to provide conservative estimates of the SAE) and assumed 

process water conversion factors of α = 0.3-0.7, β = 0.9 and τ = 1.2 (based on an 
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average temperature of 11 °C). The range in α was calculated to assess the 

potential impact that enhanced contact time may have on mass transfer in real 

wastewater through additional accumulation of surface active agents. The power 

required was based on a blower efficiency of 70 % and the OTEs measured in from 

this study that varied from a minimum of 2.6 % to a maximum of 24.5 % with a 

median value of 13 %, relating to a 0.6 m depth reactor.   

 

Corresponding blower sizes necessary to deliver the air flow rate requirements to 

meet the oxygen demand, ranged from 0.13 to 0.31 kW for α factors of 0.7 and 0.3 

respectively, based on the median OTE.  The minimum blower size, based on the 

maximum OTE and an α of 0.7, was 0.07 kW.  Using a blower appropriately sized 

for the required transfer (0.3 kW, using median OTE and α of 0.3) translates to a 

power usage of 0.8 Wh/PE, considerably less than previous quoted values of 2.43 

Wh/PE (Pearce, 2013).  Assuming favourable conditions, this usage reduces to as 

low as 0.2-0.3 Wh/PE suggesting that aerated wetlands can be operated with an 

energy demand around 8 % of a standard activated sludge plant and those 

currently in operation. To account for uncertainty, realistic prediction of potential 

reductions are likely to be close to 30 % of the current level, although further 

reductions are possible, as recent evidence has shown that only the initial third of 

the bed requires aeration to maintain nitrification performance (Chapter 6).  

 

Overall, the findings demonstrate that the use of aerated wetlands does not have to 

challenge the preferences for low energy operation at small works. Whilst 
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additional energy is required compared to traditional passive systems, the 

potential low levels are in line with appropriately sized renewable energy 

technologies currently available (energysavingtrust, 2012; Vasili, 2013) and 

ultimately leads to the possibility of off grid operation whilst maintaining robust 

nitrification performance.  

 

4.6 Conclusions 

The findings of this study indicate that there is enhanced mass transfer in packed 

bed systems compared to non-media systems if the applied air flow rate is 

sufficiently low.  Smaller bubble diameters, lower velocities and increased gas hold 

up caused by tortuous bubble pathways and retardation in the void spaces 

increased the residence time of the bubbles increasing the time for oxygen transfer 

to occur.  In terms of overall aeration efficiency, the packed bed systems produced 

an average enhancement (α) of 3.2 compared to non-media systems.  

Consequently, results provide the basis for energy reduction on small wastewater 

treatment plants, introducing the possibility for renewable energy sources to 

adequately run tertiary nitrification systems such as aerated constructed wetlands 

enabling the aspiration of small works operators to be secured whilst delivering 

robustly against challenging ammonia discharge consents.  
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Supplementary information 4.1 

Example SAE calculation 

 

Nomenclature 

C0= oxygen concentration at beginning of test (ppm) 

C* = oxygen saturation concentration (ppm) 

C*20 = oxygen saturation concentration at standard temperature (20°C) = 9.08 (ppm) 

DO = Dissolved oxygen (ppm) 

kLa = oxygen transfer coefficient (h-1) 

kLa(20) = standard oxygen transfer coefficient 

P1 = Absolute inlet pressure (bar) 

P2 = Absolute outlet pressure (bar) 

Pw = Power (kW) 

Pact =Actual pressure (bar) 

Patm = Atmospheric pressure (bar) 

Qatm = Air flow at atmospheric conditions (m3/h) 

SOTE = Standard oxygen transfer efficiency 

SOTR = Standard oxygen transfer rate  

V = volume of tank (m3) 

Va = Active volume of the tank (m3) 

WO2 = mass flow of oxygen in the air stream (kgO2/h) 

 

Measured values:  Temperature 11.9°C; kLa from graph = 0.908h-1; C0 =0.03ppm, C*= 

10.68ppm  

 

Pre-calculations: 

1. Correct kLa to standard temperature (20°C):  

 

kLa(20)= kLa/1.024(T-20) =1.101 h-1 

2. Calculate active volume of the tank (Va): 

With media presence the active volume (Va) is the porosity x volume of filled tank 

= 0.4 x 1.35 = 0.54m3 

3. Correct air flow to standard pressure (Qatm): 

 
Qatm =  Qact x (Pact / Patm) 
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Qact = reading @ flowmeter 10 L/min = 0.60 m3/h  
 
Patm = Atmospheric pressure = 1.01325 bar 
 
Pact =Actual pressure = 0.6m depth + 0.1 as estimate for friction (0.0686 bar) + Patm  
 
Qatm = 0.641 m3/h 
 
 
4. Calculate mass flow of oxygen in the air stream (WO2) = air flow (Qatm ) x density of 

air (at temperature and humidity at time of test) x mass ratio of oxygen in air 

Density of air @ 11.9C = 1.234 kg/m3 

Mass ratio for O2 in air = 0.232 kg/kg 

WO2 = 0.641 x 1.234 x 0.232 

 

=0.183 kg/h 

 

SAE Main calculation 

 

SOTR= kLa(20) x C*(20) x Va 

=1.101 x 9.08 x 0.54 

= 5.4004 g/h 

= 0.0054 kg/h 

 

SOTE = SOTR/WO2 

=0.0054 / 0.183 

= 2.9 % 

= 4.9 %/m 

 

Power 

Pw  = wRT1/29.7.n.e[(P2/P1)0.283)-1] 

Pw = Power (kW) 

w = Weight of flow of air (Kg/s) = Qact (m3/h) x 1.231 (Kg/m3) = (0.79 Kg/h) = 0.000219 

(Kg/s) 

Absolute inlet pressure (P1) = 0.98692 bar 

Absolute outlet pressure (P2) = 1.05374 bar 

Blower efficiency (e) = 0.7 
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n = 0.238 

R = Gas constant for air = 8.314 (kJ/k mol K) 

T1 = Absolute temperature = 285 K 

wRT = 0.520 

29.7ne = 5.88 

wRT/29.7n.e. = 0.884 

(P2/P1)0.283)-1 = 0.020 

Pw = 0.0018kW 

 

SAE = SOTR/Pw   

=0.0054/0.002 

=2.99 kg/kWh 
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5.1 Abstract 

The effect of artificial aeration on plant growth in constructed wetlands in terms of 

above and below ground biomass and nutrient uptake of two macrophyte species 

Phragmites australis and Typha latifolia was carried out to provide quantitative, 

mechanistic evidence to support any differences between the plant species 

establishment.  Pilot scale systems were built and supplied with different 

intensities of aeration and corresponding controls with supporting evidence from 

two full scale operational sites. Results observed a decrease in terms of height and 

yellowing of leaves in both plant species and a decrease in biomass of the T. 

latifolia compared to the control.  Decreased manganese concentrations were 

recorded for all plant fractions and a decrease in iron observed in the root systems.  

This was thought to be caused by a neutral to slightly basic pH (7-8) and DO (>2 

mgO2/L) causing these micronutrients to be present in an unavailable form.  

 

Keywords: Aeration, plant development, Phragmites australis, Typha latifolia 

mailto:g.dotro@cranfield.ac.uk
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5.2 Introduction 

Constructed wetlands (CWs) by definition contain vegetation adapted to saturated 

conditions (Mitsch and Gosselink, 2000). The specific function of this vegetation in 

CWs has been much discussed in the literature (Brix, 1997; Stottmeister et al, 

2003; Langergraber, 2005) with their importance primarily being attributed to 

seasonal storage of nutrients; extra surfaces for microbial growth (although this is 

small in comparison to the surface area of the gravel); insulation in cold and 

temperate climates, blocking wind and shading out algae that can lower re-

aeration; carbon content of plant litter supplying energy for heterotrophic 

denitrifiers; promotion of wildlife / biodiversity; aesthetics and prevention of 

unwanted species colonizing the bed (Brix, 1997; Kadlec and Wallace, 2009).   

 

A recent innovation in horizontal sub-surface flow (HSSF) CWs has been the 

inclusion of forced aeration to promote aerobic conditions and ammonia removal 

(Ouellet-Plamondon et al, 2006; Zhang et al, 2010). This has proved successful in 

the US (Kadlec and Wallace, 2009) and testing is producing successful results in 

the UK (Butterworth et al, 2013) and Europe (Nivala, 2012). However, a negative 

impact has been observed at some sites in relation to plant growth where 

academic and commercial groups have reported yellowing of the leaves (chlorosis) 

and poor establishment of the commonly used plant Phragmites australis in 

artificially aerated and re-circulated effluent vertical-downflow CWs (Weedon, 

2014). For instance, during full scale trials of aerated horizontal sub-surface flow 

(HSSF) CWs (Butterworth et al, 2013), poor establishment of P. australis was 
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observed in an artificially aerated HSSF CW compared to excellent growth in an 

identical non-aerated control (Figure 5.1).  Additionally, poor establishment, 

yellowing of leaves and invasion of other species/weeds outcompeting P. autralis 

was observed on two additional full-scale sites (UK) and poor growth/non-

establishment of P. australis has been reported in the first growing season in the 

second half of a pilot aerated CW in Germany (Nivala, 2012).  

  

Figure 5.1 Full scale (Site 1) aerated beds planted with Typha latifolia (left) and 

Phragmites australis (right) 5 months after planting. Full scale (Site 2) aerated 

(left) and non-aerated control (right) 12 months after planting 

 

Consequent literature searches revealed a gap in the knowledge with respect to 

the response of the plants to forced aeration. Discussions with experts within the 

wetland and botany communities (Dotro et al, pers. comm, 2012) generated two 

main potential mechanisms that could be responsible: macro or micro nutrient 

deficiency caused by the aerobic environments leading to changes in redox states 

that can affect their bio-availability, and turbulence caused by vigorous aeration 

causing root destabilisation resulting in stress induced growth inhibition and/or 

water ingress into the aerenchyma preventing effective oxygen transfer to the 

T. latifolia P. australis Aerated Control 

Site 1 Site 2 
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roots. Additionally, it was discussed that the problem is possibly species specific, 

as species other than P. australis have been able to colonize the aerated 

environment. It was further noted that the species T. latifolia is commonly used in 

the US due to its competitive and aggressive nature; ability to colonize inert 

substrates and adapt to diverse and not always optimal climate conditions 

(Jesperson et al, 1998).  Consequently, full scale trials using T. latifolia were 

undertaken by a UK water company (Site 1, Severn Trent Water) in response to the 

poor establishment of P. australis in aerated CWs and following contractor 

recommendations.   

 

To date, discussion has been largely qualitative such that to the authors’ 

knowledge a paucity of direct experimental evidence exists to help populate the 

discussion, limiting the potential to define mitigation strategies going forward. 

Accordingly, the aim of the current investigation was to provide an experimental 

assessment of the impact of aeration on plant health in terms of above and below 

ground biomass and nutrient uptake of two macrophyte species P. australis and T. 

latifolia to enable the proposed mechanism to be further discussed.   

 

5.3  Materials and Methods 

5.3.1 Pilot studies 

Individual test microcosms were constructed utilising water butts (height 83cm, 

width 46cm, depth 45cm - gardens4less.co.uk) fitted with an aeration pipe of 12 

mm diameter irrigation pipe with a single 2 mm diameter orifice connected to the 

mains air supply to imitate conditions found in the aerated bed (Figure 5.2).  The 
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columns were filled 0.6 m deep with gravel of 6-12 mm diameter, and planted with 

a single plug plant (Reeds from Seeds, Denbighshire, UK; 10 cm pot size), as per 

standard Severn Trent Water reed bed design, and fed with partially treated 

wastewater (12.1-20.9 mg NH4+-N /L and 184-300 mg COD /L for ammonium and 

chemical oxygen demand respectively) to 0.1 m below the gravel surface. A tap 

fitted to the bottom of the water butt allowed drainage and re-filling which took 

place every other day for the duration of the experiment.  The composition of the 

wastewater was tested three times throughout the study for ammonium (NH4+-N), 

nitrate (NO3—N) and nitrite (NO2-N) and COD with Hach-Lange test kits post filling 

and draining.  

 

 

Figure 5.2 Experimental set-up 
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Two aeration rates were investigated. The first represented the equivalent rate 

used on an operational site (Site 2, Figure 5.1b) defined as 150 m3/h of air 

delivered per 100 m2 of bed, corresponding to 2.3 L/min per hole [defined as high]. 

The second was based on a separate study that determined the required air 

delivery rate to maintain aerobic environments as the operational rates above had 

been observed to exceed those actually required (Chapter 4). The reduced rate was 

0.8 L/min per hole [defined as low] and thus provided insight into whether 

optimised aeration could mitigate any observed impacts. Tests were carried out in 

triplicate and include a non-aerated control for each plant species (Figure 5.3). 

 

 

Figure 5.3 Variables tested for each plant species 

 

Direct observations were recorded during the growing period including plant 

height (measured from gravel level to the tip of the tallest stem); number of stems, 

leaf length (measured from the base to the tip) and leaf width (measured at the 

widest part). Harvesting took place 4 months after planting, at the end of the 

growing season.  The plants were removed from the butts and any loose soil 

washed away.  Visual differences were recorded in the roots and rhizomes 

2.4 L/min

0.8 L/min

Phragmites australis Typha latifolia

No aeration
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including the presence of primary and lateral fine side roots, their number, 

diameter and length. In addition, butts were turned on their side at the end of the 

experiment to enable direct visual observation of any differences. Plants were then 

fractionated into roots and rhizomes (below-ground biomass) and above-ground 

biomass and dried at 70 °C until constant weight and cooled in a dry environment.  

Primary productivity was determined via measurement of above and below-

ground biomass (g/plant).  Samples were then ground to 1 mm and dried further 

for use in nutrient analysis.  Total nitrogen (N) was analyzed by gas 

chromatography after combustion of ground plant material (Vario EL III Elementar 

Analyzer). Concentrations of phosphorus (P), potassium (K), sodium (Na), calcium 

(Ca), magnesium (Mg), iron (Fe), manganese (Mn), copper (Cu), zinc (Zn) and 

nickel (Ni) were determined by spectrometry (atomic absorption for Na, Ca, Mg, Fe 

and Ni; inductively coupled plasma for K, Mn, Zn and Cu using a Perkin Elmer 

Analyst 800 and Perkin Elmer ELAN 9000 system respectively, and  P using UV/ 

VIS spectrophotometer Nicolet Evolution 100E) after extraction by a 

nitric/hydrochloric acid mixture and microwave digestion of 0.25 g of ground 

plant material.  Standards were run prior to running samples and every 10 

samples thereafter for all machines, plus two blanks for quality assurance. 

 

5.3.2 Full scale studies 

5.3.2.1 Site 1  

The site contains two equally sized tertiary HSSF CWs of 56 m x 12.5 m each.  

Artificial aeration was retrofitted in both beds during gravel cleaning and 
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replacement (refurbishment) and one was planted with T. latifolia and one with P. 

australis.  

 

5.3.2.2 Site 2  

Tertiary treatment consists of 2 x HSSF CWs 10 m x 10 m each with a separate 

combined sewer overflow CW.  This site serves as a full scale control site whereby 

both beds were fitted with aeration; one is switched on (3/3/2011) and the other 

left dormant to provide a control.   

 

For determination of plant coverage, each full scale bed was divided into 9 sections 

and the total number of plants counted.  For determining the percentage of 

yellowing plants, the proportion of yellow reeds within the sample section was 

counted and related to the total number of plants. A single plant was excavated 

from the middle of each bed (October, 2013) by gently easing a fork to loosen the 

root ball and a shovel to ease it out then taken to the lab and treated as for the pilot 

studies.  Plants from Site 1 were excavated at the end of their first growing season 

and third growing season in Site 2. 

  

The data did not follow a normal distribution therefore non-parametric statistical 

tests (P<0.05) were conducted to determine differences between datasets with the 

use of GraphpadPrism.5 (2013).  When comparing datasets of greater than two, the 

Friedman test was used as a non-parametric alternative to analysis of variance 

(ANOVA).  Where two datasets were compared, the Wilcoxon matched pairs test 

was used as an alternative to the paired student t-test. This test was used over the 
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Mann-Whitney test that assumes independent samples, after assessing the data for 

effective pairing by calculation of the spearman’s rank correlation coefficient.  

 

5.4 Results and Discussion 

5.4.1  Growth  

5.4.1.1 Comparison in pilot studies 

The relative growth rate in terms of height for both species was slow during the 

first month before a greater difference between species and the control became 

apparent, 33 days after planting (Figure 5.4).  In terms of overall growth, the T. 

latifolia grew much taller than the P. australis with a maximum height observed in 

the control of 1380 mm compared to 635 mm seen in the P. australis control.  Plant 

growth was reduced in all trials and when normalised against the control revealed 

greater absolute difference in the case of T. latifolia compared to P. australis 

(Figure 5.5). To illustrate, the median decrease in height compared to the control 

at the end of the growth phase was 380±24 mm and 580±195 mm in the case of 

the high and low aerated T. latifolia compared to 240±11 mm and 130±95 mm 

respectively in the case of P. australis. The reduction in height equated to 35-53 % 

and 15-29 % for the T. latifolia and P. australis respectively indicating that despite 

lower overall height, the height of P. australis was less affected by the presence of 

the aeration than the T. Latifolia.  

 

Significance testing of the average relative growth rates reported significant 

differences of both the low and high aeration cases in comparison to the control for 

both species (Friedman, matched-pairs signed rank test;  Friedman statistic 13.29 
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for P.australis and for T. latifolia 26.14, P<0.0001). Further analysis of the impact of 

aeration intensity on the overall relative growth rates (as height) compared to the 

control revealed no significant difference between the median values of the low 

and high aeration for P.australis (Wilcoxon matched-pairs signed rank test, W=-27, 

P=0.4263).  However, a significant difference was recorded between the high and 

low aeration for T.latifolia (Wilcoxon matched-pairs signed rank test, W=103, 

P=0.0002). The results are in contrast to reported observational evidence that has 

suggested less impact when using T.latifolia. 

 

Figure 5.4 Relative plant growth compared to control (P = P. australis; T = T. 

Latifolia) 

 

The impact of aeration on the above ground growth occurred predominately in 

different features for the two macrophyte species (Figure 5.5, top). In the case of P. 

australis, greater impact was seen in the number of stems and leaves. In 

comparison, the predominant impact for T. latifolia was observed in terms of the 
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stem diameter and the length of leaves, with no impact on leaf width in either 

species. For example, at the end of the growing phase, aeration reduced the 

number of stems at the end of the growth period compared to the control by 18-19 

stems and by 12 leaves in the case P. australis (Figure 5.5 top). Whereas the 

greatest absolute difference was observed in the reduction in leaf length of the T. 

latifolia which was 85-93 mm shorted due to aeration at the end of the growth 

period.   Yellowing of the leaves was observed in all cases and more predominantly 

in the case of the aerated beds compared to their respective controls.  In addition, 

slight yellowing in the control beds was more pronounced in the P. australis than 

the T. latifolia. 

 

The below-ground measurements (Figure 5.5, bottom) indicate differences in 

growth between both species and between aerated and non-aerated systems, 

although the intensity of aeration does not appear substantial. The rhizome 

number, length and diameter and the root length in the aerated T. latifolia trials 

were considerably reduced compared to the control.  Whereas the number of 

rhizomes observed in P. australis was also fewer than the control, although to a 

lesser extent than T. latifolia.  For example, the number of rhizomes was reduced 

by an average of 10 in both the high (±3) and low (±5) systems in T. latifolia, 

compared to 2±1 (low) and 3±1 (high) in the P. australis.  On first appearance, in 

the case of P. australis, the rhizome length and diameter and the root length is also 

reduced compared to the control but the large standard deviation recorded in 

these measurements does not allow any level of certainty.  The root diameter does 

not seem to have been affected by the presence or intensity of aeration in either 
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species and little effect is observed in the rhizome diameter of P. australis.  When 

the standard deviations are taken into account no one below ground growth 

parameter appears to have been affected considerably more than another.  

 

 

 

Figure 5.5 Difference in above ground biomass characteristics after 4 months 

(top).  Difference in below ground biomass characteristics after 4 months relative 

to control (bottom) (P = P. australis; T = T. Latifolia) 
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Visual observation of P. australis showed an obvious difference in the size of the 

above ground biomass and a denser root structure with deeper reaching roots and 

increased number fine roots in the control (Figure 5.6).  The T. latifolia control too 

displayed deep reaching roots with a couple of roots reaching the bottom of the 

water butt (0.6 m deep). Investigation of root integrity revealed no discernible 

difference in the nature of the roots between aerated and non-aerated samples. 

The reduced root intensity and size is indicative of stress derived growth 

inhibition due to root disturbance as seen in many terrestrial plants exposed to 

waves (Coops and Van der Velde, 1996). However, the lack of difference between 

aeration intensity suggests that aeration level is not a factor and that the minimum 

aeration levels required in aerated wetlands will exceed any potential threshold 

level.   
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Figure 5.6 Example of root systems in-situ (enhanced): P. australis control  (left); 

P. australis high aeration (right) 

 

5.4.1.2 Comparison on full scale beds 

Both species grew well at the inlet of the beds of Site 1 (Figure 5.1) in their first 

growing season and were largely green, upright and healthy.  T. latifolia averaged a 

height of 2.2 m±0.4 m, compared to the P. australis which averaged 1.4±0.3m, 

giving a P. australis to T. latifolia ratio of 1:1.57. The height ratio was similar in the 

pilot studies at 1:1.55 indicating commonality between the different scales of 

systems investigated.  The plants gradually thinned in density, were shorter and 

showed signs of yellowing towards the outlet of both beds and invasive species 

had begun to take over.  The effect was much more pronounced in the P. australis 

bed with approximately 40 % of the P. australis plants displaying significant 

yellowing as close as 0.3 m from the inlet and approximately half of the bed was 

taken over with weeds. In comparison, signs of stress began 3-4 m from the inlet in 

the T. latifolia bed, yellowing was apparent in approximately 20 % of the plants 

and invasive species took over approximately 25 % of the bed.  The P. australis 

taken for analysis from site 1 displayed slight yellowing of the leaves, the plant was 

taken from the middle of the bed where plants were beginning to deteriorate it 

terms of size and colour.  The T. latifolia also displayed slight yellowing on the 

outer leaves but to a visually different degree than the P. australis. The P. australis 

from the aerated bed at site 2 had yellowing leaves whilst the control was largely 

green.  T. latifolia displayed thick (1.3±0.6 cm), shallow, long rhizomes (8.1±3.2cm) 

compared to the root system of P. australis that recorded an average of 0.6±0.3 cm 
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– half the diameter found in T. latifolia; a comparatively more dense root network, 

with a greater number of fine roots.  Observational differences in above ground 

growth in T. latifolia and P. australis (Site 1) indicate T. latifolia was able to 

establish quickly in the aerated site and out-compete the invasive species more so 

than P. australis. 

 

Site 2 allowed the comparison of the growth of P. australis at full scale with and 

without aeration.  At the time of writing, the plants were coming to the end of their 

third growing season.  This site in particular demonstrated a stark contrast 

between plant growth and establishment in an aerated vs. a non-aerated control 

(Figure 5.7). The control bed displayed excellent above ground growth (Figure 

5.7a), covering 100 % of the bed and averaging a height of 1.6 m ± 0.3 m compared 

to a coverage of approximately 20 % of the bed and an average height of 1.1 m ± 

0.5 m (Figure 5.7b).  The control to aerated height ratio was 1:1.45, similar to the 

pilot which recorded 1:1.41 for the P. australis. 

 

A visually apparent difference was also seen between the below ground growth of 

P. australis in the aerated bed (Figure 5.7b, d) compared to the control (Figure 

5.7a, c).  The quantitative differences were similar to those seen in the pilot, in that 

the control plants were comparatively larger than in the aerated bed, illustrated by 

31 % taller plants in the control bed compared to 15-29 % in the pilot and 66 % 

more stems, comparable to 63-67 % measured in the pilot.  The leaf number 

indicted 73 % more leaves on the control plants, more than the 37-38 % increase 

observed in the pilot, most likely related to the height of the stems being taller in 
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the full scale bed after 3 growing seasons compared to the shorter stems in pilot 

study after only one growing season.  

 

 

  

Figure 5.7 Above and below ground growth in a full scale aerated and non-aerated 

site a. Site 2 control, above ground; b. Site 2 aerated, above ground;  c. Site 2 

control, below ground; d. Site 2 aerated, below ground 

 

5.4.2 Biomass allocation  

Compared to their respective controls, there was a much greater decrease in plant 

biomass (g/plant less than the control) in the T. latifolia than the P. australis and 

the effect of low and high aeration did not appear to affect the distribution of the 

biomass between above ground, roots and rhizomes (Figure 5.8).   

A B 

C D 
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Figure 5.8 Plant biomass (g/plant compared to control). Minus numbers indicates 

below-ground biomass (P = P. australis; T = T. latifolia) 

 

The ratio of below ground to above ground biomass (BGB:AGB) in the P. australis 

was 1:1.3-1.7 for all test conditions;  comparable to reported literature values of 

1.3 for standard HSSF conditions (Tanner, 1996) and 1.4-1.8 for various intensified 

CW systems (Nivala, 2012). The aerated tests recorded a mean of 29 % of the BG 

biomass allocated to the roots and 45 % in the control; higher than previously 

reported values of 29 % under non-aerated conditions (Tanner, 1996); suggesting 

more effort was put into rhizome growth in the aerated bed compared to the roots 

in the control. In all T. Latifolia test conditions the ratio of BGB:AGB biomass was 

1.3, comparable to the P. australis.  Allocation of biomass was similar for above 

ground biomass, roots and rhizomes in both the aerated tests and the non-aerated 
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tests with 39-43 %, 12-13 % and 42-48 % respectively, indicating the presence of 

aeration did not affect biomass distribution (Figure 5.9).  Of the BG biomass, 21 % 

was attributed to the roots in the aerated condition and 23 % in the control.  This 

was less than observed in the P. australis and there was less difference between 

the aerated and control.  

 

Figure 5.9 Percentage distribution of biomass in plant fractions in all test 

conditions (P = P. australis; T = T. latifolia) 

 

In terms of plant size and biomass, the presence of aeration appeared to be 

detrimental to the growth of both species in the first growing season and to a 

greater degree in the T. latifolia compared to the P. australis. The data suggest 

aeration is affecting the growth of each species by different mechanisms as the 

most apparent differences were seen in terms of a reduction of the length of the 
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leaves, stem diameter and number of rhizomes in T. latifolia compared to a 

reduction in the number of stems, the stem diameter and the number of leaves in P. 

australis.   

 

5.4.3 Macro and micro nutrients/trace minerals 

Macro and micro nutrient concentrations in the above ground biomass, rhizomes 

and roots revealed no consistent discernible differences between the non-aerated 

and aerated plants (Table A, supplementary information 5.1). In most cases, the 

concentrations observed in the control plants were within the same range as the 

plants exposed to low and high levels of aeration or were in between the two. 

Accordingly, no direct causal link could be identified between the observed growth 

differences due to aeration and changes in nutrient levels. To illustrate, in the case 

of copper in P. australis, the AGB contained a median level of 11.3 gCu/g (7.9-

14.6) in the non-aerated bed compared to 13.9 gCu/g (9.3-18.3) in the aerated 

bed with the high level of aeration. Across all nutrients, similarity between the 

non-aerated and aerated samples was more apparent in the case of P. australis, 

with indicative differences (defined as the ranges not substantially overlapping) 

only identified in relation to calcium levels in the roots and rhizomes (reduced 

from control), manganese levels in the roots and AGB (reduced from the control) 

and an increase in sodium in the AGB. In contrast, indicative differences were 

observed with T. latifolia in relation to nitrogen, magnesium, calcium, zinc and 

copper in the AGB and manganese in the roots and rhizomes. The reported levels 

in the current study are within the ranges seen previously for reeds grown in a 

range of water types including municipal sewage (Nivala et al, 2012; Moises, 
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2012), salt marshes (Windham et al, 2003), dairy wastewater (Tanner, 1996), coal 

ash basin (Babcock et al, 1983) but lower than those from plants used for 

treatment of sewage sludge (Obarska et al, 2002). Although N concentrations were 

not found to be lacking in any of the tested species it is interesting to note that the 

nitrogen measured in the T. latifolia control was present at lower concentrations 

than in the aerated tests in all plant fractions e.g. 9.9 mgN/g (9.4-10.6) in the AGB 

of the control compared to 19.9 mgN/g (17.7-21.7) and 20.5 mgN/g (19.5-10.6) in 

the high and low aerated systems respectively (Table A, supplementary 

information 5.1); indicating the presence of aeration may be affecting N uptake 

rate, requiring further investigation to first repeat the trend and second to look 

into possible affecting mechanisms 

 

Both species have been reported to function on an excluder strategy with regard to 

metal translocation (Windham et al, 2003) such that the majority of metals can be 

expected to reside in the roots in order to protect photosynthetic function in the 

leaves (MacFarlane and Burchett, 2000). The data from the current trial broadly 

supports this, with the exception of nickel that was generally more evenly 

distributed between the AGB and the roots. To illustrate, AGB:root ratio for nickel 

ranged between 1.03 and 1.54 indicating higher levels in the AGB in all cases. In 

contrast, the equivalent ratio for copper ranged between 0.43 for the P. australis 

non-aerated to 0.57 for the T. latifolia aerated with an equivalent range for zinc of 

0.44-1.0. Similar measurements, but based on the ratio of shoots to roots indicates 

much greater partitioning with maximum levels of ~0.15 when examining P. 

australis grown in salt marshes (Windham et al, 2003) and 0.21 in lake water 
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(Schierop and Larsen, 1981). Whereas shoot to rhizome ratios of 1:1 for copper 

and zinc have previously been reported for T. latifolia treating coal ash basin 

wastewater (Babcock et al, 1983). This compares to ratios for T. latifolia in the 

current study of 0.7 and 1.9 for copper and 0.23 and 0.9 for zinc for the non-

aerated and aerated plants respectively. Overall, analysis of the data revealed 

changes in partitioning between the plants grown in non-aerated and aerated 

conditions, and between species, but not in a consistent enough manner to discern 

an identifiable probable cause.  

 

Previous discussions on the impact of aeration on nutrient uptake have focussed 

on iron deficiency as the potential cause of the stunted growth and chlorosis of 

leaves in aerated CWs (Weedon, 2014). This is consistent with the aerobic 

environments and neutral to  slight alkaline pH leading to the majority of the iron 

existing in a precipitate iron hydroxide form such that truly dissolved levels in the 

water are likely to range between 0.1 and 0.5 gFe/L based on iron equilibrium 

chemistry. In the current trials, average iron levels in the AGB in the case of P. 

australis were 0.5 mgFe/gDM (range: 0.1-1.2) in the control compared to 0.2 

mg/gDM (range: 0.1-0.3) for the low aeration level and 0.4 mgFe/gDM (range 0.2-

0.5) in the case of the high aeration level (Figure 5.10, top). Similar patterns were 

observed in terms of the roots and rhizomes, offering some support for the 

proposed mechanism. In contrast, in the full scale site with the test and control 

beds, iron levels were higher in the AGB in the aerated bed at 0.6 mgFe/gDM 

compared to 0.2 mgFe/gDM in the control bed (Figure 5.10, top). This compares to 

0.45±0.058 mgFe/gDM for AGB from a non-aerated wetland treating secondary 
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effluent at a municipal sewage works (Moises, 2012) suggesting no deficiency in 

the AGB, where the iron is utilised as part of the photosynthetic function. The 

reverse was observed in the rhizome and roots where substantially more iron was 

present in the plants in the control bed at 4.5 and 6.7 mgFe/gDM in the roots and 

rhizome compared to 1.0 and 0.6 mgFe/gDM respectively in the plants grown in 

the aerated bed. Aggregate iron content in the roots from plants used in a variety 

of different wetland configurations (including aerated beds) have been reported at 

0.84-3.5 mgFe/gDM (Nivala et al, 2012). Further, in a study concerning the impact 

of elevated iron levels in water, mean root iron contents of 5.5±0.8 mgFe/gDM 

were observed once the water contained 0.5 mg/L of iron with a range of 0.2-2.2 

mgFe/gDM when iron concentrations were 0.1 mgFe/L (Batty and Younger, 2003). 

Iron levels during the current trials were around 0.1-0.5 mgFe/L indicating greater 

iron accumulation in the current trial than previously reported.  

 

Manganese was also reduced in the AGB for both the pilot trials and the full scale 

sites sampled in the aerated compared to the non-aerated beds. To illustrate, in the 

aerated beds planted with P. australis, manganese levels for the AGB, ranged 

between 27.7-138 gMn/gDM compared to 120-196 gMn/gDM in the case of the 

non-aerated samples. Required nutrient concentrations for healthy plant growth 

are very species specific but a general estimate of the required levels of Fe and Mn 

are 0.1 mgFe/gDM and 50 gMn/gDM respectively (Barker and Pilbeam, 2007) 

indicating that the aeration was more likely to have influenced available 

manganese levels than iron.  
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Figure 5.10 Iron (top) and Manganese (bottom) concentrations in the AGB of 

plants from the pilot study at the end of the growing season (P = P. australis; T = T. 

Latifolia)  

 

Manganese, like iron is essential for chlorophyll production and its deficiency is 

often confused with, and occurs concurrently with iron deficiency, both displaying 

similar symptoms of interveinal chlorosis of the leaves. Mn2+ is the primary form in 
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which Mn is absorbed by plants and is most available at pH 5-6.5 (Hong et al, 

2010). Conditions that restrict availability are similar to those for iron based 

around neutral or slightly alkaline pH, aerobic conditions and the presence of 

relatively higher levels of iron, copper or zinc, consistent with aspects of the 

environments found within the aerated beds.  

 

5.5  Conclusions 

Overall, the results confirm reports of the negative impacts of aeration on plant 

growth in terms of visual differences in stunted growth and yellowing of leaves. 

The effects appear to be species specific, with aeration impacting more in terms of 

fresh growth in the case of P. australis (number of stems and leaves) and more 

with respect to the size of stems and leaves in the case of T. Latifolia. Whilst on an 

individual plant basis, T. Latifolia was more strongly influenced by aeration than P. 

australis compared to their respective controls; the impact on the overall growth 

was less significant; congruent with its faster growing rate. Consequently, T. 

Latifolia is recommended where rapid plant cover is required in an aerated 

wetland. 

  

Metal content analyses and visual observations of the plants from both the pilot 

trials and full scale beds were inconclusive in providing a definitive mechanism for 

observed retarded growth. However, a potential synergistic impact is suggested in 

relation to both iron and manganese.  

 

 



154 

 

5.6 Acknowledgments 

The authors would like to express their gratitude for the financial and resource 

support of the work from Severn Trent Water Limited and to the EPSRC for their 

allocation of funding and support of the project. 

 

5.7 References 

Babcock M., Evans D., Alberts J. (1983) Comparative uptake and translocation of 

trace elements from coal ash by Typha latifolia. Science of the Total Environment 

28(1-3):203-214 

 

Barker A., Pilbeam D. (2007). Handbook of plant nutrition. Taylor and Francis. New 

York 

 

Batty  L., Younger P (2003) Effects of External Iron Concentration upon Seedling 

Growth and Uptake of Fe and Phosphate by the Common Reed, Phragmites 

australis (Cav.) Trin ex. Steudel. Annals of Botany 92(6):801-806 

 

Brix H. (1997) Do macrophytes play a role in constructed treatment wetlands? 

Water Science and Technology 35(5):11-17 

 

Butterworth E., Dotro G., Jones M., Richard, A., Onunkwo P., Narroway Y., Jefferson 

B. (2013) Effect of artificial aeration on tertiary nitrification in a full-scale 

subsurface horizontal flow constructed wetland. Ecological Engineering 54:236-

244 



155 

 

 

Coops H., Van der Velde (1996) Effects of waves on helophyte stands: mechanical 

characteristics of stems of Phragmites australis and Scirpus lacustris. Aquatic 

Botany 53(3-4):175-185 

 

Dotro G., Brix H., Wallace S., Nivala J.,  Comeau Y.,  Stein O.,  Rosseau D., Tyrell S.,  

Gowing S., ARM Ltd. (2012) Personal communication 

 

Hong E., Ketterings Q., McBride M. (2010) Agronomy Fact Sheet 49: Manganese. 

Available on-line at:  

http://nmsp.cals.cornell.edu/publications/factsheets/factsheet49.pdf [Accessed 

3/3/2014] 

 

Jesperson D., Sorrell B., Brix H. (1998) Growth and root oxygen release by Typha 

latifolia and its effects on sediment methanogenesis. Aquatic Botany 61(3):165-

180 

 

Kadlec R., Wallace S. (2009) Treatment Wetlands (2nd edn). Taylor & Francis 

Group:Florida 

 

Langergraber G. (2005) The role of plant uptake on the removal of organic matter 

and nutrients in subsurface flow constructed wetlands: a simulation study. Water 

Science and Technology 51(9):213-233 

 



156 

 

MacFarlane G., Burchett M. (2000) Cellular distribution of copper, lead and zinc in 

the grey mangrove Avicennia marina (Forsk.) Vierh. Aquatic Botany 68(1):45-59 

 

Mitsch W., Gosselink J. (200) Wetlands (3rd edn).  Van Nostrand Reinhold: New York 

 

Moises P-M. (2012) Evaluating the application of harvested reeds in anaerobic 

digestion. MSc Thesis: Cranfield University 

 

Nivala J. (2012) Effect of design on treatment performance, plant nutrition and 

clogging in subsurface flow treatment wetlands. PhD Thesis: Aarus University 

 

Obarska-Pempkowiak H., Tuszynska A., Sobocinski Z. (2002) Polish experience 

with sewage sludge dewatering in reed systems. Water Science and Technology 

48(5):111-117 

 

Ouellet-Plamondon C., Chazarenc F., Comeau Y., Brisson J. (2006)  Artificial 

aeration to increase pollutant removal efficiency of constructed wetlands in cold 

climate.  Ecological Engineering 27(3):258-264 

 

Schierup H., Larsen V. (1981) Macrophyte cycling of zinc, copper, lead and calcium 

in the littoral zone of a polluted and non-polluted lake I. Availability, uptake and 

translocation of heavy metals in Phragmites australis (Cav.) Trin. Aquatic Botany 

11(3):197-210 

 



157 

 

Stottmeister U., Wießner A., Kuschk P., Kappelmeyer U., Kästner M., Bederski O., 

Müller R., Moormann H. (2003) Effects of plants and microorganisms in 

constructed wetlands for wastewater treatment. Biological Advances 22(1-2):93-

117 

 

Tanner C. (1996) Plants for constructed wetland treatment systems- A comparison 

of the growth and nutrient uptake of eight emergent species. Ecological 

Engineering 7(1):59-83 

 

Weedon C. (2014) Yellow Phragmites: Significance, Cause, and Remedies. 

Sustainable sanitation practice 18:37-42 

 

Windham L., Weis J., Weis P. (2003) Uptake and distribution of metals in two 

dominant salt marsh macrophytes, Spartina alterniflora (cordgrass) 

and Phragmites australis (common reed). Estuarine, Coastal and Shelf Science 

56(1):63-72 

 

Zhang L., Liu Y., Shen Y., Liu H., Xiong Y. (2010) Effect of limited artificial aeration 

on constructed wetland treatment of domestic wastewater. Desalination 250(3): 

915-920 

 

 

 

 



158 

 

Supplementary information 5.1 

Table A Nutrient concentrations in plant fractions 

    P (high) P (low) P (control) T (high)  T (low)  T (control)  

    Mean Min-Max Mean Min-Max Mean Min-Max Mean Min-Max Mean Min-Max Mean Min-Max 

AGB N (mg/g DM) 22.7 17.1-26.0 25.5 19.7-31.4 24.5 21.7-26.5 19.9 17.7-21.7 20.5 19.5-21.9 9.9 9.4-10.6 

 
P (mg/g DM) 2.1 1.9-2.3 1.8 1.1-2.1 1.9 1.3-2.0 2.2 2.1-2.3 1.8 1.6-2.2 1.5 1.1-2.2 

 
K (mg/g DM) 15.4 11.1-20.5 7.0 3.9-9.1 15.4 11.9-18.5 19.4 15.4-22.9 8.5 15.7-21.4 25.4 13.5-34.9 

 
Mg (mg/g DM) 2.2 1.9-2.5 1.5 1.4-1.6 2.4 2.2-2.7 3.0 2.4-3.3 2.2 6.3-11.3 1.4 1.0-1.9 

 
Ca (mg/g DM) 5.6 4.0-6.6 4.3 3.4-6.2 4.2 3.8-4.7 25.6 15.7-40.1 17.8 15.7-21.4 8.0 1.6-13.1 

 
Na (mg/g DM 3.9 3.3-5.0 2.4 1.0-3.6 1.3 0.9-1.7 6.6 5.5-7.4 4.1 2.6-5.7 2.9 1.0-4.7 

 
Zn (μg/g DM) 82.0 43.2-125.2 47.4 29.4-72.0 98.8 66.8-160.0 116.4 60.4-177.2 91.1 49.6-149.2 26.5 22.6-31.4 

 
Cu (μg/g DM) 13.9 9.3-18.3 10.1 7.1-16.2 11.3 7.9-14.6 13.1 12.5-13.9 17.4 11.9-22.4 6.1 4.9-6.8 

 
Ni (μg/g DM) 18.3 5.0-44.4 26.3 4.6-67.2 17.7 4.0-42.4 8.5 3.6-13.6 7.9 3.7-15.6 9.3 6.6-10.8 

 
Mn (μg/g DM) 100.9 64.4-138.0 51.6 27.7-84.4 151.9 120.4-196.4 140.0 50.0-296.8 86.8 68.4-104.4 179.9 74.4-290.4 

  Fe (mg/g DM) 0.4  0.2-0.5 0.2  0.1-0.3 0.5  0.1-1.2 0.3  0.2-0.3 0.5  0.3-0.7 0.2  0.1-0.3 

Rhizomes N (mg/g DM) 20.1 16.7-23.5 23.6 22.6-25.4 24.9 22.1-30.4 21.9 18.2-26.3 26.2 22.9-31.7 15.2 13.4-18.6 

 
P (mg/g DM) 1.8 1.7-2.0 1.7 1.5-2.0 2.3 2.0-2.6 1.8 1.1-2.4 1.7 0.7-2.3 2.2 2.0-2.5 

 
K (mg/g DM) 7.4 5.3-9.6 6.4 4.7-8.5 12.4 7.0-15.7 15.6 13.3-19.1 12.4 9.5-14.3 16.4 16.0-17.5 

 
Mg (mg/g DM) 0.7 0.6-0.8 0.8 0.6-1.2 1.2 0.6-2.1 1.5 0.9-2.1 2.0 1.7-2.4 1.3 1.1-1.6 

 
Ca (mg/g DM) 0.8 0.7-0.9 1.5 0.8-3.1 3.8 0.7-9.5 4.2 0.6-8.0 4.8 2.6-6.7 2.1 1.4-2.4 

 
Na (mg/g DM 0.9 0.6-1.2 2.3 0.9-5.0 2.4 0.7-4.7 4.5 1.1-8.4 3.8 3.5-4.1 2.8 1.6-4.2 

 
Zn (μg/g DM) 35.1 31.6-38.6 45.3 38.3-49.6 43.3 30.6-55.2 37.6 25.2-61.2 31.2 30.2-32.2 34.0 23.1-52.0 

 
Cu (μg/g DM) 8.4 7.3-9.6 12.1 10.1-15.5 10.3 8.8-12.6 6.8 5.4-8.0 10.1 5.2-16.6 8.0 6.5-10.6 

 
Ni (μg/g DM) 3.6 2.5-4.7 5.4 2.7-8.1 5.9 3.5-8.8 12.6 1.8-20.1 8.6 3.7-14.0 9.1 6.4-12.2 
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Mn (μg/g DM) 27.8 26.8-28.8 35.9 32.8-38.6 47.2 20.7-72.8 14.5 13.6-15.4 24.8 9.1-47.2 36.8 18.0-61.2 

  Fe (mg/g DM) 0.3  0.2-0.3 0.1  0.1-0.2 0.3  0.1-0.5 0.1  0.1-0.1 0.3  0.0-0.5 0.1  0.1-0.2 

Roots N (mg/g DM) 17.3 13.7-20.8 14.3 - 17.1 8.3-22.8 12.7 12.4-12.9 12.1 11.1-13.7 10.2 9.4-11.1 

 
P (mg/g DM) 0.8 0.7-1.0 1.5 - 0.9 1.6-1.2 0.9 0.8-1.4 0.8 0.7-0.8 1.6 1.6 

 
K (mg/g DM) 7.3 3.1-11.5 14.1 - 6.8 2.3-12.5 13.3 11.2-16.0 6.1 4.3-.2 10.3 7.0-13.7 

 
Mg (mg/g DM) 1.9 1.8-2.1 1.5 - 1.6 1.2-2.0 2.0 1.5-2.3 2.3 1.7-3.0 1.4 1.2-1.6 

 
Ca (mg/g DM) 5.7 3.0-8.4 2.7 - 9.4 6.0-15.0 24.3 20.5-30.7 11.1 7.6-12.9 14.0 4.9-23.1 

 
Na (mg/g DM 1.4 1.2-1.6 1.2 - 1.5 0.9-2.3 6.4 5.0-8.8 4.8 4.1-6.0 5.0 1.3-8.6 

 
Zn (μg/g DM) 184.4 84.0-284.8 75.6 - 97.1 72.0-130.4 165.6 156.8-174.4 127.6 52.8-232.8 52.4 38.0-66.8 

 
Cu (μg/g DM) 26.7 19.8-33.6 26.0 - 26.5 20.4-30.6 22.9 21.2-25.7 20.6 16.6-28.6 12.7 10.3-15.1 

 
Ni (μg/g DM) 11.9 3.6-20.2 13.0 - 16.3 8.6-27.9 7.2 4.8-10.6 7.3 6.3-7.8 9.0 6.1-12.0 

 
Mn (μg/g DM) 148.0 80.4-215.6 134.4 - 212.8 198.8-233.6 150.4 117.6-185.2 74.5 48.4-120.8 284.4 - 

 
Fe (mg/g DM) 1.6 0.4-2.7 0.6 - 1.9 1.2-2.6 1.5 1.3-1.7 0.8 0.3-1.3 2.2 0.5-3.9 

    Site 1 (Typha) Site 1 (Phrag) Site 2 (aerated) Site 2 (control)  
  

AGB N (mg/g DM) 15.6 
 

22.2 
  

20.5 15.3 
     

 
P (mg/g DM) 2.4 

 
1.1 

  
1.3 - 

     

 
K (mg/g DM) 17.2 

 
11.0 

  
7.1 20.3 

     

 
Mg (mg/g DM) 1.2 

 
1.3 

  
1.3 1.4 

     

 
Ca (mg/g DM) 2.2 

 
3.0 

  
0.2 10.8 

     

 
Na (mg/g DM 2.3 

 
0.9 

  
1.0 7.6 

     

 
Zn (μg/g DM) 50.0 

 
35.0 

  
80.8 26.7 

     

 
Cu (μg/g DM) 19.2 

 
11.8 

  
13.1 5.1 

     

 
Ni (μg/g DM) 9.5 

 
3.3 

  
11.8 10.8 

     

 
Mn (μg/g DM) 170.4 

 
97.2 

  
45.6 299.6 

       Fe (mg/g DM) 0.3 
 

0.1 
  

0.6 0.2 
     

Rhizomes N (mg/g DM) 24.9 
 

24.3 
  

25.1 19.2 
     

 
P (mg/g DM) 3.1 

 
2.1 

  
1.5 1.5 

     

 
K (mg/g DM) 18.4 

 
19.4 

  
9.5 10.0 
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Mg (mg/g DM) 1.5 

 
2.3 

  
0.9 2.5 

     

 
Ca (mg/g DM) 3.7 

 
2.9 

  
2.5 0.3 

     

 
Na (mg/g DM 1.5 

 
7.2 

  
0.4 2.1 

     

 
Zn (μg/g DM) 79.6 

 
84.4 

  
130.0 144.0 

     

 
Cu (μg/g DM) 51.6 

 
87.6 

  
27.9 53.6 

     

 
Ni (μg/g DM) 13.2 

 
15.0 

  
10.7 19.8 

     

 
Mn (μg/g DM) 157.6 

 
130.4 

  
97.2 69.6 

       Fe (mg/g DM) 0.9 
 

0.1 
  

0.6 6.7 
     

Roots N (mg/g DM) 15.6 
 

22.3 
  

22.5 17.4 
     

 
P (mg/g DM) 3.3 

 
3.2 

  
1.5 2.5 

     

 
K (mg/g DM) 13.8 

 
11.0 

  
10.9 10.9 

     

 
Mg (mg/g DM) 3.5 

 
1.2 

  
1.8 2.8 

     

 
Ca (mg/g DM) 14.0 

 
0.8 

  
2.9 3.6 

     

 
Na (mg/g DM 1.5 

 
1.5 

  
0.9 2.4 

     

 
Zn (μg/g DM) 198.0 

 
161.6 

  
240.8 448.0 

     

 
Cu (μg/g DM) 259.6 

 
290.8 

  
45.6 139.2 

     

 
Ni (μg/g DM) 20.3 

 
14.3 

  
48.4 27.7 

     

 
Mn (μg/g DM) 760.0 

 
385.6 

  
157.6 140.0 

     

 
Fe (mg/g DM) 5.0 

 
6.8 

  
1.0 4.5 
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6.1 Abstract 

 

A comparison of the performance of four full scale aerated constructed wetland 

systems was conducted to determine the efficacy of the technology on sites 

receiving high and variable ammonia loading rates not yet reported in the 

literature; building and expanding on an initial one year study conducted at a fully 

aerated tertiary site with a non-aerated control (Chapter 3, Butterworth et al, 

2013).  Performance was assessed in terms of ammonia and solids removal, 

hydraulic conductivity and mixing patterns. The capability of systems to produce 

ammonium effluent concentrations < 3 mgNH4+-N/L was observed across all sites 

in systems receiving variable loadings between 0.1-13.0 gNH4+-N/m2/d.  Potential 

resilience issues were observed in relation to response to spike loadings posited to 

be due to the development of an insufficient abundant nitrifying population within 

the beds.   Hydraulic conductivity and mixing pattern data suggested deterioration 

mailto:b.jefferson@cranfield.ac.uk
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over time, refuting initial patterns of the improvement between the aerated and 

non-aerated control in the initial study. 

 

Keywords: Aeration, constructed wetlands, dissolved oxygen, nitrification 

 

 

6.2 Introduction 

 

Horizontal sub-surface flow constructed wetlands (HSSF CWs) are passive 

wastewater treatment systems commonly used for tertiary suspended solids, 

associated organic matter and nitrate removal. The relatively large footprint 

associated with the technology (0.7-5 m2/p.e., Kadlec and Wallace 2009) focuses 

applications towards rural small works (sub 2000 population equivalence) which 

typically consist of aerobic biofilm processes such as trickling filters or rotating 

biological contactors upfront of the wetland to deliver against the required 

treatment goals. In response to the challenges associated with achieving “good 

ecological status” in European rivers as part of the Water Framework Directive, 

2000, a large number of these rural domestic wastewater treatment plants are 

requiring upgrading in order to discharge lower levels of organic matter and 

ammonia into the receiving waters. To achieve this on such sites the flowsheet is 

upgraded by replacement / enhancement of the secondary biological processes or 

inclusion of additional aerobic biological processes such as submerged aerated 

filters (Ishikawa et al, 2003).  
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Sub-surface flow wetlands can also be considered to be a form of biofilm-based 

bioreactors and hence functionally have the capability to meet the future needs. 

However, traditional HSSF beds are often hydraulically loaded at rates that cause 

anoxic/anaerobic conditions to predominate with the associated sub-surface 

oxygen limitation (sub 0.5 mg/L) restricting observed nitrification rates in full 

scale tertiary HSSF CWs to 0.05-0.22 gNH4+-N/m2/d (Chapter 2); generally 

insufficient to meet future discharge targets.  

 

Across the full spectrum of applications for constructed wetlands a number of 

innovative adaptations have been developed to overcome the oxygen limitation 

including decreasing the depth of the bed (Garcia et al, 2005); recirculation of the 

treated effluent (Gross et al, 2008); batch loading including traditional vertical 

flow systems (Molle et al, 2006) and adaption to horizontal flow beds, i.e. tidal flow 

(Wu et al, 2011); forced (artificial) aeration of traditional vertical flow systems 

(Foladori et al, 2013), flooded vertical flow systems (Nivala et al, 2013), or 

horizontal flow beds (Butterworth et al, 2013; Maltais-Landry et al, 2009). In the 

context of tertiary treatment, many sites already include HSSF CWs and so the last 

option offers additional favourable attributes as it can be easily retrofitted into 

existing systems during routine gravel cleaning and replacement (refurbishment).  

 

The general efficacy of the approach towards enhancing nitrification has been 

demonstrated predominately at pilot scale for a range of feed water types 

including synthetic wastewater (Fan et al, 2013; Matthys et al, 2000), heavily 

polluted river water (Dong et al, 2012), and municipal secondary sewage (Nivala et 



165 

 

al, 2013). Illustrations of the efficacy of the technology have also been presented at 

full scale in terms of the treatment of landfill leachate (Nivala et al, 2007), 

industrial wastewater (Wallace and Kadlec, 2005), secondary domestic 

wastewater and tertiary treatment of municipal sewage (Chapter 3, Butterworth et 

al, 2013). In the later case hydraulic loading rates are considerably higher than 

those utilised elsewhere with typical rates of 0.2-0.9 m/d reported in the UK 

(Knowles et al, 2011) compared to 0.001-0.049 m/d for the sites treating 

industrial wastewaters (Wallace and Kadlec, 2005). Ammonia concentrations 

feeding the tertiary beds can reach as high as 40 mgNH4+-N/L on sites that 

previously had no requirement to remove ammonia and as such ammonia loading 

rates can significantly exceed those previously considered. To illustrate, non 

tertiary cases have reported loading rates in the range 0.9 gNH4+-N/m2/d to 6.9 

gNH4+-N/m2/d (Nivala et al, 2007, 2013) which compares to a maximum rate of 

10.1 mgNH4+-N/m2/d observed during an assessment of the initial stages of 

operation of a full scale tertiary aerated wetland (Chapter 3, Butterworth et al, 

2013). The same study demonstrated near complete nitrification (99 % removal) 

without negatively impacting on solids and CBOD5 removal efficiencies. Aeration 

also appeared to increase hydraulic conductivity, and improve hydraulic efficiency 

in the aerated bed under sub-surface flow, resulting in a more efficient reactor 

(Chapter 3, Butterworth et al, 2013). 

 

A paucity of information remains around full scale tertiary systems treating 

variable flows and loads including storm flows and the inherent seasonal 

variations in wastewater characteristics and temperatures. Coupled to the short 
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duration of the majority of previous investigation at both pilot and full scale the 

appropriateness of the technology has yet to proven sufficiently to enhance 

confidence, particularly in terms of the performance consistency across various 

applications of the technology.  

 

This study aims to respond to this knowledge gap through assessment of four full-

scale wetlands retrofitted with artificial aeration in small domestic wastewater 

treatment works in the UK.  The current study extends beyond the initial study 

carried out on a fully aerated tertiary system with separate storm over-flow during 

its first year post commissioning (Chapter 3, Butterworth et al, 2013), to assess 

suitability of the artificial aeration across various situations including intermittent 

aeration, tertiary combined storm flow and a secondary bed. Performance was 

assessed in terms of ammonia and solids removal, hydraulic conductivity and 

mixing patterns and in terms of process robustness to determine whether the use 

of aerated HSSF CWs is viable as a reliable tertiary process for ammonium removal 

on small sites. 

 

6.3  Materials and Methods 

6.3.1 Site details 

Aeration systems were retrofitted into existing HSSF CWs during refurbishment on 

three Severn Trent Water sites with tightening ammonium consents (Site A, B, and 

C) and one secondary treatment system with a descriptive consent that required 

upgrading for improved response with regards to odour emissions on the site (Site 
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D; Table 1). In all cases, the aeration system consists of an air blower (1.6 kW, 

model 2RB510H26), a distribution header and loops of perforated LDPE 12 mm 

piping with 2 mm holes drilled into it at 300 mm intervals placed on top of the 

impermeable liner covering the surface area of the bed floor with an approximate 

spacing of 300 mm.  The beds contained 0.6 m of 6-12 mm gravel media giving a 

measured porosity of 0.4, and are planted with Phragmites australis at 4 

seedlings/m2 with the exception of Site C which was planted with Typha latifolia.  

 

Table 6.1 Site details and current and future consents for aerated HSSF CWs 

 

PE = population equivalent; DWF = Dry weather flow (m3/d); BOD = 5-Day Carbonaceous Biochemical Oxygen 

Demand (mgO2/L); TSS =Total Suspended Solids (mgTSS/L); NH4+-N = ammonium nitrogen (mg NH4+-N/L); D 

= descriptive consent; Power based on the blower sized used per m3 of bed. 

 

Treatment at Site A consists of a primary storage tank (PST) followed by a semi-

integral RBC. Tertiary treatment is via two HSSF CWs (100 m2 each – 

approximately 0.5 m2/p.e.) with a separate combined sewer overflow (CSO) HSSF 

CW that receives the wastewater exceeding six times the dry weather flow (Figure 

6.1). Site A serves as a control site with side by side wetlands of equal size. 

Aeration of the test bed began 03/03/2011 and was left dormant in the control 

bed.  The beds at this site were dormant for 5 months (December 2011-April 

2012) due to mechanical maintenance of the RBC during which time the flow was 

tankered off-site. Temporary secondary treatment was installed in the form of a 

Site Treatment PE Area Pre-treatment Aeration on Power HRT

m 2 w/m 3
d DWF BOD TSS NH 4 -N DWF BOD TSS NH 4 -N

A Tertiary 393 100 Integral RBC 03/03/2011 26.7 2.0 61 30 45 n/a 80 21 n/a 4

B Combined 396 390 Integral RBC 25/11/2010 6.3 1.5 90.2 25 45 10 110 14 45 3

C Combined 599 600 2 x RBC 26/01/2012 6.1 1.1 135 30 50 n/a 166 30 50 12

D Secondary 58 200 Septic tank 04/05/2011 18.3 1.9 5.8 D D D 5.8 D D D

Previous consents Future consents 
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SAF and flow was returned to the reed beds. The mean flow to each bed is 46 m3/d, 

resulting in mean hydraulic loadings of 0.5 m3/m2/d. Inlet loadings to the bed 

during the trial were 9.1±7.6 gNH4+-N/m2/d, 11.9±5.1 gCBOD5/m2/d and 25.0±19 

gTSS/m2/d.  

 

Treatment at Site B is via an integral RBC followed by a combined wetland (360 

m2) (Figure 6.1).  The bed was retrofitted with aeration in October 2010 to provide 

a failsafe for occasional ammonia peaks observed in the conventional flow sheet. 

Since its retrofit, the bed has been operating with intermittent aeration, with the 

blowers only being active between 8 am – 8 pm. The mean flow to the bed is 45 

m3/d, resulting in mean hydraulic loadings of 0.1 m3/m2/d. Inlet loadings to the 

bed during the trial were 1.6±8.6 gNH4+-N/m2/d, 10.6±2.6 gCBOD5/m2/d and 

1.3±8.9 gTSS/m2/d. 

 

Figure 6.1 Site process flow sheets of aerated HSSF CW sites 
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 Site C consists of two integral RBCs and a combined tertiary reed bed (Figure 6.1). 

The aeration was activated on 26/01/2012.  The driver for aeration at this site was 

the addition of an ammonia effluent consent at a site that was not originally 

designed to nitrify. The mean flow to the bed is 248 m3/d, resulting in mean 

hydraulic loadings of 0.4 m3/m2/d. Inlet loadings to the bed during the trial were 

8.9±4.5 gNH4+-N/m2/d, 7.6±2.1 gCBOD5/m2/d and 16.7±19.0 gTSS/m2/d. 

 

Site D is the only secondary bed in the trial (Figure 6.1).  Treatment consists of a 

septic tank followed by a combined reed bed (200 m2).  Consents here are 

descriptive, as set out by the Environment Agency, and are based on visual 

inspection of the effluent into the watercourse. The bed was refurbished in March 

2010 and fitted with aeration on 30/03/2011. The mean flow to the bed is 50 

m3/d, resulting in mean hydraulic loadings of 0.3 m3/m2/d. Inlet loadings to the 

bed during the trial were 29.4±14.7 gNH4+-N/m2/d, 79.4±4.3 gCBOD5/m2/d and 

57.0±32.6 gTSS/m2/d. 

 

6.3.2 Sampling and analysis 

Composite samples (every 15 minutes over 24 hours) were collected fortnightly 

during the first year and monthly thereafter using ISCO auto-samplers at the inlet 

and outlets of the beds.  Samples were collected in 1 L plastic sampling bottles and 

stored in a cool box with ice blocks during transition to the laboratory for same-

day testing.  Where same-day testing was not feasible samples were stored at 4 °C 

and allowed to reach room temperature prior to analysis.  Sampling was conducted 

from the onset of aeration at respective sites to February 2013. 
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Hach-Lange test kits were employed for determining NH4+-N according to Hach-

Lange procedures and read via a Hach-Lange DR2800 spectrophotometer.  

Portable meters were used to determine dissolved oxygen and temperature (Hach-

Lange HQ40D). Probes were checked weekly with hydrogen sulphite solution and 

Hach standards were used periodically to ensure accuracy of test kits. Total 

suspended solids were quantified following standard procedures using a three 

piece filter funnel with 70 mm filter diameter and 1.2 µm pore size (APHA, 2005). 

 

6.3.3 Tracer Tests 

Tracer tests were carried out as in Chapter 3, (Butterworth et al, 2013) and 

involved the addition of a 0.135 g impulse of 20 % Rhodamine Water Tracer Liquid 

(Keystone Europe Ltd.) at the inlet points of both wetlands.  Concentrations were 

monitored at the outlet over time using a fluorescence spectrophotometer (YSI 6 

series sonde fitted with Rhodamine sensor). Comparative tracer studies were only 

carried out at Site A. 

 

6.3.4 Hydraulic conductivity 

In-situ saturated hydraulic conductivity measurements were taken using a steel 

pipe perforated at the base and a model 3001 Solinst levelogger; following the 

falling head methodology as described by Pedescoll et al, (2009).  Measurements 

were taken in triplicate along three transect points spanning the length of each of 

the wetlands.  This measurement gives approximate saturated hydraulic 

conductivity values, as vertical conductivity is measured, and does not take into 

account the horizontal flow.  In addition, a certain degree of compaction occurs 
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when inserting the pipe into the bed presents a source of error but these errors 

have been evaluated and are considered acceptable (Pedescoll et al, 2009). 

 

6.3.5 Robustness analysis 

Robustness curves were generated by plotting the percentile distribution against 

the effluent values. In this context, robustness is described as the ability of a 

treatment unit to produce consistent effluent quality under varying influent 

characteristics and differentiates from resilience which is defined as the ability to 

return to normal after a dynamic event (Hartshorn et al, 2014).  

 

A robustness index (RI) was calculated with respect to overall ammonium removal 

performance against a treatment goal (Tgoal) and the percentage time spent under 

the treatment goal (Equation 1, Hartshorn et al, 2014).  As the goal term heavily 

influences the outcome, RI was calculated for a range of treatment goals from 0.1-5 

mgNH4+-N/L.  A lower robustness score indicates a more robust process. 

     (1) 

 

RI = Robustness index 

G% = percentage time spent under Tgoal 

T90 = 90th percentile value (mgNH4+-N/L) 

T50 = 50th percentile value (mgNH4+-N/L) 

Tgoal = treatment goal (mgNH4+-N/L) 
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In accordance with Hartshorn et al, (2014) the approach was used to assess overall 

robustness rather than directly assess the ability of the sites to meet regulatory 

standards as RI is more effectively used as an indicator of variation rather than 

directly about meeting a fixed goal. Accordingly the 90th percentile was used to 

avoid confusion with regulatory compliance at the 95th percentile.  

 

Statistical analyses were carried out using Graphpad Prism v.5. Data was tested for 

normality by calculating the t-statistic that describes the number of sample 

standard deviations that the sample was above or below the sample mean. In a 

normal distribution 68 % of values will lie within one standard deviation, 95 % 

within two deviations and 99 % within three. The data did not follow a normal 

distribution and consequently statistical significance between datasets was tested 

using the non-parametric Mann-Whitney unpaired, two-tailed test (P<0.05) as an 

alternative to the paired students t-test.  Where multiple comparisons were 

required the Kruskal-Wallis test was used (P<0.05) as an alternative to the one-

way analysis of variance (ANOVA).   

 

6.4 Results and Discussion 

6.4.1 Ammonium removal 

Low ammonium effluent (< 3 mgNH4+-N/L) was achieved in all aerated sites up to 

the maximum measured ammonia loading rate of 13.0 gNH4+-N/m2/d (Figure 6.2). 

The efficacy of nitrification was consistent across the full range of variable loading 

rates observed indicating no deterioration in effluent quality at higher loadings. 

Consequently, associated ammonium removal rates in the aerated beds increased 
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linearly with increased loadings from 0.05 to 13.0 gNH4+-N/m2/d demonstrating a 

strong causal relationship suggesting ammonia loadings were not a rate limiting 

factor. In comparison, a non-linear range of ammonium removal between 0.04-7.0 

gNH4+-N/m2/d was observed in the non-aerated wetland at Site A (Figure A, 

supplementary information 6.1). The current findings extend the reported 

maximum loading rates for effective nitrification in aerated wetlands (Nivala et al, 

2007, Zhang et al, 2010, Fan et al, 2013, Matthys et al, 2001, Nivala et al, 2013) 

even extending above the 10.1 gNH4+-N/m2/d previously reported during the 

initial months of the trial (Chapter 3, Butterworth et al, 2013). In comparison, the 

control bed (Site A) exceeded 3 mgNH4+-N/L once the loading rate rose above 1.9 

gNH4+-N/m2/d; consistent with previous findings concerning sub-surface oxygen 

deficiency limiting nitrification as loading increased due to the commensurate 

increase in organic loading resulting in the heterotrophic community out-

competing the nitrifying microbial community (Chapter 3, Butterworth et al, 

2013). The median mass removal was 23 % in the control bed across all loading 

rates tested but increased to 72 % below a loading rate of 1.9 gNH4+-N/m2/d 

suggesting adequate removal can be achieved in HSSF CWs at sufficiently low 

loading rates. 

 

Comparison of the data across the different sites revealed median effluent 

ammonia concentrations (mgNH4+-N/L±standard deviation) of 0.1±0.3 (Site A), 

0.2±3.0 (Site B), 0.2±0.2 (Site B not including upstream failure), 0.2±1.2 (Site C) 

and 0.6±0.8 (Site D) (Figure 6.3) equating to median mass removal rates of 98.8 %, 

93.9 %, 94.7% 94.7 % and 97.5 % for the sites respectively. Overall, median outlet 
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concentrations of 0.1-0.2 mgNH4+-N/L were recorded for the tertiary aerated beds 

from inlet concentrations of 1.6-9.1 mgNH4+-N/L and an effluent of 0.6 mgNH4+-

N/L for the secondary bed from an inlet of 29.6 mgNH4+-N/L. This compares to a 

median effluent concentration of 6.7 mgNH4+-N/L in the non-aerated control. 

 

Figure 6.2 Ammonium loading rates and corresponding effluent ammonium 

concentrations at all sites  

 

For context, typical literature values report influent concentrations of 22-54 

mgNH4+-N/L for tertiary HSSF CWs, corresponding to effluents of 5-31 mgNH4+-

N/L (Llorens, 2009; O’Luanaigh, 2010; Albuquerque et al 2009; Yousefi and 

Mohseni-Bandpei, 2010). Whereas reported secondary systems achieve 

concentrations of 3-61 mgNH4+-N/L from inlets of 15-225 mgNH4+-N/L 
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(Matamoros, 2008; Cottingham et al, 1999; Vymazal, 2011; Vymazal, 2005; 

O’Luanaigh, 2010).  

 

More detailed profiling at Site A revealed NH4+-N concentrations of 0.8 , 0.7 and 0.2 

mgNH4+-N/L with corresponding DOs of 2-3,  3-4 and >5 mgO2/L  at 0.7, 1.2 and 10 

m from the inlet of the bed, with the final value corresponding to the final effluent 

from the bed compared to an influent level of 9.1±7.6 mgNH4+-N/L. Accordingly, 

only an initial fraction of the bed appeared to be utilised for nitrification, indicating 

that the majority the bed was unnecessarily aerated supporting previous 

laboratory investigations that limited aeration to the front portion of the bed to 

allow a reduced DO environment conducive of denitrification thereafter (Maltais-

Landry et al, 2009).  

 

Greater variability in the effluent ammonia concentrations was observed in Sites C 

and D compared to A and B. Site C (tertiary combined storm flow, continuously 

aerated) showed the greatest variation in effluent concentration with effluent 

ammonium concentrations over 1.0 mgNH4+-N /L recorded on 11 occasions out of 

43 (25 %).  This compares to 2 % and 0 % for the other tertiary sites A and B 

(excluding upstream failure) suggesting the observed instability was not directly 

due to the inclusion of storm flows, increased loading rates or inadequate level of 

aeration. Diagnostic analysis of the bed confirmed no link to aeration as DO 

profiles ranged between 3.3 and 9.5 mgO2/L across the length and breadth of the 

bed. Further diagnostics concerning alkalinity revealed no definitive explanation 

and further investigation is required to establish a coherent diagnosis. However, 
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the results show that process instability in aerated wetlands is possible, congruent 

with other tertiary nitrification systems (Boller and Gujer, 1985). 

 

  

 

Figure 6.3 Box and whisker plot of NH4+-N, concentrations at the inlet and the 

outlet of the control and aerated beds.  (n = Site B data excluding the upstream 

process failure)  

 

Site B (tertiary combined storm flow, intermittently aerated) experienced an 

operational issue with the upstream secondary biological process such that a 

substantial increase in ammonia concentration was loaded on to the bed (Figure 

6.4). During the resolution of the upstream event, the influent ammonium 
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concentration to the wetland increased from 1.2±4.0 mgNH4+-N/L to 16.0±8.4 

mgNH4+-N/L with a peak concentration of 33.2 mgNH4+-N/L during the winter 

period when the effluent temperature ranged between 5.2-9.3 °C. Effluent 

ammonia peaked at 15 mgNH4+-N/L, 7 days post failure, and began to decrease 10 

days after the event started. Ultimately, the effluent returned to below 3 mgNH4+-

N/L after 30 days (water temperature 9.5-13 °C), despite consistently high 

loadings comparable to those received from the secondary bed (Site D), and 

confirmed the ability of the aerated system to treat high ammonia concentrations 

under steady state conditions.  

 

Further consideration of response time (resilience) was possible at Site A (test and 

control site, tertiary combined storm flow) as the beds were taken off line for a 

period of 5 months, during which time no flow was run through the beds. Upon re-

commencement of the flow to the wetlands, the effluent concentration decreased 

to below 1 mgNH4+-N/L after seven days of operation whilst the control bed 

provided only minimal removal (Figure 6.5). The response of the systems relates 

to the abundance and activity of the nitrifying population. Once the maximum 

capable rate of ammonia oxidation per cell is exceeded, the systems will start to 

fail until sufficient growth of the population occurs to meet the demand (Pickering, 

2008). No direct quantification of the nitrifier community was conducted during 

the current investigation, but it is posited that the consistently low ammonium 

loading experienced prohibited establishment of large populations such that the 

system was incapable of responding to concentration spikes due to a lack of 

abundance of active nitrifiers and hence the system lacks a degree of inherent 
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resilience. This has been observed in other tertiary nitrification systems, where an 

increase in effluent ammonia has been recorded during the autumn when the inlet 

ammonium increases concurrent with a temperature derived decrease in 

nitrification activity in the main secondary process (Pearce, 2013). Effluent from 

such processes then improves as the nitrification population increases 

commensurate with the increased available substrate.   

 

Figure 6.4 Influent and effluent concentrations of ammonium at Site C showing 

the period of increased loadings and time to reach steady state (30 days) 
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Figure 6.5 Site A restart profiles 

In the case of the aerated wetlands, analysis of seasonal impacts revealed a slight 

increase in effluent ammonium concurrent with increased hydraulic loading 

posited to be due to heavier rainfall and consequently less residence time in the 

bed. For instance, sites C and D recorded an increase in the median outlet 

concentrations in the aerated beds during winter of 0.9 and 1.6 mgNH4+-N/L 

compared to 0.2 and 0.5 mg/L in the summer. In comparison, no difference was 

observed at Site A with the aerated bed where the mean effluent ammonium 

remained at 0.2 mgNH4+-N/L during both summer and winter periods. In contrast, 

higher mean outlet concentrations of 8.4 mgNH4+-N/L were observed in winter 

compared to 6.5 mgNH4+-N/L when the temperature decreased to 4.1°C.  

 

In fact, no direct correlation was observed between effluent ammonia and 

temperature or between increased ammonium in the inlet and the outlet during 

the reduction in activity of the upstream processes. Whilst this suggests that the 
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the response to shock loads suggests that further enhancement of the nitrifying 

population would be beneficial in terms of resilience. Given that it appears only a 

small proportion of the bed is active, and only the aerated portions of the bed can 

sustain an active nitrifying population, it is posited that sequencing the portion of 

the bed that receives air in a pre defined cycle will enable a larger total community 

to be maintained and when required utilised by aerating all sections of the bed. 

Previous work on the integrated fixed film activated sludge process (IFAS) has 

shown that when the nitrifying microbial community occupy non competitive 

niches (such as the biofilm carriers in IFAS) the nitrification rate can be controlled 

by aeration levels as it correlates with DO up to 5 mg/L (Kappel, 2009). Combined, 

these features offer the potential to enhance resilience of the system and offer a 

degree of turn up/ turn down control with regards to nitrification through 

changing aeration rates.  

 

Table 6.2 Summer and winter ammonium inlet loadings and effluent 

concentrations 

 

 

Inlet (gNH4
+-N/m2/d) Outlet (mgNH4

+-N/L) 

     Median Min Max Median Min Max n 

Summer Site A (aerated) 2.0 0.3 11.5 0.1 0.02 1.4 19 

 

Site A (control) 2.0 0.3 11.5 6.5 0.03 20.6 19 

 

Site B 0.08 0.02 1.9 0.1 0.01 1.5 20 

 

Site C 0.04 0.01 0.07 0.2 0.04 0.3 5 

  Site D 7.4 1.8 12.8 0.5 0.1 2.6 11 

Winter Site A (aerated) 2.8 0.07 12.5 0.1 0.02 0.6 23 

 

Site A (control) 2.8 0.07 12.5 8.4 0.1 22.1 23 

 

Site B 0.2 0.02 10.9 0.2 0.02 15.0 22 

 

Site C 4.3 0.4 11.9 0.9 0.2 5.3 29 
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  Site D 4.1 0.1 13.0 1.2 0.1 13.3 20 

 

 

        6.4.1.1 Process robustness  

Excluding the variation due to the upstream events, statistical analysis revealed no 

significant difference between the effluent concentrations between the tertiary 

beds A and B (Mann-Whitney U=1434, P=0.7687).  Whilst still achieving low 

effluent concentrations, the increased spread in the data at Site C compared to 

consistently extremely low concentrations in Site A and B meant the effluent data 

could not be categorized as statistically the same.  However, effluent 

concentrations were statistically similar in Site C and the secondary bed D (Mann-

Whitney U=388, P=0.7545). Accordingly, the efficacy of artificial aeration appears 

irrespective of configuration of the wetland in terms of the type of flow treated 

(inclusion of storm flows, secondary or tertiary) across the range of concentrations 

and loading rates observed in the current study. This leads to the suggestion that 

nitrification rate is not the controlling factor in the design and operation of such 

systems. 

Further analysis of the data was conducted through calculation of the robustness 

index (RI) across a range of target goals (Hartshorn et al, 2014). The robustness 

profile for the control bed at Site A exhibited a curved shape across the majority of 

the data sets indicative of an un-robust system (Figure 6.6). This is commensurate 

with the outlet ammonium concentrations that were above the future consent of 4 

mgNH4+-N/L 63 % of the time. In contrast, comparative data from the aerated beds 

revealed relatively robust systems with regards to ammonium removal as 
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illustrated by steep near vertical lines across the majority of the data (Figure 6.6) 

and commensurate with the fact that the outlet concentrations were below 

respective future consents 100 % of the time, with the exception of the failure 

recorded at Site B. The use of RI enabled consideration of the impact of tightening 

consents through changing the target goal level and hence an analysis of the link 

between tightening discharge consents and robustness of the systems. A similar 

level of robustness was observed across all sites down to a target effluent level of 3 

mgNH4+-N/L below which the RI of the different sites diverged (Figure 6.7). This 

extended down to a target concentration of 2 mgNH4+-N/L including the secondary 

bed (Site D) when Site C was excluded, the site that was identified to have some 

general nitrification issues. Sites A and B remained robust down to target 

concentrations of 0.5 mgNH4+-N/L indicating that artificial aeration can remain 

robust even when considered in relation to the most challenging consents 

discussed for small works in the near future (0.5 mgNH4+-N/L) (Pearce, 2013).  
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Figure 6.6 Ammonium removal resilience curves for all sites 

 

Figure 6.7 Robustness index (RI) of all sites against a range of treatment goals 

6.4.2 Solids and organics removal 

A significant reduction in effluent total suspended solids concentrations was 

observed in comparison to inlet concentrations at sites B-D (Mann-Whitney 

U=172.5, 364, 45.5, P<0.0001) recording median effluent concentrations of 0.1, 2.7 

and 20 mgTSS/L respectively (Figure 6.8). This equated to median removal levels 

of 92 %, 90 % and 65 % for sites B, C and D respectively and corresponding 

median loading rates of 0.1 (0.1-10.9); 6.3 (0.7-14.1) and 12.5 (2.5-37.5) 

gTSS/m2/d (Table A, supplementary information 6.1). In the case of Site A, TSS 

concentrations were not significantly different between the inlet and outlets of 

both the aerated and non-aerated beds (Kruskal-Wallis statistic 2.194, P=0.3338). 

Investigation into the cause revealed a site specific sampling issue reducing 

confidence in the significance of any findings related to the solids data at that site. 

No relationship was apparent between TSS loading rate and effluent concentration 
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at any individual site or across all sites combined with the effluent TSS remaining 

below 40 mgTSS/L up to a maximum loading rate of 25 gTSS/m2/d with the 

exception of one measurement (Figure B, supplementary information 6.1). 

However, comparison of the robustness profiles (Figure 6.9) revealed a decrease in 

the robustness of the systems as a function of the median TSS loading rate across 

sites B-D.  

  

 

Figure 6.8 Box and whisker plot of TSS, concentrations at the inlet and the outlet 

of the control and aerated beds.  The box represents the interquartile range; the 

line indicates the mean and the whiskers the 25th and 75th percentiles 
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For instance, Site B exhibited a near vertical line, consistent with a very robust 

system only deviating from its near vertical slope beyond the 80th percentile and 

then only to a solids concentration of 5.5 mgTSS/L at the 99th percentile level and 

well below the future consent of 45 mgTSS/L 100% of the time (Figure 6.9). 

However, inlet concentrations onto this site were very low ranging between 0.01-

7.3 mgTSS/L with a corresponding median loading rate of 0.1 gTSS/m2/d. Less 

robust systems were observed at sites C and D although effluent solids remained 

below the consent level 100% of the time. To illustrate, Site D (secondary) 

represented the least robust system with respect to solids with a shape similar to 

the non-aerated bed with respect to ammonia which is characteristic of a system 

with little or no inherent robustness to the treatment objective. However, the site 

achieved a 45 mgTSS/L up to the 95th percentile equivalent to consents on a 

number of small works and hence shows that aeration of secondary wetlands can 

provide effective treatment even with regards to solids.  

 

Effluent CBOD5 concentrations remained below respective future treatment goals 

for all sites (Table A supplementary information 6.1). No significant difference was 

found between the medians of effluent concentrations from the aerated and 

control bed at Site A (Kruskal-Wallis statistic 5.428, P=0.2461). Furthermore, 

CBOD5 loadings did not affect effluent concentrations (Figure C, supplementary 

information 6.1) and together results suggest the presence of aeration did not 

further enhance CBOD5 removal. Across all aerated sites effluent CBOD5 remained 

below 14 mgCBOD5/L up to the maximum tested loading of 25 gCBOD5/m2/d and 
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confirms previous findings with regards to organic removal in aerated wetlands 

(Chapter 3, Butterworth et al, 2013) 

 

 

Figure 6.9 TSS removal resilience curves for all sites 
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Wallis, P<0.05) and generally showed a decrease at the inlet of the bed compared 

to the outlet (Figure 6.10), indicating improved hydraulic conductivity with 
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that report 350 m/d for clean systems and 4-6 m/d for clogged systems (Pedescoll 

et al, 2011). 

 

Figure 6.10 Hydraulic conductivity (m/d) for all sites measured during year 2 of 

the study. Age of sites (months): A =16, B =21, C = 6, D =16 
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Figure 6.11 Yearly hydraulic conductivity (m/d) for Site A (left) and Site B (right) 

Further analysis of the impact of aeration on mixing pattern was conducted by 

means of tracer studies in years one and two at Site A (aerated v non-

aerated)(Figure 6.12).  

 

 

Figure 6.12 Year one and two residence time distributions for the aerated and 

control beds at Site A 
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Both beds displayed non-uniform flow, with a greater tendency towards plug flow 

in the control bed compared to the aerated bed, indicated by the higher index of 

modal retention time (τp/τn) of 0.33-0.56 in the control compared to 0.01-0.17 in 

the aerated bed (Figure 6.12), similar to the patterns observed in year one 

(Chapter 3, Butterworth et al, 2013). In support of the difference in mixing 

patterns, the Morrill dispersion index (MDI) was higher in the aerated bed than the 

control in both years, more consistent with CSTR mixing patterns; calculated as 

14.9-31.7 and 4.5-9.0 in the aerated and control beds respectively (Table 6.3). In 

addition, the MDI approximately doubled in both beds in year two compared to 

year one consistent with increased back mixing. Support for this is provided 

through analysis of convective dispersion which increased in both beds as a 

function of age rising from 0.37 to 0.59 in the aerated and 0.15 to 0.26 in the 

control beds (Table 6.3).  The volumetric efficiency was calculated as 3.2-6.7 % in 

the aerated bed compared to 11.1-22.3 % in the control and decreased by 52 % in 

the aerated bed between year one and year two and 50 % in the control. Overall, 

analysis of the change in RTDs indicates that the beds are progressively deviating 

from plug flow consistent with the beds becoming clogged and operated with a 

slight free water level. Additionally the change in hydraulic conductivity and 

mixing pattern in both beds appears to progressive at a similar relative rate 

suggesting that aeration is unlikely to positively influence long term hydraulic 

operation.   
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Table 6.3 

  
Q Recovery τn τ τp/τn 

D MDI 
ev 

(m3/h) (%) (h) (h)   (%) 

Aerated yr 1 1.8 77 14.2 6.2 0.01 0.37 14.9 6.7 

Aerated yr 2 1.8 72 14.2 24.5 0.17 0.59 31.7 3.2 

Control yr 1 1.1 35 34.2 28.1 0.56 0.15 4.5 22.3 

Control yr 2 1.2 67 21.2 14.7 0.33 0.26 9.0 11.1 

 

Q = flow rate; τn = nominal residence time; τ = residence time; σ = τp/τn = index of modal retention 

time; D = dispersion number; MDI =Morrill dispersion index; ev = volumetric efficiency 

 

6.6 Conclusions 

Ammonium removal performance of aerated horizontal flow sub-surface flow 

constructed wetlands was assessed at four full-scale small sewage treatment 

works of various configurations.  Based on the results of this study, the technology 

was shown to be capable of delivering nitrified effluents down to 3 mgNH4+-N/L in 

both a secondary system and tertiary treatment applications including combined 

storm flow beds with the potential to deliver sub 1 mgNH4+-N/L in the case of 

tertiary systems. The system was observed to remain robust in systems receiving 

variable loadings between 0.1-13.0 NH4+-N/m2/d. However, the systems showed 

limited resilience to spike loads posited to be due to insufficient abundance of the 

nitrifying community within the bed which could be ameliorated through cyclic 

operation of the aeration to sequenced parts of the bed.  

 

Further investigation into hydraulic characterisation recorded hydraulic 

conductivity values in a similar range over the sites and comparison of values over 

time suggested the presence of aeration did not reduce the clogging effect 
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commonly reported in CWs.  Furthermore, mixing patterns in the bed 

demonstrated a decrease in volumetric efficiency over time. Overall, the study 

demonstrates the efficacy of the technology where ammonium removal is required 

on small sites receiving high and variable flow rates, with adequate removal of 

CBOD5 and TSS, but has no significant benefit to the long term hydraulics of the 

system. 
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Supplementary information 6.1 

 

 

Figure A Ammonium loading and associated nitrification rate Sites A-D 
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Table A Inlet and outlet concentrations of CBOD5, TSS and NH4+-N 

  

Inlet (mg/L) Outlet (mg/L) 

     Median Min Max Median Min Max n 

CBOD5 

Site A 

(aerated) 11.9 4.6 67.2 4.7 0.5 31.0 32 

 

Site A 

(control) 11.9 4.6 67.2 6.2 1.3 33.1 32 

 

Site B 10.6 0.3 74.4 3.7 0.1 27.3 45 

 

Site C 7.6 1.1 31.2 4.2 1.2 21.8 16 

  Site D 79.4 39.9 98.3 4.7 1.8 20.8 19 

TSS 

Site A 

(aerated) 25.0 3.7 87.0 20.0 1.5 237.0 40 

 

Site A 

(control) 25.0 3.7 87.0 25.0 2.0 212.0 40 

 

Site B 1.3 0.1 5.5 0.1 0.0 7.3 40 

 

Site C 16.7 2.0 80.0 2.7 1.0 40.0 37 

  Site D 57.0 10.0 150.0 20.0 0.0 90.0 17 

NH4
+-N 

Site A 

(aerated) 9.1 0.1 26.4 0.1 0.02 1.4 43 

 

Site A 

(control) 9.1 0.1 26.4 6.7 0.03 22.1 43 

 

Site B 1.6 0.1 33.2 0.2 0.01 15.0 90 

 

Site C 8.9 1.5 20.7 0.2 0.04 14.0 40 

 

Site D 29.4 1.0 59.6 0.8 0.1 2.6 16 
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Figure B TSS loadings and effluent concentrations for all sites 

 

 

Figure C CBOD5 loadings and effluent concentrations for all sites 
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Figure D CBOD5 loadings and NH4+-N effluent concentrations for all sites 
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Chapter 7 

Implications of the work 
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Implications of the work 

 

The work presented in this thesis has covered a range of topics in order to 

understand the efficacy of artificial aeration of HSSF wetlands towards tertiary 

nitrification and consider future best practice in terms of design and operation.  

 

7.1 Efficacy of artificial aeration 

The work has demonstrated that inclusion of an aeration system to a standard 

design of a HSSF wetland (based on Severn Trent practice) is an effective approach 

to upgrade the technology and enable effective nitrification to be delivered. This is 

demonstrated across the range of current operational situations where HSSF 

wetlands are used within the sponsoring water company including tertiary 

treatment, combined storm flow tertiary treatment and secondary treatment 

(Chapter 6). Comparison across the sites revealed that a sub 3 mgNH4+-N/L could 

be robustly delivered and that robust treatment could potentially be maintained 

down to below 0.5 mgNH4+-N/L. This compares well with alternative options such 

as nTFs, RBCs, nSAFs (Boller et al, 1994) and nitrifying depth filters (Barter and 

Smith, 2007) and even against upgrading to activated sludge or membrane 

bioreactors options as the main secondary processes where sub 1.0 mgNH4+-N/L 

can be routinely achieved (Judd, 2011). Consequently, the current work provides 

confidence that the inclusion of aeration into HSSF CWs is an effective option 

against even the most restrictive consents currently experienced on small works 

(0.5 mgNH4+-N/L) (Pearce, 2013). One site (Site C) showed a reduced level of 

robustness indicating potential risk to compliance, especially if more restrictive 
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consents are targeted. Initial diagnostics eliminated oxygen deficiency and 

alkalinity as probable causes such that ongoing investigations are focussed 

towards limited establishment of the nitrifying microbial population within the 

bed (see section 7.3) 

 

Comparison to alternative tertiary treatment options revealed that retrofitting of 

existing HSSF CWs was an attractive option in terms of cost offering a reduction 

compared to more traditional options of between 2.6 (nTF) to 7.2 (RBC) times. 

This was balanced against an increase in energy associated with aeration by a 

factor of three to four times that of the nTF and RBC respectively (Chapter 3). This 

is consistent with reports from other case studies which have reported the energy 

demand to be around 2.43 Wh/PE which is similar to that of an activated sludge 

plant at 2.45 Wh/PE (Pearce, 2013). This challenges the validity of artificial 

aeration of HSSF CWs with respect to the wider philosophy of small rural works as 

low energy systems. However, subsequent experimental testing confirmed the 

hypothesis that such systems are currently sub-optimally designed (Chapter 4) 

such that significant reduction in the energy demand associated to aeration can be 

achieved through alternative design (see section 7.2). This has the potential to 

reduce the equivalent energy demand down to as low as 0.2-0.3 Wh/PE with a 

confident expectation that equivalence to the other low energy treatment option 

can be routinely delivered (c0.6-0.8 Wh/PE) (based on energy calculations from 

Chapter 3). This realigns the attributes of the technology to that of a low energy 

treatment system where choice between alternatives become more focussed on 
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footprint versus total cost and hence where HSSF CWs already exist, artificial 

aeration appears the most suitable option.  

 

7.2 Design of artificially aerated horizontal flow wetlands  

High ammonium loading rates were shown not to be the rate limiting factor for 

effective nitrification up to the maximum nitrification loading rate observed of 14.9 

gNH4+-N/m2/d. Therefore, across the range of applications considered in the 

current work (secondary and tertiary municipal sewage treatment) aerated CWs 

can be considered to be hydraulically and solids loading limited. Further, whilst 

aeration was seen to influence solids build up, their character and hydraulic 

conductivity during the first year of operation (Chapter 3), comparison across the 

different sites indicated no long term benefit (Chapter 6). Consequently, overall 

sizing of the wetland should adhere to current design specifications but with the 

inclusion of aeration. Accordingly, sizing should be based on the current asset 

standards of 0.5 m2/PE (storm only), 0.7 m2/PE (tertairy), 1.0 m2/PE (combined 

strom and tertiary), 5 m2/PE (secondary) (Cooper et al, 1993). The bed is then 

filled with distribution and collection media of 20-200 mm diameter at the inlets 

and outlets of the bed and the remainder filled with river gravel of 6-12 mm 

diameter to a depth of 600 mm. The influent wastewater is then fed to the bed via a 

‘v’ notched distribution trough and travels through the bed to the effluent 

collection pipe and discharged to the receiving watercourse. An overflow pipe and 

a freeboard of 500-1000 mm are advised to mitigate against flooding events 

(Figure 7.1).  
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Figure 7.1 Amended design of an HSSW CW for aeration 

 

Three specific amendments are proposed based on the findings of this work: 

(1) Redesign of the aeration system; 

(2) Switch of the preferred plant species to Typha latifolia; 

(3) Operation as truly sub surface 
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Current design involves the use of a perforated pipe with 2 mm orifice holes 

spaced roughly 300 mm apart delivered from a fixed speed blower that keeps the 

beds approximately saturated with DO and hence constitutes over aeration. An 

investigation into mass transfer in packed beds in this work demonstrated 

enhanced oxygen transfer over that achieved in open tanks (Chapter 4). Both 
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and pseudo stagnant gas storage. Consequently, enhanced mass transfer is 

partially related to pore space replenishment rate and as such is maximised when 

smaller orifice holes and lower gas flow rates are utilised. This is illustrated 

through comparison of the SAE (Table 7.1) whereby reducing the orifice size 

increased SAE by 1.8 times when comparing a 2 mm orifice to a 0.5 mm orifice at a 

gas flowrate of 20 L/min. 

 

Table 7.1 Comparison of SAE 

Orifice size 

(mm) 

Air flow rate 

(L/min) 

SAE media 

(kgO2/kW) 

2 100 6.7±2.2 

2 20 10.1±4.8 

0.8 20 10.5±3.4 

0.5 20 18.3±7.0 

 

Bubble visualisation experiments, using a sub 1.0 mm orifice, observed a zone of 

influence of the bubbles in the media systems of around 150-300 mm with the 

majority of the bubble within the first 150 mm radius from the centre point of the 

orifice. This compares to recent observations from Site C (Chapter 6), during the 

ongoing diagnostic investigations (Dotro, 2014) that indicated that the zone of 

influence extended 250 mm with the 2.0 mm orifice size with DO saturated at the 

centre point of the plume and reduced down to 2.5 mg/L at the midpoint between 

plumes (i.e. 125 mm from the centre point of the plume).   
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Based on the above it is recommended in future systems that orifice size is reduced 

to sub 1.0 mm configured in a grid with 150 mm spacing between orifices. 

Illustration of the benefit of this is provided based on one of the existing sites (site 

A, Chapter 4, 6) where even when conservative design assumptions are employed 

(=0.3, minimum OTE observed - 11%) the required air flow rate to meet the OD 

was 3378 m3/d which equates to 0.5 L/min/hole based on the 10x10 m site and 

holes spaced in a 15 cm grid. This is lower than the suggested rate of 0.8 

L/min/hole from the OTE and hence the system has a degree of buffer to ensure 

appropriate delivery. However, this is substantially lower than the current rate of 

2.3 L/min/hole which lowers enhancement of mass transfer through replenishing 

the pore spaces too frequently. At a rate of 0.8 L/min/hole the estimated blower 

power is 0.36 kW equating to approximately 0.8 Wh/PE.  

 

The low  was used to take into account the potential impact that enhanced 

contact time may have on mass transfer in real wastewater through additional 

accumulation of surface active agents. Consideration from the literature 

concerning cases directly considering the role of surfactants (Asselin et al, 1989) 

or elevated biomass concentrations (Germain et al, 2007) as well as the 

comparison of fine versus coarse bubble systems (Painmanakul and Hebrard, 

2008) indicates that alpha factors around 0.5 would be a more realistic minimum 

level likely to be experienced in aerated wetlands. Re-calculation utilising the more 

realistic alpha factor and a median OTE reduces energy usage down to a predicted 

0.4-0.5 Wh/PE demonstrating that artificial aeration can be utilised at rural small 

works without challenging the underlying philosophy of low energy treatment. 
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7.2.2 Vegetation 

Artificial aeration of wetlands was observed to have a negative impact on plant 

growth (Chapter 6) consistent with previous reports from commercial groups who 

have reported yellowing of the leaves (chlorosis) and poor plant establishment. 

This is known to occur in other aerobic wetland configurations such as tertiary 

vertical flow systems (Weedon, 2014) and has been suggested to be species 

specific (Dotro et al, 2012). Work presented here (Chapter 5) confirmed the 

negative impact of aeration on plant growth for both Phragmites australis and 

Typha latifolia. On an individual plant basis, this thesis indicated T. Latifolia was 

influenced more heavily by aeration than P. australis compared to their respective 

controls. However, the impact on the absolute growth was less significant; 

congruent with its faster growing rate such that more effective bed coverage 

remained possible.  

 

The importance of full vegetative coverage in HSSF CWs has been linked to a 

number of attributes but in temperate and cold climates, its role in insulating the 

bed is considered one of the most important (Mander and Jenssen, 2002) along 

with seasonal nutrient storage. Consequently, it is desirable to use plants that have 

high above ground biomass and quick establishment to create a dense cover soon 

after planting (Vymazal and Kröpfelová, 2005). High potential productivity, deep 

rhizome and root system, ready propagation and wide distribution of P. australis 

have made it the most common plant used in constructed wetlands in Europe; 

where it is specified as the desired choice in design guidelines (Cooper, 1993). 

However, it has been documented that P. australis usually takes three to four 
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growing seasons to reach the maximum standing crop but in some systems it may 

take even longer (Vymazal and Kröpfelová, 2005). In comparison, T. Latifolia is 

competitive and aggressive in nature; colonizing inert substrates and adapting to 

diverse and not always optimal climate conditions (Jespersen et al, 1998). 

Consequently, T. Latifolia is recommended where rapid plant cover is required in 

an aerated wetland. However, this should be balanced against the impact of the 

additional above ground biomass likely to be generated by switching from P. 

australis to T. Latifolia, even considering the reduced growth rates of the latter due 

to aeration. The consequence is an increased surface sludge accumulation rate as 

current practice is not to harvest at the end of the growing season with the 

potential for a commensurate reduction in the cycle time between refurbishments. 

Given that switching to T. Latifolia ameliorates but does not totally resolve the 

negative impacts of aeration on plant coverage the net balance may not justify the 

change unless maintenance practice changes to include biomass harvesting (see 

section 7.3).  

 

7.2.3 Water level 

Artificial aeration was observed to alter the mixing pattern within the bed as a 

function of the operating water level (Chapters 3, 6). When the water level 

exceeded the top of the gravel layer, the overall mixing pattern in the aerated bed 

deviates from that of the non-aerated bed to be progressively more associated to 

that of a continuously stirred tank reactor (CSTR). When the water level was below 

the gravel, both beds exhibited similar mixing patterns to that of a non ideal plug 

flow reactor (PFR).  
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The importance of this is related to advective spreading as indicated by the 

increased dispersion number (0.63 in the aerated compared to 0.23 in the non 

aerated, Chapter 3). Further, re-examination after a longer operating period 

(Chapter 6) indicated that solids accumulation had increased the dispersion 

number of both aerated and non aerated beds roughly equally, suggesting that 

back mixing and spreading will increase over the life of the bed. The importance of 

this in relation to aerated wetlands is that material is being lifted into the free 

water layer above the bed and consequently provides a potential short residence 

bypass in the system and hence constitutes a conceivable process risk. Whilst this 

has not been realised during the full scale site monitoring, it represents a future 

risk which is most likely to be an issue once solids accumulation has progressed 

and so is unlikely to occur during the first few years of operation and will become 

observable at different time periods on different sites based on solids 

accumulation rates.  

 

The risk can be minimised through controlled operation of the bed so that the 

water level remains below the gravel at all times where practically feasible. This 

will ensure the aerated bed still operates under plug flow characteristics. It is 

posited that this will also maximise the effectiveness of the systems and potentially 

enhance its robustness as in any biofilm based biological process. Additionally, in 

cases of risk of restrictive odour emissions (secondary beds) the influent feed 

systems should be delivered sub-surface, preferably near the bottom of the bed to 

maximise oxygen transfer.  
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7.3 Alternative operating strategies to enhance resilience 

One site (Site C) revealed reduced robustness (normal operation variation) and all 

sites showed a slow response in terms of resilience (response to shock load) 

(Chapter 6). This is consistent with general understanding of nitrifying processes 

that are recognized as being difficult to maintain in practical wastewater treatment 

plants (Satoh et al, 2003) requiring a long start-up period and demonstrating slow 

recovery from failure events due to the slow growth rate and low growth yield of 

nitrifying bacteria (Rittmann and Whiteman, 1994). Nitrification performance is 

known to be dependent on the activity, composition and diversity of the ammonia 

oxidising bacteria (AOB) and nitrite oxidising bacteria (NOB) (Knapp and Graham, 

2007; Wittebolle et al, 2005; Bellucci et al, 2013). Once the maximum capable rate 

of ammonia oxidation per cell is exceeded, the systems will start to fail until 

sufficient growth of the population occurs to meet the demand and has been 

demonstrated for activated sludge systems (Pickering, 2008). Two principal 

situations can cause this lack of abundance in the aerated HSSF CWs: (a) low 

overall feed ammonia load and (b) out competition from heterotrophic organisms.  

The first case is considered the most common where the systems are being used to 

deliver against tightening standards and where the upfront works already 

provides a significant level of nitrification. Examples in the current work include 

sites A and B and here it is suggested that the systems will be generally robust but 

not resilient as they should maintain a sufficient nitrifying population to cope 

under normal ammonia load situations. For instance, observations at Site A, 

revealed that the majority of ammonia was removed (< 1 mgNH4+-N/L) within the 

first metre from the inlet. Aeration beyond this point is unlikely to have developed 
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or been able to sustain any level of abundance of nitrifiers and hence the system 

effectively acts as a very short residence time bioreactor for nitrification which can 

quickly become overloaded. It follows therefore that increasing the number of 

active cells may enhance the resilience of the bed to variable ammonium loadings 

by ensuring the maximum nitrifying potential is not exceeded. Quantitative studies 

based on real-time qPCR and FISH demonstrated that efficient nitrification can be 

achieved in WWTPs when the AOB concentration is higher than 105 cells/mL  

(Knapp and Graham 2007; Pickering 2008; Wittebolle et al. 2008) and as such this 

represents a target level. Given that only aerated sections of the bed will nitrify it is 

proposed that sequencing the section of the bed that receives air in a pre defined 

cycle will enable a larger total community to be maintained. By doing this each 

section of the bed will receive ammonia feed and oxygen at a sufficient frequency 

to keep the nitrifying population present and active, whilst maintaining low overall 

ammonium effluents. During periods of elevated load all sections of the bed can be 

then simultaneously aerated enhancing the capacity of the system and thus 

improving its resilience. In addition the non-aerated bed will become anoxic such 

that partial denitrification can be expected, offering the ability to meet total 

nitrogen in the future. This approach has, in part, been demonstrated at pilot scale 

by only aerating (continuously) the front portion of a bed (Maltais-Landry et al, 

2009). 

 

The second case represents sites where the upfront works was not originally 

designed to nitrify and/or is potentially undersized. In such situations the system 

may exhibit reduced robustness as well as poor resilience and consequently it is 
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suggested that this is part of the explanation for the reduced robustness of Site C 

(Chapter 6) currently being investigated. In these cases, heterotrophic bacteria will 

predominate due to their faster growth rate congruent with traditional plug flow 

biofilm based bioreactors such as TFs and SAFs where organic load must be 

reduced before the nitrifying population will start to proliferate (Boller et al, 

1994). Consequently, sizing and aeration rates must be appropriate to such cases 

to ensure a proportion of the bed can develop and sustain a nitrifying population. 

In practice this represents sizing such beds at a rate between traditional combined 

storm and tertiary beds (1 m2/PE) and those of true secondary beds (5 m2/PE) as 

well as increasing the aeration rate to maximise heterotrophic activity.  

 

It is postulated that the situation can be exacerbated in the case of aerated 

wetlands due to their additional function concerning sludge storage. As sludge 

builds up in the bed it will exert an oxygen demand and load that will further 

inhibit the ability of a nitrifying population to develop over and above that seen in 

the other processes (TFs, nSAFs etc.). Consequently it may be beneficial to alter 

current solids management strategies to incorporate in-situ management 

approaches akin to filter flushing as used in tricking filters (Albertson, 1995). This 

could be relatively easily delivered due to the changing mixing pattern aeration 

generates when the water level exceeds that of the gravel (see above). A temporary 

increase in aeration rate coupled with increase flow would enable the bed to be 

flushed and hence limit the impacts of excessive solids build up. Additionally, 

above ground biomass is currently retained on the bed, at a rate of approximately 

2 cm/year (Dotro et al, 2014) contributing to the above issue and representing a 
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case where reed harvesting at the end of the growing season would be a beneficial 

maintenance strategy. The harvest material has been demonstrated to have value 

as a bioenergy crop and hence could generate additional benefit and enhance the 

overall sustainability of small works.   

 

Further research and experimentation is required to test the validity of these ideas 

in terms of characterising the existing microbial community along the bed and to 

determine a sensible cycle time in terms of switching on and off nitrification 

activity including how long the community can stay dormant before becoming non 

viable (Chapter 9). Additionally, care is required during switch over to ensure 

continuous nitrification. Previous investigations on intermittent aeration in 

wetlands have shown DO residual remain above 1 mgO2/L for one hour after 

cessation of aeration with effective nitrification lasting for 90 minutes (Fan et al, 

2003). A paucity of information exists concerning restart times after 

commencement of aeration so that it is unclear whether the available 90 minutes is 

sufficient such that overlapping of the cycles may be necessary.  

 

Delivery of the suggested cyclic aerating operating approach requires a more 

flexible aeration system that enables only specific portions of the bed to be aerated 

at any given time (Figure 7.2). The exact complexity of this depends on the 

required sequencing frequency but is expected to be able to be delivered manually 

(during routine site visits) or on a pre-defined time sequence established relative 

to historical knowledge of the wastewater profiles. In situations where control is 

required against inherently variable, chaotic loading, then an automatic system 
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could be implemented using on-line ammonia detection to control how many 

sections of the bed are aerated. This constitutes an equivalence of the IFAS process 

where aeration rate is controlled to manage nitrification activity within the biofilm 

contained on the media, linked to ammonia detection (Tordera, 2009).  

 

 

Figure 7.2 Plan of an aerated wetland with sectioned air supply  
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Chapter 8 

Conclusions 
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8.1 Conclusions 

The major conclusion is that artificial aeration of horizontal sub-surface flow 

constructed wetlands (HSSF CWs) is an effective option with regards to enhanced 

nitrification on tertiary small works sites and provides comparative treatment to 

higher energy technologies with the benefit of being the ability to retrofit into 

existing HSSF CWS sites.   

 

Specific conclusions were as follows: 

1. A review of the literature related to nitrification potential in existing sub-

surface flow constructed wetlands revealed that nitrification rate was 

commensurate with oxygen availability. Consequently, the sub-surface 

oxygen deficiency encountered in traditional HSSF CWs limits nitrification 

unless operated at very low loading rates. Higher nitrification rates are 

possible when the design of the wetland ensures adequate sub-surface 

oxygen availability such as in vertical sub-surface flow and artificially 

aerated CWs. Available data indicates that both configurations are capable 

of meeting the requirements for tertiary nitrification (Chapter 2) (Objective 

1).  

 

2. Artificially aerated HSSF CWs were found to be capable of robustly 

delivering nitrified effluents sub 3 mgNH4+-N/L in both secondary and 

tertiary treatment applications including combined storm flow beds with 

the potential to robustly deliver sub 1 mgNH4+-N/L in the case of tertiary 

systems. (Chapter 3, 6) (Objective 2). 
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3. The operation of artificially aerated HSSF CWs for tertiary nitrification is 

not limited by the ammonia loading rate and can thus work effectively when 

receiving high and variable flow rates. No difference was observed 

compared to a non-aerated bed with respect to removal of CBOD5 and TSS 

and long term hydraulics of the system such that future design should be 

based on current sizing based around hydraulic and solids loading rates 

(Chapter 3, 6) (Objective 2,5). 

 

4. Artificial aeration of tertiary HSSF CWs was shown to robustly deliver 

nitrification but had limited resilience to shock loads (Chapter 6) (Objective 

2). It is suggested that this is commensurate with the systems being able to 

sustain only limited populations of nitrifiers through either limited available 

ammonia or out competition from heterotrophic organisms.  Accordingly, 

enhancement could be achieved by increasing the population of active 

nitrifiers and thereby increasing resilience. This can be achieved by 

sequencing aeration to sections of the bed (Chapter 7, 8) (Objective 5).  

 

5. The presence of media enhances the oxygen transfer efficiency in a packed 

system compared to a comparative control through a combination of 

retarded bubble rise velocities and pseudo stagnant residence within the 

pore spaces. The enhancement is maximised when the replenishment rate 

of the pores is decreased and so occurs when small orifice sizes and low air 

flow rates are utilised (Chapter 4) (Objective 3). 
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6. The presence of artificial aeration was detrimental to the growth of 

Phragmites autralis and Typha latifolia in terms of stunted growth and 

yellowing of leaves. However, the impact on the absolute growth was less 

significant with T. Latifolia, congruent with its faster growing rate. (Chapter 

5) (Objective 4). 

 

7. A combination of the findings from the three years investigation on the 

impact on the design basis of an aerated HSSF CW resulted in 

recommendation of orifice sizes below 1.0 mm in a grid 150 mm apart at a 

flow rate of 0.8 L/min/hole.  Planting with T. Latifolia is recommended for 

use in aerated wetlands and the system should be run sub-surface flow for 

effective treatment (Chapter 7) (Objective 5). 
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Chapter 9 

Further work 
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9.1 Enhancing the resilience of tertiary nitrification 

 

Findings from the thesis demonstrated the poor response to shock loads of a lowly 

loaded system, suggested to be due to the limited size and activity of the nitrifying 

population.  

 

To assess the validity of the proposal (section 7.3) a custom built pilot plant is 

recommended, fed with synthetic wastewater to enable control of variation and 

ammonia spikes. The system set-up would allow development of a natural biofilm 

with the system operating with constant aeration in all sections and ammonia feed 

around 5 gNH4+-N/m2/d based on the receiving load of successful full-scale sites. 

Regular monitoring would consist of DO, temperature, pH, COD, ammonium, nitrite 

and nitrate concentrations in the inlet and effluent and at 0.2 m intervals across 

the length and breadth of the system. Supporting microbial analyses would be 

conducted to quantify abundance and activity of ammonia-oxidising and nitrite 

oxidising-bacteria. This would require collection of the biofilm for DNA extraction 

and quantitative polymerase chain reaction (qPCR).  The increasingly common use 

of these techniques means target organisms (total bacteria, AOB, Nitrobacter, 

Nitrospira) and associated primer/probes and sequences are already known and 

can be found in the literature (Belluci et al, 2013, Kowalchuk et al, 1997, Graham et 

al, 2007, Harms et al, 2003).  Fluorescence in situ hybridisation (FISH) can then be 

employed for visualisation of the AOB and NOB and DGGE for diversity analysis. 

Results can then be compared to studies that have correlated process stability with 

diversity and composition of the nitrifying community to establish the required 
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levels in aerated HSSF CWs.  For example, quantitative studies based on real-time 

qPCR and FISH demonstrated that efficient nitrification can be achieved in WWTPs 

when the AOB concentration is higher than 105 cells/mL  (Coskuner et al. 2005; 

Graham et al, 2007; Knapp and Graham 2007; Pickering 2008; Wittebolle et al. 

2008).  

 

The next phase would test the length and frequency of aeration cycles to establish 

start up rate linked to the duration of dominancy (when not aerated). Once these 

had been established the pilot plant should be used to validate the findings and 

establish a link between shock loading profile (duration and peak concentration) 

and the amount of active bed required. 

 

In addition, experiments should be undertaken to establish the validity of 

bioaugmentation as a means of rapid start up and remedial action. Some evidence 

of the successes of bioaugmentation has been published with regards to 

nitrification start-up (Sahtoh et al, 2003, Rittmann and Whiteman, 1994) however 

further investigation is required to build confidence in its ability and reliability.  

The work would take the form of comparative sequence analysis of 16S rRNA 

genes and FISH to identify and monitor specific microorganisms in complex 

communities supported by high spatial resolution microelectrode measurements 

(Satoh, 2003, Okabe et al, 1999, De Beer et al, 1997). This will enable direct 

monitoring of whether the initial population dosed onto the bed subsequently 

proliferates and whether all of the community is equally able to act as a 

bioaugmentation agent.  
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9.2 Optimising the design 

Process water is known to affect the oxygen transfer rate. A low  of 0.3 was used 

to take into account the potential impact that enhanced contact time may have on 

mass transfer in real wastewater through additional accumulation of surface active 

agents suggested. However direct measurement would enable more accurate 

predictions and so the mass transfer study is recommended to be repeated with 

real wastewater as well as site commissioning of the aeration systems.  
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