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Using a shallow linguistic kernel for drug–drug interaction extraction Isabel Segura-
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A drug–drug interaction (DDI) occurs when one drug influences the level or activity of another drug. Information Extraction (IE) techniques can

provide health care professionals with an interesting way to reduce time spent reviewing the literature for potential drug–drug interactions. Nevertheless,

no approach has been proposed to the problem of extracting DDIs in biomedical texts. In this article, we study whether a machine learning-based method

is appropriate for DDI extraction in biomedical texts and whether the results provided are superior to those obtained from our previously proposed pat-

tern-based approach [1]. The method proposed here for DDI extraction is based on a supervised machine learning technique, more specifically, the shallow
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06) [2]. Since no benchmark corpus was available to evaluate our approach to DDI extraction, we created

3169 DDIs. We performed several experiments varying the config-uration parameters of the shallow

F-measure was eval-uated on the test data of the DrugDDI corpus, achieving a precision of 51.03%, a recall

proposed the first full solution for the automatic extraction of DDIs from biomedical texts. Our study

erforms our pre-vious pattern-based approach. Additionally, it is our hope that the DrugDDI corpus will

e DDI extraction problem.
1. Introduction extraction of relevant information on DDIs, as well as health care

professionals by reducing the time spent reviewing the relevant lit-
A drug–drug interaction (DDI) occurs when one drug influences
the level or activity of another, for example, increasing plasma con-

centration of the drug and potentially intensifying its side effects or

decreasing its plasma concentration and thereby reducing its

effectiveness. Since negative DDIs can be very dangerous, DDI

detection is the subject of an important field of research that is cru-

cial for both patient safety and health care cost control. Although

health care professionals are supported in DDI detection by differ-

ent databases, those being used currently are rarely complete, since

their update periods can be as long as three years [3]. Drug

interactions are frequently reported in journals of clinical pharma-

cology and technical reports, making medical literature the most

effective source for the detection of DDIs. Every year, 300,000 arti-

cles are published within the field of pharmacology alone [4]. The

management of DDIs is a critical issue, therefore, due to the over-

whelming amount of information available [5].

Information extraction (IE) can be of great benefit for both the 

pharmaceutical industry by facilitating the identification and
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erature. Moreover, the development of tools for automatically

extracting DDIs is essential for improving and updating the drug

knowledge databases.

Our focus is the detection of sentences carrying information

regarding a DDI as well as the specific drugs taking part in the

interaction. An additional study goal is to analyze the contribution

of current IE methods to DDI extraction and evaluate their perfor-

mance in select scenarios where technology aiding DDI detection

exists and is available. In a previous paper [1], we proposed a hy-

brid method combining shallow parsing and pattern matching to

extract DDIs from texts. Unfortunately, this initial approach yielded

poor results (precision = 48.89%, recall = 24.81%, F-mea-sure =

32.92%). In the present article, our approach is based on the use of

the shallow linguistic kernel-method [2] which has suc-cessfully 

been applied to the extraction of protein–protein interac-tions

(PPIs) and other relations in newspaper texts [6]. As it will be seen

in the following sections, the shallow linguistic kernel is based on

two configuration parameters, n-gram and window-size. In this

article we evaluate whether kernel performance is robust across

different domains and study the effect of the above-men-tioned

configuration parameters on the results. In order to train and

evaluate our system, we have developed the first annotated
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corpus with DDIs, the DrugDDI corpus. It is our belief that the 

DrugDDI corpus will help support and evaluate the long-term 

tion based on Support Vector Machines (SVMs) and the link

grammar parser [11]. The set of features included surface word,

improvement of technology in drug information management.

The paper is organized as follows: Section 2 reviews the princi-

pal approaches developed for the extraction of biomedical relations 

as well as related work on accessing pharmacological information 

for specific drugs. We describe our proposal in Section 3, detailing 

from Subsections 3.4.1, 3.4.2, 3.4.3, 3.4.4 the experiments con-

ducted on DDI extraction from biomedical texts and the results ob-

tained. Finally, Section 4 discusses principal conclusions drawn 

from the experiments as well as proposals for future research.
2. Related work
The goal of biomedical relation extraction is to detect occur-

rences of a predefined type of relationship between a pair of given

entity types (e.g., genes, proteins or drugs) in text. These relation-

ships may be very specific such as protein interactions (PPIs), phar-

macokinetic interactions between drugs or relationships between

genes and diseases. Although relationships can generally involve

three or more entities (e.g., drug-gene-disease relationships), most

of the existing approaches in relation extraction have focused on

the extraction of binary relationships. Typically, resulting data from

this task is stored in knowledge bases,which can either be consulted

directly by users or exploited by data mining algorithms to infer

new knowledge. Relation detection may also help to enhance the

presentation and results of specialized search engines for end users.

Different techniques have been proposed for the extraction of

biomedical relations, particularly PPIs, from texts. Current methods

for biomedical relation extraction (and relation extraction, in gen-

eral) may be classified in three main categories: linguistic-based,

pattern-based and machine learning-based approaches.

In linguistic-based approaches, linguistic technology is employed

to capture syntactic structures or semantic meanings that could be

helpful for the discovery of relations in unstructured texts. Pattern-

based approaches design a set of domain-specific rules (also called

‘patterns’) that encode and capture the various forms in which a gi-

ven relationship is expressed. In general terms, the linguistic-based

approaches perform well for capturing relatively simple binary

relationships between entities in a sentence, but fail to extract

more complex relationships expressed in various coordinate and

relational clauses [7]. Pattern-based approaches usually achieve

high precision, but low recall. Additionally, they are incapable of

handling long and complex sentences that are so common in bio-

medical texts.

As opposed to the previous approaches which require a labori-

ous effort in order to define grammars or a set of rules, machine

learning-based approaches enable the learning of meaningful mod-

els from annotated corpora. These approaches can be further clas-

sified as either feature-based and kernel-based depending on the

manner in which instances are represented.

In feature-based approaches, relation instances are represented

by a set of feature values. Two categories of features are usually se-

lected: (1) properties of single tokens including entity type, Parts-

of-Speech tag, lemma and other attributes of the tokens, and (2)

relations between tokens represented as the binary presence of

certain sequences, parse trees or dependency relations between to-

kens. In Katrenko and Adriaans [8], dependency parsing and three

machine learning algorithms (i.e.,naïve Bayes, BayesNet and K

nearest neighbors classifiers) were performed on the AImed [9]

and LLL corpora to detect PPIs. Precision ranged between 56%

and 81% and recall between 32% and 76% depending on the corpus

and classifier used. The highest performance was achieved with the

combination of the three classifiers on the AImed corpus (F-mea-

sure 72.7%). BioPPISVMExtractor [10] is a system for PPIs extrac-
keyword, protein name distance and link path features. The system

was trained with the IEAP corpus [12] and tested on the DIP [13]

corpus. The system achieved a recall of 70.04%, a precision of

49.28% and an F-measure of 57.85%.

In kernel-based approaches, relation instances are encoded as

structural representations such as bag-of-words, word-sequence,

parse trees or dependency graphs to measure the similarity be-

tween them. A word-sequence kernel can be defined as the num-

ber of common word subsequences between two relation

instances. Kernels do not need to represent each data instance onto

a flat set of features, but rather require a similarity measure be-

tween instances [14]. Moreover, several representations may be

combined by the use of composite kernels by operations like nor-

malization, scaling, linear combination or product.

In the last decade, several kernel-based methods have been pro-

posed to solve the problem of relation extraction in journalistic

texts. In Zelenko and Aone [15], several tree kernels were adapted

for the relation extraction task to calculate the similarity of shallow

parse trees including head, PoS and entity tags annotations. A rela-

tion instance was represented as the smallest shallow subtree con-

taining both entities in the relation. In Culotta and Sorensen [16],

an extension of the previous approach was proposed with a richer

sentence representation and through the use of composite kernels

to reduce kernel sparsity. Bunescu and Mooney [17] designed a

kernel-method using the shortest path between the two entities

in a dependency tree.

Recent years have seen these kernel-based methods applied to

the biomedical relation, as well. In Bunescu andMooney [18], a gen-

eralization of a sequence kernel was proposed using sequences con-

taining words and word classes. Experiments were performed for

extracting PPIs from biomedical corpora (AImed and LLL) and

top-level relations from newspaper corpora. For PPI extraction,

experiments conducted with the AImed corpus yielded an

F-measure = 59% (precision = 60.0%, recall = 57.2%)while LLL corpus

experiments achieved higher performance with an F-measure of

61.7% (precision = 62.1%, recall = 61.3%). Later experiments showed

that subsequence kernels performed better than the shortest path

kernel [19].

Based on the work above, Giuliano et al. [2] proposed a compos-

ite sequence kernel, the shallow linguistic kernel, that uses the

local context of entities and the global context of their relation to

perform the classification. It was evaluated on the AImed

(F-measure = 63.9%) and LLL (F-measure = 58.6%) corpora. We de-

scribe this kernel in more detail in Section 3.

Li et al. [20] compared different kernels for biomedical relation

extraction: a bag-of-words kernel, a subsequence kernel and the

tree kernel proposed in Zelenko and Aone [15]. A tree kernel aug-

mented with the trace from the root node of the smallest subtree

to the root of the full parse tree was also proposed. To evaluate

the kernels, a corpus was built of 2000 cancer-related abstracts

from Medline and a total of 8071 relation instances, 2156 of which

being identified as true relations. Best results were yielded by the

composite kernel combining the sequence kernel and the trace-

tree kernel, achieving an F-measure of 67.23% (recall = 64.68%, pre-

cision = 70.11%, accuracy = 83.14%).

In Airola et al. [21], a dependency-path kernel was proposed to

extract PPIs. Each relation instance was represented with a

weighted graph consisting of two unconnected subgraphs, one rep-

resenting the dependency structure of the sentence and the other

the linear order of the words. Experiments were performed across

five corpora annotated for PPIs (AImed, LLL, IEAP, BioInfer [22],

HPRD50 [23], DIP and BioCreAtIvE-PPI [24]) and demonstrated that

F-measures varied remarkably across the different corpora. An

important variable is the proportion of positive and negative
2



examples in each corpora (i.e., where positive and negative exam-

ples involve the respective existence and non-existence of a PPI be-

With regard to the different approaches to relation extraction

presented above, while hand-built patterns and linguistic-based
tween proteins in a sentence). The highest F-measure (56.4%) was

achieved on the AImed corpus. The above five corpora were unified

in a common format in Pyysalo et al. [25].

Recently, Tikk et al. [26] compared some of the above-men-

tioned convolution kernels (i.e., kernels based on the use of parse

trees or dependency graphs of sentences) for PPI extraction. Exper-

iments were performed on the above five gold standard corpora,

using different parameters and different evaluation metrics. They

showed that even the best kernel is not significantly better than

the RelEx system [26], a rule-based method not requiring any

training or parameter tuning.

2.1. Extracting drug information

The recognition of drug names is an essential prerequisite step

for the automatic discovery of DDIs from biomedical texts. While

many studies in biomedical named entity recognition have focused

on genes and proteins [27–33], only a few have addressed drug

names [34–36]. The DrugNer system [37] is a hybrid method that

combines semantic information provided by the Unified Medical

Language System (UMLS) MetaMap Transfer (MMTx) tool [38]

and a set of affixes recommended by the WHOINN program to

identify and classify drug names. The affixes enable the recognition

of drugs not detected by MMTx, and establish important informa-

tion such as drug families. Although experiments showed that af-

fixes alone are not sufficient enough for the detection of drugs,

they do help slightly improve coverage.

In our previous study [1], we proposed a set of syntactic pat-

terns to split long sentences into clauses from which DDIs were ex-

tracted by a pattern matching algorithm. Recently, Garcia-Blasco

et al. [41] proposed a method to detect DDI sentences based on

maximal frequent sequences.

In Kolarik et al. [39], the use of lexico-syntactic patterns was

proposed for the identification and extraction of relevant informa-

tion on pharmacological properties. The goal of the system was to

support database content update by providing additional descrip-

tions of pharmacological effects not found in databases like Drug-

Bank [40].

In Duda et al. [4], a corpus of 2000 abstracts of positive and neg-

ative drug interaction citations was manually created in order to

evaluate the use of an SVM for locating articles about DDIs. Never-

theless, the goal in this particular case was not the extraction of

relations, but rather the classification of articles reporting some

kind of interaction. A similar purpose was pursued by Rubin

et al. [42] in which an automated method was developed for the

identification of articles in Medline citations containing gene-drug

relationships. In that study, three types of statistical models (i.e.,

naïve Bayes, logistic regression, and a log-likelihood) and a heuris-

tic method (i.e., a ‘gene-drug filter’) were implemented to detect

pharmacogenetics articles. A sampling of the articles identified

from the Medline scans was then reviewed by a pharmacologist

to assess the performance of the method. The system achieved

an F-measure of 88% with a precision of 80% and a recall of 97%.

More recently, several machine learning algorithms were eval-

uated in Danger et al. [43] in order to obtain a satisfactory classifier

for the identification of drug target articles. Best results were

achieved by a fuzzy lattice reasoning classifier, reaching 98% of

ROC area under curve measurement.

2.2. Discussion

Although several works have applied text mining to related

problems in the pharmacological domain, none have carried out

research specifically on DDI extraction.
approaches achieve strong performance, it is also essential that do-

main experts get involved in the definition of these patterns and

the development of these linguistic tools. Such tasks require la-

bor-intensive manual processing with resulting patterns and tools

that are unable to easily adapt to other subdomains. Machine-

learning approaches, on the other hand, can be easily extended

to new domains or relations when annotated corpora to support

their training are created.

Certain studies [15,20] have declared that tree kernels not only

outperform feature-based methods, but also achieve better results

than sequence kernels. It is difficult, however, to reach a conclusion

in this case since experiments have been performed on different

corpora with different distributions and different experimental

conditions. Conversely, in Tikk et al. [26] convolution kernels were

shown to provide no significant improvement when compared to

rule-based methods. One final issue to consider is the computa-

tional complexity of tree kernels [17,20] which may render them

inappropriate for practical purposes.

Another important issue is that some research on relation

extraction has evaluated only the relation detection step (i.e.,

assuming perfect linguistic analysis and entity identification),

while others have presented results of a complete system that

may have potentially included cascading errors produce by NERC,

PoS taggers and parsers. For example, one of the advantages of

the shallow linguistic kernel [6] is that it has been shown to be ro-

bust to noise generated through the use of NERC output.

In this paper, our ultimate goal is to compare the performance

of a machine learning method with that of our previous approach

[1] based on the use of patterns and yielding an F-measure in

experiments of only 33.64%. Following consideration of the issues

described in this section, we have selected sequence kernels and,

in particular, the shallow linguistic kernel proposed in Giuliano

et al. [2] as the DDI extraction method to be studied. Motivating

the selection was our use of the UMLS MetaMap Transfer (MMTx)

tool [38] to analyze the DrugDDI corpus (MMTx only provides shal-

low syntactic and semantic information) and the findings in Tikk

et al. [26] that the kernel was nearly as good as the best depen-

dency-based kernels.

3. Method
The main goal of this work is the automatic extraction of DDIs

from texts. We address the problem using an IE method based on

supervised machine learning and kernel-methods. To train and

evaluate our approach, we developed and used a corpus of text

containing potential DDIs. This corpus is described in Subsection

3.1. Subsection 3.3 briefly describes the details of the kernel that

we selected, the shallow linguistic kernel initially proposed in

Giuliano et al. [2] and used here. Results and experiments regard-

ing the different models have been outlined in Subsection 3.4. This

subsection also includes additional experiments performed in re-

sponse to the imbalanced nature of the data.

3.1. Dataset
In certain studies [44,22,9,24], the biomedical corpora pre-

sented focused on the description of several relationships between

biological entities. None, however, contained DDIs.

While Natural Language Processing(NLP) techniques are rela-

tively domain-portable, corpora are not. For this reason, we created

the first annotated corpus, the DrugDDI corpus, studying the phe-

nomenon of interactions among drugs. This corpus allows us to

automatically evaluate our approach for extracting DDIs from
3
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Fig. 1. DrugBank card for Heparin.

792
biomedical texts. Moreover, we believe that the corpus may also
serve to encourage the NLP community to conduct further research
in the field of pharmacology.

We used the DrugBank database [40] as the source of unstruc-
tured textual information on drugs and their interactions. Drug-
Bank is a chemical and pharmaceutical database containing 
information of approximately 4900 pharmacological substances. 
This database provides information oriented to biochemists and 
biologists regarding the nomenclature, structure and physical 
properties of drugs and their drug targets. DrugBank also offers de-
tailed clinical information often used by healthcare professionals 
about drugs including pharmacology, metabolism and indications. 
The database has enjoyed wide use in several contexts including 
drug design, drug target discovery or drug interaction prediction, 
among many other applications. Furthermore, it is a free, online 
resource.

For each drug, DrugBank contains more than 100 data fields
including drug synonyms, brand names, chemical formula and
structure, drug categories, ATC and AHFS codes (i.e., codes of stan-
dard drug families), mechanism of action, indication, dosage form
and toxicity (see Fig. 1). Of particular interest to this study, Drug
Bank offers a complete collection of DDIs, which was compiled from
several resources, checked by an accredited pharmacist and entere
manually into the database. This collection consists of 714 foo
interactions and 13,242 drug–drug interactions containe
respectively in the structured information fields, food interaction
and drug interactions (see Fig. 2).

Additional information can be found in the field ‘interactions’ (se
Fig. 3), containing a link to a document describing DDIs i
unstructured texts. This document not only contains a detaile
description of the interactions contained in the above-mentione
fields (i.e., ‘food interactions’ and ‘drug interactions’), but also of-fer
information on other interactions not included therein. For th
present study, we used the ‘interactions’ field as a source o
unstructured textual information on DDIs. We believe that thes
texts are a reliable and representative source of data for expressin
DDIs since the language used is mostly devoted to descriptions o
DDIs. Additionally, the highly specialized pharmacological
4



Fig. 2. Food and drug interaction fields in Heparin drug card.

Fig. 3. Interactions field linked document from Heparin drug card describing DDIs.
language is very similar to that found in the Medline pharmacology 
abstracts.

Due to the cost-intensive and time consuming nature of the 
annotation process, we randomly selected a subset of 579 docu-
ments to be annotated for the present study. We used the Kapow’s 
free RoboMaker screen-scraper1 to download the interaction docu-
ments. These documents were then analyzed by the UMLS MetaMap 
Transfer (MMTx) tool performing sentence splitting, tokenization, 
POS-tagging, shallow syntactic parsing (see Fig. 6) and linking of 
phrases with UMLS Metathesaurus concepts.

Fig. 4 shows part of the output produced by MMTx for a given 
document. The output of MMTx is transformed into XML format 
providing maximum flexibility for the use of the DrugDDI corpus. In 
this transformation process, MMTx first splits the text into sen-
tences. The SPECIALIST minimal commitment parser [45] is then 
used to produce a shallow syntactic parsing of the texts where 
phrases in each sentence are identified and classified. The resulting 
XML document gives the type, number of tokens, text and an iden-
tifier for each phrase.

The parser then uses the SPECIALIST lexicon to assign POS tags 
to the tokens, relying on the Xerox part-of-speech tagger [46] in or-
der to determine on the correct tag when a token has several tags 
in the lexicon. Each token is annotated with its POS tag, word, and 
a boolean value indicating if it is the head of the phrase (i.e., the
1 http://openkapow.com/.
attribute ‘ISHEAD’). In addition, the start and end offsets of each to-
ken within the text are stored in the attributes, ‘start’ and ‘end’, 
respectively. These character offsets enable the mapping from 
the annotation to the raw text. Fig. 4 shows the tokens and their 
offsets contained in the phrase ‘with alprazolam,’.

For each phrase, a set of variants is generated using the SPE-
CIALIST lexicon and linguistic techniques. These variants are the 
text of the phrase plus its acronyms, abbreviations and synonyms, 
as well its derivational, inflectional and spelling variants. These 
variants are then searched for in the UMLS Metathesaurus, retriev-
ing those concepts containing at least one of them. Each concept is 
evaluated against the text of the phrase using several linguistic 
metrics to determine its similarity. Finally, those concepts with the 
highest similarity are selected as the final mapping. A more de-
tailed description of this process can be found in Aronson [47]. For 
each concept in the final mapping set, MMTx provides its concept 
unique identifier (CUI), concept name and semantic types.

In this way, drugs are automatically identified by MMTx since 
the tool allows for the recognition and annotation of biomedical 
entities occurring in texts according to the UMLS semantic types 
(e.g., Clinical Drug [clnd], Pharmacological Substance [phsu], Anti-
biotic [antb]). As an example, Fig. 5 shows that the phrase ‘Aspirin’ 
is classified with the semantic type ‘pharmacological substances 
(phsu)’.

The principal value of the DrugDDI corpus undoubtedly comes 
from its DDIs annotations. To obtain these annotations, all docu-
5



Fig. 4. Example of document processed by MMTx.

Fig. 5. Mapping for the phrase, ‘Aspirin’.

Fig. 6. Example of DDI annotations.
ments were marked-up by a researcher with pharmaceutical back-
ground. DDIs were annotated at the sentence level and, thus, any
interactions spanning over several sentences were not annotated
here. For the annotation of interactions, then, the annotator needs
only select a sentence and indicate the interacting drugs. The anno-
tator should then annotate an interaction for each pair of interact-
ing drugs.

Fig. 6 shows an example of an annotated sentence in our XML 
format containing three interactions. Each interaction is repre-
sented as a DDI node in which the names of the interacting drugs 
are registered in its NAME_DRUG_1 and NAME_DRUG_2 attributes.
The identifiers of the phrases (i.e., ‘DRUG_1’ and ‘DRUG_2’) con-
taining these interacting drugs were also provided to enable access 
to the related concepts provided by MMTx.

Table 1 shows basic statistics of the DrugDDI corpus. In general, 
the size of biomedical corpora is quite small and usually does not 
exceed 1000 sentences. The average number of sentences per Med-
Line abstract was estimated at 7.2 ± 1.9 [48]. Our corpus contains 
5806 sentences with 10.3 sentences per document on average. 
MMTx identified a total of 66,021 phrases of which 12.5% (8260) 
are drugs. The average number of drug mentions per document was 
24.9, and the average number of drug mentions per sentence
6



Table 1
Basic statistics on the DrugDDI corpus.

Number Avg. per document

Documents 579
Sentences 5806 10.03
Phrases 66,021 114.02
Tokens 127,653 220.47
Sentences with at least one DDI 2044 3.53
Sentences with no DDI 3762 6.50
DDIs 3160 5.46 (0.54 per sentence)

Table 2
Distribution of positive and negative examples in training and testing datasets.

Set Documents Examples Positives Negatives

Train 437 (75.5%) 25,209 2421 (9.6%) 22,788 (90.4%)
Final test 142 (24.5%) 5548 739 (13.3%) 4809 (86.7%)
Total 579 30,757 3160 (10.27%) 27,597 (89.73%)

Table 3
Training and testing datasets.

Set Documents Sentences Drugs DDIs

Training 437 4578 2560 2421
Final test 142 1228 753 739
Total 579 5806 3313 3160
was 2.4. The corpus contains a total of 3775 sentences with two or 
more drug mentions, although only 2044 sentences contain at least 
one interaction. With the assistance of a pharmacist, a total of 3160 
DDIs were with an average of 5.46 DDIs per document and 0.54 per 
sentence. The DrugDDI corpus is available for research purposes at 
http://labda.inf.uc3m.es/DrugDDI/.

3.2. DDI relation extraction as a classification task

In our approach, DDI extraction is formulated as a supervised
learning problem, more particularly, as a drug pair classification
task. Therefore, a crucial step is to generate suitable datasets to
train and test a classifier from the DrugDDI corpus. The simplest
way to generate examples to train a classifier for a specific relation
R is to enumerate all possible ordered pairs of sentence entities. In
our study, we proceeded in a similar way. Given a sentence S with
at least two drugs, we defined D as the set of drugs in S and N as the
number of drugs. The set of examples generated for S, therefore,
was defined as follows: {(Di,Dj): Di,Dj � D,1 6 i, j 6 N, i – j, i < j}.

If the interaction existed between the two DDI candidate drugs,
then the example was labeled 1. Otherwise, it was labeled 0.
Although some DDIs may be asymmetrical, the roles of the inter-
acting drugs were not included in the corpus annotation and are
not specifically addressed in this article. As a result, we enumerate
candidate pairs here without taking their order into account, such
that (Di,Dj) and (Dj,Di) are considered as a single candidate pair.

Since the order of the drugs in the sentence was not taken into
account, each example is the copy of the original sentence S where
the candidates were assigned the tag, ‘DRUG’, and remaining drugs
were assigned the tag, ‘OTHER’. The set of possible candidate pairs
was the set of 2-combinations from the whole set of drugs appear-

ing in S. Thus, the number of examples was CN;2 ¼
N
2

� �
.

The sentence shown in Fig. 7 contains four drugs: ‘aspirin’, 
‘probenecid’, ‘sulfinpyrazone’ and ‘phenylbutazone’. Therefore,

the total number of examples generated is C4;2 ¼
4
2

� �
¼ 6.

Table 2 shows the total number of relation examples or 
instances generated from the DrugDDI corpus. In our corpus con-
Fig. 7. Labeling candidate drugs.
sisting of a total of 5806 sentences (see Table 1), we considered 
only those sentences with at least two drugs, obtaining 3775 sen-
tences with 3313 different drug types. Among the 30,757 candi-
date drug pairs, only 3160 (10.27%) were marked as positive 
interactions (i.e., DDIs) while 27,597 (89.73%) were marked as neg-
ative interactions (i.e., non-DDIs).

Once we generated the set of relation instances from the Drug-
DDI corpus, the set was then split in order to build the datasets for 
the training and evaluation of the different DDI extraction models. 
In order to build the training dataset used for development tests, 
75.5% of the DrugDDI corpus files (437 files) were randomly se-
lected. The remaining 24.5% (142 files) was used in the final eval-
uation to determine which model was superior. Table 3 shows the 
distribution of the documents, sentences, drugs and DDIs in each 
set. Approximately 90% of the instances in the training dataset 
were negative examples (i.e., non-DDIs). The distribution between 
positive and negative examples in the final test dataset was also 
quite similar (see Table 2).

With our modeling, we treated DDI extraction as a classification 
problem between pairs of entities having been annotated as drugs. 
Relation extraction was performed using the MMTx annotation 
including tokenization, POS-tagging, lemmatization and chunking. 
In addition, it also provides semantic annotation by linking phrase 
concepts to UMLS concepts. For the present study, we chose the 
shallow linguistic kernel originally proposed in Giuliano et al. [2] 
due to its strong performance using only shallow linguistic infor-
mation and its robustness in the face of annotation errors, such 
as the incorrect identification of named entities and their 
boundaries.

3.3. Shallow linguistic kernel

Machine-learning classifiers try to find optimal frontiers be-
tween classes. When the instances of classes are not linearly sepa-
rable, kernel methods can transform the problem space to a higher
dimensional space, in which the instances might be separable. For-
mally, a kernel function is a binary function K:X � X ? [0,1) that
maps a pair of instances x, y 2 X to their similarity score K(x,y).
The kernel function must satisfy the following:

8x; y 2 X : Kðx; yÞ ¼ h/ðxÞ;/ðyÞi; ð1Þ

where / : X ! F # Rn is a mapping from the input space X to a vec-
tor space F. The mapping function / transforms each instance x 2 X
into a feature vector /(x) = (/1(x),/2(x), . . . ,/m(x)), where /i : X ! R,
with no need to know the explicit representation of x. Thus, the
mapping function / allows K(x,y) to be expressed as the dot-prod-
uct of the features vectors of the input objects x and y. The kernel
function allows for the computation of the product of the two
embedded vectors without requiring any prior knowledge
7



Fig. 9. Example of global context kernel for n-gram = 2.
regarding the features of each vector. Global and local context ker-
nels are normalized using Eq. (3) to integrate information from het-
erogeneous feature spaces (e.g., combining tokenization, PoS tags or 
entity tags).

8x; y 2 X : Kðx; yÞ ¼ h/ðxÞ;/ðyÞi ¼
Xm

i¼1

/iðxÞ � /iðyÞ: ð2Þ

Kðxi; xjÞ ¼
h/ðxiÞ;/ðxjÞi
k/ðxiÞkk/ðxjÞk

ð3Þ

The shallow linguistic kernel (KSL) is a composite kernel defined in 
Giuliano et al. [2] as the linear combination of two different se-
quence kernels, a global context kernel (KGC) and local context ker-
nel (KLC). In Eq. (4), Ri and Rj represent examples of two different 
candidate DDI between drugs.

KSLðRi;RjÞ ¼ KGCðRi;RjÞ þ KLCðRi;RjÞ ð4Þ

Global context kernel. The global context kernel is designed to dis-
cover the presence of a relation between two entities by using infor-
mation from the whole sentence. Its basis can be explained by the 
following observation from Bunescu and Mooney [18]: ‘‘When a 
sentence asserts a relationship between two entity mentions, it 
generally does this using one of the following three contexts: 
fore-between, between, and between-after’’. In other words, a rela-
tionship between two entities is usually expressed using the words 
appearing before and between the entities (i.e., fore-between pat-
tern [FB]), only between them (i.e., between pattern [B]) or between 
and after them (i.e., between-after pattern [BA]).

The global context kernel, therefore, is a composite kernel
formed by the linear combination of kernels defined for the three
contexts relevant for the detection of relations, as shown in follow-
ing equation.

KGCðR1;R2Þ ¼ KFBðR1;R2Þ þ KBðR1;R2Þ þ KBAðR1;R2Þ ð5Þ

As stated in Giuliano et al. [2], while this kernel uses only lexical to-
kens or words, it is important to note that its representation never-
theless preserves stop words and punctuation marks since they 
found to be useful tokens for the relation extraction task. For each 
of the three patterns described above, the representation uses the 
term frequency of tokens in the context C, tf(ti, C). To calculate the 
similarity between two patterns, the authors proposed the use of 
the n-gram kernel, also known in the literature as the n-spectrum 
kernel [14]. The n-gram kernel compares two relation instances 
by counting the common n-grams between the two in each of the 
three contexts discussed above (i.e., FB, B and BA). Figs. 8 and 9 
present examples of a global context kernel calculated with 
n-gram = 1 and n-gram = 2, respectively, in order to estimate the 
similarity between two relation instances. While the 1-g kernel only 
counts the unigrams in common, the 2-gram kernel scores both uni-
grams and bigrams.

Local context kernel. The local context kernel is based on the
hypothesis that the contextual information of candidate entities
is particularly useful for the verification of a relationship existing
Fig. 8. Example of global context kernel for n-gram = 1.
between them. In particular, windows of limited size around enti-
ties provide useful clues for the identification of the entities’ roles
within a relation.

Therefore, Giuliano et al. [2] used the information provided by 
the two local contexts of the candidate interacting entities, called 
left and right local context, respectively. Each local context was 
represented using lexical and morphological features such as to-
kens, lemmas, PoS tags and stems. Each example was basically rep-
resented as an instance of the original sentence with the two 
candidate entities properly annotated (i.e., with the tag ‘DRUG’ in 
the case of the present study). The roles of the candidates are la-
beled with the tags ‘A’ (agent) and ‘T’ (target) which, in the case of 
the present study, were always the first and second arguments, 
respectively. Any other entity or tokens that were not candidates 
were labeled ‘O’. Since MMTx does not provide lemmatization, our 
approach here used a ‘stem’ feature rather than ‘lemma’. We 
obtained stems using the Porter Stemming Algorithm [49]. Then, 
the local context kernel can be defined as the sum of the left and 
right context kernels, as shown in the following equation:

KLCðR1;R2Þ ¼ KleftðR1;R2Þ þ KrightðR1;R2Þ ð6Þ

KLC differs substantially from KGC in that it considers the ordering of 
tokens and enriches the feature space with PoS tags, lemmas, stems 
and orthographic features. A more detailed description of both ker-
nels can be found in Giuliano et al. A more detailed description of 
both kernels can be found in Giuliano et al. [2].

In the same study [ibid.], the authors also developed a Java tool 
for Relation Extraction (jSRE) in order to implement their shallow 
linguistic kernel. This jSRE implementation used the SVM package 
LIBSVM [50]. The kernel was represented by a matrix containing 
the pairwise similarity of all instances. This matrix was then passed 
over to the LIBSVM, where it was used to learn a classifica-tion 
function (Eq. 7). The SVM classification function takes the form 
f(x) =  wx � b where w is the weight vector and b is the bias com-
puted by the SVM in the training process. When the training data is 
not linearly separable, linear SVMs must be extended to nonlin-ear 
SVMs through the use of a mapping function / transforming the 
input vectors into high-dimensional feature vectors. Thus, the
weight can be reformulated as: w ¼

P
aiyi/ðxiÞ where /(xi) are

the support vectors. As the SVM computed the dot-product be-
tween instances, it can be generalized to kernels since these func-
tions are defined as the dot-product in some expanded feature 
space. Hence, applying Eq. (2), the classification function becomes:

f ðxÞ ¼ wx� b ¼ w/ðxÞ � b ¼
X

aiyi/ðxiÞ/ðxÞ � b

¼
X

aiyiKSLðxi; xÞ � b ð7Þ

In both general and biological domains, jSRE has demonstrated 
strong performance [2,6]. We conducted a set of experiments to 
study the new problem of DDI extraction from biomedical texts.
8



Table 4
Average results shallow linguistic kernels according to parameters. The highest scores
are marked with asterisks (⁄).

Experiment Avg. P Avg. R Avg. F1

allDDI 0.11 1 0.19

n-gram = 1, window-size = 1 0.4238 0.7841 0.5490
n-gram = 1, window-size = 2 0.4397 0.7863⁄ 0.5630
n-gram = 1, window-size = 3 0.4551 0.7748 0.5727

n-gram = 2, window-size = 1 0.4693 0.7079 0.5632
n-gram = 2, window-size = 2 0.4914 0.7115 0.5797
n-gram = 2, window-size = 3 0.4887 0.7079 0.5779

n-gram = 3, window-size = 1 0.5040 0.7321 0.5964⁄

n-gram = 3, window-size = 2 0.5079 0.6963 0.5861
n-gram = 3, window-size = 3 0.5207⁄ 0.6996 0.5964⁄
3.4. Experiments

This subsection describes the experiments run in the present
study to evaluate the effectiveness of the shallow linguistic kernel.
Since one of our main objectives was to investigate the influence of
the configuration parameters of the jSRE tool – namely, window-
size of the local context and n-gram of the global context – on final
performance, we designed a set of experiments in which these
parameters were varied. Additionally, due to the greately imbal-
anced nature of the training and test data (i.e., with regard to neg-
ative and positive examples), different experiments were also run
in an attempt to compensate for this fact.

Starting out, we considered as baseline system, referred to here 
as allDDI, the case in which every relation instance was classified as 
a DDI (i.e., a positive example). This baseline yielded the maximum 
recall, but low precision. Evaluated on the test dataset, the baseline 
system achieved a baseline precision of 11% and F-measure of 19%
(see Table 4, row 1).

3.4.1. Kernel selection experiments
In our experiments, we used 10-fold cross-validation on the

training dataset. For each run, nine folds were used to train a mod-
el that was evaluated with the remaining fold. The folds were built
considering that examples from the same sentence must belong to
the same fold. We followed the OAOD (One Answer per Ocurrence in
Fig. 10. Average results for s
the Document) [51] evaluation methodology, such that, each indi-
vidual occurrence of a DDI had to be extracted from the document
regardless of the number of times it was stated.

For the present study, we ran a number of experiments varying 
configuration parameter values for the local and global kernels in 
order to contrast performance trade-offs. For the global kernel, 
the principal parameter is the n-gram size which we varied here 
between 1 and 3. For the local kernel, the primary parameter is 
the size of the window delineating the context around the candi-
date entities. We varied window-size in equal length from ±1 to
±3. One reason for this selection is that for the two parameters, 
jSRE implementation does not allow for values superior to 3. The 
average 10-fold cross-validation results are presented in Table 4 
above.

Table 4 and Fig. 10 show performance to differ significantly from 
one configuration to another with average precision ranging from 
42.38% (n-gram = 1, window-size = 1) to 52.07% (n-gram = 3, 
window-size = 3) and average recall from 69.63% (n-gram = 3, win-
dow-size = 2) to 78.63% (n-gram = 1, window-size = 2). Thus, the 
highest average precision (52.07%) was achieved with an n-gram 
and window-size of 3 and the highest average recall (78.63%) 
was achieved with an n-gram of size 1 and window-size of 2. On 
the contrary, these latter two parameter values (n-gram = 1, win-
dow-size = 2) yielded the second lowest average precision 
(43.97%). The highest average F-measure (59.64%) was achieved 
with an n-gram of size 3 and a window-size of either 1 or 3.

As parameter values increase, the average precision improved
and the average recall declined. Across the experiments generally,
a small n-gram size favored the obtainment of a higher recall value
while a larger n-gram favored the obtainment of greater precision
value. The choice of the parameter window-size, however, does not
seem to have significantly affected performance (save for an n-
gram of size 3). Such results are coherent with the fact that the
window-size parameter is designed to identify the roles of entities
within a relation, a consideration not addressed in the context of
our current DDI annotation. Among the trained models, we
selected the model maximizing both F-measure and precision
(n-gram = 3, window-size = 3) in order to avoid overloading data-
base curators with too many false positives during DDI extraction.
Nevertheless, it is important to note that a different choice may
hallow linguistic kernel.

9



Table 5
Comparative analysis of global, local and shallow kernels. The highest scores are
marked with asterisks (⁄).

Kernel P R F

Global context (n-gram = 3) 0.5158 0.7114 0.5974⁄

Local context (window-size = 2) 0.4387 0.7843⁄ 0.5618
Shallow (n-gram = 3,window-size = 3) 0.5207⁄ 0.6996 0.5964

Table 6
Final results obtained by the shallow kernels. The highest scores are marked with
asterisks (⁄).

TP FP FN P R F

allDDI 739 6270 0 0.11 1 0.19

n-gram = 1, window-size = 1 569 724 178 0.4401 0.7617⁄ 0.5578
n-gram = 1, window-size = 2 555 683 192 0.4483 0.7430 0.5592
n-gram = 1, window-size = 3 552 641 195 0.4627 0.7390 0.5691

n-gram = 2, window-size = 1 562 579 185 0.4926 0.7523⁄ 0.5953
n-gram = 2, window-size = 2 557 580 190 0.4899 0.7456 0.5913
n-gram = 2, window-size = 3 553 557 194 0.4982 0.7403 0.5956

n-gram = 3, window-size = 1 539 568 208 0.4869 0.7216 0.5814
n-gram = 3, window-size = 2 542 549 205 0.4968 0.7256 0.5898
n-gram = 3, window-size = 3 544 522 203 0.5103⁄ 0.7282 0.6001⁄
have been justified following an exhaustive search in other types of
information access applications.

In our kernel evaluations, we evaluated each kernel separately 
in order to analyze the contributions of the global and local kernels 
to the overall shallow linguistic kernel. Table 5 presents the results 
yielded with optimal configurations for each kernel type. Results 
show that global context is more useful than local context for DDI 
detection since highest F-measure (59.74%) was achieved with the 
former rather than the latter. Although the local kernel was de-
signed to identify the roles of candidate entities within a relation 
[2], our results show that the local kernel also positively influences 
DDI detection since the combination of both kernels improved the 
precision (52.07%), though also causing a slight decrease in the F-
measure (59.64%). The model using a global context kernel with n-
gram = 1 and no local context kernel is very similar to traditional 
bag-of-words instance representation with an SVM classifier. This 
configuration showed a precision of 40.18%, a recall of 71.28%and 
an F-measure of 50.78%. These results confirm the usefulness of the 
composite kernel and, particularly, the advantage obtained by 
using larger n-grams.

Finally, the shallow kernel (trained with n-gram = 3 and win-
dow-size = 3) was evaluated on the final testing dataset, achieving a 
precision of 51.03%, a recall of 72.82% and an F-measure of 60.01%
(see Table 6). With regard to the baseline F-measure recorded,
Fig. 11. Learni
these results represent an improvement of 41%. In addition, we also 
evaluated the other models from Table 10 using the final test 
dataset. In general, results for each model were similar to those ob-
tained from the 10-fold cross-validation experiments.

Learning curves are useful to show the results achieved in the 
learning process for different percentages of training documents 
used. We used the jSRE configuration (n-gram = 3 and window-size 
= 3) having yielded the best results in the previous experi-ments 
discussed. In Fig. 11, we calculated the F-measure, precision and 
recall for different percentages of training documents used. As 
demonstrated in Fig. 11, performance barely improved when the 
training size was increased to beyond 60% of the training corpus.

Several works have reported that metrics derived from the con-
fusion matrix provide a poor estimate of the performance of a 
model [52]. Additionally, these metrics are highly sensitive to data 
anomalies such as class skew. Receiver Operator Characteristic 
(ROC) curves offer an alternative to traditional metrics since ROC 
curves describe classifier behavior regardless of class distributions 
or error costs.

Before offering a definition of ROC curves, it is important to
briefly review two performance metrics here. The false positive
rate (FPR) is the percentage of negative examples misclassified as
positive, whereas the true positive rate (TPR), or recall, measures
the fraction of positive examples correctly labeled as such. Typi-
cally, ROC graphs are constructed by plotting the TPR along y-axis
and the FPR along the x-axis. ROC curves are able to depict results
information in a more robust and intuitive manner than traditional
metrics. At the same time, however, ROC curves may also provide a
too optimistic view of classifier performance when dealing with
highly skewed datasets.

Precision-recall (PR) curves are an alternative to ROC curves
when there is a large skew in the class distribution. In PR space, re-
call (TPR) is plotted along the x-axis and Precision along the y-axis.
Precision-recall curves are more suitable for our data since the
amount of negative examples (90%) greatly exceeds the amount
of positives examples (10%).

When a corpus is unbalanced, for example, when the number of 
negative examples greatly exceeds the number of positives exam-
ples, a small change in the number of false positives may be dis-
guised by the large number of true negative in FPR (FP/(FP + TN)). 
While, in turn, precision (TP/(TP + FP)) is able to reflect the effect 
of the large number of negative examples on classifier performance 
because precision compares quantities in a closer order of magni-
tude (FP to TP rather than TN). Therefore, PR curves are more suit-
able than ROC curves for comparison in unbalanced datasets. In 
addition, Davis and Goadrich [53] showed that there is a strong 
connection between ROC space and PR space, such that a curve 
dominates in ROC space if and only if it dominates in PR space.
ng curves.
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Fig. 12. ROC and precision-recall curves.
We generated both kinds of curves using the ROCR [54] pack-
age for visualizing classifier performance (Fig. 12). Whereas it is 
very difficult to distinguish between the different ROC curves 
produced, PR curves provide for more adequate distinctions be-
tween the different models. Moreover, PR curves were recom-
mended by Jiang et al. [55] in cases when ROC curves are not 
capable of revealing differences in the performance of different 
classifiers. Scrutiny of the PR curves presented in Fig. 13 shows that 
an increase of both parameters led to improved perfor-mance, 
though the parameter n-gram exerted a greater influence on 
performance than window-size. Furthermore, improvement was 
greater when the n-gram parameter was increased from 1 to 2 than 
when it was increased from 2 to 3. Fig. 12 shows the ROC and PR 
curves predicted from all models. It can be ob-served that the 
model with n-gram = 3 and window-size = 3 dominates both ROC 
and PR spaces. Therefore, this model is at least as good as all other 
models for all possible error costs and class distributions. This 
finding is consistent with the results shown in Tables 4 and 6.
3.4.2. Statistical significance tests
McNemar’s significance test [56] is a v2-based significance test 

used to compare two groups, such as two classifiers or two popu-
lation samples. We applied the McNemar’s significance test to 
compare the performance of the different configurations and 
determine whether or not they differ significantly. Thus, for each 
pair of possible configurations Ca and Cb, their corresponding mod-
els were performed on the final test document set. The classifica-
tion of each example in the test set by each model was recorded, 
counting the number of examples correctly classified by Ca and Cb 

(n11), the number of examples correctly classified by Ca but not by 
Cb (n10), the number of examples misclassified by Ca but not by Cb 

(n01), and the number of examples misclassified by both Ca and Cb 

(n00). The contingency matrix shown in Table 7 was then built for 
any pair of configurations.

McNemar’s test is based on a v2 goodness-of-fit test comparing 
the distribution of counts expected under the null hypothesis to the 
counts observed. The null hypothesis H0 states that the two 
configurations should have the same error rate (i.e., n10 = n01).
11
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Fig. 13. Precision-recall curves.
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According to Dietterich [57], under the null hypothesis the follow-

ing statistic (see Eq. 8) is distributed as an v2 distribution with one

The most frequent cause of false positives was the system’s

incapability to distinguish between drugs constituting an apposi-

Table 7

McNemar’s test contingency table.

n11 n10
n01 n00

Table 8

v statistic values using McNemar’s test. The highest scores are marked with asterisks

(⁄).

Table 9

Principal causes of false positives generated.

Cause %

Requiring resolution of coordinate structures and appositions 46

Requiring negation treatment 34

MMTx appositions 14

Corpus error 6

Table 10

Causes of error of false negatives generated.

Error in prediction model 41%

Detection of appositions and coordinate structures 24%

Long DDI descriptions 16%

Resolution of complex and compound sentences required 7%

Treatment of negation required 7%

Resolution of anaphora and cataphora required 5%
degree of freedom.

v ¼
ðjn01 ÿ n10j ÿ 1Þ2

n01 þ n10

ð8Þ

To test for significance, v2 was compared to the appropriate v2 ta-

ble. Results with a probability greater than or equal to 0.05 are gen-

erally considered to be significant. Thus, the null hypothesis was

correct if v2 was lower than v2
1;0:05 ¼ 3:841459. In other cases, the

null hypothesis could be rejected in favor of the other hypothesis

that the two configurations produce different levels of performance.

Table 8 summarizes the v statistic values for the pairwise com-

parison of the nine possible configurations using the McNemar’s

significance test (i.e., a total of 36 [9�8/2] comparisons). Each cell

of this pairwise comparison matrix represents the v statistic value

for a given pair of configurations.

Given the v statistic values for the pairwise comparisons, differ-

ences in performance for pairs of configurations with n-gram

parameters set at 2 are not significant. Similarly, any configuration

with an n-gram of 2 does not significantly differ from those config-

urations with an n-gram equal of 3 and a window-size of less than

3 (see the gray cells in Table 8). Therefore, it may be concluded that

those configurations with an n-gram parameter ranging in size

from 2 to 3 and window-size parameter of less than 3 have the

same rate error. As can be observed in Tables 4 and 6, these config-

uration pairs demonstrated very similar performance in the exper-

iments run here.

On the other hand, the last column in Table 8 shows that values

for the configuration with an n-gram and window-size of 3 signifi-

cantly differs from all others. As these values support the findings

from our experiments, we may assert that this configuration

(n-gram = 3andwindow-size = 3) achieves thehighestperformance.

3.4.3. Error analysis

Despite the findings above, it is important here to discuss cer-

tain limitations in our approach. Evaluated with the final test set

(containing a total 739 DDIs), even the model with the highest

F-measure (n-gram = 3, window-size = 3) was observed making a

total of 597 errors, 276 of which being false negatives (i.e., interact-

ing pairs that the system failed to detect) and 321 of which being

false positives (i.e., pairs wrongly extracted by the system). To

better understand these limitations of the system, we selected a

random sample of 75% of these false positives and negatives for er-

ror analysis. Tables 9 and 10 present the principal causes for the

false positives and false negatives generated, respectively.
tion or a coordinate structure, and therefore, to recognize that they

cannot interact. The following sentences are some examples of

these false positives:

Bentiromid may interact with acetaminophen (e.g., Tylenol),

chloramphenicol (e.g., Chloromycetin), local anesthetics (e.g.,

benzocaine and lidocaine), para-aminobenzoic acid (PABA) – con-

taining preparations (e.g., sunscreens and some multivitamins),

procainamide (e.g., Pronestyl), sulfonamides (sulfa medicines), thi-

azide diuretics (use of these medicines during the test period will

affect the test results).

A possible approach to improve our system, therefore, could be

to introduce a pre-processing step to detect appositions and coor-

dinate structures.. Thus, the pairs of drugs contained within these

structures could be removed from the set of possible relation in-

stances. The second most important cause identified was the sys-

tem’s inability to properly deal with negation. For example, an

interaction between azithromycin and warfarin was wrongly de-

tected by the system in the following sentence: ‘Azithromycin

did not affect the prothrombin time response to a single dose of

warfarin’.

Another frequent cause of false positives were parsing errors

made by MMTx. Furthermore, certain erros were caused by the

incorrect classification of drug names by MMTx. Approximately

6% of the false positives analyzed were due to corpus annotation

errors. In other words, the candidate pair actually represented a

DDI and was identified as such by the system; however, the ab-

sence of an annotation as such in the corpus led to its classification

as a false positive.

Regarding false negatives (see Table 10), the most frequent was

the need for patterns that could not be extracted from the training

corpus. For example, the system was not able to detect the DDI in

the following sentence: ‘Quinolon has also been shown to inter-

fere with the metabolism of caffeine’. Additional training data

from different sources such as MedLine may improve these results.

In such a case, the resolution of coordinate and appositive struc-

tures through a pre-processing step could help improve perfor-

mance: ‘Quinolon, including cinoxacin, may enhance the effects

of oral anticoagulants, such as warfarin or its derivatives’.

Furthermore, some interactions were described with extremely

long text at times including additional information about dosages

or adverse reactions (see below). Global and local context kernels

are not capable of dealing with these types of sentences. For exam-

ple, the following sentence:
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The incidence of akathisia in clinical trials of the weekly dosage

schedule was greater (8.5%, 4/47 patients) when prochlorperazine

IncðFbaseline; FSLÞ ¼
FSL ÿ Fbaseline

Fbaseline

ð9Þ

Table 11

Experimental results for imbalanced and balanced datasets.

Experiment P R F1 Inc.

allDDI 0.11 1 0.19 –

Imbalanced 0.5103 0.7282 0.6001 2.1584

TrainingBalanced 0.3469 0.8782 0.4973 1.6173

Table 12

Experimental results for imbalanced and balanced datasets grouped by class.

Experiment Class P R F1

Imbalanced 0 0.97 0.92 0.94

1 0.51 0.72 0.60

TrainingBalanced 0 0.98 0.80 0.88

1 0.35 0.88 0.50
was administered on the same day as CAMPTOSAR than when

these drugs were given on separate days (1.3%, 1/80 patients).

Other interactions were not detected due to the inability of the

system to deal with complex and compound sentences: ‘Urinari

alkalinizing agents increase blood levels and decrease excretion

of amphetamines’. Another way in which system performance

could be improved is through a greater attentiveness to negations.

For example: ‘Therefore, chloroprocaine should not be used in any

condition in which a sulfonamide drug is being employed’.

Finally, it should be noted that the resolution of cataphora may

also improve results. For example, in the following sentence, the

term ‘drugs’ references to the following drugs:

Other drugs which may enhance the neuromuscular blocking

action of nondepolarizing agents such as NUROMAX include

certain antibiotics (e.g., aminoglycosides, tetracyclines, bacitracin,

polymyxins, lincomycin, clindamycin, colistin, and sodium

colistimethate), magnesium salts, lithium, local anesthetics,

procainamide, and quinidine’.

3.4.4. Balancing experiments
The textual corpus used for this study was collected from a text
field describing DDIs for a given drug in the pharmacological data-

base, DrugBank. Had we instead chosen to build a corpus from

Medline abstracts, we imagined that the number of sentences con-

taining DDIs would have been much lower. As discussed earlier, of

all pair of drugs occurring in our corpus (30,757), only 10% of them

(3160) are drugs that interact. In other words, only a 10% of all

relation instances are DDI (positive examples). For this reason,

we wanted to study the impact of an imbalanced dataset on the

performance of the kernel-based method. A common problem in

most of the machine learning algorithms is their inability to accu-

rately learn from imbalanced data. Minority classes are usually

underrepresented and rules are fewer and weaker than those of

the majority classes [58,59]. Solutions for imbalanced learning in-

clude sampling, as well as cost-sensitive and active learning meth-

ods. While a detailed description of these solutions can be found in

[58], in the present study we focused on undersampling, a simple

technique removing examples from the majority class in order to

provide a balanced distribution of examples. Undersampling in-

volves a considerable information loss, in which discriminative

features to differentiate among classes may be discarded.

We therefore performed two experiments with different data

distributions:

� Imbalanced: In this experiment, both the training and testing

dataset are imbalanced as in our previous experiments. The

experiment, therefore, is the closest to the real situation of pre-

vious experiments.

� TrainingBalanced: In this experiment, we used undersampling to

randomly remove negative examples from the training dataset,

while maintaining the test dataset imbalanced. The model

trained on the balanced dataset was then applied to the imbal-

anced test dataset. Our hypothesis was that if the amount of

positive and negative examples were the same in the training

set, the model can distinguish the minority class (i.e. DDI) bet-

ter. One drawback of this experiment is that the size of training

dataset is reduced notably.

In each experiment, results were compared to a baseline allDDI,

in which all examples were labeled as DDI (i.e positive examples).

This baseline allowed us to estimate the improvement achieved in

each experiment. The increment can be defined as follows:
Table 11 shows the results obtained in each experiment. In the first

experiment (i.e. Imbalanced), the baseline only achieves a precision

of 11%, a perfectly predictable result given that the percentage of

positive examples was 11%. The learned model, on the other hand,

achieved good performance with an F-measure of 60.01%, an

improvement of 41% and an increment of 2.1584 with respect to

the baseline. In the second experiment (i.e. TrainingBalanced), a high

recall (87.82%) was obtained; however, precision was also quite low

(34.69%). Thus, while the balancing of training data helps to im-

prove the recall, precision values are nevertheless adversely af-

fected. The F-measure increment with respect to the baseline was

lower in the TrainingBalanced experiment (1.6173) than in the

Imbalanced experiment (2.1584). As a result, it can be concluded

that balancing positive and negative examples by undersampling

mechanism does not lead to results (i.e. a superior F-measure) bet-

ter than those obtained from the imbalanced data.

Regarding the classification task, Table 12 presents experiment

performance separated by class (i.e where DDI = 1 and non-inter-

action = 0). As evidenced by the table, the experiments demon-

strate strong performance with negative examples. In the

Imbalanced experiment, these results are due to the fact that theres

is a significantly greater amount of negative examples than the

number of positive examples, providing strong clues for the

description of the majority class (i.e. non-interactions). It must

be noted, however, that in the TrainingBalanced experiment in

which the number of negatives examples was reduced to equal

the number of positive examples, the results for obtained for the

negative examples (i.e. the non-interaction class) were neverthe-

less considerably high. Thus, we are led to believe that the determi-

nation of a non-interaction is easier the determination of a DDI.

4. Conclusion and discussion

In the present study, our major objective was to evaluate the

performance of the shallow linguistic kernel-method introduced

in Giuliano et al. [2] in the extraction of DDI from biomedical texts.

Several experiments have been conducted on the DrugDDI corpus.

In our experiments, we varied n-gram (global context kernel) and

window-size (local context kernel) configuration parameters.

Greatest precision (52.07%) was achieved when both n-gram size

and window-size were equal to 3. The highest recall value

(78.63%) was produced with an n-gram size of 1 and window-size

of 2. Nevertheless, it is important to note that this configuration

also led to the second lowest recorded precision value (43.97%).

Among all trained models, we choose that which maximized the
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F-measure and precision values (i.e. n-gram = 3, window-size = 3).

With the final testing dataset, the model achieved a precision of

� Evaluate the performance of the kernel-method when drug

names are manually annotated.
51.03%, a recall of 72.82% and an F-measure of 60.01%. In the exper-

iments, a small n-gram size appeared to favor the obtainment of

larger recall values while a larger n-gram size favored greater pre-

cision values. While the local context kernel was originally de-

signed to identify the roles of the candidate entities within a

relation [2] (and no distinguishing between roles of interacting

drugs was done here), our results nevertheless show that the local

kernel also assists with DDI extraction since the combination of

both global and local kernels improved the precision of the shallow

linguistic kernel. The DrugDDI corpus presented a large, imbal-

anced distribution between positive and negative examples,we fol-

lowed up our principal experiments with others to study the

influence of this imbalance on study results. In these latter exper-

iments, we found that efforts to balance the positive and negative

examples did not lead to higher performance.

From previous studies, the shallow kernel had already shown

strong performance in both general and biological domains [2,6].

In particular, [2] performed several experiments on two different

biomedical corpora for protein–protein interactions, AImed and

LLL. Their experiments were performed using the correct named

entities, that is, entities manually annotated in the corpora. Results

obtained on the AImed corpus showed a precision of 60.0%, a recall

of 57.2%, and F-measure of 59%. Superior performance was never-

theless achieved on the LLL corpus, with a precision of 62.1%, a re-

call of 61.3%, and an F-measure of 61.7%. Although direct

comparisons between these experiments and our own are not pos-

sible due to the fact that a different type of relation (i.e. DDIs) was

studied here and for which a new corpus was built, the same shal-

low linguistic kernel applied to the new task of DDI extraction ap-

pears to have achieved a similar F-measure (60.01%) and a higher

recall (72.82%). Nevertheless a lower precision (51.03%) also re-

sulted. One possible explanation for this lower precision values

could be that our performance demonstrated the remarkable im-

pact of automatic entity recognition on the relation extraction task.

Had drug names been manually labeled in our corpus, it is highly

likely that our results would have been significantly improved. Fur-

thermore, while the LLL corpus is smaller than the DrugDDI corpus,

the average number of interactions per sentence is higher in the

former corpus (i.e., 2.0 in the LLL corpus) than in the latter (i.e.,

0.6 in the DrugDDI corpus). We believe that a higher density of

interactions would positively affect performance since sentences

in the LLL corpus are focused on interaction description, whereas

DrugDDI corpus sentences may be less discriminating.

Our pattern-based approach from a previous study [1] was eval-

uated on the DrugDDI corpus, achieving a precision of 48.89%, a re-

call of 24.81% and an F-measure of 32.92%. In order to compare the

pattern-based approach and shallow linguistic kernel, the latter

was tested on the whole DrugDDI corpus using 10-fold cross-vali-

dation. It is clear from the study results that the kernel-based

method is far superior to our earlier pattern-based approach. The

most significant improvement observed in the kernel-based ap-

proach was achieved for recall and F-measure values, increasing

to 71.19% and 59.52%, respectively. Thus, relative to values ob-

tained from the earlier, pattern-based approach, recall increased

by nearly 47% and the F-measure by nearly 27%. A minor improve-

ment was also achieved for precision which increased by 2.36%. As

a result, we can conclude that the machine learning-approach is far

more efficient than the pattern-based approach for tackling DDI

extraction from texts.

To conclude, we believe that the solid performance achieved

using the shallow linguistic kernel may provide a higher baseline,

permitting the measurement of improvements with other methods

that use full syntactic or semantic information. We propose several

specific ideas for future work:
� Label the roles of drugs in the DrugDDI corpus in order to eval-

uate the contribution of the local kernel in their detection.

� Define a semantic kernel using semantic information such as

UMLS semantic type or drug families obtained by our DrugNer

system [37].

� Design parse tree or dependency graph kernels for DDI

extraction.

� Evaluate other solutions for imbalanced learning such as hybrid

sampling or cost-sensitive methods.

Finally, in addition to a list of potential DDIs, an ideal descrip-

tion for a particular drug should also include more specific infor-

mation about each interaction including the interaction

mechanism, its relation to the doses of both drugs, its time course,

the factors altering an individual’s susceptibility to the DDI, its

seriousness and severity, as well as the probability of its occur-

rence [60,61]. In practice, however, this information is rarely avail-

able in DDI knowledge bases [62]. Nevertheless, it may be included

using similar techniques. As the detection of this additional infor-

mation could help healthcare professionals assign real clinical sig-

nificance to each DDI, it represents an additional, important issue

for future study.
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