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Abstract

Conventional difference-in-differences (DID) methods that are used to estimate the effect of a 
treatment rely on important identifying assumptions. Identification of the treatment effect in a 
DID framework requires some assumption relating trends for controls and treated in absence of 
treatment, the most common being the assumption of Parallel Paths. When several pre-treatment 
periods are available, Mora and Reggio (2012) show that treatment effect identification does not 
uniquely depend on the Parallel Path assumption, but also on the trend modeling strategy. They 
further define a family of alternative Parallel assumptions and propose a more flexible model 
which can be a helpful starting tool to study robustness to alternative Parallel assumptions and 
trend dynamics. In this paper we introduce a Stata command that implements the fully flexible 
model presented in Mora and Reggio (2012), producing tests for the equivalence of alternative 
parallel assumptions and for the dynamic effects of the treatment. The standard DID in model 
with or without polynomial trends can also be obtained.
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1 Introduction

Di�erence-in-di�erences (DID) methods are widely used to evaluate the impact of policy

interventions or other speci�c treatments on di�erent outcomes of interest. DID esti-

mators require an assumption about how trends for controls and for treated in absence

of treatment are related. The most common assumption for that purpose is the Paral-

lel Paths assumption. Parallel Paths requires that in absence of treatment the average

change in the outcome variable for the treated equals the observed average change in

the outcome variable for the controls. This assumption implies that di�erences between

the controls and the treated if untreated are assumed to be time-invariant.

When several pre-treatment periods are available, Parallel Paths is appealing if trends

do not di�er between treated and controls before treatment. Many researchers use ab-

sence of pre-treatment trend di�erentials between controls and treated as an argument

in favor of the Parallel Paths assumption. In the presence of pre-treatment trend di�er-

entials, it is customary to adjust the econometric speci�cation to try to accommodate

those di�erences. Mora and Reggio (2012) show that the inclusion of trend polynomials

is not innocuous. Di�erent trend modeling strategies in general imply di�erent paral-

lel assumptions: i.e., assumptions regarding how trends for controls and treated in the

absence of treatment are related. The fact that identi�cation of the treatment e�ect

does not uniquely depend on the Parallel Path assumption, but also on the trend mod-

eling strategy is an overlooked issue in studies estimating treatment e�ects using DID

techniques.

More speci�cally, a very common procedure is to introduce linear trends to account

for trend di�erences between treated and controls. Researchers usually associate the

parameter for the interaction of a post-treatment dummy and the treated indicator

with the treatment e�ect. This practice, which is not longer consistent with Parallel

Paths, is correct if one assumes that the average acceleration for the treated under no

treatment would have been equal to the observed average acceleration for the controls.

Mora and Reggio (2012) refer to this assumption as Parallel Growths, or Parallel-2.

More generally, they propose a family of alternative Parallel-q assumptions where q is,

at most, the number of pre-treatment periods. They further identify the treatment e�ect

under each Parallel-q assumption for a fully �exible dynamic speci�cation. A critical

result in Mora and Reggio (2012) is that the treatment e�ect s periods after treatment
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under any given Parallel-q assumption can be expressed as the solution of an equation

in di�erences with the parameters of the fully �exible model.

Implementation of Parallel Paths is very simple with any econometrics package as it only

requires standard least squares estimation of a very simple model. As the treatment e�ect

estimate is identi�ed as the parameter of one of the regressors, testing its signi�cance is

also straightforward running OLS. In Stata, the user just needs to set the correct variable

speci�cation and employ the command regress. In contrast, estimation of treatment

e�ects with the fully �exible model under alternative Parallel assumptions requires two

steps. In the �rst step, standard least squares estimation of the fully �exible model is

conducted. In the second step, the solution of the equation in di�erences identi�es the

estimates. Computation of the standard errors of the treatment e�ect estimates must

take into account that the solution of the equation in di�erences is a linear combination

of the parameters of the fully �exible model.

In this paper we show how the command dqd, which is available from SSC, implements

this two-step procedure in Stata. The dqd command �rst estimates the fully �exible

model and then it computes by default treatment e�ects under all Parallel assumptions

from Parallel-1 (i.e., Parallel Paths) to Parallel-Q, where Q is set by the user. Treatment

e�ects are evaluated for a period set by the user. In addition, dqd implements tests for:

(a) the equivalence of all Parallel-q assumptions between Parallel-1 and Parallel-Q; (b)

for each Parallel-q assumption, the equivalence of Parallel-q and Parallel-(q−1); and (c)

for each Parallel-q assumption, the absence of dynamics in treatment e�ects. In addition

to the fully �exible model, dqd o�ers the option to report the DID standard model with

�exible common dynamics and extensions that include a linear and a quadratic trend.

The rest of the paper is structured as follows. We �rst de�ne Parallel Paths and Parallel

Growths, and present the family of alternative Parallel assumptions in Section 2. Next,

we present the fully �exible model in Section 3 and state identi�cation conditions of

the treatment e�ect under alternative Parallel-q assumptions. In Section 4, we describe

the syntax of dqd and illustrate the use of the command by means of several simulated

examples. Section 6 concludes.
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2 Alternative Parallel assumptions

In this section, we give an overview of the alternative parallel assumptions in DID

applications. A more detailed explanation is found in Mora and Reggio (2012).

In the simplest empirical DID application we have information on the variable of interest

in at least two periods: before and after the treatment. More generally, treatment

starts sometime after the last pre-treatment period, t∗, and �nishes before the �rst post-

treatment period, t∗ + 1. We have information for T0 ≥ 2 periods before treatment and

S ≥ 1 periods after treatment during which the e�ect of the treatment is to be evaluated

(additional post-treatment periods may be available).

Following conventional notation we de�ne Yt as the observed outcome variable at period

t. Let Y 0
t denote outcome in period t when the individual receives no treatment, and

Y 1
t outcome in period t when the individual receives treatment. For a given individual

either Y 0
t or Y 1

t is observed. Let D = 1 if the individual receives treatment and D = 0

otherwise. Potential and observed outcomes are related to D by Yt = Y 1
t D+Y 0

t (1−D)

for t > t∗. For any pre-treatment periods, Yt = Y 0
t . Finally, let X =

{
X ′t1 , ..., X

′
tT

}′
where Xt is a vector of k additional controls.

The average treatment e�ect s ≤ S periods after treatment on the treated given X is

α (s|X) = E
[
Y 1
t∗+s − Y 0

t∗+s |X,D = 1
]

(1)

where s = 1, ..., S.

In order to estimate the average counterfactual E
[
Y 0
t∗+s |X,D = 1

]
, one needs an as-

sumption on how the trend behavior of the treated if untreated compares to the observed

trend behavior of the untreated. The DID estimator, in general, relies on the Parallel

Paths assumption.

2.1 The Parallel Paths assumption

At the core of the DID identi�cation strategy for E
[
Y 0
t∗+s |X,D = 1

]
lies the Parallel

Paths assumption. Let L be the lag operator so that ∆ ≡ (1− L) denotes the �rst

di�erence operator and ∆s ≡ (1− Ls), s ≥ 2, denotes the s-period di�erence operator.
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Parallel Paths can be stated as follows.

Assumption 1. Parallel Paths s Periods Ahead

E
[
∆sY

0
t∗+s |X,D = 1

]
= E

[
∆sY

0
t∗+s |X,D = 0

]
, with s > 0. (2)

Parallel Paths states that average changes in output among those treated if untreated

are equal to the observed average changes among comparable controls.

The counterfactual under Parallel Paths is built by adding to the last pre-treatment

outcome level of the treated the average outcome change experienced by the controls.

Using this counterfactual, the treatment e�ect in period s, α (s|X), is identi�ed as the

di�erence-in-di�erences operator s-periods ahead:

α (s|X) = E [∆sYt∗+s |X,D = 1]− E [∆sYt∗+s |X,D = 0] . (3)

In the simple case in which there is only one post-treatment period, S = 1, this is the

DID operator, α (1|X) = E [∆Yt∗+1 |X,D = 1]− E [∆Yt∗+1 |X,D = 0].

2.2 The Parallel Growths assumption

An alternative assumption to Parallel Paths is that the average acceleration for the

treated under no treatment would have been equal to the observed average acceleration

for the controls. We call this assumption Parallel Growths.

Assumption 2. Parallel Growths

E
[
∆s∆Y

0
t∗+s |X,D = 1

]
= E

[
∆s∆Y

0
t∗+s |X,D = 0

]
, s ∈ {1, ..., S} . (4)

For the case s = 1, under Parallel Growths,

E
[
Y 0
t∗+1 |X,D = 1

]
= E [Yt∗ |X,D = 1] +

E [∆Yt∗ |X,D = 1] + E
[
∆2Yt∗+1 |X,D = 0

]
(5)

The counterfactual output in period t∗ + 1 for those treated if untreated is constructed
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with the average growth for the treated at t∗ plus the average acceleration experienced by

the controls at t∗ + 1. In contrast, the counterfactual under Parallel Paths is obtained

only with the average growth experienced by the controls at t∗ + 1. Hence, Parallel

Growths allows for group-speci�c trends before and after treatment while Parallel Paths

only allows for di�erent trends before treatment.

It follows from equation (5) that under Parallel Growths the treatment e�ect the �rst

period after treatment, α (1|X), equals a �di�erence-in-double-di�erences� operator,

α (1|X) = E
[
∆2Yt∗+1 |X,D = 1

]
− E

[
∆2Yt∗+1 |X,D = 0

]
. (6)

Without additional restrictions on pre-treatment dynamics, Parallel Paths does not im-

ply Parallel Growths. They are equivalent if and only if the DID operator equals the

di�erence-in-double-di�erences operator:

E
[
∆2Yt∗+1 |X,D = 1

]
− E

[
∆2Yt∗+1 |X,D = 0

]
=

E [∆Yt∗+1 |X,D = 1]− E [∆Yt∗+1 |X,D = 0] (7)

or, equivalently,

E [∆Yt∗ |X,D = 1] = E [∆Yt∗ |X,D = 0] (8)

In the presence of pre-treatment group-speci�c trends, the identi�cation strategy of the

treatment e�ect is di�erent under Parallel Paths and under Parallel Growths.

For the case s ≥ 2, α (s|X) = α (s− 1|X) +E
[
∆Y 1

t∗+s −∆Y 0
t∗+s|X,D = 1

]
. Given that

E [∆Y 1
t∗ −∆Y 0

t∗|X,D = 1] = 0, the term E
[
∆Y 1

t∗+s −∆Y 0
t∗+s|X,D = 1

]
is equivalent to

E
[
∆s∆Y

1
t∗+s −∆s∆Y

0
t∗+s|X,D = 1

]
. Under Parallel Growths, a di�erence-in-di�erences

operator identi�es the change rather than the level of the treatment e�ect:

∆α (s|X) = E [∆s∆Yt∗+s |X,D = 1]− E [∆s∆Yt∗+s |X,D = 0] , s ≥ 2 (9)
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where ∆α (s|X) ≡ α (s|X)− α (s− 1|X).

2.3 A general family of Parallel assumptions

Generalizing from the discussion on Parallel Paths and Parallel Growths, a family of

alternative non-nested assumptions can be de�ned:

Assumption 3. Parallel-q

For a given positive integer q ≤ T 0, and for any s = 1, ..., S,

E
[
∆s∆

q−1Y 0
t∗+s |X,D = 1

]
= E

[
∆s∆

q−1Y 0
t∗+s |X,D = 0

]
. (10)

Parallel-1 is Parallel Paths, while Parallel-2 is Parallel Growths. Let de�ne did (q, s) as

the di�erence-in-q-di�erences operator s periods ahead,

did (q, s) ≡ E
[
∆s∆

q−1Yt∗+s |X,D = 1
]
− E

[
∆s∆

q−1Yt∗+s |X,D = 0
]
.

Mora and Reggio (2012) show that under Parallel-q,

∆q−1α (s|X) = did (q, s)

where ∆q−1 ≡ (1− L)q−1 and Lrα (s|x) = 0 for all r ≥ s.

This result can be used to obtain α (s|X) for any value of s under Parallel-q recursively.

If trends do not di�er between treated and controls before treatment, Parallel Paths

is equivalent to Parallel Growths. More generally, de�ne the operator αq (s|X) as the

mapping on did (q, s) that identi�es the e�ect of treatment under Parallel-q. Mora and

Reggio, 2012 show that for any q ∈ {2, ..., T0} and s ∈ {1, ..., S}, αq (s|X) = αq−1 (s|X)

if and only if

E
[
∆q−1Yt∗ |X,D = 1

]
= E

[
∆q−1Yt∗ |X,D = 0

]
. (11)

This result sets pre-treatment trend conditions under which assumptions Parallel-q and

Parallel-(q − 1) are equivalent.
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3 Alternative modeling strategies

The conventional DID estimator is obtained using standard linear regression techniques.

In the simplest case with only two periods, the treatment e�ect can be estimated from

a regression that includes a constant, the treatment indicator D, a dummy variable for

the post-treatment period, Postt, and an interaction term, Postt × D. In this set up,

the treatment e�ect is identi�ed by the parameter associated with the interaction term.

The Standard model

On applications in which several pre-treatment periods are available, the Standard

model allows for time �xed e�ects δt common to treated and controls (see, for example,

Bertrand, Du�o, and Mullainathan 2004):

E [Yt |X,D ] = βXt + δ +
T∑

τ=t2

δτIτ,t + γDD + γDP Postt ×D (12)

where Iτ,t is a dummy for period τ . The speci�cation in equation (12) identi�es the

treatment e�ect exploiting two restrictions. The �rst restriction is that pre-treatment

dynamics�captured by time �xed e�ects�are identical between the controls and the

treated. This condition implies that all Parallel assumptions are equivalent. The second

restriction is that there is a permanent shift in output of size γDP in the �rst period after

treatment. Therefore, the long-term e�ect of treatment is already present at t∗ + 1.

The Linear Trend model

One way to extend the standard model in equation (12) to accommodate group-speci�c

trends is by including an interaction between D and a linear time trend:

E [Yt |X,D ] = βXt + δ +
T∑

τ=t2

δτIτ,t + γDD + γDP Postt ×D + γD1 t×D. (13)

In equation (13) the terms γD1 t captures di�erences in group dynamics before and after
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treatment. Including this trend, the Parallel assumption under which the interaction

term γDP identi�es the treatment e�ect changes: identifying the treatment e�ect with

γDP implies a departure from Parallel Paths but is still consistent with any other Parallel

assumption.

The Quadratic Trend model

A more �exible approach adds a quadratic polynomial instead of a linear trend,

E [Yt |X,D ] = βXt + δ+
T∑

τ=t2

δτIτ,t + γDD+ γDP Postt×D+ γD1 t×D+ γD2 t
2×D, (14)

where the terms γD+γD1 t+γD2 t
2 capture di�erences between controls and treated before

and after treatment. In this case, identifying the treatment e�ect with γDP implies a

departure from Parallel Paths and Parallel Growths but is still consistent with any

other Parallel assumption.

The Fully Flexible model

Consider the Fully Flexible model with group-speci�c, fully-�exible pre- and post-treatment

dynamics:

E [Yt |X,D ] = βXt + δ +
T∑

τ=t2

δτIτ,t + γDD +
T∑

τ=t2

γDτ × Iτ,t ×D. (15)

Equation (15) imposes no parametric assumptions on the dynamics under no treatment

neither for the treated nor the controls. Still, the treatment e�ect is identi�ed under

any Parallel-q assumption:

In the Fully Flexible model, under Parallel-q (Mora and Reggio, 2012):

∆q−1α (s) = ∆s∆
q−1γDt∗+s (16)
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Equation (16) implies that the identi�cation strategy of the treatment e�ect will gener-

ally di�er under alternative Parallel assumptions. Only when γDτ = 0 for all τ ≤ t∗, i.e.,

only when pre-treatment trends are equal between treated and controls, then α (s) =

γDt∗+s under any Parallel-q assumption. Therefore, the test of the null hypothesis of

common pre-treatment trends (H0 : γDτ = 0 for all τ ≤ t∗) is a test for the simultaneous

equivalence of all Parallel-q assumptions.

The inclusion in equation (15) of fully �exible pre-treatment trend di�erentials between

treated and controls allows for the comparison of any two consecutive Parallel-q as-

sumptions. Using condition 11 we see that testing the null H0 : ∆q−1γDt∗ = 0 vs. the

alternative H1 : ∆q−1γDt∗ 6= 0 with 1 < q ≤ T0 is a test for the equivalence of Parallel-q

and Parallel-(q − 1). In the case of Parallel Paths and Parallel Growths, the test would

be H0 : γDt∗ = γDt∗−1 vs. H1 : γDt∗ 6= γDt∗−1.

Finally, the inclusion of fully �exible post-treatment trend di�erentials also allows us to

implement tests on the dynamics of the treatment e�ect under any Parallel-q assumption.

For example, under Parallel-1 testing the null H0 : γDt∗+s = γDt∗+s+1 with s = 1, ..., S − 1

is a test for the e�ect to be constant in the post-treatment period.

4 Stata Implementation

In this section we describe the Stata command dqd that performs di�-in-di�s estimates

under alternative Parallel-q assumptions. There are some minimum data requirements so

that the command can be executed. First, the data must contain at least one observation

per group and period combinations. Second, there must be at least one period before

treatment starts and one period after treatment ends. Clearly, the data set must contain

a dependent variable on which the e�ects are to be estimated. It must also have a variable

that identi�es the period from which each observation is drawn, and a time-invariant

treatment variable that signals treatment. Additional controls can be added.

Command dqd �rst estimates an auxiliary regression using Stata command regress and

then it computes�in Mata�the treatment e�ects and test statistics as linear combina-

tions of the estimates of the auxiliary regression. dqd is by-able, admits weights, and is

an r-class ado. In addition to the treatment e�ects and their standard errors, dqd also

saves the vector of coe�cient estimates of the auxiliary regression and their variance
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covariance matrix.

4.1 Syntax

dqd depvar [indepvars] [if ] [in ] [weight ] , treated(treatvar) time(timevar) [options ]

depvar is the variable on which the e�ects are to be estimated and it must be numeric.

indepvars is an optional variable list for the inclusion of controls Xit in the model.

treated(treatvar) speci�es the variable that signals treatment. treatvar is time in-

variant and must take value 0 for observations from the control group and value 1 for

observations from the treated group.

time(timevar) sets numeric variable timevar as the time variable. timevar are the

discrete periods from which the observations are taken and is assumed to be an integer

variable (i.e., byte, int, or long). Two consecutive periods di�er by 1.

4.2 Options

The command dqd o�ers seven model options (begin, end, q, ff, standard, linear,

and quadratic), two standard errors options (robust and cluster), and two reporting

options (detail and level).

4.2.1 Model options

begin(# ) and end(# ) set the �rst and the last post-treatment periods on which we

want to evaluate the e�ects, t∗ + 1 and t∗ + S respectively. They only take integers as

arguments. At timevar = t∗ + 1, s = 1. Values t∗ + 1 and t∗ + S must be such that

min (timevar) < t∗ + 1 ≤ t∗ + S ≤ max (timevar) .

By default, begin() and end() are set equal to max (timevar), i.e., the last period in

timevar is assumed to be the only post-treatment period. If one of the two options is

not speci�ed, then the missing option is set equal to the one speci�ed.
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q(# ) sets the highest Parallel-q assumption, qmax, to be used in the estimations. There-

fore, the integer chosen must lie between 1 and the number of pre-treatment periods, Q.

For example, with only two pre-treatment periods, qmax may be, at most, equal to 2. If

we want to compute estimates under both Parallel Paths and Parallel Growths, we must

set qmax = 2. Otherwise, if we set qmax = 1 and only the estimates under Parallel Paths

will be obtained. If option q() is not speci�ed or qmax is set equal to a value larger than

Q, then qmax is set equal to Q.

ff, standard, linear, and quadratic all refer to the model to be used. Hence, only

one option may be speci�ed. Option ff estimates the fully �exible model from equation

(15). This is the default if no model is speci�ed. When the fully �exible model is chosen,

dqd displays all estimates α̂ (q, s), q = 1, ..., qmax and s = 1, ..., S, and their standard

errors. In addition, three types of tests are conducted. First, the test for the equivalence

of all Parallel-q assumptions between 1 and qmax. Second, for any q ∈ {2, ..., qmax}, the
equivalence of Parallel-q and Parallel-(q− 1). Finally, if S > 1, for any q ∈ {1, ..., qmax},
the test of absence of dynamics in treatment e�ects, i.e., H0 : α (q, s) = α (q, s− 1), for

s = 2, ..., S.

standard estimates the Standard model with common �exible dynamics from equation

(12). linear estimates the Linear Trend model from equation (13). quadratic estimates

the Quadratic Trend model from equation (14). The output displayed in the three

options includes the estimate and standard error of the di�-in-di� estimator as well

as tests for the absence of dynamics in treatment e�ects between t∗ + 1 and t∗ + S

under the respective model. In addition, it includes the test of the equivalence of all

Parallel-q assumptions implicitly assumed in each model. Hence, it reports the test

of the equivalence of all parallel assumptions between Parallel-1 and Parallel-Q with

standard, between Parallel-2 and Parallel-Q with linear, and between Parallel-3 and

Parallel-Q with quadratic.

4.2.2 SE/Robust and Reporting options

robust, the default, uses the Huber/White/sandwich estimator whereas option cluster(varname)

uses the clustered sandwich estimator.

detail is only relevant when the fully �exible model is estimated. When this option is

chosen, dqd additionally displays t-ratios, p-values, and con�dence intervals of all e�ect
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estimates.

level(# ) sets the con�dence level, as a percentage, for con�dence intervals. The default

is level(95) and it is only relevant with option detail.

4.3 Some preliminary examples

Consider the simulated data dqd_examples.dta that is also available from SSC. Variable

t records the observation period and ranges from 1 to 5. Variable output is the output on

which we want to estimate the e�ects and D is the treatment indicator. The data, with

250 observations in each of 5 periods, were generated from a particular case of standard

model:

yit = δ + x+
5∑

τ=2

δτIτ,t + γDDi + γDP Postt ×Di + uit (17)

where x ∼ N (0, .25),Iτ,t = I (t = τ), Postt = I (t ≥ 4),u ∼ N (0, 1), Pr (Di = 1) = 0.5,

D⊥x,δ = γD = γDP = 1, and δt = t for all t = 2, ..., 5. In this model, conditional on

exogenous x, controls and treated outputs are subject to a common linear trend. The

treated di�er on average from controls before by a constant γD and additionally after

treatment by γD + γDP . Under all Parallel-q, q = 1, 2, 3, the treatment e�ect is identi�ed

as γDP .

Example 1:

Assume that you want to use only observations from periods 3 and 4. The following

example estimates the treatment e�ect at period 4 with the standard model without

additional controls under the Parallel Paths assumption:
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. dqd output if (t==3 |t==4), treated(D) time(t) standard

Unconditional Standard Model

Output: output Number of obs = 500

Sample Period: 3:4 H0: Common Pre-dynamics = n/a

Treatment Period: 4:4

All s H0: s=s-1

All q 1.083984 n/a

(0.2005)

Robust Standard Errors in parenthesis

The heading of the output display provides basic information on the model, the de-

pendent variable, and the sample. Because there is only one pre-treatment period, no

test for common pre-treatment dynamics is applicable. The Standard model assumes

the equivalence of all Parallel-q assumptions and that the e�ect has no dynamics. The

estimated e�ect, 1.08, is thus presented under �All q� and �All s� categories. Because

there is only one post-treatment period, the test for dynamics of the treatment e�ect is

also not applicable.

Example 2:

Suppose that we also want to use the data from period 2. In the Fully Flexible model

with two pre-treatment periods, there are two alternative assumptions, Parallel-1 and

Parallel-2, that lead to two alternative estimates:
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. dqd output if (t>1 & t<5), treated(D) time(t)

Unconditional Fully Flexible Model

Output: output Number of obs = 750

Sample Period: 2:4 H0: Common Pre-dynamics = .6931

Treatment Period: 4:4 p-value = .4051

s=1 H0: q=q-1 H0: s=s-1

q=1 1.083984 n/a

(0.2005)

q=2 1.250342 -.1663581 n/a

(0.3453) [0.4051]

Robust Standard Errors in parenthesis

p-values in brackets

By default, the beginning and end of the treatment period is the last period in the

estimating sample. Since there are two pre-treatment periods, the test for common pre-

treatment dynamics is displayed. Each alternative estimate of the treatment e�ect is

displayed under the corresponding q line. Line q=1 corresponds to assuming Parallel-1

and 1.08 is the estimate under Parallel-1. This is by construction the same estimate (and

the same standard error) than the estimate of the treatment e�ect with the Standard

model using only periods 3 and 4. The estimate under Parallel-2, which is displayed in

line q=1, is slightly larger, 1.25. The display also includes the test of the equivalence

between Parallel-2 and Parallel-1 (at line q=2 and column H0:q=q-1). In the case with

two pre-treatment periods, this test is equivalent to the test on common pre-dynamics, so

that the p-value is the same.1 The conclusion of the test is that both Parallel assumptions

are equivalent. In other words, the controls and the treated have common pre-treatment

dynamics.

Example 3:

With only three periods, the treatment e�ect estimate under Parallel-2 is equivalent to

the estimate of the treatment e�ect with the standard model and linear deterministic

trends:

1The statistic of the equivalence of the Parallel assumptions is the estimated e�ect on the last pre-
treatment period under Parallel-2. The test statistic on the common dynamics is the Wald test of the
joint signi�cance of all pre-treatment γDt in equation (15).
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. dqd output if (t>1 & t<5), treated(D) time(t) linear

Unconditional Linear Trend Model

Output: output Number of obs = 750

Sample Period: 2:4 H0: Common Pre-dynamics = n/a

Treatment Period: 4:4

All s H0: s=s-1

All q 1.250342 n/a

(0.3453)

Robust Standard Errors in parenthesis

Given that the Linear model implies Parallel-2 and beyond, the test for common pre-

dynamics requires at least three pre-treatment periods. In this example, there are only

two pre-treatment periods so that the test is not applicable.

Example 4:

Consider the full sample, i.e. three pre-treatment periods (t = 1, 2, 3) and two post-

treatment periods (t = 4, 5). With more than one post-treatment period, options begin

and end should be used to identify the interval in which to obtain the e�ects estimates.

Under the Fully Flexible Model, we can obtain three alternative estimates for the e�ect

in period 4 and three alternative estimates for the e�ect in period 5:

. dqd output, treated(D) time(t) begin(4) end(5)

Unconditional Fully Flexible Model

Output: output Number of obs = 1250

Sample Period: 1:5 H0: Common Pre-dynamics = 1.359

Treatment Period: 4:5 p-value = .507

s=1 s=2 H0: q=q-1 H0: s=s-1

q=1 1.083984 1.002169 .1756106

(0.2005) (0.1926) [0.6752]

q=2 1.250342 1.334885 -.1663581 .0915826

(0.3453) (0.5245) [0.4051] [0.7622]

q=3 1.365318 1.679811 -.1149753 .1244636

(0.6308) (1.4784) [0.7388] [0.7242]

Robust Standard Errors in parenthesis

p-values in brackets

The three alternative estimates for the e�ect at period 4 are shown under the heading s=1
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while those for period 5 are shown under the heading s=1.2 With three pre-treatment

periods, the test for common pre-treatment dynamics is a test for the joint equivalence

of Parallel-1, Parallel-2, and Parallel-3. Two tests for the equivalence of Parallel assump-

tions are additionally shown under column H0:q=q-1: (a) the equivalence of Parallel-1

and Parallel-2 in line q=2; and (b) the equivalence of Parallel-2 and Parallel-3 in line

q=3. Since there are more than one post-treatment period, we can conduct, for any given

Parallel assumption, a test on the equality of the e�ect on all post-treatment periods.

These tests are shown in column H0:s=s-1.

Example 5:

Additional controls can be added to improve the accuracy of the estimates:

. dqd output x1, treated(D) time(t) begin(4) end(5)

Conditional Fully Flexible Model

Output: output Number of obs = 1250

Sample Period: 1:5 H0: Common Pre-dynamics = 2.721

Treatment Period: 4:5 p-value = .2566

s=1 s=2 H0: q=q-1 H0: s=s-1

q=1 1.123735 1.081014 .0608667

(0.1820) (0.1723) [0.8051]

q=2 1.325644 1.484831 -.2019087 .400746

(0.3148) (0.4776) [0.2678] [0.5267]

q=3 1.445622 1.844765 -.1199781 .2430778

(0.5743) (1.3449) [0.7015] [0.6220]

Robust Standard Errors in parenthesis

p-values in brackets

Example 6:

The tests in examples 4 and 5 suggest that the Standard Model is appropriate for this

simulated data because we cannot reject common pre-treatment dynamics and equal

dynamic e�ects.

2If there are more than three post-treatment periods, the default display only reports the e�ects for
s=1, s=2, and s=3. To display all the e�ects, option detail should be used.
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. dqd output x1, treated(D) time(t) begin(4) end(5) standard

Conditional Standard Model

Output: output Number of obs = 1250

Sample Period: 1:5 H0: Common Pre-dynamics = 2.721

Treatment Period: 4:5 p-value = .2566

All s H0: s=s-1

All q .9404042 .0611879

(0.1131) [0.8046]

Robust Standard Errors in parenthesis

p-values in brackets

Using the Standard Model with the full sample and additional controls, we obtain a

reduction in the standard error of the estimated e�ect. In contrast with Example 1,

it is possible to test both pre-treatment dynamics and equal dynamic e�ects. The

common pre-dynamics test is the test of the joint equivalence of Parallel-1, Parallel-2,

and Parallel-3 and is the same as the test in Example 5. The test of equal dynamic

e�ects (in column H0:s=s-1) is a Wald test of H0 : γD4 = γD5 in a Standard Model where

the treatment e�ects can di�er by period:

yit = δ + x+
5∑

τ=2

δτIτ,t + γDDi + γD4 I4 ×Di + γD5 I5 ×Di + uit (18)

5 A Monte Carlo Example

In the examples of the previous section, obtained with simulated data from a Standard

Model, we have seen that the most precise estimates are obtained when using all Parallel

assumptions simultaneously (i.e. using the Standard Model). Using the Fully Flexible

Model does not lead to inconsistent estimates of the e�ect, but as illustrated by the

examples, results in a loss of accuracy.

We explore in this section by means of a Monte Carlo simulation with 10000 replications

the relative performance of the four alternative models for a particular speci�cation of

equation (15). The data, with seven periods, are generated from:

yit = δ +
7∑

τ=2

δτIτ,t + γDDi +
7∑

τ=2

γDτ × Iτ,t ×Di + uit (19)
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Table 1: Monte Carlo: H0 : α(1) = 1

N × T = 250 N × T = 750 N × T = 2000 N × T = 5000
Standard Model 1.000 1.000 1.000 1.000
Linear Model 0.827 1.000 1.000 1.000
Quadratic Model 0.410 0.878 1.000 1.000
Fully �exible, q = 1 0.973 1.000 1.000 1.000
Fully �exible, q = 2 0.050 0.054 0.051 0.052
Fully �exible, q = 3 0.053 0.050 0.050 0.049
Fully �exible, q = 4 0.108 0.208 0.471 0.850
Fully �exible, q = 5 0.683 0.991 1.000 1.000

Note: Monte Carlo results using 10000 replications. Results show the proportion of rejections of
the null at 5% signi�cance level. T is �xed at 7.

where Pr (Di = 1) = 0.5, u ∼ N (0, 0.25), δ = 0. The sequence δτ is the Fibonacci

sequence {1, 1, 2, 3, 5, 8}, γD = 3, and γDt = {4, 4, 5, 6, 8, 9}. Treatment starts at period
6 and ends at period 7, the last period of the sample. Parameters γDt are such that, both

under Parallel-2 and under Parallel-3, α (1) = α (2) = 1. Because both assumptions

are equivalent, under Parallel-2 there is null e�ect in the last pre-treatment period.

Under any other Parallel assumption, the treatment e�ects would be di�erent. Assuming

α (1) = α (2) = 1, we now study the relative performance of the alternative models using

4 di�erent sample sizes (N × T = 250, 750, 2000, 5000).

Table 1 shows the proportion of rejections of the null H0 : α (1) = 1 using 5% signi�cance

level and the t-statistic (which can be computed from the default display and, for the

Fully Flexible model is displayed using the detail option). For the fully �exible model

both under Parallel-2 and under Parallel-3, the null is rejected in approximately the

same proportion as the signi�cance level. All other models identify the treatment e�ects

using alternative assumptions that are incorrect and over-reject the null for all sample

sizes.

In Table 2 we further present the proportion of rejections of H0 : α(1) = α(2) in each

model (these tests are displayed in dqd in column H0:s=s-1). Again we �nd the expected

rejection rate only for the fully �exible model both under Parallel-2 and under Parallel-3.

Finally, in Table 3 we present the proportion of rejections of several Equivalence tests

at 5% signi�cance levels. The Standard Model imposes that all Parallel assumptions
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Table 2: Monte Carlo: Absence of Dynamics in Treatment E�ects

N × T = 250 N × T = 750 N × T = 2000 N × T = 5000
Standard Model 0.974 1.000 1.000 1.000
Linear Model 0.199 0.501 0.893 0.999
Quadratic Model 0.998 1.000 1.000 1.000
Fully �exible, q = 1 0.973 1.000 1.000 1.000
Fully �exible, q = 2 0.052 0.051 0.051 0.048
Fully �exible, q = 3 0.056 0.049 0.051 0.048
Fully �exible, q = 4 0.147 0.321 0.700 0.975
Fully �exible, q = 5 0.828 0.999 1.000 1.000

Note: Monte Carlo results using 10000 replications. Results show the proportion of rejections of
the null at 5% signi�cance level. T is �xed at 7.

Table 3: Monte Carlo: Equivalence tests

N × T = 250 N × T = 750 N × T = 2000 N × T = 5000
Parallel-1 to Parallel-5 1.000 1.000 1.000 1.000
Parallel-2 to Parallel-5 1.000 1.000 1.000 1.000
Parallel-3 to Parallel-5 1.000 1.000 1.000 1.000
Parallel-1 vs. Parallel-2 0.971 1.000 1.000 1.000
Parallel-2 vs. Parallel-3 0.054 0.048 0.051 0.049
Parallel-3 vs. Parallel-4 0.238 0.575 0.939 1.000
Parallel-4 vs. Parallel-5 0.976 1.000 1.000 1.000

Note: Monte Carlo results using 10000 replications. Results show the proportion of rejections of the null
at 5% signi�cance level. T is �xed at 7.

(Parallel-1 to Parallel-5 in this case) are equivalent. The Linear and Quadratic models

assume the equivalence of Parallel-2 to Parallel-5 and Parallel-3 to Parallel-5, respectively

(these tests are computed with command dqd when the relevant model is chosen as

option and displayed as the H0: Common Pre-dynamics test). For even small samples,

the procedure leads to rejection of the equivalence tests required for each models and

suggests to be a powerful tool to guide the choice of identifying Parallel assumptions.

The Equivalence test �Parallel-1 vs. Parallel-2��displayed in column H0: q=q-1�

corresponds to the test on pre-treatment common trends frequently used in the literature

to justify Parallel-Paths. The test is overwhelmingly rejected, suggesting that, when

faced with this data generation process, the usual practice would lead to the rejection

of the Standard model.

Which model should be preferred? Including a deterministic trend implies the Linear
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Model and it is not appropriate. Assuming Parallel-2 or Parallel-3 is equivalent (and the

test is rejected, as expected, at around 5% of the cases). As the �Parallel-2 vs Parallel-3�

test is a test on Parallel Growths in the last pre-treatment period, following the usual

argument we could use the result of the test to justify the assumption of Parallel-2.

Following this argument, no other Parallel assumption�with the obvious exception of

Parallel-3�should be assumed.

6 Conclusions

Identi�cation of treatment e�ects using cross�sections when the data set contains more

than one pre-treatment period depends on speci�c assumptions about pre-treatment

dynamics, and how they inform the counterfactual for the treated in the absence of

treatment. Mora and Reggio (2012) discuss the most popular models used in the em-

pirical literature and present the Fully Flexible model. For all these models, they derive

the identi�cation conditions of the treatment e�ect in terms of alternative assumptions.

In this article we present a new command dqd that performs di�erence-in-di�erences

estimations under alternative assumptions as proposed by Mora and Reggio (2012).

We illustrate how to use the command dqd by means of several simulated examples.

We additionally perform a Monte Carlo simulation to asses the relative performance of

four alternative models when the data generation process does not �t the models most

frequently used in the literature.

We argue that command dqd is a helpful tool to analyze the robustness of estimated

e�ects to alternative identifying assumptions and dynamic speci�cations. Moreover,

equivalence and dynamics tests can be used to validate alternative models.

7 Saved results

Command dqd saves the following in r():

• r(N): the number of observations used in the estimation of the auxiliary model

• r(alpha): a qmaxxS matrix where element alpha (q, s) corresponds to α̂ (q, s).
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• r(std_alp): a qmaxxS matrix where element std_alp (q, s) corresponds to ˆstd (α̂ (q, s)).

• r(beta): vector of estimates in auxiliary regression. The �rst elements of r(beta)

are the estimates of the coe�cients for the interactions between the treatment

variable and the time dummies in the fully �exible model. For the standard, linear,

and quadratic model, the �rst elements are the estimates of the coe�cients of the

interactions between the treatment variable and the corresponding polynomial

elements (i.e., constant, linear, and quadratic terms). In all models, the estimate

of the coe�cient of the treatment dummy is next. The estimates for the coe�cients

for the common time dummies follow. Finally, r(beta) includes estimates for the

coe�cients for the additional controls (when available) and the constant

• r(Vbeta) (co)variance estimates in auxiliary regression

• r(tests) equivalence and common dynamics tests

• r(p_values) p-values for the equivalence and common dynamics tests
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