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Abstract
This work presents an approach to extend the dynamic range of x-ray fla panel
detectors by combining two acquisitions of the same sample taken with two
different x-ray photon flu levels and the same beam spectral configuration In
order to combine both datasets, the response of detector pixels was modelled in
terms of mean and variance using a linear model. The model was extended to
take into account the effect of pixel saturation. We estimated a joint probability
density function (j-pdf) of the pixel values by assuming that each dataset follows
an independent Gaussian distribution. This j-pdf was used for estimating the
fina pixel value of the high-dynamic-range dataset using amaximum likelihood
method. The suitability of the pixel model for the representation of the detector
signal was assessed using experimental data from a small-animal cone-beam
micro-CT scanner equipped with a fla panel detector. The potential extension
in dynamic range offered by our method was investigated for generic fla panel
detectors using analytical expressions and simulations. The performance of
the proposed dual-exposure approach in realistic imaging environments was
compared with that of a regular single-exposure technique using experimental
data from two different phantoms. Image quality was assessed in terms of
signal-to-noise ratio, contrast, and analysis of profile drawn on the images.
The dynamic range, measured as the ratio between the exposure for saturation
and the exposure equivalent to instrumentation noise, was increased from 76.9
to 166.7when using ourmethod. Dual-exposure results showed higher contrast-
to-noise ratio and contrast resolution than the single-exposure acquisitions for
the same x-ray dose. In addition, image artifacts were reduced in the combined
dataset. This technique to extend the dynamic range of the detector without
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increasing the dose is particularly suited to image samples that contain both
low and high attenuation regions.

1. Introduction

The use of digital detectors for the acquisition of x-ray imaging is becoming commonplace
in the clinical and preclinical practice (Kalender and Kyriakou 2007). Flat panel indirect (FP)
detectors are becoming themost common choice, either for two-dimensional (2D) radiographic
digital imaging or for cone-beam CT (CBCT). FP based x-ray systems are used nowadays
in a variety of scenarios, such as digital radiography (Korner et al 2007), C-arm systems,
for interventional fluorosco y (Siewerdsen et al 2007) or CBCT (Siewerdsen et al 2005),
musculoskeletal CBCT imaging (Zbijewski et al 2011), kVp CBCT systems coupled to linear
accelerators for image guided radiation therapy (Jaffray et al 2002), breast CBCT systems
(Boone et al 2001), or small-animal micro-CT (CBμCT) imaging (Badea et al 2008, Vaquero
et al 2008).

However, the limited dynamic range (DR) of FP detectors could compromise image
quality when a sample has both low- and high-density materials. DR values are commonly
measured as the ratio of saturation charge to the noise floo . Typical values, as reported by
the manufacturers, may be 2000 for a Hamamatsu C7940DK-02 (Hamamatsu Photonics k. k.,
Hamamatsu, Japan) or 4000 for the Shad-o-Box (Rad-icon Imaging Corp, Santa Clara, CA).

The consequence of this limited DR is that dense areas may become obscured in 2D
imaging if the exposure is adjusted to better observe the anatomy of soft tissues. This issue is
of greater importance in CBCT because commonly used analytical reconstruction algorithms,
such as FDK (Feldkamp et al 1984), produce severe artifacts in the reconstructed slices
when the fiel of view (FOV) covered by the acquired projections truncates the object under
examination (Feldkamp et al 1984, Yu et al 2006). Thus, the scanner FOV should be larger
than the size of the sample. If the subject has a high attenuation region, it is not possible to
obtain sufficien signal-to-noise ratio (SNR) inside this area without saturating the detector
elements in the object-free region. Such a problem can arise in any CT scanner, when the DR
of the subject exceeds that of the detector.

Several approaches have been proposed to address this issue.Most of themwere originally
developed for optical imaging (i.e. photography and video) and are based on hardware
modification or special detector designs. Some implementations include the use of a non-
conventional pixel design (Lule et al 1999), multiple sensors inside a single pixel (Fox et al
2005), spatially varying pixel sensitivity (Nayar and Mitsunaga 2000), or combinations of
special scintillator and pixel designs (Nittoh et al 2003). In addition to these approaches, a
small number of software-based methods have been proposed. An example can be found in
Clinthorne and Strobel (1998), who mathematically estimated a high dynamic range (HDR)
dataset from the low DR image.

Some of the most widely used software-based techniques for extending the DR of optical
image detectors (e.g. for photography and video) are based on the acquisition of several images,
each with a different exposure to incident radiation (Mann and Picard 1995). The acquired
data are then combined to obtain a new HDR image. The combination algorithm to obtain the
value of a pixel of the HDR image can be as simple as the selection of the best sample from
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the two original datasets (Madden 1993), or a more elaborate process, which takes advantage
of all the information contained in the acquired data (Dromigny and Zhu 1997, Robertson et al
2003).

The use of multi-exposure-based techniques to extend the DR of FP detectors in CBμCT
has been reported previously. Sukovic and Clinthorne (2001) proposed an approach to increase
the DR of projection data by combining two datasets acquired with different exposure (mAs).
However the DR of the resulting data was not compared with that achieved by conventional
scanning methods, and discontinuities were noticeable in the HDR data.

We introduce a novel dual-exposure technique to extend the DR of FP detectors. The
method combines two projection datasets using a maximum likelihood estimation based on
previous knowledge of the detector response to incoming radiation. The detector response is
described using an analytical model (Yang et al 2010) for pixel mean and variance, which
was extended to include the effect of saturation. We obtained the model parameters for a real
detector, and the validity of this model was assessed using experimental data. The performance
of our method to extend the DR and its potential limits were evaluated using simulated data
and realistic imaging scenarios with experimental 2D projection images and CBCT data from
a commercial CBμCT scanner.

2. Material and methods

In the following sections we introduce the theoretical basis of our DR extension method,
describing the modifie acquisition and mathematical processing of the data. To this end, we
present a detector pixel model (section 2.1.1) that provides an estimation of the pixel signal and
variance as a function of the exposure, and constitutes the basis for the subsequent maximum
likelihood estimation of the HDR data (section 2.1.2).

In section 2.2 we describe how to obtain a parametric description of the detector pixel
model from experimental data acquired with a real FP detector, and evaluate the agreement
between the pixel model and detector experimental data.

The set of parameters is then employed for the theoretical evaluation of the DR extension
capability in ideal environments, as explained in section 2.3.1. The method is finall evaluated
with experimental data in sections 2.3.2 (for 2D projection data) and 2.3.3 (for 3D tomographic
data).

2.1. Generation of HDR projection data

The aim of our method is to obtain x-ray projection data with a DR larger than that showed
by the detector using a regular acquisition protocol.

In order to generate the HDR data, two datasets are acquired at two x-ray exposure levels
(for the same kVp and beam filtration) First, a data acquisition is performed using an exposure
value that guarantees that no pixel in the detector is saturated, followed by the acquisition of
a partially saturated dataset.

Figure 1 outlines the workfl w of the HDR data generation process. The following
subsections detail the different steps.

For the exposure used in the firs scan, very high attenuation regions of the object may be
underexposed, not providing a valid signal.

The second scan is carried out at a higher anode current, which makes it possible to obtain
a partially saturated dataset that provides improved information about all or, at least, some of
the underexposed areas of the firs scan. The ratio of the current for the second acquisition
to that of the firs one (i.e., the Bucky factor for the second acquisition) is denoted as A2.
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Figure 1. Outline of the dual-exposure method to obtain an HDR projection. Two
datasets are acquired at different x-ray flu levels, and the dark signal is subtracted from
both of them. Both datasets are combined using a maximum likelihood approach to
generate the HDR data, which eventually undergo a standard gain correction step.

Both datasets are then combined following the method described below, which is based on a
previous proposal by Robertson et al (2003), modifie to meet the particular features of x-ray
FP detectors. In particular, our method uses the concept of maximum likelihood estimation
introduced by Robertson but including realistic models for the FP detector pixel signal and its
variance.

2.1.1. Pixel model. To build the pixel model we assume that FP detectors show a linear
relationship between the exposure and pixel signal and that the statistics of the incoming
photons follow a compound Poissonmodel (Whiting et al 2006), for which a linear relationship
between variance and mean still holds. We defin a simple linear model for the pixel mean
response (m) and its variance (v), following Yang et al (2010), but introducing the concept of
instrumentation noise equivalent exposure (INEE), as define in Yadava et al (2008):

m(X ) = gX + p, (1a)

v(X ) = hg[X + Xn], (1b)

where X is the exposure at the detector surface, g is the linear gain factor of the pixel, p is the
mean dark offset of the pixel (i.e., the mean pixel signal in the absence of radiation), h is the
linear factor relating mean and variance of the pixel signal, and Xn is the INEE.

Xn corresponds to the exposure value for which the quantum and instrumentation noise
sources contribute equally to the total noise (Yadava et al 2008) or, analogously, to theminimum
exposure for which the performance of the detector is still limited by image quanta.

Xn accounts for all sources of instrumentation noise (such as thermal noise, amplifie
read-out noise or quantization noise) and can be easily measured (Yadava et al 2008) without
knowing the individual noise components.

This simple model does not take into account the pixel saturation that arises for large
values of X. We propose to extend the model by modifying equation (1b) to include the
clipping introduced by saturation. The detailed derivation of the value of v(X) including the
effect of saturation is explained in the appendix.
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2.1.2. Joint probability density function and maximum likelihood estimation. To combine the
datasets obtained at two different exposures we define a joint probability density function
(j-pdf) for the acquired data.

According to the previously described pixel model, each pixel observation can be
considered a realization of a Gaussian-distributed random variable (Whiting et al 2006), with
mean and variance given by equations (1a) and (1b) if the signal lies inside the non-saturated
range.

Since values of a single pixel in both datasets are independent realizations of twoGaussian
variables, the j-pdf of the multi-exposure data can be expressed as the product of the pdfs of
N (N = 2) random variables, yielding

P(Yj) ∝ exp

(
−

N∑
i

(Yi j − m(AiXj))2

v(AiXj)

)
(2)

where Yij is the recorded pixel value for pixel j and acquisition i and Yj is the vector of the N
values recorded for pixel j, and Ai is the ratio between exposure for the ith acquisition and the
exposure for the firs acquisition. Although the formula is general for N acquisitions, in our
implementation we have only combined two datasets.

The HDR signal for pixel j is estimated as the value of gXj that maximizes the probability
of observation of the acquired data or, equivalently, minimizes the absolute value of the
exponent in equation (2), yielding the following expression for the objective function:

O(gXj) =
N∑
i

(Yi j − m(AigXj))2

v(AigXj)
. (3)

Equation (3) can be minimized by iterative approximations, but the proposed method
is aimed at the raw data processing stage, which is usually highly demanding in terms of
processing time. For this reason, we propose to replace the gXj term in the denominator by
the actual pixel value after dark correction (Yij − pj). Deriving equation (3) with respect to
gXj after performing the approximation in the denominator and leaving the resulting equation
equal to zero, the expression for the maximum likelihood estimation of gXj becomes:

gXj =
∑N

i
Ai(Yi j−p j )
h(Yi j−p j )+ n∑N

i
A2i

h(Yi j−p j )+ n

(4)

where n is the instrumentation noise of the system, given by, n = hgXn.
To ensure that the signal will be valid over a continuous range, A values must be properly

selected to ensure some degree of overlap between the gain curves of the acquisitions, i.e.,
pixels below the DR of the detector in the ith acquisition must not be saturated in the (i+ 1)th
acquisition.

2.2. Experimental setup and data analysis for the detector model

We validated the analytical model for the detector and the HDR extension method using
a commercial small-animal multimodality imaging system, the Argus PET/CT (Sedecal,
Madrid, Spain). To assess the validity of the model, we acquired image data for several
exposure levels and fitte the measured parameters to the detector model. Using the acquired
data, we obtained a set of parameter values (g, h, p, and Xn, as described in section 2.1.1) that
characterize the response of the detector for a configuratio suitable for small-animal imaging
scenarios.
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2.2.1. CBμCT system description and exposure estimation. The CBμCT subsystem of
the Argus PET/CT is a small-animal CT designed to provide anatomical information to
complement functional PET data. A thorough description and evaluation of the system can be
found in Vaquero et al (2008).

The system incorporates a microfocus x-ray source (Oxford Instruments plc, Oxfordshire,
UK) based on a tungsten anode with maximum peak energy of 50 kVp and a maximum
continuous power of 50 W (anode current range 0–1 mA). The x-ray beam is filtere with
1 mm Al, which adds to the 0.125 mm thick Be output window.

The x-ray detector is a CMOS-based FP (Hamamatsu Photonics K.K., Hamamatsu city,
Japan) that contains a 0.15 mm thick CsI:Tl scintillation crystal grown directly on top of
the sensor, with an active area of 12 × 12 cm2 and pixel size of 0.2, 0.1, or 0.05 depending on
the selected binning configuratio (4 × 4, 2 × 2, or no binning). Binning also determines the
minimum integration time of the detector, which is 0.125, 0.25, and 0.5 s for 4 × 4, 2 × 2,
and no binning, respectively. Image integration time can be extended up to 10 s regardless of
the binning configuration The detector signal is encoded using 12 bits.

To characterize exposure values as a function of energy, we measured x-ray exposure
at the isocenter of the scanner using an Accu Gold multi-purpose meter (Radcal, Monrovia,
CA) with a 10 cm-long pencil-shaped ion chamber (Radcal 10X6–3CT). Exposure per mAs
was measured at 30 and 35 kV and translated to the detector surface by applying the inverse
squared distance law.

2.2.2. Estimation of parameters for the detector model. To characterize the gain curve of
the detector and its noise level, we acquired series of images for 25 x-ray exposure levels and
4 × 4 pixel binning for three image integration times: 125, 500, and 1000 ms. Exposure at
the detector surface was set by changing the anode current of the tube from zero to above the
saturation point of the detector. We acquired 50 images for each exposure level, and, to avoid
potential lag effects and instabilities of the x-ray source, the x-ray flu was turned off for 2 s
between acquisitions of consecutive series of images. Data were acquired at 35 kVp with no
object in the FOV, thus ruling out object-related effects such as beam hardening or scatter.
We used a relatively low kVp value for the estimation of the parameters because the DR of
the x-ray attenuation values in a sample is larger for low kVps. For this reason low kVps are
more appropriate to illustrate the potential offered by our method for increasing the DR of the
detector.

Mean signal and variance were computed for each individual pixel in the detector, across
the 50 images in each exposure setting.

The overall response of the detector was estimated by averaging the individual values
across a 20 × 20 pixel ROI placed at the center of the detector. The size of the ROI was
selected to be large enough to compensate slight deviations between individual pixels but not
so much to introduce bias from the x-ray beam shape.

We estimated the dark signal value, p (intercept of the gain curve), as the mean pixel
value in absence of radiation, the saturation exposure as the value of exposure where
variance departs from its linear trend, and the DR of the pixel signal as the ratio between
the saturation exposure and the exposure for a SNR of one (Yaffe 2000). We define
the ‘quantum limited dynamic range’ (DRQ) as the ratio between the saturation exposure
and Xn.

We verifie the validity of the censored Gaussian model for the completion of the
linear model for variance at areas near saturation by inspecting the similarity between the
theoretical variance from equations (1b) and (A.3) and the experimental measurements. The
similarity was quantifie as the relative mean absolute error between the measured values
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and those predicted by the model, over the dynamic range, according to the following
expression

RMAE = 1
N

N∑
i=1

|vm(Xi) − ve(Xi)|
vm(Xi)

(5)

where vm is the variance measured experimentally and ve is the variance estimated using the
censored Gaussian model.

To investigate the dependence of the model parameters with integration time wemeasured
the level of dark signal and additive noise for different values of integration time. To this end,
we acquired series of 50 dark images for integration times ranging from 0.125 to 2 s and 4 × 4
binning. Mean value and variance were computed for each pixel and integration time, and the
average across all the pixels was assumed to reflec the overall behavior of the detector.

2.3. Assessment of the performance of the HDR method

We used the parameters for the pixel model (see section 2.2.2) to evaluate the potential
performance of the HDRmethod with simulated data. We performed simulations for a generic
detector with ideal properties, i.e. limited only by quanta statistics. Details of the simulation
process are given in section 2.3.1.

The actual performance of themethodwas also assessed on realistic small-animal imaging
scenarios for both planar (2D) and tomographic (3D) imaging using two dedicated phantoms.
Experimental data were acquired using the Argus PET/CT scanner (see section 2.2.1). Each
test protocol included the acquisition of a dataset using the dual-exposure technique presented
here and a second dataset using a regular single-exposure technique. The number of frames
acquired per angular position for the single-exposure data was chosen to match the total
exposure used for dual-exposure data, thus making sure that the same dose was delivered to
the sample with both protocols.

2.3.1. Theoretical performance of the HDR method for generic ideal detectors. The analysis
was carried out for an ideal detector with the h value obtained as described in section 2.2.2,
for p = 0 and Xn = 0 (i.e., no dark signal or instrumentation noise). For this ideal detector,
simulations of pixel signal were performed as a function of the attenuation of the x-ray
beam. The simulation process consisted in generating a set of pixel values for different pixel
exposures, assuming that the pixel signal follows the censored Gaussian distribution described
in section 2.1.1.

The air exposure (Xa) (i.e., exposure from the non-attenuated beam) was set to 95% of
the saturation exposure, which was obtained as explained in section 2.2.2. The beam was
assumed to be attenuated by a range of water thicknesses (x) from 0 to 25 cm at 0.5 cm
intervals. According to Beer’s law, the pixel exposure for each thickness was calculated as
Xe = Xa · exp(–μwx), where μw is the linear attenuation coefficien of water.

We performed 500 realizations of a Gaussian-distributed random variable for each
thickness value. We set the mean of the Gaussian function to m(Xe) and variance was given
by equations (1b) and (A.3). For the sake of simplicity and with no loss of generality, the bit
depth of the simulated detector was fi ed to 8 bits, thus yielding 256 possible values for the
pixel signal. For the simulation we developed a dedicated routine using Matlab (Mathworks
Inc., Natick, MA).

For each water thickness, dual-exposure data were simulated for different values of A2,
from 1 up to exp(–μwx)−1. The simulated signal for each value of A2 was combined with the
original signal (i.e. A1 = 1) using the HDR method, and the SNRs of the combined data were
computed.
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Figure 2. Schematic diagram of the phantom designed to evaluate the performance of
the method with 2D projection data. Top (left) and side (right) view. The labels show
the thickness of the different copper layers. The lead frame used to block scatter is
represented in dark gray.

SNR values obtained with the HDR method were compared to the improvement that
would be achieved by averaging an equivalent number of frames encompassing the same total
dose to the subject. This improvement factor is the square root of the number of averaged
frames,

√
A2.

Another option for obtaining the dual-exposure dataset could be to increase the image
integration time of the detector, instead of the anode current.We also explored the performance
of the HDR method with this approach.

2.3.2. Experimental performance evaluation with 2D projection data. We designed and built
a dedicated phantom to evaluate the performance of the dual-exposure technique on 2D planar
projection data. The phantom consisted of a set of layers of copper tape of different thicknesses
ranging from 0.45 to 1.125mm. The layers were arranged to form a staircase structure as shown
in figur 2.

The Argus PET/CT system has a 3 mm thick PMMA tube surrounding the scanner bore
to protect the gantry from accidental leakage of fluids When attenuation is very high, the
signal can be contaminated by the scatter generated in this protective tube. For this reason, we
blocked the portion of the beam non-attenuated by the phantom by framing the phantom in a
lead window 2.5 mm thick (see figur 2). This procedure practically suppressed the scattered
radiation generated from the protective tube.

To evaluate the performance of the HDR algorithm we measured profile across the
staircase pattern and SNR values at each of the steps. SNR values were estimated as the ratio
of mean to standard deviation of pixel values, measured on 40 × 20-pixel ROIs centered on
each of the steps.

Table 1 shows the acquisition parameters for the projection data. The dark correction was
performed using 50 averaged images. For the gain correction we used 50 averaged images
acquired at the nominal current of the single-exposure protocol.
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Figure 4. Panel (A) shows the mean pixel signal (solid curves) and variance (dashed
curves) as a function of exposure, averaged over the central ROI, and for three image
integration times (125, 500 and 1000 ms). Panel (B) shows the mean dark pixel signal
p (solid line) and variance n (dashed line), averaged over the same ROI as a function of
integration time in absence of radiation.

Table 2. Acquisition parameters for the low-contrast resolution study.

Parameter Dual-exposure Single-exposure

X-ray beam peak energy 35 kV 35 kV
X-ray beam filtratio 1 mm Al 1 mm Al
Number of angular projections 360 360
Number of exposures 2 1
X-ray tube current 0.06/0.96 mA 0.06 mA
Integration time 1000 ms 1000 ms
Number of frames per projection 1 17
Total output 367.2 mAs 367.2 mAs
Acquisition time 720 s 6120 s

CNR between the 1.5 mm iodine regions and the PMMA background was measured for both
datasets, using the following expression:

CNR = |μPMMA − μI|√
σ 2
PMMA + σ 2

I

(6)

where μPMMA and μI are the average voxel value in the PMMA and iodine insert regions
respectively, and σ PMMA and σ I are the standard deviation values inside these regions. The
resulting values presented below are the mean of the three CNR values calculated from each of
the three 1.5 mm inserts. CNRmeasurements for inserts smaller than 1.5 mm are not presented
since they were subject to a large uncertainty given the small size of the ROI.

3. Results

3.1. Estimation of parameters for the detector model

Figure 4(A) shows the gain curve of the detector and the associated pixel variance as a function
of exposure for the three image integration times (125, 500 and 1000 ms) set in the study.
Detector pixel variance, averaged over the detector area, shows a linear trend that is broken at
the point where some of the pixels enter saturation and the analytical model for variance fails
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Figure 5. Pixel variance as a function of exposure, after subtraction of the dark signal,
shows a linear relationship up to the saturation point of the detector. The theoretical
value for pixel variance is shown by solid curves; experimental data are represented by
markers.

due to a clipping of the pixel signal. The point where the variance reaches its maximum value
was considered the upper limit for the exposure setting.

Variance curves in figur 4(A) show that the extension of the integration time lowers
the maximum exposure value. This effect is explained by the increase in dark signal with
integration time, shown in figur 4(B). Variance of the dark signal does not seem to depend
on integration time, suggesting that Xn is constant across integration time.

The parameters for the linear gain (g) and noise model (Xn and h) extracted from the data
in figur 4 were found to be constant across different integration times, showing a constant
gain (g = 2026 ADU/mR) and level of INEE (Xn = 0.102 mR), and a slope relating signal
mean and variance of h= 0.33. The value of the total instrumentation noise in detector ADUs
is therefore gXn = 206.7.

The theoretical variance curve calculated using the censored Gaussianmodel (see figur 5)
shows good agreement with experimental data with relative mean absolute errors of 0.041,
0.032 and 0.039 for integration times of 125, 500 and 1000 ms respectively. The dynamic
ranges for unity SNR are DR= 427.18, DR= 398.32, and DR= 378.34, for integration times
of 125, 500 and 1000 ms respectively. The dynamic ranges for quantum noise-limited imaging
were DRQ = 18.73, DRQ = 17.46, and DRQ = 16.59, for integration times of 125, 500 and
1000 ms respectively.

3.2. Theoretical performance of the HDR method for generic detectors

Results from simulated data are shown in figur 6. When the attenuation of the beam is high
enough, the number of photons reaching the detector is not sufficien and frame averaging
does not provide any benefi in terms of SNR. This is observed in figur 6(A), when the beam
is attenuated by more than 17 cm of water.
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(A) (B) (C)

Figure 6. SNR of the acquired data as a function of attenuation and Bucky factor, for
frame averaging (A), and for the HDR data obtained by increasing the anode current
(B) and the detector integration time (C).

Figure 6(B) shows how the HDR method makes it possible to extend the DR of the
acquired data, since the SNR of the data can be maintained constant throughout attenuation by
increasing the exposure by the appropriate factor. As opposed to frame averaging, the increase
in exposure is translated into a recovery of SNR if the Bucky factor is large enough to provide
a valid signal. When the Bucky factor is below that value, the use of the HDR method has the
same effect as frame averaging (see lower left corner in figur 6(B)).

When the overexposed dataset for the HDR method is obtained using a longer integration
time, the performance of the method suffers a noticeable degradation (see figur 6(C)). The
rise of the dark signal narrows the DR of the overexposed image, and cancels out the benefit
provided by the HDR method.

3.3. Experimental results on (2D) planar projection data

Figure 7 shows a planar image of the copper pattern phantom, for both the single- and the
dual-exposure data, acquired using protocol 1 in table 1 (30 kVp). Both images are displayed
after logarithmic transformation of the raw data.

Profil data across the bar pattern for both acquisitions, plotted in figur 8, show how the
signal is masked by noise for high attenuation values, thus concealing the transition between
consecutive copper thickness values. As expected from the theoretical results above, frame
averaging cannot improve SNR in these areas. On the other hand, the steps become visible
when the HDR method is applied.

SNR measurements as a function of attenuation in the ROI are shown in figur 9. Using
the HDRmethod, the detector achieved a DR that provides a useful signal for a larger range of
attenuation values, while single-exposure data do not provide a valid signal for large thickness
values. Note that attenuation factors above ∼0.006 are within the quantum noise-limited part
of the response curve of the detector when using the HDR method, therefore the DR of the
recorded attenuation data is DRQ = 166.7. When using frame averaging the minimum signal
above the INEE grows to ∼0.013, meaning that the DR is DRQ = 76.9.

3.4. Experimental results on (3D) tomographic data

Figure 10 depicts a slice of the reconstructed volume for the single-exposure and for the
dual-exposure scans. The single-exposure image has a poorer contrast resolution, and most of
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Figure 7. Copper stair phantom acquired using the single-exposure protocol (A) and
the dual-exposure protocol (B) for acquisition protocol 1 (30 kVp). The lead frame is
not shown on the image. The white line denotes the position where the profil data
were measured. The acquisition of both datasets delivered the same radiation dose to
the sample.

Figure 8. Profil plot across the bar pattern phantom projection for the single-exposure
protocol (gray curves) and the dual-exposure protocol (black curves) for 30 kVp (left)
and 35 kVp (right), i.e. protocol 1 and 2, respectively (see table 1). Image log values
have been normalized by the attenuation factor of copper at the mean energy of the
beam to show the estimated thickness of copper. HDR data show a lower noise level for
large thickness values, at both energy levels.

the inserts are masked by noise and artifacts (see zoom-in window in figur 10). Using the
HDR technique, it is possible to observe a pronounced reduction in the level of ring artifacts
and noise present in the data.

The mean CNR value inside the 1.5 mm inserts for the single-exposure data is 0.58, which
increases to 1.71 when the HDR method is used.

One of the individual projections used to generate the tomographic data is shown in
figur 11, for the different acquisition protocols. Figure 11 shows that a significan part of the
pixels (39%) were below the instrumentation noise level (Xn) in the low exposure dataset. On
the other hand, these pixels were within the detector quantum noise region in the high current
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Figure 9. SNR measured inside the ROIs for each of the thicknesses as a function of
attenuation factor for the HDR and frame averaged data. The gray shaded area denotes
the part of the SNR curves where the instrumentation noise is larger than the quantum
noise.

Figure 10. Slice of the contrast resolution phantom acquired using a regular single-
exposure protocol (left column) and the dual-exposure protocol developed in this study
(right column). The high level of artifacts and noise makes it difficul to discern the
inserts from the surrounding background.

dataset. This is reflecte in SNR measurements that show an increase in SNR when using
the HDR method, compared to frame averaging, for the same delivered dose. Results for this
particular angular position can be extrapolated to any projection due to the symmetry of the
phantom.
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Figure 11. The upper row of the figur shows projection data and associated SNR for
one of the projection images used for the CT reconstruction. SNR values were measured
for the ROIs marked in the projection images. Note the increase in SNR provided by the
HDR method associated with the increase in dynamic range. The bottom row shows the
histograms for the low and high current datasets, and the instrumentation noise level.
The shaded part of the plot for the low current data shows pixels whose value is below
the instrumentation noise level while the shaded part for the high current dataset shows
non-saturated pixels.

4. Discussion

The method presented in this study extends the DR of x-ray FP detectors such as those
commonly used in CBCT. This extension is achieved by means of a modifie acquisition
process and an additional processing stage using the acquired data, thus obviating the need
for hardware modification that may be difficul and expensive to implement in commercial
devices.

In order to obtain the HDR image, we propose the combination of two datasets using
maximum likelihood estimation based on a previously published theoretical model for the
mean and variance of pixel signal. The model was extended to take into account the effect
of saturation in the variance of pixel signal. The model for detector response showed good
agreement with experimental data, thus proving its validity for the realistic simulation of FP
detectors.

The detector showed a linear response that broke at the saturation point and a reduction
in DR for longer integration times. Since additive noise and variance slope were found to be
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constant across integration time, the reduction in DR came solely from the increase in dark
signal with integration time.

Simulated data showed that the HDR method could theoretically extend the DR of the
detector to infinit , provided that the anode current of the x-ray source could be increased with
no limit. A longer integration time reduced the DR of the detector owing to the increase of
dark signal. For this reason, the performance of the HDR method degraded when the detector
exposure was increased by extending the image integration time instead of the anode current.

Experimental results showed enhanced image quality for projection and tomographic data
in samples containing areas of high attenuation. This enhancement resulted from an increase
in the DR of the detector and not merely by a reduction of the noise present in the data, as
confirme by SNR plots for the same dose delivered to the sample.

The results for the copper staircase phantom showed that the signal inside high attenuation
areas was masked by noise in the single-exposure data, due to the lack of a valid signal inside
the area in any of the frames acquired. This lack of signal prevented enhancement of the
visibility of the phantom structure by frame averaging. After applying the dual-exposure
technique, the overexposed image provided a valid signal in some of the highly attenuated
areas, revealing the part of the structure that was not visible with the single-exposure data and,
therefore, extending the DR of the detector.

Since our method extends the DR of the detected signal, the benefi is larger for highly
attenuated areas. This effect is reflecte in the shape of SNR curves for HDR data that show
asymptotic behavior for lower attenuation. This result implies the homogenization of the noise
properties across high and low attenuation areas, a desirable property for subsequent data
processing stages.

With regard to tomographic data, the contrast and noise achieved using the method
presented here were better than those obtained using single-exposure methods, when applied
to samples containing high attenuation materials that exceed the DR of the detector. The
poor contrast resolution in the single-exposure data can be explained by the lack of photons
reaching the detector for highly attenuated areas. This lack of photons caused the signal level
to be low and more homogeneous in highly attenuated areas. For such low signal values minor
deviations in the gain calibration point become much more conspicuous and are the source of
the larger impact of ring artifacts. The stronger rings conceal details inside areas surrounded by
high attenuation material in the reconstructed volume. Besides the boosting of ring artifacts,
low signal levels yielded lower CNR owing to the rise in the relative contribution of additive
noise, thus degrading the noise properties of the reconstructed dataset.

Since all the data acquired were used in the combination process, no discontinuities were
observed in the reconstructed slices. Discontinuities were observed in previous proposals,
which used a simpler approach for the combination of the acquired datasets (Sukovic and
Clinthorne 2001).

Our method could be applied to any FP detector, regardless the underlying hardware,
provided that the image lag is low enough and does not contaminate the subsequent data
frames, especially when a pixel switches from saturation to linear response from one frame
to the next. If the time needed to recover from saturation is too large the performance of the
method will be reduced. Further work, outside the scope of this paper, would be necessary to
assess the maximum level of image lag acceptable to still obtain acceptable results.

We were unable to compare the performance of our method with that of hardware-based
approaches, which would certainly be more effective, especially in terms of acquisition time,
since only one dataset is acquired. However, our approach is much less expensive and could
be included as a minor modificatio to the image processing chain of any system based on an
FP detector, regardless of the particular hardware implementation.
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Other approaches compensate the limited DR of the detector by pre-equalizing the
radiation field assuming prior knowledge of the sample structure. The most widespread
technique is the bow-tie filtering which modifie the spatial properties of the beam before it
is attenuated by the sample (Mail et al 2009) in an attempt to obtain a more even distribution
of radiation at the detector surface. When compared with DR extension techniques, such as
the one presented here, it is noteworthy that the effect of bow-tie filter is reduced when the
acquisition conditions depart from the expected scenario. For instance, if the shape or size
of the sample is significantl different from the expected one or there are unexpected high
attenuation objects, the DR of the attenuated beam could still be too high for the FP detector.
On the other hand, the HDR method presented does not impose any prior condition on the
sample properties, offering the same potential for the accommodation of a subject with a larger
DR independently of the attenuation distribution of the imaged sample.

The dual-exposure technique proposed here could be further extended to a multi-exposure
approach based on several exposure levels to obtain a similar SNR in all the parts of the
projection image.However, themaximummAachievable by the x-ray tube limits themaximum
DR that can be obtained using a multi-exposure method.

Future works will involve the study of alternatives to the presented combination algorithm.
New models for the probability density functions are also under study.

5. Conclusion

We propose a novel dual-exposure technique to extend the DR of x-ray FP detectors.
Our results show that the method effectively extends the DR of the detector, and

increases performance with respect to conventional protocols, particularly when there are
high attenuation areas in the sample.
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Appendix

According to the model presented for mean and variance of the pixel signal, the value of a
single pixel for a set of acquisitions maintaining a constant radiation flu follows a Gaussian
distribution with mean m and variance v given by equation (1a). If a significan part of the
distribution lies above the maximum pixel signal, all the potential values falling on that part
of the curve would receive the maximum pixel value, thus concentrating the upper tail of the
distribution in that single value, as shown in figur A.1.

Analytical expressions for mean and variance of Gaussian censored distributions can be
found in Greene (2003) and are reproduced below.
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Figure A.1. Probability density function of a Gaussian distribution with μ = 3650 and
σ = 240 representing the distribution of a pixel signal for a 12-bit detector, thus limiting
the maximum pixel value to 4095. The plot on the left shows the original distribution of
pixel values, while the plot on the right shows the real distribution of pixel values after
censoring the upper part (shaded on the left plot).

Let a be the censoring value, i.e., the maximum pixel value, and mo(gX) and vo(gX) the
mean and variance of the original non-censored distribution, according to equation (1a). The
mean of the censored pixel distribution is given by

m(gX ) = (1− �)a+ �
(
mo(gX ) + vo(gX )1/2λ

)
, (A.1)

where � is the cumulative distribution function at point a and λ is given by

λ = − φ(α)

�(α)
, with α = a− mo(gX )

vo(gX )1/2
, (A.2)

where φ is the probability density function for the non-censored pixel value distribution.
The value for the variance of the censored distribution yields the next expression,

v(gX ) = vo(gX )�[(1− δ) + (α − λ)2(1− �)] (A.3)

where δ = λ2–λα.
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