HUMAN ACTIVITY RECOGNITION BASED
ON EVOLVING FUZZY SYSTEMS

JOSE ANTONIO IGLESIAS
Carlos III University of Madrid, Avda. Universidad, 30
Leganes, Madrid, 28914, Spain
jiglesia@inf.uc3m.es

PLAMEN ANGELOV
InfoLab21, Lancaster University, South Drive

Lancaster, LA1 4 WA, United Kingdom
p.angelov@lancaster.ac.uk

AGAPITO LEDEZMA* and ARACELI SANCHIS
Carlos IIT University of Madrid
*ledezma@inf.uc3m.es
fmasm@inf.uc3m.es

Environments equipped with intelligent sensors can be of much help if they can recognize the actions
or activities of their users. If this activity recognition is done automatically, it can be very useful for
different tasks such as future action prediction, remote health monitoring, or interventions. Although
there are several approaches for recognizing activities, most of them do not consider the changes in how
a human performs a specific activity. We present an automated approach to recognize daily activities
from the sensor readings of an intelligent home environment. However, as the way to perform an activity
is usually not fixed but it changes and evolves, we propose an activity recognition method based on

Evolving Fuzzy Systems.

Keywords: Activity recognition; evolving fuzzy systems; Fuzzy-Rule-Based (FRB) classifiers.

1. Introduction

Activity recognition is an important task which
can be applied to many real-life problems such as
healthcare or eldercare.! However, while collecting
sequences of sensor readings in an intelligent home
environment is valuable, determining what activities
these sequences represent is a more challenging task.
This task needs also to take into account the fol-
lowing aspects: human behavior is often erratic, and
sometimes individuals behave differently because of a
change in their goals. Thus, it is necessary to update
models that describe the way an individual performs
a specific activity.

In recent years, significant work has been car-
ried out for recognizing human activities; however,
most of the models created for an activity do not
change according to the moods and habits of the
individual who performs that activity. In this paper,

we propose an adaptive approach for creating mod-
els of Activities of Daily Living (ADLs) and rec-
ognizing them from the sensor readings collected
in an intelligent environment using a Fuzzy-Rule-
Based (FRB) system. It is difficult or, in general,
impossible, to build a classifier that will have a full
description of all possible ways to perform an activ-
ity because they are not static and new patterns may
emerge as well as an old habit may be forgotten or
stopped to be used. Thus, as the description of the
performance of a particular activity itself may also
evolve, we assume that each ADL is described by one
or more fuzzy rules. In addition, in order to achieve
this task we need to cope with large amounts of data
and process this information in real time because
analyzing it in an offline mode would be impracti-
cal. In order to take into account these aspects, we
propose an Ewvolving Fuzzy Systems-based approach
that allows to create dynamic and evolving models

Cita bibliográfica
Published in: International Journal of Neural Systems, (2010), 20(5), 355-364

of ADLs. An Evolving Fuzzy System (EFS) is a
self-developing, self-learning fuzzy rule-based system

that have both their parameters but also their struc-
ture self-adapting on-line.

This paper is organized as follows: In the next
section it is discussed the background and related
work on the proposed problem. Section 3 details the
structure of the proposed evolving approach. How
the model of an ADL is created from a sequence
of sensor readings is explained in Sec. 4. Section 5
details the evolving ADL classifier, which is based
on Ewvolving Fuzzy Systems. Section 6 describes the
experimental settings and results obtained. Finally,
Sec. 7 contains future work and concluding remarks.

2. Background and Related Work

Over the last decade there has been growing interest
in the interpretation of human behavior, including
in video.? However, most of these works are limited
because human activity is a complex process which is
difficult to model, especially its dynamic aspect. In
this research, we present an approach to recognize
a human activity directly from the sensors readings
collected in an intelligent home environment, without
complex, off-line feature extraction, model/classifier
pre-training and using user- and problem-specific
parameters and thresholds.

There are many research studies about activity
recognition in intelligent environments which can be
applied to many real-life, human-centric problems.?*
However, several challenges need to be addressed
before intelligent home environments technologies
can be deployed. One of these main challenges is the
design of powerful activity recognition algorithms.
Most of the current research studies focus on recog-
nizing simple human activities and the recognition
of complex activities are only beginning to emerge.
Some of the recent approaches to activity recog-
nition are based on probabilistic models, such as
Hidden Markov Models® or Bayesian Networks,%”
because sensor readings are noisy and activities are
usually performed in a non-deterministic way. Other
models for recognizing activities are logic based® or
hand-crafted.”

It should be emphasized that the above appro-
aches ignore the fact that the way to perform
an activity can change and evolve according to
the moods and habits of the individual. Thus, in
this research, the activity recognition is considered,

treated and modeled as a dynamic and evolving
phenomenon. This is the most important contribu-
tion of this paper.

There exist several FRB719°12 and Neural Net-

13718 systems which have been applied to dif-
19-22 23-27

35-37

works
ferent tasks such as modeling,
detection,283! 32734
However, the FRB classifier proposed in this paper
has an open structure of rule-base and the on-line
learning mechanism.

monitoring,

clustering, or classification.

3. Owur Approach

This section introduces the proposed approach for
classifying a sequence of sensor readings into an
ADL. The input of the proposed method is a
sequence of sensor readings, but this method could
be applied for modeling any task represented by
a sequence of events. Although, the sensor read-
ings are usually tagged with the time and date of
the event, this information was not used in this
study. This approach proposes a method to create
the model of an ADL only from its corresponding
sequence of ordered sensor readings (data streams)
(Sec. 4). In addition, an evolving FBR classifier
(called EVACLASS - Evolving ADL Classifier) is pre-
sented which takes into account the fact that the way
an individual performs an ADL is not fixed, but is
rather changing, evolving (Sec. 5).

4. Creation of the Model of an ADL

In order to learn and construct the model of a cer-
tain ADL in an intelligent environment, we ana-
lyze the sequence of sensor readings collected while
the ADL is done by a human. As the order of the
sequence readings is essential in this task, the date
and time of a sensor readings are used for creating
the ordered sequence, but that information is not
included in it. Sequences play a crucial role in human
skill learning®® and in high-level problem solving and
reasoning.®® Thus, in this research, the human activ-
ity modeling is transformed into a sequence analysis
problem where a sequence of sensor readings rep-
resents a specific activity. This transformation can
be done because it is clear that any activity has
a sequential aspect, as sensors are activated in a
sequence.

When a person activates a sensor, it usually
depends on the previous sensors activated and it is

related to the following ones. In order to get the
most representative and relevant set of sensor read-
ings subsequences from a sequence, we propose the
use of a trie data structure.?? This structure has been
also used for classifying behavior patterns in different
domains.*1-44

The process of creation of the model of an
ADL from a sequence of sensor readings, which
is explained in detail in Ref. 45, consists of three
steps: 1. Segmentation of the sequence of sensor read-
ings, 2. Storage of the subsequences in a trie, and 3.
Creation of the model of the ADL. These steps are
detailed in the following three subsections.

For the sake of simplicity, let us consider an exam-
ple in which a specific ADL (ADL-1) is represented
by the readings of two different motion sensors (51
and S3) symbolized by S1.0n, S1.0ff and S3.0n
(where, for example, S1.0n expresses that the sensor
S1 has detected motion and it has been activated). In
order to simplify the example, the sequence consists
of only 5 readings. The example sequence represents
in chronological order the sensor readings activated
while an individual performs ADL-1: {S1.0n —
S1.0ff — 51.0n — S1.0ff — S3.0n}.

4.1. Segmentation of the sequence
of sensor readings

First, the sequence is segmented into subsequences
of equal length from the first to the last element.
Thus, the sequence A = AjAs---A, (where n
is the number of sensor readings of the sequence)
will be segmented in the subsequences described by
A; - Aitiengtn Vi,1 = [1,n-length+ 1], where length
is the size of the subsequences created and this value

|s1.0n[1] | |S1.0n[2] | | S1.0ff [1] |

|S1.0ff[1] | [81.0f[1] | |S1.0n[1] |

determines how many sensor readings are considered
as dependent (how many sensor readings are usually
activated consecutively as part of a pattern). In the
remainder of the paper, we will use the term subse-
quence length to denote this value.

In the proposed sample sequence, let 3 be the
subsequence length, then we obtain: {S1.0n —
S1.0ff— S1.0n}, {S1.Off — S1.0n — S1.O0f [},
{S1.0n — S1.0ff — S3.0n}.

4.2. Storage of the subsequences
wn a trie

The subsequences of sensor readings are stored in
a special data structure, called trie, in which all
possible subsequences are accessible and explicitly
represented. Every trie-node represents a sensor
reading and its children represent the sensor read-
ings that follow it. Also, each node keeps track of the
number of times a sensor reading has been recorded
into it. As the dependencies of the sensor readings are
relevant in the model of the ADL, the subsequence
suffixes (subsequences that extend to the end of the
given sequence) are also inserted.

Considering the previous example, the first sub-
sequence ({S1.0n — S1.0ff — S1.0n}) is added
as the first branch of the empty trie (Fig. 1(a)).
Each node is labeled with the number 1 which indi-
cates that the sensor reading has been inserted in
the node once (in Fig. 1, this number is enclosed
in square brackets). Then, the suffixes of the sub-
sequence ({S1.0ff — S51.0n} and {S1.0n}) are
also inserted (Fig. 1(b)). Finally, after inserting the
three subsequences and its corresponding suffixes,
the completed trie is obtained (Fig. 1(c)).

|S1.0n[2] |s30n[1]|

| s1.0n[1]] |S1.0n[1] |

[st.on[1]] [s3.0n[1]]

(a) (b)

(©)

Fig. 1. Steps of creating an example trie.

o
[
S

o
>
S

o
[N]
=]

Relative Frequency

o

A A-B AB-A ABC B B-A B-C BAB C
Subsequences of sensor readings

[A=51.0n B = S1.0ff C=53.0n|

Fig. 2. Distribution of subsequences of sensor read-
ings — Example.

4.3. Creation of the model of the ADL

Once the trie is created, the relevance of the subse-
quences that characterize the ADL can be measured
by its relative frequency or support.*® In this case,
the support of a subsequence is defined as the ratio
of the number of times the subsequence has been
inserted into the trie and the total number of subse-
quences of equal size inserted.

Thus, in this step, the trie can be transformed
into a set of subsequences labeled by its support
value. This set of subsequences is represented as a
distribution of relevant subsequences. In the previous
example, the trie consists of 9 nodes; therefore, the
corresponding model of the ADL consists of 9 differ-
ent subsequences which are labeled with its support
(Fig. 2). Once the model of an ADL has been created,
it is classified and used to update the Evolving ADL
Library (EVALIB), as explained in the next section.

5. Evolving FRB Classifier (EvAClass)

A classifier is a mapping from the feature space to the
class label space. In the proposed evolving FRB clas-
sifier, the feature space is defined by distributions of
subsequences of sensor readings. On the other hand,
the class label space is represented by the most rep-
resentative distributions. Thus, a distribution in the
class label space represents a specific model of an
ADL which is one of the prototypes of the evolving
library EVALIB. These prototypes are not fixed and
evolve taking into account the new information col-
lected on-line from the data stream — this is what
makes the classifier Evolving. The number of these
prototypes is not pre-fixed but it depends on the
homogeneity of the collected sequences. The differ-
ences between EvACLASS and a conventional FRB
classifier are the open structure of the rule-base and
the on-line learning mechanism. These aspects make
that the classifier can be adapted to the new ways

of doing an ADL. The following subsections describe
how the model of an ADL is represented to be used
by EVACLASS, and how this classifier is created in
an evolving manner.

5.1. ADL representation

EvACLASS receives, in an on-line manner, a distri-
bution of subsequences (obtained from the sequence
of sensor readings) which represents an ADL. In
order to classify an ADL, these distributions must be
represented in a data space. For this reason, each dis-
tribution is considered as a data vector that defines
a point in the data space. The data space in which
these points can be represented should consist of
n dimensions, where n is the number of the differ-
ent subsequences obtained. However, this value is
unknown and the creation of this data space from the
beginning is not efficient. For this reason, in EVA-
CLAsSs, the dimension of the data space is incremen-
tally growing according to the different subsequences
that are represented in it.

5.2. Structure of the classifier
EvACilass

Once the corresponding data vector, which repre-
sents the distribution of a specific ADL, has been
created from the sequence of sensor readings, it is
processed by the classifier. As it is explained in the
next five subsections, the structure of this classifier
includes five steps: (1) Classify the new sample
in a group represented by a prototype. (2) Cal-
culate the potential of the new data sample
to be a prototype. (3) Update all the proto-
types considering the new data sample. (4) Insert
the new data sample as a new prototype
if needed. (5) Remove existing prototypes if
needed.

5.2.1. Classify the new sample

In order to classify a new data sample, we compare it
with all the prototypes stored in EVALIB. This com-
parison is done using cosine distance and the small-
est distance determines the closest similarity. This
aspect is considered in Eq. (1).

Class(z,) = Class(Prot*);
Prot* = MINNY™FTot (cosDist(Prot;,)
(1)

where x, represent the sample to classify, NumProt
determines the number of existing prototypes in the
EVALIB, Prot; represents the ith prototype, and
cosDist represents the cosine distance between two
samples in the data space.

The time-consumed for classifying a new sample
depends on the number of prototypes and its num-
ber of attributes. However, we can consider, in gen-
eral terms, that both the time-consumed and the
computational complexity are reduced and accept-
able for real-time applications (in order of millisec-
onds per data sample) because the cosine distance is
calculated recursively, as it is explained in the next
subsection.

5.2.2. Calculate the potential of the new data
sample

As in Ref. 47, a prototype is a data sample (the
model of an ADL represented by a distribution of
subsequences of sensor readings) that groups several
samples which represent a certain way to perform an
ADL. The classifier is initialized with the first data
sample, which is stored in the EVALIB. Then, each
data sample is classified into one of the prototypes
defined in the classifier. Based on the potential of the
new data sample to become a prototype,*® it could
form a new prototype or replace an existing one.

The potential (P) of the kth data sample (xy) is
calculated by the Eq. (2), which represents a func-
tion of the accumulated distance between a sample
and all the other k£ — 1 samples in the data space.*”
The result of this function represents the density of
the data that surrounds a certain data sample.

1

Zl-“:ll distance(zy,z;)
L+ - k—1

Plag) = (2)

where distance represents the distance between two
samples in the data space.

In Ref. 49 the potential is calculated using the
euclidean distance and in Ref. 47 it is calculated
using the cosine distance. EVACLASS uses the cosine
distance (cosDist) to measure the similarity between
two samples, as it is described in Eq. (3), because it
tolerates different samples to have different number
of attributes (in this case, an attribute is the support
value of a subsequence of sensor readings).

Sy ki
j=1TkjTpj

1—
\/Z?:l xij Z?:I xf,j

(3)

cosDist(xy, xp) =

where x, and x, represent the two samples to mea-
sure its distance and n represents the number of dif-
ferent attributes in both samples.

Note that the expression in the Eq. (2) requires
all the accumulated data sample available to be cal-
culated, which contradicts to the requirement for
real-time and on-line application needed in the pro-
posed problem. For this reason, in Ref. 47 it is devel-
oped a recursive expression for the cosine distance.
This formula is as follows:

1
P, = ;o k=23
k(21 — T 3
(k—1)\/ 2271 (#1,)?
where
oo)) 292
j=1 1=1\"k
and
. J\2
b = _=r j=[Ln+1]; Pi(xn)=1

Z?:l(zi)z ’
(4)

where zj represents the kth data sample (x) and
its corresponding label (z = [z, Label]). Using this
expression, it is only necessary to calculate (n + 1)
values where n is the number of different subse-
quences obtained; this value is represented by b,
where bi, j = [1,n] represents the accumulated value
for the kth data sample.

5.2.3. Update all the prototypes

Once the potential of the new data sample has been
calculated, all the existing prototypes in the EVALIB
are updated taking into account this new data sam-
ple. It is done because the density of the data space
surrounding certain data sample changes with the
insertion of each new data sample. This operation is
done really fast and it requires very little memory
space because of the use of the recursive Eq. (4).

5.2.4. Insert the new data sample as a new
prototype

EvACLASS can start ‘from scratch’ (without pro-
totypes in the library) in a similar manner as
eClass evolving fuzzy rule-based classifier proposed
in Ref. 49 and further developed in Ref. 47. In
this step, the potential of the new sample (z;) is

compared with the potential of the existing proto-
types. A new prototype is created if its value is
higher than any other existing prototype, as shown
in Eq. (5).

i, ¢ =[1, NumProt] : P(zx) > P(Prot;) (5)

Thus, if the new data sample is not relevant,
the overall structure of the classifier is not changed.
Otherwise, if the new data sample has high descrip-
tive power and generalization potential, the clas-
sifier evolves by adding a new prototype in the
EvALIB which represents a part of the obtained data
samples.

5.2.5. Removing existing prototypes

After adding a new prototype, we check whether any
of the already existing prototypes in the EVALIB are
described well by the newly added prototype.*” By
well we mean that the value of the membership func-
tion that describes the closeness to the prototype is
a Gaussian bell function chosen due to its general-
ization capabilities:

Ji, i =[1, NumPrototypes] : pi(zx) >e ' (6)

The membership function between a data sample and
a prototype is calculated as follows:

_l[cosDist(zE.,Proti)]
e 2 a4

, i =11, NumProt]
(7)

where cosDist(zy, Prot;) represents the cosine dis-
tance between a data sample (z;) and the ith
prototype (Prot;);o; represents the spread of the
membership function, which also symbolizes the
radius of the zone of influence of the prototype. This
spread is determined based on the scatter®® of the

wi(zr) =

data. In order to calculate the scatter without storing
all the received samples, this value can be updated
(as shown in Ref. 49) recursively by:

[cosDist?(Prot;, zy)
—[oi(k = 1)7]
. ®)

oi(k) ="\ [oi(k = 1)J*> +

where k is the number of data samples inserted
in the data space; cosDist(FP;, zy) is the cosine dis-
tance between the ith prototype and the new data
sample.

5.3. Pseudo-code and properties of the
classifier EvAClass

5.3.1. Pseudo-code of EVACLASS

Begin EvAClass
Initialization: z1 = [z1, Labely] and P =1
DO for a data sample WHILE data stream ends
Read the new sample, xj (sequence of sensor
readings)
Classify x;, in a class using equation 1.
Calculate P(zy) using the recursive formula 4.
Update all the prototypes (considering xy)
by 4.
IF (5 holds) THEN
Insert x; as a new prototype.
IF (6 holds) THEN
Remove the corresponding prototype/s.
End DO
End EvACilass

5.3.2. Properties of EVACLASS

The proposed classifier faces an important challenge
in the human activity recognition: to evolve the cre-
ated classifier according to the new sequences of sen-
sor readings collected in the intelligent environment.
This approach does not require pre-traning and it
starts “from scratch”.

As the information of the sensors readings col-
lected from an intelligent home environment is usu-
ally quite large, EVACLASS can also cope with huge
amounts of data and process streaming data in real-
time and on-line. In an intelligent environment, stor-
ing the complete data set and analyzing the data
streams in off-line mode could be impractical.

6. Experimental Setup and Results

In order to evaluate EVACLASS, we use a dataset
with the sensor readings activated by a person while
s/he is doing a specific ADL. Thus, the sequence of
sensor readings is labeled.

6.1. Dataset

The dataset used in this research was created by
the CASAS Smart Home project, which is a multi-
disciplinary research project at Washington State
University focused on the creation of an intelligent
home environment.’! The data represents sensor

Table 1. Example of a sequence of events which repre-
sents the ADL “Cook”.

ADL: “Cook”

Sensor Readings Sequence

2008-02-29 13:25:05.527 101 ABSENT 101-ABSENT
2008-02-29 13:25:09.190 M16 OFF M16-OFF
2008-02-29 13:25:10.513 M17 ON M17-ON
2008-02-29 13:25:11.979 107 ABSENT 107-ABSENT

readings collected in a smart apartment testbed.
Sensor information includes motion, temperature,
water, burner, phone usage, and item sensor read-
ings. The data represents 24 participants perform-
ing the following five ADLs: (1) Make a phone call,
(2) Wash hands, (3) Cook, (4) Eat, and (5) Clean.
Thus, the dataset consists of 120 different samples
labeled with its corresponding ADL. Each sample
consists of a sequence from about 30 to 150 sensor
readings.

The first column of the Table 1 shows a portion of
the sensor readings that are generated by the activity
“Cook” where M16 and M17 represent motion sen-
sors and 101 AND 107 represent item sensors (these
readings report PRESENT when an item is placed
on the sensor and ABSENT otherwise). The second
column of this table reports the sequence of sensor
readings which is used for the proposed approach.

6.2. FExperimental design

In the creation of the ADL model, the length of the
subsequences in which the original sequence is seg-
mented (used for creating the t¢rie) is an important
parameter: using long subsequences, the time con-
sumed for creating the trie and the number of rele-
vant subsequences of the corresponding distribution
increase drastically. In the experiments presented in
this paper, the subsequence length varies from 2 to 6.

Although, EVACLASS has been designed to be
used on-line, in order to have comparable results with
other different classifiers using the above dataset,
3-fold cross validation is used. It should be empha-
sized that EVACLASS does not need to work in this
mode.

For evaluating the performance of EVACLASS, we
compare it with the following classifiers: Naive Bayes
(NB) and k-Nearest Neighbor (k-NN) (incremental

and non-incremental), C5.0, Bayesian Networks
(BN), Support Vector Machine (SVM), Learning
Vector Quantization (LVQ) and Artificial Neural
Networks (ANN). The k-NN needs to be parame-
terized with the number of neighbors (k) used for
classification; in this case, the better results are
obtained using £k = 1. Using a NB classifier, the
numeric estimator precision values are chosen based
on analysis of the training data; however, the NB
incremental uses a default precision of 0, 1. The algo-
rithm implementation used in the LV(Q classifier is
the enhanced version of LVQ1, the OLVQ1 imple-
mentation. The type of ANN used is a multi-layer
perceptron trained with the back-propagation algo-
rithm, in which the number of neurons is modified
according to the number of inputs.

For this comparison, these classifiers were trained
using a feature vector for each activity done by a res-
ident. Therefore, each of the 12 sample vectors are
labeled with its corresponding ADL. The correspond-
ing vector consists of the support value of all the dif-
ferent subsequences of sensor readings obtained for
all the ADLs. There are a lot of subsequences which
do not have a value because the corresponding sensor
readings subsequence was not activated doing that
ADL. In this case, in order to be able to use this
data for training the classifiers, we consider the value
0 (although its real value is null).

6.3. Results

Table 2 shows the average classification success
of different classifiers using different subsequences
lengths for segmenting the initial sequence (from 2
to 6). According to these data, the percentages of
sequences correctly classified by our approach are
better than the obtained by K-NN and very similar
to the obtained by the other classifiers. In general,
the difference between EVACLASS and the NB, SVM
and ANN is considerable using long subsequences (5
or 6), but this difference decreases when this length
is smaller. Thus, using an appropriate subsequence
length, the proposed classifier can compete well with
off-line approaches. The ANN-based classifier needs a
great deal of neurons because the number of inputs
is usually very large. Thus, the training process is
very time consuming, computationally expensive and
impractical in implementation in the environment
proposed in this research.

Table 2.

Classification rates using different subsequence lengths for the creation of the model of the ADL.

Classifiers and classification rate (%)

Incremental classif.

Non-incremental classifiers

k-NN
Subsequence EVACLASS NB increm. C5.0 NB k-NN BN SVM LVQ ANN
lengths increm. (k=1) (k=1)
2 92.5 93.3 91.6 94.1 975 95.0 98.3 975 916 983
3 94.2 88.3 81.5 95.0 97.5 86.6 97.5 97.5 92.5 97.5
4 87.5 87.5 53.3 93.3 958 59.1 97.5 96.6 90.0 97.5
5 79.2 84.1 40.8 93.3 933 43.3 97.5 983 841 975
6 78.3 82.5 33.3 925 925 34.1 97.5 983 8.0 975

It should be noticed that only our approach can
evolve the created classifier according to the new
sequences collected in the intelligent environment.
The proposed environment needs a classifier able
to process steaming data in on-line and in real-
data. Only the incremental classifiers satisfy this
requirement, but unlike EVACLASS, they assume a
fixed structure. Taking into account the incremental
classifiers, the average classification success is very
similar; besides EVACLASS can cope with huge
amounts of data because it does not need to store
the entire data stream in the memory and disregards
any sample after being used. In addition, the strucu-
ture of EVACLASS is open and the rule-base evolves
in terms of creating new prototypes as they occur
automatically. For this reason, EVACLASS is compu-
tationally simple and efficient as it is recursive and
one pass. In fact, since the number of attributes is
very large in a real environment and it changes fre-
quently, the proposed approach EVACLASS is the
only working alternative.

Considering the same goal proposed in this paper,
Cook and Schmitter®® implemented both a naive
Bayesian classifier and a Markov Model (MM) to rec-
ognize an ADL using the data set described above.
Using 3-fold cross validation on the 120 sequences
of reading sensors (activity traces), the naive Bayes
algorithm achieved 91% classification accuracy while
the MM achieved 98%.

7. Conclusions

In this paper we propose a generic and evolving
approach (EVACLASS) to model and classify sequen-
ces of sensor readings which represent a certain ADL.
EvACLASS is based on Evolving Fuzzy Systems and

it is one pass, non-iterative, recursive and it has the
potential to be used in an interactive mode; there-
fore, it is computationally very efficient and fast.
The test results with a real dataset demonstrate that
EvACLASS performs as well as other well established
off-line classifiers in terms of correct classification on
validation data. However, the environment proposed
in this paper changes rapidly and EvACLASS takes
into account this aspect since its structure is open
and its rule-base evolves.

Although it is not addressed in this paper, it
could be interesting to include, in the ADL model,
information about the date and the time when the
sensor readings have been activated. In addition, the
proposed algorithm should be included in a complete
system that performs functional assessment of indi-
viduals in their environments.

Acknowledgements

This work has been partially supported by the
Spanish Government under project TRA2007-67374-
C02-02.

References

1. J. Boger and C. Boutilier, A decision-theoretic
approach to task assistance for persons with
dementia, in Proceedings of International Joint Con-
ferences on Artificial Intelligence (2005) 1293-1299.

2. J. Hoey and J. J. Little, Value-directed human
behavior analysis from video using partially observ-
able markov decision processes, IEEE Transactions
on Pattern Analysis and Machine Intelligence 29
(2007) 1118-1132.

3. J. Sarkar, Y.-K. Lee and S. Lee, A smoothed naive
bayes based classifier for activity recognition, IETE
Technical Review (SCIFE) 27(2) (2010) 109-119.

10.

11.

12.

13.

14.

15.

16.

17.

. E.Kim, S. Helal and D. Cook, Human activity recog-

nition and pattern discovery, IEEE Pervasive Com-
puting 9 (2010) 48-53.

D. Sanchez, M. Tentori and J. Favela, Activity recog-
nition for the smart hospital, IEEE Intelligent Sys-
tems 23(2) (2008) 50-57.

D. H. Wilson and C. Atkeson, Simultaneous tracking
and activity recognition (star) using many anony-
mous, binary sensors (2005) 62-79.

E. Castillo, 1. Gallego, J. M. Menendez and
S. Sanchez-Cambronero, Traffic estimation and opti-
mal counting location without path enumeration
using bayesian networks, Computer-Aided Civil and
Infrastructure Engineering 23(2) (2008) 198-207.
N. Landwehr, B. Gutmann, I. Thon, L. De Raedt
and M. Philipose, Relational transformation-based
tagging for activity recognition, Fundamenta Infor-
maticae 89(1) (2008) 111-129.

J. Fogarty, Sensing from the basement: A feasibil-
ity study of unobtrusive and low-cost home activity
recognition, in Symposium on User interface Soft-
ware and Technology (2006) 91-100.

Y. Li and T. Zhang, Global exponential stability of
fuzzy interval delayed neural networks with impulses
on time scales, International Journal of Neural Sys-
tems 19(6) (2009) 449-456.

A. Haidar, A. Mohamed, M. Al-Dabbagh, A. Aini
Hussain and M. Masoum, An intelligent load shed-
ding scheme using neural networks & neuro-fuzzy,
International Journal of Neural Systems 19(6)
(2009) 473-479.

J. Villar, E. de la Cal and J. Sedano, A fuzzy logic
based efficient energy saving approach for domestic
heating systems, Integrated Computer-Aided Engi-
neering 16(2) (2009) 151-163.

T. Jorgensen, B. Haynes and C. C. C. F. Norlund,
Pruning artificial neural networks using neural com-
plexity measures, International Journal of Neural
Systems 18(5) (2008) 389-403.

H. Huynh, Y. Won and J. Kim, An improvement
of extreme learning machine for compact single-
hidden-layer feedforward neural networks, Inter-
national Journal of Neural Systems 18(5) (2008)
433-441.

J. Liang, Z. Wang and X. Liu, Global synchroniza-
tion in an array of discrete-time neural networks
with mixed coupling and time-varying delays, Inter-
national Journal of Neural Systems 19(1) (2009)
57-63.

S. Ghosh-Dastidar and H. Adeli, Spiking neural
networks, International Journal of Neural Systems
19(4) (2009) 295-308.

M. Asaduzzaman, M. Shahjahan and K. Murase,
Faster training using fusion of activation functions
for feed forward neural networks, International Jour-
nal of Neural Systems 19(6) (2009) 437-448.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

J. Menke and T. T. Martinez, Improving super-
vised learning by adapting the problem to the
learner, International Journal of Neural Systems
19(1) (2009) 1-9.

H. Adeli and X. Jiang, Neuro-fuzzy logic model for
freeway work zone capacity estimation, Journal of
Transportation Engineering 129(5) (2003) 484-493.
S. Suresh, N. Kannan, N. Sundararajan and
P. Saratchandran, Neural adaptive control for vibra-
tion suppression in composite fin-tip of aircraft,
International Journal of Neural Systems 18(3)
(2008) 219-231.

W. Pedrycz, R. Rai and J. Zurada, Experience-
consistent modeling for radial basis function neural
networks, International Journal of Neural Systems
18(4) (2008) 279-292.

P. Anand, B. Siva Prasad and C. Venkateswarlu,
Modeling and optimization of a pharmaceutical for-
mulation system using radial basis function network,
International Journal of Neural Systems 192(2)
(2009) 127-136.

E. Carden and J. Brownjohn, Fuzzy clustering of sta-
bility diagrams for vibration-based structural health
monitoring, Computer-Aided Civil and Infrastruc-
ture Engineering 23(5) (2008) 360-372.

G. Rigatos, Adaptive fuzzy control with output feed-
back for h-infinity tracking of sisi nonlinear sys-
tems, International Journal of Neural Systems 18(4)
(2008) 305-320.

H. Elragal, Improving neural networks prediction
accuracy using particle swarm optimization com-
biner, International Journal of Neural Systems 19(5)
(2009) 387-393.

X. Jiang and H. Adeli, Dynamic fuzzy wavelet neu-
roemulator for nonlinear control of irregular high-
rise building structures, International Journal for
Numerical Methods in Engineering 74(7) (2008)
1045-1066.

Y. Tang, Q. Miao and J. Fang, Synchronization
of stochastic delayed chaotic neural networks with
markovian switching and application in communica-
tion, International Journal of Neural Systems 19(1)
(2009) 43-56.

H. Adeli and A. Karim, Fuzzy-wavelet rbfnn model
for freeway incident detection, Journal of Trans-
portation Engineering 126(6) (2000) 464-471.

K. Perusich, Using fuzzy cognitive maps to iden-
tify multiple causes in troubleshooting systems, Inte-
grated Computer-Aided Engineering 15(2) (2008)
197-206.

A. Samant and H. Adeli, Enhancing neural net-
work incident detection algorithms using wavelets,
Computer-Aided Civil and Infrastructure Engineer-
ing 16(4) (2001) 239-245.

A. Karim and H. Adeli, Comparison of the fuzzy
wavelet rbfnn freeway incident detection model with

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

the california algorithm, Journal of Transportation
Engineering 128(1) (2002) 21-30.

X. Gao, L. Vuong and M. Zhang, Detecting data
records in semi-structured web sites based on text
token clustering, Integrated Computer-Aided Engi-
neering 15(4) (2008) 297-311.

W. Chen and C. Zhang, A hybrid framework for
protein sequences clustering and classification using
functional signature motif information, Integrated
Computer-Aided Engineering 16(4) (2009) 353-365.
A. Khashman and B. Sekeroglu, Document image
binarisation using a supervised neural network,
International Journal of Neural Systems 18(5)
(2008) 405-418.

M. Ahmadlou and H. Adeli, Enhanced probabilis-
tic neural network with local decision circles: A
robust classifier, Integrated Computer-Aided FEngi-
neering 17(3) (2010).

S. Buchholz and N. Bihan, Polarized signal classifi-
cation by complex and quaternionic multilayer per-
ceptrons, International Journal of Neural Systems
18(2) (2008) 75-85.

W. Zou, Z. Chi and K. Lo, Improvement of image
classification using wavelet coefficients with struc-
tured-based neural network, International Journal of
Neural Systems 18(3) (2008) 195-205.

R. Sun, E. Merrill and T. Peterson, From implicit
skills to explicit knowledge: A bottom-up model
of skill learning, Cognitive Science 25(2) (2001)
203-244.

J. Anderson, Learning and Memory: An Integrated
Approach. New York: John Wiley and Sons (1995).

E. Fredkin, Trie memory, Communications of the
ACM 3(9) (1960) 490-499.

J. A. Iglesias, A. Ledezma and A. Sanchis, Sequence
classification using statistical pattern recognition, in
Intelligent Data Analysis 4723 (2007) 207-218.

G. A. Kaminka, M. Fidanboylu, A. Chang and M. M.
Veloso, Learning the sequential coordinated behavior
of teams from observations, in RoboCup, Vol. 2752,
Springer (2002) 111-125.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

J. A. Iglesias, A. Ledezma and A. Sanchis, A com-
paring method of two team behaviours in the sim-
ulation coach competition, in Proceedings of the
Modeling Decisions for Artificial Intelligence (2006)
117-128.

J. A. Iglesias, A. Ledezma, A. Sanchis and
G. Kaminka, A plan classifier based on chi-square
distribution tests, Intelligent Data Analysis 15(2)
(2011).

J. A. Iglesias, A. Ledezma and A. Sanchis, Creating
user profiles from a command-line interfaces: A sta-
tistical approach, in Proceedings of the International
Conference on User Modeling, Adaptation, and Per-
sonalization (2009) 90-101.

R. Agrawal and R. Srikant, Mining sequential pat-
terns, in International Conference on Data Engineer-
ing (1995) 3-14.

P. Angelov and X. Zhou, Evolving fuzzy rule-based
classifiers from data streams, IEEE Transactions on
Fuzzy Systems: Special issue on Fvolving Fuzzy Sys-
tems 16(6) (2008) 1462-1475.

P. Angelov and D. Filev, An approach to online iden-
tification of takagi-sugeno fuzzy models, Systems,
Man, and Cybernetics, Part B, IEEE Transactions
on 34(1) (2004) 484-498.

P. Angelov, X. Zhou and F. Klawonn, Evolving fuzzy
rule-based classifiers, IEEE Symposium on Compu-
tational Intelligence in Image and Signal Processing
(2007) 220-225.

P. Angelov and D. Filev, Simpl_ets: A simplified
method for learning evolving takagi-sugeno fuzzy
models, in IEEE International Conference on Fuzzy
Systems (2005) 1068-1073.

School of Electrical Engineering and Computer Sci-
ence — Washington State University, CASAS Smart
Home Project (http://ailab.wsu.edu/casas/) (2010).
D. Cook and M. Schmitter-Edgecombe, Assessing
the quality of activities in a smart environment,
Methods of Information in Medicine 48(5) (2009)
480-485.

10

