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1 Introduction

For some time Value at Risk (VaRα) was the preferred choice in industry to
measure market risk. The main advantage of VaRα , over other risk measures is that
when applied to any financial instrument, it is always expressed as money losses. In
addition, VaRα is simple to use with a wide variety of risks. Despite its universality,
several authors have pointed out the deficiencies of VaR, such as its lack of sub-
additivity (Artzner et al. 1997, 1999) or of convexity, and that it is a measure difficult
to optimize as it may have multiple local minima (Basak and Shapiro 2001).

Artzner et al. (1997) address the question of how a risk measure should behave
for different risks on a finite-states probability space. The authors suggest a set of
properties for a risk measure to be coherent: sub-additivity, translation invariance,
positive homogeneity and monotonicity. Their study was extended to general proba-
bility spaces in Delbaen (2002).

With the concept of coherent risk measure and its defining properties, different
sets of measures started to appear, each with distinctive properties: convex measures
(see Föllmer and Shied 2002 or Fritelli and Rosazza 2002), spectral measures (Acerbi
2002) or deviation measures (Rockafellar et al. 2006a). Denuit et al. (2006) divide the
axioms to characterize a risk measures into three classes: rationality, additivity and
technical axioms.

The above risk measures are obtained axiomatically from their desired properties.
But risk measures can be generated in other ways. For instance, Denuit et al. (2006)
determine the functional form of their risk measures through economic indifference
arguments, such as expected utility and distortion utility. Goovaerts et al. (2003b)
recover many existing risk measures by minimizing a Markov bound for the tail
probability.

Applications of the risk measures to portfolio optimization can be found in
Rockafellar and Uryasev (2000) for CVaRα , Ruszczynski and Shapiro (2006) for
convex risk measures, Acerbi and Simonetti (2002) for spectral risk measures and
Rockafellar et al. (2006b) for deviation risk measures.

Our objective is to show that some of these risk measures do not satisfy all the
properties required to avoid inconsistent decisions. We first define a completeness
property that all measures must have. Then, depending on the intended use of the
risk measure, we impose a second set of properties: exhaustivity and adaptability.

The paper is organized as follows. Section 2 reviews the properties that the litera-
ture proposes for risk measures, highlighting differences between existing families of
risk measures and singling out the most popular measures in practice.

Section 3 studies distortion risk measures and their properties. Then Section 4
gives some examples of distortion risk measures. It shows how some popular mea-
sures, such as Conditional Value at Risk (CVaRα), lead to inconsistent decisions.
To avoid this problem, the completeness property is put forward. It ensures that the
distortion risk measure uses all the information in the original loss distribution. It
shows also how inconsistencies are due to the constant portions of the distortion
function generating the risk measure, rather than its non-differentiability, as sug-
gested by Wang (2002). We characterize this property through the monotonicity of
the distortion function with a condition that is easily verified.

Section 5 shows that completeness is not sufficient, in general, for the distortion
risk measure to avoid inconsistencies. An adaptability property is defined, forcing
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the risk measure to use the information in the original loss distribution adequately.
This property is characterized through simple conditions on the derivative of the
distortion function.

The conclusion gives a table summarizing the different properties that common
distortion risk measures satisfy.

2 Properties of Risk Measures

Let � be a sample space and X : � → R be the loss or gain variable (risk)
associated with a given investment, over a single period of time 0 to T. Then consider
a probability space (�, P) and let X be the set of all risks, that is, all real functions on
�. A risk measure is defined as follows.

Definition 2.1 A risk measure is a function ρ : X → R.

If the value ρ(X), assigned by the measure ρ to risk X is positive, then it can be
interpreted as the minimum amount of money that an agent must add to the position
X, by investing at the risk free rate, to forego any level of risk. By contrast, if ρ(X)

is negative, then the amount −ρ(X) can be cashed, without risk, from the current
position.

According to Duffie and Pan (1997), VaRα can be defined as (for the market value
of an asset, it could be defined in more general contexts):

For a given time horizon T and an α × 100% confidence level, VaRα is the loss
in market value that can only be exceeded with a probability of at most 1− α.

VaRα usually answers the question: What is the minimal loss incurred in the (1−
α) × 100% worse outcomes of the portfolios?

Actually, VaRα is simply the α × 100%-percentile of the loss distribution.

Definition 2.2 For a risk X over a given period [0, T] and 0 < α < 1, the α × 100%
Value at Risk is:

VaRα(X) = sup{x ∈ R | P(X ≥ x) > 1− α}.

One main advantage of VaRα is that, irrespectively of the financial instrument to
which it is applied, it is always expressed as money lost. In addition it is simple to
calculate for a wide variety of risks. But despite its universality, several authors have
pointed out the deficiencies of VaRα : it is not sub-additive, nor convex and difficult
to optimize.

Artzner et al. (1997) consider how risk measures should behave. They suggest a
set of properties that coherent risk measure should satisfy.

Definition 2.3 (Artzner et al. 1997) A risk measure ρ is called coherent if and only if
it satisfies the following axioms:

1. Sub-additivity: for any X, Y ∈ X, then ρ(X + Y) ≤ ρ(X) + ρ(Y),
2. Positive homogeneity: for any X ∈ X and λ ≥ 0, then ρ(λ X) = λ ρ(X).
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3. Translation invariance: for a fixed X ∈ X and any a ∈ R, then ρ(X + a) =
ρ(X) + a.

4. Monotonicity: let X, Y ∈ X be such that X ≤ Y a.s., then ρ(X) ≤ ρ(Y).

Artzner et al. (1999) show that such measures are characterized in terms of scenar-
ios. In fact, the choice of a risk measure becomes equivalent to the choice of a set of
generalized scenarios (see Song and Yan 2006, for more general characterizations).

For losses, an alternative to VaRα is the so-called Conditional Value at Risk
(CVaRα), also known as Conditional Tail Expectation (CT E), although this is
sometimes a misnomer. It was initially proposed by Artzner et al. (1999) and has
been studied extensively in recent years.

CVaRα answers the question: What is the expected loss incurred in the (1− α) ×
100% worse cases in closing a position?

Definition 2.4 (Artzner et al. 1999) For a risk X on (�, P) and a confidence level
0 < α < 1, the α × 100% CVaRα is:

CVaRα(X) = 1
1− α

∫ 1−α

0
VaRt(X)dt .

By definition, CVaRα(X) ≥ VaRα(X), for any risk X. The properties of CVaRα

are more attractive than those of VaRα : sub-additive and convex. In fact, it is in most
cases coherent (Artzner et al. 1999).

Föllmer and Shied (2002) suggest that market risk may increase non-linearly with
the value of the position. For example, it is possible that a liquidity risk be created
when a position is multiplied by a sufficiently large factor. Accordingly, they propose
relaxing the conditions of positive homogeneity and sub-additivity to convexity (see
also Fritelli and Rosazza 2002).

Definition 2.5 (Föllmer and Shied 2002) A a risk measure ρ is called convex if and
only if ρ

[
λ X + (1− λ) Y

] ≤ λ ρ(X) + (1− λ) ρ(Y), for any risk X on (�, P) and
weight λ ∈ [0, 1].

Convexity implies that diversification does not increase risk, as the risk value of
the diversified portfolio λ X + (1− λ) Y is less or equal to the re-weighted average
of the individual risk values.

Föllmer and Schied also show that, as with coherent risk measures, convex risk
measures can be represented in terms of a set of scenarios.

Acerbi (2002) defines spectral measures. They are also studied with a different
approach by Kusuoka (2001), who shows that a spectral measure can be associated
to coherent risk measures that have two additional properties, law invariance and
comonotone additivity (see Denneberg 1994 for the latter). Law invariance is
important in practice as it is required for the estimation of the risk measure from
empirical data. Coherent risk measures that are not law invariant (for example, worst
conditional expectation, WCEα , of Artzner et al. 1999) cannot be estimated solely
from data. Using such measures can lead to different risk values for two portfolios
with identical loss distributions.
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Rockafellar et al. (2006a) propose two different sets of risk measures: deviation
measures and measures bounded in expectation. Although the former are used in
practice, they are not coherent. While the latter are related to deviation measures,
but do satisfy some axioms of Artzner et al. (1997), replacing the monotonicity
property by one called boundedness in expectation.

Clearly, opinions differ substantially on the properties that risk measures should
satisfy. Goovaerts et al. (2003a) are critical of some conditions for coherence; sub-
additivity, translation invariance and positive homogeneity. Dhaene et al. (2008)
argue that the property of subadditivity can lead to undesirable situations, for
example an expected shortfall that increases with a merger.

Desirable properties differ with the intended use for a risk measure: capital
requirements, statutory purposes, or risk premium calculations. We may conclude
that there is no general set of axioms that is valid for all above applications.

The following section studies the relevance of certain properties when restricting
attention to distortion risk measures. Several simple examples serve to illustrate
the inconsistencies obtained with some of the most popular risk measures. We
discuss different properties that distortion risk measures should satisfy to avoid such
problems. These properties find simple interpretations in terms of the distortion
function g that characterizes the risk measure, and its derivative g′.

3 Distortion Risk Measures

Consider the set function μ : F → [0, ∞), defined on the σ -algebra F , such that
μ(∅) = 0 and A ⊆ B ⇒ μ(A) ≤ μ(B), for A, B ∈ F .

If

μ(A ∪ B) ≤ μ(A) + μ(B) , for all A, B ∈ F ,

μ is called sub-additive.

Definition 3.1 A distortion function g : [0, 1] → [0, 1] is a non-decreasing function
such that g(0) = 0 and g(1) = 1. Furthermore, the dual distortion function of g is
given by:

g̃(u) = 1− g(1− u) , u ∈ [0, 1] . (1)

We consider the special case μ(A) = g
[
P(X ∈ A)

] := P∗(A), where g is a distor-
tion function, P is a probability measure on the σ -algebra B of Borel on , and X is
a random variable. Such a function μ is called a distorted probability P∗.1 Similarly,
consider its dual function μ̃(A) = g̃

[
P(X ∈ A)

] := P̃∗(A).
We study risk measures for financial and actuarial instruments defined through

the Choquet integral of the random variable for the portfolio gains and losses:

ρg[X] =
∫

XdP∗ =
∫

X+ dP∗ −
∫

X− dP̃∗ ,

if these integrals are finite (Denneberg 1994).

1Note that P∗ is not really a probability measure, but it is usually referred to as a “distorted
probability” in the literature.
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Consider this special case of risk measures based on a distorted probability. It
can be shown (Wang 1996) that the Choquet integral of a random variable X, with
respect to a distortion function g, is equivalent to the expectation of the variable X
under the distorted probability P∗ (with corresponding distribution F∗ and survival
function S∗ = 1− F∗):

EP∗(X) =
∫ ∞

0
S∗(x) dx −

∫ ∞

0
F∗(−x) dx

=
∫ ∞

0
g
[
S(x)

]
dx −

∫ ∞

0
g̃
[
F(−x)

]
dx

=
∫ ∞

0
g
[
S(x)

]
dx −

∫ ∞

0

{
1− g

[
S(−x)

]}
dx = ρg[X] . (2)

Such a distortion risk measure is then the mean of a new variable where the
probabilities have been re-weighted.

By construction, it can easily be shown that distortion risk measures satisfy
several properties in Definition 2.3. That is, by the properties of Choquet integrals
and independently of the choice distortion function, these are translation invariant,
positively homogeneous, monotone and comonotonely additive. In addition, it has
been shown for positive losses that a distortion risk measure is coherent if and
only if the distortion function is concave (Wirch and Hardy 2001). Finally, it can
be shown that if g is concave, the resulting distortion risk measure is spectral. A
relationship between coherent and spectral risk measures can be found in Gzyl and
Mayoral (2008).

Depending on the chosen distortion function, different risk measures are ob-
tained. Special cases are VaRα , CVaRα and the WT measure of Wang (2000).

The VaRα risk measure only uses information on the frequency of losses, not
their severity. For instance, doubling the size of the maximal loss has no influence
on VaRα .

To study this further, let us express VaRα as a Choquet integral with respect to a
distorted probability. Here the needed distortion function is (see Fig. 1):

g(u) =
{
0 if 0 ≤ u < 1− α

1 if 1− α ≤ u ≤ 1
, (3)

and then VaRα is simply given by:

VaRα =
∫ ∞

0
g
[
SX+(x)

]
dx −

∫ ∞

0
g̃
[
SX−(x)

]
dx =

∫ xα

0
dx = xα ,

where xα is the α × 100%-percentile of the distribution of X.
From Fig. 1 we see that VaRα’s distortion g is non-decreasing, with g(0) = 0,

g(1) = 1, piece-wise constant but not concave. Hence the risk measure associated
with this distortion function is not coherent.
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Fig. 1 Distortion functions

By contrast, the CVaRα risk measure uses both, the frequency and the expected
severity of the loss in excess of VaRα . This measure can also be expressed as a
Choquet integral with respect to a distorted probability (see Fig. 1):

g(u) =
⎧⎨
⎩

u
1− α

if 0 ≤ u ≤ 1− α

1 if 1− α ≤ u ≤ 1
. (4)

Here g is also a non-decreasing distortion function, which is continuous and
concave, but not differentiable. Since g is concave, CVaRα is spectral and coherent.
A general overview of distortion risk measures and their relation with orderings of
risks and the concept of comonotonicity can be found in Dhaene et al. (2006).

4 Properties of Distortion Risk Measures

4.1 Complete Distortion Risk Measures

One problem with CVaRα is that it only uses the severity of losses in excess of
VaRα , disregarding smaller losses, those less than the α × 100%-percentile. In some
cases this can lead to erroneous decisions, as illustrated with the simple example that
follows. In addition, this measure is not robust to extreme losses.

Example 4.1 Let A and B be 2 portfolios with the loss probabilities PA and PB given
in Table 1:

Table 1 Original
and CVaRα-distorted
loss probabilities
for Portfolios A and B

Loss PA(x) P∗
A(x) PB(x) P∗

B(x)

0 0.600 0 – –
9 – – 0.600 0
10 0.400 1 0.400 1
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For these losses Table 1 gives the distorted probabilities P∗
A and P∗

B based on g in
Eq. 4 with α = 0.95.

Here the expected excess loss is identical in both portfolios. Using Eq. 2 we see
that also CVaR0.95 = 10 for both portfolios. Still, the loss is positive with certainty in
Portfolio B. In fact, Portfolio B dominates stochastically Portfolio A. Hence the risk
measure should detect that Portfolio B is more risky.

Wang (2002) conjectures that the problem with the CVaRα distortion function is
that it assigns a 0-value to all percentiles below the α significance level. This may
lead to think that restricting the distortion function g to be strictly positive after the
origin may solve the problem. The following simple example, similar to Example 4.1,
defines a distortion function that only takes value 0 at the origin, g(0) = 0, yet the
resulting risk measure still exhibits inconsistency problems.

Example 4.2 Consider the following distortion function (see Fig. 1):

g1(u) =

⎧⎪⎨
⎪⎩
50u if 0 ≤ u < 0.01
0.5 if 0.01 ≤ u < 0.5
u if 0.5 < u ≤ 1

It is continuous, not differentiable at u = 0.01 and u = 0.5 and constant over the
interval [0.01, 0.5]. Consider again two simple portfolios, both with a maximum loss
of 11 but different medium losses, 1 in the case of Portfolio A and 10 for Portfolio B
(Table 2).

Here the distortion risk measure generated by g1 is equal to 5.5, for both
portfolios. Still, Portfolio A is clearly more risky than B, with it losses larger or equal
to 10 with a probability of 0.4.

The problem does not lie in the differentiability of the distortion function, as
conjectured in Wang (2002), but rather that g1 is constant on an interval, losing
information on the original loss distribution. Calculating the distorted probabilities,
we see that these are 0 for the intermediate losses of both portfolios, doing away with
the distinct probabilities at 1 and 10 if the original loss distributions.

It is natural to ask if rather than its differentiability, the problem could be rooted
in the convexity of the distortion function. The answer is no, since replacing g1 by
another convex distortion function such as:

g2(u) =
{

1
3 u if 0 ≤ u < 1

3
4
3 u − 1

3 if 1
3 ≤ u ≤ 1

(5)

Table 2 Original and
g1-distorted loss probabilities
for Portfolios A and B

Loss PA(x) P∗
A(x) PB(x) P∗

B(x)

0 0.600 0.500 0.600 0.500
1 – – 0.390 0
10 0.375 0 – –
11 0.025 0.500 0.010 0.500
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yields a higher distortion risk measure for Portfolio A (of about 2) than for B (about
0, 23). The key difference here is that g2 is not constant on an interval, irrespective
of its convexity or concavity. As such g2 uses all the information in the original loss
distribution. This is explained more precisely by the concept of completeness, defined
as follows.

Definition 4.1 Let X be a random variable and ρg a distortion risk measure gener-
ated by ρg(X) = EP∗(X) as in Eq. 2. We say that ρg is a complete distortion risk
measure if:

S(x1) = S(x2) ⇔ S∗(x1) = S∗(x2) , ∀ x1, x2 ∈ [0, ∞) , (6)

where S∗ is the survival function of the distorted distribution.

Note that the above definition could be expressed, equivalently, in terms of the
probability functions P and P∗.

It is easily seen that VaRα and CVaRα are not complete risk measures, as the
distortion function of VaRα is constant on all its domain, while that of CVaRα is
constant on the interval [1− α, ∞). This explains, in part, the inconsistency problems
sometimes produced by CVaRα .

An example of a complete distortion risk measures is Wang’s Transform (WT, see
Wang 2000). He chooses a parametric family of symmetric functions around 0, so
that the transform preserves certain properties of the original loss distribution. WT
is defined as (see Fig. 1):

gλ(u) = �[�−1(u) + λ] , u ∈ [0, 1] , (7)

where � is the distribution of a standard normal. The parameter λ is called the
market price of risk and reflects systematic risk. It was coined WT by financial
engineers and was inspired by three important papers: Venter (1991, 1998) and
Butsic (1999).

Complete distortion risk measures are simply characterized. It is sufficient for
their corresponding distortion function to be strictly increasing. This property was
also pointed out in the unpublished work by Wirch and Hardy (2000) who prove that
any distortion risk measures derived from a distortion function that is concave, but
no strictly concave, does not strongly preserve stop-loss order.

Theorem 4.1 Let P∗ be a distorted probability defined by the distortion function g in
Eq. 2. The following conditions are equivalent:

1. ρg is complete: i.e. S(x1) = S(x2) ⇔ S∗(x1) = S∗(x2), for all x1, x2 ∈ [0, ∞),
2. g is strictly increasing.

Proof The distorted survival function of X is given by S∗(x) = g
(
S(x)

)
.

Assume Condition 1. Since g is a distortion function, by definition it is non-
decreasing. Hence to see that it is strictly increasing is equivalent to check that

u = v ⇔ g(u) = g(v) , u, v ∈ [0, 1] , (8)

which is Condition 1.
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Alternatively, if g is strictly increasing then Eq. 8 holds. Taking u = S(x1) and
v = S(x2) yields Condition 1. ��

Note that the distortion function in Eq. 5 is strictly increasing, while the distortion
function generated by CVaRα , in Eq. 4, is not.

4.2 Exhaustive Distortion Risk Measures

A key difference between using a convex or a concave distortion function is that
the resulting risk measure is super-additive or sub-additive, respectively. Hence, it
is not only necessary for a risk measure to be sub-additive (resp. super-additive),
but also that it uses all the information of the initial loss distribution, that is that
it be complete. As such, when interested in sub-additive risk measures (which is
synonymous to coherence in the case of distortion risk measures) we define a new
set of exhaustive risk measures, as those being coherent and complete.

Definition 4.2 Let X be a random variable and ρg a distortion risk measure gener-
ated by ρg(X) = EP∗(X). We say that ρg is an exhaustive distortion risk measure if it
is coherent and complete.

From Theorem 4.1 it follows that distortion risk measures are exhaustive if their
distortion function g is concave and strictly increasing.

Corollary 4.1 Let ρg be the distortion risk measure generated by g. Then ρg is
exhaustive if and only if g is concave and strictly increasing.

It follows from the above corollary that a sufficient and necessary condition that
characterizes exhaustive distortion risk measures is that g be 1 at and only at x = 1.

Corollary 4.2 Let ρg be the distortion risk measure generated by g. It is exhaustive if
and only if g is concave and g(x) < 1 ∀ x < 1.

Proof By Corollary 4.1 it is sufficient to show that g is concave and strictly increasing.

(⇐): If g is strictly increasing it cannot be constant on an interval. Hence � ε > 0
such that g(1− ε) = 1 ⇒ g(1−) < 1.

(⇒): Let g be concave with g(1−) < 1. We need to show that g is strictly increasing.
If g is constant on an interval [x, y], that is ∃ x, y such that x < y and
g(x) = g(y), then x < y < 1 as it must satisfy g(1−) < 1. Now since distortion
functions are defined to be increasing, then g(x) = g(y) < g(1). Take λ > 0
such that λx + (1− λ)1 = y. Applying g to both sides of the equality gives
g
[
λx + (1− λ)1

] = g(y). But again by definition g is increasing with g(1) = 1,
implying that:

g
[
λx + (1− λ)

] = g(y) = g(x) ≤ λg(x) + (1− λ) .

This contradicts the assumption that g be concave. ��

This last property does not apply to distortion risk measures generated by convex
functions g, that is for super-additive and complete distortion risk measures. For
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example the distortion function in Eq. 5 is such that g(1−) < 1 but does not generate
a complete distortion risk measure.

5 Discussion

The previous section defines complete distortion risk measures to ensure that these
use all the information in the original loss distribution. A natural question is to ask if
completeness is sufficient to avoid the type of inconsistencies illustrated by Example
4.1. This section shows that the answer is no and that additional conditions need to
be imposed on the distortion function.

Example 5.1 Consider the following distortion function (see Fig. 1):

g3(u) =
{

3
2 u if 0 ≤ u < 1

2
1
2 u + 1

2 if 1
2 ≤ u ≤ 1

, (9)

and the following loss distributions for 2 distinct portfolios (Table 3).
Here g3 is concave and satisfies Eq. 6, hence its corresponding distortion risk

measure is exhaustive. Still, it produces the same risk measure value of 21/8 = 2.625
for both portfolios, while Portfolio A is clearly more risky than B, with its larger
maximal loss.

This type of inconsistency is not due to the non-differentiability of the distortion
function in Eq. 9, but rather to its piece-wise linearity. This results in a distortion that
re-weighs different probabilities equally. All values 0 ≤ SX(x) < 1

2 in Example 5.1
are re-weighted by a multiplicative factor of 3

2 , while with values starting at SX(x) =
1
2 the re-weighting factor becomes 1

2 , independently of the value of SX(x), that is
the original loss frequency and severity. Note that VaRα and CVaRα are two other
examples of piece-wise linear distortion functions.

A simple illustration, like Example 5.1, but for convex piece-wise linear distortion
functions would show the same inconsistencies due to the constant slopes and their
resulting constant re-weighting factors.

Since the slope gives the re-weighting factor of a (piece-wise) linear function like
that in Eq. 9, then we propose to measure the re-weighting factor for a general
distortion g at a point x as the slope g′(x) of the tangent to g at x.

It can be shown that distortion functions that lead to coherent risk measures apply
a re-weighting factor larger than 1 to large losses, hence assigning them a distorted
probability greater than the initial one. By contrast, small losses are assigned smaller
probabilities than by the initial distribution.

Table 3 Original and
g3-distorted loss probabilities
for Portfolios A and B

Loss PA(x) P∗
A(x) PB(x) P∗

B(x)

0 0.500 0.250 0.450 0.225
1.8 – – 0.350 0.475
2 0.375 0.5625 – –
5.9 – – 0.200 0.300
8 0.125 0.1875 – –
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Fig. 2 Distorted normal(0,1)
survival functions

Similarly, it can be shown that for convex risk measures the opposite is true: the
re-weighting factor is smaller than 1 for large losses and larger than 1 for large ones.

Figure 2 shows how a standard normal initial loss function (lowest curve) is
transformed by the different distortion functions discussed above. We can see how
concave distortions emphasize large losses, thickening the right tail of the distorted
distributions. See also how CVaRα and g1 assign 0-probabilities (i.e. their distorted
survival functions g[SX(x)] are constant) over sub-intervals. This means they do not
use the information in parts of the original loss distribution.

The following result links this discussion about re-weighting factors and the
concept of exhaustive risk measures. It also revisits the idea of differentiability of
Wang for distortion functions.

Theorem 5.1 Let g be a concave (convex) distortion function, such that g(u) �= u for
any u ∈ (0, 1). Then ∃ d ∈ (0, 1) such that g′(u) ≥ (≤) 1, for all u ∈ [0, d] and g′(u) ≤
(≥)1, for all u ∈ [d, 1].

Proof g being a concave distortion function, g(u) �= u implies that g(u) > u, for all
u ∈ (0, 1). Hence

g′(0+) = lim
h→0+

g(0+ h) − g(0)
h

= lim
h→0+

g(h) − 0
h

> lim
h→0+

h − 0
h

= 1

and

g′(1−) = lim
h→0−

g(1+ h) − g(1)
h

= lim
h→0−

g(1+ h) − 1
h

= lim
h→0+

g(1− h) − 1
−h

= lim
h→0+

1− g(1− h)

h
<

1− (1− h)

h
= 1 .

Again by concavity, necessarily g must be continuous on the interval [0, 1] hence
there must exist a ∈ (0, 1) such that g′(u) > 1 for all u ∈ [0, a] and b ∈ (0, 1) such that
g′(u) < 1 for all u ∈ [d, 1]. Also by its concavity, g has a non-increasing derivative,
hence there must exist d ∈ (a, b) such that g′(d) = 1, which completes the proof. ��
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Remark 5.1 Since g is required only to be concave, then d in Theorem 5.1 may not
be unique. To ensure uniqueness g needs to be strictly concave.

In other words, Theorem 5.1 implies that the investor re-weighs by a factor larger
than 1 over the interval (0, d), that is for extreme losses {x ∈ [0, ∞) : SX(x) < d}.
This distorts the tail of the loss distribution into a thicker tail. By contrast, the re-
weighting factor is smaller than 1 for {x ∈ [0, ∞) : SX(x) > d}.

In conclusion, a coherent distorted risk measure is the expected value under a new
loss distribution with a thicker right-tail than the original one. This is reasonable for
an investor who wants to protect against extreme losses, by emphasizing them more
than in the original loss distribution, while de-emphasizing smaller losses.

For instance, in Example 5.1, the investor gives a larger weight to losses that have
a survival probability less than 1

2 , as the slope of the distortion function jumps from
3
2 to 1

2 at the point d = 1
2 .

The natural question is at what change-point should the re-weighting factor
become larger than 1? Under the notation of Theorem 5.1 this reduces to the choice
of d, such that the distorted S∗(x) > S(x) whenever S(x) < d, but S∗(x) < S(x) when
S(x) > d.

For VaRα and CVaRα , this re-weighting change-point is precisely the α-
percentile. In the case of CVaRα , the weight given to values larger than the α-
percentile is maximal (largest possible of g while satisfying g(0) = 0), but is minimal
(i.e. 0) for values smaller than the α-percentile.

In light of the inconsistency problems illustrated by Example 5.1 and the need
to protect against extreme losses, we propose a final property for distortion risk
measures that preserves diversification (i.e. concavity).

Definition 5.1 A distortion risk measure is called adapted if its distortion function:

1. g is strictly concave, that is g′ is strictly decreasing.
2. limu→0+ g′(u) = ∞ and limu→1− g′(u) = 0.

The condition g′(0) = ∞ is needed to ensure unbounded relative loadings for
losses in the extreme right tail (see Wang 1996).

Adapted risk measures re-weigh different losses differently, giving the smallest
distorted probability to losses near 0 while large losses are assigned maximal
probabilities.

It is easily shown that adapted risk measures are exhaustive, but the converse is
not true.

CVaRα is not an adapted risk measure since g′(u) = 0 is for u ∈ [1− α, 1] and
constant g′(u) = 1

1−α
for u ∈ [0, 1− α]. The distortion risk measure generated by g3

in Eq. 9 is not adapted either, as its derivative is also constant, g′
3(u) = 3

2 for u ∈ [0, 1
2 ],

while g′
3(u) = 1

2 for u ∈ [ 12 , 1].
Other examples of distortion functions are the dual-power gDP and the propor-

tional hazard transform gPH functions:

gDP(u) = 1− (1− u)ν , u ∈ [0, 1] , ν ≥ 1 (10)

gPH(u) = u
1
γ , u ∈ [0, 1] , γ ≥ 1 . (11)
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Table 4 Properties of the distortion risk measures

Measure Coherent Complete Exhaustive Adaptable Condition 2

VaRα No No No No No
CVaRα Yes No No No No
g3 Yes Yes Yes No No
DP (ν > 1) Yes Yes Yes No Yes
PH (γ > 1) Yes Yes Yes No Yes
WT Yes Yes Yes Yes Yes

Both satisfy the first condition of Definition 5.1 for ν, γ > 1. The dual-power dis-
tortion function has a zero limit as u → 1−, but does not satisfy the first limit of
Condition 2. (here limu→0+ g′

DP(u) = ν < ∞). By contrast gPH has an infinite limit as
u → 0+ but does not satisfy the first limit of Condition 2. (as limu→1− g′

PH(u) = γ ).
Hence neither is adapted.

By contrast, the WT distortion gλ in Eq. 7 is an example of an adapted risk
measure (see Wang, 2000 for a derivation of g′

λ(u) at 0 and 1). Table 4 summarizes
the conditions met by the common distortion risk measures discussed above.

6 Conclusion

This paper does not attempt to solve the problem of inconsistent decisions based on
an improper risk measure. Several families of risk measures have been defined in
the last few years: convex, coherent, spectral and deviation risk measures, each with
its distinctive features. Here we focus on distortion risk measures, as most families
above can be generated through a distortion function. This reduces the study of the
risk measure behavior to the properties of a distortion function. The contribution
here is the definition of two new properties that may help avoid such inconsistent
decisions.

Distortion risk measures are defined as the expected value under a transformed
distribution, that includes the investor’s risk aversion. In other words, different
distortion functions re-weigh differently the initial loss distribution. We study here
these different re-weightings.

We show that coherent risk measures (with their corresponding concave distortion
function) re-weigh large losses with a factor greater than 1, while de-emphasizing
small losses.

It is also shown here that coherence is neither sufficient nor possibly necessary to
avoid inconsistent decisions, such as those obtained with VaRα (a non-coherent risk
measure). For instance, although CVaRα is a coherent distortion risk measure, it still
exhibits an inconsistent behavior. The problem is not the lack of differentiability of
its distortion function, as Wang (2002) conjectures, but rather its piece-wise linearity.

We propose the completeness and adaptability properties to address these issues.
In defining these new properties we ensure that the distortion function not only uses
all the information in the original loss distribution, but also that it uses it adequately.
This means that the re-weighting generated by the distortion function differs at each
loss. We characterize these properties in terms of the derivative of the distortion
function. Table 4 summarizes the properties satisfied by several common distortion
risk measures.
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