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Abstract This paper proposes new measures that provide us with the level of se-
quential arbitrage in bond markets. All the measures vanish in an arbitrage-free mar-
ket and all of them are positive otherwise. Each measure is generated by a dual pair
of optimization problems. Primal problems permit us to compute optimal sequential
arbitrage strategies, if available. Each dual problem generates a concrete proxy for
the term structure of interest rates. The set of proxies allows us to obtain the exact
market price of any bond and may measure several effects. For instance, the credit
risk spread of nondefault free bonds, or the embedded option price of callable or
extendible bonds. The developed theory has been tested empirically.

Keywords Portfolio optimization · Sequential arbitrage measurements · Term
structure of interest rates · Embedded option premiums

1 Introduction

The introduction of general pricing rules is becoming very important in finance.
These rules may be justified by theoretical arguments [1, 2] or may be implicit in
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real market prices [3]. Pricing rules are related to the term structure of interest rates
(TSIR) in bonds markets. The existence of state prices or pricing rules in a general
market, or the existence of TSIR in a bond market, is the necessary and sufficient
condition to guarantee that the market is arbitrage free. The arbitrage absence is al-
ways assumed in every theoretical approach. However, the empirical evidence seems
to reveal that the arbitrage may occur in practice and this fact has motivated several
authors to introduce new measures of arbitrage in real markets [4–6]. The present pa-
per modifies the approach of [6] in order to capture those special properties of bond
markets and measure their degree of sequential arbitrage. The sequential arbitrage
measures are defined by optimal values of dual couples of mathematical program-
ming problems. Primal problems yield the maximum relative (with respect to the
price of the purchased or sold bonds) income or profit generated by the implementa-
tion of sequential arbitrage. If the measures are larger than zero then they reflect the
presence of sequential arbitrage.

Primal problems also provide traders with sequential arbitrage strategies in prac-
tice (if available). Actually, primal problems are portfolio choice problems, and it is
known that portfolio choice theory is closely related to optimization theory (see [7–9]
for recent approaches).

Dual problems generate new measures with a different interpretation. They reflect
pricing errors committed by the market. They are never lower than zero and minimize
the real price modifications that lead to a sequential arbitrage-free model. Once again,
they must vanish to prevent the existence of sequential arbitrage.

Dual solutions also provide proxies (or envelopes) for the TSIR (an exact TSIR
cannot exist if the sequential arbitrage occurs). If the market is sequential arbitrage
free then the TSIR matches the exact price of all the available bonds. If the market is
not sequential arbitrage-free then the set of proxies has more than one element and
allows us to compute appropriate spreads for the market price of any bond.

The information contained in option-free bonds is often incomplete and does not
generate accurate expressions for the TSIR. So, the negative option price puzzle ap-
pears in the literature because callable or extendible bonds are excluded when com-
puting the TSIR in practice, and then negative prices for some embedded options are
obtained. We will justify that our measures may be a useful tool to solve this caveat.

The article is organized as follows. Section 2 introduces the basic assumptions.
Section 3 presents two dual pairs of optimization problems that lead to complemen-
tary measures of sequential arbitrage and envelopes for the TSIR. Section 4 illustrates
how the theory enables us to deal with nondefault-free and nonoption-free assets, and
Section 5 reports the results of an empirical test implemented in the Spanish market.
Section 6 concludes the article.

2 Preliminaries and Notations

Consider n arbitrary bonds Bj , j = 1,2, . . . , n, and denote by P = (p1,p2, . . . , pn),
pj > 0, j = 1,2, . . . , n, the row matrix of current prices. Suppose that T =
{t1, t2, . . . , tm} represents a set of future dates and denote by aij ≥ 0 the amount of
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money paid by Bj at ti , i = 1,2, . . . ,m, j = 1,2, . . . , n. In order to avoid some math-
ematical difficulties, we will impose the following natural inequality whose economic
interpretation is obvious:

m∑

i=1

aij > pj , (1)

for every j = 1,2, . . . , n. Consider finally that A represents the m × n matrix whose

columns are Cj = (a1,j , a2,j , . . . , am,j )
T , j = 1,2, . . . , n, and Ã = (

A0
A

)
represents

the (m + 1) × n matrix obtained by adjoining A plus a first row A0 = −P . If X =
(x1, x2, . . . , xn)

T represents the portfolio composed of xj units of Bj , j = 1,2, . . . , n,
then PX equals the current price of X, AX equals its future payoff and ÃX equals
the whole set of cash flows of X.1 For r ∈ N, we consider the following matrices with
dimensions r × r and r × (r + 1) respectively:

I ∗
r =

⎛

⎜⎜⎝

1,0,0, . . . ,0
1,1,0, . . . ,0

. . .

1,1,1, . . . ,1

⎞

⎟⎟⎠ , I ∗∗
r =

⎛

⎜⎜⎝

1,1,0, . . . ,0
1,1,1, . . . ,0

. . .

1,1,1, . . . ,1

⎞

⎟⎟⎠ .

We follow the previous literature in order to introduce the concepts of arbitrage
and sequential arbitrage.

Definition 2.1 X is said to be an arbitrage portfolio (AP) if ÃX �= 0 and ÃX ≥ 0. X

is said to be a sequential arbitrage portfolio (SAP) if I ∗
m+1ÃX �= 0 and I ∗

m+1ÃX ≥ 0.

Arbitrage portfolios have nonnegative cash flows and will pay a positive amount
on one date at least. Sequential arbitrage portfolios might imply negative cash flows
if they are overcome by the amount of money previously received.

It is known that the (sequential) arbitrage absence may be characterized by the
existence of discount factors (μi)

m
i=1 or, equivalently, by the existence of a TSIR.

The statement below clarifies this idea.

Theorem 2.1 The model is arbitrage free (respectively, sequential arbitrage free)
if and only if there exist μ = (μ1,μ2, . . . ,μm) such that μi > 0, i = 1,2, . . . ,m,
(respectively, 1 > μ1 > μ2 > · · · > μm > 0), and μA = P .

In order to measure the level of sequential arbitrage we will also require some
extensions of Definition 2.1.

Definition 2.2 X is said to be a sequential arbitrage portfolio of the second type
(STSA) if PX < 0 and I ∗∗

m ÃX ≥ 0. X is said to be a strong sequential arbitrage
portfolio (SSA) if PX < 0 and I ∗

mAX ≥ 0.

1Given an arbitrary matrix M , the transpose of M will be denoted by MT , M ≥ 0 will mean that M

does not contain any negative element, and finally, M+ and M− will denote the classical matrices with
non-negative elements such that M = M+ − M−
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Notice that a SAP is a STSA if and only if it is not self-financing, (i.e., the ini-
tial price is negative or does not vanish) and a STSA portfolio is a SSA portfolio if
and only if the first income (the negative initial price) is not used to overcome future
negative cash-flows. Obviously, SSA portfolios are also STSA portfolios, but the con-
verse does not necessarily hold. The absence of STSA and SSA will be characterized
in future sections.

3 Sequential Arbitrage Measurement and TSIR Envelopes

In order to measure the level of SSA we consider the pair of optimization problems

Max − PX, (2a)

s.t. I ∗
mAX ≥ 0, (2b)

xj + hj ≥ 0, j = 1,2, . . . , n, (2c)

n∑

j=1

hjpj ≤ 1, (2d)

hj ≥ 0, j = 1,2, . . . , n, (2e)

and

Max − PX, (3a)

s.t. I ∗
mAX ≥ 0, (3b)

xj − kj ≤ 0, j = 1,2, . . . , n, (3c)

n∑

j=1

kjpj ≤ 1, (3d)

kj ≥ 0, j = 1,2, . . . , n, (3e)

(X,h) ∈ R
n × R

n and (X, k) ∈ R
n × R

n being the decision variables. Their dual
problems are

Min θ, (4a)

s.t. μA + λ = P, (4b)

λj ≤ θpj , j = 1,2, . . . , n, (4c)

μ1 ≥ μ2 ≥ · · · ≥ μm ≥ 0, (4d)

λj ≥ 0, j = 1,2, . . . , n, (4e)
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and

Min θ, (5a)

s.t. μA − λ = P, (5b)

λj ≤ θpj , j = 1,2, . . . , n, (5c)

μ1 ≥ μ2 ≥ · · · ≥ μm ≥ 0, (5d)

λj ≥ 0, j = 1,2, . . . , n, (5e)

whose decision variables are θ ∈ R, λ = (λi)
n
i=1 and μ = (μi)

m
i=1. There is an eco-

nomic intuition underlying these problems. Indeed, if we focus on problem (2) then
(X,h) denotes a pair of portfolios. The first one, X, is the strategy to invest, and
the objective function leads to the maximization of the sequential arbitrage income
−PX. First constraint I ∗

mAX ≥ 0 implies that X is actually SSA if −PX > 0, and
the remaining constraints impose that short sales are bounded from above by a port-
folio h ≥ 0 whose total price cannot be larger than one dollar. The role of portfolio
h is clear because the optimal value of (2) is 0 or +∞ if the restrictions involving h

are removed. Problem (3) is similar, though portfolio k reflects an upper bound for
purchases.

The dual variable μ of problem (4) may be understood as a proxy for the family
of discount factors. Then the first and last constraints in this problem indicate that
μ misprices the available assets, and the second one means that we are minimizing
the highest committed error (in percentage) when pricing with μ. Problem (5) is
analogous but μ is overpricing the securities.

Lemma 3.1 Problems (2), (3), (4) and (5) are feasible and bounded. If £∗ and £∗
are their optimal values, then 0 ≤ £∗ < 1, 0 ≤ £∗ and £∗ = 0 ⇐⇒ £∗ = 0 ⇐⇒ the
market is strong sequential arbitrage free (SSA-free).

Proof 0 ≤ £∗ and 0 ≤ £∗are clear since (0,0) is feasible for (2) and (3). If (X,h) is
(2)-feasible, then X ≥ −h ⇒ −PX ≤ Ph ≤ 1, so 1 ≥ £∗. Moreover, 1 = £∗ would
lead to the existence of (X,h) feasible and such that 1 = −PX ≤ Ph ≤ 1, and all the
terms should be identical. Then,

−PX+ + PX− = Ph = 1 (6)

and PX+ = PX − Ph ≤ 0 because X− ≤ h. Since PX+ ≥ 0 is obvious, we have
that PX+ = 0 and thus X+ = 0. Expression (6) gives PX− = Ph, which implies
X− = h and X = X+ − X− = −h. The first constraint in (2) leads to

−h1

(
m∑

i=1

ai,1

)
− · · · − hn

(
m∑

i=1

ai,n

)
≥ 0.

Expression (1) gives Ph ≤ 0, which contradicts (6). Hence, 1 > £∗.
In order to prove that (3) is bounded, we only have to prove that (5) is feasible.

Expression (1) gives (1,1, . . . ,1)A ≥ P , and thus λ = (1,1, . . . ,1)A − P ≥ 0. Take
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θ = Max{λj/pj ; j = 1,2, . . . , n} and we have that λ, θ and μ = (1,1, . . . ,1) provide
us with a (5)-feasible element.

Finally, if the market is SSA-free then the first constraint in (2) (respectively,
(3)) implies that −PX ≤ 0 whenever X is (2)-feasible (respectively, (3)-feasible)
from where £∗ = 0 (respectively, £∗ = 0). Conversely, suppose that £∗ = 0. Then, if
I ∗
mAX ≥ 0, take

Y =
{

X/
(
PX−)

, if PX− > 1,

X, otherwise,

and

h =
{

X−/
(
PX−)

, if PX− > 1,

X−, otherwise.

(Y,h) is clearly (2)-feasible. Hence, PY ≥ 0 and thus PX ≥ 0. Consequently, there
are no portfolios satisfying Definition 2.2. If £∗ = 0, we can similarly proceed, with
straightforward modifications. �

Theorem 3.1 There are no SSA portfolios if and only if there exists μ∗ such that
P = μ∗A and μ∗1 ≥ μ∗2 ≥ · · · ≥ μ∗m ≥ 0.

Proof According to the previous lemma, the absence of SSA holds if and only if the
optimal value of (4) vanishes. �

Lemma 3.2 Suppose that £∗ > 0. If (X∗, h∗) solves (2) and (X∗, k∗) solves (3), then
X−∗ = h∗, Ph∗ = 1, X∗+ = k∗ and Pk∗ = 1.

Proof Let us prove that X−∗ = h∗. Since X−∗ ≤ h∗ and the components of P are
strictly positive, it is sufficient to see that PX−∗ = Ph∗. Since Ph∗ ≤ 1, it is suffi-
cient to see that PX−∗ = 1. Suppose that PX−∗ < 1. Obviously, PX−∗ > 0 because
PX−∗ = 0 would imply

£∗ = −PX∗ = −PX+∗ + PX−∗ = PX+∗ ≤ 0.

Set Y = X∗/(PX−∗ ) and h = Y− and we have that (Y,h) is feasible and such that

−PY = (−PX∗)/(PX−∗ ) = £∗/(PX−∗ ) > £∗

and we have a contradiction. The remaining results can be proved with similar argu-
ments. �

Theorem 3.2 Suppose that £∗ > 0. The following statements are true:

(a) £∗ = £∗
1−£∗

, £∗ = £∗

1+£∗ and £∗ ≤ £∗.

(b) Assume that (X∗, h∗) solves (2) and (X∗, k∗) solves (3). Then, X∗ = k∗ − (1 +
£∗)h∗, X∗ = (1 − £∗)k∗ − h∗ and X∗ = (1 + £∗)X∗.
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Proof Inequality £∗ > 0 implies that A = {X ∈ R
n; PX < 0, I ∗

mAX ≥ 0} is non-
void. Consider the functions φi : A 
−→ R, i = 1,2, given by

φ1(X) = −PX

PX− ,

φ2(X) = −PX

PX+ .

Notice that denominators do not vanish in the definition above. Indeed, PX− = 0
would imply PX = PX+ ≥ 0, contradicting X ∈ A, and PX+ = 0 would imply
0 > PX = PX−, which makes

(Y,h) = (X/(PX−),X−/(PX−))

(2)-feasible and therefore £∗ = 1, contradicting Lemma 3.1.
Expressions 0 < φ1(X) < 1 and

φ2(X) = φ1(X)

1 − φ1(X)
(7)

are obvious. Since [0,1) � t −→ t/(1 − t) ∈ [0,∞) is a one-to-one increasing func-
tion, the problems

Max {φi(X); X ∈ A} (8)

i = 1,2, attain the optimal value at the same solutions. As said above, if X ∈A, then
(Y,h) = (X/PX−,X−/PX−) is (2)-feasible, and therefore (−PX)/(PX−) ≤ £∗.
Furthermore, the previous lemma implies that X−∗ = h∗ and Ph∗ = 1, from where

φ1(X∗) = (−PX∗)/(PX−∗ ) = −PX∗ = £∗

and X∗ solves (8). Similarly, X∗ solves (8) and φ2(X
∗) = £∗. Bearing in mind (2),

we have

£∗ = φ2(X
∗) = φ2(X∗) = φ1(X∗)

1 − φ1(X∗)
= £∗

1 − £∗
and the remaining properties of Assertion (a) are obvious if one takes into account
that t ≤ t/(1 − t) for every t ∈ [0,1).

In order to prove the remaining statements, consider γX∗ with γ > 0 and such
that γPX+∗ = 1. Since φ2 is homogeneous and X∗ solves (8), so does γX∗, i.e., φ2
attains the optimal value at γX∗. Thus,

φ2(X
∗) = £∗ = φ2(γX∗) = (−γPX∗)/(γPX+∗ ) = −γPX∗.

On the other hand, γPX+∗ = 1 implies

1 = γPX+∗ = γ (PX∗ + PX−∗ ) = γ (−£∗ + 1)

and

γ = 1/(1 − £∗) = 1 + £∗. �
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Let us introduce the TSIR envelopes μ∗ and μ∗ and the theoretical prices P∗ =
μ∗A and P ∗ = μ∗A, (£∗, λ∗,μ∗) and (£∗, λ∗,μ∗) being solutions of (4) and (5).
According to Theorem 3.1 both price vectors generate SSA-free markets.

Theorem 3.3

(a) p∗j ≤ pj ≤ p∗
j , j = 1,2, . . . , n.

(b) If k∗
j > 0, then p∗j = pj = p∗

j
1

1+£∗ . If h∗j > 0, then p∗j
1

1−£∗
= pj = p∗

j .

(c) P∗X ≤ PX ≤ P ∗X for every X ≥ 0. Furthermore, the first (second) expression
holds in terms of equality if X is composed of those bonds of k∗ (h∗).

Proof (a) is obvious because λ∗, λ∗, A ≥ 0, and (c) trivially follows from (a) and (b).
Besides, both assertions in (b) are analogous, so let us prove the first one. Assume that
k∗
j > 0. Then Lemma 3.2 ensures that x∗

j > 0. Consequently, Theorem 3.2b shows
that x∗j > 0. The complementary slackness conditions between (2) and (4) show that
λ∗j = 0, and therefore, p∗j = pj . Besides, the complementary slackness conditions
between (3) and (5) show that (£∗P − λ∗)k∗ = 0, and thus λ∗k∗ = £∗Pk∗ = £∗.
Hence,

P ∗k∗ = μ∗Ak∗ = (P + λ∗)k∗ = 1 + £∗. (9)

Furthermore, the constraints (5) guarantee that λ∗
j ≤ £∗pj . Thus,

p∗
j − pj ≤ £∗pj ,

and therefore,

p∗
j ≤ pj (1 + £∗), (10)

for j = 1,2, . . . , n. Suppose that

p∗
j0

< pj0(1 + £∗)

holds for some j0 with k∗
j0

> 0. Then, (10) leads to

P ∗k∗ < (1 + £∗)P k∗ = 1 + £∗,

contradicting (9). �

Remark 3.1 Lemma 3.1 and Theorem 3.2 point out that £∗ and £∗ are adequate mea-
sures of the level of SSA, since the arbitrage earnings grow as do the measures. Fur-
thermore, since [0,1) � t −→ t/(1 − t) ∈ [0,∞) is a one to one increasing function,
both measures yield similar information about the degree of SSA, and lead to similar
optimal arbitrage strategies due to Theorem 3.2(b). Besides, Theorem 3.3 shows that
both TSIR envelopes μ∗ and μ∗ must be considered when providing upper and lower
bounds for real market prices. The use of envelopes seems to be more accurate than
the use of a single TSIR since the computation of bounds is far more precise than the
computation of approximations for prices without information about the committed
errors. Finally, notice that Theorem 3.3(b) emphasizes the relationships between both
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SSA arbitrage measures. Indeed, the solution of (5) (dual problem of (3)) matches the
prices of the bonds included in the second component of the solution of (2) and vice
versa.

Another interesting property of £∗ and £∗ is that they minimize the maximum
variation (in percentage) of prices preventing the existence of SSA.

Proposition 3.1 Let Q = (q1, q2, . . . , qn) be a vector of prices for B1,B2, . . . ,Bn

that generates a SSA-free market and such that 0 < qj ≤ pj , j = 1,2, . . . , n. Then,

£∗ = Max

{
pj − p∗j

pj

: j = 1,2, . . . , n

}
≤ Max

{
pj − qj

pj

: j = 1,2, . . . , n

}
.2

Proof Assume that £∗ > 0, since the result is obvious otherwise. The constraints (5)
lead to £∗ ≥ λ∗j

pj
= pj −p∗j

pj
, j = 1,2, . . . , n and Theorem 3.3(b) shows that £∗ =

pj −p∗j

pj
if h∗j > 0. On the other hand, since Q leads to a SSA-free market, Theo-

rem 3.1 guarantees the existence of μ = (μ1,μ2, . . . ,μm) such that μA = Q and
μ1 ≥ μ2 ≥ · · · ≥ μm ≥ 0. Consider

λ = P − μA = P − Q ≥ 0

and

θ = Max

{
pj − qj

pj

: j = 1,2, . . . , n

}
.

Then, (μ,λ, θ) is (5)-feasible and therefore θ ≥ £∗. �

Remark 3.2 The measurement of the degree of STSA is quite similar, though there
are some minor differences. Consider the problems

Max − PX, (11a)

s.t. I ∗∗
m ÃX ≥ 0, (11b)

xj + hj ≥ 0, j = 1,2, . . . , n, (11c)

n∑

j=1

hjpj ≤ 1, (11d)

hj ≥ 0, j = 1,2, . . . , n, (11e)

and

Max − PX, (12a)

s.t. I ∗∗
m ÃX ≥ 0, (12b)

2An analogous result holds for £∗ , P ∗ and Q ≥ P
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xj − kj ≤ 0, j = 1,2, . . . , n, (12c)

n∑

j=1

kjpj ≤ 1, (12d)

kj ≥ 0, j = 1,2, . . . , n, (12e)

(X,h) ∈ R
n × R

n and (X, k) ∈ R
n × R

n being the decision variables. The economic
interpretation is similar to that discussed when dealing with SSA. Their duals are

Min θ, (13a)

s.t. μA ± λ = P(1 + μ1), (13b)

λj ≤ θpj , j = 1,2, . . . , n, (13c)

μ1 ≥ μ2 ≥ · · · ≥ μm ≥ 0, (13d)

λj ≥ 0, j = 1,2, . . . , n, (13e)

where the symbol + (−) in the first constraint is used for the dual of (11), (12). Denote
by £∗∗ and £∗∗ the optimal values. Due to the presence of μ1 on the right-hand side
of (13), things are not absolutely similar when we look for those modification of
prices leading to STSA-free markets. So, take μ∗∗, μ∗∗ ∈ R

m solving (13), and set
the TSIR envelopes and theoretical prices

μ̃∗∗ = (μ∗∗)/(1 + μ∗∗1), μ̃∗∗ = (μ∗∗)/(1 + μ∗∗
1 ),

P̃∗∗ = μ̃∗∗A and P̃ ∗∗ = μ̃∗∗A.

Define the STSA measures as

£̃∗∗ = £∗∗/(1 + μ∗∗1) and £̃
∗∗ = £∗∗/(1 + μ∗∗

1 ). (14)

Proceeding as in Theorems 3.3, the absence of STSA may be characterized by the
existence of μ̃∗∗ such that

P = μ̃∗∗A and 1 > μ̃∗∗1 ≥ μ̃∗∗2 ≥ · · · ≥ μ̃∗∗m ≥ 0,

and Theorems 3.2 and 3.3 may also be extended in a straightforward manner.
Let us compare both approaches. If we analyze the presence of STSA and use it to

estimate the TSIR or its envelopes there is and advantage since we will never obtain
discount factors larger than one. However, £∗ and £∗ are relative arbitrage gains and
therefore these measures more appropriately reflect the level of arbitrage. If they are
large then the arbitrage profits are large, and prices must be modified according to
their large values in order to prevent the existence of SSA. On the contrary, £∗∗ and
£∗∗ reflect discrepancies in prices of similar portfolios and, therefore, they are relative
arbitrage incomes, but not profits (initial incomes may be used to overcome possible
negative cash flows). Accordingly, they have to be modified according to (14) in order
to provide us with the variation of prices generating a STSA-free market. They may
be large even if £̃∗∗ and £̃

∗∗
achieve small values and slight modifications of prices

eliminate the presence of STSA.
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4 Further Applications: Embedded Options and Credit Risk Spreads

The methodology above enables us to estimate the TSIR by also incorporating the
information contained in extendible or callable bonds. The empirical evidence shows
that it is not convenient to eliminate these bonds because the TSIR generated by
option-free assets may be not very accurate and lead to negative embedded options
prices. This fact has been pointed out by [10] for the U.S. market and [11] for the
Canadian market, amongst others. This caveat has been addressed in [12] by applying
what the author calls “an implied norm approach”. We propose here an alternative
procedure.

Henceforth, we will impose the absence of arbitrage, and notice that this assump-
tion does not imply that the measures above vanish if extendible or callable bonds
are involved. Indeed, positive values of the measures could lead to apparent arbitrage
portfolios that give up being arbitrage if one considers the effect of the embedded
option.

Proposition 4.1 Suppose that B1,B2, . . . ,Bn−k are option-free and Bn−k+1, . . . ,Bn

are extendible (callable). Let {qn−j ; j = 0, . . . , k − 1} be the prices of the option-
free bonds with the same payoffs as Bn−j . Let {vn−j ; j = 0, . . . , k − 1} ({cn−j ; j =
0, . . . , k − 1}) be the prices of the embedded puts (calls). Let r be such that

vr

pr

= Max

{
vn−j

pn−j

; j = 0, . . . , k − 1

}
, (15)

(
cr

pr

= Max

{
cn−j

pn−j

; j = 0, . . . , k − 1

})
.

Then

qr ≤ pr(1 − £∗) and vr ≥ pr£∗,

(qr ≥ pr(1 + £∗) and cr ≤ pr£∗).

Proof We will only prove the result for extendible bonds. The equality pn−j =
qn−j + vn−j obviously holds. Since {p1, . . . , pn−k, qn−k+1, . . . , qn} is a set of prices
preventing the existence of SSA, Proposition 3.1 shows that

pr − qr

pr

= Max

{
pn−j − qn−j

pn−j

; j = 0, . . . , k

}
≥ £∗,

and the conclusion trivially follows. �

Remark 4.1 The latter result provides us with a method to solve the “negative em-
bedded option price puzzle”. Indeed, suppose for instance that we are dealing with
extendible securities. For r = n − k + 1, . . . , n, we can compute £r∗, the value of £∗
for the set of bonds {B1,B2, . . . ,Bn−k,Br }. Then, we have the lower bounds

vr ≥ pr£r∗,
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and we look for vectors μ satisfying

μ1 ≥ · · · ≥ μm ≥ 0,

μCj = pj , j = 1, . . . , n − k,

and

μCj ≤ pj (1 − £j∗), j = n − k + 1, . . . , n.

The selection of μ may be implemented by optimization methods. For instance,
“Generalized Least Squares” with respect to that μ

′
that we would obtain if we re-

moved the extendible assets.
The method above may be improved if we are able to rank the options according

to the ratio in (15). Indeed, in such a case, we can calculate each £r∗ by considering
sets of bonds containing more than one extendible bond, which makes £r∗ and the
lower bond pr£r∗ increase.

An alternative method consists of solving problem (4) with the second constraint
relaxed to λj ≤ θpj , j = n − k + 1, . . . , n. Denoting by θ∗ the optimal value, we can
modify the prices of those extendible bonds saturating this constraint according to
qr ≤ pr(1 − θ∗). Remove the bonds whose prices have been changed and repeat the
process several times if necessary, so as to ensure that all the extendible bonds have
been removed. Then, compute μ as said above.

Finally, if B1,B2, . . . ,Bn−k are option-free and default-free and if Bn−k+1, . . . ,Bn

are option-free and nondefault-free private bonds, then Proposition 4.1 and the proce-
dure above may be readapted in a straightforward way so as to yield lower bounds for
the credit risk spread of Bn−k+1, . . . ,Bn. Moreover, one can compute TSIR proxies
that incorporate the information contained in nondefault-free securities.

5 Empirical Test

The existence of sequential arbitrage has been tested in the Spanish market. We used
the database of daily prices provided by the Bank of Spain that contains the price of
real transactions corresponding to default-free bonds issued by the Spanish govern-
ment, bonds issued by the regional governments of several Spanish communities and
bonds with embedded options also issued by regional governments. We have focused
on the period between years 1994 and 2002, though the empirical results have been
quite homogeneous regardless of the tested year.

Regarding the existence of sequential arbitrage portfolios composed of default-
free and option-free bonds, Table 1 summarizes some results of 2002. It is clear that
the sequential arbitrage existence cannot be rejected. The existence of SSA-arbitrage
and STSA-arbitrage are closely related, and the values of £∗ and £̃∗∗ are almost equal.
With respect to the TSIR estimation, the usual shape of μ∗ and μ∗ is provided in
Fig. 1.

The average value of the credit risk spread of those bonds issued by the regional
governments is low and close to 0.08% of the total bond price, which implies that
investors have a high degree of confidence in these assets. The last test also in-
corporates extendible and-or callable bonds issued by local governments. Table 1
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Table 1

256 days with Default-free and Option-free bonds Risk premium and

£̃∗∗,£∗ > 0 option-free bonds with risk premium embedded option

% of days with % of days with % of days with

£̃∗∗,£∗ > 0 £̃∗∗,£∗ > 0 £̃∗∗,£∗ > 0

Value of £̃∗∗,£∗ STSA SSA STSA SSA STSA SSA

£∗∗ < 0.001 64.20 64.63 59.92 60.32 58.70 59.11

0.001 ≤ £̃∗∗,£∗ < 0.0025 22.80 22.36 21.86 21.46 21.46 21.05

0.0025 ≤ £̃∗∗,£∗ < 0.005 8.13 8.13 10.53 10.53 10.53 10.53

0.005 ≤ £̃∗∗,£∗ < 0.01 3.66 3.66 6.57 6.07 6.07 6.48

0.01 ≤ £̃∗∗,£∗ < 0.02 0.81 0.81 1.62 1.21 1.62 1.21

0.02 ≤ £̃∗∗,£∗ < 0.05 0.41 0.41 0.40 0.40 0.40 0.40

0.05 ≤ £̃∗∗,£∗ < 2.5 0 0 0 0 1.21 1.21

Fig. 1 December 14th, 1998
The market reflects sequential
arbitrage opportunities and
£̃∗∗ = 0.003554708 The
continuous lines represent the
estimation of μ∗ and μ∗

summarizes the results in 2002. Measures £∗ and £̃∗∗ are almost equal once more.
For those days when the option-free bonds market was arbitrage-free we have ob-
tained the embedded option premium, whose average value is 10% of the total bond
price.

Summarizing, our results seem to reveal some inefficiencies in the market and,
therefore, the existence of sequential arbitrage cannot be rejected. The credit risk
associated with the local governments of the Spanish communities is rather small,
and the embedded option average price is close to 10%. The set of TSIR envelopes
always matches the price of the available bonds.
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6 Conclusions

This paper has introduced new measures that allow us to study the existence of se-
quential arbitrage in bond markets. The measures are defined by means of two dual
pairs of optimization problems.

Primal problems provide concrete sequential arbitrage portfolios (if they exist)
and show that the value of the measures may be interpreted in monetary terms. Thus,
the effect of imperfections (broker’s commissions, for example) may be discounted
in practical applications.

Dual problems provide envelopes for the TSIR and show that the value of the mea-
sures may be interpreted in terms of “pricing errors”. They indicate how real prices
must be modified (in percentages) to prevent the existence of sequential arbitrage.

Every dual pair of optimization problems generates two envelopes for the TSIR.
The envelopes allow us to establish upper and lower bounds for the price of every
portfolio. This is a clear advantage with respect to the usual approach, which consid-
ers a single TSIR that only approximates securities prices without information about
the committed errors.

The TSIR is usually estimated by only drawing on default free and option free
bonds. This is a clear limitation that has led to the negative embedded option price
puzzle. The introduced methodology may give a practical solution to this problem.
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